
Chapter 2
Crawling Twitter Data

Users on Twitter generate over 400 million Tweets everyday.1 Some of these Tweets
are available to researchers and practitioners through public APIs at no cost. In
this chapter we will learn how to extract the following types of information from
Twitter:

• Information about a user,
• A user’s network consisting of his connections,
• Tweets published by a user, and
• Search results on Twitter.

APIs to access Twitter data can be classified into two types based on their design
and access method:

• REST APIs are based on the REST architecture2 now popularly used for
designing web APIs. These APIs use the pull strategy for data retrieval. To collect
information a user must explicitly request it.

• Streaming APIs provides a continuous stream of public information from
Twitter. These APIs use the push strategy for data retrieval. Once a request for
information is made, the Streaming APIs provide a continuous stream of updates
with no further input from the user.

They have different capabilities and limitations with respect to what and how
much information can be retrieved. The Streaming API has three types of end-
points:

• Public streams: These are streams containing the public Tweets on Twitter.
• User streams: These are single-user streams, with to all the Tweets of a user.
• Site streams: These are multi-user streams and intended for applications which

access Tweets from multiple users.

1http://articles.washingtonpost.com/2013-03-21/business/37889387_1_tweets-jack-dorsey-
twitter
2http://en.wikipedia.org/wiki/Representational_state_transfer

S. Kumar et al., Twitter Data Analytics, SpringerBriefs in Computer Science,
DOI 10.1007/978-1-4614-9372-3__2, © The Author(s) 2014

5

http://articles.washingtonpost.com/2013-03-21/business/37889387_1_tweets-jack-dorsey-twitter
http://articles.washingtonpost.com/2013-03-21/business/37889387_1_tweets-jack-dorsey-twitter
http://en.wikipedia.org/wiki/Representational_state_transfer

6 2 Crawling Twitter Data

As the Public streams API is the most versatile Streaming API, we will use it in
all the examples pertaining to Streaming API.

In this chapter, we illustrate how the aforementioned types of information can be
collected using both forms of Twitter API. Requests to the APIs contain parameters
which can include hashtags, keywords, geographic regions, and Twitter user IDs. We
will explain the use of parameters in greater detail in the context of specific APIs
later in the chapter. Responses from Twitter APIs is in JavaScript Object Notation
(JSON) format.3 JSON is a popular format that is widely used as an object notation
on the web.

Twitter APIs can be accessed only via authenticated requests. Twitter uses Open
Authentication and each request must be signed with valid Twitter user credentials.
Access to Twitter APIs is also limited to a specific number of requests within a time
window called the rate limit. These limits are applied both at individual user level
as well as at the application level. A rate limit window is used to renew the quota of
permitted API calls periodically. The size of this window is currently 15 min.

We begin our discussion with a brief introduction to OAuth.

2.1 Introduction to Open Authentication (OAuth)

Open Authentication (OAuth) is an open standard for authentication, adopted by
Twitter to provide access to protected information. Passwords are highly vulner-
able to theft and OAuth provides a safer alternative to traditional authentication
approaches using a three-way handshake. It also improves the confidence of the
user in the application as the user’s password for his Twitter account is never shared
with third-party applications.

The authentication of API requests on Twitter is carried out using OAuth.
Figure 2.1 summarizes the steps involved in using OAuth to access Twitter API.
Twitter APIs can only be accessed by applications. Below we detail the steps for
making an API call from a Twitter application using OAuth:

1. Applications are also known as consumers and all applications are required to
register themselves with Twitter.4 Through this process the application is issued
a consumer key and secret which the application must use to authenticate itself
to Twitter.

2. The application uses the consumer key and secret to create a unique Twitter link
to which a user is directed for authentication. The user authorizes the application
by authenticating himself to Twitter. Twitter verifies the user’s identity and issues
a OAuth verifier also called a PIN.

