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    Abstract     Cardiovascular diseases are the leading cause of death and disability 
among diabetic patients. Diabetes-induced cardiovascular complications are pri-
marily caused by impaired NO bioavailability, eventually leading to endothelial 
dysfunction and a sequela of cardiovascular disorders. Phosphodiesterase-5 (PDE- 
5) inhibitors are class erectile dysfunction (ED) drugs that are shown to induce 
powerful cardiovascular benefi ts against ischemia–reperfusion injury, myocardial 
infarction, heart transplantation, cardiac hypertrophy, heart failure, and doxorubicin- 
induced cardiotoxicity. The use of PDE-5 inhibitors, including sildenafi l (Viagra), 
vardenafi l (Levitra), and tadalafi l (Cialis), represent a potential therapeutic strategy 
to reduce the incidence of heart diseases in diabetic patients because these com-
pounds prevent damage to the vascular endothelium by upregulating eNOS, iNOS, 
and increased NO production. This review provides new insights into the potential 
benefi ts of PDE-5 inhibitors for diabetic patients and discusses the multiple molecu-
lar mechanisms by which these drugs protect the diabetic hearts.  
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1        Introduction 

 Diabetes is a major public health concern affecting nearly 170 million people 
 worldwide [ 1 ]. Its incidence is dramatically on the rise, with a global estimate of 
more than 300 million diabetic patients by 2025 [ 1 ,  2 ]. Diabetes is associated with 
increased risk for a wide variety of long-term health problems including macrovas-
cular/microvascular complications that induce damage to major organs such as 
brain, heart, kidney, eye, peripheral vascular system, and nervous system. Among 
the various diabetes-related complications, heart diseases and associated cardiovas-
cular complications continue to be the leading cause of morbidity and mortality, 
accounting for nearly 80 % of the deaths in the diabetic population [ 3 – 6 ]. Both type 
1 and type 2 diabetes have been closely linked to cardiovascular disease (CVD). 
Diabetic patients exhibit increased risk for multiple cardiovascular complications 
such as endothelial dysfunction, coronary atherosclerosis, microangiopathy, and 
hypertension [ 7 ,  8 ]. They also exhibit enhanced risk for cardiac dysfunction that 
occurs independently of other risk factors such as hypertension and coronary artery 
disease. Several factors exaggerate the risk of heart failure and stroke in diabetic 
patients, such as hypertension, insulin resistance, hyperinsulinemia, hyperamiline-
mia, dyslipidemia, and coagulation system disorder and hyperhomosisteinemia. It is 
estimated that two of three diabetes patients develop heart failure and eventually die 
of myocardial infarction or stroke [ 9 ,  10 ]. In addition, diabetics are known to expe-
rience worse outcomes following acute myocardial infarction, coronary angioplasty, 
and cardiac surgery. The CVD treatment accounts for a large part of the healthcare 
costs attributable to management of diabetic complications, averaging nearly 50 % 
of the total healthcare expenditure of diabetic patients [ 11 ]. These concerns all 
denote the overwhelming signifi cance of CVD in diabetic patients [ 12 ].  

2     Pathophysiology of Cardiovascular Disease 
in Diabetic Patients 

 Cardiovascular risk actually begins with insulin resistance, a condition that occurs 
well before diabetes mellitus. Reduced nitric oxide (NO) bioavailability and 
enhanced reactive oxygen species (ROS) formation within the vascular wall results 
in an imbalance between NO and ROS, contributing to impaired insulin utilization 
and thus leading to insulin resistance [ 13 ]. Insulin resistance causes a number of 
micro- and macrovascular insults leading to retinopathy, nephropathy, and painful 
neuropathy, and eventually to more adverse complications such as atherosclerosis, 
coronary artery disease, and cerebrovascular disease. The increased incidence of 
these complications has been attributed to higher levels of infl ammatory cytokines, 
chronic hyperglycemia leading to formation of advanced glycation end products 
(AGEs), and elevated levels of oxidative stress that lead to endothelial dysfunction. 
Vascular NO is critical for normal vasodilatation and endothelial function, and 
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impairment of NO bioavailability is known to cause endothelial dysfunction [ 14 ]. 
In a large meta-analysis, it was reported that endothelial dysfunction is a signifi cant 
independent risk factor for cardiac death, myocardial infarction, stroke, and the 
need for coronary revascularization [ 15 ]. A number of clinical studies have shown 
that hyperglycemia and increased AGEs are key factors in potentiating vascular 
infl ammation and increasing levels of ROS and oxidative stress [ 16 ,  17 ]. This vas-
cular milieu of elevated infl ammation, impaired NO bioavailability, and oxidative 
stress plays an integral role in the progression of atherosclerosis and subsequently 
acute coronary syndromes, culminating in signifi cant morbidity and mortality of the 
diabetic patient [ 18 ]. 

