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    Abstract     Diabetic cardiomyopathy, which is defi ned as cardiac disease independent 
of vascular complications, is considered one of the consequences of the altered 
metabolic milieu during diabetes. Constant requirement for energy in the form of 
ATP is fulfi lled mainly by utilizing carbohydrates (glucose and lactate) and fatty 
acids in the heart. Only minor differences exist between species, and the healthy 
adult heart relies on the oxidation of fatty acids for ATP production. Utilization of 
energetic substrates depends on many factors and hormones play a major role in the 
process. Insulin defi ciency, for example, affects the levels of circulating glucose as 
well as fatty acids and, most certainly, these alterations contribute to the utilization 
of these substrates. In the past few decades, adipose tissue-originated hormones, 
such as leptin and adiponectin with major effects on metabolism, have been identi-
fi ed. Not only the amounts of hormones or substrate supply but also subcellular 
modifi cations seem to determine the heart’s preference for certain substrates during 
physiological and pathological transitions. Among them, in diabetes, the preference 
of the heart changes, or perhaps the heart becomes obligated to adapt to dramatic 
shifts in hormones, substrate supply, and subcellular alterations. This chapter sum-
marizes the contribution of energetic substrate metabolism to the development of 
diabetic cardiomyopathy.  
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1        Introduction 

 The heart has a very high energy demand because of the continuous work performed 
by the cardiac muscle. Under physiological conditions, the main substrates for 
energy production are fatty acids (60–90 % of ATP production), glucose, and lac-
tate. Under nonischemic conditions, more than 95 % of the energy requirement is 
supplied by the oxidation of fatty acids and carbohydrates, and myocardial energy 
expenditure can be estimated from oxygen consumption. The contribution of these 
substrates to overall energy production is a dynamic process, and physiological 
adaptations such as fetal-to-newborn transition [ 1 – 3 ], and alterations related to dis-
ease states have been well established [ 4 – 8 ]. The heart exerts a metabolic fl exibility, 
and myocardial substrate utilization depends on substrate availability, nutritional 
status, and exercise level. With glucose as the more energetically effi cient substrate, 
the healthy heart is able to switch to glucose under stress conditions, such as isch-
emia, pressure overload, or in heart failure. Interestingly, interventions such as 
increasing fatty acid uptake [ 9 ,  10 ], or fatty acid oxidation [ 11 ,  12 ], result in altera-
tions that resemble diabetic cardiomyopathy, and normalization of substrate metab-
olism in diabetic models reverses these alterations [ 13 ]. These studies indicate an 
important contributing role for substrate metabolism in the development of diabetic 
cardiomyopathy. 

 Although excessively available during diabetes, utilization of carbohydrates is 
compromised. Thus, the myocardium is forced to use alternative sources for ATP 
production such as fatty acids, which are high in diabetes as well [ 14 – 18 ]. The con-
sequences of this pathological switch occur at multiple levels, as is discussed here. 

 From the mechanical effi ciency point of view, an increase in fatty acid usage at 
the expense of carbohydrates results in ATP hydrolysis for noncontractile purposes 
and is attributed to a lower phosphate/oxygen (P/O) ratio for fatty acid metabolism, 
increased uncoupling of mitochondrial oxidative phosphorylation, and futile cycling 
(reviewed in [ 4 ]). 

 High levels of fatty acids further lower glucose usage as fi rst defi ned by Randle 
et al. [ 19 ]. We now know that intracellular changes occur during diabetes and 
 contribute to the aforementioned switch as well as development of diabetic 
cardiomyopathy.  

