

REST: Advanced Research Topics and Practical
Applications

Cesare Pautasso • Erik Wilde • Rosa Alarcon
Editors

REST: Advanced Research
Topics and Practical
Applications

2123

Editors
Cesare Pautasso Rosa Alarcon
Faculty of Informatics Pontificia Universidad Catolica de Chile
University of Lugano Santiago
Lugano Chile
Switzerland

Erik Wilde
EMC Corporation
Pleasanton, California
USA

ISBN 978-1-4614-9298-6 ISBN 978-1-4614-9299-3 (eBook)
DOI 10.1007/978-1-4614-9299-3
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013951522

© Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

1 Introduction . 1
Cesare Pautasso, Erik Wilde and Rosa Alarcon

Part I REST Research

2 Communication and Capability URLs in COAST-based
Decentralized Services . 9
Michael M. Gorlick and Richard N. Taylor

3 Interoperability of Two RESTful Protocols: HTTP and CoAP 27
Myriam Leggieri and Michael Hausenblas

4 Enabling Real-Time Resource Oriented Architectures with REST
Observers . 51
Vlad Stirbu and Timo Aaltonen

5 Survey of Semantic Description of REST APIs . 69
Ruben Verborgh, Andreas Harth, Maria Maleshkova, Steffen
Stadtmüller, Thomas Steiner, Mohsen Taheriyan and Rik Van de Walle

6 APIs to Affordances: A New Paradigm for Services on the Web 91
Mike Amundsen

7 Leveraging Linked Data to Build Hypermedia-Driven Web APIs 107
Markus Lanthaler

8 RestML: Modeling RESTful Web Services . 125
Robson Vincius Vieira Sanchez, Ricardo Ramos de Oliveira
and Renata Pontin de Mattos Fortes

v

vi Contents

Part II Practical Applications

9 A Lightweight Coordination Approach for Resource-Centric
Collaborations . 147
Morteza Ghandehari and Eleni Stroulia

10 Connecting the Dots: Using REST and Hypermedia to Publish
Digital Content . 167
Luis Cipriani and Luiz Rocha

11 In-Process REST at the BBC . 193
Marcel Weiher and Craig Dowie

Contributors

Timo Aaltonen Tampere University of Technology, Tampere, Finland

Rosa Alarcon Department of Computer Science, Pontificia Universidad Catolica
de Chile, Santiago, Chile

Mike Amundsen Principal API Architect for Layer 7 Technologies, Washington,
USA

Luis Cipriani Abril Midia Digital, São Paulo, Brasil

Craig Dowie Betfair, London, United Kingdom

Renata Pontin de Mattos Fortes Instituto de Ciências Matemáticas e de Com-
putação, Universidade de São Paulo, São Carlos, SP, Brazil

Morteza Ghandehari Department of Computing Science, University of Alberta,
Alberta, Canada

Michael M. Gorlick University of California, Irvine, CA, USA

Andreas Harth Institute AIFB, Karlsruhe Institute of Technology (KIT), Karl-
sruhe, Germany

Michael Hausenblas DERI, Galway, Ireland

Markus Lanthaler Institute for Information Systems and Computer Media, Graz
University of Technology, Graz, Austria

Myriam Leggieri Digital Enterprise Research Institute (DERI), National Univer-
sity of Ireland, Galway, Ireland

Maria Maleshkova Institute AIFB, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

Ricardo Ramos de Oliveira Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos, SP, Brazil

Cesare Pautasso University of Lugano, Lugano, Switzerland

vii

viii Contributors

Luiz Rocha Abril Midia Digital, São Paulo, Brasil

Robson Vincius Vieira Sanchez Instituto de Ciências Matemáticas e de Com-
putação, Universidade de São Paulo, São Carlos, SP, Brazil

Steffen Stadtmüller Institute AIFB, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

Thomas Steiner Departament de Llenguatges i Sistemes Informatics, Universitat
Politècnica de Catalunya, Barcelona, Spain

Vlad Stirbu Tampere, Finland

Eleni Stroulia Department of Computing Science, University of Alberta, Alberta,
Canada

Mohsen Taheriyan Information Science Institute, University of Southern Califor-
nia, Marina del Rey, CA, USA

Richard N. Taylor University of California, Irvine, CA, USA

Ruben Verborgh Multimedia Lab – Ghent University – iMinds, Ledeberg-Ghent
Belgium

Rik Van de Walle Multimedia Lab – Ghent University – iMinds, Ledeberg- Ghent,
Belgium

Marcel Weiher Metaobject Ltd., London, United Kingdom

Erik Wilde EMC Corporation, Pleasanton, CA, USA

Editorial Board

Jan Algermissen, Nord Software Consulting, Germany

Mike Amundsen, Layer7, USA

Bill Burke, Red Hat, USA

Benjamin Carlyle, Australia

Stuart Charlton, Elastra, USA

Cornelia Davis, EMC, USA

Gary Frankel, EMC, USA

Joe Gregorio, Google, USA

Dominique Guinard, Evrythng

Michael Hausenblas, DERI, Ireland

Rohit Khare, 4K Associates, USA

Yves Lafon, W3C, USA

Frank Leymann, University of Stuttgart, Germany

Mark Nottingham, Rackspace

Alexandros Marinos, Rulemotion, UK

Sam Ruby, IBM, USA

Richard Taylor, UC Irvine, USA

Steve Vinoski, Verivue, USA

ix

Chapter 1
Introduction

Cesare Pautasso, Erik Wilde and Rosa Alarcon

Representational State Transfer (REST) is an architectural style that defines the archi-
tectural quality attributes of the World Wide Web, seen as an open, loosely coupled,
massively distributed and decentralized hypermedia system. REST has seen a large
uptake for the last several years, as it is largely regarded as a simpler and more Web-
like way of exposing service interfaces, in particular when compared with earlier
approaches such as the rather complex and heavyweight SOAP/WS-* and similar
RPC-inspired protocols. As with all success stories, there also is the downside that
pretty much any HTTP-based service is being promoted and sold as being “RESTful”
these days, even though many do not completely follow the architectural principles
and constraints underlying the REST style [81]. However, in the end this may be the
fate of every successful “brand name”: once it becomes successful enough, it loses its
purity and is used for marketing, where technical accuracy is not the main concern.

