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    Abstract     Diabetes mellitus increases the risk of cardiomyopathy independently of 
underlying comorbidities, and heart failure is a major cause of death in diabetic 
patients. The development of this distinct cardiomyopathy in both type 1 and type 2 
diabetes is associated with complex and multifactorial cellular and molecular per-
turbations. It is widely recognized that cardiac dysfunction in chronic diabetes 
involves hormonal imbalance, oxidative stress, proteases activation, defects in Ca 2+  
cycling, and varying degrees of subcellular remodeling of organelles. 

 Ca 2+  -handling abnormalities in diabetic cardiomyocytes have primarily been 
attributed to changes in the sarcolemmal Na + –Ca 2+  exchanger, L-type Ca 2+  channel, 
Na + –K +  ATPase, and Na + –H +  exchanger proteins as well as Ca 2+ -release channels 
and Ca 2+ -pump proteins embedded in the sarcoplasmic reticulum. Intracellular Ca 2+  
overload has been implicated in the impairment of excitation–contraction coupling 
as a result of alterations in Ca 2+ -entry, Ca 2+ -removal, Ca 2+ -uptake, and Ca 2+ -release 
processes in the diabetic heart. These observations are consistent with the view that 
defects in Ca 2+ -handling proteins play a critical role in the pathogenesis of cardiac 
dysfunction during the development of diabetic cardiomyopathy.  
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1        Introduction 

 Cardiovascular disease is the leading cause of death in the diabetic population. 
Although diabetic cardiomyopathy is associated with several comorbidities includ-
ing atherosclerosis, hypertension, coronary artery disease, and valvular malfunc-
tion, it has been demonstrated that chronic diabetes impairs ventricular function 
independently of other risk factors [ 1 ,  2 ]. This distinct diabetic cardiomyopathy is 
characterized by reduced diastolic compliance and rate of myocardial relaxation as 
well as a decrease in absolute force development [ 3 ,  4 ]. The exact underlying patho-
logical mechanisms are not clear; however, several studies have suggested that car-
diac dysfunction in chronic diabetes is intimately associated with varying degrees of 
defects in subcellular organelles such as sarcolemma (SL), sarcoplasmic reticulum 
(SR), mitochondria (MT), myofi brils (MF), and extracellular matrix (ECM) [ 3 ,  5 , 
 6 ]. Remodeling of these components in the diabetic heart primarily occurs in 
response to hormonal imbalance, oxidative stress, activation of different proteases, 
changes in gene expression, and metabolic shift caused by increased levels of cho-
lesterol and fatty acids. It is worthwhile to note that remodeling of SL and SR along 
with altered calcium metabolism has been shown to be an early sign in the process 
for the development of diabetic cardiomyopathy [ 7 – 9 ]. 

 It is well known that intracellular Ca 2+  is a major regulator of excitation–contrac-
tion coupling, and multiple aspects of calcium handling are considered to underlie 
the subcellular mechanisms responsible for the impaired cardiac contraction and 
relaxation in diabetic cardiomyopathy [ 6 ]. Indeed, several studies have reported the 
occurrence of intracellular Ca 2+  overload in diabetic cardiomyocytes [ 3 ,  7 ,  10 ]. This 
alteration have been mostly attributed to the SL and SR remodeling, leading to 
depressed SL Na + –Ca 2+  exchanger activity, decreased SR Ca 2+ -pump ATPase 
(SERCA2a) activity, reduced SR Ca 2+  load, and Ca 2+ -release channel (ryanodine 
receptor) dysfunction [ 11 – 13 ]. It is pointed out that the inward Ca 2+  current is the 
critical initiator of the contractile and relaxation cycle in the heart. Cardiac depolar-
ization opens L-type Ca 2+  channels in the SL membrane and allows the entry of Ca 2+  
into cardiomyocytes. This transient increase in cytoplasmic Ca 2+  concentration trig-
gers Ca 2+  release from SR, mainly through the Ca 2+ -release channel or ryanodine 
receptor2 (RyR2) and by inositol triphosphate receptors (InsP3R) to a lesser extent. 
This event, described as calcium-induced calcium release (CICR), is crucial for 
excitation–contraction coupling in cardiac muscle [ 14 ,  15 ]. Following the opening 
of a RyR2 cluster on the SR, Ca 2+  sparks are generated; this local, rapid, and brief 
elevation in [Ca 2+ ]  i   elevates cytosolic-free Ca 2+  by tenfold or more and initiates con-
traction. The relaxation of cardiac muscle occurs upon lowering the concentration 
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of free Ca 2+  by intracellular SR uptake via SERCA2a as well as SL effl ux via the 
Na + –Ca 2+  exchanger and the SL Ca 2+  pump in the SL membrane [ 6 ,  14 ]. Although 
the MT and nucleus are also known to accumulate a signifi cant amount of Ca 2+  in 
cardiomyocytes, their role in the regulation of cytoplasmic concentration of free 
Ca 2+  during the contraction and relaxation processes is not well established [ 6 ,  14 ]. 
This chapter is therefore focused on discussion regarding the status Ca 2+ -handling 
proteins in SL and SR during the development of diabetic cardiomyopathy.  

