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    Abstract     For the heart to produce mechanical force, two cellular components are 
essential: myofi brils, which are responsible for generating contractile activity, and 
mitochondria, which provide most of the required energy. Diabetic cardiomyopathy 
is associated with defects in both mitochondria and myofi brils, indicating that changes 
in energy production and energy utilization are of foremost relevance in the etiology 
of cardiac dysfunction in chronic diabetes. Several elements including hyperglyce-
mia, hyperlipidemia, and changes in the level of different hormones contribute 
directly or indirectly to contractile impairment in this multifactorial diabetic disorder. 
Metabolic imbalance, characterized by excessive fatty acid oxidation, Ca 2+  overload, 
and oxidative stress are considered to reduce mitochondrial phosphorylation activity 
and impair the mitochondrial electron-transport chain in the diabetic heart. These 
subcellular alterations result in reduced level of adenosine triphosphate (ATP) in the 
diabetic heart, limiting cardiomyocyte contractile ability. Altered gene expression 
and excessive proteolytic activity caused by intracellular Ca 2+  overload and oxidative 
stress in chronic diabetes promote changes in both composition and structure of myo-
fi brils; this myofi bril remodeling, characterized by diminished energy consumption 
and insensitivity to Ca 2+ , further impairs heart function in diabetic cardiomyopathy.  
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1        Introduction 

 Diabetes mellitus is becoming a more relevant disease, as the global prevalence 
of diabetes was estimated to be 2.8 % in 2000 and is expected to increase more 
than 50 % until reaching 4.4 % in 2030 [ 1 ]. Diabetes is associated to a wide range 
of clinical manifestations related to either insulin defi ciency in type 1 diabetes or 
insulin insensitivity in type 2 diabetes [ 2 ,  3 ]. This abnormal metabolic state is 
mainly characterized by, but not limited to, hyperglycemia (elevated glucose lev-
els). Other hormonal and metabolic abnormalities, especially hyperlipidemia, are 
known to contribute to diabetes-related cardiovascular complications [ 4 – 9 ]. 
Although the name diabetes mellitus, in opposition to insipidus, is a remnant of a 
time when tasting urine was an acceptable medical procedure, the idea of a defec-
tive cardiac phenotype as a result of diabetes is a relatively new concept. Although 
diabetes mortality is primarily attributed to cardiovascular complications [ 10 ], 
the concept of diabetic cardiomyopathy was neglected for a long time, mainly 
because of the confounding effect of chronic diabetes on heart function by athero-
sclerosis and hypertension [ 9 ,  11 ]. It was in 1972, with the description of four 
diabetic patients showing congestive heart failure in the absence of coronary 
artery atherosclerosis by Rubler et al. [ 12 ], that the term diabetic cardiomyopathy 
was fi rst used. Diabetic cardiomyopathy was defi ned as a cardiac dysfunction that 
occurs because of chronic diabetes, independently of coronary artery disease 
[ 13 ]. Patients with diabetes, in the absence of atherosclerosis, were found to suf-
fer from ventricular dysfunction including shortened left ventricular ejection 
time, longer pre-ejection period, and also elevated end-diastolic pressure [ 14 ]. 
Some epidemiological studies also revealed that diabetes shows increased risk of 
heart failure even when atherosclerosis and hypertension risks are taken into 
account [ 15 ]. Animal models for diabetes also attest to the harmful effects of 
diabetes on heart function. Streptozotocin-induced diabetes in rats is associated 
with reduced heart rate, lower peak ventricular pressure- and also impaired left 
ventricular contractions and relaxations [ 16 – 21 ]. Further animal studies have also 
shown that diabetes, in conjunction with hypertension, leads to congestive heart 
failure [ 22 ,  23 ]. 