 In recent years, it is known that diabetes may infl uence heart muscles indepen-
dently in addition to early atherosclerosis of the coronary artery, which causes isch-
emic heart disease [ 19 ]. This condition is referred as diabetic cardiomyopathy, a 
disease process that affects the myocardium in diabetic patients, causing a wide 
range of structural abnormalities that eventually lead to left ventricular hypertrophy 
and diastolic and systolic dysfunction [ 20 ]. The cardiomyopathy associated with 
diabetes is a unique myopathic state that appears to be independent of macrovascu-
lar/microvascular disease and contributes signifi cantly to CVD morbidity and mor-
tality in diabetic patients, especially those with coexistent hypertension or coronary 
artery disease with resulting synergistic adverse effects. At the onset of diabetes, the 
heart undergoes short-term physiological adaptation to metabolic alterations, but 
prolonged hyperglycemic conditions induce degenerative changes that eventually 
culminate in irreversible pathological remodeling. Morphological changes include 
thickening of capillary basement membrane, proliferation of small arterioles, myo-
cyte atrophy, accumulation of ground matrix, and cardiac fi brosis [ 21 ,  22 ] in the 
diabetic myocardium. Clinically, diabetic patients manifest abnormalities in dia-
stolic left ventricular function, which is caused by changes such as interstitial fi bro-
sis process, collagen formation, reduced ventricular elasticity, and hypertrophy of 
heart muscle cells. At the cellular level, disruption of calcium release from cyto-
plasm, changes of troponin T structure, and increased activity of pyruvate kinase 
appear [ 19 ]. These changes cause distraction of heart muscle contraction and relax-
ation, as well as elevation of end-diastolic pressure, that cause diabetic cardiomy-
opathy [ 20 ,  23 ]. 

 The pathogenesis of CVD in diabetes is multifactorial, including increased oxi-
dative stress, disturbances in glucose and fatty acid metabolism, mitochondrial dys-
function, alterations of vasoactive factors such as endothelin-1 and NO, abnormalities 
in intracellular calcium homeostasis, altered transcription of genes encoding for 
contractile and structural proteins, autonomic dysfunction, and abnormal expres-
sion of growth factors and their receptors [ 24 ,  25 ]. Moreover, there is increase in 
infl ammatory cytokines, apoptosis of cardiac muscles, dysregulation of the renin- 
angiotensin system, hyperglycemia-induced activation of protein kinase C isoforms, 
and alterations in gene expression induced by miRNAs [ 26 – 28 ]. Additionally, dia-
betic conditions are known to impede key cardioprotective signaling pathways and 
blunt a number of cardioprotective modalities [ 29 – 31 ].  
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3     Role of NO-cGMP Signaling in Diabetes-Induced 
Cardiovascular Damage 

 High levels of glucose cause biochemical changes in the endothelial cells that are 
reminiscent of early molecular alterations in the target organs of diabetes [ 32 ,  33 ]. 
In vitro studies revealed that acute exposure of endothelial cells to high glucose 
signifi cantly lowers NO production [ 34 ]. In addition to its reduced level under 
hyperglycemic conditions, NO may also be sequestered by glucose-induced oxida-
tive stress, which generates an imbalance in the counter-activity of NO and endothe-
lins, which are major vasoactive factors produced by endothelial cells [ 32 ,  33 ,  35 ]. 
Endothelium-derived NO activates soluble guanylyl cyclase in vascular smooth 
muscle cells, resulting in enhanced cyclic guanosine monophosphate (cGMP) con-
centrations and vasorelaxation. Downregulation of the NO-cGMP pathway has 
been implicated in the pathogenesis of diabetes-induced cardiovascular complica-
tions [ 36 ,  37 ]. Consistent with these observations, type 2 diabetic patients have 
impaired NO synthesis and decreased expression of eNOS and iNOS in skeletal 
muscle [ 38 ]. Furthermore, nitric oxide synthase (NOS) enzymes have been sug-
gested to play important roles in acetylcholine-induced paradoxical vasoconstric-
tion in atherosclerotic coronary arteries [ 39 ]. Recent animal studies with NOS 
inhibitors and eNOS gene defi ciency suggest that the NO signaling pathway may 
regulate and promote glucose uptake in myocytes and enhance muscle glucose 
 utilization as well [ 40 – 43 ]. Moreover, insulin-stimulated muscle glucose uptake 
and endothelial NO production was blocked using the eNOS inhibitor, L-NMMA 
( NG -monomethyl - L -arginine) [ 44 ]. eNOS knockout mice had decreased oxygen 
consumption, increased weight gain, and were resistant to insulin [ 45 ]. Furthermore, 
genetic variations of eNOS gene infl uenced energy expenditure, severity of glucose 
intolerance, and risk of developing type 2 diabetes [ 46 ]. A recent epidemiological 
study provided evidence of a strong correlation between the risk factors associated 
with metabolic syndrome (i.e., obesity, elevated fasting glucose levels, dyslipid-
emia, hypertension) and urinary cGMP excretion, suggesting that a reduction of NO 
bioactivity concurs with these cardiovascular risk factors [ 47 ].  

