Chapter 3
Storing Twitter Data

In the previous chapter, we covered data collection methodologies. Using these
methods, one can quickly amass a large volume of Tweets, Tweeters, and network
information. Managing even a moderately-sized dataset is cumbersome when
storing data in a text-based archive, and this solution will not give the performance
needed for a real-time application. In this chapter we present some common storage
methodologies for Twitter data using NoSQL.

3.1 NoSQL Through the Lens of MongoDB

Keeping track of every purchase, click, and “like” has caused the data needs of many
companies to double every 14 months. There has been an explosion in the size of
data generated on social media. This data explosion calls for a new data storage
paradigm. At the forefront of this movement is NoSQL [3], which promises to store
big data in a more accessible way than the traditional, relational model.

There are several NoSQL implementations. In this book, we choose MongoDB!
as an example NoSQL implementation. We choose it for its adherence to the
following principles:

* Document-Oriented Storage. MongoDB stores its data in JSON-style objects.
This makes it very easy to store raw documents from Twitter’s APIs.

* Index Support. MongoDB allows for indexes on any field, which makes it easy
to create indexes optimized for your application.

e Straightforward Queries. MongoDB’s queries, while syntactically much dif-
ferent from SQL, are semantically very similar. In addition, MongoDB supports
MapReduce, which allows for easy lookups in the data.

Thttp://www.mongodb.org/

S. Kumar et al., Twitter Data Analytics, SpringerBriefs in Computer Science, 23
DOI 10.1007/978-1-4614-9372-3_3, © The Author(s) 2014

http://www.mongodb.org/

24 3 Storing Twitter Data

Scalability of NoSQL and Relational Models

— NoSQL
— Relational

Query Time

Data Size

Fig. 3.1 Comparison of traditional relational model with NoSQL model. As data grows to a large
capacity, the NoSQL database outpaces the relational model

* Speed. Figure 3.1 shows a comparison of query speed between the relational
model and MongoDB.

In addition to these abilities, it also works well in a single-instance environment,
making it easy to set up on a home computer and run the examples in this chapter.

3.2 Setting Up MongoDB on a Single Node

The most simple configuration of MongoDB is a single instance running on one
machine. This setup allows for access to all of the features of MongoDB. We use
MongoDB 2.4.4,% the latest version at the time of this writing.

3.2.1 Installing MongoDB on Windows®

1. Obtain the latest version of MongoDB from http://www.mongodb.org/
downloads. Extract the downloaded zip file.

2. Rename the extracted folder to mongodb.

3. Create a folder called data next to the mongodb folder.

Zhttp://docs.mongodb.org/manual/

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://docs.mongodb.org/manual/

3.2 Setting Up MongoDB on a Single Node 25

4. Create a folder called db within the data folder. Your file structure should
reflect that shown below.

/
mongodb

data

| _db

3.2.2 Running MongoDB on Windows

1. Open the command prompt and move to the directory above the mongodb
folder.

2. Run the command mongodb\bin\mongod.exe-dbpath data\db

3. If Windows prompts you, make sure to allow MongoDB to communicate on
private networks, but not public ones. Without special precautions, MongoDB
should not be run in an open environment.

4. Open another command window and move to the directory where you put the
mongodb folder.

5. Run the command mongodb\bin\mongo.exe. This is the command-line
interface to MongoDB. You can now issue commands to MongoDB.

3.2.3 Installing MongoDB on Mac 0S X®

1. Obtain the latest version of MongoDB from http://www.mongodb.org/
downloads.

2. Rename the downloaded file to mongodb. tgz.

3. Open the “Terminal” application. Move to the folder where you downloaded
MongoDB.

4. Run the command tar -zxvf mongodb.tgz. This will create a folder with
the name mongodb-osx- [platform] - [version] in the same directory.
For version 2.4.4, this folder will be called mongodb-osx-x86 64-2.4.4.

5. Run the command mv -n mongodb-osx- [platform] - [version]/
mongodb. This will give us a more convenient folder name.

6. Run the command mkdir data && mkdir data/db. This will create the
subfolders where we will store our data.

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

26 3 Storing Twitter Data
3.2.4 Running MongoDB on Mac OS X

1. Open the “Terminal” application and move to the directory above the mongodb
folder.

2. Run the command . /mongodb/bin/mongod-dbpath data/db

. Open another tab in Terminal (Cmd-T).