 Although the molecular and cellular mechanisms of the cardiac dysfunction in 
diabetic cardiomyopathy are not completely understood [ 24 ], it is clear that an 
imbalance between energy production, in the form of adenosine triphosphate (ATP), 
and energy consumption is a key factor that contributes to the development of this 
pathological disorder [ 13 ,  24 ,  25 ]. The major players of the high-energy phosphate 
production and utilization cycle, in the cardiomyocytes, are the mitochondria (MT) 
and myofi brils (MF), the subcellular components responsible for the phosphoryla-
tion of adenosine diphosphate (ADP) into ATP and the hydrolysis of ATP by ATPase 
activity, respectively. Herein, this review focuses on the mechanisms by which 
chronic diabetes affects MT and MF functions, and also the consequences of the 
resulting energetic imbalance on cardiomyocytes and heart function.  
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2     Defects in Energy Production 

 In cardiac tissue, as in most tissues, MT are accountable for most of the ATP 
 production, and thus any deterioration of these organelles may lead to a state of 
energy restriction and consequently of cellular defi ciency. In fact, MT are respon-
sible, under normal conditions, for more than 95 % of all myocardial ATP synthe-
sis [ 26 ]; cardiomyocytes have a rather limited ATP pool that would be consumed 
in approximately 10 s without continuous mitochondrial activity [ 26 ]. To main-
tain a stable ATP content, and proper myocardial function, energy consumption 
and production have to be tightly coupled in the cardiac muscle. Proper MT func-
tion is, therefore, essential for cardiac function as MT phosphorylation is com-
monly compromised in several different types of cardiac disorders [ 26 – 28 ], 
including diabetic cardiomyopathy [ 29 – 31 ]. MT dysfunction is mainly credited to 
metabolic alterations in diabetes, resulting in increased free fatty acid (FFA) uti-
lization. Oxidative stress and Ca 2+  overload are also relevant to the process that 
leads to MT damage and energy defi ciency in the diabetic heart. These events are 
depicted in Fig.  1 .
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  Fig. 1    Mechanisms by which chronic diabetes leads to mitochondrial defect, reduced ATP 
reserves, and cardiac dysfunction       
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3        Defects in Energy Utilization 

 Cardiomyocytes require energy, in the form of ATP, to produce MF contractions and 
the mechanical force that ultimately allows the heart to pump blood. Because car-
diomyocyte contractions are controlled, in both intensity and rhythm, by changes in 
intracellular Ca 2+  concentration, a precise MF response to Ca 2+  is crucial to overall 
heart performance. MF is the functional unit of the cardiac muscle, being composed 
mainly of actin and myosin; myosin is the protein that is actively responsible for 
muscular contractions, as it possesses ATPase activity. MF contractions are regu-
lated by the troponin–tropomyosin complex (TnTm): Ca 2+  binds to the TnTm com-
plex, which exposes the myosin ATP-binding site, and this allows actin–myosin 
interactions to occur, resulting in the shortening of the muscle fi ber. This contractile 
process requires energy in the form of ATP and represents about 60–70 % of all ATP 
consumption of the myocardium under normal conditions [ 26 ]. As a matter of fact, 
diabetic cardiomyopathy is associated with MF abnormalities that result in defects 
in the energy utilization process [ 13 ,  32 – 34 ]. Two main factors can be seen promot-
ing cardiac contractile dysfunction: defects in energy utilization and abnormal MF 
regulation. Several cellular abnormalities involved in defects in energy utilization 
and regulation of MF in diabetic heart are depicted in Fig.  2 .
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  Fig. 2    Role of hormonal imbalance in diabetic cardiomyopathy in promoting myofi brillar 
 dysfunction, as a consequence of oxidative stress, Ca 2+  overload, and the activation of proteolytic 
enzymes       
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   Abnormal energy utilization is associated with MF remodeling, a process that is 
related to changes in gene expression, oxidative stress, intracellular Ca 2+ , and activa-
tion of proteolytic enzymes [ 13 ,  21 ,  32 ,  34 ,  35 ]. Several animal studies have reported 
decreased MF Ca 2+ -dependent ATPase activity in chronic diabetes [ 17 ,  19 ,  21 ,  36 ,  37 ], 
and MF insensibility to Ca 2+  is most likely involved in diabetic cardiomyopathy [ 13 ]. 
Several factors interfere with myofi bril function, involving both functional and regula-
tory enzymes [ 36 – 39 ]. Chronic diabetes, in animals, is  associated with the  prevalence 
of myosin heavy-chain (MHC) isoenzyme β over isoenzyme α [ 34 ,  40 – 48 ]. This shift 
in expression of MHC isoforms could explain the depressed ATPase activity in other 
animals; however, the relevance of this mechanism is uncertain in human hearts, in 
which the β-isoform is normally predominant over the α isoform [ 49 ,  50 ]. On the 
other hand, the phosphorylation of the myosin light chain (MLC) by the myosin light-
chain kinase (MLCK) is a factor that could explain cardiac dysfunction in human 
diabetic cardiomyopathy, because MLC phosphorylation is related to increased MF 
sensitivity to Ca 2+  [ 51 ]. However, MLC, MLCK, and MLC phosphorylation were 
shown to be signifi cantly reduced in diabetic rat heart homogenate, and these changes 
were partially reversed by insulin treatment [ 38 ]. The activation of proteolytic 
enzymes, seen in cardiac dysfunction [ 35 ,  52 – 60 ], can also participate in the develop-
ment of MF dysfunction. Intracellular Ca 2+  overload and oxidative stress are related to 
the activation of proteases [ 61 – 63 ] that would lead to degradation of cardiomyocyte 
MF proteins in diabetic cardiomyopathy. 

