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1 Introduction

Item response theory (IRT) models have been widely used for various educational
and psychological testing purposes such as detecting differential item functioning
(DIF), test construction, ability estimation, equating, and computer adaptive testing.
The main assumption underlying these models is that local independence holds with
respect to the latent ability being modeled (Lord and Novick 1968). It is important,
therefore, to show that the unidimensionality assumption holds before any unidi-
mensional IRT modeling is applied. Otherwise, violations of the unidimensionality
assumption may have a considerable and negative effect on parameter estimation
(Ackerman 1989; Reckase 1979). Ackerman (1992) also showed that the presence
of multidimensionality may also cause DIF. Correct identification of the internal test
structure also helps to examine how well the test measures the underlying structure.
Tate (2003) noted that strict dimensionality and essential dimensionality are two
types of dimensionality in the traditional IRT context. The former refers to the
minimum number of examinee latent abilities required to estimate a monotone and
locally independent model (McDonald 1981; Stout 1990) while the latter refers to a
test with a single dominant factor and one or more minor factors (Stout 1987, 1990).

Because of the centrality of the unidimensionality assumption to many app-
lications of IRT, the dimensionality assessment problem has been the focus of
considerable study. Excellent reviews are provided by Hattie (1984) and Tate (2003).
Dimensionality assessment is more problematic for categorical variables than
continuous variables. When the variables are continuous, traditional factor analysis
techniques can be used to identify factors that may be used to explain the observed
data. Data in social science are often categorical in nature (e.g., dichotomous
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and polytomous item responses). These types of data normally fail to meet the
distributional requirements of the traditional linear factor analysis. As a result, factor
analysis may not be directly applicable to categorical variables because spurious
factors (called difficulty factors) may emerge when using Pearson product-moment
correlations (Ackerman et al. 2003; McLeod et al. 2001). As a result, the number
of dimensions may be overestimated (Bock et al. 1988). In order to deal with this
situation, tetrachoric correlations can be used instead of Pearson correlations to deal
with dichotomous nature of item scores (Hulin et al. 1983; Knol and Berger 1991;
Parry and McArdle 1991). However, it should be noted that tetrachoric matrices
for item-level data may not always be positive definite, as required for modern
factor analysis techniques. Another problem with this method is the estimation of
tetrachoric correlations which can be difficult to implement when correlations are
very close to unity (Thissen and Wainer 2001).

A number of different methods have been proposed to assess test dimensionality
for item-level, beginning with work by Christoffersson (1975) and Muthén (1977).
Some relatively new methods based on item factor analysis (IFA) have also been
proposed. There are a wide range of IFA models within structural equation modeling
(SEM) and IRT including full-information maximum-likelihood (FIML) estimation
(Bock et al. 1988), the algorithm in the software package LISCOMP (Muthén 1978),
nonlinear factor analysis (McDonald 1982), and factor analysis of the tetrachoric
correlations between all item pairs (Knol and Berger 1991). The FIML estimation
method is based on analyzing the entire item response pattern while the other
three use bivariate information. These parametric approaches also differ in the
estimation algorithms used. There are several methods available for IFA model
parameter estimations. Among these are FIML, unweighted least squares (ULS),
weighted least squares (WLS), and its modified extensions such as modified WLSM
and WLSMV. In addition to these parametric approaches, there are also some
nonparametric approaches for dimensionality assessment such as the algorithm in
the computer software DIMTEST (Nandakumar and Stout 1993) and in the software
DETECT (Kim 1994; Zhang and Stout 1999a,b). These techniques are designed to
test essential dimensionality of a set of test items.

More recently, a number of studies of dimensionality have focused on compari-
son of different methods (e.g., Nandakumar 1994; Nandakumar and Yu 1996; Tate
2003), the effect of applying unidimensional IRT to multidimensional items (e.g.,
Ackerman 1989), and the effect of guessing parameter (Tate 2003; Stone and Yeh
2006). Although it has been more than three decades since Lord’s (1980) call for
a statistical significance test for assessing dimensionality of a test, there is still
no general test for dichotomous items. Hattie (1984) noted that most indices were
inappropriate for dimensionality assessment for the case of dichotomous variables.

Even though substantial work has been done on techniques used for dimen-
sionality checking, there has been a lack of study on the effectiveness of different
software packages implementing these techniques. The purposes of this study were
to (1) compare two popular software packages, Mplus and TESTFACT, with respect
to their effectiveness for checking dimensionality in multiple-choice tests and
(2) compare different criteria used in these programs. We also included SAS in our
empirical analyses to examine what would happen if Pearson correlations instead
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of tetrachoric correlations were used. In addition to use of Pearson correlations, we
also analyzed the empirical data set with SAS to provide a tetrachoric correlation for
completeness. Guessing parameters and the size of correlations between dimensions
were manipulated to explore possible interaction between these effects. Three
indices based on the proportion of variance, RMSR reduction, and a chi-square
difference test were used to examine dimensionality. The research included two
parts, a simulation study using a Monte Carlo approach and an application with data
from a large midwestern university mathematics placement testing program.