4     PDE-5 Inhibitors in the Treatment of Diabetes-Associated 
Complications 

 Phosphodiesterase 5 (PDE-5) inhibitors including sildenafi l (Viagra), vardenafi l 
(Levitra), and tadalafi l (Cialis) are erectile dysfunction (ED) drugs that reduce dam-
age to the penile vascular endothelium by upregulating eNOS, iNOS, and increased 
NO production [ 48 – 50 ]. PDE-5 inhibitors are commonly used among the diabetic 
patient population because ED is a major and prevalent vascular complication in 
diabetes [ 51 ]. ED is present in 32 % of insulin-dependent diabetics and 46 % of non-
insulin-dependent diabetics. Chronic administration of PDE-5 inhibitors has been 
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associated with increased persistent vascular and endothelial function by increasing 
the level of endothelial cGMP generated by activation of eNOS [ 52 ]. Sildenafi l 
dilates epicardial coronary arteries, improves endothelial dysfunction, and inhibits 
platelet activation in patients with coronary artery disease [ 53 ] and acutely enhances 
fl ow-mediated vasodilation in patients with heart failure [ 54 ]. Therefore, inhibiting 
cGMP degradation by sildenafi l might be a rational approach to treat patients with 
diabetes, coronary artery disease, or heart failure [ 55 ]. In support of this notion, 
previous reports demonstrated that sildenafi l and vardenafi l improved vasorelax-
ation through enhanced endogenous NO signaling in streptozotocin- induced dia-
betic rats [ 56 ,  57 ]. In streptozotocin-induced type 1 diabetic rats, 14 days of 
treatment with sildenafi l improved vasorelaxation, and long- term administration of 
the PDE-5 inhibitor DA-8159 prevented ED and preserved endothelial function 
through enhanced endogenous NO signaling [ 56 ,  58 ]. The PDE-5 inhibitor varde-
nafi l improved cardiovascular dysfunction in experimental diabetes mellitus [ 57 ]. 
Diabetic rats treated with vardenafi l showed a tendency toward higher dP/dt max  and 
dP/dt min , without reaching statistical signifi cance. The load-independent, PV-loop-
derived contractility indices (E max , PRSW, and dP/dt max - EDV) were signifi cantly 
improved in the vardenafi l treatment group. In a clinical study, chronic (alternate-
day) administration of tadalafi l in men with ED of any etiology had improved endo-
thelial function as indicated by marked changes in serum markers of endothelial 
function [ 59 ]. Furthermore, both acute and chronic administration of sildenafi l 
improved endothelial function in patients with type 2 diabetes [ 60 ,  61 ]. 