2     Alterations in Cardiac Carbohydrate Utilization 

 Two glucose transporters, GLUT1 and GLUT4, are involved in basal and insulin- 
mediated glucose uptake. GLUT1 shows sarcolemmal localization and represents 
basal cardiac uptake. GLUT4, on the other hand, is located in the intracellular pool, 
and insulin facilitates the localization of this transporter to the sarcolemma [ 20 ]. More 
recently, AMP-dependent protein kinase (AMPK)-mediated and insulin- independent 
uptake of glucose by this transporter has been documented [ 21 ]. A decrease in the 
number and translocation of GLUT4 to the sarcolemma has been suggested to play a 
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major role in the reduction of glucose metabolism in diabetes. A reduction in both 
glycolysis and glucose oxidation was reported in db/db mice in which cardiac 
 dysfunction has been already defi ned [ 13 ]. Because both metabolic parameters and 
cardiac function were normalized in transgenic mice that overexpressed GLUT4, it 
has been concluded that there was a causative relationship between impaired substrate 
metabolism and diabetic cardiomyopathy [ 13 ]. A key enzyme in the regulation of 
glycolysis is phosphofructokinase (PFK)-I, the enzyme that catalyzes the phosphory-
lation of fructose-6-phosphate to produce fructose- 1,6- bisphosphate. PFK-I activity is 
inhibited by citrate and acetyl CoA and activated by a low ATP/ADP ratio [ 22 ]. An 
increase in citrate levels as a result of increased fatty acid oxidation in the diabetic 
heart probably contributes to the inhibition of PFK-I and therefore glycolysis. At the 
transcriptional level of glucose uptake and metabolism, Finck et al. reported that both 
GLUT4 and PFK expression were lower and that PDK4 expression was higher in 
transgenic mice that overexpress peroxisome proliferator-activated receptor (PPAR)-α 
[ 12 ]. The inhibition of GLUT4 and PFK was probably not a direct result of PPAR-α 
overexpression, but associated with alterations in substrate metabolism that were 
mediated by PPAR-α. The increase in PDK4, on the other hand, was likely linked to 
PPAR-α overexpression because PPAR-α ligands were previously shown to activate 
this enzyme [ 23 ]. Another member of the PPAR family of transcription factors is 
PPAR-δ. PPAR-δ is the predominant form in the heart and regulates cardiac substrate 
metabolism [ 24 ]. A decrease in PPAR-δ expression was reported in diabetic heart 
[ 25 ]. However, another similar study reported that mice overexpressing PPAR-β/δ did 
not accumulate myocardial lipid and had normal cardiac function [ 26 ]. Conversely, 
cardiac glucose transport and glycolytic enzymes were activated in PPAR-β/δ 
transgenics. 

 Another limiting step in myocardial glucose metabolism is pyruvate dehydroge-
nase complex (PDH), which catalyzes the irreversible conversion of pyruvate to 
acetyl CoA. The amount of active dephosphorylated PDH is reduced when phos-
phorylated by PDH kinase (PDK) and induced also by PDH phosphatase. The rate 
of pyruvate oxidation depends not only on the phosphorylation state but also on the 
concentrations of its substrates (pyruvate, NAD + , and CoA) and products (NADH 
and acetyl CoA). Thus, an increase in mitochondrial acetyl CoA, through an increase 
in fatty acid oxidation, for example, inhibits pyruvate oxidation. Indeed, the active 
dephosphorylated form of the PDH is reduced in diabetes models [ 7 ]. Moreover, 
PDK-4 is one of the targets of PPAR-α, and upregulation of PDK-4 in mice overex-
pressing PPARα is associated with reduced glucose oxidation [ 27 ]. 

 Inhibition of pyruvate conversion into acetyl CoA results in accumulation and 
diversion of glycolytic intermediates into diacylglycerol biosynthesis, which contrib-
utes to the activation of diacylglycerol-sensitive protein kinase C (PKC) isoforms. 
Recently, inhibition of one of the PKC isoforms, PKC-beta, was shown to preserve 
cardiac function in a transgenic mice model of diabetic diastolic failure [ 28 ]. 

 The reports on carbohydrate utilization in the human diabetic heart are contro-
versial. Studies in type 1 diabetic patients reported lower [ 29 ,  30 ] or unchanged [ 31 ] 
uptake of carbohydrates by the myocardium. In type 2 diabetes, GLUT4 protein 
levels in diabetics were about 30 % lower compared to control patients [ 32 ]. 
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However, other studies reported that cardiac glucose uptake was not compromised 
in type 2 diabetes [ 33 – 35 ] and reduced only in type 2 diabetics with hypertriglyceri-
demia [ 36 ] and increased plasma fatty acids. Because glucose can still enter the cell 
through mass action, as evidenced by a high glucose pool in the type 1 diabetic heart 
[ 22 ], glucose metabolism is unlikely to be regulated at the level of uptake in diabetes 
despite a defi ciency in or resistance to insulin action. 