1.1 Software

There are a number of computer programs used for both parametric and nonpara-
metric approaches. Because the focus of this study is on parametric approaches,
software packages designed for nonparametric approaches (e.g., DIMTEST) are
not discussed in detail. IFA-based procedures for applications with dichotomously
scored items can be implemented in software programs, including Mplus (Muthén
and Muthén 2010), NOHARM (Fraser and McDonald 1988), and TESTFACT
(Wilson et al. 2003). Although the goal of these three programs is the same, the
methods employed by each are different. They differ in sample statistics, estimation
methods, and how guessing is handled (Stone and Yeh 2006).

1.1.1 Mplus

Mplus can handle categorical, continuous, and ordinal types of data. The software
permits users to perform both exploratory factor analysis (EFA) and confirmatory
factor analysis (CFA) to estimate unidimensional or multidimensional models.
Estimation of dichotomous data is done using tetrachoric correlations via the
following methods: ULS, WLS, WLSM, and WLSMV. Mplus also provides several
fit indices including chi-square test statistics, root mean square residuals (RMSR),
root mean square error of approximation (RMSEA), and comparative fit index
(CFI). In addition, both orthogonal (varimax) and oblique (promax) rotations of the
initial solution are available. There is no option for handling the guessing parameter
in the three-parameter model. The Mplus manual also indicates that the relationship
between the extracted factors and the observed indicators is provided using probit
regression of items on factors.

1.1.2 TESTFACT

TESTFACT was designed to perform nonlinear, exploratory full-information IFA
on dichotomous items. This software uses marginal maximum likelihood (MML)
estimation in combination with an expectation-maximization (EM) algorithm.
The estimates are obtained in TESTFACT using all of the information in the
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item responses rather than use of an item covariance or correlation matrix as is
implemented in Mplus, and TESTFACT can handle the guessing parameter for
factor analyses. TESTFACT prompts the user to specify the number of factors
and the guessing parameters, if guessing is assumed in the model. The guessing
parameter can be input by either assuming a single value or providing estimated
guessing parameters for each item from another software package such as BILOG
or MULTILOG. TESTFACT calculates chi-square statistics which can be used for
model comparison. However, TESTFACT requires nonzero frequencies for each
item pattern in order to calculate this value. Problematic correlations due to extreme
proportions are replaced with admissible values using Thurstone’s centroid method
(Tate 2003). A smoothing option is also available if the correlation matrix is
nonpositive definite. Although TESTFACT can produce the output of a residual
matrix, there is no residual-based fit index. RMSR value can be calculated from
residual matrix. As with Mplus, varimax and promax rotations of the initial solution
can be obtained in TESTFACT.

1.1.3 SAS

SAS provides a way of doing common-factor and component analysis using the proc
factor statement. It offers a range of methods in EFA to select the number of factors,
extraction and rotation methods. These analyses can be done using either raw data
or correlation/covariance matrix. SAS is often used for continuous variables with
Pearson correlation coefficients. Although it is not very practical, one can conduct
factor analysis for dichotomous type data by providing a tetrachoric correlation
matrix. The extraction methods available in SAS include principal component
analysis, principal factor analysis, iterated principal factor analysis, ULS factor
analysis, maximum likelihood (canonical) factor analysis, alpha factor analysis,
image component analysis, and Harris component analysis. Proc factor produces
the residual correlation matrix and the partial correlation matrix. EQUAMAX,
ORTHOMAX, QUARTIMAX, PARSIMAX, and VARIMAX; and two oblique
rotation methods, PROCRUSTES and PROMAX, can be obtained with proc factor
statement. In order to help in determining the number of components or factors, the
scree plot, percentage of variance, and Kaiser’s rule can be obtained from output.

2 Method

Dimensionality assessment results for the simulated data are given first, followed
by results for the real data. Only the results of applying Mplus and TESTFACT
are presented in the simulation study. Additional results from SAS are reported for
the real data study. As mentioned earlier, number of dimensions, correlation, and
guessing parameter were manipulated. Results from uncorrelated factors and those
from correlated (r = 0.3) factors are presented for both Mplus and TESTFACT in
results section. Values in the each cell represent the correct number of identifications
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out of ten replications. First rows of two tables are the same since only the
uncorrelated condition is possible for unidimensional data. EFA was carried out
using WLSM for all Mplus analyses. Similarly, exploratory analyses in TESTFACT
were conducted using FIML for one to five factors. Hereafter, we refer Mplus as
it is applied with WLSM and TESTFACT as it is applied with FIML in simulated
data analyses. Maximum likelihood extraction method was used for SAS analyses
in empirical data set.

2.1 Simulated Data

Examinees’ responses to ten different 60-item tests were simulated based on the
dichotomous, multidimensional logistic IRT model. Each of the ten tests was
replicated ten times. One-, two-, and three-dimensional data sets were simulated
for each replication. Two guessing conditions were simulated in which the guessing
parameter was set at 0 and 0.25. There is a certain amount of correlation among
factors in most educational tests. To simulate this, a correlation of 0.3 was used
in addition to correlations of 0 between factors. Data were generated for 2,000
respondents for each test using WINGEN 3.0 (Han 2006) software. Following
the conditions in (Yeh 2007), distribution of latent traits was normal with mean
of zero and standard deviation of 0.1 for unidimensional data. While mean of
latent traits remained the same for each dimension, different values for standard
deviations were used to obtain the desired correlation (r = 0.3) between dimensions.
Because this was the only way to obtain correlated dimensions in WINGEN. Item
parameter distributions were N(1, 0.36) and N(0, 1.43) for discrimination and
difficulty parameters, respectively. Ten data conditions were simulated by changing
correlation, guessing, and the number of dimensions.