The goal of this book is to present the latest developments and advances in re-
search around the topic of REST, and how the Web is changing from a distributed
hypermedia system for document publishing to a programmable medium which is
more and more being used to deliver software as a service. We have collected many
important contributions exending the scope of applicability of REST, proposing to
update REST to fit with modern requirements, discussing how to model and describe
RESTful architectures, as well as dealing with some of its limitations (e.g., observing

∗ The bibliography that accompanies this chapter appears at the end of this volume and is also
available as a free download as Back Matter on SpringerLink, with online reference linking.

C. Pautasso (�)
University of Lugano, via Buffi 13, 6900, Lugano, Switzerland
e-mail: c.pautasso@ieee.org

E. Wilde
EMC Corporation, 6701 Koll Center Parkway, Pleasanton, CA 94566, USA
e-mail: erik.wilde@emc.com

R. Alarcon
Department of Computer Science, Pontificia Universidad Catolica de Chile,
Casilla 306, Cod. 143, Santiago 22, Santiago, Chile
e-mail: ralarcon@ing.puc.cl

C. Pautasso et al. (eds.), REST: Advanced Research Topics and Practical Applications, 1
DOI 10.1007/978-1-4614-9299-3_1, © Springer Science+Business Media New York 2014

2 C. Pautasso et al.

event notifications). These forward-looking chapters are complemented by three case
studies, giving a practical perspective on current successful applications of REST in
the real world.

1.1 REST Design Constraints

The REST architectural style has been derived from a set of well-know styles (e.g.,
layered, client/server); it fosters high performance and scalability by facilitating
replication on the server-side and on the intermediary layers (i.e., caches provide
temporary, on-demand replicas). Ensuring the statelessness of the client-server inter-
action simplifies replication, and contributes to a more reliable system where failures
can be handled gracefully. Concerns are separated in layers known as the origin
server, the user agent (or browser), and a set of intermediaries (e.g. proxies, reverse
proxies, etc.). This approach not only facilitates flexibility and scalability, but also it
makes possible to perform intermediary processing of messages, facilitating the ad-
ministration of some quality capabilities such as performance (e.g., data compression
or caches) or security (e.g., authentication and access control). The code-on-demand
characteristic allows to extend the browser functionality, and to personalize Web
applications according to a particular user’s needs or device constraints.

The main characteristic that sets REST apart from other architectural styles is
the definition of a uniform interface to be shared among all architectural compo-
nents. It requires that data elements (Web resources) are identified through global
and unique addresses or identifiers (e.g., URIs). These identifiers are globally mean-
ingful, so that no central authority is involved in minting them, and they can be
dereferenced independently of any context. The resource itself is a conceptual entity,
and REST does not make any assumptions on the corresponding implementation.
The uniform interface requires also that resource state can be retrieved through a
representation. Representations must be used also to manipulate the resource state,
by sending requests that represent intended state changes. The uniform interface
constraints requires also self-descriptive messages; client and servers interact with
each other by exchanging request and response messages, which contain both the
data (or the representations of resources in a specific serialization format) and the
corresponding metadata (information about the resource representation). Represen-
tation formats can be negotiated and vary according to the client context, interests,
and capabilities. For example, a mobile client can retrieve a low-bandwidth repre-
sentation of a resource. Request and response messages metadata makes possible
that services do not need to assume any kind of out-of-band agreement on how the
representation should be parsed, processed, and understood.

Messages are subject to a network protocol that indicates how they should be
processed. For instance, in case of the HTTP protocol, a set of methods (e.g., GET,
PUT, DELETE, POST, HEAD, OPTIONS, etc.) with well defined semantics in terms
of the effect on the state of the resource, are defined. HTTP methods can be applied
to all Web resource identifiers (e.g., URIs which conform to the HTTP scheme). The

1 Introduction 3

set of methods can be extended if necessary (e.g., HTTP PATCH has been recently
standardized as an addition to deal with partial resource updates), and other protocols
based on HTTP such as WebDAV include additional methods. Responses in HTTP
have also clear semantics conveyed by the metadata associated and a set of status
codes (e.g. 2xx successful processing, 3xx redirection, 4xx failure caused by the
client, 5xx failure caused by the server).

Finally, the uniform interface introduces the so called hypermedia constraint as
a mechanism for decentralized resource discovery by referral. Hypermedia is about
embedding references to related resources inside resource representations or in the
corresponding metadata. Clients can thus discover the identifiers (through hyper-
links) of related resources when processing representations, and choose to follow
these links as they navigate the graph built out of relationships between resources.
Hypermedia helps to deal with decentralized resource discovery, and is also used for
dynamic discovery and description of interaction protocols between services. De-
spite its usefulness, it is also the constraint that has been the least used in most Web
service APIs claiming to be RESTful. Thus, sometimes Web service APIs which also
comply with this constraint are also named “Hypermedia APIs”. In addition to links,
hypermedia controls (such as forms allowing to POST content on the Web) allow to
manipulate and change the state of resources.

1.2 REST Activities and this Book

Starting in 2010, the editors of the book you are currently reading started organizing
a series of workshops under the label of “WS-REST”, which on the one hand stands
for “Workshop for REST”, but also is a play on the plentiful WS-* standards that
appeared in rapid succession before that time. TheWS-REST workshops were always
co-located with the popular WWW conference, and were held in the years [5, 182,
183] and [6]. In 2011, the first two workshops were used as a basis for a first book,
which was published in late 2011 as “REST: From Research to Practice” [250].