 Lactate is another potential substrate for myocardial ATP production in vivo 
[ 37 ], but the information on diabetes-related alterations in lactate oxidation is 
 relatively scant. A greater decrease in lactate oxidation relative to glucose oxidation 
in hearts from diabetic rats was observed when lactate and glucose were the 
only substrates in the perfusate for ATP production. Under these conditions, a spe-
cifi c inhibition of lactate oxidation independent of pyruvate dehydrogenase was 
suggested [ 38 ]. Hearts from ZDF rats also showed lower lactate oxidation [ 39 ,  40 ]. 
The contribution of lactate in diabetic cardiomyopathy clearly needs further study.  

3     Alterations in Cardiac Fatty Acid Utilization 

 An increase of fatty acids that are supplied as free acids bound to albumin and 
as esters in chylomicrons and very low density lipoproteins have been reported in 
 diabetes [ 7 ]. The effects of elevated levels of lipoproteins on myocardial fatty acid 
metabolism are not clear, and neither is the relative contribution of cardiac lipopro-
tein lipase (LPL) activity to the delivery of free fatty acids to the diabetic heart. 
Unchanged, increased, and decreased levels of LPL protein and activity were reported 
in the diabetic heart, and this discrepancy was suggested to be related to the diversity 
in rat strains, the dosage of diabetogenic agent, and the duration of diabetes [ 41 ]. 

 Free fatty acids enter the cardiac myocyte either by passive diffusion or via 
a protein carrier-mediated pathway. These protein carriers include fatty acid trans-
locase (FAT)/CD36, the plasma membrane isoform of fatty acid-binding protein 
(FABPpm), and fatty acid transport protein (FATP) 1/6. FAT/CD36 plays a major 
role in the translocation of fatty acid across the sarcolemmal membrane of cardiac 
myocytes as this protein was shown to mediate 50–60 % of fatty acid and transport 
of the heart. Also, FAT/CD36 is able to translocate between intracellular endosomes 
and the sarcolemmal membrane and thereby regulate fatty acid uptake [ 4 ]. 

 Fatty acid uptake is increased in diabetes and leads to increased fatty acid oxida-
tion and triacylglycerol (TAG) storage. In the streptozotocin (STZ)-induced model of 
type 1 diabetes, this increase is facilitated by fatty acid translocase (FAT/CD36) [ 42 ]. 
In type 2 diabetic models, an increase in FAT/CD36 and fatty acid-binding protein 
(FATP1) [ 43 ] and a permanent relocation of FAT/CD36 to the cardiomyocyte 
 membrane was shown to increase fatty acid uptake [ 44 ,  45 ]. Interestingly, insulin was 
suggested to upregulate FAT/CD36 and translocate it to the sarcolemma [ 46 ]. 

 The majority (70–90 %) of the fatty acids that enter cardiomyocyte is oxidized for 
energy production; the rest is converted to TAGs [ 47 ]. Excessive accumulation of 
lipids, or lipotoxicity, within nonadipose tissue provides substrates for nonoxidative 
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processes such as ceramide and diacylglycerol synthesis, which can lead to apoptosis 
[ 48 ,  49 ]. Accumulation of TAG within the myocardium of insulin- resistant rats was 
associated with contractile dysfunction [ 50 ]. We also have shown that insulin- 
resistant rats have increased TAG accumulation, which reduced insulin- stimulated 
glucose metabolism [ 51 ]. Although the exact mechanism of lipotoxicity- induced 
cardiac dysfunction is not known, it seems to be related to a combination of  apoptotic 
cell death and impaired substrate metabolism. 

