Dietary Phytochemicals Target Cancer
Stem Cells for Cancer Chemoprevention
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Abstract Cancer is a multistep process involving genetic and epigenetic changes in
the somatic genome. Genetic mutations as well as environmental factors lead to the
initiation, promotion, and progression of cancer. Cancer progression ends in tumor
metastasis to distant sites, and metastasis is the major reason for cancer patient
deaths. Recent experimental evidence suggests the pivotal role of cancer stem cells.
A tumor is heterogeneous and composed of different cell types. The cancer stem
cells in the tumor have the capacity both to self-renew and differentiate to sustain
the tumor. Features of cancer stem cells are described in this review, with an empha-
sis on the role that dietary phytochemicals may play in cancer chemoprevention.
Ingredients in the diet can inhibit cancer cells and cancer stem cells. These com-
pounds include curcumin from curry, epigallocatechin gallate from green tea, res-
veratrol from red wine, genistein from soy, sulforaphane from broccoli, and many
others. Current research findings advocate the beneficial effects towards cancer
chemoprevention via uptake of a combination of different dietary phytochemicals.
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Cancer and Cancer Stem Cells

Biology of Cancer

A somatic cell undergoes changes in its genome and epigenome during its life-
time. If the accumulated changes involve regulation of cell growth and death, the
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resulting uncharted growth may alter the normal somatic cell to turn into a cancer
cell. During the carcinogenesis process, there are malfunctions of genes, including
gain of function of proto-oncogenes and loss of function of tumor suppressor genes.

Cancer cells exhibit hallmark alterations in their physiology, namely: (1) self-
sufficiency of growth signals, (2) insensitivity to growth inhibitory signals, (3)
evasion of programmed cell death, (4) limitless replicative potential, (5) repro-
grammed cellular energetics, (6) induction of angiogenesis, (7) presence of tumor-
promoting inflammation, (8) avoidance of immune destruction, (9) maintenance of
genome instability and mutation, and (10) activation of tissue invasion and metas-
tasis (Hanahan and Weinberg 2000, 2011).

Because cancer is a multistep process, it may take decades to develop. Carci-
nogenesis can be traced from its initiation, followed by promotion, progression,
and metastasis. Accumulation of a handful of mutations (10-20) is adequate for
cancer development. The cancer cell will then self-renew, migrate, and invade, as
a clonal expansion in its complex tissue ecosystem (Greaves and Maley 2012).
The niche or microenvironment surrounding the cancer cell can shape the path of
carcinogenesis; as an example, the host immune system will attempt to destroy
the developing cancer, although results may vary, as seen in the outcomes of can-
cer immunoediting (Schreiber et al. 2011). The tumor evolves from being benign
to being malignant, and finally leads to the death of its host, the cancer patient.
Investigators are interested in details of this process of carcinogenesis, and ways
to halt its progression. Dietary phytochemicals have been shown to modulate the
carcinogenetic procession.

Cancer Stem Cells

History and Definition

By histological examination, the tumor is heterogeneous, composed of tumor cells
at various stages of cell differentiation, plus nontumor cells such as fibroblasts and
immune cells. Thus, not all cells within a tumor are equal. Clonal evolution and
competition within the tumor result in the dominance of the cell that is resistant to
therapy and can both self-renew and differentiate its progeny cells. This observed
tumor heterogeneity has been explained by the cancer stem cell (CSC) hypothesis.
A workshop of the American Association for Cancer Research in 2006 settled with
a consensus definition: CSC “is a cell within a tumor that possesses the capacity to
self-renew and to cause the heterogeneous lineages of cancer cells that comprise the
tumor” (Clarke et al. 2006). The putative CSC is also known as a tumor-initiating
cell, a term preferred by some investigators, as seen in this example: “tumor-initiat-
ing cells (popularly known as cancer stem cells)” (Zhou et al. 2009). In this chapter,
we use the popular term, CSC.

In a review published in 2001, the abstract starts with “stem cell biology has
come of age” but ends with “cancer cells may include ‘cancer stem cells’—rare
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cells with indefinite potential for self-renewal that drive tumorigenesis” (Reya et al.
2001). Research on various aspects of CSCs has been reported in the intervening
years. In addition to research and review publications, CSCs are the topic of edited
monographs. The first book dedicated to CSCs came out in 2009 (Bapat 2009); its
editor was a scientist from India who first isolated human ovarian CSCs (Bapat
et al. 2005). Other volumes subsequently appeared (Farrar 2010; Allan 2011; Scat-
ena et al. 2012). One addressed CSC methods (Yu 2009). There are even Web-
published volumes (Shostak 2011a, 2011b) and a series dedicated to cancer cells
and CSCs (Hayat 2012). So, has CSC biology come of age?

In reality, the CSC hypothesis and the CSC concept have a long history. The sub-
ject has been billed as “old concepts, new insights” (Vermeulen et al. 2008) and “an
evolving concept” (Nguyen et al. 2012). Linking stem cells and cancer, histologi-
cal similarities were noted between embryonic and tumor tissues in the nineteenth
century. This became the “embryonic rest” theory: cancers arise from cells with
properties similar to those of early embryos. Later investigations concluded that
cancer can be viewed as a “caricature” of normal development. The uncharted cell
proliferation seen in cancer is the result of distortion of normal development, and
a lack of coordination between growth and differentiation (Nguyen et al. 2012). In
addition, knowledge on stem cell biology in normal tissues has been translated to
the concept of CSCs in cancerous tissues.

Perhaps the best known normal stem cell is the hematopoietic stem cell (HSC).
HSC has a hierarchy that permits an organized process of self-renewal and differ-
entiation, giving rise to progeny of differentiated cell types including erythrocytes,
macrophages, lymphocytes and many others. Immunologists have identified cluster
of differentiation (CD) markers for the different cell types, and these cell surface
antigens allow for the isolation of cells by methods such as fluorescence-activated
cell sorting (FACS). The rare HSC exhibits the surface marker CD34, the member
of a family of single-pass transmembrane sialomucin proteins. It should be noted
that although CD34" is seen in human HSC, the mouse equivalent is CD34~ or CD-
34/ov_Thus, there are species differences in CD distribution.

In studying hematopoietic malignancies, in 1937, Jacob Furth and Morton Kahn
provided the first quantitative assay for the assessment of the frequency of cancer
cells maintaining the hematopoietic tumor. They showed that a single mouse leuke-
mic cell was capable of transmitting the systemic disease when transplanted into a
recipient mouse (as quoted by Clevers 2011). By definition, this has to be the CSC
of murine leukemia.

Like its murine counterpart, the human CSC was first demonstrated in leukemia and
then extended to solid tumors. Bonnet and Dick (1997) reported the presence of CD34*/
CD38" CSCs in human acute myeloid leukemia. Isolated patient CSCs will reconstitute
the leukemia when transplanted in immunodeficient mice. Al-Hajj et al. (2003) reported
the presence of CD44%/CD24"°% CSCs in human breast cancer. They wrote: “As few
as 100 cells with this phenotype were able to form tumors in mice, whereas tens of
thousands of cells with alternate phenotypes failed to form tumors.” Singh et al. (2003)
reported the presence of CD133* CSCs in human brain cancer. They commented:
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The increased self-renewal capacity of the brain tumor stem cell (BTSC) was highest from
the most aggressive clinical samples of medulloblastoma compared with low-grade glio-
mas. The BTSC was exclusively isolated with the cell fraction expressing the neural stem
cell surface marker CD133. These CD133" cells could differentiate in culture into tumor
cells that phenotypically resembled the tumor from the patient.

These initial studies on CSCs were expanded to many cancers in the following
decade.

Biomarkers and Experimental Studies

Cellular antigens of CSCs can serve as biomarkers. The more common ones are
CD24, CD34, CD44, and CD133 (Woodward and Sulman 2008; Keysar and
Jimeno 2010). They are used in the isolation of CSCs from leukemia, breast can-
cer, and many other cancers. CD24 is a heat-stable antigen, a sialoprotein that acts
as a ligand for P-selectin, thus enabling the cell to bind to platelets and protecting
tumor cells in the blood stream. Although CD24 is negative in breast CSCs, it is
present in ovarian CSCs (Gao et al. 2010). CD44 is a transmembrane glycoprotein
which is a hyaluronic acid receptor. Besides breast cancer, CD44 is found in CSCs
from pancreatic, gastric, head and neck, ovarian, and colon cancer. CD133, also
named prominin-1, is a glycoprotein consisting of five transmembrane domains
with a restricted expression within the plasma membrane protrusion sites. In ad-
dition to brain cancer, CD133 is found in CSCs from colon, liver, pancreatic, and
prostate cancer (Alison et al. 2011; Zobalova et al. 2011; Hu and Fu 2012). It should
be noted that these antigens are also present in the respective normal stem cells, al-
though they have been used as biomarkers for their cancerous counterparts. Hence,
the significance of CD24 and CD44 as CSC markers has been seen as “an enduring
ambiguity” (Jaggupilli and Elkord 2012). Another important point is the lack of a
single CD antigen common to all CSCs. However, a universal marker may be close
at hand. In a recent drug screening study specifically targeting CSCs, dopamine
receptors have been discovered as a biomarker for CSCs but not normal stem cells.
Because only leukemic and breast CSCs have been tested so far, the novel bio-
marker requires confirmation and validation (Sachlos et al. 2012).

