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Abstract  In order to more economically process cellulosic feedstocks using a bio-
chemical pathway for fuel production, it is necessary to develop a detailed under-
standing of plant cell wall characteristics, pretreatment reaction chemistry, and 
their complex interactions. However given the large number of thermochemical 
pretreatment methods that are currently being researched and the extreme diversity 
of plant cell wall structure and composition, this prospect is extremely challeng-
ing. Here we present the current state of research at the interface between plant 
biology and pretreatment chemistry. The first two sections discuss the chemistry 
of the secondary plant cell wall and how different pretreatment methods alter the 
overall cell wall structure. The third section addresses how the characteristics of 
the cell wall and pretreatment efficacy are impacted by different factors such as 
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plant maturity, classification, and plant fraction. The fourth section summarizes 
current directions in the development of novel plant materials for improved bio-
chemical conversion. And the final section discusses the use of chemical pretreat-
ments as a screening and analysis tool for rapid identification of amenable plant 
materials, and for expansion of the fundamental understanding of plant cell walls.

Keywords  Enzymatic digestibility  •  Lignocellulose  •  Plant breeding and transgenesis  •  
Plant cell wall  •  Pretreatment chemistry  •  Screening tools

Abbreviations

AFEX™	� Ammonia fiber expansion
BMIMCl	� 1-butyl-3-methylimidazolium chloride
CBM	� Carbohydrate binding module
EMIMAc	� 1-ethyl-3-methylimidazolium acetate
EMIMCl	� 1-ethyl-3-methylimidazolium chloride
G	� Guaiacyl
GAX	� Glucuronoarabinoxylan
H	� p-hydroxyphenyl
IL	� Ionic liquid
S	� Syringyl
TAGs	� Triacylglycerols

14.1 � Introduction

Lignocellulosic materials are a promising source of biofuels because of their 
abundance and availability. One potential conversion pathway is the biochemical 
route, through enzymatic hydrolysis and fermentation of cell wall carbohydrates. 
The difficulty is that although plant cell walls are permeable to small molecules, 
such as water, carbon dioxide, sugars, and amino acids (Ivakov and Persson 2012), 
while enzymes, with a diameter of around 51Å (Ishizawa et al. 2007), are too large 
to penetrate. Therefore to obtain access to polysaccharides embedded within the 
cell wall in an industrially relevant time scale, some form of chemical or physical 
pretreatment is needed to disrupt the cell wall structure. A large number of pre-
treatments are currently being researched (da Costa Sousa et al. 2009; Zhao et al. 
2012), corresponding to a wide range of chemistries and modes of action. In addi-
tion there is enormous diversity of plant cell walls in terms of their structure and 
organization (Cosgrove 2005). The chemical and physical interactions between 
variables related to the feedstock (Fig.  14.1a), and pretreatment (Fig.  14.1b), 
determines the specific types and magnitudes of effects on cell wall structure 
(Fig. 14.1c), and ultimately the extent of enzymatic deconstruction.
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14.2 � Secondary Cell Wall Chemistry

Higher plants have two main cell wall types, with different functions and composi-
tions. Primary walls are laid down during cell growth and elongation, and second-
ary walls are laid down after cessation of cell growth (Cosgrove 2005; Ivakov and 
Persson 2012). The middle lamella is located between adjacent cells and binds them 
together (Cosgrove 2005). After growth stops, lignin deposition begins in the middle 
lamella and cell corners and progresses to the primary and secondary walls (Ralph et 
al. 2007; Ivakov and Persson 2012). In woody plants, the primary wall is degraded 
before secondary wall deposition (Jarvis 2012), however for herbaceous plants the 
secondary wall is deposited directly inside the primary wall (Wilson and Hatfield 