 The most important step in the regulation of fatty acid oxidation is the transport of 
fatty acids into the mitochondria for further metabolism. The activation of short- and 
medium-chain fatty acids occurs in the matrix and does not require carnitine. However, 
long-chain fatty acids are shuttled into the mitochondria by three carnitine- dependant 
enzymes. Carnitine palmitoyltransferase (CPT)-I catalyzes the conversion of long-
chain acyl CoA to long-chain acylcarnitine. Carnitine:acylcarnitine translocase (CAT) 
transports long-chain acylcarnitine across the inner mitochondrial membrane, and 
CPT-II regenerates long-chain acyl-CoA in the mitochondrial matrix [ 52 ]. Of these, 
CPT-I is the master regulator of mitochondrial uptake of fatty acids and is allosteri-
cally inhibited by malonyl CoA [ 53 ]. The turnover of malonyl CoA in the heart is 
fast. Therefore, myocardial malonyl CoA concentrations are dependent on the bal-
ance between its synthesis from acetyl CoA via acetyl CoA carboxylase (ACC) and 
its degradation via malonyl CoA decarboxylase (MCD) [ 4 ]. A good correlation has 
been established between levels of malonyl CoA and rates of fatty acid oxidation, and 
a reduction in malonyl CoA levels is almost consistent in situations in which fatty acid 
oxidation is increased [ 18 ]. The decrease in malonyl CoA levels seems to be related to 
increased degradation of malonyl CoA by MCD [ 18 ]. MCD is transcriptionally regu-
lated by PPAR-α [ 54 ,  55 ]. In addition to diabetes, activity and expression of  cardiac 
MCD was increased in fasting, high-fat-fed, and newborn hearts [ 56 – 59 ]. Moreover, 
PPAR-α null mice had increased rates of glucose oxidation and decreased expression 
and activity of MCD [ 56 ]. 

 Increase in circulating fatty acids directly modifi es the enzymes in substrate 
metabolism because fatty acids and their derivatives are ligands for the PPAR family 
of nuclear receptors, of which PPAR-α and its coactivator peroxisome proliferator- 
activated receptor-gamma coactivator (PGC)-1 are particularly important in the 
heart [ 60 – 62 ]. PPAR-α signaling was increased in 15-week-old ob/ob and db/db 
mice [ 60 ]. Other studies reported an increase in the expressions of PPAR-α, PGC-1, 
and their targets in models of insulin resistance and type 2 diabetes [ 12 ,  63 – 65 ]. 

 Once in the mitochondrial matrix, long-chain fatty acyl CoAs pass through the 
β-oxidation enzyme system to produce one acetyl CoA at each cycle, one NADH, 
and one FADH. The key enzyme in the β-oxidation pathway is β-hydroxyacyl-CoA 
dehydrogenase. The activity of this enzyme was shown to be normal [ 66 ] or high [ 67 ] 
in diabetic rat mitochondria. Higher expression of another enzyme, 3-ketoacyl-CoA 
thiolase, has also been shown in streptozotocin-diabetic rat hearts [ 8 ]. Thus, a com-
bination of high circulating levels of fatty acids, decreased inhibition of fatty acid 
uptake by the mitochondria, and a normal or accelerated β-oxidation pathway 
results in a large proportion of acetyl CoA for the tricarboxylic acid (TCA) cycle 
being supplied from fatty acid oxidation.  
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4     Alterations in Diabetic Mitochondria 

 Acetyl CoA derived from both β-oxidation of fatty acids and PDH enters the TCA 
cycle. The myocardial TCA cycle does not appear to be altered in diabetes because 
measurements of TCA cycle enzyme activities are similar in diabetic and control 
hearts [ 7 ]. 

 Mitochondrial proteins are produced in the mitochondria and are regulated under 
the mitochondrial transcriptional factor A (TFAM) by mitochondrial DNA. A recent 
study reported that overexpression of TFAM improved ATP content and SERCA2a 
content, both of which were deteriorated by exposing neonatal rat myocytes to 
hyperglycemic conditions [ 68 ].  

5     Ketone Body Metabolism 

 Plasma ketone bodies (β-hydroxybutyrate and acetoacetate) are formed from fatty 
acids in the liver, and their plasma concentration is normally very low. Thus, ketone 
bodies are normally a minor substrate for the myocardium. When plasma levels 
increase during extreme conditions, such as poorly controlled diabetes and starva-
tion, the heart extracts and oxidizes ketone bodies [ 29 ]. Ketone bodies inhibit the 
uptake and metabolism of other energetic substrates [ 69 – 74 ]. The biochemical 
mechanisms responsible for the inhibition of glucose, lactate, or fatty acid oxidation 
is not clearly understood.  