In addition to identification through biomarkers, CSCs can also be characterized
by functional assays, namely, the detection of side population (SP) activity and the
assessment of aldehyde dehydrogenase (ALDH) activity (Keysar and Jimeno 2010;
Tirino et al. 2013). The SP assay measures the ability of cells to expel the fluores-
cent dye, Hoechst 33342, caused by the activity of ATP-dependent drug transporters
on the plasma membrane, especially the ABCG2 transporter (Mo and Zhang 2012).
As analyzed by flow cytometry, cells with fast drug exit form a side population, as
opposed to the main population composed of the majority of cells. Initially identi-
fied in HSCs, SP has been found in many CSCs. Similarly, ALDH is a detoxifying
enzyme and acts by the oxidation of aldehydes to carboxylic acids for further me-
tabolism or liver exit. A fluorescent substrate assay using ALDEFLUOR, biodipy-
aminoacetaldehyde (BAAA), allows for the isolation of ALDH" cells. The ALDH
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Table. 1 Markers for Cancer Stem Cells. (Adapted from Woodward and Sulman 2008; Keysar and
Jimeno 2010; Clevers 2011; Hu and Fu 2012; Sachlos et al. 2012 and other references cited in text)

Marker Description Examples of tumor types
CD24 Heat stable sialoglycoprotein Ovarian cancer
CD34 Hematopoietic progenitor surface AML (acute myeloid leukemia)
glycoprotein
CD44 Hyaluronic acid receptor Breast/colorectal/gastric/liver/head
and neck/ovarian/pancreatic
cancer
CD90 Thymocyte differentiation antigen-1 Glioma/liver cancer
(Thy-1)
CD133 Prominin-1 Brain/colorectal/lung/liver/ovarian/
pancreatic/prostate cancer
CD326 Epithelial surface antigen (ESA) or Colorectal/pancreatic cancer
epithelial cell adhesion molecule
(EpCAM)
ABCG2 ATP-binding cassette drug transporter Brain/liver/lung/ovarian/pancreatic
cancer
ABCGS5 ATP-binding cassette drug transporter Melanoma
ALDH Aldehyde dehydrogenase Breast/colorectal/lung/ovarian/pan-
creatic/prostate cancer
DR Dopamine receptor AML (acute myeloid leukemia)

assay was initially used to isolate HSCs and normal breast stem cells, and then
extended to CSCs (Ginestier et al. 2007). Inasmuch as both SP and ALDH assays
involve drug extrusion and metabolism, exhibiting these capacities indicates drug
resistance of normal and CSCs. For example, SP and ALDH assays, in addition to
specific biomarker (such as CD44 and CD133) screening, have been utilized for the
identification of human ovarian CSCs (as summarized by Bapat 2010). However, it
should be emphasized that these assays only enrich CSCs. The biomarker and func-
tional assays may not characterize all the CSCs in the analyzed samples; therefore,
additional CSCs not exhibiting the attribute being tested may still be present. For a
list of biomarkers currently being used in the isolation of cancer stem cells, please
see Table 1.

In addition to biomarkers and functional assays, another in vitro method to study
CSCs is the use of serum-free spheres or spheroid cultures. Tissue culture cells are
usually grown as a monolayer in a nutrient-rich medium containing fetal bovine
serum as a source of the necessary growth factors and other components. However,
in the absence of serum but in the presence of growth factors such as fibroblast
growth factor (FGF) and epidermal growth factor (EGF), cells will grow as spheres
in suspension in unattached/untreated tissue culture plastic dishes, flasks, or plates.
Spheroid cultures mimic the three-dimensional nature of a tissue. Furthermore, it
should be noted that oxygen will be less available to the cells located at the interior
of a sphere. The hypoxic condition may modulate their differentiated state: towards
stemness. Originally developed for neurobiological studies, the spheroid culture is
used to “identify stem cells based on their reported capacity to evaluate self-renewal
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and differentiation at the single-cell level in vitro” (Pastrana et al. 2011). Spheroid
cultures have been developed for normal tissues and tumors (Chen et al. 2012a).
When isolated, individual sphere-forming cells from a tumor will form secondary
and tertiary spheres upon sequential subcultures; by operational definition these
will be CSCs. However, there have been critiques on this spheroid assay. Spheres
are prone to aggregate. Hence, cell density will influence clonality. The quiescent
stem cell may be missed by this method (Pastrana et al. 2011). In fact, the quiescent
nature of putative normal and CSCs has been utilized for their characterization.
These cells are known as label-retaining cells, because they can retain labels such
as the lipophilic dye PKH26, which is diluted in subsequent cell divisions but not
so with slow-dividing cells (Pece et al. 2010; Xin et al. 2012).

From a tumor sample, putative CSCs may be characterized by the in vitro tech-
niques discussed above. In addition to isolating CSCs from tumor samples, it is
also possible to isolate them from established cancer cell lines (Drewa et al. 2011;
Mather 2012). The advantage of the latter is the absence of nontumor cells as con-
taminants; the disadvantage is the additional accumulated changes during the long
period of in vitro culture. As an example, our interest in CSCs and SP analysis led
us to isolate SPs from the rat C6 glioma cell line, deriving putative CSCs from an
established cell line (Fong et al. 2010). However, the C6 stemness state is dynamic:
although SPs give rise to both SP and non-SP progenies, as expected, non-SPs can
do the same (Fong et al. 2010; Fong and Chan 2012).

Complementary to in vitro studies of CSCs, in vivo models are available. The
isolated cells are tested by their ability to initiate new tumor growth after xeno-
transplantation into immunocompromised mice (Cheng et al. 2010). Limiting dilu-
tion xenotransplantation yields an estimate of CSC abundance in the tumor sample;
sequential transplantation yielding the original tumor will confirm the presence of
CSCs. Different murine models with varying degrees of immunodeficiency have
been applied to CSC studies. Examples include athymic nude mice, nonobese dia-
betic/severe combined immunodeficiency (NOD/SCID) mice, and NOD/SCID
interleukin-2 receptor gamma chain null (//2rg”") mice. For example, using the
severely immunodeficient NOD/SCID //2rg™"~ mice in single-cell transplants (in an
appropriate extracellular matrix, Matrigel) from human melanoma samples, 27% of
unselected melanoma cells develop tumors in mice (Quintana et al. 2008). Does this
finding detect the abundance of human skin CSCs, whereas CSCs from other can-
cers are rare? There have been critiques on this xenotransplantation assay. Placing
human cancer cells in immunodeficient mice is artificial because the human cancer
cell will not encounter its normal host immune response. Therefore, results from
this assay cannot reflect the physiological fate of the CSC in its native environment.
Despite these objections, the limiting dilution murine in vivo xenotransplantation
assay has been held as the “gold standard” for CSC identification (Ghiaur et al.
2012). However, other in vivo assays have been attempted for identifying CSCs.
One example is the zebrafish model (Blackburn et al. 2011). Nonetheless, we found
this quote: “despite being considered the gold standard assay for CSCs by many in
the field, there is no reason to assume that growth in immunocompromised mice is
in fact a relevant assay for CSC activity” (Ghiaur et al. 2012).
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Controversy and Evidence

Even now, the CSC hypothesis is controversial. In 2009, one review asked: “Cancer
stem cells: mirage or reality?” (Gupta et al. 2009a); another discussed: “Cancer
stem cells and cancer nonstem cells: from adult stem cells or from reprogramming
of differentiated somatic cells” (Trosko 2009); a third commented: “The investiga-
tion and study of cancer stem cells (CSCs) have received enormous attention over
the past 5-10 years but remain topics of considerable controversy” (Rosen and Jor-
dan 2009). Similar statements were made in 2013: “The investigation and study of
CSCs have received enormous attention only over the past 5-10 years and remain
topics of considerable controversy. Opinions about the validity of the CSC hypoth-
esis, the biological properties of CSCs, and the relevance of CSCs to cancer therapy
differ widely” (Tirino et al. 2013).

However, there is accumulating evidence favoring the CSC hypothesis. The
CSCs may explain concepts of cancer and therefore are relevant to cancer therapy.
The major supporting data are: (1) the presence of CSCs in minimal residual disease
(MRD) and (2) the demonstration of CSCs in cell lineage tracing studies of murine
tumors.

MRD is a term first used in leukemia, to denote the small numbers of leukemic
cells that remain in the patient during or after treatment, when the patient is in re-
mission (no symptoms/signs of disease). It is the major cause of relapse in cancer.
MRD has been applied to solid tumors. If CSCs are resistant to therapy, they should
be enriched after chemo- and radiotherapy and found in MRD. This has been shown
to be the case. For example, resident breast CSC populations surviving convention-
al treatment (such as docetaxel) have been found to be enriched for CD44'/CD24~/
low breast CSCs that express epithelial-mesenchymal-transition (EMT)-associated
genes (Creighton et al. 2009). Thus, the presence of CSCs after therapy predicts
recurrence (Ghiaur et al. 2012).

Lineage tracing is a common technique for studying cell origins in develop-
mental biology. Tracking cells with fluorescent proteins such as green fluorescent
protein (GFP) in three different murine solid tumors, as reported in 2012, has been
cheered as “resolving the stem-cell debate” (Gilbertson 2012; Graham 2012). In
murine intestinal adenoma, 5-10% of the cells were CSCs, exhibiting the marker
leucine-rich repeat-containing heterotrimeric guanine nucleotide-binding protein-
coupled receptor 5 (LgrS). The cell lineage tracing was made possible through the
use of Cre-reporter at the Rosa26-Confetti locus, showing fluorescence (with four
colors: green, red, yellow, blue) and even color conversion during tumor develop-
ment. Lgr5 cells generated additional Lgr5 cells, as well as other adenoma cell types
(Schepers et al. 2012). In murine papilloma, a benign skin tumor, 20% of cells were
stem cells (tracked by yellow fluorescent protein) that divided twice a day whereas
the others became terminally differentiated tumor cells (Driessens et al. 2012). In
murine glioblastoma, a transgene was created to label both the quiescent adult neu-
ral stem cells and a subset of the endogenous glioma tumor cells (expressing GFP).
The transgene also contained a viral thymidine kinase gene that could be targeted
by the drug ganciclovir. Gliomas were treated with the drug temozolomide (TMZ);
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but TMZ treatment alone led to the regrowth of a subpopulation of CSCs, that were
then controlled by ganciclovir. TMZ-ganciclovir cotreatment impeded tumor de-
velopment, by destroying both cancer cells and CSCs. Hence, this last study dem-
onstrated the existence of murine glioma CSCs and their selective targeting (Chen
et al. 2012b).

Resistance to Therapy and Stem Cell Pathways

With the assumption that findings in mice are extrapolatable to humans, the demon-
stration of CSCs in murine glioma and TMZ-ganciclovir cotreatment shows clinical
relevance of CSCs. CSCs are resistant to therapy; they are or become chemo- and
radio-resistant during or after therapeutic treatments (Donnenberg and Donnenberg
2005; Krause et al. 2011). These characteristics are due to the activity of drug trans-
porters and metabolism enzymes, and a DNA repair system activated by genomic
instability. CSCs may possess less reactive oxygen species (ROS), and thus are
less susceptible to radiation therapy (Diehn et al. 2009). Depending on individual
cases of cancer, CSCs may arise from either mutated normal stem cells, or dedif-
ferentiated cancer cells exhibiting stem cell features. They display pathways of gene
expression in common with those of normal stem cells. Therefore, thinking along
therapeutic approaches, compounds targeting CSCs must be capable of differentiat-
ing them from the normal stem cells and sparing the latter, otherwise unforeseen
problems with normal tissue homeostasis can occur.