Fig.  14.1   Feedstock variables (a), pretreatment variables (b), and resulting modes of action 
(c) for improved enzymatic degradation of plant cell wall carbohydrates. Gray arrows in part C 
represent the potential for a direct impact of one mode of action on another
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1997; Engels and Jung 1998). Not all types of cells have secondary cell walls, mainly 
those requiring greater strength or rigidity (Cosgrove 2005), and some secondary 
walls never lignify (Engels and Jung 1998). But because of their greater thickness, 
secondary walls make up the bulk of lignocellulosic biomass and cell volume, espe-
cially in woody materials (Wilson and Hatfield 1997; Ivakov and Persson 2012). 
Cellulose, hemicelluloses, and lignin are the major components of the secondary cell 
wall. Cellulose forms the scaffolding of the cell wall and comprises β-(1 → 4)-linked 
glucan chains arranged in crystalline microfibrils. The hemicelluloses are a diverse 
class of amorphous carbohydrates that cross-link cellulose microfibrils and lignin 
within the cell wall. All hemicelluloses have β-(1 → 4)-linked backbones of glucose 
(glucans), mannose (mannans), glucose and mannose (glucomannans), or xylose 
(xylans), and may be substituted with sugars, uronic acids, and acetyl groups. Lignin 
is an amorphous phenylpropanoid polymer that fills in most of the remaining space 
and is comprised of three different subunits that are differentiated by the number of 
methoxyl groups on the phenyl ring: syringyls (S) have 2; guaiacyls (G) have 1; and 
p-hydroxyphenyls (H) have 0. Pectins are another class of carbohydrate and repre-
sent a major portion of the dicot and gymnosperm primary wall, however they are 
comparatively easy to extract from the cell wall or degrade (Willför et al. 2005a, b; 
DeMartini et al. 2011a). For more detailed explanations on cell wall composition and 
structure of the polymers please refer to a number of reviews (Carpita and Gibeaut 
1993; Ralph et al. 2007; Scheller and Ulvskov 2010; Ivakov and Persson 2012).

14.2.1 � Variation in Chemistry Due to Classification,  
Cell Type, and Location

Bioenergy plants are grouped in three classes based on their cell wall composition: 
grass-like (commelinid monocots), dicot-like (non-commelinid monocots, herba-
ceous dicots, and hardwoods), and gymnosperm (softwoods). Grass-like secondary 
cell walls contain glucuronoarabinoxylan (GAX) as the main hemicellulose substi-
tuted with arabinose and some glucuronic acid, and lignin comprised of S and G 
subunits with low levels of H subunits; dicot-like secondary cell walls predomi-
nantly contain glucuronoxylan substituted with 4-O-methyl-glucuronic acid and 
infrequently with arabinose, and lignin comprised of similar levels of S and G subu-
nits and trace H subunits; and gymnosperm secondary walls contain slightly more 
galactoglucomannan than glucuronoarabinoxylan, and lignin comprised mostly of 
G subunits and low levels of H subunits (Ralph et al. 2007; Scheller and Ulvskov 
2010). The type and distribution of the polymers varies within the cell and between 
cell types. For all plant classifications, the cell corners and middle lamella generally 
have the highest lignin content compared to the primary and secondary wall (Singh 
et al. 2009; Siqueira et al. 2011; Sun et al. 2011). For corn stover, cell types can 
be arranged in order of decreasing lignin and cellulose content: sclerenchyma and 
tracheids > epidermis > bundle sheath > parenchyma (Sun et al. 2011). Sugarcane 
follows a similar trend with lignin concentrated in the vessels followed by fiber and 
parenchyma cells (Siqueira et al. 2011). Lignin in herbaceous dicots is concentrated 
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in the vascular ring (Wilson and Hatfield 1997; Engels and Jung 1998), but pith 
parenchyma cells, though thin, are also lignified (Engels and Jung 1998).

14.2.2 � Covalent Linkages

The S/G ratio determines the types of inter-unit cross-linking that occur within the 
lignin matrix. The β-O-4 (β-aryl ether) linkage is the most frequent linkage and 
one of the most easily cleaved chemically (Ralph et al. 2007) and is more com-
mon in lignin containing more S subunits (Kishimoto et al. 2009). 4-O-5 linkages 
are more common with a 1:1 S/G ratio, and the β-β linkage is more common with 
a greater proportion of S subunits (Kishimoto et al. 2009; Rencoret et al. 2011). 
Lignins with a greater proportion of G subunits tend to be more branched, and also 
contain more chemically and thermally resistant structures (β-5 and 5-5) (Ralph et 
al. 2007; Kishimoto et al. 2009; Rencoret et al. 2011). As a result, hardwood lignin 
is easier to degrade and has a lower glass transition temperature compared to soft-
wood lignin, which contains no syringyl subunits (Lundquist and Lundgren 1972; 
Lundquist 1973; Awal and Sain 2011).