2.2 Real Data

The data used in this study were from a test designed to measure calculator
proficiency in pre-calculus mathematics. A total of 765 students took a special,
experimental form of this 28-item test. Each item had five choices. Students were
allowed to use a calculator on the first 14 items, but were not allowed to do so
on the second 14 items. Only the second 14 items, which allowed no calculator use,
were analyzed for this study. The test was originally constructed as a unidimensional
instrument.

The multidimensional item response theory (MIRT) model for dichotomously
scored items with a guessing parameter (Bock et al. 1988) was used to analyze the
data. The probability of a correct response to item j can be given as

P(Uj = 1|θ ) = g j +(1− g j)Φ[z j(θ )] = g j +(1− g j)
1√
2π

∫ z j(θ)

−∞
exp(−t2/2)dt,

(1)
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where

Φ[z j(θ )] = Φ

(
c j +

K

∑
k=1

a jkθk

)
= Φ

(
δ j +∑K

k=1 α jkθk

σ j

)
, (2)

g j is the guessing parameter, c j is the intercept or easiness parameter, a jks are
the slopes, θks are latent variables equivalent to the vector θ , δ j is the standard
difficulty or negative threshold (i.e., −γ j), α jks are items regression coefficients
or factor loadings to the respective dimensions from 1 to K (i.e., λ jk), and σ j =√

1−∑K
k=1 α2

jk. If we let d j =
√

1+∑K
k=1 a2

jk, then α jk = a jk/d j and δ j = c j/d j

(cf. McLeod et al. 2001, p. 199).
TESTFACT was used to obtain the a jks and c j for each item under MMLE. The

g j parameters are not estimated with other parameters in TESTFACT and must be
specified by the user. BILOG-MG (Zimowski et al. 2002; see also Mislevy and Bock
1990) was used to obtain the lower asymptote estimates using all default options
with an exception of the option for items with five choices.

2.3 Decision Criteria

Several methods for determining the number of factors have been proposed.
Eigenvalues, fit indices, and proportions of variance are typically used to examine
the factor structure of a set of items. Scree plots involve plotting the eigenvalues for
all possible numbers of factors and looking for the elbow in the plot (i.e., the point
at which the eigenvalues tend to stop decreasing). The number of factors is taken as
one fewer than the solution corresponding to the elbow. This approach is criticized
as being very subjective because the location of the elbow is not always very clear.
Kaiser (1960) proposed a heuristic rule called the eigenvalue-greater than-one (K1)
rule in which each eigenvalue greater than one is taken to indicate a component,
and his rule was applied by some to common-factor analysis (Mulaik 2009, p. 186).
The proportion of variance is an index for the substantive importance of factors.
This procedure is fairly straightforward and suggests keeping the number of factors
needed to account for a specified percentage of the variance (e.g., 80% or 90%).

In addition to using eigenvalues, there are several residuals and fit indices that
can be used for dimensionality assessment such as chi-square fit statistics, RMSEA,
and RMSR. These statistics indicate the differences between observed values and
estimated values. Smaller values are taken to indicate better fit. A cutoff value of
0.05 or less for the RMSR and RMSEA statistic has been suggested as a guide
indicating an acceptable number of factors (Browne and Cudeck 1993). Hu and
Bentler (1999) offer different cutoff values for these indices, specifically RMSR <
0.08 and RMSEA < 0.06. The chi-square test evaluates whether the observed data
correspond to the expected data. The chi-square statistic is dependent on sample
size, but RMSEA is not. Thus, for larger samples, it may be more appropriate to
use RMSR and RMSEA to assess the model fit. In addition to using cutoff values,
the model fit decision can be made based on the percentage of reduction of the
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RMSR (Tate 2003). Tate (2003) suggests that factors be added to the model until
the percent of RMSR reduction is less than 10%.

Dimensionality decisions in this study were based on the following three criteria:
percentage of the RMSR reduction, chi-square difference test, and proportion of
variance. As mentioned earlier, the assessment of test dimensionality in TESTFACT
can be done using a test of the change of the chi-square fit statistic due to adding
a factor to the model. In Mplus, RMSR reduction approach was used. However,
proportion of variance criterion was used for all of the software packages.

3 Results

3.1 Simulated Data Results

3.1.1 One-Dimensional Tests

One-dimensional data with two guessing situations were analyzed in Mplus and
TESTFACT programs. The fit statistics of the bifactor model were compared with
those for the 1-factor model. As can be seen in the first rows of the two tables,
TESTFACT and Mplus did not correctly identify the unidimensional structure when
no guessing was simulated. When guessing was simulated, however, TESTFACT
performed better than Mplus as expected (Table 1).

3.1.2 Two-Dimensional Tests

Within each test form, the correlations between factors were fixed at either 0 or
0.30. Mplus provided no correct identification when no guessing was simulated
regardless of the simulated correlation. TESTFACT correctly identified 80% and
50% in the no-guessing simulation, however, for uncorrelated and correlated cases,
respectively. As in the one-dimensional case, TESTFACT did better than Mplus,
when guessing was simulated for two-dimensional data. Mplus correctly identified
four cases when two-dimensional uncorrelated data were simulated with a guessing
effect.