Several signal transduction pathways are active in CSCs and may be amenable
for intervention. The self-renewal pathways seen in CSCs relate to the expression
of proteins involved in Hedgehog, Wnt, and Notch signaling. Additional pathways
include PI3K and NFkB pathways (Garvalov and Acker 2011; Alison et al. 2011,
2012; Hu and Fu 2012).

The Hedgehog (Hh) signaling pathway starts with a secreted morphogenetic fac-
tor. The term Hh comes from the fruit fly genetic mutation Hh that leads to spiny-
looking larva; the gene is essential for arthropod segmentation and mammalian
development. The mammalian Hh morphogen, as a ligand, binds to its receptor,
Patched 1. This binding activates another plasma membrane protein, Smoothened,
which eventually leads to activation of the transcription factor known as Gli (glio-
ma).

The Wnt signaling pathway also starts with a secreted morphogenetic factor.
The term Wnt comes from the fruit fly genetic mutation Wingless (Wg), which is
important for arthropod polarity and segmentation, and the murine gene Integration
1 (Intl), a gene activated in breast cancer of mice infected with mouse mammary
tumor virus. Wnt morphogen binds to its receptor, and after a series of intermediate
steps, results in the mobilization of a cytoskeletal protein, beta-catenin, from the
cytoplasm to the nucleus to activate its specific transcription factor known as lym-
phoid enhancer binding factor/T-cell factor (LEF/TCF).

Instead of secreted factors, the Notch signaling pathway starts with the mem-
brane-associated Notch protein. The term Notch also comes from a fruit fly genetic
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mutation, which results in a notch in the fly wing. The binding of Notch by its
ligand, such as the membrane protein Delta from a neighboring cell, initiates the
pathway. Notch protein undergoes limited proteolysis by the proteinase named
gamma-secretase to yield the Notch intracellular domain (NICD), which mobilizes
from the cytoplasm to the nucleus to activate its specific transcription factor named
recombination signal binding protein for immunoglobulin kappa J (RBPJ), alias
CSL (after the mammalian centromere promoter binding factor 1, CBF-1, the fruit
fly suppressor of hairless mutation, and the nematode /ag-2 gene). Notch gene mu-
tations/polymorphisms have been found in cancer patients, and may be involved in
CSC chemoresistance (Crea et al. 2011).

The three signaling pathways initiated by Hedgehog, Wnt, and Notch are func-
tional in embryonic stem cell development and may be dysregulated in CSCs. Ac-
tivation of stem cell signaling pathways results in the expression of stemness genes
(pluripotency) in CSCs. Examples are Oct4 (octamer-binding transcription factor
4, a homeodomain transcription factor), Nanog (a homeobox protein, another tran-
scription factor), and Sox2 (sex determining region Y-box 2, a transcription factor
with a high mobility group domain) commonly found in aggressive, poorly differ-
entiated tumors (Ben-Porath et al. 2008).

Besides Hedgehog, Wnt, and Notch pathways, additional ones are PI3K and
NF«B (Alison et al. 2012). Phosphoinositide 3-kinase (PI3K) is linked to the mam-
malian target of rapamycin (mTOR) that relates to cellular energetics. The signaling
pathway that leads to the activation of nuclear factor kappa B (NFkB) is impor-
tant for cytokine expression and the inflammatory response. Activation of these
pathways results in the expression of stemness phenotype. The CSCs proliferate
and differentiate, and may become resistant to treatments by chemicals and radia-
tion. Molecules targeting these pathways, especially dietary phytochemicals, are
discussed with respect to the CSCs.

Niche and Metastasis

Normal stem cells/CSCs reside in specific places. All cells are influenced by their
surrounding environment, a local ecosystem. This concept is known as the stem cell
microenvironment, or the stem cell niche. Thus, for “normal stem cells and cancer
stem cells: the niche matters” (Li and Neaves 2006); and “location, location, loca-
tion: the cancer stem cell niche” (Sneddon and Werb 2007).

Each resident cell is affected by its niche. The best characterized normal stem cell
is the HSC. It behaves differently depending on the niche. In its bone niche, HSC
is quiescent in the bone marrow. In its vascular niche, HSC undergoes proliferation
and differentiation within the blood vessels. Similarly, the niche concept applies to
the CSCs. In addition to the primary tumor site, there are secondary tumor sites after
tumor metastasis. Each tumor site consists of a variety of cellular and extracellular
components. In addition to cancer cells and CSCs, other cell types include blood
and lymphatic endothelial cells, fibroblasts, adipocytes, and immune and inflamma-
tory cells. These cells may secrete molecules that can either promote or inhibit the
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tumor depending on changes in the microenvironment. The cytokines, chemotactic
factors, and extracellular matrix produced by the various cells affect the behavior of
cancer cells. Changes always occur within the tumor; the niche is dynamic. For ex-
ample, there are cancer-associated fibroblasts and tumor-infiltrating macrophages.
Separating the macrophage subsets as M1 and M2 with pro- and anti-inflammatory
attributes, respectively, M1 protects against and M2 facilitates tumor development.
Furthermore, the niche within the tumor is hypoxic. Hypoxia can be a determinant
for CSCs, as CSCs may express hypoxia-inducible factors (Fabian et al. 2013).

Biology of a tumor can only be understood by studying tumor cell heterogeneity
and the niche that is constructed during the course of carcinogenesis. Hence, the
situation becomes “the bed and the bugs: interactions between the tumor microen-
vironment and cancer stem cells” (Castaiio et al. 2012). There is interdependence
between the CSC and its niche. For example, paracrine signaling between carci-
noma cells and mesenchymal stem cells (MSCs) has been reported (Li et al. 2012;
Rasanen and Herlyn 2012). MSCs are recruited to the tumor niche. Carcinoma cells
produce the cytokine interleukin-1, which induces the MSCs to produce the lipid
molecule prostaglandin E, (PGE,). PGE, induces changes in carcinoma cells by the
activation of the beta-catenin signaling pathway and the formation of CSCs, via
a process known as epithelial-mesenchymal transition (EMT). This example sug-
gests that the niche allows CSC development.

Cells communicate within an epithelial cell layer. This comprises gap junctional
intercellular communication (GJIC), an essential feature for cellular homeostasis
(Trosko 2009). During EMT, epithelial cells undergo a transformation to become
more mesenchymal in nature, from the tightly packed, highly differentiated, and
immobile cells into the more loosely packed, less differentiated, and mobile cells. A
special group of transcription factors is activated, including Snail and Slug (named
after fruit fly zinc finger gene regulatory proteins). The adhesive protein E-cadherin
(E for epithelial) is downregulated, leading to more motile cells. The absence of
E-cadherin also allows for drug resistance, because its elevated expression has been
associated with high drug sensitivity. Within the tumor, activation of the EMT pro-
gram generates a reservoir of CSCs. EMT enhances cell survival by expressing genes
that aid cells in avoiding apoptosis (programmed cell death), anoikis (cell death due
to loss of cell adhesion), cellular senescence (the process of limited cell replication),
and even host immune response (Tiwaria et al. 2012; Scheel and Weinberg 2012).

In addition to the contribution to the expression of stem cell phenotypes, EMT
facilitates early stages of cancer cell invasion and metastasis. CSCs within the pri-
mary tumor leave this location to colonize distant sites; thus, metastasis is the major
cause of human cancer deaths. The CSCs may be genetically unstable; multiple
CSC clones may be present within the same tumor. The intrinsic genetic alterations
keep the cells in the EMT and in the stemness state (Baccelli and Trumpp 2012).
Once they have migrated to secondary sites, the cells may convert back to the epi-
thelial state. Mesenchymal—epithelial transition (MET) can occur, but this reverse
process is less well characterized. Nonetheless, there is phenotypic plasticity be-
tween the EMT-MET processes (Brabletz 2012).
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Cancer, Cancer Stem Cells, and Mitochondria

Are there interactions among cancer, CSCs, and mitochondria? Almost all mam-
malian cells have mitochondria as their subcellular organelles, except mature eryth-
rocytes. Mitochondria are essential for cell metabolism. In tumor cells, their mi-
tochondria resist apoptosis-associated permeabilization. Tumor cell mitochondria
also contribute to altered cell metabolism by stimulating cell growth and anabolic
metabolism. Tumor cell metabolism can become a target for cancer treatment (Kro-
emer and Pouyssegur 2008).

An early discovery on tumor metabolism became known as the Warburg effect,
after Otto Warburg, who reported the increased glycolysis in leukemic and solid
tumor cells. The dominance of this work may have delayed investigations on can-
cer and mitochondria for some time. However, recent studies on mitochondrial en-
zymes and metabolism have shown that they play a significant pathogenic role in
cancer (Scatena 2012).

When the cell experiences stress, its mitochondria respond. The rapid mito-
chondrial fission and fusion depend on GTPases, notably dynamin-related pro-
tein-1 (Drp-1) promoting fission and mitofusin-2 (Mfn-2) promoting fusion. The
processes lead to elimination of damage (via fission) or compensation of damage
(via fusion). Defective mitochondria are destroyed via autophagy (known as mi-
tophagy). If all else fails, the stressed cell undergoes apoptosis (Youle and van der
Bliek 2012).

That mitochondria fission is important for cancer has been demonstrated in lung
cancer. Using human lung adenocarcinoma cell line A549 xenografts in nude mice,
Mifn-2 gene therapy (with adenovirus vector) leads to smaller tumors as compared
to control cancer cells. Similar tumor size reduction is also seen with the pharma-
cological approach using Mdiv-1, a selective inhibitor of mitochondrial division in
yeasts and mammalian cells. Thus, impaired fusion and enhanced fission contribute
to the proliferation/apoptosis imbalance in cancer (Rehman et al. 2012). Targeting
cancer cell mitochondria has generated the development of a group of compounds
known as mitocans (mitochondrially targeted anticancer drugs). One such example
is alpha-tocopheryl succinate, an analogue of vitamin E (Neuzil et al. 2007).