4. Run the command . /mongodb/bin/mongo. This is the command-line inter-
face to MongoDB. You can now issue commands to MongoDB.

(O8]

3.3 MongoDB’s Data Organization

MongoDB organizes its data in the following hierarchy: database, collection, docu-
ment. A database is a set of collections, and a collection is a set of documents. The
organization of data in MongoDB is shown in Fig.3.2. Here we will demonstrate
how to interact with each level in this hierarchy to store data.

3.4 How to Execute the MongoDB Examples

The examples presented in this chapter are written in JavaScript — the language
underpinning MongoDB. To run these examples, do the following:

1. Run mongod, as shown above. The process doing this varies is outlined in
Sect. 3.2.

D

D

Dm

.!.
°
°
°

Fig. 3.2 Organization of MongoDB data

3.6 Optimizing Collections for Queries 27

2. Change directories to your bin folder: cd mongodb/bin.

3. Execute the following command: mongo localhost/tweetdata path/
to/example. js. This will run the example on your local MongoDB installa-
tion. If you are on windows, you will have to replace mongo with mongo . exe.

3.5 Adding Tweets to the Collection

Now that we have a collection in the database, we will add some Tweets to it.
Because MongoDB uses JSON to store its documents, we can import the data
exactly as it was collected from Twitter, with no need to map columns. To load
this, download the Occupy Wall Street data included in the supplementary materials,
ows . son. Next, with mongod running, issue the following command?:

mongoimport -d tweetdata -c tweets -file ows.json

mongoimport is a utility that is packaged with MongoDB that allows you to
import JSON documents. By running the above command, we have added all of the
JSON documents in the file to the collection we created earlier. We now have some
Tweets stored in our database, and we are ready to issue some commands to analyze
this data.

3.6 Optimizing Collections for Queries

To make our documents more accessible, we will extract some key features for
indexing later. For example, while the “created_at” field gives us information
about a date in a readable format, converting it to a JavaScript date each time we
do a date comparison will add overhead to our computations. It makes sense to
add a field “timestamp” whose value contains the Unix timestamp* representing
the information contained in “created_at”. This redundancy trades disk space
for efficient computation, which is more of a concern when building real-time
applications which rely on big data. Listing 3.1 is a post-processing script that adds
fields that make handling the Twitter data more convenient and efficient.

30n Windows, you exchange mongoimport with mongoimport .exe.

4 A number, the count of milliseconds since January 1st, 1970.

28 3 Storing Twitter Data

Listing 3.1 Post-processing step to add extra information to data

> //enumerate each Tweet
> db.tweets.find () .forEach (function (doc) {
//save the time string in Unix time.
doc.timestamp = +new Date (doc.created at) ;
//reduce the geobox to one point
doc.geoflag = !!doc.coordinates;
if (doc.coordinates && doc.coordinates.coordinates) {
doc.location = {"lat": doc.coordinates.coordinates
[1], "lng": doc.coordinates.coordinates[0]};
}
//save a lowercased version of the screen name
doc.screen name lower = doc.user.screen name.toLowerCase
() ;
//save our modifications
db.tweets.save (doc) ;
1)

Source: Chapter3/postProcessingExample.js

Listing 3.2 Create an index on the “timestamp” field

|> db.tweets.ensureIndex ({"timestamp": 1}) |

3.7 Indexes

We now have inserted some documents into a collection, but as they stand querying
them will be slow as we have not created any indexes. That is, we have not told
MongoDB which fields in the document to optimize for faster lookup.

One of the most important concepts to understand for fast access of a MongoDB
collection is indexing. The indexes you choose will depend largely on the queries
that you run often, those that must be executed in real time. While the indexes you
choose will depend on your data, here we will show some indexes that are often
useful in querying Twitter data in real-time.

The first index we create will be on our “timestamp” field. This command is
shown in Listing 3.2.

When creating an index, there are several rules MongoDB enforces to ensure that
an index is used:

* Only one index is used per query. While you can create as many indexes as
you want for a given collection, you can only use one for each query. If you
have multiple fields in your query, you can create a “compound index” on both
fields. For example, if you want to create an index on “timestamp”, and then
“retweet_count”, can pass {"timestamp": 1, "retweet count": 1}.