Table 1 Number of correct identification for TESTFACT and Mplus for 1- to
3-factor models (r = 0)

c = 0 c = 0.25

# of dimensions TESTFACT Mplus TESTFACT Mplus

1 0/10 0/10 10/10 6/10
2 8/10 4/10 5/10 4/10
3 4/10 2/10 10/10 10/10
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Table 2 Number of correct identifications for TESTFACT and Mplus for 1- to
3-factor models (r = 0.3)

c = 0 c = 0.25

# of dimensions TESTFACT Mplus TESTFACT Mplus

1 0/10 0/10 10/10 6/10
2 5/10 0/10 8/10 0/10
3 9/10 1/10 7/10 0/10

3.1.3 Three-Dimensional Tests

The results from applying the 3-factor models indicated that TESTFACT performed
better than Mplus in each of the four conditions. Correct identification rates range
for TESTFACT ranged from 40% to 100%. Similar rates for Mplus were low in each
of the three conditions except for the case for which guessing with zero correlation
was simulated (Table 1).

3.2 Real Data Results

3.2.1 Full-Information Item Factor Analysis with TESTFACT

Summary indices for TESTFACT, Mplus, and SAS are presented in Table 3 for
1- to 4-factor solutions. The TESTFACT/BILOG rows show indices for the MIRT
model with the g j estimates from BILOG-MG since TESTFACT cannot estimate the
lower asymptote. The TESTFACT/C rows show the results from the same MIRT
model but the g j were assumed to have a fixed value of 0.20 (because all items
had five choices). The g j parameters in this case are not separately estimated. The
TESTFACT rows contain MIRT models without the g j term.

The difference between the chi-squared goodness of fit values from the 1-factor
solution to 2-factor solution was not significant for all the three cases with
TESTFACT. (The critical value at the 0.05 level is χ2(13) = 19.19.) The respective
critical values at the 0.05 nominal level are χ2(12) = 21.20 and χ2(11) = 8.52
for the 2-factor to 3-factor solution and for the 3-factor to the 4-factor solution.
Although the 2-factor solution to the 3-factor solution shows a significant reduction
in the goodness of fit values, the 1-factor solution seems to be a reasonable choice
for the data.

The cumulative proportions of the variance accounted for appear to increase as
the number of factors increases. The 1-factor solution for TESTFACT/C yielded a
higher proportion of variance accounted for than was observed for a higher number
of factors. Table 3 contains the summary of items with high Promax loadings (i.e.,
α jk or λ jk > 0.30). Although all TESTFACT methods yielded proper extraction
results for the 4-factor solution for the TESTFACT/BILOG, TESTFACT/C, and
TESTFACT cases, the Promax rotation failed to yielded reasonable loading results
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Table 3 Numbers of items with high promax loadings and correlations between factors

One factor Two factors Three factors Four factors

I I II I II III I II III IV

Mplus/WLSMV 14 6 6 6 3 4 Heywood case
Mplus/WLS 14 6 7 Heywood case due to over-factoring
Mplus/ULS 14 8 5 4 3 4 8 1 3 1
TESTFACT/BILOG 14 10 1 6 2 3 Not available
TESTFACT/C 14 10 1 6 2 3 Not available
TESTFACT 14 9 1 6 1 3 Not available
SAS 13 8 7 7 5 6 4 6 4 4
SAS/Tetrachoric 14 9 7 7 3 6 7 4 4 3

Correlation between factors
Mplus/WLSMV
II 0.71 0.58
III 0.70 0.53
IV Heywood case
Mplus/WLS
II 0.68
III Heywood case due to over-factoring
IV
Mplus/ULS
II 0.64 0.57 0.48
III 0.68 0.52 0.75 0.51
IV 0.39 0.34 0.32
TESTFACT/BILOG
II 0.65 0.66
III 0.73 0.59
IV Not available
TESTFACT/C
II 0.65 0.67
III 0.73 0.59
IV Not available
TESTFACT
II 0.64 0.68
III 0.75 0.61
IV Not available
SAS
II 0.31 0.25 0.25
III 0.27 0.17 0.28 0.11
IV 0.16 0.07 0.17
SAS/Tetrachoric
II 0.43 0.42 0.38
III 0.36 0.33 0.20 0.31
IV 0.22 0.33 0.30
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Table 4 TESTFACT/BILOG loadings for 1- to 4-factor solutions

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.50 0.55 −0.09 0.56 −0.09 −0.04 Not available
2 0.44 0.21 0.29 0.27 0.31 −0.07
3 0.45 0.48 −0.04 −0.03 −0.12 0.59
4 0.34 −0.22 0.60 −0.18 0.62 −0.05
5 0.49 0.35 0.19 −0.02 0.16 0.41
6 0.49 0.49 0.01 0.29 −0.02 0.26
7 0.47 0.27 0.25 0.19 0.25 0.09
8 0.44 0.47 −0.04 0.54 −0.03 −0.07
9 0.48 0.25 0.29 0.16 0.28 0.12
10 0.47 0.54 −0.09 0.50 −0.10 0.06
11 0.42 0.41 0.01 0.37 0.00 0.07
12 0.49 0.43 0.09 0.03 0.04 0.39
13 0.50 0.32 0.23 0.34 0.24 −0.05
14 0.50 0.52 −0.03 0.49 −0.04 0.04

Correlation between factors
Factor
II 0.65 0.66
III 0.73 0.59
IV Not available

and, therefore, are reported as “Not available.” For the 2-factor solution, one item
consistently loaded on the second factor while other items mainly loaded on the first
factor. High correlations were obtained between pairs of the factors under the 2- and
3-factor solutions.