3http://en.wikipedia.org/wiki/JSON
4Create your own application at http://dev.twitter.com

http://en.wikipedia.org/wiki/JSON
http://dev.twitter.com

2.2 Collecting a User’s Information 7

Registers on Twitter to
access APIs

Issues the consumer
token & secret

Directs user to
Twitter to verify user

credentials

Validates credentials &
issues a OAuth verifier

Enters
credentials

Requests access token
 using the OAuth verifier,
consumer token & secret

Issues access
token & secret

Requests for content
using access token &

secret

Responds with
requested information

Fig. 2.1 OAuth workflow

3. The user provides this PIN to the application. The application uses the PIN to
request an “Access Token” and “Access Secret” unique to the user.

4. Using the “Access Token” and “Access Secret”, the application authenticates the
user on Twitter and issues API calls on behalf of the user.

The “Access Token” and “Access Secret” for a user do not change and can be cached
by the application for future requests. Thus, this process only needs to be performed
once, and it can be easily accomplished using the method GetUserAccessKeySecret
in Listing 2.1.

2.2 Collecting a User’s Information

On Twitter, users create profiles to describe themselves to other users on Twitter.
A user’s profile is a rich source of information about him. An example of a Twitter
user’s profile is presented in Fig. 2.2. Following distinct pieces of information
regarding a user’s Twitter profile can be observed in the figure:

8 2 Crawling Twitter Data

Fig. 2.2 An example of a Twitter profile

Listing 2.1 Generating OAuth token for a user

public OAuthTokenSecret GetUserAccessKeySecret() {
. . .
//Step 1 is performed directly on twitter.com after

registration.
//Step 2 User authenticates on twitter.com and generates

a PIN
OAuthConsumer consumer = new CommonsHttpOAuthConsumer(

OAuthUtils.CONSUMER_KEY, OAuthUtils.
CONSUMER_SECRET);

OAuthProvider provider = new DefaultOAuthProvider(
OAuthUtils.REQUEST_TOKEN_URL, OAuthUtils.
ACCESS_TOKEN_URL, OAuthUtils.AUTHORIZE_URL);

String authUrl = provider.retrieveRequestToken(consumer,
OAuth.OUT_OF_BAND);

//Visit authUrl and enter the PIN in the application
BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));
String pin = br.readLine();
//Step 3 Twitter generates the token and secret using

the provided PIN
provider.retrieveAccessToken(consumer,pin);
String accesstoken = consumer.getToken();
String accesssecret = consumer.getTokenSecret();
OAuthTokenSecret tokensecret = new OAuthTokenSecret(

accesstoken,accesssecret);
return tokensecret;
. . .

}
Source: Chapter2/openauthentication/OAuthExample.java

2.2 Collecting a User’s Information 9

• User’s real name (Data Analytics)
• User’s Twitter handle(@twtanalyticsbk)
• User’s location (Tempe, AZ)
• URL, which typically points to a more detailed profile of the user on an external

website (tweettracker.fulton.asu.edu/tda)
• Textual description of the user and his interests (Twitter Data Analytics is a book

for. . .)
• User’s network activity information on Twitter (1 follower and following 6

friends)
• Number of Tweets published by the user (1 Tweet)
• Verified mark if the identity of the user has been externally verified by Twitter
• Profile creation date

Listing 2.2 Using Twitter API to fetch a user’s profile

public JSONObject GetProfile(String username) {
. . .
// Step 1: Create the API request using the supplied

username
URL url = new URL("https://api.twitter.com/1.1/users/

show.json?screen_name="+username);
HttpURLConnection huc = (HttpURLConnection) url.

openConnection();
huc.setReadTimeout(5000);
// Step 2: Sign the request using the OAuth Secret
consumer.sign(huc);
huc.connect();
. . .
/** Step 3: If the requests have been exhausted,

* then wait until the quota is renewed

*/
if(huc.getResponseCode()==429) {

try {
huc.disconnect();
Thread.sleep(this.GetWaitTime("/users/

show/:id"));
flag = false;

. . .
// Step 4: Retrieve the user’s profile from Twitter
bRead = new BufferedReader(new InputStreamReader((

InputStream) huc.getContent()));
. . .
profile = new JSONObject(content.toString());
. . .
return userobj;