This second book, “REST: Advanced Research Topics and Practical Applica-
tions”, combines a second interesting set of REST-related papers, structured into
two parts about “REST Research” and “PracticalApplications” respectively. We trust
that this second book will provide readers with the same interesting and inspiring
perspectives on REST.

1.2.1 REST Research

Part I REST Research focuses on research work that is looking into specific aspects
of the REST architectural style.

Chapter 2, “Communication and Capability URLs in COAST-based Decentralized
Services”, describes COAST and one of the specific aspects of this approach. COAST
builds upon CREST, which itself was conceived as an extension of the basic REST

4 C. Pautasso et al.

style. Both COAST and CREST are attempts to take REST’s resource-centric ar-
chitecture, and extend it with computational concepts. The goal of COAST and the
specific concepts presented in this chapter is to present an architecture that works
well for decentralized and independently evolving service scenarios.

Chapter 3, “Interoperability of two RESTful protocols: HTTP and CoAP”, looks
at how to combine the predominant way of doing REST, which is HTTP over TCP,
with another RESTful protocol, which is CoAP over UDP. The scenarios for this
interworking are from the Internet of Things and Web of Things, where communi-
cations with embedded and resource-constrained devices often cannot afford to use
HTTP’s full protocol stack, and yet want to fit into a REST framework so that the
overall architecture is still loosely coupled.

Chapter 4, “Enabling Real-Time Resource Oriented Architectures with REST
Observers”, discusses one of the challenges that are both a fundamental constraint
of the basic REST approach, and yet need to be addressed for certain scenarios.
The problem is REST’s client-driven interactions, which mean that it’s not entirely
natural to model systems where state changes in resources should be communicated
to clients. The REST observers introduced in this chapter are one pattern to solve
this problem.

Chapter 5 is a “Survey of Semantic Description of REST APIs”, which looks at
the variety of formal and semi-formal description approaches that have been layered
on top of REST’s basic principles. The survey is structured into lightweight semantic
descriptions, graph patterns, logic-based descriptions, JSON-based descriptions, and
annotation tools for creating descriptions.

Chapter 6 presents “APIs to Affordances: A New Paradigm for Services on the
Web”, and looks at the ways in which REST as a hypermedia-oriented style al-
lows designers and providers of services to focus on network-oriented affordances
instead of device-orientedAPIs. The chapter represents a “what-if” proposal; an alter-
nate paradigm for dealing with an increasingly growing and heterogeneous network.
Drawing from diverse sources including physical architecture, industrial design,
the psychology of perception, and cross-cultural mono-myth, a new implementa-
tion paradigm is proposed to help software architects and developers meet these
challenges.

Chapter 7 discusses “Leveraging Linked Data to Build Hypermedia-Driven Web
APIs”, by first introducing JSON-LD as a bridge between Semantic Web technolo-
gies and easily processable JSON representations, and then presenting Hydra, a
lightweight vocabulary for hypermedia-driven Web APIs. Similar to the approaches
presented in Chapter 5, also Hydra uses machine-readable annotations.

Chapter 8 discusses “RestML: Modeling RESTful Web Services”, and thus is
in a similar space as the previous chapter, which also discusses how to represent
information that helps to describe REST services. However, Chapter 8 takes an
approach based on UML, presenting a language that is called RestML. In contrast
to Hydra, which is mostly intended to help understanding REST services, RestML
takes an approach that targets code generation, so that REST services can be used in
model-driven approaches.

1 Introduction 5

1.2.2 Practical Applications

Part II Practical Applications looks at applications of REST as an architectural style,
and presents three different case studies in particular application areas.

Chapter 9 presents “A Lightweight Coordination Approach For Resource-Centric
Collaborations”, a coordination approach and a supporting framework for resource-
centric collaborations. The presented solution consists of a language and tool support
for specifying collaborative activities and the resources they manipulate, an engine
for enacting them at run time, and a systematic methodology for integrating the
engine with the various interactive systems and services involved.

Chapter 10 is about “Connecting the Dots: Using REST and Hypermedia to
publish Digital Content”, and presents the design and implementation experience
of a REST-based platform for a large publisher. The Alexandria platform is a system
of systems, distributed, decentralized but interconnected, that allows each component
to evolve independently and the platform to grow organically as support for more
business needs is added.

Chapter 11 describes “In-Process REST at the BBC” as a way to show how
REST is used more on the software engineering level than on the information system
engineering level. It describes how the BBC feed processing platform for trans-
forming structured XML information of live sporting events to HTML output for
the BBC website in soft real time was redesigned and reimplemented following
REST principles, resulting in a simpler system design with significant performance
improvements.

Part I
REST Research

Chapter 2
Communication and Capability URLs in
COAST-based Decentralized Services

Michael M. Gorlick and Richard N. Taylor

2.1 Introduction

Decentralized software systems are distributed systems that span multiple, distinct
spheres of authority—participants may unilaterally change their behaviors in ways
that may or may not be compatible with the needs or goals of the other members.
The web is a prime example; servers come and go, links are created and broken, and
mashups are deployed that rely upon the APIs of other web sites. Integrated sup-
ply chains are another example; the designs of NASA’s Curiosity rover and both the
Boeing 787 andAirbusA380 commercial aircraft required the network-mediated col-
laboration of thousands of engineers in many dozens of companies. Decentralization
appears in such varied domains as disaster response, coalition military command,
commerce, finance, education, and scientific research. A decentralized system may
be open or closed. In the former participation is loosely constrained if at all, while
in the latter participation is governed by agreements (with varying degrees of for-
mality, rigor, and enforcement) among the participants. The global web is an open
system and anyone can participate, but participating in a business-to-business supply
chain system demands negotiations and contracts. Joining or leaving the global web
can be done on a whim, but joining or leaving a supply-chain system should not be
undertaken lightly.