 Chronic diabetes is also known to affect cardiac function through impaired MF 
regulation mainly caused by TnTm abnormalities [ 13 ]. The TnTm complex is 
formed by tropomyosin and three subunits of troponin, TnC, TnI, and TnT, that are 
responsible for Ca 2+  binding, ATPase inhibition, and myosin binding, respectively. 
There is evidence that the phosphorylation of TnI and TnT by protein kinase A 
(PKA) and C (PKC) contribute to myofi brillar insensitivity to Ca 2+ , leading, in the 
given order, to reduced ATPase response to Ca 2+  and reduced myosin–actin interac-
tions [ 13 ]. These fi ndings are supported by the fact that impaired actomyosin 
ATPase activity of diabetic animals could be partially normalized in the presence of 
TnTm extracted from healthy animals [ 64 ].  

4     Mechanisms of Alterations in Mitochondria 
and Myofi brils 

 The primary energy source of cardiomyocytes are fatty acids, accounting for approxi-
mately 60–70 % of the myocardial substrate [ 65 ]. The participation of FFA in cardiac 
muscle energy metabolism is known to be even more expressive in a chronic diabetic 
state [ 66 ,  67 ]. Although lipids are essential for heart function, from both an energetic 
and structural point of view, excessive FFA uptake by myocytes is known to have del-
eterious effects on cardiac function, supporting the concept of ‘lipid paradox’ [ 65 ]. 
Studies conducted with both animal and human tissues have concluded that 
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sarcolemmal (SL) glucose transporter (GLUT) 1, GLUT4, and sodium–glucose-linked 
transporter (SLGT) 1 expression is reduced in diabetic hearts [ 68 – 76 ]. In fact, glucose 
uptake is impaired in diabetic hearts by insulin defi ciency or insensitivity [ 77 – 79 ]. The 
opposite is true for FFA uptake: high plasma levels of FFA not only increase cardio-
myocyte FFA uptake but also depress glucose utilization by the diabetic heart 
[ 26 ,  28 ,  80 ]. Increased MT fatty acid oxidation, in chronic diabetes, is credited to 
the upregulation of the perioxisome proliferator- activated receptor α [ 71 ,  81 – 84 ]. 
Such an elevation in the rate of fatty acid oxidation, if maintained for a long period 
of time, is believed to impair MT oxidative phosphorylation, causing damage to the 
electron-transport chain and depressing MT Mg 2+  ATPase [ 29 – 31 ]. In addition to 
the reduction of ATP reserves and depressed cardiac function [ 30 ,  31 ], MT dysfunc-
tion is associated with the formation of MT pores, leaking of MT proteins, and cel-
lular dysfunction [ 9 ,  13 ,  24 ,  30 ,  85 ,  86 ]. Triglyceride synthesis is also remarkably 
upregulated in diabetic cardiomyopathy, leading to a phenomenon called lipotoxic-
ity that is intimately related to cellular damage [ 9 ,  87 ]. Enhanced FFA uptake is 
associated with the accumulation of lipid droplets in the myocardium during the 
development of diabetic cardiomyopathy [ 9 ,  86 ]. 