}
Source: Chapter2/restapi/RESTApiExample.java

tweettracker.fulton.asu.edu/tda

10 2 Crawling Twitter Data

Listing 2.3 A sample Twitter user object

{
"location": "Tempe,AZ",
"default_profile": true,
"statuses_count": 1,
"description": "Twitter Data Analytics is a book for

practitioners and researchers interested in
investigating Twitter data.",

"verified": false,
"name": "DataAnalytics",
"created_at": "Tue Mar 12 18:43:47 +0000 2013",
"followers_count": 1,
"geo_enabled": false,
"url": "http://t.co/HnlG9amZzj",
"time_zone": "Arizona",
"friends_count": 6,
"screen_name": "twtanalyticsbk",

//Other user fields
. . .

}

Using the API users/show,5 a user’s profile information can be retrieved using
the method GetProfile. The method is presented in Listing 2.2. It accepts a valid
username as a parameter and fetches the user’s Twitter profile.

Key Parameters: Each user on Twitter is associated with a unique id and a
unique Twitter handle which can be used to retrieve his profile. A user’s Twitter
handle, also called their screen name (screen_name), or the Twitter ID of the
user (user_id), is mandatory. A typical user object is formatted as in Listing 2.3.

Rate Limit: A maximum of 180 API calls per single user and 180 API calls from
a single application are accepted within a single rate limit window.

Note: User information is generally included when Tweets are fetched from
Twitter. Although the Streaming API does not have a specific endpoint to retrieve
user profile information, it can be obtained from the Tweets fetched using the API.

2.3 Collecting a User’s Network

A user’s network consists of his connections on Twitter. Twitter is a directed network
and there are two types of connections between users. In Fig. 2.3, we can observe an
example of the nature of these edges. John follows Alice, therefore John is Alice’s
follower. Alice follows Peter, hence Peter is a friend of Alice.

5https://dev.twitter.com/docs/api/1.1/get/users/show

https://dev.twitter.com/docs/api/1.1/get/users/show

2.3 Collecting a User’s Network 11

Alice

Bob

John Peter

Fig. 2.3 An example of a
Twitter network with different
types of edges

Listing 2.4 Using the Twitter API to fetch the followers of a user

public JSONArray GetFollowers(String username) {
. . .
// Step 1: Create the API request using the supplied

username
URL url = new URL("https://api.twitter.com/1.1/followers

/list.json?screen_name="+username+"&cursor="
+ cursor);

HttpURLConnection huc = (HttpURLConnection) url.
openConnection();

huc.setReadTimeout(5000);
// Step 2: Sign the request using the OAuth Secret
Consumer.sign(huc);
huc.connect();
. . .
/** Step 3: If the requests have been exhausted,

* then wait until the quota is renewed

*/
if(huc.getResponseCode()==429) {

try {
Thread.sleep(this.GetWaitTime("/

followers/list"));
} catch (InterruptedException ex) {

Logger.getLogger(RESTApiExample.class.
getName()).log(Level.SEVERE, null,
ex);

}
}
// Step 4: Retrieve the followers list from Twitter
bRead = new BufferedReader(new InputStreamReader((

InputStream) huc.getContent()));
StringBuilder content = new StringBuilder();
String temp = "";
while((temp = bRead.readLine())!=null) {

content.append(temp);
}
try {

12 2 Crawling Twitter Data

JSONObject jobj = new JSONObject(content.
toString());

// Step 5: Retrieve the token for the next
request

cursor = jobj.getLong("next_cursor");
JSONArray idlist = jobj.getJSONArray("users");
for(int i=0;i<idlist.length();i++) {

followers.put(idlist.getJSONObject(i));
}

. . .
return followers;

}
Source: Chapter2/restapi/RESTApiExample.java

2.3.1 Collecting the Followers of a User

The followers of a user can be crawled from Twitter using the endpoint follow-
ers/list,6 by employing the method GetFollowers summarized in Listing 2.4. The
response from Twitter consists of an array of user profile objects such as the one
described in Listing 2.3

Key Parameters: screen_name or user_id is mandatory to access the API.
Each request returns a maximum of 15 followers of the specified user in the form of
a Twitter User object. The parameter “cursor” can be used to paginate through the
results. Each request returns the cursor for use in the request for the next page.