Tables 4–6 contain the loadings for the 1-factor, 2-factor, and 3-factor solutions
for TESTFACT/BILOG, TESTFACT/C, and TESTFACT, respectively. In Table 4,
the 2-factor solution yielded only one item, Item 4, on the second factor. This item
asks for the complete factoring of 12ax2 − 9ax− 3a. The same item as well as Item
2 yielded relatively high loadings on the second factor. Items 3, 5, and 12 had high
loadings on the third factor for the 3-factor solution. Also for the 3-factor solution,
the number of items loading on the first factor decreased from ten on the 2-factor
solution to six on the 3-factor solution. Similar patterns of loadings were observed
for the TESTFACT/C and TESTFACT solutions.

3.2.2 Factor Analysis with Mplus

Summary results are presented in Table 3 for results from Mplus for each of the three
different estimation methods. For the EFA, WLSMV (i.e., weighted least squares
parameter estimates using a diagonal weight matrix with standard errors and mean-
and variance-adjusted chi-square test statistics that use a full weight matrix) is the
default estimation in Mplus (Muthén and Muthén 2010, pp. 531–532). Two other
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Table 5 TESTFACT/C loadings for 1- to 4-factor solutions

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.50 0.56 −0.11 0.56 −0.19 −0.05 Not available
2 0.44 0.21 0.29 0.27 0.30 −0.08
3 0.44 0.46 −0.03 −0.05 −0.12 0.59
4 0.34 −0.23 0.61 −0.18 0.63 −0.06
5 0.49 0.34 0.20 0.00 0.16 0.38
6 0.49 0.48 0.01 0.29 −0.02 0.25
7 0.47 0.27 0.26 0.18 0.27 0.09
8 0.44 0.47 −0.04 0.53 −0.02 −0.07
9 0.49 0.25 0.30 0.16 0.29 0.11
10 0.49 0.55 −0.09 0.52 −0.10 0.05
11 0.42 0.42 0.01 0.37 0.00 0.07
12 0.47 0.41 0.09 0.03 0.04 0.35
13 0.50 0.32 0.23 0.33 0.25 −0.04
14 0.49 0.50 −0.04 0.47 −0.04 0.03

Correlation between factors
Factor
II 0.66 0.67
III 0.73 0.59
IV Not available

Table 6 TESTFACT loadings for 1- to 4-factor solutions

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.50 0.56 −0.10 0.57 −0.07 −0.03 Not available
2 0.42 0.27 0.21 0.31 0.26 −0.09
3 0.41 0.43 −0.03 −0.06 −0.12 0.58
4 0.31 −0.19 0.60 −0.19 0.63 −0.04
5 0.47 0.35 0.16 0.00 0.15 0.37
6 0.46 0.47 −0.00 0.27 −0.03 0.26
7 0.41 0.28 0.18 0.19 0.19 0.08
8 0.41 0.48 −0.09 0.57 −0.09 −0.08
9 0.46 0.30 0.22 0.17 0.25 0.12
10 0.45 0.53 −0.11 0.51 −0.12 0.04
11 0.40 0.42 −0.02 0.39 −0.01 0.03
12 0.50 0.45 0.07 0.03 0.04 0.45
13 0.40 0.28 0.16 0.28 0.19 −0.01
14 0.43 0.45 −0.03 0.37 −0.03 0.10

Correlation between factors
Factor
II 0.64 0.68
III 0.75 0.61
IV Not available
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estimation methods used in this study were WLS and ULS. The proportions of
variance accounted for by the respective factors were based on the varimax rotated
loadings instead of the initial extraction. The total variance accounted for is reported
as sum (see Table 7).

In terms of the model selection using the various indices from Mplus-type
computer programs, Hu and Bentler (1999) recommend a model with a value of
RMSR less than 0.08 for selection of a model. That recommendation, however, was
not based on analysis of binary variables. The values of RMSR’s from the Mplus
runs using Hu and Bentler’s RMSR < 0.08 suggested 1-factor solution provided
reasonably good fit under all estimation methods. Stone and Yeh (2006) suggested
a model with a value of RMSR less than 0.05 could be chosen in conjunction with
factor analysis for a set of dichotomously scored items. Using the Stone and Yeh
suggestion, then WLSMV and ULS estimation methods yielded a 2-factor solution
rather than a 1-factor solution.

Hu and Bentler (1999) suggested a value of an RMSEA less than 0.06 as
indicating good fit. Using this criterion, WLSMV and WLS both would suggest
a 1-factor solution. Stone and Yeh (2006) recommended an RMSEA of less than
0.05. Using this criterion, a 1-factor solution would be recommended. In addition
to RMSR and RMSEA, Stone and Yeh also suggested a chi-square divided by its
degrees of freedom of less than 1.4 as an indicator of reasonable fit. Using this
latter criterion, the 1-factor solution would be selected based on WLSMV and
WLS estimates. Tate (2003) recommended a 10% reduction. Using this criterion,
WLSMV would have yielded a 3-factor solution, WLS a 2-factor solution; and ULS
a 4-factor solution.