3.9 Filtering Documents: Number of Tweets Generated in a Certain Hour 29

* Indexes can only use fields in the order they were created. Say, for example,
we create the index {"timestamp": 1, "retweet count": 1, "keywords"
1}.
This query is valid for queries structured in the following order:

— timestamp, retweet_count, keywords
— timestamp
— timestamp, retweet_count

This query is not valid for queries structured in the following order:

— retweet_count, timestamp, keywords
— keywords
— timestamp, keywords

¢ Indexes can contain, at most, one array. Twitter provides Tweet metadata in
the form of arrays, but we can only use one in any given index.

3.8 Extracting Documents: Retrieving All Documents
in a Collection

The simplest query we can provide to MongoDB is to return all of the data in a
collection. We use MongoDB’s £ind function to do this, an example of which is
shown in Listing 3.3.

3.9 Filtering Documents: Number of Tweets Generated
in a Certain Hour

Suppose we want to know the number of Tweets in our dataset from a particular
hour. To do this we will have to filter our data by the timestamp field with
“operators”: special values that act as functions in retrieving data.

Listing 3.4 shows how we can drill down to extract data only from this hour.
We use the $gt (“greater than”), and $S1te (“less than or equal to”) operators to
pull dates from this time range. Notice that there is no explicit “AND” or “OR”
operator specified. MongoDB treats all co-occurring key/value pairs as “AND”’s
unless explicitly specified by the Sor operator.’ Finally, the result of this query
is passed to the count function, which returns the number of documents returned
by the £ind function.

SFor more operators, see http://docs.mongodb.org/manual/reference/operator/.

http://docs.mongodb.org/manual/reference/operator/.

30 3 Storing Twitter Data

Listing 3.3 Get all of the Tweets in a collection

> db.tweets.find ()

{ " id" : ObjectId("51e6d70cd13954bd0dd9e09d"), ... }
{ " id" : ObjectId("51e6d70cd13954bd0dd9e09%e"), ... }
has more

Source: Chapter3/find all tweets.js

Listing 3.4 Get all of the Tweets from a single hour

> var NOVEMBER = 10; //Months are zero-indexed.
> var query = {
"timestamp" : {
"Sgte": +new Date (2011, NOVEMBER, 15, 10),
"slt": +new Date (2011, NOVEMBER, 16, 11)

}
)
> db.tweets.find (query) .count () ;
22169
Source: Chapter3/tweets from one hour.js

Listing 3.5 Sort Tweets by time published

> db.tweets.find () .sort ({"timestamp": -1})

{ " id" : ObjectId("51e6d713d13954bd0ddaa097"),

{ " id" : ObjectId("51e6d713d13954bd0ddaa096"), ... }
has more

Source: Chapter3/most recent tweets.js

3.10 Sorting Documents: Finding the Most Recent Tweets

To find the most recent Tweets, we will have to sort the data. MongoDB provides a
sort function that will order the Tweet by a specified field. Listing 3.5 shows an
example of how to use sort to order data by timestamp. Because we used “—1” in
the value of the key value pair, MongoDB will return the data in descending order.
For ascending order, use “1”.

Without the index created in Sect. 3.7, we would have caused the error shown in
Listing 3.6. Even with a relatively small collection, MongoDB cannot sort the data
in a manageable amount of time, however with an index it is very fast.

3.11 Grouping Documents: Identifying the Most Mentioned Users 31

Listing 3.6 Error generated without an index on “timestamp”

> db.tweets.find () .sort ({"timestamp": -1})
error:
"Serr" : "too much data for sort() with no index. add an
index or specify a smaller limit",
"code" : 10128
1
Input Split Map Shuffle Reduce Output
@jim bo @bob, 1
@sam
@jim, 2
@bob
o @jim
@sam ¢ @mike, 1
(@mike
@sam @sam, 3

Fig. 3.3 MapReduce framework. The steps in white are implemented by the reader. MongoDB
takes the documents from the database and runs each one through the map function. It then sorts
the emitted keys and runs each key and its values through the reduce function. The output from the
reduce function is stored in another collection

3.11 Grouping Documents: Identifying the Most
Mentioned Users

With some simple use of the find and count functions, you can learn volumes about
the data you have collected. However, when it comes to aggregating data, we will
need to employ another set of functions, collectively called MapReduce.