Lignin is also covalently linked to hydroxycinnamic acids, with p-coumaric 
acids forming ester-linked terminal residues. Ferulic acids, which are also able to 
form oligomers, are ether-linked to lignin and ester-linked to carbohydrates, either 
pectins in certain dicots, or GAX arabinose side-chains in grass and dicot second-
ary walls (Iiyama et al. 1990; Harris and Trethewey 2010), though the frequency 
is lower for dicots due to significantly lower arabinose substitution (Scheller and 
Ulvskov 2010; Chiniquy et al. 2012). Ferulate cross-links limit enzymatic degra-
dation (Grabber et al. 1998), but the ester link with hemicellulose is easily cleaved 
by most pretreatments. In addition to covalent cross-linking through hydroxycin-
namic bridges, a variety of direct cross-links have also been proposed between 
lignin subunits and cell wall carbohydrates (Imamura et al. 1994; Karlsson et al. 
2004; Lawoko et al. 2006).

14.2.3 � Non-Covalent Interactions

A great deal of interaction between cell wall polymers is in the form of hydrogen 
bonding and van der Waals forces. In higher plants the glucan chains in the cel-
lulose microfibril are present predominantly in the Iβ crystal conformation (Atalla 
and Vanderhart 1984; Stone 2005). The microfibrils may interact with each other 
and other cell wall polysaccharides through non-covalent interactions (Altaner 
and Jarvis 2008; Ivakov and Persson 2012) and through these form aggregate- 
or bundle-like structures (Donaldson 2007; Abe and Yano 2009). Glucomannans 
bind more strongly to cellulose and are more resistant to extraction compared 
to glucuronoxylans (Clayton and Phelps 1965; Åkerholm and Salmén 2001, 
2004; Zhang et al. 2011a). Strength of hemicellulose binding is likely related to 
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interactions between the specific sugars in the hemicellulose backbone and cellu-
lose, and a recent modeling study showed fewer hydrogen bonds but greater bond 
strength between cellulose and glucomannan compared to between cellulose and 
xylan (Zhang et al. 2011a). However stronger binding of glucomannan may also 
be related to lower side-chain substitution compared to xylan (Clayton and Phelps 
1965). For the same class of hemicellulose, those with lower substitution bind 
more strongly to cellulose (Whitney et al. 1998; Kabel et al. 2007; Dammström et 
al. 2009), and the pattern of substitution also appears to have an impact (de Lima 
and Buckeridge 2001). In addition to the sugar side-chains, most mannans and 
xylans are acetylated (Scheller and Ulvskov 2010), which likely reduces binding 
affinity towards cellulose (Altaner and Jarvis 2008). It has also been hypothesized 
that hemicelluloses may be covalently linked to or embedded within cellulose 
microfibrils (Cosgrove 2005).

14.3 � Pretreatment Chemistry

Thermochemical pretreatments alter the cell wall through chemical reactions that 
cleave covalent bonds and/or disrupt non-covalent interactions between cell wall 
polymers (Fig.  14.2) as well as through thermal softening and solubilization of 
biomass components. These chemical changes in combination with the physi-
cal removal and/or relocalization of cell wall components cause structural changes 
that improve enzymatic digestibility. Most pretreatments can be grouped based on 
their general effect on cell wall structure: those that remove lignin (alkaline/oxida-
tive), those that remove hemicellulose and relocalize lignin (acidic), and those that 
fractionate cell wall components (ionic liquid, organosolv, and phosphoric acid) 
(Fig.  14.2). Most pretreatments, except for biological pretreatments and ionic 
liquids (ILs), can also be arranged in a continuum based on the nucleophilicity/electro-
philicity of their main reactants (Fig. 14.3). Though less precise, the continuum can 
also be thought of in terms of pH (Pedersen and Meyer 2010; Garlock et al. 2011). 
Almost all of these pretreatments cleave some fraction of acetyl groups from the 
hemicellulose backbone (Maloney et al. 1985; Kumar et al. 2009; Shi et al. 2011) 
and use conditions that break α-ether linkages in lignin (Saake and Lehnen 2007).