 Pioneering studies from our laboratory have shown that PDE-5 inhibitors restore 
NO signaling and protect against myocardial ischemia–reperfusion (I/R) injury in 
normoglycemic mice [ 52 ,  62 – 64 ]. Several other investigators have also demon-
strated the cardioprotective effects of PDE-5 inhibitors in different models of isch-
emic injury [ 65 – 67 ]. Moreover, PDE-5 inhibitors attenuate cardiac dysfunction 
following myocardial infarction and doxorubicin-induced cardiomyopathy [ 68 – 71 ]. 
Using proteomic analysis, our laboratory has recently demonstrated that chronic 
tadalafi l treatment (28-day treatment) modulates cardiac proteins, specifi cally those 
associated with cytoskeletal rearrangement such as myosin light chain-2, myosin 
light chain-4, myosin heavy chain-α, and myosin binding protein-C, which contrib-
ute to contractile dysfunction [ 72 ]. These data suggest that tadalafi l therapy may 
downregulate cytoskeletal contractile proteins associated with cardiac remodeling 
and heart failure. A recent study from our laboratory has shown that tadalafi l, simi-
lar to other PDE-5 inhibitors in nondiabetic models, signifi cantly reduces infarct 
size following I/R in the diabetic heart and attenuates necrosis and apoptosis follow-
ing simulated ischemia and reoxygenation in isolated ventricular cardiomyocytes 
[ 73 ]. Moreover, tadalafi l therapy in type 2 diabetic mice ameliorated circulating 
infl ammatory cytokines and chemokines while improving fasting glucose levels and 
reducing infarct size following I/R injury in the diabetic heart [ 73 ]. Tadalafi l treat-
ment also improved PKG activity in the cardiomyocytes of diabetic mice compared 
to vehicle-treated controls [ 73 ]. These studies provided evidence that PDE-5 inhibi-
tors restore NO signaling and induce cardioprotective effects through several 
 cellular and molecular mechanisms.  
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5     PDE-5 Inhibitors in Attenuation of Oxidative Stress 
in the Diabetic Myocardium 

 In diabetes, multiple hyperglycemia-induced pathways causing oxidative stress 
including oxidized low lipoprotein, AGEs/RAGEs, and heme oxygenase pathways 
[ 74 ,  75 ] have been reported. In addition, increased mitochondrial superoxide and 
ROS production lead to apoptosis of cardiomyocytes. Depletion of proteins involved 
in electron-chain transport and increased expression of proteins involved in 
β-oxidation causing increased superoxide production, mitochondrial uncoupling, 
and reduced ATP generation in diabetic myocardium were reported earlier [ 76 ,  77 ]. 
Enhanced oxidative stress can modify cellular components (including proteins) to 
elicit damage and alter gene transcription of specifi c vasoactive and cardioprotec-
tive factors, leading to structural and functional defects in the diabetic myocardium 
[ 35 ,  78 ]. Oxidative stress is a major cause of reduced endothelial NO bioavailability 
in diabetes and is involved in the pathogenesis and progression of diabetic tissue 
damage. Increased ROS generation and impaired antioxidant defenses could both 
contribute to oxidative stress. Many studies have shown that ROS generation 
increases in both type 1 and type 2 diabetes [ 79 – 82 ]. PDE-5 inhibitors may suppress 
oxidative stress. Importantly, we previously demonstrated that PDE-5 inhibitors 
sildenafi l and vardenafi l reduced myocardial infarct size when administered at 
reperfusion following ischemia [ 83 ], a well-established model in which ROS have 
been widely implicated in causing reperfusion injury. Recent studies have also 
shown that sildenafi l inhibits superoxide formation in cultured corpus cavernosal 
smooth muscle cells derived from rabbit penis [ 84 ,  85 ]. Chronic treatment with 
tadalafi l in diabetic mice was shown to improve redox signaling by enhancing the 
antioxidant enzyme glutathione- S -transferase kappa-1 (GSKT-1) and downregulat-
ing redox regulatory chaperones, heat shock protein 8, and 75-kDa glucose regula-
tory protein [ 72 ]. Moreover, tadalafi l-treated diabetic mice had signifi cantly lowered 
plasma levels of GSSG/GSH, suggesting reduction of oxidative stress [ 72 ]. Using a 
combined physiological and biochemical approach we recently demonstrated that 
chronic treatment with tadalafi l attenuated oxidative stress induced in type 2 dia-
betic hearts [ 86 ]. Tadalafi l treatment protected the diabetic mice hearts from I/R 
injury, consistent with our previous studies that demonstrated PDE-5 inhibitors 
induce powerful cardioprotective effects against in vivo myocardial I/R injury in 
normoglycemic mice [ 64 ,  71 ]. Tadalafi l also exhibited benefi cial effects on the sys-
temic abnormalities induced by diabetes. Tadalafi l treatment improved the meta-
bolic status of mice as evidenced by slight decrease in body weight and blood 
glucose coupled with signifi cant reductions in hyperinsulinemia and hypertriglyc-
eridemia. Furthermore, tadalafi l treatment decreased ROS production in isolated 
ventricular myocytes following simulated ischemia and reoxygenation (Fig.  1 ).