Rate Limit: A maximum of 15 API calls from a user and 30 API calls from an
application are allowed within a rate limit window.

2.3.2 Collecting the Friends of a User

The friends of a user can be crawled using the Twitter API friends/list7 by employing
the method GetFriends, which is summarized in Listing 2.5. The method constructs
a call to the API and takes a valid Twitter username as the parameter. It uses the
cursor to retrieve all the friends of a user and if the API limit is reached, it will wait
until the quota has been renewed.

Key Parameters: As with the followers API, a valid screen_name or
user_id is mandatory. Each request returns a list of 20 friends of a user as Twitter
User objects. The parameter “cursor” can be used to paginate through the results.
Each request returns the cursor to be used in the request for the next page.

6https://dev.twitter.com/docs/api/1.1/get/followers/list
7https://dev.twitter.com/docs/api/1.1/get/friends/list

https://dev.twitter.com/docs/api/1.1/get/followers/list
https://dev.twitter.com/docs/api/1.1/get/friends/list

2.3 Collecting a User’s Network 13

Listing 2.5 Using the Twitter API to fetch the friends of a user

public JSONArray GetFriends(String username) {
. . .
JSONArray friends = new JSONArray();
// Step 1: Create the API request using the supplied

username
URL url = new URL("https://api.twitter.com/1.1/friends/

list.json?screen_name="+username+"&cursor="+cursor);
HttpURLConnection huc = (HttpURLConnection) url.

openConnection();
huc.setReadTimeout(5000);
// Step 2: Sign the request using the OAuth Secret
Consumer.sign(huc);
huc.connect();
. . .
/** Step 3: If the requests have been exhausted,

* then wait until the quota is renewed

*/
if(huc.getResponseCode()==429) {

try {
Thread.sleep(this.GetWaitTime("/friends/

list"));
} catch (InterruptedException ex) {

Logger.getLogger(RESTApiExample.class.
getName()).log(Level.SEVERE, null,
ex);

}
}
// Step 4: Retrieve the friends list from Twitter
bRead = new BufferedReader(new InputStreamReader((

InputStream) huc.getContent()));
. . .
JSONObject jobj = new JSONObject(content.toString());
// Step 5: Retrieve the token for the next request
cursor = jobj.getLong("next_cursor");
JSONArray userlist = jobj.getJSONArray("users");
for(int i=0;i<userlist.length();i++) {

friends.put(userlist.get(i));
}
. . .
return friends;

}
Source: Chapter2/restapi/RESTApiExample.java

Rate Limit: A maximum of 15 calls from a user and 30 API calls from an
application are allowed within a rate limit window.

14 2 Crawling Twitter Data

2.4 Collecting a User’s Tweets

A Twitter user’s Tweets are also known as status messages. A Tweet can be at most
140 characters in length. Tweets can be published using a wide range of mobile and
desktop clients and through the use of Twitter API. A special kind of Tweet is the
retweet, which is created when one user reposts the Tweet of another user. We will
discuss the utility of retweets in greater detail in Chaps. 4 and 5.

A user’s Tweets can be retrieved using both the REST and the Streaming API.

2.4.1 REST API

We can access a user’s Tweets by using statuses/user_timeline8 from the REST
APIs. Using this API, one can retrieve 3,200 of the most recent Tweets published
by a user including retweets. The API returns Twitter “Tweet” objects shown in
Listing 2.6.

An example describing the process to access this API can be found in the
GetStatuses method summarized in Listing 2.7.

Key Parameters: We can retrieve 200 Tweets on each page we collect. The
parameter max_id is used to paginate through the Tweets of a user. To retrieve the
next page we use the ID of the oldest Tweet in the list as the value of this parameter
in the subsequent request. Then, the API will retrieve only those Tweets whose IDs
are below the supplied value.