The main mode of action for alkaline and oxidative pretreatments is through 
nucleophilic substitution and/or oxidation of esters and β-ethers within lignin and 
between cell wall polymers (Tarkow and Feist 1969; Iiyama et al. 1990; Sewalt 
et al. 1996). At very high alkali concentrations, carbohydrate monomers can be 
removed via peeling reactions and converted to acids (e.g. lactic acid) (Knill 
and Kennedy 2003). As reactant concentration and temperature decrease, peel-
ing reactions become less likely to occur and fewer β-aryl-ether bonds are bro-
ken. Ammonia, a weaker nucleophile, does not cleave β-ethers but is known to 
cleave ester-linkages between hemicellulose and hydroxycinnamic acids (Wang 
et al. 1964; Azarpira et al. 2011). In contrast, acidic pretreatments mainly act 
through electrophilic hydrolysis of ester cross-links, β-ether bonds, and glycosidic 
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linkages, and they can also catalyze the dehydration of monomeric sugars. Room 
temperature acid treatment is able to break ether linkages between hydroxycin-
namic acids and lignin/hemicelluloses (Wallace et al. 1995); while higher tem-
peratures are needed to hydrolyze esters (Sannigrahi et al. 2009). Though β-ether 
bonds can be broken by strong acidic pretreatments, they are more readily hydro-
lyzed by alkali (Saake and Lehnen 2007). The key feature of acidic pretreatments 
is the hydrolysis of glycosyl linkages that allows for extraction of hemicellulose-
derived oligomers and monomers. Xylans are more easily hydrolyzed than man-
nans (McGee and April 1982; Tunc and van Heiningen 2008; Várnai et al. 2010), 
and for side-chains, arabinose is more easily removed than galactose, and galac-
tose than 4-O-methyl-glucuronic acid (McGee and April 1982; Sun and Cheng 
2005). During hydrothermal pretreatments, hydronium ion concentration is 

Fig.  14.2   Main molecular scale (chemical) impacts to plant cell wall components by ther-
mochemical pretreatments and, in conjunction with mass transfer of biomass components, the 
resulting nanoscale (structural) changes for the three main classes of pretreatment
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initially governed by water autoionization and later by release of weak, biomass-
derived acids (Garrote et al. 1999), and for these weakly acidic pretreatments, 
most hemicellulose is released as oligomers, only the most amenable side-chains 
are cleaved, and most lignin inter-unit linkages remain intact (Garlock et al. 2011).

A number of pretreatments (AFEX™1, liquid hot water, dilute acid, and acid-cata-
lyzed organosolv) have also been shown to deposit lignin-rich globules on the surface 
of the cell wall (Donohoe et al. 2008; Chundawat et al. 2011; Donohoe et al. 2011; 
Koo et al. 2012). For acidic pretreatments, particularly those catalyzed by sulfuric 
acid, lignin can condense and form new bonds (Xiao et al. 2013; Lundquist 1973; 
Karlsson et al. 1988). Most pretreatments also generate degradation compounds that 
influence downstream processes, and the specific compounds that are formed are 
determined by the interaction of plant cell wall chemistry (grass, hardwood, or soft-
wood) with pretreatment chemistry (Chundawat et al. 2010; Du et al. 2010).

In addition to cleavage of covalent bonds, some pretreatments (sodium hydrox-
ide, liquid ammonia, phosphoric acid, and ILs) disrupt hydrogen bonding within 
cellulose microfibrils and generate more digestible forms of cellulose (amor-
phous > II, III > I). The main mode of action for ionic liquids is the disruption of 
hydrogen bonding and decrystallization of cellulose to the extent that fractionation 
and lignin removal may not be necessary for high enzymatic conversions (Wu et al. 
2011). There are indications that IL reactivity is related to both the ability of the 

1  AFEX™ is a registered trademark of MBI International, Lansing, MI.

Fig. 14.3   Thermochemical pretreatments arranged in order of reactant nucleophilicity and effect 
on cell wall covalent linkages
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anion to accept hydrogen bonds (Tadesse and Luque 2011; Gericke et al. 2012; King 
et al. 2012) and the length of the alkyl substituent chain on the cation, with shorter 
chain lengths leading to more effective cellulose dissolution (Zhang et al. 2005). 
Combined, the anion and cation form an electron donor–acceptor matrix with the 
cellulose hydroxyl groups that facilitates dissolution (Tadesse and Luque 2011; Xu 
et al. 2012). In ILs, pH is a measure of dissociation between the anion and cation 
(MacFarlane et al. 2006) and anions and cations can be classified as acidic, basic, or 
neutral. For example, the imidazolium ring has acidic properties that are believed to 
result in acid catalytic effects (MacFarlane et al. 2006). An IL with an acidic cation 
and basic anion like 1-ethyl-3-methylimidazolium acetate (EMIMAc) has a larger 
degree of dissociation (~pH 11) (Singh et al. 2009; Muhammad et al. 2012), which 
is likely related to its ability to both decrystallize cellulose and dissolve lignin. 
Imidiazolium ILs with a weakly basic anion like 1-butyl-3-methylimidizolium 
chloride (BMIMCl) and 1-ethyl-3-methylimidizolium chloride (EMIMCl) (~pH 6) 
are more selective for dissolving cellulose (Zhang et al. 2013b). The IL anion may 
also enhance catalytic reactions, and ILs with anions that are less basic than water 
(e.g. Cl−) turn strong acids into weaker acids, however ILs with anions that are 
more basic than water (e.g. acetate) turn weak acids (like water and acetic acid) into 
stronger acids (MacFarlane et al. 2006). This may be one reason for the beneficial 
effect of water observed in EMIMAc, though this may also be related to reductions 
in viscosity (Fu and Mazza 2011). IL viscosity, which is much higher than conven-
tional solvents, impacts cellulose dissolution through mass transfer and this can be 
difficult to separate from kinetic impacts (Gericke et al. 2012). The effectiveness 
of an IL is also dependent on temperature. Pure cellulose dissolves in imidazolium 
ILs between 80 and 100 °C (Zhang et al. 2005; Vitz et al. 2009), but pretreatment 
of whole biomass requires higher temperatures (~130 °C) for significant decrystal-
lization of undissolved fractions (Kimon et al. 2011), which might be related to the 
glass transition temperature of lignin (Keskar et al. 2011; Li et al. 2011).