All decentralized systems are intrinsically dynamic: members join and leave,
service relationships change, system implementations and deployments vary (as do
their rates of evolution and adaptation), and members adapt to the changing business,
financial, or regulatory environment. Both open and closed decentralized systems
raise concerns of security and trust and neither is immune to malicious behavior.

∗ The bibliography that accompanies this chapter appears at the end of this volume and is also
available as a free download as Back Matter on SpringerLink, with online reference linking.

M. M. Gorlick (�) · R. N. Taylor
University of California, Irvine, CA 92697-3455, USA
e-mail: mgorlick@acm.org

R. N. Taylor
e-mail: taylor@ics.uci.edu

C. Pautasso et al. (eds.), REST: Advanced Research Topics and Practical Applications, 9
DOI 10.1007/978-1-4614-9299-3_2, © Springer Science+Business Media New York 2014

10 M. M. Gorlick and R. N. Taylor

COmputAtional State Transfer (COAST), an architectural style based on the id-
iom of computation exchange, targets decentralized systems and their associated
security issues. COAST has its roots in two earlier architectural styles, REST and
CREST. The World Wide Web is one of the best known decentralized applications
and REST (Representational State Transfer) is the architectural style [81] underlying
the Web’s evolution, performance, and scaling. Code mobility was always part of the
REST style (for example, Javascript embedded in HTML pages) with the nominal
goals of fostering browser-side display of new media types or reducing application
latency. In other words, computation mobility in REST was subservient to content
transfer and focused largely on optimizing the transfer and interpretation of resource
representations.

On one hand REST was a huge success, as adherence to the REST principles set the
stage for the Web’s unparalleled expansion. However, REST has many shortcomings.
From the outset there was insufficient support for differentiation, as the rapid adoption
of cookies containing keys to session state held server-side, in violation of REST
precepts, demonstrated. In contrast to cookies, web continuations [132] preserve
stateless interactions. The emergence of Ajax (mashups) and the exploitation of
computation in the browser suggested a more prominent role for code mobility [89],
namely constructing and deploying customizations and application services [65]. At
the same time inadequate security led to numerous breaches.

Inspired by REST, the evolution of web architecture, and the rapid introduction
of Ajax and Web Services, we formulated CREST [65–67], an architectural style
in which computations displaced content representations as the unit of exchange
among hosts. In CREST, actively executing computations (as opposed to “resources”
as abstracted black-boxes of information) were named by URLs and computations
exchanged state representations reified as closures and continuations. Our trials of
CREST, including a customizable, collaborative feed reader and analyzer [66, 69]
and Firewatch [95], a system for wildfire detection and response, showed consider-
able promise for constructing highly dynamic systems. However, CREST needlessly
inherited many constraints from Web architecture and, like REST before it, failed to
address security in any comprehensive manner.

COAST, the successor to CREST, is a style for which security is a dominant
concern and whose mechanisms allow hosts to minimize the risk of executing vis-
iting computations on behalf of clients. A detailed view of COAST accompanied
by a demonstration application is given in [97]. Here our focus is communication
security, whereby COAST hosts manage communications among computations and
modulate access to critical services. However, before introducing these communica-
tion mechanisms we describe our domain of interest, decentralized SOAs, from the
perspective of computation exchange and from there move to the COAST style itself.
With that behind us we turn to our principal contribution, the details of Capability
URLs, and present examples of their use.

2 Communication and Capability URLs in COAST-based Decentralized Services 11

2.2 Decentralized Systems via Computation Exchange

Decentralized systems whose constituent subsystems operate under distinct spans of
authority must meet two conflicting goals: protecting valuable fixed assets (such as
servers, databases, sensors, data streams, and algorithms) and meeting the evolving
service demands of a diverse client population.

Computation exchange (the computational analogue of content exchange) is the
bilateral exchange of computations among decentralized peers. In this regime, con-
tent delivery is a by-product of the evaluation of computations exchanged among
peers. Computation exchange exploits existing core organizational functions, pro-
cesses, and assets to create higher-level customized services, but imposes significant
security obligations.

Computation exchange generalizes and subsumes a number of well-known styles
for distributed computing, including remote procedure call [32, 164], remote eval-
uation [219–221], REST [81], and service-oriented architectures [70]. From the
perspective of computation exchange remote procedure call is an exchange contain-
ing a single function call, remote evaluation is an exchange containing an entire
function body, REST is an exchange of a small set (GET, PUT, POST, DELETE,
and so on) of single function calls accompanied by call-specific metadata, and
service-oriented architectures are higher-order compositions of remote evaluation.

Computation exchange induces all of the risks associated with mobile code [89]
including waste of fungible resources (processor cycles, memory, storage, or net-
work bandwidth), denial of service via resource exhaustion, service hijacking for
attacks elsewhere, accidental or deliberate misuse of service functions, or direct at-
tacks against the service itself. A computation accepted from a trusted source may be
erroneous or misapply a service function due to honest misunderstanding or ambi-
guity. Even a correct computation may expose previously-unknown bugs in critical
functions, leading to inadvertent loss of service.

For decentralized systems authentication, secrecy, and integrity are necessary but
insufficient for asset protection as there is no common defendable security perimeter
when function is integrated across the multiple, separate trust domains [257]. Here an
attack on one authority threatens all. At best a breach may lead to failures in other trust
domains. At worst a breached authority may undertake an “insider” attack against its
confederates. With this in mind decentralization demands that security be everywhere
always. Applications that cross authority boundaries inherently bring security risks;
adaptations in such contexts only increase the peril, hinting that security should be
a core architectural element.