Thus far, metabolic differences between normal and cancer cell mitochondria
have been shown, and the latter may be a therapeutic target of cancer. Is there a
relationship to CSCs? Breast CSCs, derived from the human breast cancer cell line
MCF7, is susceptible to mitochondrially targeted vitamin E succinate (named Mi-
toVES) in vitro. Additionally, it has been proposed that the CSC marker CD133
may select the stem cells by both evading host immune response and by overcom-
ing stress-induced apoptosis via a mitochondrial connection (Zobalova et al. 2011).
In a study using the CD44"/CD24 "% breast CSCs from MCF7 as xenografts to
NOD/SCID mice, the mitochondrial targeting liposome carrying daunorubicin and
quinacrine inhibits tumor development (Zhang et al. 2012a). In summary, CSCs can
be targeted by mitochondrial drugs.
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Chemoprevention and Phytochemicals

Occupational cancer was first identified by Percivall Pott in 1775: young chimney
sweeps later got scrotal cancer because they worked naked to avoid dirtying their
clothes. The remedy was to wear clothes during chimney work and to clean and
bathe afterwards. Such measures were followed in Holland but not in England, re-
sulting in individuals with less and more scrotal cancers, respectively. Prevention of
cancer became a topic of interest; concepts of chemoprophylaxis and chemoprotec-
tion began being proposed. In 1976, Michael Sporn introduced the word “chemo-
prevention” while investigating vitamin A and its analogues, and this became the
commonly accepted term (Sporn and Suh 2000; Lippman and Hawk 2009). Che-
moprevention refers to the use of agents to inhibit, reverse, or delay tumorigenesis.

Fruit and vegetable intake has been part of the human diet. Being omnivorous,
humans also consume various meats and other foods. Bioactive components from
plants are nonnutrient dietary phytochemicals that may modulate gene expression
and signal transduction pathways (Manson 2003; Surh 2003; Tan et al. 2011). Phy-
tochemicals have been isolated and characterized from fruits such as grapes and ap-
ples, vegetables such as broccoli and onions, spices such as turmeric, and beverages
such as green tea and red wine, as well as numerous other sources. Collectively,
these compounds became known as chemopreventive agents. As chemopreventive
agents, phytochemicals have been shown to interact with multiple cellular targets
(Aggarwal and Shishodia 2006a; Lee et al. 2011) and even with the epigenome
(Vanden Berghe 2012). With respect to chemoprevention, phytochemicals target
inflammation (Murakami and Ohigashi 2007; Kim et al. 2009). This is important
because inflammation may initiate cancer, which is the loss of cell cycle control
(Meeran and Katiyar 2008). In addition, the chemopreventive phytochemicals are
applicable to cancer therapy, because molecular mechanisms may be common to
both chemoprevention and cancer therapy. Phytochemicals may modulate cancer
development and even metastasis (Pan and Ho 2008; Gupta et al. 2010).

Among the diverse phytochemicals implicated in the inhibition of carcinogene-
sis, one major group comprises polyphenols. These compounds are virtually ubiqui-
tous in plant materials and may occur at very high levels. Mostly synthesized from
phenylalanine, plant phenolics serve as structural polymer components and are also
responsible for ultraviolet light screening. They have antioxidant activity and act
as signaling molecules. The most important role of plant phenolics may be in plant
defense against pathogens and herbivore predators. With the discovery of health
benefits of plant polyphenols, it has been proposed to optimize the phenolic con-
tent of the diet so as to obtain favorable consequences for the general health of the
population (Parr and Bolwell 2000). Within the plant phenolics, one group of im-
portance for chemoprevention is known as the flavonoids (Yao et al. 2011). Another
group has been classified as phytoestrogens (Moutsatsou 2007). Phytochemical ac-
tion on CSCs is discussed in the following sections. CSCs are known to be resistant
to chemotherapy. Previously we reviewed “overcoming cancer drug resistance by
phytochemicals” (Chan and Fong 2009). Relevant information on phytochemicals
discussed earlier has been updated and incorporated in this chapter.
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Dietary Phytochemicals Targeting Cancer Stem Cells

Dietary phytochemicals that target CSCs are timely research areas, as seen in the
abundance of publications and reviews on the topic. Before covering the major
phytochemicals involved, we discuss recent reviews on this subject.

Aptly the very first review we found has the title: “Targeting Cancer Stem Cells
with Phytochemicals” (Kawasaki et al. 2008). Stem cell pathways are presented,
as well as a list of clinical trials to evaluate various phytochemicals. A review on
CSCs concluded that “dietary phytochemicals are natural products found in our diet
and can be used to target cancer stem cells” (Subramaniam et al. 2010). Another
review suggested the tissue-specific stem cells as a target for chemoprevention and
concludes that “known chemoprevention agents including sulforaphane, vitamin
D,, curcumin, quercetin, genistein, vitamin E, and EGCG may attribute their suc-
cess at least in part to regulating self-renewal and differentiation of tissue-specific
stem cells” (Maund and Cramer 2011). In a chapter titled “Towards New Anticancer
Strategies by Targeting Cancer Stem Cells with Phytochemical Compounds” (Tan-
veer et al. 2011), a suggestion was to target Oct4 function in CSCs by phytochemi-
cals. In a review titled “Implications of Cancer Stem Cell Theory for Cancer Che-
moprevention by Natural Dietary Compounds” (Li et al. 2011b), stem cell pathways
and phytochemicals were discussed; the authors concluded that:

Naturally-occurring dietary compounds are advantageous in several aspects as chemopre-
vention agents: (1) they are present in commonly consumed food, which is readily available
to most people in daily life; (2) they usually have very low or no toxicity, in contrast to most
chemotherapy drugs; (3) many of these compounds have shown potential as an adjunct
to chemotherapy drugs in some clinical trials. Although the reports were very limited for
dietary compounds to inhibit CSCs, many of them have been shown to be involved in
modulation of CSC self-renewal pathways.

The same conclusions were reiterated in their contributed book chapter (Li et al.
2011a).

In addition to dietary phytochemicals, CSCs can be targeted by phytochemi-
cal analogues (as reviewed by Dandawate et al. 2013), other natural products
(Efferth 2012), and even Chinese herbs (Weber et al. 2012). To end this section, an
appropriate quote is from a review titled “Cancer Stem Cells: Potential Target for
Bioactive Food Components” (Kim et al. 2012): “Unquestionably, a diet-induced
shift from deregulation to regulation in cancer stem cells could have profound influ-
ence on cancer relapses and therefore is of immense societal importance.”

Curcumin

Health Effects

Curcumin is a diferuloylmethane from the Indian spice turmeric. (See Fig. 1 for
the chemical structure of curcumin.) It is responsible for the yellow color of curry
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powder. Turmeric is produced from the rhizome of the plant Curcuma longa. In
addition to its use as a spice, turmeric has multiple applications in traditional Asian
Indian medicine, ranging from treating insect bites to wound healing. Multiple
health benefits have been associated with curcumin and turmeric, as summarized
in a monograph (Aggarwal et al. 2007) and many reviews (Strimpakos and Sharma
2008; Goel et al. 2008). Multiple and diverse bioactivities have been attributed
to curcumin, including cancer chemopreventive and anti-inflammatory activities
(Bisht et al. 2010). Curcumin acts on many cellular targets (Ravindran et al. 2009).
These include enzymes such as cyclooxygenase, lipoxygenase, and inducible nitric
oxide synthase (iNOS); transcription factors such as NF«xB and activating protein-1
(AP1); cytokines such as tumor necrosis factor (TNF); and many gene products
linked with cell survival, proliferation, invasion, and angiogenesis. For example,
we found that curcumin inhibits NFkB and TNF in a human monocytic cell line
Mono Mac 6. With the endotoxin-induced murine sepsis model, curcumin ingestion
by gavage induces bioactivity as shown by downregulating iNOS gene expression
in the murine liver (Chan 1995; Chan et al. 1998). Synergistic effects between cur-
cumin and chemotherapeutic drugs have been demonstrated: we have shown that
curcumin enhances the cisplatin-mediated killing of the human ovarian cancer cell
lines CAOV3 and SKOV3 in vitro (Chan et al. 2003; Chan and Fong 2007).
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We end this section with a note on curcumin and patentability. In March 1995
the USPTO awarded the patent “Use of turmeric in wound healing” (US Patent
5,401,504) to Suman Das and Hari Har Cohly, with the University of Mississippi
as assignee. The patent was withdrawn in August 1997, after protest from India’s
Council of Scientific and Industrial Research (CSIR) and demonstration of the lack of
novelty criterion required for patenting, inasmuch as turmeric has been used for cen-
turies by the Indian population for wound healing (Jayaraman 1997). Whereas CSCs
are drug- and radiation-resistant, curcumin is a chemosensitizer and radiosensitizer
for tumors (Goel and Aggarwal 2010). However, we should also point out the “dark
side of curcumin” (Burgos-Mordn et al. 2010), as we note the potential of turmeric
consumption in reducing the risk of cancer (Hutchins-Wolfbrandt and Mistry 2011).

Effects on Cancer Stem Cells

Effects of curcumin on CSCs have been shown. Using SP as selection for CSCs in
the rat glioma cell line C6 in vitro, we found that curcumin (5 uM daily for 10 days
via medium change) reduced SP, likely via the inhibition of drug transporter (Fong
et al. 2010). Curcumin targets human glioblastoma CSCs in vitro (2 uM) and in
vivo, the latter via intracranial implantation of human CSCs with intraperitoneal
injections of curcumin (300 mg/kg every 3 days for 5 weeks); the investigators pro-
posed the mechanism as induction of autophagy and promotion of differentiation
(Zhuang et al. 2012). Curcumin targets CSCs of human esophageal squamous carci-
noma cell lines in vitro (40—60 uM), showing a decrease in aldehyde dehydrogenase
(ALDH) activity as well as CD44 and NFkB expression (Almanaa et al. 2012).

Curcumin (30-60 pM) inhibits spheroid culture of human esophageal CSCs
in vitro via the Notch signaling pathway (Subramaniam et al. 2012). Both human
breast CSCs (from cell lines MCF7 and SUM159) and normal breast stem cells
are targeted by curcumin (5—10 uM) together with another phytochemical piperine
(from black pepper, 5-10 uM). There was a decrease in spheroid culture numbers as
well as a decrease in ALDH activity (Kakarala et al. 2010). Both normal and CSCs
were affected, therefore as a potential phytochemical for cancer therapy, its effect
on normal stem cells must be clearly differentiated from CSCs.

Curcumin can complement other drugs. In vitro, cotreatment of curcumin
(20 uM) and FOLFOX/FUOX (50 uM fluorouracil and 1.12 uM oxaliplatin) for
5 days inhibited the spheroid cultures of human colon CSCs from the cell lines
HCT116 and HT29 (Yu et al. 2009). Induction of apoptosis in human brain tumor
stem cells (commercially available from Celprogen) in vitro has been shown with
cotreatment of curcumin (20 uM) and paclitaxel (10 nM) (Hossain et al. 2012).
These results show the feasibility of combining conventional drugs with phyto-
chemicals to target CSCs in clinical cancer.