14.4 � Impacts of Plant Characteristics on Cell Wall 
Degradation

14.4.1 � Plant Classification

Different pretreatments process certain classifications of plants more effectively 
than others (Wyman et al. 2013), however, for the same pretreatment method, plant 
materials can almost always be arranged in the following order, either with regard 
to digestibility for the same conditions, or severity of conditions required for equiv-
alent digestibility: grasses  >  herbaceous dicots  >  hardwoods  >  softwoods (Arantes 
and Saddler 2011; DeMartini and Wyman 2011a; Garlock et al. 2012b). This order 
is largely due to four factors that increasingly hinder pretreatment reaction kinetics 
and mass transfer: (1) increase in proportion of recalcitrant covalent linkages within 
the cell wall (esters - > ethers - > carbon–carbon bonds); (2) increase in strength of 
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hydrogen-bonding of major hemicellulose sugars to cellulose; (3) increase in average 
cell wall thickness and proportion of the cell volume occupied by cell wall; and  
(4) increase in the proportion of lignin versus cellulose, although if cellulose accessibil-
ity is sufficiently increased, the actual presence of lignin during hydrolysis is not a major 
issue (Jeoh et al. 2007; Chundawat et al. 2011; Rollin et al. 2011; Wiman et al. 2012).

14.4.2 � Plant Varieties

A handful of studies have looked at differences in digestibility and yields for cul-
tivars within the same species. Upland and lowland switchgrass when harvested 
around the same time in the same location had similar sugar yields for most pre-
treatment methods (Kim et al. 2011) and similar optimal pretreatment conditions 
and enzyme loading (Garlock et al. 2012a). Results for wheat straw were varied, 
with one study that indicated sugar yields (g/g dry biomass) from hydrothermally 
pretreated wheat straw were not influenced by cultivar (Larsen et al. 2012), while 
two other studies found a significant variation in sugar yields across all cultivars 
(Lindedam et al. 2010; Lindedam et al. 2012).

14.4.3 � Plant Cell Types and Tissues

Herbaceous feedstocks can show major differences in conversion between dif-
ferent portions of the plant or different cell types that may influence practical 
considerations such as harvesting methods and fractionation prior to pretreat-
ment. In general, pith tends to be more digestible than the vascular bundles and 
the rind/epidermis. One study found that sugar yields follow the same pat-
tern of digestibility for both hydrothermally pretreated and untreated materi-
als (pith > leaves > rind) (Zeng et al. 2012). Pith cells of sugar cane were highly 
digestible by enzymes even without pretreatment and following chlorite treatment 
the rind cells became significantly more digestible (Siqueira et al. 2011).

For herbaceous botanical fractions, the general trend is that stems are easier to 
digest than leaves. For AFEX™-pretreatment, corn fractions were more digestible 
in order of decreasing lignin content (husk >  leaf >  stem > cob) (Garlock et  al. 
2009). For sodium hydroxide pretreatment, corn stover fractions released the most 
glucan in order of husks, cob, and leaves > upper stem > lower stem (Duguid et 
al. 2009) and corn stover and wheat straw fractions that contained more lignin 
showed a greater improvement with a higher catalyst loading (Duguid et al. 2007, 
2009). Hydrothermally pretreated grasses and legume stems had lower percent 
sugar conversions than leaves, but higher total sugars released (DeMartini and 
Wyman 2011a). Miscanthus fractions showed decreasing cellulose conversion 
with: leaves > sheath > stem (Le Ngoc Huyen et al. 2010).
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14.4.4 � Harvest Date and Maturity