6     Potential Drugs with Metabolic Effects in the Treatment 
of Diabetes 

 Our knowledge of the adipose tissue-originated hormones—adipokines—and their 
biological effects has increased tremendously since the discovery of the OB gene 
product, leptin, in 1994 [ 75 ]. Two of these, leptin and adiponectin, have direct 
effects on substrate metabolism as well as insulin secretion. Despite the presence of 
some confl icting reports, leptin seems to regulate pancreatic cell function and thus 
insulin secretion [ 76 – 79 ]. Acute exposure of myocytes [ 80 ] and isolated working 
hearts [ 51 ] to leptin stimulates fatty acid oxidation. In contrast, type 2 diabetic mod-
els, ob/ob and db/db mice, also display increased myocardial fatty acid β-oxidation 
[ 60 ,  81 ,  82 ], which is probably related to other alterations in these genetic models. 
Moreover, leptin administration to subjects with lipodystrophy, abnormal distribu-
tion of adipose tissue in which leptin levels are usually decreased [ 83 ,  84 ], has 
been shown to improve metabolic abnormalities such as hypertriglyceridemia and 
impaired glucose control, which often are resistant to maximum doses of insulin 
sensitizers or very high doses of insulin [ 85 – 87 ]. Taken together, these studies 
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 suggest that leptin has the potential to become an effective antidiabetic agent with 
effects on substrate metabolism. 

 Described by Scherer et al. in 1995 [ 88 ], adiponectin is another antidiabetic 
 adipokine. Adiponectin possibly affects β-cell function as adiponectin receptors are 
expressed in β cells [ 89 – 91 ]. More recently, adiponectin was shown to protect 
against caspase-8-mediated apoptosis in β cells [ 92 ]. As for the effects on substrate 
metabolism, globular head domain of adiponectin (gAd) stimulates fatty acid oxida-
tion in isolated working 1-day-old rabbit heart [ 93 ]. Similar effects on fatty acid 
oxidation with both the high molecular weight hexameric form of adiponectin and 
gAd have been reported for cardiac myocytes [ 94 ]. 

 Finally, it is worth mentioning other drugs that have benefi cial effects on  substrate 
metabolism. Beta-adrenergic receptor antagonists (β-blockers) are used in the treat-
ment of many disease states such as hypertension, ischemic heart disease, arrhyth-
mia, heart failure, glaucoma, and migraine, as well as to reduce the symptoms 
related to anxiety and hyperthyroidism. Depending on their receptor subtype speci-
fi city, β-blockers have different effects on substrate usage. As clearly shown by 
clinical trials, long-term use of nonselective β-blockers such as proporanolol 
increases the incidence of diabetes [ 95 ,  96 ], and cardioselective β-blockers such as 
atenolol and metoprolol reduce insulin sensitivity [ 97 ,  98 ], whereas carvedilol 
improves serum lipid profi le, reduces insulin resistance, and decreases the risk for 
diabetes [ 99 ,  100 ]. Based on these reports, nonselective and cardioselective 
β-blockers are accepted as “pro-insulin resistant” whereas carvedilol, the drug that 
also blocks α1-adrenergic receptors, is known to have opposite effects (reviewed 
in [ 101 ,  102 ]). The benefi cial properties of carvedilol seem to be related to its 
direct effects on substrate metabolism because carvedilol was shown to reduce the 
 myocardial uptake of long-chain fatty acids and improved left ventricular ejection 
fraction in heart failure patients [ 103 ]. More recently, carvedilol treatment reduced 
fatty acid oxidation and increased glycolysis in C2C12 cells [ 104 ]. The possible 
effects of carvedilol on diabetic cardiomyopathy need future investigations. 
However, the fact that carvedilol has benefi cial effects on insulin resistance warrants 
an improvement in substrate utilization and hence diabetic cardiomyopathy.  

7     Conclusion 

 Diabetes is a complex disorder. Its contributors exist at multiple levels. Hormones 
predominantly determine the levels of energetic substrates, and their major impact 
on energetic substrate utilization has been well documented. However, modulation 
of subcellular steps that are involved in ATP-producing processes seems to be 
just as important in the regulation of substrate metabolism and is expected to have 
benefi cial effects on the mechanical function of the heart. Future studies will reveal 
such interventions that improve the hormonal milieu or deteriorated substrate 
metabolism, and leptin and adiponectin agonists are good candidates.     
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