However, the solubility of curcumin is a concern. To overcome this hurdle,
various carriers have been developed. A polymeric nanoparticle formulation of
curcumin, nanocurcumin trademark as NanoCurc (5-20 uM), induced apop-
tosis and reduced the CD133" stem cells in malignant brain tumors in vitro
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(Lim et al. 2011). A hyaluronic acid (HA)-based nanogel-curcumin conjugate, us-
ing cholesteryl-HA, had 8 times higher cytotoxicity than curcumin alone towards
human pancreatic CSCs expressing CD44 (Wei et al. 2013). The authors also
reported similar effects with nanogel-drug conjugates of two other compounds
targeting CSCs, namely etoposide and salinomycin. A novel micelle formulation
of curcumin, composed of stearic acid-g-chitosan oligosaccharide (CSO-SA) as
a polymeric, biocompatible, and biodegradable drug carrier, inhibited CD44"/
CD24" colorectal CSCs in vitro and in vivo (nude mice xenografts), the latter at
a dose of 2 mg/kg daily for 14 days in a 15-day experiment (Wang et al. 2012a).
Another approach for curcumin solubility is to synthesize analogues. Difluori-
nated-curcumin (CDF) inhibited spheroid cultures of human colon CSCs from
the cell line HCT116 (at 2-8 uM) in vitro (Kanwar et al. 2011). CDF (2 uM)
plus FOLFOX/FUOX (100 uM fluorouracil and 2.5 uM oxaliplatin) inhibited the
growth of the HT-29 colorectal cancer cell line CSCs in vitro via downregula-
tion of microRNA-21 (miR-21) and promotion of differentiation (Yu et al. 2013).
GO-Y030, a monoketone analogue of curcumin (Sato et al. 2011), inhibited hu-
man colorectal CSCs from the cell lines HCT116 and SW480 in vitro (induced
apoptosis at 0.5-2.5 uM) and in vivo (NOD/SCID mice xenografts), the latter at
a dose of 50 mg/kg daily for 14 days in a 29-day experiment (Lin et al. 2011).
These results show that human CSCs can be targeted by curcumin and analogues
in vivo using mouse models.

Resveratrol

Health Effects

Resveratrol is a stilbene (3,4',5-tri-hydroxy-trans-stilbene to be exact) from red wine,
grapes, peanuts, and pine nuts. (See Fig. | for the chemical structure of resveratrol.)
Red wine is made from whole grapes (including grape skin) from the fruits of the
grape vine plant Vitis venifera and related species. Resveratrol is present in red wine
because the molecule is associated with the skin portions of the fruit to fight against
fungal infections of the plant. It is an example of the phytoalexins, compounds pro-
duced by plants against pathogens. Similar to plant fungal pathogens, we demon-
strated it is active against human dermal fungal pathogens: resveratrol may be useful
for treating athlete’s foot (Chan 2002). Health benefits associated with resveratrol
are summarized in a monograph (Aggarwal and Shishodia 2006b) and many reviews
(Athar et al. 2007; Gescher 2008; Harikumar and Aggarwal 2008; Kundu and Surh
2008; Saiko et al. 2008). It is “one molecule, many targets” (Pirola and Frdjdo 2008).
Resveratrol’s recent claim to fame involved its action as an activator of sirtuin deacet-
ylases, leading to lifespan extension from organisms as diverse as yeasts, nematodes,
fruit flies, and fish (Baur and Sinclair 2006). Resveratrol’s prior claim to fame in-
volved a phenomenon known as the “French Paradox” (Opie and Lecour 2007), refer-
ring to the observation that the French benefit from a relatively low risk of developing
cardiovascular disease despite a diet that is high in saturated fat.
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Resveratrol improves general health in mice and seems to delay their ageing
parameters (Barger et al. 2008; Pearson et al. 2008). In this sense, it mimics a phe-
nomenon known as caloric restriction, a method that retards aspects of the age-
ing process in mammals (Maxmen 2012). Indeed, it has anti-inflammatory activity
(Bisht et al. 2010) and shows health benefits, especially cardioprotection and cancer
chemoprevention. With respect to the French Paradox, it is believed resveratrol and
alcohol in red wine may be part of the reason. We have shown a synergistic effect
between resveratrol and alcohol in the inhibition of iNOS (Chan et al. 2000). Mod-
erate consumption of red wine may be beneficial to human health.

We end this section with a commercial note. In April 2008, the FDA granted
Orphan Drug Status to resveratrol, for the treatment of MELAS syndrome: mito-
chondrial encephalomyopathy with lactic acidosis and strokelike episodes, caused
by mitochondrial DNA mutations. The sponsor was Sirtris Pharmaceuticals, a com-
pany in Massachusetts with expertise in resveratrol and its analogues (SRT501 was
their resveratrol formulation). Orphan drug designation provides a company with
seven years of marketing exclusivity. In late April 2008, Sirtris was purchased by
GlaxoSmithKline for $ 720 million. In December 2010, Sirtris announced that the
clinical trial of SRT501 was halted but studies with other synthetic resveratrol-
mimicking drugs would continue. Currently, the role of resveratrol as an antiageing
molecule seems to be in doubt (Wade 2011). However, we must emphasize that
resveratrol possesses cancer chemopreventive properties. The difficulty seems to be
deciding on dietary-relevant doses (Scott et al. 2012).

Effects on Cancer Stem Cells

Effects of resveratrol on CSCs have been shown. These include CSCs from acute
myeloid leukemia (AML), brain, breast, head and neck, and pancreatic cancer. In-
asmuch as resveratrol has multiple cellular targets, several of the cellular targets
in CSCs have been revealed. In AML patients there is an increase in the cytokine
interleukin 6 (IL-6) in their plasma. IL-6 induced activation of the Sonic Hedgehog
signaling pathway has been shown in the human HL-60 cell line, and resveratrol
(25 uM) inhibits this activation and decreases cell viability (Su et al. 2013). In ma-
lignant brain tumor medulloblastoma CSCs that were grown in spheroid cultures,
resveratrol (100 uM) inhibited proliferation in vitro and enhanced radiosensitivity
(Lu et al. 2009). In primary central nervous system atypical teratoid/rhabdoid
tumors, resveratrol (150-200 uM) induced apoptosis of the isolated CD133"CSCs
in vitro and also enhanced radiosensitivity. The in vitro resveratrol-treated and ir-
radiated CD133"CSCs resulted in better survival of SCID mice in a 14-week xe-
nograft experiment (Kao et al. 2009). In glioblastoma multiforma, comparison of
CD133" and CD133— cells has shown the involvement of signal transducer and acti-
vator of transcription 3 (STAT3). Resveratrol acts via inhibiting the STAT3 cytokine
signaling pathway. CSCs treated in vitro with resveratrol (200 uM) and irradiation
resulted in better survival of SCID mice; this effect of resveratrol can be mimicked
with small hairpin (sh) RNA of STAT3 (Yang et al. 2012a).
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Moving from the central nervous system to other organs, breast CSCs have been tar-
geted by resveratrol. Using CD44*/CD24~ CSCs isolated from cell lines MCF7, MDA-
MB231, and 231LM, resveratrol (50—100 uM) inhibited spheroid cultures by inducing
apoptosis. The mechanism involved the action of resveratrol on lipid synthesis, by its
downregulation of fatty acid synthase (FAS). Luciferase-expressing CSCs from MDA-
MB231 showed smaller-sized tumors in nude mice xenografts with resveratrol adminis-
tration (22.4 mg/kg via oral gavage or intraperitoneal injection) every 2 days in a 28-day
experiment (Pandey et al. 2011). Similar results have been reported by the same inves-
tigators using CSCs isolated from another human breast cancer cell line, MCF10DCIS.
com (Pandey et al. 2012). In human head and neck cancer, resveratrol (25-100 M)
eliminates aldehyde dehydrogenase (ALDH) activity, spheroid formation, and epithelial
mesenchymal transition (EMT) in vitro, as well as reduces tumor xenograft volume and
weight in vivo in immunodeficient mice (40 mg/kg daily for 20 days) (Hu et al. 2012).
Human pancreatic CD133%/CD44*/CD24*CSCs formed spheroid cultures and ex-
pressed stemness genes such as Oct4, Nanog, and Sox2. These activities were inhibited
by resveratrol (10-30 uM) in vitro. In a special transgenic mouse model, KRASG!?P: the
mice were designed to develop pancreatic ductal adenocarcinoma. The increase in size
of the pancreas was inhibited by resveratrol (40 mg/kg) administered 5 days a week for
10 months. In addition to inhibiting the stemness genes, alias pluripotency maintaining
factors, resveratrol inhibited EMT (Shankar et al. 2011). In summary, resveratrol aims
at different cellular targets of CSCs, depending on the cancer type.

Epigallocatechin Gallate

Health Effects

EGCG is a polyphenol from green tea. (See Fig. 1 for the chemical structure of
EGCQG.) Tea is made from leaves of the plant Camellia sinensis, originally from
China. EGCG is the major green tea polyphenol, accounting for 30-40% dry weight
of the water-extractable material of green tea. It is converted to dimers and polymers
during black tea production. Tea is one of the most popular beverages consumed in
the world. Multiple health benefits have been associated with EGCG and tea con-
sumption (Zaveri 2006; Yang et al. 2007; Khan and Mukhtar 2008). These include
cancer chemoprevention, as well as the reduction of atherosclerosis, hypercholes-
terolemia, Alzheimer’s and other ageing-related diseases. EGCG targets multiple
signaling pathways. For example, we reported EGCG inhibition of iNOS both at
the gene expression level and at the enzyme activity level (Chan et al. 1997). EGCG
acts synergistically with cisplatin to kill ovarian cancer cells. Even in the cisplatin-
resistant cell line C200, enhanced cell death by cisplatin was seen in the presence of
EGCQG in cell culture (Chan et al. 2006).

We end this section with a commercial note. In October 2006, the FDA approved
an extract of green tea as a prescription drug for topical treatment of genital warts
(Gross et al. 2008). The extract is Polyphenon E (Veregen) ointment (from a German
biotech company MediGene and its marketing partner Bradley Pharmaceuticals,
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Inc.). This was the first prescription botanical (herbal) drug approved by the FDA
both under its current regulatory policy for botanical products as well as the FDA’s
new Drug Application Process (Blumenthal 2007).