   Multiple sources of endogenously generated ROS have been implicated in oxida-
tive damage of the diabetic vasculature and heart [ 87 – 90 ]. Importantly, increased 
expression of NAD(P)H oxidase proteins has been observed in the vasculature from 
animal models of diabetes or from diabetic patients [ 87 ,  91 ,  92 ]. In this recent study, 
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  Fig. 1    Effect of tadalafi l on reactive oxygen species (ROS) generation in adult cardiomyocytes 
following simulated ischemia and reoxygenation: representative images with chlorofl uorescein 
(DCF) staining in isolated cardiomyocytes. ( a ) Bright-fi eld images ( top ) and green fl uorescent 
images ( bottom ). ×200. ( b ) ROS production in cardiomyocytes quantifi ed and expressed as percent 
(%) for DCF-positive cells among total cells. Data are mean ± SEM ( n  = 4/group). * P  < 0.05 versus 
db/db mouse cardiomyocytes       
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we also tested the effect of tadalafi l treatment on NAD(P)H oxidase, a major enzyme 
involved in oxidative stress [ 86 ]. The NAD(P)H oxidase enzyme complex consists of 
the membrane subunit cytochrome  b  558 (p22 phox and gp91 phox), multiple cytoplas-
mic subunits (p67 phox and p47phox), and the small G protein Rac-1. We showed that 
tadalafi l treatment attenuated expression of NAD(P)H oxidase subunits pRac-1 and 
gp91phox in type 2 diabetic hearts (Fig.  2 ) and NAD(P)H oxidase activity (Fig.  3a ). 

  Fig. 2    Effect of tadalafi l on myocardial expression of NAD(P)H oxidase subunits. ( a ) Western 
blots show myocardial expression levels of pRac1, Rac1, gp91 phox  p47 phox  p67 phox , and representa-
tive actin bands. ( b ) Densitometric quantifi cation of protein expression of pRac1 normalized 
against Rac1. ( c ) Densitometric quantifi cation of protein expression of gp91 phox  normalized against 
actin. ( d ) Densitometric quantifi cation of protein expression of p47 phox  normalized against actin. 
( e ) Densitometric quantifi cation of protein expression of p67 phox  normalized against actin. Data are 
mean ± SEM ( n  = 6/group). * P  < 0.05 versus control;  #  P  < 0.05 versus db/db       
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Enhanced lipid peroxidation in diabetes is an autocatalytic mechanism leading to 
oxidative destruction of cellular membranes in the heart. Cardiac lipid peroxidation 
activity in the db/db mice was increased by 41.2 % as compared to the control group 
( n  = 6/group,  P  < 0.05, Fig.  3b ). Tadalafi l treatment signifi cantly attenuated the 
enhanced lipid peroxidation in the diabetic mice. Moreover, tadalafi l treatment 
enhanced the GSH/GSSG ratio in the myocardium of db/db mice (Fig.  3c ). Reduced 
glutathione is a major intracellular redox buffer and functions as a direct free radical 
scavenger.

    In type 2 diabetes, ROS are involved in insulin resistance, via its regulatory 
effects on mitochondrial function [ 93 ]. Maintenance of mitochondrial membrane 
potential (ΔΨ m ) is necessary for production of energy (ATP) and preservation of 
cellular homeostasis. It has been demonstrated that maintenance of ΔΨ m  is a critical 
primary determinant of myocyte survival [ 94 ]. We measured dissipation of Δψ m  of 
ventricular cardiomyocytes following simulated ischemia and reoxygenation injury 
by JC-1 staining. Cardiomyocytes from untreated diabetic mice exhibited loss of 
Δψ m  whereas control and tadalafi l-treated diabetic mice demonstrated preserved 
Δψ m  and intact mitochondrial membrane. Similar preservation of Δψ m  was observed 
following simulated ischemia/reoxygenation in nondiabetic cardiomyocytes treated 
with sildenafi l [ 49 ]. The mechanism by which tadalafi l preserves Δψ m  in diabetic 