For herbaceous crops that have annual growth cycles, harvest date significantly 
impacts composition and biomass yields. As the plant approaches full maturity and 
senescence, the relative proportion of lignin and structural carbohydrates increase 
with a simultaneous decrease in soluble sugars, protein, and minerals (Dien et al. 
2006). Harvest during the growing season can result in a highly digestible mate-
rial, but one that also has significant nitrogen and ash content (Bals et al. 2010), 
which can impact farm economics, sustainability, and conversions. Some studies 
have shown little impact on total sugars released due to maturity (Dien et al. 2006; 
Garlock et al. 2009). However, there is a consistent decrease in digestibility and 
biomass yields when harvest is delayed from fall to winter or spring, largely due 
to loss of leaves and other fragile, digestible portions of the plant (Pordesimo et al. 
2005; Adler et al. 2006; Le Ngoc Huyen et al. 2010; Kim et al. 2011). With regard 
to woody materials, one paper examined sugar yields from different growth rings 
and found no significant variation between mature wood and juvenile wood, despite 
an increase in lignin content with age of the ring (DeMartini and Wyman 2011b).

14.4.5 � Composition

The most common trend reported for the effect of biomass composition on hydrol-
ysis yields, is that glucan digestibility is negatively correlated to total lignin con-
tent (Davison et al. 2006; Dien et al. 2006; Rock et al. 2009; Garlock et al. 2012b). 
Lignin monomer composition may also be important, as a decrease in the S/G 
ratio leads to more recalcitrant linkages, and pretreatments that can break them 
would be expected to show a higher digestibility compared to those that do not. 
However, based on a number of studies S/G ratio may or may not be correlated to 
improved digestibility, depending on other plant cell wall properties and whether 
and how the plant was pretreated (Chen et al. 2002; Mechin et al. 2005; Davison 
et al. 2006; Li et al. 2010; Studer et al. 2011b; Zhang et al. 2011b).

14.5 � Designing Improved Feedstocks

A number of strategies for developing “plants designed for deconstruction” have 
been reviewed in recent years (Carpita 2012; Jung et al. 2012; Abramson et al. 
2013). These strategies can be grouped broadly as altering lignin (content, monol-
ignol composition, and degree of polymerization), increasing and/or altering poly-
saccharides (content, composition, or crystallinity), expressing cell wall-degrading 
or modifying enzymes in planta, or producing oils in vegetative tissues.
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14.5.1 � Alterations to Lignin

Initial studies on plants with altered lignin contents began with the “brown mid-
rib” mutations (Barrière et al. 2004) for improved ruminant digestibility. Plant 
lines have subsequently been engineered with decreased and altered lignin con-
tent by changing the expression of monolignol biosynthetic enzymes. Decreasing 
expression of one or more of the monolignol synthesis enzymes has been shown 
to decrease total lignin content and improve the enzymatic digestibility of alfalfa 
following hot water pretreatment (Chen and Dixon 2007). However, decreasing the 
total lignin content of the cell wall also impairs the overall fitness of the plant and 
can lead to dwarfed plants and failure to accumulate biomass (Casler et al. 2002; 
Voelker et al. 2011). As a consequence of this, more recent strategies have been 
focused on altering the ratio of monolignols, and increasing the S/G ratio in hybrid 
poplar has been shown to improve alkaline delignification (Stewart et al. 2009) and 
digestibility following alkaline and dilute acid pretreatment, though there was no 
significant difference following AFEX™ treatment (Ong 2011). Increasing S/G in 
Arabidopsis was shown to improve the enzymatic release of glucose following hot 
water pretreatment (Li et al. 2010). A recent study found that decreasing total lignin 
content concurrently with decreasing S/G in switchgrass improved the enzymatic 
glucose yield following dilute acid pretreatment, as well as decreasing pretreatment 
severity and cellulase loadings, and increasing ethanol yield (Fu et al. 2011).

Another strategy has been to introduce novel monolignols or proteins that make 
the cell wall more amenable to chemical deconstruction without impacting total 
lignin content or plant fitness. These approaches, all of which have been shown to 
increase digestibility and/or lignin removal to some extent include adding monol-
ignols that shorten the degree of polymerization (p- hydroxybenzyaldehydes) (Eudes 
et al. 2012), monolignols that incorporate alkali-labile ester linkages within the lignin 
matrix, e.g. novel ester-based di-lignols as lignin precursors (Grabber et al. 2008; 
Simmons et al. 2010), and glycoproteins that participate in cross-couplings with 
lignin, such as tyrosine-rich hydroxyproline-rich glycoprotein (Liang et al. 2008).