MapReduce consists of two steps: “Map”, and “Reduce”. In the map step, data
is extracted, filtered, and processed to be sent to the reduce function. The mapper
processes in the map step emit a series of key/value pairs. These key value pairs are
sorted, and the values associated with each unique key are sent to a reduce process.
Each reduce process then computes a value for the key it is handed. A diagram for
this process is shown in Fig. 3.3. The MongoDB code for this example is shown in
Listing 3.7.

32 3 Storing Twitter Data

Listing 3.7 MapReduce function that lists the most mentioned users

/%
* This function extracts each user mentioned,
* and the count of each mention.
* The function takes 0 parameters, as the document
* will be passed through context (the ’'this’ object).
*/
var mapFunction = function() {
//loop through all of the mentions in the document.
var userMentions = this.entities.user mentions;
for(var i = 0; i < userMentions.length; i++){
//check that the username is not blank.
if (userMentions [i] .screen name.length > 0){
//emit the username (key) and
//the count (value, in this case always 1).
emit (userMentions[i] .screen name, 1);

V V.V V V V V

/*
* This function sums the number of mentions of each user
*/
var reduceFunction = function (keyUsername, occurs) {
return Array.sum(occurs) ;
}

// Perform the MapReduce operation, and store the results
// in a new collection, "most mentioned users".
> db.tweets.mapReduce (mapFunction, reduceFunction, "out": "
most mentioned users"});

vV V. V V

> // List the top 5 most-mentioned users

> db.most_mentioned users.find() .sort ({"value": -1}).limit (5)
{ " id" : "MikeBloomberg", "value" : 727 }

{ v id" : "OccupyWallst", "value" : 588 }

{ » id" : "OccupyWallStNYC", "value" : 428 }

{ » id" : n"JoshHarkinson", "value" : 295 }

{ » id" : "ydanis", "value" : 260 }

Source: Chapter3/mapreduce.js

In Listing 3.7, the MapReduce is constructed as follows. The map function, called
mapFunction, looks at each individual Tweet and pulls out the mentioned users.
It then constructs the key/value pair to be sent to the reducer. The key is the user
that was mentioned, and the value is 1. MongoDB then creates a unique reducer for
each unique key and calls the reduce function, reduceFunction, on each key.
The reducer then takes this list of values and calculates the sum. The result is a list
of mentioned users and the count of the number of mentions for that user.

References 33
3.12 Further Reading

More information on MongoDB can be found in [2] and the MongoDB speci-
fication [1]. For more conversions between MongoDB’s document-based syntax
and SQL, see http://docs.mongodb.org/manual/reference/sql-comparison/. More
information on other NoSQL implementations can be found in [3].

References

1. 10gen. The mongodb 2.4 manual. http://docs.mongodb.org/manual/, 2013.
2. K. Chodorow. MongoDB: the definitive guide. O’Reilly, 2013.
3. E. Redmond and J. R. Wilson. Seven Databases in Seven Weeks. Pragmatic Programmers, 2012.

http://docs.mongodb.org/manual/reference/sql-comparison/
http://docs.mongodb.org/manual/

	3 Storing Twitter Data
	3.1 NoSQL Through the Lens of MongoDB
	3.2 Setting Up MongoDB on a Single Node
	3.2.1 Installing MongoDB on Windows®
	3.2.2 Running MongoDB on Windows
	3.2.3 Installing MongoDB on Mac OS X®
	3.2.4 Running MongoDB on Mac OS X

	3.3 MongoDB's Data Organization
	3.4 How to Execute the MongoDB Examples
	3.5 Adding Tweets to the Collection
	3.6 Optimizing Collections for Queries
	3.7 Indexes
	3.8 Extracting Documents: Retrieving All Documents in a Collection
	3.9 Filtering Documents: Number of Tweets Generated in a Certain Hour
	3.10 Sorting Documents: Finding the Most Recent Tweets
	3.11 Grouping Documents: Identifying the Most Mentioned Users
	3.12 Further Reading
	References