2     SL Defects in Diabetic Heart 

 Alterations in SL L-type Ca 2+  channels, Na + –Ca 2+  exchanger, Na + –K +  ATPase, and 
Na + –H +  exchanger proteins, which are involved in Ca 2+  handling directly or indi-
rectly, have been shown to occur in diabetic cardiomyopathy [ 2 ,  6 ]. L-type Ca 2+  
channels are voltage-gated channels mostly located in the transverse tubules in prox-
imity with RyR in SR, thereby suggesting the existence of a physical coupling 
between both Ca 2+ -entry and Ca 2+ -release channels [ 16 ]. SL Ca 2+  channels in cardio-
myocytes are modulated by several pathways including calmodulin (CaM), 
β-adrenergic receptors, phosphatidylinositol-3-kinase (PI3K), protein kinase A 
(PKA), and protein kinase C (PKC) [ 17 ,  18 ]. Although most of the calcium for car-
diac contraction is provided by the SR, the activity of L-type Ca 2+  channels is of 
critical importance for heart function. For instance, genetic mutation of SL Ca 2+  
channels leading to their impaired function has been linked with short QT syndrome, 
arrhythmia, and sudden death [ 19 ]. One of the early alterations detected in diabetic 
hearts was the prolongation of the ventricular action potential, which was attributed 
mainly to depressed transient outward K +  current and to L-type Ca 2+  current [ 3 ,  20 ]. 
Experimental investigations in diabetic animals have revealed an unaltered [ 21 ,  22 ] 
or decreased [ 23 – 26 ] SL Ca 2+ -channel density. These disparities in results seems to 
refl ect differences in models used, especially regarding the progression of disease, 
because alteration of the Ca 2+  current has been shown to occur only in later stages of 
diabetes. The reduced Ca 2+ -channel density has been attributed to decreased levels 
of protein content [ 23 ,  25 ], depressed cell-surface expression [ 24 – 26 ], and changes 
in the phosphorylation status [ 23 ]. Lu et al. [ 24 ], after a series of investigations using 
type 1 ( Ins2  Akita  rats) and type 2 ( db/db  rats) [ 23 ] diabetes models, have reported 
decreased Ca 2+ -current density in both groups of diabetic animals, although the 
reduction was more intense in  db/db  than in  Ins2  Akita  myocytes as compared to non-
diabetic cells. Because reduced phosphorylation status of the L-type Ca 2+  channel 
was observed, it was hypothesized that Ca 2+ -current alteration could be related to a 
lack of insulin in type 1 diabetes and downregulation of the Akt pathway. 

 Following intracellular infusion of phosphatidylinositol-3,4,5-trisphosphate 
(PIP3), a second messenger produced by PI3K, and consequently because of stimu-
lation of the Akt pathway, depression in Ca 2+ -current density was fully restored in 
 Ins2  Akita  myocytes in contrast with the partial restoration seen in  db/db  myocytes. The 
reduced levels of SL Ca 2+ -channel protein in the  db/db  cardiomyocytes were not seen 
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in  Ins2  Akita  cardiomyocytes, thereby leading to the hypothesis that hyperglycemia in 
combination with obesity and insulin resistance in type 2 diabetes could cause more 
damage to SL Ca 2+ -channel function than hyperglycemia and lack of insulin in type 
1 diabetes [ 23 ,  24 ]. It is important to highlight that another study has revealed that the 
activation of the PI3K-dependent Akt signaling pathway by insulin- like growth fac-
tor 1 restored L-type Ca 2+  channels function in type 1 diabetic animals [ 27 ]. Taken 
together, these data suggest that insulin may have a positive inotropic effect and 
could explain how insulin resistance can affect heart function in several pathological 
states [ 3 ]. Despite the fact that most of the investigations support the idea that L-type 
Ca 2+ -channel activity is not impaired in cardiac hypertrophy, Ca 2+  transients trigged 
by Ca 2+ -channel current have shown to be desynchronized, presenting a decreased 
amplitude and slow kinetics. These fi ndings support the view that the intermolecular 
failure state would also apply to SL Ca 2+  channels, the SR Ca 2+ -release channels, 
considering that the Ca 2+  current becomes less effective in triggering SR Ca 2+  release 
in the diabetic heart [ 16 ,  28 – 30 ]. 