As can be seen in Table 3, Heywood cases resulted for both WLSMV and WLS
estimation, possibly due to over-factoring. The patterns of factor loadings were
different from those with TESTFACT although high correlations were obtained
between pairs of the available Promax factors. Tables 8–10 contain the factor
loadings for 1- to 4-factor solutions for the three estimation methods using Mplus.
The 2-factor solution presented in Table 8 shows six items as loading on the first
factor (Items 1, 6, 8, 10, 11, and 14) and six items on the second factor (Items 2, 3,
4, 5, 9, and 12). For the 3-factor solution, six items (Items 1, 6, 8, 10, 11, and 14)
loaded on the first factor, three items (Items 2, 4, and 9) on the second factor, and
four items (Items 3, 5, 6, and 12) on the third factor. Similar patterns were observed
for WLS and ULS.

3.2.3 Factor Analysis with SAS

Two different sets of SAS results are reported based on Phi coefficients (Table 11)
and Tetrachoric correlations (Table 12). Adding factors increased the cumulative
proportions of variance (see Table 7). Using the 20 % criterion suggested in Reckase
(1979), results for both coefficients yielded a 1-factor solution.

The 2-factor solution shown in Table 11 indicated nine items loaded on the first
factor (Items 1, 3, 4, 6, 8, 10, 11, 12, and 14), and seven items on the second factor
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Table 7 Indices for item factor analyses

One factor Two factors Three factors Four factors

I I II I II III I II III IV

Mplus/WLSMV
χ2(d f ) p 73.7(65) 0.22 55.7(55) 0.45 40.4(46) 0.70 Heywood case
RMSEA 0.013 0.004 0.000 Heywood case
RMSR 0.0540 0.0462 0.0377 Heywood case
Mplus/WLS
χ2(d f ) p 97.7(77) 0.06 67.1(64) 0.37 Heywood case due to over-factoring
RMSEA 0.019 0.008 Heywood case due to over-factoring
RMSR 0.0649 0.0570 Heywood case due to over-factoring
Mplus/ULS
RMSR 0.0538 0.0457 0.0371 0.0318
TESTFACT/BILOG
χ2(d f ) 1533.46(736) 1512.80(723) 1488.25(711) 1478.97(700)
Δ χ2(d f ) 20.66(13) 24.55(12) 9.28(11)
TESTFACT/C
χ2(d f ) 1540.08(736) 1519.16(723) 1493.91(711) 1485.50(700)
Δ χ2(d f ) 20.92(13) 25.25(12) 8.41(11)
TESTFACT
χ2(d f ) 1538.78(736) 1519.59(723) 1498.39(711) 1489.87(700)
Δ χ2(d f ) 19.19(13) 21.20(12) 8.52(11)

Proportion of variances accounted for by factors
Mplus/WLSMV
Proportion 0.27 0.16 0.14 0.14 0.09 0.11 Heywood case
Sum 0.27 0.30 0.34 Heywood case
Mplus/WLS
Proportion 0.30 0.17 0.16 Heywood case due to over-factoring
Sum 0.30 0.33 Heywood case due to over-factoring
Mplus/ULS
Proportion 0.27 0.18 0.12 0.14 0.09 0.11 0.15 0.06 0.11 0.07
Sum 0.27 0.30 0.34 0.39
TESTFACT/BILOG
Proportion 0.22 0.21 0.02 0.19 0.02 0.02 0.17 0.02 0.02 0.01
Cumulative 0.22 0.21 0.23 0.19 0.21 0.23 0.17 0.19 0.21 0.22
TESTFACT/C
Proportion 0.30 0.20 0.02 0.18 0.02 0.02 0.17 0.02 0.02 0.01
Cumulative 0.30 0.20 0.22 0.18 0.20 0.22 0.17 0.19 0.21 0.22
TESTFACT
Proportion 0.17 0.18 0.02 0.17 0.02 0.02 0.17 0.02 0.02 0.01
Cumulative 0.17 0.18 0.20 0.17 0.19 0.21 0.17 0.19 0.21 0.22
SAS
Proportion 0.21 0.21 0.08 0.21 0.08 0.07 0.21 0.08 0.07 0.07
Cumulative 0.21 0.21 0.29 0.21 0.29 0.36 0.21 0.29 0.36 0.44
SAS/Tetrachoric
Proportion 0.32 0.32 0.08 0.32 0.08 0.07 0.32 0.08 0.07 0.07
Cumulative 0.32 0.32 0.40 0.32 0.40 0.47 0.32 0.40 0.47 0.54
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Table 8 Mplus/WLSMV factor loadings for models with 1- to 4-factors