2.3 The COAST Architectural Style

COmputAtional State Transfer (COAST) is an architectural style for decentralized
and adaptive systems [97]. Its applications have origins in CREST and, before that,
the REST architectural style. COAST targets decentralized applications where or-
ganizations offer execution hosts (called islands) whose base assets can include

12 M. M. Gorlick and R. N. Taylor

databases, sensors, devices, execution engines, domain-specific functions, or ac-
cess to distinctive classes of users. In COAST, third-party organizations create their
own custom-tailored versions of services (modulo the constraints imposed by the
asset owner) by dispatching computations to asset-bearing islands. For instance,
a monitor-and-alert function may be defined by one user to run periodically on an
island offering access to a collection of environmental sensors. Mobile code both im-
plements the computations in a COAST system and defines the messages exchanged
among those computations. Decentralized security and guarding against untrusted or
malicious mobile code are principal island concerns—the style mandates architec-
tural elements that when used appropriately provide access, resource, functional, and
communication security. In exchange for the complexity imposed by these security
mechanisms, COAST allows the construction of on-demand tailored services and
enables a wide range of dynamic adaptations in decentralized systems.

COAST security relies on the Principle of Least Authority (POLA) [202] and
capability-based security [34]. POLA dictates that security is a product of the au-
thority given to a principal (the functional power made available) and the rights given
to the principal (the rights of use conferred with respect to that authority). At each
point within a system a principal must be simultaneously confined with respect to
both authority and rights. A capability is an unforgeable reference whose possession
confers both authority and rights of access to a principal. COAST is one architectural
style for computation exchange, just as “pipes and filters” is one of many architec-
tural styles for data processing. COAST’s constraints mandate where, when, and
how authority and rights are conveyed.

The COAST style states:

• All services are computations whose sole means of interaction is the asynchronous
messaging of closures (functions plus their lexical-scope bindings), continua-
tions (snapshots of execution state [74]), and binding environments (maps of
name/value pairs [113])

• All computations execute within the confines of some execution site 〈E, B〉 where
E is an execution engine and B a binding environment

• All computations are named by Capability URLs (CURLs), an unforgeable,
tamper-proof cryptographic structure that conveys the authority to communicate

• Computation x may deliver a message (closure, continuation, or binding
environment) to computation y only if x holds a CURL uy of y

• The interpretation of a message delivered to computation y via CURL uy is uy-
dependent

For example, Alice operates a COAST-based high-performance image processing
service. Her clients dispatch computations for processing, enhancing, and analyz-
ing a wide variety of commercial, industrial, and scientific imagery to her service.
The execution sites in her server farms are managed by her own COAST compu-
tations whose CURLs denote site-specific processing varying across a spectrum of
performance and functionality.

Bob, whose machine shop manufactures custom aviation and motorcycle racing
components, is one ofAlice’s clients. His COAST-based automated visual inspection

2 Communication and Capability URLs in COAST-based Decentralized Services 13

system dispatches quality-control computations containing high-resolution digital
photographs of components to Alice’s execution sites for final inspection. Alice’s
proprietary algorithms combined with Bob’s customized closures for component-
and use-specific analysis help Bob maintain a high level of quality.

Carol, another of Alice’s clients, analyzes medical imagery for physicians and
medical testing labs. The sheer volume of the imagery, along with strict medical
privacy regulations, prevent Carol from shipping her closures, binding environments,
and imagery to an outside processor (as Bob does for his custom racing components),
so Carol has licensed an image processing library from Alice that has been integrated
into the execution sites of her own in-house COAST-based services.

Carol obtains analytical tools for her imagery from Dave, whose biotechnol-
ogy company deploys computations for narrowly targeted tissue analyses to COAST
sites. Carol dispatches service requests (as computations) to Dave’s COAST services.
Each of her requests prompts Dave’s computations to generate a custom analysis (as
a closure or continuation) optimized to meet her request-specific needs and con-
straints. Included in each of Carol’s requests is a nondelegable, “use-once-only”
CURL referencing one of her execution sites containing privacy-sensitive medical
images.

Dave deploys his customized analysis to Carol’s site via Carol’s CURL.As Dave’s
analysis executes on Carol’s COAST infrastructure her execution site prevents Dave’s
computation from accessing any other confidential imagery. Her COAST-based
monitoring and auditing infrastructure tracks the execution of Dave’s analysis from
beginning to end, ensuring that it does not violate patient privacy regulations. The
nondelegable, use-once-only CURL prevents Dave from sharing the CURL with any
other COAST site (nondelegation), and, as it can never be used more than once, nei-
ther Dave nor any attacker that infiltrates Dave’s infrastructure can ever send more
than a single computation to Carol’s request-specific, privacy-sensitive execution site.
In general, Carol can monitor Dave’s computations executing on her infrastructure or
her own computations executing elsewhere using automated “report-back” CURLs,
selectively wrapped closures, monitoring functions provided at the service execu-
tion site, publish/subscribe events originated by a service provider, or third-party
monitoring.

COAST offers two distinct forms of capability, (1) functional capability—what
a computation may do, and (2) communication capability—when, how, and with
whom a computation may communicate. Functional capability is regulated by ex-
ecution sites while communication capability is regulated by CURLs. These two
mechanisms, execution sites and CURLs, can be combined in many different ways
to elicit domain- and computation-specific security.

Execution Sites Over its lifespan each COAST computation is confined to an ex-
ecution site 〈E, B〉. The execution engine E may vary from one execution site
(and computation) to another: for example, a Scheme interpreter or a JavaScript
just-in-time compiler. The execution engine defines the execution semantics of the
computation and the machine-specific limits (e.g., resource caps) imposed upon the
computation.

14 M. M. Gorlick and R. N. Taylor

The binding environment B contains all of the functions and global variables
offered to the computation at that execution site. Names unresolved within the lexical
scope of computation c (the free variables of c) are resolved, at time of reference,
within the binding environment B. If B fails to resolve the name the computation is
terminated.