Rate Limit: An application is allowed 300 requests within a rate limit window
and up to 180 requests can be made using the credentials of a user.

Listing 2.6 An example of Twitter Tweet object

{
"text": "This is the first tweet.",
"lang": "en",
"id": 352914247774248960,
"source": "web",
"retweet_count": 0,
"created_at": "Thu Jul 04 22:18:08 +0000 2013",
//Other Tweet fields
. . .
"place": {

"place_type": "city",
"name": "Tempe",
"country_code": "US",
"url": "https://api.twitter.com/1.1/geo/id/7

cb7440bcf83d464.json",
"country": "United States",

8https://dev.twitter.com/docs/api/1.1/get/statuses/user_timeline

https://dev.twitter.com/docs/api/1.1/get/statuses/user_timeline

2.4 Collecting a User’s Tweets 15

"full_name": "Tempe, AZ",
//Other place fields
. . .

},
"user": {

//User Information in the form of Twitter user object
. . .

}
}

Listing 2.7 Using the Twitter API to fetch the Tweets of a user

public JSONArray GetStatuses(String username) {
. . .
// Step 1: Create the API request using the supplied

username
// Use (max_id-1) to avoid getting redundant Tweets.
url = new URL("https://api.twitter.com/1.1/statuses/

user_timeline.json?screen_name=" + username+"&
include_rts="+include_rts+"&count="+tweetcount+"&
max_id="+(maxid-1));

HttpURLConnection huc = (HttpURLConnection) url.
openConnection();

huc.setReadTimeout(5000);
// Step 2: Sign the request using the OAuth Secret
Consumer.sign(huc);
/** Step 3: If the requests have been exhausted,

* then wait until the quota is renewed */
. . .
//Step 4: Retrieve the Tweets from Twitter
bRead = new BufferedReader(new InputStreamReader((

InputStream) huc.getInputStream()));
. . .
for(int i=0;i<statusarr.length();i++) {

JSONObject jobj = statusarr.getJSONObject(i);
statuses.put(jobj);
// Step 5: Get the id of the oldest Tweet ID as

max_id to retrieve the next batch of Tweets
if(!jobj.isNull("id")) {

maxid = jobj.getLong("id");
. . .

return statuses;
}
Source: Chapter2/restapi/RESTApiExample.java

16 2 Crawling Twitter Data

2.4.2 Streaming API

Specifically, the statuses/filter9 API provides a constant stream of public Tweets
published by a user. Using the method CreateStreamingConnection summarized in
Listing 2.8, we can create a POST request to the API and fetch the search results
as a stream. The parameters are added to the request by reading through a list of
userids using the method CreateRequestBody, which is summarized in Listing 2.9.

Listing 2.8 Using the Streaming API to fetch Tweets

public void CreateStreamingConnection(String baseUrl, String
outFilePath) {

HttpClient httpClient = new DefaultHttpClient();
httpClient.getParams().setParameter(CoreConnectionPNames

.CONNECTION_TIMEOUT, new Integer(90000));
//Step 1: Initialize OAuth Consumer
OAuthConsumer consumer = new CommonsHttpOAuthConsumer(

OAuthUtils.CONSUMER_KEY,OAuthUtils.CONSUMER_SECRET);
consumer.setTokenWithSecret(OAuthToken.getAccessToken(),

OAuthToken.getAccessSecret());
//Step 2: Create a new HTTP POST request and set

parameters
HttpPost httppost = new HttpPost(baseUrl);
try {

httppost.setEntity(new UrlEncodedFormEntity(
CreateRequestBody(), "UTF-8"));

. . .
//Step 3: Sign the request
consumer.sign(httppost);
. . .
HttpResponse response;
InputStream is = null;
try {

//Step 4: Connect to the API
response = httpClient.execute(httppost);
. . .
HttpEntity entity = response.getEntity();
try {

is = entity.getContent();
. . .
//Step 5: Process the incoming Tweet

Stream
this.ProcessTwitterStream(is, outFilePath

);
. . .