Effects on Cancer Stem Cells

Effects of EGCG on CSCs have been shown. Actually, early reports used normal
stem cells. Spheroid cultures for CSCs followed the initial work with normal neuro-
spheres. In rat neurospheres, EGCG (10-50 pg/ml) and related compounds inhibited
neurosphere adhesion and migration (Chen et al. 2003). Extending to CSC spheroid
cultures, epigallocatechin (EGCG without the gallate moiety) and polyphenon 60
(characterized green tea extract, 10 uM) prevented cell shedding from mouse mam-
mary cancer mammospheres in vitro. The mechanisms proposed are decreased ROS
production and downregulation of matrix metalloproteinase-9 (Glinther et al. 2007).
EGCG (50 uM) inhibited spheroid cultures of human neuroblastoma BE(2)-C cells
in vitro. These CSCs exhibit ALDH activity as well as the expression of stemness
genes such as Oct4 and Nanog (Nishimura et al. 2012).

Both EGCG and its analogues act on CSCs. Several chemically synthesized ana-
logues (5-40 uM) target human breast CSCs cultured as mammospheres from the
cell line MDA-MB231. The mechanism has been attributed to activation of the
AMP-activated protein kinase (AMPK) pathway, because a known activator of this
pathway, metformin (5-10 mM), behaves in the same way (Chen et al. 2012c¢).

Synergistic effects of EGCG and another phytochemical, quercetin, on CSCs
have been investigated. In human pancreatic CSCs, EGCG (20—-60 uM) inhibited
spheroid cultures, EMT, and the Hedgehog pathway in vitro. This activity was syn-
ergistic with quercetin (20 uM), as shown by increased apoptosis (Tang et al. 2012).
In another publication, the same investigators also reported similar effects on hu-
man prostate CSCs (Tang et al. 2010). In summary, EGCG can act on CSCs either
alone or in concert with another phytochemical.

Genistein

Health Effects

Genistein is an isoflavone (4,5,7-trihydroxyisoflavone to be exact) from soybeans.
(See Fig. | for the chemical structure of genistein.) Soybeans are seeds from the
legume plant Glycine max, originally from China, although China currently im-
ports soybeans from the United States. It is believed that the isoflavone in soy-rich
foods contributes to lower rates of prostate and breast cancers observed in China
and Japan as compared to Western countries. Genistein is a molecule with many
cellular targets, including inhibition of the NFxB pathway, modulation of the cell
cycle, and induction of apoptosis (Banerjee et al. 2008). In addition, genistein has
been classified as a phytoestrogen. However, it is lipid soluble and exhibits low oral
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bioavailability in pharmacokinetics studies (Yang et al. 2012b). Furthermore, there
is a “dark side” to “the whole soy story” (Daniel 2005). Soybeans contain protein-
ase inhibitors that can be “toxic” to digestion. Also, people may develop allergic
reactions to soy.

We end this section with an interesting demonstration of the transgenerational
effect of genistein. The agouti mouse model, as noted by color change in the fur, is
useful as an epigenetic biosensor for nutritional and environmental alterations on
the fetal genome (Dolinoy 2008). Maternal dietary supplementation with genistein
(250 mg/kg in the diet) led to DNA hypermethylation in the embryo and the meth-
ylation state was maintained until adulthood. Thus, phytochemicals such as genis-
tein modify the epigenome, and the effect starts early in embryogenesis (Dolinoy
et al. 2000).

Effects on Cancer Stem Cells

Effects of genistein on CSCs have been shown. Genistein was reported as a protein
tyrosine kinase inhibitor. In an in vitro study on chronic myelogenic leukemia in 1996,
the stem and progenitor cells were more sensitive to genistein (200 WM) than the nor-
mal progenitor cells (Carlo-Stella et al. 1966a, 1996b). In human prostate cancer, the
CSCs from the cell line PC3 had been targeted by genistein (15 uM) in vitro, which
aided in the death of these CSCs by docetaxel. In this work, the CSCs have been named
“the Achilles’ heel of cancer” (McCubrey et al. 2011). Another study on prostate cancer
extended its focus to in vivo xenografts, and discovered the cellular target as inhibiting
the Hedgehog pathway (Zhang et al. 2012b). Genistein (30 M) inhibited spheroid
cultures of prostate CSCs from the cell lines 22RV1 and DU145, and inhibited tu-
mor development in vivo in nude mice (twice weekly of genistein and/or docetaxel
at 10 mg/kg) in a 28-day experiment. Although the CSCs were resistant to docetaxel,
genistein plus docetaxel decreased tumor volume more than genistein alone. Another
interesting report involved the feeding of genistein to mice, “at concentrations present
in soy protein isolate (250 mg/kg food;” Montales et al. 2012). Sera from the genistein-
fed animals were used to treat human breast CSCs from the cell lines MCF7 and MDA-
MB231. When 1-5% of these sera was added to the medium, spheroid formation was
inhibited, suggesting “factors found in sera of mice consuming” genistein were active
against CSCs. Molecular details of the factors were not characterized. However, this
last investigation is interesting with respect to chemoprevention: genistein in the diet
leads to the animals having factors in the circulation that inhibit CSCs.

Sulforaphane

Health Effects

Sulforaphane, alias 1-isothiocyanato-4-methylsulfinylbutane, is an isothiocya-
nate found in brassicaceous vegetables. (See Fig. | for the chemical structure of
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sulforaphane.) Broccoli, cabbage, cauliflower, Brussel sprouts, and kale are cul-
tivars of the plant known as Brassica oleracea. These common vegetables belong
to the plant order Brassicales. An older name is Cruciferae; they are also named
crucifers or the cabbage family. The wild cabbage originally came from Europe.
Broccoli and related vegetables contain many phytochemicals (Latte et al. 2011).
In addition to sulforaphane, there are other compounds, such as indole-3-carbinol
(I3C) and quercetin. Sulforaphane is released from the plant cell wall by activity
of the enzyme myrosinase via cooking or chewing. The compound has multiple
cellular targets: as an antioxidant, an activator of phase II detoxification enzymes,
an anti-inflammatory agent, an inducer of apoptosis, and other roles (James et al.
2012). Broccoli has been used, as an example, for a “nutritional genomics” ap-
proach “in conveying to the consumer” that “the dietary regime being marketed will
positively affect their health” (Ferguson and Schlothauer 2012).

We end this section with a quote on broccoli from a former US president (Dowd
1990). In March 1990, President George H. W. Bush, in response to queries about a
broccoli ban he had imposed upon Air Force One, said: “I do not like broccoli. And
I haven’t liked it since I was a little kid and my mother made me eat it. And I'm
President of the United States, and I’m not going to eat any more broccoli!” In fact,
the president might be a “supertaster.” People who find Brussel sprouts unbearably
bitter carry a variant of the bitter taste receptor (T2R38) which results in their en-
hanced innate immunity (Lee et al. 2012a).

Effects on Cancer Stem Cells

Effects of sulforaphane on CSCs have been shown. Sulforaphane has been shown
to inhibit human breast CSCs from the cell lines MCF7 and SUM159 in vitro and
in vivo (Li et al. 2010). Spheroid cultures were inhibited (10-20 uM), as well as
ALDH expression. In NOD/SCID mouse xenografts, two successive generations
elegantly showed a decrease in tumor volume and an increase in survival (50 mg/kg
daily for 14 days) in a 35-day experiment. Sulforaphane inhibited spheroid cultures
in human pancreatic CSCs from the cell line MIA-PaCa2 in vitro (20 uM) and in
vivo (Rausch et al. 2010). Sulforaphane inhibits renewal of pancreatic cancer stem
cells in vitro (20 uM) by inhibiting the Sonic Hedgehog signaling pathway (Rodova
et al. 2012). In nude mice xenograft experiments, sulforaphane (60 mg/kg) or co-
treatment with the multikinase inhibitor sorafenib (3 mg/kg), daily for 3 days in a
5-day experiment, reduced tumor size via inhibition of the NFkB pathway (Rausch
et al. 2010). The same research group also extended their report on pancreatic CSCs
to include results on prostate CSCs derived from the cell line DU145 (Kallifatidis
et al. 2011). Sulforaphane was added in vitro to taxol, cisplatin, gemcitabine, fluro-
uracil, or doxorubicin. Targeting was specific for CSCs, because normal cells (pri-
mary human fibroblasts and umbilical vein endothelial cells) were not affected. In
vivo nude mice xenografts for pancreatic CSCs used sulforaphane in combination
with gemcitabine (3 mg/kg consequently for 3 days; treatment started after tumor
development was observed, in a 40-day experiment). In a different experiment, the
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pancreatic CSCs had been pretreated with the sulforaphane—gemcitabine combina-
tion before xenograft. Both protocols resulted in decreased tumor volume (Kal-
lifatidis et al. 2011). In fact, sulforaphane alone could reduce human pancreatic
CSC growth in immunodeficient mice, through inhibiton of the Sonic Hedgehog
signaling pathway (20 mg/kg once a day for 5 days in a 6-week experiment; Li
et al. 2013). In addition to solid tumors, sulforaphane enhancement of drug efficacy
has been reported for leukemia. The CD34" chronic myeloid leukemia CSCs pre-
viously resistant to imatinib were killed by a combination of imatinib (0.1-1 uM)
and sulforaphane (20-30 uM) in vitro, via activation of the Wnt pathway and ROS
induction (Lin et al. 2012).

Other Dietary Phytochemicals

Many phytochemicals may serve as chemopreventive agents. In some cases, their
activities on CSCs have been investigated. In addition to sulforaphane, another im-
portant phytochemical found in the brassicaceous vegetables is indole-3-carbinol
(I3C). I3C is a derivative of glucobrassicin, a secondary plant metabolite. I3C can
be further metabolized into a dimer (3,3”-diindolmethane, DIM). 13C, DIM, and
related synthetic analogues are potential agents of chemoprevention and cancer
therapy (Weng et al. 2008; Safe et al. 2008). DIM inhibited spheroid culture forma-
tion, for CSCs from human and mouse cancer cell lines (the human non-small—cell
lung carcinoma H460 and the murine melanoma B16/F10) in vitro. DIM-treated
melanoma CSCs showed smaller tumor volume in vivo (Semov et al. 2012).

Quercetin is a flavonol found in common fruits and vegetables such as apples,
broccoli, and onions. It has antioxidant activity and has been reviewed as safe in vivo,
although mutagenic in vitro (Harwood et al. 2007; Boots et al. 2008; Gibellini et al.
2011). We reported that quercetin sensitized the killing by cisplatin of the human
ovarian cancer cell line SKOV3 (Chan et al. 2003). Quercetin~-EGCG’s synergistic
activity on human pancreatic CSCs has been discussed (Tang et al. 2011). In fact,
quercetin by itself inhibited spheroid cultures of pancreatic CSCs, and it exhibited a
synergistic effect with sulforaphane. In nude mice xenografts, quercetin and sulfora-
phane decreased tumor size (Zhou et al. 2010). Quercetin also targets the heat shock
protein Hsp27. In human breast CSCs, inhibition of spheroid cultures by the Hsp90
inhibitor geldanamycin was enhanced by quercetin (Lee et al. 2012b). In human lung
CSCs from the cell line A549 as xenografts to NOD/SCID mice, tumor volume was
decreased by treatment with quercetin, cisplatin, and gemcitabine (Hsu et al. 2011a).