 It has become clear that Na + –Ca 2+  exchanger 1 (NCX1) is the major SL protein 
for extruding Ca 2+  that enters the cardiac cell via SL Ca 2+  channels [ 31 ,  32 ]. This 
exchanger promotes the infl ux of 3 Na +  for the extrusion of each Ca 2+ , and its activ-
ity is controlled by both internal and external Na +  and Ca 2+  levels as well as by the 
membrane potential. Under certain pathological conditions, NCX1 also works in 
the reverse mode, contributing to the development of intracellular Ca 2+  overload in 
cardiomyocytes. It is noteworthy that the direction and amplitude of NCX1 current 
relies on the activity of SL Na + –K + -ATPase, which is responsible for maintaining 
the intracellular Na +  concentration at a low level [ 31 ,  32 ]. In type 1 diabetes, both 
depressed NCX activity [ 10 ,  33 ] and expression [ 10 ,  34 ,  35 ] were observed in the 
heart. It has been suggested that NCX1 dysfunction is related to alterations in the 
phospholipid composition of SL and reduced stimulation of the transporter by pro-
tein kinase C [ 36 ]. Furthermore, marked depression in SL Na + –K +  ATPase activity 
in insulin-dependent diabetes animals is considered to stimulate the NCX activity in 
a reverse mode to normalize the cytosolic Na +  concentration [ 37 – 39 ]. Depressed SL 
activity of Ca 2+ -pump ATPase was also reported in the diabetic heart [ 40 ,  41 ]. 
Consequently, a net gain of Ca 2+  would occur as a result of the impaired effl ux and 
increased Ca 2+  entry, leading to intracellular Ca 2+  overload as well as mechanical 
and electrical dysfunction in diabetic cardiomyocytes. On the other hand, in some 
studies involving type 2 diabetes, the NCX1 activity was either increased [ 25 ] or 
unchanged [ 42 ,  43 ], and no difference in mRNA level or protein content was 
detected [ 36 ,  42 ,  43 ]. Thus, the role of NCX in the etiology of cardiomyocyte dys-
function is complex, and changes in its expression or activity are viewed as compen-
satory or causal, depending upon the stage and severity of diabetes. 

 SL Na + –K +  ATPase plays a key role in maintenance of the resting membrane poten-
tial in cardiac cells by removing intracellular Na +  in exchange for extracellular K + . 
It has been demonstrated that Na + –K +  ATPase dysfunction in diabetic cardiomyopathy 
is related to downregulation of its subunit expression as well as alteration in the enzyme 
kinetics [ 37 ,  39 ]. The activity of this enzyme may also be infl uenced by alterations in 
composition of SL membrane observed in diabetes [ 44 ]. The abnormality in Na + –K +  
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ATPase activity in the diabetic heart results in cytosolic Ca 2+  overload involving the 
NCX exchanger. It is important to emphasize that treatment of diabetic animals with 
insulin upregulates the expression of Na + –K +  ATPase and improves cardiac function 
[ 45 ]. Moreover, antioxidant agents, including vitamin E [ 46 ] and fi sh oil containing 
n-3 fatty acids [ 47 ], were able to attenuate and even prevent the diabetic-induced 
changes in SL Na + –K +  ATPase and cardiac dysfunction. These observations suggest 
the role of the observed depression in Na + –K +  in Ca 2+ -handling abnormalities in car-
diomyocytes during the development of diabetic cardiomyopathy. 