}
Source: Chapter2/streamingapi/StreamingApiExample.java

9https://dev.twitter.com/docs/api/1.1/post/statuses/filter

https://dev.twitter.com/docs/api/1.1/post/statuses/filter

2.5 Collecting Search Results 17

Listing 2.9 Adding parameters to the Streaming API

private List<NameValuePair> CreateRequestBody() {
List<NameValuePair> params = new ArrayList<NameValuePair

>();
if(Userids != null&&Userids.size()>0) {

//Add userids
params.add(CreateNameValuePair("follow",

Userids));
}
if (Geoboxes != null&&Geoboxes.size()>0) {

//Add geographic bounding boxes
params.add(CreateNameValuePair("locations",

Geoboxes));
}
if (Keywords != null&&Keywords.size()>0) {

//Add keywords/hashtags/phrases
params.add(CreateNameValuePair("track",

Keywords));
}
return params;

}
Source: Chapter2/streamingapi/StreamingApiExample.java

Key Parameters: The follow10 parameter can be used to specify the userids
of 5,000 users as a comma separated list.

Rate Limit: Rate limiting works differently in the Streaming API. In each
connection an application is allowed to submit up to 5,000 Twitter userids. Only
public Tweets published by the user can be captured using this API.

2.5 Collecting Search Results

Search on Twitter is facilitated through the use of parameters. Acceptable parameter
values for search include keywords, hashtags, phrases, geographic regions, and
usernames or userids. Twitter search is quite powerful and is accessible by both
the REST and the Streaming APIs. There are certain subtle differences when using
each API to retrieve search results.

2.5.1 REST API

Twitter provides the search/tweets API to facilitate searching the Tweets. The search
API takes words as queries and multiple queries can be combined as a comma
separated list. Tweets from the previous 10 days can be searched using this API.

10https://dev.twitter.com/docs/streaming-apis/parameters#follow

https://dev.twitter.com/docs/streaming-apis/parameters#follow

18 2 Crawling Twitter Data

Listing 2.10 Searching for Tweets using the REST API

public JSONArray GetSearchResults(String query) {
try {

// Step 1:
String URL_PARAM_SEPERATOR = "&";
StringBuilder url = new StringBuilder();
url.append("https://api.twitter.com/1.1/search/tweets.

json?q=");
//query needs to be encoded
url.append(URLEncoder.encode(query, "UTF-8"));
url.append(URL_PARAM_SEPERATOR);
url.append("count=100");
URL navurl = new URL(url.toString());
HttpURLConnection huc = (HttpURLConnection) navurl.

openConnection();
huc.setReadTimeout(5000);
Consumer.sign(huc);
huc.connect();
. . .
// Step 2: Read the retrieved search results
BufferedReader bRead = new BufferedReader(new

InputStreamReader((InputStream) huc.getInputStream()
));

String temp;
StringBuilder page = new StringBuilder();
while((temp = bRead.readLine())!=null) {

page.append(temp);
}
JSONTokener jsonTokener = new JSONTokener(page.toString

());
try{

JSONObject json = new JSONObject(jsonTokener);
//Step 4: Extract the Tweet objects as an array
JSONArray results = json.getJSONArray("statuses");
return results;
. . .

}
Source: Chapter2/restapi/RESTApiExample.java

Requests to the API can be made using the method GetSearchResults presented in
Listing 2.10. Input to the function is a keyword or a list of keywords in the form of
an OR query. The function returns an array of Tweet objects.

Key Parameters: result_type parameter can be used to select between the
top ranked Tweets, the latest Tweets, or a combination of the two types of search
results matching the query. The parameters max_id and since_id can be used
to paginate through the results, as in the previous API discussions.

Rate Limit: An application can make a total of 450 requests and up to 180
requests from a single authenticated user within a rate limit window.

2.5 Collecting Search Results 19

2.5.2 Streaming API

Using the Streaming API, we can search for keywords, hashtags, userids, and
geographic bounding boxes simultaneously. The filter API facilitates this search and
provides a continuous stream of Tweets matching the search criteria. POST method
is preferred while creating this request because when using the GET method to
retrieve the results, long URLs might be truncated. Listings 2.8 and 2.9 describe
how to connect to the Streaming API with the supplied parameters.