Both the execution engine and binding environment of an execution site 〈E, B〉
may vary independently and multiple sites may be offered within a single address
space. E may enforce site-specific semantics: for example, limits on the consumption
of resources such as processor cycles, memory, storage, or network bandwidth; rate-
throttling of the same; logging; or adaptations for debugging. The contents of B may
reflect both domain-specific semantics (for example, B contains functions for image
processing) and limits on functional capability (B contains functions for access to a
subset of the tables of a relational database).

Capability URLs CURLs convey the ability to communicate between compu-
tations. A CURL u issued by a computation x is an unguessable, unforgeable,
tamper-proof reference to x, as it contains cryptographic material identifying x and
is signed by x’s execution host. A CURL referencing x may be held by one or more
other computations y. CURL u is a capability that designates the network address
of computation x, contains arbitrary x-specific metadata (including closures), and
grants to any computation y holding u the power to transmit messages to x. When
y transmits a message m to x via CURL u both the message m and the CURL u are
delivered together to x. The CURL u specifies which execution site 〈E, B〉 of x is
to be used for the interpretation of message m where binding environment B strictly
confines the functional capability granted to mobile code contained in the incoming
message.

A computation x uses the CURLs it issues to constrain its interactions with other
computations and to bound the services it offers. The rationale for constraining
interaction in this way is based upon security concerns. A computation y, holding a
CURL for x, can send arbitrary closures to x in the expectation that x will evaluate
those closures in the context of some x-specific execution site 〈E, B〉. Therefore
x must defensively minimize the functional capability that it exposes to visiting
closures.

A computation can accumulate communication capability in the form of addi-
tional CURLs. For any computation, CURLs conveying additional communication
capability are: (1) contained in the closure defining the computation; (2) returned as
values by functions invoked; or (3) embedded as values in the messages received.

Constructing COAST Applications A COAST application is constructed from
multiple services available at distinct, decentralized execution sites, each of which
offers location- and organization-specific primitives. Those services themselves may
depend on customized collaborations with yet other services. Fig. 2.1 illustrates the
notional structure that COAST induces on execution hosts.

Computations are expressed in Motile, a single-assignment functional language
with functional, persistent data structures [173] (all data structures are immutable).
A COAST island is a single, uniform address space occupied by one or more com-
putations. Computations residing on an island I issue one or more CURLs to the

2 Communication and Capability URLs in COAST-based Decentralized Services 15

Binding
Environ

3

Infrastructure/Framework

Execution
Engine 1

Binding
Environ

1

Binding
Environ

2

Execution
Engine 2

ned by
local

authority

C1 C2 C3 C4

C5

ned by
providers
or clients

C1 C3

C6

C3

Fig. 2.1 The notional structure of a COAST execution host where a trusted code base allocates
execution engines and binding environments to computations, whose implementations are sourced
from a variety of other organizations. Distinct functional capability is held by each of the three
individual binding environ(ment)s shown here. Computations (shown as circles) C1–C4 have been
deployed by service providers and clients. Computations C5 and C6 each hold a distinct CURL
(shown as diamonds) denoting different services offered by computation C3. By holding those
CURLs C5 and C6 possess the right (denoted by dotted arrows) to dispatch mobile code as messages
to C3 for execution

computations with which they wish to communicate. A CURL u for x is a CURL
generated by x. For the sake of security, communication among computations is
“communication by introduction” meaning that computation x can’t communicate
directly with computation y unless it already holds or obtains (via function call or
messaging) a CURL issued by y.

2.4 Capability URLs in Detail

Each CURL u denotes a specific computation x and contains a self-certifying network
address [115], a path (a list of Motile values), and arbitrary metadata. To ensure
the integrity of “introduction only” it must be effectively impossible to guess, forge,
or alter a CURL. CURLs are a first-class, immutable capability in Motile; hence,
within the confines of a legitimate island, it is impossible for a Motile computation
to forge a CURL or alter one surreptitiously. Every island I holds a public/private
key pair and guarantees the integrity of the CURLs that its computations issue by
signing each with its private key.

For the sake of safety and security, islands must manage and limit access to
both fungible resources (such as memory or bandwidth) and island-specific assets
(such as sensors or databases). Restricting the lifespans of computations may help

16 M. M. Gorlick and R. N. Taylor

1 (let* ((path (list "question" "ultimate"))
2 (metadata
3 (list (cons "name" "Arthur Dent")
4 (cons "residence" "Earth"))))
5 (I@ (curl/new (resource/root) path metadata)))
6 (curl/send
7 Guide@
8 (list "SPAWN" (lambda () (curl/send I@ 42))))
9 (receive))

Fig. 2.2 A simple Motile program. Island I sends a closure to island Guide for execution that
does nothing but transmit the number 42 back to island I

an island stave off resource exhaustion and limiting the total number of messages
that a computation may receive or the rate at which they are delivered can limit
access, improve performance, or reduce the severity of computation-specific denial
of service attacks. These forms of resource security protect against malicious visiting
computations intent on resource attacks or exploiting the island as a platform for
attacks directed elsewhere.

With these primitive mechanisms at hand it is trivial to generate a “once only”
CURL that is invalid after a single use. Finite CURL lifespans allow computations
to offer time-limited services to their clients; for example, such CURLs can be used
by a transaction coordinator to enforce time limits among the participants of a two-
phase commit. An e-commerce service can combine lifespans with use counts to
generate the CURL-equivalent of limited-offer coupons or gift cards, and rate limits
are useful in “introductory” promotions in which the service may want to bound the
rate of use by newcomers.

The CURLs generated by a computation x draw upon a tree of “resource accounts”
whose root is the resource account granted to computation x “at birth” by the island
I on which x resides. Each account has a finite lifespan and contains a “balance”
comprising a use count and rate limit. The initial balance allocated to a new account is
“withdrawn” from its parent account and the lifespan of the new account is never more
than the lifespan of the parent account. Many accounts may derive from the same
parent account and many CURLs may share a single resource account in common.