 Another integral SL protein, Na + –H +  exchanger (NHE), is involved in intracellu-
lar Ca 2+  modulation. NHE-1, which isoform is mostly expressed in cardiac cells, 
regulates intracellular pH by exchanging one intracellular H +  ion for an extracellular 
Na +  ion. In addition, NHE-1 participates in the regulation of Na +  fl uxes and cell 
volume. Although emerging evidence supports NHE-1 involvement in diabetic car-
diomyopathy, the results are controversial, and its potential role has not been estab-
lished [ 48 ]. The NHE-1 activity has been shown to be decreased in isolated 
cardiomyocytes as well as the SL membranes of the diabetic heart [ 49 ,  50 ]. In another 
study, the reduced activity of NHE-1 in diabetes has been considered responsible for 
resistance of diabetic hearts to ischemia–reperfusion injury [ 51 ]. An increase in 
NHE-1 activity in cardiomyocytes of the Goto-Kakizaki rat model of type 2 diabetes 
has also been detected [ 52 ]. It has been suggested that intracellular acidifi cation in 
cardiac cells stimulates the Akt signaling pathway, which could represent a likely 
mechanism that mediates the myocardial hypertrophy observed in the diabetic ani-
mals. In addition, chronic treatment with cariporide, a NHE-1-selective inhibitor, 
has been shown to prevent the phenotype of hypertrophy [ 52 ]. It is worth noting that 
some studies have also indicated that chronic administration of NHE-1- selective 
inhibitors may prevent vascular hypertrophy in diabetic rats [ 53 ] and also attenuate 
or even reverse the development of cardiac hypertrophy and its progression to heart 
failure in different animal models [ 54 – 56 ]. Thus, the observed alterations in SL Na + –
H +  exchanger in diabetes can be seen to indirectly affect the Ca 2+  handling by cardio-
myocytes and participate in the development of diabetic cardiomyopathy.  

3     SR Changes in Diabetic Heart 

 Several studies have revealed that different Ca 2+ -handling proteins embedded in the 
SR membrane become abnormal during the development of diabetic cardiomyopa-
thy [ 2 ,  6 ,  46 ]. SR channel or RyR is a key component in Ca 2+  handling and excita-
tion–contraction coupling in the heart. Cardiac cells express mostly the RyR2 
isoform, which is regulated by proteins such as calmodulin (CaM), Ca 2+ -CaM- 
dependent kinase (CaMKII), and PKA [ 57 ]. Following the opening of a RyR2 clus-
ter on the SR, Ca 2+  sparks are generated and result in local, rapid, and brief elevation 
in cytosolic-free Ca 2+  by tenfold or more and trigger cardiac contraction. It has been 
demonstrated that RyR2 function in diabetic cardiomyocytes is compromised, 
becoming leaky to Ca 2+  during diastole and accounting for a reduced SR Ca 2+  load. 
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In addition, a leaky RyR would promote Ca 2+  accumulation in the cytosol, resulting 
in increased SL NCX activity to remove the intracellular excess Ca 2+  in exchange 
for Na + . Consequently, the increased Na +  infl ux would induce cell membrane depo-
larization, thereby leading to extrasystolic depolarizations and development of pre-
mature beats [ 58 – 60 ]. It has been suggested that these abnormalities may be linked 
to reduced levels of FKBP12.6 and increased activity of PKA [ 25 ,  61 ]. It should be 
mentioned that FKBP 12.6 is an accessory protein that plays a role in coordinating 
the opening and closing of individual RyRs in an array. The hyperphosphorylation 
of RyR2 by PKA leads to the dissociation of FKBP 12.6 and increasing the open 
probability of the RyR2 receptor [ 43 ]. This increased phosphorylation at Ser2809 
and Ser2814 of RyR2 is also observed in stress/exercise- induced cardiac arrhyth-
mias, sudden death, and catecholaminergic ventricular tachycardia [ 62 ,  63 ]. 

 In a model of diabetic cardiomyopathy, Bidasee et al. [ 58 ] have reported that 
RyR2 proteins of 6-week streptozotocin (STZ)-induced diabetes rats bound less 
[ 3 H]ryanodine in comparison to control, although the affi nity of this specifi c ligand 
and protein expression of the receptor remained unchanged in comparison to con-
trol. In a later study using 6- and 8-week STZ-induced diabetes rats [ 64 ], they also 
observed impaired binding ability of RyR2 to [ 3 H]ryanodine, which was even more 
pronounced in 8-week STZ-induced diabetes cardiomyocytes. In addition, 8-week 
STZ-induced diabetes rats showed a decrease in RyR2 expression (mRNA and pro-
tein). In both studies [ 58 ,  64 ], 2 weeks of insulin treatment initiated after 4 and 6 
weeks of untreated diabetes was able to minimize the loss in function and expres-
sion of RyR2. Taken together, the fi ndings indicate that the loss of functional integ-
rity of the receptor precedes reduction in its expression and that the severity depends 
on the duration of untreated disease. The underlying mechanisms for RyR2 dys-
function remain unclear, but it has been shown that it could be caused by oxidative 
stress, nonenzymatic glycation reactions, and increased formation of disulfi de 
bonds between adjacent sulfhydryl groups of the receptor [ 65 – 67 ]. 