Listing 2.11 Processing the streaming search results

public void ProcessTwitterStream(InputStream is, String
outFilePath) {

BufferedWriter bwrite = null;
try {
/** A connection to the streaming API is already

* created and the response is contained in

* the InpuStream

*/
JSONTokener jsonTokener = new JSONTokener(new

InputStreamReader(is, ‘‘UTF-8’’));
ArrayList<JSONObject> rawtweets = new ArrayList<

JSONObject>();
int nooftweetsuploaded = 0;

//Step 1: Read until the stream is exhausted
while(true) {
try {

JSONObject temp = new JSONObject(jsonTokener);
rawtweets.add(temp);
if (rawtweets.size() >= RECORDS_TO_PROCESS){
Calendar cal = Calendar.getInstance();
String filename = outFilePath + ‘‘tweets_’’ +

cal.getTimeInMillis() + ‘‘.json’’;
//Step 2: Periodically write the

processed Tweets to a file
bwrite = new BufferedWriter(new

OutputStreamWriter(new
FileOutputStream(filename),
‘‘UTF-8’’));

nooftweetsuploaded+=RECORDS_TO_PROCESS;
for (JSONObject jobj : rawtweets) {

bwrite.write(jobj.toString());
bwrite.newLine();
}
bwrite.close();
rawtweets.clear();

. . .
}
Source: Chapter2/streamingapi/StreamingApiExample.java

In method ProcessTwitterStream, as in Listing 2.11, we show how the incoming
stream is processed. The input is read in the form of a continuous stream and

20 2 Crawling Twitter Data

each Tweet is written to a file periodically. This behavior can be modified as per
the requirement of the application, such as storing and indexing the Tweets in a
database. More discussion on the storage and indexing of Tweets will follow in
Chap. 3.

Key Parameters: There are three key parameters:

• follow: a comma-separated list of userids to follow. Twitter returns all of their
public Tweets in the stream.

• track: a comma-separated list of keywords to track. Multiple keywords are
provided as a comma separated list.

• locations: a comma-separated list of geographic bounding box containing the
coordinates of the southwest point and the northeast point as (longitude, latitude)
pairs.

Rate Limit: Streaming APIs limit the number of parameters which can be
supplied in one request. Up to 400 keywords, 25 geographic bounding boxes and
5,000 userids can be provided in one request. In addition, the API returns all
matching documents up to a volume equal to the streaming cap. This cap is currently
set to 1% of the total current volume of Tweets published on Twitter.

2.6 Strategies to Identify the Location of a Tweet

Location information on Twitter is available from two different sources:

• Geotagging information: Users can optionally choose to provide location infor-
mation for the Tweets they publish. This information can be highly accurate if
the Tweet was published using a smartphone with GPS capabilities.

• Profile of the user: User location can be extracted from the location field in the
user’s profile. The information in the location field itself can be extracted using
the APIs discussed above.

Approximately 1% of all Tweets published on Twitter are geolocated. This is
a very small portion of the Tweets, and it is often necessary to use the profile
information to determine the Tweet’s location. This information can be used in
different visualizations as you will see in Chap. 5. The location string obtained from
the user’s profile must first be translated into geographic coordinates. Typically, a
gazetteer is used to perform this task. A gazetteer takes a location string as input,
and returns the coordinates of the location that best correspond to the string. The
granularity of the location is generally coarse. For example, in the case of large
regions, such as cities, this is usually the center of the city. There are several
online gazetteers which provide this service, including Bing™, Google™, and
MapQuest™. In our example, we will use the Nominatim service from MapQuest11