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.67 0.73 0.01 0.81 0.03 −0.11 Heywood case
2 0.48 0.21 0.31 0.27 0.39 −0.07
3 0.45 0.08 0.41 0.01 −0.08 0.57
4 0.33 −0.13 0.48 −0.17 0.65 0.01
5 0.57 −0.01 0.63 −0.00 0.23 0.45
6 0.57 0.34 0.27 0.33 −0.01 0.30
7 0.46 0.20 0.29 0.20 0.25 0.10
8 0.48 0.61 −0.08 0.58 −0.06 −0.01
9 0.57 0.14 0.47 0.17 0.40 0.12
10 0.53 0.55 0.03 0.55 −0.07 0.09
11 0.47 0.41 0.11 0.42 0.07 0.04
12 0.68 0.07 0.68 −0.05 0.12 0.76
13 0.44 0.26 0.22 0.26 0.24 0.02
14 0.48 0.37 0.15 0.34 0.02 0.17

Correlation between factors
Factor
II 0.71 0.58
III 0.70 0.53
IV Heywood case

(Items 2, 4, 5, 7, 9, 12, and 13). For the 3-factor solution, seven items loaded on the
first factor (Items 1, 2, 4, 8, 10, 11, and 14), five items on the second factor (Items
2, 3, 5, 6, and 12), and six items (Items 2, 4, 5, 7, 9, and 13) on the third factor. For
the 4-factor solution, four items loaded on the first factor (Items 3, 5, 6, and 12), six
items loaded on the second factor (Items 1, 2, 4, 8, 10, and 11), four items loaded
on the third factor (Items 4, 7, 13, and 14), and four items (Items 2, 4, 5, and 9)
on the fourth factor. Results in Table 12 yielded complex patterns similar to those
in Table 11. The lower part of Tables 11 and 12 contains the correlations between
promax factors for SAS and SAS/Tetrachoric, respectively.

4 Discussion

The primary purpose of this study was to compare two popular software pack-
ages, Mplus and TESTFACT, on their capabilities for checking dimensionality
in multiple-choice tests. Consistent with previous research (Stone and Yeh 2006;
Tate 2003), analyses of the guessing condition indicated that TESTFACT was
more accurate at detecting the simulated number of dimensions than Mplus. Both
TESTFACT and Mplus, however, failed to detect unidimensionality, when no
guessing was simulated. TESTFACT detected unidimensionality, when guessing
was simulated, but Mplus overestimated the number of factors, because it has no
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Table 9 Mplus WLS factor loadings for models with 1- to 4-factors

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.68 0.72 0.05 Heywood case due to over-factoring
2 0.53 0.27 0.28
3 0.49 0.17 0.37
4 0.36 −0.17 0.54
5 0.61 0.07 0.57
6 0.60 0.46 0.19
7 0.50 0.09 0.44
8 0.50 0.67 −0.10
9 0.61 0.05 0.60
10 0.54 0.55 0.04
11 0.52 0.34 0.24
12 0.72 0.10 0.68
13 0.44 0.13 0.36
14 0.50 0.35 0.21

Correlation between factors

Factor
II 0.68
III Heywood case due to over-factoring
IV

option for handling guessing. With respect to the estimated number of dimensions,
TESTFACT generally was more accurate than Mplus for both guessing and no
guessing conditions. Mplus with WLSM using RMSR criteria tended to over
estimate the number of dimensions when guessing was simulated. Similarly, Mplus
performed less well when factors were correlated. TESTFACT performed similarly
with correlated and uncorrelated factors.

In the real data analysis example, both TESTFACT and Mplus yielded similar
results. Although the true underlying factor structure of the data was unknown, the
mathematics test itself was designed to be unidimensional. According to results for
both algorithms, a 1-factor solution appeared to be a reasonable choice for the data.
In addition, results for SAS were consistent with those for TESTFACT and Mplus.
The results for TESTFACT were consistent with previous research by Stone and
Yeh (2006) and Tate (2003).

A second purpose of this study was to compare different indices used for
detection of dimensionality for dichotomous items. The main finding was that the
proportion of variance was not a good indication of dimensionality. The RMSR
reduction in Mplus, recommended by Tate (2003), also did not appear to work well,
whereas the chi-square test was successful in most conditions. The RMSR reduction
criterion of 10% (Tate 2003) was more sensitive, overestimating the simulated
dimensionality under most conditions. RMSR reduction yielded a 3-factor solution
for the real data. The RMSR criterion of < 0.08 proposed by Hu and Bentler (1999)
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Table 10 Mplus/ULS factor loadings for the models of one factor, two factors, three factors, and
four factors

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.67 0.71 −0.01 0.83 0.00 −0.08 0.87 −0.11 −0.16 0.11
2 0.48 0.19 0.35 0.29 0.44 −0.14 0.12 0.03 0.03 0.69
3 0.44 0.32 0.15 −0.04 −0.07 0.61 0.10 −0.05 0.49 −0.11
4 0.33 −0.23 0.66 −0.20 0.61 0.06 −0.14 0.91 −0.08 0.03
5 0.57 0.22 0.42 −0.00 0.29 0.41 0.04 0.07 0.17 0.14
6 0.56 0.48 0.12 0.26 −0.02 0.39 0.46 0.05 0.19 −0.14
7 0.46 0.22 0.29 0.14 0.23 0.18 0.31 0.20 0.08 −0.07
8 0.48 0.57 −0.06 0.52 −0.03 0.04 0.57 −0.05 −0.05 0.03
9 0.57 0.19 0.47 0.19 0.44 0.08 0.22 0.13 0.19 0.22
10 0.53 0.60 −0.04 0.49 −0.05 0.15 0.57 −0.07 0.03 0.01
11 0.48 0.44 0.08 0.42 0.09 0.03 0.42 −0.05 0.14 0.14
12 0.67 0.37 0.37 −0.05 0.17 0.69 −0.10 −0.07 0.93 0.05
13 0.44 0.25 0.24 0.23 0.22 0.07 0.38 0.18 −0.01 −0.04
14 0.48 0.43 0.08 0.28 0.03 0.22 0.38 0.01 0.14 −0.04