14.5.2 � Alterations to Polysaccharides

Altering cell wall polysaccharides is another method to reduce cell wall recalci-
trance or increase the amount of substrate. One strategy is to decrease cellulose 
crystallinity by overexpressing cellulose synthases with impaired functional-
ity (Harris et al. 2009) or by overexpressing a membrane-bound endoglucanase, 
KORRIGAN (Maloney and Mansfield 2010). Another strategy is to increase the 
carbohydrate content of the plant cell wall. Cellulose content and crystallinity 
increased in poplar by over-expressing a sucrose synthase gene (Coleman et al. 
2006) and various amorphous polysaccharides have been targeted for accumula-
tion, including starch (Chuck et al. 2011 and mixed-linkage β-glucans (Pauly et 
al. 2011). In contrast, reductions in glucuronoxylan content in poplar showed an 
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increase in digestibility by enzymes alone (Lee et al. 2009). In rice, loss of activity 
for a xylosyltransferase thought be responsible for arabinosyl substitution of the 
xylan backbone resulted in a slight increase in arabinose substitution and decrease 
in hydroxycinnamic acid content, resulting in increased extractability of xylan and 
enzymatic digestibility (Chiniquy et al. 2012). Alteration of O-acetylation of hemi-
celluloses may also lead to a decrease in acetate content for reduced inhibition of 
fermentation or altered capacity of hemicelluloses to hydrogen bond with other 
cell wall polymers (Gille and Pauly 2012). Other work has demonstrated improved 
enzymatic digestibility of plant cell walls by preventing de-methyl esterification in 
the pectin homogalacturonan (Lionetti et al. 2010), which limits the ability to form 
Ca2+-mediated cross-links, increasing primary cell wall porosity and decreasing 
rigidity and cell-to-cell adhesion in primary cell walls.

14.5.3 � Transcription Factors for Secondary Cell Wall 
Formation

Regulatory networks have recently been identified comprising several transcrip-
tion factors that act as “master switches” responsible for controlling the temporal 
and spatial regulation of collections of genes involved in the secondary cell wall 
synthesis, assembly, and thickening (Shen et al. 2012). One study ectopically over-
expressed a MYB transcription factor in switchgrass to down-regulate the genes 
associated with monolignol biosynthetic pathways and identified phenotypic out-
comes of reduced lignin and reduced p-coumarate to ferulate ratios that resulted 
in a tripling of enzymatic sugar release (Shen et al. 2012). Other work identified a 
mutation in WRKY transcription factors to be responsible for secondary cell wall 
thickening and significantly increased cellulose, hemicellulose, and lignin depo-
sition in the pith cells of model dicots, increasing the overall plant density, and 
potentially providing a route for increasing accumulation of fermentable sugars in 
plant cell walls (Verma et al. 2010).

14.5.4 � Expression of Cell Wall Degrading Enzymes in Planta

The high cost and doses of enzymes required for cellulosic biofuels are critical eco-
nomic barriers for commercialization. Expression of thermophilic cellulases in 
the apoplast (Sticklen 2006) or mesophilic cellulases in chloroplasts (Verma et al. 
2010) are one possible route for generating some of the cellulolytic enzymes in situ. 
Cellulolytic enzymes can be generated in planta to supplement other enzymes during 
hydrolysis, however even mild pretreatment of the biomass can significantly lower 
their activity (Teymouri et al. 2004). Expression of feruloyl esterases in grasses which 
cleave ferulate ester cross-links has been found to improve both enzymatic and in 
vitro ruminant digestibilities (Buanafina et al. 2008). Expression of plant cellulolytic 
enzymes that are active under plant physiological conditions (Hartati et al. 2008) or 



244 R. G. Ong et al.

cellulose binding modules (CBMs) (Shoseyov et al. 2006) in the apoplast have been 
found to increase growth and biomass accumulation, presumably by increased cell 
wall loosening, but with the potential disadvantage of impaired plant fitness.

14.5.5 � Production of Oils in Vegetative Tissues

One way to increase the energy content of lignocellulosic biomass is to modify 
plants to produce oils, fatty acids, or triacylglycerols (TAGs) in vegetative tissues 
(Durrett et al. 2008). In one study triacylglycerols were accumulated in senesc-
ing Arabidopsis leaves by either blocking fatty acid breakdown, or by ectopically 
expressing the LEC2 seed development transcription factor in leaves (Slocombe 
et  al. 2009). Another study successfully shifted the carbon flux in Arabidopsis 
leaves from starch biosynthesis to the production and accumulation of triacyl-
glycerols by simultaneously reducing the expression of a catalytic subunit of 
ADP-glucose pyrophosphorylase and ectopically expressing the WRINKLED1 
transcription factor that is involved in seed oil biosynthesis (Sanjaya et al. 2011).