11http://developer.mapquest.com/web/products/open/nominatim

http://developer.mapquest.com/web/products/open/nominatim

2.7 Obtaining Data via Resellers 21

Listing 2.12 Translating location string into coordinates

public Location TranslateLoc(String loc) {
if(loc!=null&&!loc.isEmpty()) {

String encodedLoc="";
try {
// Step 1: Encode the location name

encodedLoc = URLEncoder.encode(loc, "UTF-8");
. . .
/** Step 2: Create a get request to MapQuest API with

the

* name of the location

*/
String url= "http://open.mapquestapi.com/nominatim/v1/

search?q="+encodedLoc+"&format=json";
String page = ReadHTML(url);
if(page!=null) {

try{
JSONArray results = new JSONArray(page);
if(results.length()>0) {

//Step 3: Read and extract the
coordinates of the location
as a JSONObject

Location loca = new Location(
results.getJSONObject(0).
getDouble("lat"),results.
getJSONObject(0).getDouble("
lon"));

return loca;
. . .

}
Source: Chapter2/location/LocationTranslationExample.java

to demonstrate this process. In Listing 2.12, a summary of the method TranslateLoc
is provided, which is defined in the class LocationTranslateExample. The response
is provided in JSON, from which the coordinates can be easily extracted. If the
service is unable to find a match, it will return (0,0) as the coordinates.

2.7 Obtaining Data via Resellers

The rate limitations of Twitter APIs can be too restrictive for certain types of
applications. To satisfy such requirements, Twitter Firehose provides access to
100% of the public Tweets on Twitter at a price. Firehose data can be purchased
through third party resellers of Twitter data. At the time of writing of this book,
there are three resellers of data, each of which provide different levels of access.
In addition to Twitter data some of them also provide data from other social media
platforms, which might be useful while building social media based systems. These
include the following:

22 2 Crawling Twitter Data

• DataSift™12 – provides access to past data as well as streaming data
• GNIP™13 – provides access to streaming data only
• Topsy™14 – provides access to past data only

2.8 Further Reading

Full documentation of v1.1 of the Twitter API can be found at [1]. It also contains
the most up-to-date and detailed information on the rate limits applicable to
individual APIs. Twitter HTTP Error Codes & Responses [2] contains a list of HTTP
error codes returned by the Twitter APIs. It is a useful resource while debugging
applications. The REST API for search accepts several different parameters to
facilitate the construction of complex queries. A full list of these along with
examples can be found in [4]. The article further clarifies on what is possible
using the Search API and explains the best practices for accessing the API. Various
libraries exist in most popular programming languages, which encapsulate the
complexity of accessing the Twitter API by providing convenient methods. A full
list of all available libraries can be found in [3]. Twitter has also released an open
source library of their own called the Hosebird, which has been tested to handle
firehose streams.

References

1. Twitter. Twitter API v1.1 Documentation. https://dev.twitter.com/docs/api/1.1, 2013. [Online;
accessed 19-March-2013].

2. Twitter. Twitter HTTP Error Codes & Responses. https://dev.twitter.com/docs/error-codes-
responses, 2013. [Online; accessed 19-March-2013].

3. Twitter. Twitter Libraries. https://dev.twitter.com/docs/twitter-libraries, 2013. [Online; accessed
9-July-2013].

4. Twitter. Using the Twitter Search API. https://dev.twitter.com/docs/using-search, 2013. [Online;
accessed 9-July-2013].

12http://datasift.com
13http://gnip.com
14http://topsy.com

https://dev.twitter.com/docs/api/1.1
https://dev.twitter.com/docs/error-codes-responses
https://dev.twitter.com/docs/error-codes-responses
https://dev.twitter.com/docs/twitter-libraries
https://dev.twitter.com/docs/using-search
http://datasift.com
http://gnip.com
http://topsy.com

	2 Crawling Twitter Data
	2.1 Introduction to Open Authentication (OAuth)
	2.2 Collecting a User's Information
	2.3 Collecting a User's Network
	2.3.1 Collecting the Followers of a User
	2.3.2 Collecting the Friends of a User

	2.4 Collecting a User's Tweets
	2.4.1 REST API
	2.4.2 Streaming API

	2.5 Collecting Search Results
	2.5.1 REST API
	2.5.2 Streaming API

	2.6 Strategies to Identify the Location of a Tweet
	2.7 Obtaining Data via Resellers
	2.8 Further Reading
	References