 The InsP3R plays a minor role in excitation–contraction coupling compared to the 
RyR in ventricular cardiomyocytes, but in atrial myocytes InsP3Rs are much more 
numerous and coexist with RyR on the SR, suggesting a prominent role in atrial con-
traction [ 68 ]. Several studies have shown that the InsP3R pathway is involved in 
progression of heart failure and delayed after depolarizations arrhythmias [ 69 ,  70 ]. 
In an experiment involving animals with obesity and type 2 diabetes, InsP3R expres-
sion was unaltered in ventricles from  ob/ob  mice [ 71 ], but in other diabetes studies it 
was shown to be decreased in diabetic rats [ 72 ] and in the atrium from diabetic 
patients [ 73 ]. The existing data indicate that altered InsP3R signaling may account for 
impaired Ca 2+  handling and arrhythmogenesis in diabetic cardiomyopathy. However, 
the precise role of InsP3R in such pathological conditions requires further study. 

 Most of the intracellular Ca 2+  is stored in SR via SERCA, which transfers two 
Ca 2+  ions from the cytosol to the lumen at the expense of the hydrolysis of one ATP 
molecule. SERCA2a, the isoform predominately expressed by cardiomyocytes, is 
regulated by phosphorylation of a SR protein, phospholamban (PLB) [ 32 ,  74 ]. In its 
dephosphorylated form, PLB interacts with the pump, reducing its affi nity for Ca 2+ . 
However, when phosphorylated by PKC or CAMK, PLB is not able to inhibit 
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SERCA2a activity [ 75 ,  76 ]. SR function in diabetic cardiomyocytes has been shown 
to be compromised, presenting a reduced Ca 2+  uptake that could explain the pro-
longed cardiac relaxation observed. As a consequence, SR calcium storage declines, 
resulting in reduced systolic calcium release and therefore a weaker cardiac con-
traction [ 74 ]. In this regard, some investigations with STZ-induced type 1 diabetes 
rats have reported decreased protein content and SERCA2a pumping dysfunction, 
which might be partly associated with an upregulation of activity and inhibitory 
PLB expression [ 35 ,  77 ]. In addition, it was proposed that products from advanced 
glycosylation reactions would form irreversible crosslinks within many proteins, 
leading to impairment of SERCA2a activity in diabetes [ 78 ,  79 ]. Thus far, it has 
been diffi cult to establish a general conclusion regarding myocardial SERCA2a and 
PLB changes in type 2 diabetes, most likely because of data limitation and ambigu-
ity, especially taking in consideration the differences in animals models used. 

 Several studies using different type 2 diabetes animal models observed compro-
mised SERCA2a function [ 25 ,  42 ,  43 ,  80 ]. SERCA2a expression was shown to be 
downregulated in Otsuka Long-Evans Tokushima fatty rats [ 80 ] and  db / db  mice [ 43 ] 
but unaltered in sucrose (SU)-fed rats [ 42 ]. Increased protein level of inhibitory PLB 
was only detected by one study [ 43 ]. Furthermore, Fredersdorf et al. [ 81 ] evaluated 
cardiac function and protein expression of Zucker diabetic fatty (ZDF) rats in the early 
stages of type 2 diabetes. They were able to demonstrate that animals in transition 
from insulin resistance to type 2 diabetes developed signifi cant myocardial hypertro-
phy initially characterized by an increased systolic function and an intense SR Ca 2+  
uptake. In addition, myocardial expression of SERCA2a was markedly elevated and 
PLB expression was depressed. These changes were attributed to Akt signaling path-
way activation induced by high levels of insulin, thereby supporting the view that 
upregulation of myocardial SERCA2a expression may be seen as a feedback mecha-
nism in handling volume overload in the early phase of diabetes type 2. Taken together, 
the confl icting results regarding gene and protein expressions for SERCA2a and PLB 
can be explained by differences in the duration and severity of diabetes in various 
studies. Nonetheless, these observations are consistent with the view that alterations 
in SR function and SR remodeling occur in the diabetic heart [ 74 ]. Moreover, the criti-
cal role of SERCA2a in excitation–relaxation coupling is reinforced with the evidence 
that upregulation of its expression is able to reverse contractile dysfunction and abnor-
mal calcium fl ux in established diabetic cardiomyopathy [ 82 – 84 ].  