  Fig. 3    Effect of tadalafi l on NAD(P)H oxidase activity, lipid peroxidation and glutathione levels 
in diabetic hearts. NAD(P)H-dependent activity represented as percent increases in ethidium fl uo-
rescence compared to control ( a ), myocardial lipid peroxidation ( b ), and GSH/GSSG ratio ( c ) in 
control, db/db, and tadalafi l (TAD)-treated db/db groups. Data are mean ± SEM ( n  = 6/
group).* P  < 0.05 versus control;  #  P  < 0.05 versus db/db       
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cardiomyocytes is not clear, although it may be mediated in part through opening of 
mitochondrial ATP-sensitive potassium channels, which appear to be the effectors 
of cardioprotection with PDE-5 inhibitors as reported previously [ 63 ,  83 ]. The pro-
tective effects of tadalafi l in diabetic heart may be caused by maintenance of bal-
ance in oxidant–antioxidant status, particularly considering that increased ROS 
generation augments impairment of mitochondrial function in diabetic hearts [ 95 ]. 
Moreover, tadalafi l treatment enhanced cGMP and PKG levels in mouse models of 
cardiac injury [ 64 ,  69 ]. As mentioned earlier, recent studies from our laboratory 
demonstrated that tadalafi l reversed detrimental remodeling of myocardial proteins 
[ 72 ], ameliorated pro-infl ammatory cytokines, and reduced infarct size following 
I/R injury while upregulating PKG activity in isolated cardiomyocytes of diabetic 
mice [ 73 ]. In this respect, tadalafi l is attractive because this drug can modulate mul-
tiple molecular targets of cardioprotection as compared to antioxidants, which only 
reduce oxidative stress.  

6     Conclusions 

 PDE-5 inhibitors have been successfully used by millions of people worldwide for 
treatment of male erectile dysfunction. Several basic science studies now demon-
strate that sildenafi l and other PDE-5 inhibitors have a protective effect in clinical 
scenarios including ischemia/reperfusion injury, myocardial infarction, heart trans-
plantation, cardiac hypertrophy, heart failure, doxorubicin-induced cardiotoxicity, 
Duchenne muscular dystrophy, and stem-cell preconditioning [ 96 ]. Today, nearly 
100 clinical trials with PDE-5 inhibitors have been completed or are ongoing that 
focus on the potential cardiovascular benefi ts [ 97 ]. Our studies provide new insights 
into the potential role of PDE-5 inhibitors in type 2 diabetic heart (Fig.  4 ). We 
believe these drugs may protect the diabetic heart through multiple redundant mech-
anisms. First, PDE-5 inhibitors could attenuate ROS generation and decrease the 
accumulation of oxidized glutathione (GSSG) in the diabetic through inhibition of 
NADPH oxidase [ 86 ]. Second, initiation of cGMP-dependent PKG signaling by 
PDE-5 inhibitors may increase PI3/Akt phosphorylation, which could increase 
eNOS phosphorylation leading to enhanced NO bioavailability and activation of 
PKG through soluble guanylate cyclase (sGC)-dependent formation of cGMP. The 
ROS-dependent inhibition of AMPK and PI3/Akt phosphorylation may reduce NO 
formation through disruption of eNOS phosphorylation. The increased NO bio-
availability and formation of cGMP/PKG may reverse or attenuate mitochondrial 
ROS by increased synthesis of the putative mitochondrial antioxidant enzyme 
GSTK1. Finally, PDE-5 inhibition could increase PKG-dependent phosphorylation 
of glycogen synthase 3β (GSK-3β), which has a role in inhibition of MPTP [ 96 ] and 
therefore apoptosis in the diabetic heart following I/R. Our results have also shown 
that PDE-5 inhibition attenuated detrimental alterations in proteins involved in the 
cytoskeletal structure, cardiac contractility, and redox regulatory mechanisms of the 
diabetic myocardium. We propose that tadalafi l treatment could be pursued as a 
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novel therapeutic approach in protection against diabetes-induced cardiomyopathy. 
In fact, a recent clinical study suggested that chronic treatment with sildenafi l 
caused an anti-remodeling effect in patients with early features of diabetic cardio-
myopathy, such as left ventricular concentric hypertrophy associated with altered 
myocardial contraction dynamics [ 98 ]. Moreover, it is tempting to speculate the use 
of PDE-5 inhibitors may be therapeutically benefi cial in protection against other 
oxidative stress-induced organ damage during diabetes, including nephropathy and 
retinopathy. These fi ndings have potential clinical signifi cance in the current sce-
nario as PDE-5 inhibitors are now serving as fi rst-line therapeutics in the treatments 
of ED in diabetic patients.

  Fig. 4    Proposed cardioprotective pathways by phosphodiesterase 5 (PDE-5) inhibition in diabetes       
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