Cucurbitacin I, a cell-permeable triterpenoid compound, is found in members of
the Cucurbitacea family (cucumber, squash, melons, pumpkins) as well as brassi-
caceous vegetables. Investigators from Taiwan showed its effect on CD44*/ALDH"
CSCs from head and neck squamous cell carcinoma (Chen et al. 2010), as well as
CD133" CSCs from non-small—cell lung cancer (Hsu et al. 2011b), thyroid cancer
(Tseng et al. 2012), and pediatric brain cancer medulloblastoma (Chang et al. 2012).
Its cellular target is the STAT3 cytokine pathway.

Lupeol is another triterpene found in fruits and vegetables. A research group in
Hong Kong demonstrated its effect on CSCs from liver cancer (Lee et al. 2011). Its
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cellular target is the phosphatase and tensin homologue (PTEN)-protein kinase B
(Akt)-ABCG?2 pathway.

Extending from purified phytochemicals to plant extracts, a blueberry preparation
fed to mice has been shown to be effective towards CSCs. Sera from blueberry-fed
animals inhibited spheroid cultures of human breast CSCs (Montales et al. 2012). A
pomegranate extract also inhibited mouse mammary CSCs in vitro (Dai et al. 2010)

In summary, individual phytochemicals and plant extracts from fruits, vegeta-
bles, spices, and beverages may be harnessed to inhibit CSCs, but their cellular
targets may vary depending on the cancer type. A list of probable molecular targets
for phytochemicals in CSCs can be found in Table. 2.

Other Molecules Targeting Cancer Stem Cells

In addition to dietary phytochemicals, many other molecules target CSCs. We start
with compounds isolated from plant species. Parthenolide (PTL), from the feverfew
plant (7Tanacetum parthenium), is commonly used in herbal medicine. PTL targets
human acute myelogenous leukemia stem cells (Guzman et al. 2005). As an inhibi-
tor of NFxB, it inhibited human breast CSCs from the cell line MCF7 (Zhou et al.
2008). Screening in silico for compounds with similar effects on gene expression as
PTL has revealed others, including celastrol, found in thunder god vine (Tripteryg-
ium wilfordii) and used in Chinese herbal medicine (Hassane et al. 2008). Another
compound, berberine, from plants such as goldenseal (Hydrastis canadensis) and
the Chinese goldthread (Coptis chinensis), also used in herbal medicine, targets
MCF7 SP cells (Kim et al. 2008). MCF7 SP cells were also inhibited by the alka-
loid oxymatrine, from the Chinese herbal medical plant Sophora flavescens (Zhang
et al. 2011). Eriocalyxin, an analogue of the natural diterpene from the Chinese
herbal medical plant Isodon eriocalyx, inhibited human ovarian CSCs via NFxB
inhibition (Leizer et al. 2011). Cyclopamine from corn lily (Veratrum californicum)
targets glioblastoma CSCs by inhibiting the Hedgehog pathway (Bar et al. 2007).
However, it should be noted that cyclopamine is a teratogen that causes holopros-
encephaly (cyclopia). Silybin, alias silibinin, is a flavonoid compound from the
herbal medical plant milk thistle (Silybum marianum). The phytochemical targets
colorectal CSCs (Wang et al. 2012b). Butein is a chalconoid compound from the
Chinese lacquer tree (Toxicodendron vernicifluum) with aromatase-inhibiting ef-
fects. It targets human breast CSCs (Cioce et al. 2010). Gossypol is a polyphenol
from the cotton plant (genus Gossypium) and at one time had been tested as a male
contraceptive. It targets prostate CSCs via activation of the p53 gene regulatory
protein (Volate et al. 2010). From the above studies, it is obvious that many phyto-
chemicals can target CSCs of different cancers.

In addition to plants, molecules targeting CSCs have been found in other sourc-
es. 3-O-methylfunicone (OMF), a secondary metabolite of the soil fungus Penicil-
lium pinophilum, inhibited spheroid cultures of human breast CSCs from the cell
line MCF7 (Buommino et al. 2011). Thus, fungal metabolites may act on CSCs.

Vitamins target CSCs. Retinoic acid, a metabolite of vitamin A, is a molecule
essential for growth and development; it also induces cell differentiation. All-trans
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Table. 2 Probable Molecular Targets for Phytochemicals in Cancer Stem Cells (CSCs). (Adapted
from Kawasaki et al. 2008; Subramaniam et al. 2010; Li et al. 2011, and the references cited in text)

Targeted process

Molecular targets

Phytochemicals (Examples Of
Sources)

Signaling Pathways
Hedgehog Gli Cyclopamine [Corn lily]
Smo EGCG [Green tea]
Genistein [Soy]
Quercetin [Apples, onions]
Sulforaphane [Broccoli, cabbages]
Wnt B-catenin EGCG [Green tea]
Sulforaphane [Broccoli, cabbages]
Notch Notch Curcumin [Turmeric]
Resveratrol [Grapes, peanuts]
Kinases Protein tyr kinase Genistein [Soy]
Inflammation NFxB Curcumin [Turmeric]
Parthenolide [Feverfew]
IL-6 Resveratrol [Grapes, peanuts]
STAT-3 Cucurbitacin [Cucumber,
pumpkins]
Resveratrol [Grapes, peanuts]
Drug Resistance
Efflux ABCG2 Curcumin [Turmeric]
Piperine [Black pepper]
Metabolism ALDH Curcumin [Turmeric]
Sulforaphane [Broccoli, cabbages]
AMPK EGCG [Green tea]
Hsp 27 Quercetin [Apples, onions]
ROS EGCG [Green tea]
Sulforaphane [Broccoli, cabbages]
EMT Slug Resveratrol [Grapes, peanuts]
Metastasis MMP-9 EGCG [Green tea]
Apoptosis Bax 13C [Broccoli, cabbages]
Caspase Resveratrol [Grapes, peanuts]
Autophagy LC3 Curcumin [Turmeric]
Differentiation RAR Retinoic acid [Spinach, carrots]

ABCG-2 ATP-binding cassette transporter 2, ALDH aldehyde dehydrogenase, AMPK AMP-acti-
vated protein kinase, Bax B cell lymphoma 2 (Bcl-2) associated X protein is a proapoptotic pro-
tein, f-catenin beta catenin, a protein in the Wnt signaling pathway, Caspase cysteine-dependent
aspartate-directed protease are proteinases functional in apoptosis, EGCG epigallocatechin gallate,
EMT Epithelial mesenchymal transition, G/i zinc finger transcription factor in Hedgehog signaling
pathway, Hsp 27 heat shock protein 27 is a chaperone protein, /3C indole-3-carbinol, /L-6 interleu-
kin 6, LC3 microtubule associated protein light chain 3 is a marker for autophagy, MMP-9 matrix
metalloproteinase 9, NF«B, transcription factor nuclear factor kappa B, Notch a membrane protein
in the notch signaling pathway, RAR retinoic acid receptor, ROS reactive oxygen species, STAT 3
signal transducer and activator of transcription 3, Slug transcription factor Slug is important for
EMT, Smo plasma membrane Smoothed in Hedgehog signaling pathway, 7yr tyrosine
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retinoic acid (ATRA) inhibited human breast CSCs (Ginestier et al. 2009); ATRA
stealth liposomes prevented relapse of breast cancer arising from breast CSCs (Li
et al. 2011). Gemini vitamin D, a vitamin D analogue, targets human breast CSCs
(So et al. 2011). Gamma-tocotrienol, a vitamin E constituent, targets human pros-
tate CSCs (Luk et al. 2011).

Some drugs may also target CSCs. The telomerase inhibitor imetelstat inhibited
both breast and pancreatic CSCs (Joseph et al. 2010). Statins, including simvastatin
and lovastatin, suppressed abnormal human embryonic stem cells and thus may
play arole in CSC inhibition (Gauthaman et al. 2009). Probably the most significant
drug reported thus far for targeting CSCs is metformin (Hirsch et al. 2009; Vazquez-
Martin et al. 2011; Iliopoulos et al. 2011). Metformin is currently being used to treat
diabetes. There is a definite future in its application to CSCs (Dowling et al. 2012).

High-throughput screening assays on currently available compounds have been
established for embryonic and CSCs. In one human embryonic stem cell screen,
retinoic acid and others have been found to modulate Oct4 expression (Desbordes
et al. 2008). In a breast CSC screen, salinomycin has been found to target CSCs.
This compound, originally isolated from Streptomyces albus, is an ionophore and
has been added to chicken feed as a coccidiostat to control protozoan parasites in
poultry (Gupta et al. 2009b). In another ovarian CSC screen from 1,200 clinically
approved drugs, the compound niclosamide has been found to target CSCs (Yo et al.
2012). Originally developed as a molluscicide (for snails that are intermediate hosts
of blood flukes, parasites causing schistosomiasis) and anthelminthic (for cestodes
or tapeworms), niclosamide has a proton carrier mode of action and is also active
against viruses (such as the one that causes severe acute respiratory syndrome,
SARS; Jurgeit et al. 2012). In a combined normal and CSC screen, the antipsychotic
drug thioridazine has been shown to target only CSCs, whereas salinomycin targets
both normal and CSCs (Sachlos et al. 2012). It is expected that more compounds
targeting CSCs will be uncovered in future screenings.

A complementary approach is to look for novel sources that target CSCs. Along
this line of research, an extract from the marine sponge Crambe crambe has been
shown to target pancreatic and prostate CSCs (Ottinger et al. 2012). Thus, unusual
animal and plant species may yield novel molecules targeting CSCs.

Desirable Properties of Compounds Targeting Cancer
Stem Cells

Phytochemicals and other compounds that target CSCs have just been reviewed.
Here we discuss desirable properties needed for application to cancer therapy. Top-
ics of concern are antagonistic effects, combination therapy, multiple molecular
targets, safety, and bioavailability.

Whereas synergistic effects among phytochemicals are welcome in cancer pre-
vention and therapy (Liu 2004; Hemalswarya and Doble 2006), antagonistic effects
are not. We can use curcumin, resveratrol, and EGCG as examples. Curcumin is
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synergistic with resveratrol in colon cancer inhibition (Majumdar et al. 2009), but
antagonistic with EGCG towards keratinocytes. EGCG enhances keratinocyte dif-
ferentiation whereas curcumin inhibits its differentiation; curcumin activates apop-
tosis whereas EGCG does not (Eckert et al. 2006). Potential antagonistic effects
among compounds must be analyzed before combination use.