 Diabetes is intimately associated with defects in several metabolic pathways that 
are responsible for a marked increase in intracellular Ca 2+  concentration [ 13 ,  18 ,  24 , 
 73 ,  86 ,  88 – 95 ]. Ca 2+ -handling defects in chronic diabetes are known to be related to 
SL and sarcoplasmic reticulum (SR) alterations that favor the occurrence of intra-
cellular Ca 2+  overload [ 96 – 99 ]. In this regard, MT are known to function as Ca 2+  
sinks, in the event of Ca 2+  overload, in an attempt to maintain the normal cytoplas-
mic level of free Ca 2+  [ 24 ,  73 ,  100 ,  101 ]. Although this mechanism is intended to be 
protective in nature, excessive MT Ca 2+  uptake depresses MT phosphorylation 
activity [ 13 ]. Different drugs that are capable of attenuating Ca 2+  overload, such as 
Ca 2+  channel blockers and angiotensin-receptor antagonists, have been shown to 
ameliorate cardiac dysfunction in diabetic cardiomyopathy [ 40 ,  95 ,  102 ,  103 ]. 

 It is becoming clear that oxidative stress contributes to the development of sev-
eral diabetic complications [ 104 – 108 ], including diabetic cardiomyopathy [ 13 ,  85 , 
 109 – 113 ]. Hormonal imbalance in diabetes, marked by elevated levels of angioten-
sin II, catecholamines, and endothelins, plays a signifi cant role in promoting oxida-
tive stress and cardiac dysfunction [ 13 ,  114 ]. Damaged MT [ 13 ,  115 ,  116 ] and 
advanced protein glycation, caused by hyperglycemia, are also known to result in 
the development of oxidative stress in chronic diabetes [ 117 ,  118 ]. Initially, cardio-
myocytes cope with increased oxidative stress by boosting their natural antioxidant 
defenses. Elevated activities of superoxide dismutase, glutathione peroxidase, and 
other antioxidant enzymes have been reported in the diabetic rat heart [ 119 – 121 ]. 
Most likely, these initial compensatory mechanisms are eventually exhausted, 
resulting in oxidative stress and leading to subcellular remodeling and myocardial 
cell damage [ 13 ]. Some reports have indicated that antioxidants are effective in 
preventing diabetic cardiomyopathy and cardiac dysfunction [ 13 ,  122 ,  123 ] and 
thus provide evidence regarding the relevance of oxidative stress in the pathophysi-
ology of diabetic cardiomyopathy (Fig.  2 ).  

N.S. Dhalla et al.



305

5     Conclusions 

 From the foregoing discussion, it is apparent that a defect occurs in the process of 
energy production that leads to depression of ATP stores in the diabetic heart, pri-
marily because of a shift in the balance between the utilization of glucose and the 
utilization of FFA as substrates by the myocardium. Excessive utilization of FFA for 
a prolonged period is considered to impair MT function with respect to oxidative 
phosphorylation and the electron-transport system. MT defects also includes open-
ing of MT pores for leakage of cytoplasmic proteins that lead to the development of 
myocardial cell damage in the form of diabetic cardiomyopathy. Abnormalities in 
myocardial metabolism also promotes the occurrence of oxidative stress and intra-
cellular Ca 2+  overload, which results in the activation of different proteases and 
defects in gene expression in the diabetic myocardium. During this process of sub-
cellular remodeling caused by diabetes, MF become defective in respect to their 
ability to utilize ATP as well as sensitivity to Ca 2+  for the generation of contractile 
force. Thus, not only is cardiac dysfunction the result of defects in energy produc-
tion by MT, but also defects in energy utilization by MF play a critical role during 
the development of diabetic cardiomyopathy.     
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