A Simple Motile Program Fig. 2.2 is an example of a simple program in which
a trivial closure is dispatched by island I to a remote island Guide for execution
and a constant value is transmitted back to island I . Line 5 binds the variable I@ to
a CURL for computation x on island I . The function resource/root always returns
the root resource account of the calling computation; the Motile function curl/new
(line 5) generates a CURL given a resource account from which the CURL draws
its resources (use count, rate limit, and lifespan), a path (line 1), and metadata (lines
2–4).

The function curl/send given in lines 6–8 transmits a spawn command (the second
argument, line 8) to the computation denoted by the first argument, a CURL for
island Guide bound to the variable Guide@ (line 7; the details of how computation x

acquired CURL Guide@ are omitted for the sake of brevity and clarity). The closure,
(lambda . . .), evaluated by an execution site of island Guide, immediately transmits

2 Communication and Capability URLs in COAST-based Decentralized Services 17

1 (define (palindrome? s)
2 (let loop
3 ((left 0)
4 (right (sub1 (string-length s))))
5 (or
6 (>= left right)
7 (and
8 (char=? (string-ref s left) (string-ref s right))
9 (loop (add1 left) (sub1 right))))))

10
11 (let* ((reply (promise/new 60.0))
12 (reply/promise (car reply))
13 (reply/curl (cdr reply))
14 (palindromes
15 (lambda ()
16 (curl/send reply/curl (words/filter palindrome?)))))
17 (curl/send J@ (list "SPAWN" palindromes))
18 (promise/wait reply/promise #f))

Fig. 2.3 A computation on island I dispatches a closure to island J to obtain all of the palindromes
in a database of words

the message 42 back to computation x on island I via CURL Guide@. The Motile
function receive, called on line 9 of computation x, blocks until a message m for
computation x arrives and returns that message m as its value.

A Client-Defined Service Fig. 2.3 illustrates sending a closure from island I to
extract all of the palindromes contained in a database of words maintained by islandJ .
Since island J has no predefined function for detecting palindromes, the computation
on island I defines (lines 1–9) a function palindrome? that accepts a string s and
returns true (#t) if s is a palindrome and false (#f) otherwise. Motile uses promises
to bridge the gap between functional programming and asynchronous messaging. A
promise is a proxy object for a result that is initially unknown because the computation
of its value has yet to be initiated or is incomplete. Line 11 creates a new promise
with a lifespan of 60 s. In Motile a promise consists of two elements: the promise
object proper (reply/promise in line 12) and a single-use CURL, reply/curl in line
13, by which the result of the promise will be resolved by some computation .

Lines 14–16 define the closure, palindromes, that will be transmitted to island J

for evaluation. palindromes, when executed by island J , first applies the I -defined
predicate palindrome? as a filter to the contents of the word database and then sends
the result of that filtering (a list, possibly empty, of the palindromic words in the
database) to the island computation denoted by the CURL reply/curl. words/filter,
a domain-specific function, is resolved in the binding environment of the closure’s
execution site on island J . It takes a predicate f as its argument, traverses the word
database applying f to each word w, and returns a list.

Line 17 is the transmission by I to J of the request to evaluate the closure palin-
dromes. The variable J@ is a CURL for island J denoting the target execution site
for the palindromes closure. Finally, at line 18, the computation on island I waits
(a maximum of 60 s, the lifespan of the promise) for the spawned computation to
complete and return its result. If for some reason the spawned computation is unable
to complete its task in the time allotted the result of the promise will be the value #f
(false) given in line 18.

18 M. M. Gorlick and R. N. Taylor

1 (let* ((sale
2 (resource/new
3 (resource/root)
4 3 (/ 1.0 17.0) (timespan/seconds 30 0 0 0)))
5 (day/even?
6 (lambda () (even? (date/day (date/now)))))
7 (path (list "books" "sale"))
8 (metadata
9 (list (cons "ISBNs" (list b1 b2 b3))

10 (cons "gate" day/even?)
11 (cons "discount" 0.80))))
12 (curl/new sale path metadata))

Fig. 2.4 Generating a time-limited, day-specific sales coupon as a CURL

The program of Fig. 2.3 is a classic example of moving computation close to the
data that it demands and illustrates an effect that is difficult to achieve in a RESTful
system; island J may easily host a large database of words, but it’s not likely to
implement a service expressly designed for extracting palindromes. However, that
omission is irrelevant in COAST-based systems since a client is free to compose
client-specific higher-order services from the primitives found in the execution sites
of island J . No such provision exists in RESTful services.

Provider-Issued Mobile Code in CURLs A computation may embed closures as
metadata in the CURLs that it issues and use those embedded closures as the inter-
preters of the messages that it receives. As the CURL is tamper-proof, the receiving
computation (by definition the issuer of the CURL) may safely rely on any state
and mobile code the CURL contains. When the computation first constructs and
issues the CURL, it ensures that the CURL contains all of the static state (including
arbitrary generated closures) that the computation will need in the future to serve
the holder(s) of the CURL. In this manner computations, in addition to granting the
capability to communicate, can enforce fine-grained constraints on the interpretation
of messages. For example, a computation x may issue a CURL to y that allows y’s
mobile code, when sent to x, to call only one particular function that x selects and
makes available.

For instance, an e-commerce site wants to issue CURLs as coupons for a book
sale where three popular books, identified by ISBN numbers b1, b2, b3, will be on
sale for a month at 80 % of the list price, but only on the even days of the month-long
sale.

The construction of such a CURL is given in Fig. 2.4. Lines 1–4 specify the
derivation (via function resource/new at line 2) of a CURL-specific resource account,
sale, from the root account (line 3) of the computation. At lines 1–4 sale is granted a
balance of three total uses, a rate limit of once every 17 s, and a total lifespan of 30
days (timespan/seconds at line 3 takes days, hours, minutes, and seconds and converts
that span of time to total seconds). CURLs are intended for use by computations,
not people; however, they can be serialized as text for storage in files or out of band
transmissions such as email.

day/even? at lines 5–6 is a provider-generated Motile predicate that returns true
if the current day of the calendar month is an even integer and false otherwise.