Correlation between factors

Factor
II 0.64 0.57 0.48
III 0.68 0.52 0.75 0.51
IV 0.39 0.34 0.32

seemed to work well, given the conditions simulated, but the criterion of < 0.05
recommended by Stone and Yeh (2006) suggested a 2-factor solution. Results for
RMSEA using the criteria from both Yeh and Stone and Tate yielded a 1-factor
solution. Overall results provided no clear-cut answer to the practical question of
which method should be used in all circumstances. Results from the chi-square test
in TESTFACT were similar to previous research by Stone and Yeh and by Tate
whereas results for the RMSR reduction index with Mplus were not consistent with
these studies.

Although Mplus is easy to use and provides more fit indices, one suggestion
is that using the chi-square test in TESTFACT might be more useful based on
the higher number of correct identifications. Additionally, it would seem wise at
this point to use a combination of these indices rather than relying on a single
one. Substantive theory also should be considered as a meaningful explanation is
more important than simply fitting a statistical model (Cudeck 2000). Finally, factor
loadings should also be examined when determining the number of factors.
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Table 11 SAS/Phi factor loadings for 1- to 4-factor solutions

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.52 0.53 0.07 0.59 0.06 0.06 0.12 0.57 −0.07 0.22
2 0.36 0.03 0.46 0.34 −0.32 0.50 −0.16 0.34 −0.16 0.70
3 0.40 0.42 0.04 −0.09 0.73 −0.05 0.78 −0.09 −0.09 −0.11
4 0.30 −0.30 0.79 −0.30 0.03 0.78 −0.01 −0.35 0.43 0.53
5 0.51 0.24 0.41 0.01 0.39 0.35 0.51 0.00 −0.08 0.36
6 0.50 0.50 0.09 0.17 0.52 0.02 0.54 0.16 0.03 −0.01
7 0.44 0.21 0.35 0.10 0.23 0.31 0.11 0.04 0.47 0.11
8 0.44 0.56 −0.08 0.65 0.01 −0.08 −0.09 0.60 0.25 −0.05
9 0.52 0.15 0.53 0.12 0.14 0.51 0.21 0.10 0.08 0.50
10 0.49 0.58 −0.03 0.47 0.25 −0.06 0.21 0.44 0.14 −0.04
11 0.43 0.42 0.08 0.54 −0.04 0.08 −0.02 0.51 0.04 0.20
12 0.61 0.44 0.30 0.11 0.54 0.23 0.53 0.08 0.18 0.13
13 0.41 0.21 0.32 0.19 0.12 0.30 −0.11 0.11 0.71 0.02
14 0.44 0.46 0.04 0.33 0.27 0.01 0.07 0.27 0.52 −0.18

Correlation between factors

Factor
II 0.31 0.25 0.25
III 0.27 0.17 0.28 0.11
IV 0.16 0.07 0.17

Table 12 SAS/Tetrachoric factor loadings for the 1- to 4-factor solutions

One factor Two factors Three factors Four factors

Item I I II I II III I II III IV

1 0.70 0.68 0.11 0.66 0.12 0.08 0.61 0.13 0.26 −0.01
2 0.53 0.13 0.53 0.37 −0.21 0.55 0.30 −0.18 0.80 −0.10
3 0.49 0.50 0.04 −0.10 0.86 −0.11 −0.07 0.87 −0.11 −0.07
4 0.37 −0.33 0.89 −0.28 0.02 0.86 −0.36 −0.02 0.46 0.60
5 0.61 0.29 0.45 0.00 0.49 0.35 −0.02 0.51 0.44 −0.06
6 0.61 0.59 0.09 0.20 0.60 −0.02 0.19 0.59 −0.03 0.08
7 0.51 0.24 0.39 0.15 0.20 0.34 0.09 0.15 0.05 0.50
8 0.53 0.65 −0.08 0.76 0.07 −0.07 0.70 −0.09 0.00 0.16
9 0.62 0.18 0.59 0.14 −0.16 0.54 0.08 0.17 0.58 0.09
10 0.58 0.68 −0.05 0.57 0.23 −0.09 0.54 0.22 0.06 −0.02
11 0.53 0.50 0.10 0.60 −0.05 0.10 0.54 −0.04 0.28 −0.02
12 0.70 0.50 0.32 0.14 0.59 0.21 0.11 0.58 0.17 0.12
13 0.50 0.24 0.36 0.32 −0.02 0.36 0.23 −0.11 −0.08 0.76
14 0.53 0.54 0.04 0.47 0.18 0.01 0.41 0.13 −0.18 0.40

Correlation between factors

Factor
II 0.43 0.42 0.38
III 0.36 0.33 0.20 0.31
IV 0.22 0.33 0.30
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