14.6 � Pretreatment as a Screening and Analysis Tool: 
Expanding Our Understanding of the Plant Cell Wall

Re-engineering plants to provide phenotypic traits desirable of an ideal biofuel 
energy crop is an area of intense research, as highlighted previously. However, it 
is vitally important to evaluate processing capabilities of new materials as they are 
being generated, as biomass recalcitrance may not favorably correlate with the traits 
selected for during transgenesis or breeding. With recent advances in high-through-
put analytical techniques, it is now feasible to quickly screen for desirable traits from 
very large libraries of biomass phenotypes, while requiring only small sample quanti-
ties for detailed analyses. In addition to screening, high-throughput techniques are 
also helping to further understanding of the relationship between biomass conver-
sion and plant cell wall characteristics. For example, high throughput composition 
analysis techniques allowed for screening of thousands of poplar samples for lignin 
content and S/G ratios, and from this a fairly large subset was further tested using a 
high-throughput pretreatment and enzymatic hydrolysis method in order to determine 
the relative impacts of lignin and S/G ratio on sugar yields (Studer et al. 2011b).

As in the example above, high-throughput pretreatments can now be carried out in 
custom-designed microplate-based reactors that have been developed for both acidic 
and alkaline pretreatments (Santoro et al. 2010; Selig et al. 2010; Studer et al. 2011a). 
Rapid, small-scale compositional analysis methods are able to determine cell wall 
composition, both before and after pretreatment (DeMartini et al. 2011b; Selig et al. 
2011). These techniques can be coupled to medium/high-throughput analyses using 
LC–MS/MS and 2D-NMR for more detailed elucidation of changes in cell wall struc-
ture, composition, and degradation (Chundawat et al. 2008; Kim and Ralph 2010; 
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Morreel et al. 2010). Semi-automated (medium/low throughput) electron microg-
raphy and immunolabeling based techniques have also been used in recent years to 
characterize the complex interplay of pretreatment severity and cell wall ultra-struc-
tural modifications (Donohoe et al. 2009; Pattathil et al. 2010; Chundawat et al. 2011; 
Zhang et al. 2013a). To this end a bio-analytic toolkit was developed, comprising 
more than 200 glycan-directed monoclonal antibodies that recognize distinct epitopes 
present on various categories of plant cell wall polysaccharides (Pattathil et al. 2010). 
This microplate-based, quantitative assay has provided insights into the relationship 
between pretreatment severity and cell wall polysaccharide accessibility and extrac-
tion, and the molecular architecture of the plant cell wall (Alonso-Simón et al. 2010; 
DeMartini et al. 2011a). As indicated by Moller et al. (2007), monoclonal antibod-
ies directed against cell wall glycans provides complementary compositional data that 
could be used to optimize pretreatment conditions and enzyme cocktails necessary for 
more efficient degradation of lignocellulose.

The effectiveness of pretreatments on bioconversion has been evaluated using 
micro-scale based rapid enzymatic hydrolysis (Chundawat et al. 2008; Banerjee 
et al. 2010; Gomez et al. 2010; Jäger et al. 2011; Riedlberger and Weuster-Botz 
2012) and microbial fermentation based assays (Funke et al. 2010; Riedlberger and 
Weuster-Botz 2012). These assays can be coupled with microplate-based pretreat-
ments to facilitate rapid screening of several hundred biomass specimens (Studer et 
al. 2010). Additionally, with developments in micro-scale cell-free protein expres-
sion systems it is possible to selectively optimize enzyme combinations necessary 
for different pretreatments and biomass types (Chandrasekaran et al. 2010).

14.7 � Conclusions

In recent years understanding of the chemistry and structure of the plant cell wall 
has progressed rapidly. Pretreatment research has contributed to understanding of the 
distribution and composition of various cell wall polysaccharides within the many 
different classes of cell walls. Future work will continue to delve more deeply into 
the complex relationships between cell wall and pretreatment chemistry to improve 
and develop novel conversion methods for release of cell wall sugars and to improve 
biomass characteristics for conversion to biofuels. High-throughput analytical tech-
niques and tools that allow for rapid analysis of small quantities of samples will 
allow for more efficient comparisons in the development of new feedstocks and 
processing methods, and improved understanding of the fundamental relationships 
between cell wall chemistry and structure and pretreatment chemistry.
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