4     Mechanisms of SL and SR Alterations in the Diabetic Heart 

 It has been suggested that hyperglycemia along with metabolic shift, as a result of 
the hormonal imbalance caused by elevated plasma levels of catecholamines and 
angiotensin II, leads to oxidative stress and contributes to diabetic injury to multiple 
organs, especially the cardiac muscle [ 2 ,  4 ,  46 ]. The shift in myocardial metabo-
lism, marked by decreased use of glucose and excessive utilization of long-chain 
fatty acids as an energy substrate, intensify the production of reactive oxygen 

Ca2+ -Handling in Diabetic Heart



292

species (ROS) that damage the respiratory and oxidative phosphorylation activities 
of mitochondria, contributing to decreased myocardial effi ciency [ 14 ,  85 ]. In addi-
tion, there is experimental evidence to suggest that mitochondria under several 
pathological conditions can act as a Ca 2+  sink [ 86 ,  87 ]. Although this mechanism 
initially seems to play an important compensatory role in Ca 2+  regulation by pre-
venting or delaying intracellular Ca 2+  overload in cardiomyocytes, it also accounts 
for the development of oxidative stress at late stages of diabetes. The generation of 
ROS can lead to leakage of toxic proteins through opening of mitochondrial pores 
and further damage of cardiomyocytes [ 65 ,  88 ]. Another mechanism of oxidative 
stress is mediated by advanced glycation end products (AGE), which are able to 
activate signaling pathways that induce ROS production, and its accumulation is 
related to structural and functional alterations of proteins in chronic diabetic tissues. 
It is worthwhile to note that hyperglycemia can impair and decrease the antioxidant 
system capacity in the heart and other organs in diabetes [ 85 ,  89 ,  90 ]. Thus, both the 
intense generation of ROS and reduced antioxidant capacity contribute signifi cantly 
to oxidative stress and therefore myocardial damage in chronic diabetes. 

 It is now well established that genomic alterations lead to myocardial dysfunction in 
diabetic cardiomyopathy. Numerous studies have also been relating the diabetic state 
with activation of proteases and changes in signal transduction pathways, including 
PKC, PKA, CaM kinase, and mitogen-activated protein kinase, contributing to subcel-
lular remodeling [ 91 ]. With respect to Ca 2+  cycling, downregulation of SERCA2a 
expression, as well as its promoter activity were reported. Some investigations also 
detected reduced protein levels of SL Ca 2+  channels, NCX1, Na + –K +  ATPase, and RyR2 
[ 74 ,  92 ]. These alterations have been attributed to an increased nuclear O-GlcN acyla-
tion, as a result of oxidative stress induced by hyperglycemia and enhanced activity of 
the PKC signaling pathway [ 93 ]. Moreover, genomic alterations also seem to underlie 
myosin dysfunction [ 94 ,  95 ]. In models of diabetic cardiomyopathy, abnormal myosin 
isozyme distribution, shift in myosin content from V1 to V3, and increased troponin I 
phosphorylation via the PKC pathway have been detected. Taken together, this could 
contribute to the decrease in Ca 2+  sensitivity of myofi laments [ 96 – 101 ].  

5     Conclusions 

 From the foregoing discussion it can be appreciated that diabetes is a complex 
pathology and that a wide variety of mechanisms contributes to cardiac dysfunction. 
The hormonal imbalance along with metabolic shift enhances oxidative stress, 
which leads to several abnormalities including activation of proteases, increased 
intracellular concentration of free Ca 2+ , and alterations in cardiac gene expression 
(Fig.  1 ). Intracellular Ca 2+  overload has been implicated not only in the process of 
excitation–contraction impairment but also in subcellular remodeling of organelles 
in cardiac cells. This event has been attributed to decreased SR Ca 2+  load, depressed 
SERCA2a activity, and RyR2 dysfunction as well as changes in L-type Ca 2+  chan-
nels. Abnormalities of SL proteins such as SL NCX, Na + –K +  ATPase, NHE-1, and 
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Ca 2+ -pump ATPase have also been shown to be involved in diabetic cardiomyopathy. 
Molecular targeting approaches to revert or even attenuate alterations in proteins 
associated with Ca 2+  handling hold promise as a new therapeutic modality. In addi-
tion, recent data have suggested that the insulin signaling pathway and Ca 2+  regula-
tory processes are clearly interrelated, although many of these relationships are yet 
to be defi ned. Thus, further in-depth studies regarding the interactions between 
these pathways should lay the foundations for the design of new therapeutic 
approaches for diabetic heart disease.
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