Despite the potential opposing effects between individual phytochemicals, their
combinatorial applications have been promoted. It has been suggested that “Specif-
ic combinations of phytochemicals may be far more effective in protecting against
cancer than isolated compounds” because “combinations of dietary chemopreven-
tive agents can sometimes result in significant activities at concentrations where
any single agent is inactive” (De Kok et al. 2008). Thus, combinatorial use of phy-
tochemicals is an attractive approach in targeting CSCs.

Each CSC has multiple molecular targets. Dietary phytochemicals such as cur-
cumin, resveratrol, and EGCG tend to aim at a multitude of cellular targets. Perhaps
it is because of these characteristics that definitive mechanisms of action are not
available despite decades of research (Francy-Guilford and Pezzuto 2008). This
multitarget nature of phytochemicals may be advantageous in targeting CSCs be-
cause the multifaceted mode of action may hinder the cell’s ability to develop resis-
tance to the phytochemicals.

How safe are the dietary phytochemicals? Because they can interact with drug
transporters and drug metabolizing enzymes (known as phase I and phase II enzymes),
the potential toxicity and safety of phytochemicals are major concerns. As an example,
they have antioxidant capacities against ROS. However, under special conditions they
also exhibit pro-oxidant capacity. Whereas ROS is harmful in general, the removal of
too much ROS interferes with body functions, as seen in the warning presented by sci-
entists to the food industry (Finley et al. 2011). With an emphasis on their putative can-
cer chemopreventive uses, the safety of a group of phytochemicals has been reviewed
(Verschoyle et al. 2007). For curcumin, given to cancer patients at 3,600 mg/day for
4 months or 800 mg/day for 3 months, only minor adverse effects were seen. For
EGCQG, daily oral doses for 4 weeks at 800 mg/day in 40 volunteers caused only minor
adverse effects. For resveratrol, a single oral dose at 5 g in 10 volunteers caused only
minor adverse effects (Boocock et al. 2007). However, “High consumption of dietary
phytochemicals should be considered with caution taking into account their dosage re-
gimes, toxicity, metabolic conversion, transport mechanisms, tissue availability, syner-
gistic interaction with drugs, and interferences with key enzymes, receptors, metabolic
pathways, and normal GI microflora” (Priyadarsini and Nagini 2012). More extensive
toxicological testing is recommended, if phytochemicals are to be taken as cancer che-
mopreventive agents on a long-term basis by healthy individuals.

How bioavailable are the dietary phytochemicals? Bioavailability may differ, de-
pending on conditions varying from pure compounds and plant extracts, to mixtures
with other food components (EGCG vs. green tea extract, genistein vs. soymilk or tofu,
quercetin vs. apple cider or apples; Manach et al. 2005). For phytochemicals such as
plant polyphenols, the effects in vivo, although significant, are more limited than those
observed in vitro (Williamson and Manach 2005). However, it is possible to design ap-
propriate interactions that affect the bioavailability of phytochemicals in vivo (Scholz
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and Williamson 2007), such as enhancement of curcumin efficacy with piperine, as
previously mentioned. We have used oral gavage plus starvation (an empty stomach)
to enhance curcumin uptake in mice (Chan et al. 1998; Adapala and Chan 2008) so
as to demonstrate its in vivo inhibition of the inflammatory iNOS in the murine liver
(beneficial outcome) and the exacerbation of murine visceral leishmaniasis, a proto-
zoan parasitic disease (detrimental outcome). The last report recommends caution with
regard to the potential clinical use of curcumin: it may re-activate latent infections.

A second look at bioavailability relates to the concept of hormesis. The effect of
curcumin has been described as an example of xeno-hormesis (Salvioli et al. 2007).
The concept of hormesis suggests that the fundamental nature of the dose-response
curve to be neither linear nor threshold, but rather U-shaped or J-shaped. This shows
a low dose stimulatory response known as the hormetic effect, representing over-
compensation in response to disruptions in homeostasis (Calabrese and Baldwin
2001). For phytochemicals among an estimated 10,000 secondary products (natural
pesticides), it has been proposed that human ancestors evolved a generalized defense
mechanism against low levels of phytochemicals to enable their consumption of many
different plant species containing variable levels of natural pesticides (carcinogens)
without subsequent ill health. Traces of phytochemicals found in fruits and vegetables
may potentiate the immune system and help to protect against cancer (Trewavas and
Stewart 2003). A biphasic dose response is observed. At high concentrations, phyto-
chemicals can be toxic, whereas subtoxic doses may induce adaptive stress responses.
There is the activation of signaling pathways that results in increased expression of
genes encoding cytoprotective proteins. It is suggested that hormetic mechanisms of
action may underlie many of the health benefits of phytochemicals (Mattson 2008).
These benefits would include their action against CSCs.

Implementation of the Phytochemical Approach Towards
Chemoprevention

Among all the compounds undergoing clinical trials, the success rate of anticancer
drugs is less than 5%, the lowest as compared to other drugs for cardiovascular,
central nervous system, and infectious diseases; and it takes $ 2 billion to bring a
drug to market (Bhattacharjee 2012). Examples of anticancer drugs from plants are
taxol and vinblastine. Plants are a rich source of drugs. “Only a small fraction of
the immense diversity of plant metabolism has been explored for the production of
new medicines and other products important to human well-being” (De Luca et al.
2012). Therefore, new phytochemicals targeting CSCs are expected in the future.
In the meantime, currently available phytochemicals need more definitive stud-
ies, because an evidence-based approach is favored (Higdon 2007). “Facts and fic-
tion” of each phytochemical must be differentiated (Espin et al. 2007). A phyto-
chemical may act in concert with conventional drugs, as visualized by the following
metaphor. When used in low concentrations, the phytochemical causes multiple
wounds without killing the CSC. Nevertheless, the treatment increases the CSC’s
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vulnerability to the magic bullet represented by the chemotherapeutic drug (Rus-
so 2007). In this sense, dietary phytochemicals may serve as adjuvant anticancer
agents with practically minimal or no side effects.

There is an urgent need to bridge the gap between apparent in vitro efficacy and
clinical use of dietary phytochemicals (Manson et al. 2007). Biomarkers and deci-
sions on dosages for clinical trials still have to be worked out (Scott et al. 2009).
As an example, transcription analyses (microarrays of gene expression) of periph-
eral blood mononuclear cells (PMBCs) from dietary intervention studies “have not
resulted yet in clear confirmation of candidate genes related to disease risk” (De
Mello et al. 2012).

What is the current status of dietary phytochemicals for cancer chemopreven-
tion? The focus lies in the identification of molecular mechanisms and cellular tar-
gets. The “concept of combination chemoprevention by multiple agents or by the
consumption of ‘whole foods’ has become an increasingly attractive area of study”
(Mehta et al. 2010).

Concerning “whole foods” consumption, the current US dietary guidelines have
been illustrated as MyPlate, with advice to cover half the plate with fruits and veg-
etables (Willett and Ludwig 2011). From Europe, there is Mediterranean Diet Pyra-
mid Today, with a plant-based core of the dietary pattern for consuming fruits and
vegetables everyday (Bach-Faig et al. 2011).

How effective are fruits and vegetables for cancer chemoprevention? The early
case-control studies tout the reduction in cancer risk, but the more recent prospec-
tive cohort studies show only a weak association. For example, a pooled analysis
of 14 cohort studies of pancreatic cancer concludes that “fruit and vegetable intake
during adulthood is not associated with a reduced pancreatic cancer risk” (Koushik
et al. 2012). Therefore, this is “turmoil in the produce section” but: “A very weak or
undetectable association between fruits and vegetables and risk of cancer does not
exclude the possibility that one or a small group of fruits or vegetables, or a specific
substance in some of these foods, has an important protective effect” (Willett 2010).
This latter point has been well proven by the catalogue of dietary phytochemicals
that can target CSCs covered in this review. Furthermore, “although the evidence
for benefits of fruits and vegetables against cancer was waning, data supporting
benefits for cardiovascular disease were accumulating” (Willett 2010).

Perspectives

In September 2011, the United Nations General Assembly convened a High Level
Meeting on Non-communicable Diseases (NCDs) because the four main NCDs—
cardiovascular disease, cancer, chronic lung diseases, and diabetes—kill three in
five people worldwide, and cause great socioeconomic harm within all countries,
particularly developing nations. In September 2012, Science magazine published
a special section including a cover photo on the topic of disease prevention (Ash
et al. 2012). One contributed article titled: “Can Noncommunicable Diseases Be
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Prevented?” suggested “effective approaches for large-scale NCD prevention in-
clude,” among these, “increasing the consumption of fresh fruits and vegetables”
(Ezzati and Riboli 2012).

When is the best time to start eating fruits and vegetables? First Lady Michelle
Obama started a campaign against childhood obesity (Willett and Ludwig 2011). It
has been suggested that “research should focus more sharply on specific fruits and
vegetables and their constituents and on earlier periods of life” (Willett 2010). We
have already mentioned genistein’s effect on fetal DNA methylation. Thus, here
comes “the maternal womb: a novel target for cancer prevention” (Simmen and
Simmen 2011). Dietary interventions prior to and during pregnancy may confer
cancer chemoprevention. The first sentence in a discussion on the “myth or reality”
aspects of dietary molecules begins with the 400 BC statement of Hippocrates: “Let
thy food be thy medicine and thy medicine be thy food” (Neergheen-Bhujun et al.
2012).

We end this chapter with a comment on cell differentiation and the CSC. In
October 2012 the Nobel Prize in Physiology or Medicine was announced for the
discovery of cell reprogramming (Abbott 2012). In 1962 John Gurdon published his
work on the plasticity of a differentiated nucleus from an amphibian: the nucleus
from a tadpole’s intestinal cell replaced the egg nucleus and generated a frog. In
2006 Shinya Yamanaka published his work on the reprogramming of a differenti-
ated cell type from a mouse: the mouse fibroblast became an embryonic stem cell
by adding just four genes. The latter work is transferable to humans and the induced
pluripotent stem (iPS) cells will be important for future clinical applications. The
differentiated state of a cell is dynamic. A CSC plays its essential role in maintain-
ing the particular tumor. If dietary phytochemicals, or specific fruits and vegetables,
are available to destroy this CSC, or reverse its stemness characteristics, or induce
its cell differentiation, there will be chemoprevention of cancer.
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