2 Communication and Capability URLs in COAST-based Decentralized Services 19

1 (define (random/new low high)
2 (let ((difference (- high low)))
3 (lambda () (+ low (* (random) difference)))))
4
5 (define (service/custom low high)
6 (let ((custom (resource/new (resource/root) 100 7.5 90.0))
7 (path (list "random" "custom" low high))
8 (metadata
9 (list (cons "implementation" (random/new low high)))))

10 (curl/new custom path metadata)))

Fig. 2.5 Generating a client-specific service as a CURL

date/now and date/day are provider-side calendrical functions. date/now returns the
current date as a structure and date/day extracts the day of the month (1–31) from
that structure. Line 7 defines the path for the CURL to be generated and lines 8–11
define the metadata to be included in the CURL as key/value pairs: the ISBNs of
the books on sale, the gate function defined by the provider to determine the validity
of the “coupon,” and the amount of the sale discount. Finally, line 12 generates and
returns the desired CURL.

When the e-commerce site receives a purchase request message sent by way of a
“coupon” CURL it passes the CURL and message on to the book sale computation
only if the message arrived prior to the expiration date of the CURL. The book sale
computation executes the gate function contained within the metadata of the CURL
to determine if the coupon is valid. If so it allows the purchase to proceed; otherwise
the request is rejected. As the book sale computation is ignorant of the details of
the gate function included in the CURL metadata the e-commerce site provider can
easily generate customized sale coupons, each with different gate functions.

Service Implementations in CURLs Fig. 2.5 illustrates how a CURL can carry
a service implementation; here, generating custom ranges of real random numbers.
Lines 1-3 define a utility function random/new that returns a customized random
number generator as a closure (line 3). The provider-side function random returns
a real random number in the open range [0, 1]. service/custom returns a customized
CURL for a client requiring a random number service using bounds, low and high,
specified by the client. The CURL is granted a use count of 100, a rate limit of
7.5 Hz and a lifespan of 90 s (lines 6 and 10). The CURL metadata contains the
custom random number generator (line 9). The CURL itself is the return value (line
10).

The server itself is just a skeleton that expects messages whose only content is a
“reply to” CURL r . Recall that every Motile/island message is accompanied by the
CURL u to which the message is directed. On receiving such a message the server
extracts the service implementation (as a closure f) from the metadata of CURL u,
evaluates f , and transmits that result via CURL r .

Non-Delegation and CURL Revocation COASTcast [97] is a COAST-based ser-
vice for the distribution and manipulation of real-time High Definition (HD) video.
Islands whose assets include HD cameras and execution sites containing primitives

20 M. M. Gorlick and R. N. Taylor

for managing cameras and encoding (compressing) video serve video streams to
other islands with high-resolution monitors for displaying the video streams. Island
assets may be less tangible, for example, islands with sufficient computing capacity
and network bandwidth to relay high-bandwidth video streams to other less capable
islands. In such applications camera islands may want to restrict direct access to
cameras to a small set of trusted display or relay islands. In other words, if island
I holds a CURL u granting it access to a particular camera of island J we would
like to guarantee that only I may access the camera of J even if it hands CURL u
on to island X for its use. This property, non-delegation, is enforced by embedding
J -generated restrictions (as metadata) in the CURL u that J provides to I . As all
islands are self-certifying, island J can determine authoritatively if a message m sent
to it via CURL u was sent from island I or some other island X. Each CURL u may
contain (as metadata) a predicate (a single-argument closure) that, given the address
of an island, returns true if the island is permitted to use u and false otherwise.

Fig. 2.6 illustrates the construction of a CURL by island J that limits delegation
on the basis of processor load. Islands A, B, and C are each permitted access to
HD camera 3 of island J with a resolution of 720 p at a frame rate of 20 frames-
per-second (indicated by the path, line 14). Combined, the three islands may access
the camera a total of 10 times (line 1), at most twice per day (lines 2–3), over a
period of 14 days (lines 4–5). Lines 6–7 define a derived resource account camera
that enforces these use, rate, and lifespan constraints.

Lines 8–13 define the delegation predicate dictated by island J . The access of all
three islands A, B, and C is determined by the current processor load on island J . A

may access the camera only if the processor load is low (≤ 3.7), B may access the
camera only if the processor load is moderate at worst (≤ 7.3), and C may access
the camera only if the processor load is not excessively high (≤ 10.1). The CURL
J@ for access to camera 3 is generated at line 16 and is distributed to islands A, B,
and C at lines 18–20.

When a closure f is sent to the execution site of camera 3 of island J via CURL
J@ island J applies the delegation predicate in the CURL metadata to the address
of the transmitting island. If the predicate returns true then closure f is evaluated
in the context of the execution site of camera 3; otherwise, closure f is rejected.
Consequently, no other islands besides A, B, or C can access the camera and the
access of these three is predicated on the current processor load. If another island X

somehow acquires CURL J@ it cannot be used productively by X.
Any CURL issued by an island may be revoked at any time by that island. The

unit of revocation is the resource account r on which the CURL draws; for example,
the CURL J@ generated at line 16 of Fig. 2.6 draws upon the resource account
camera constructed at lines 6–7. If the resource account r upon which a CURL u
draws is invalidated by its issuing island then any message transmission via u will be
summarily rejected from that point forward. If multiple, distinct CURLS u1, . . . , un

draw upon r then the invalidation of r revokes all such CURLs ui .

2 Communication and Capability URLs in COAST-based Decentralized Services 21

1 (let* ((uses 10)
2 (rate
3 (/ 2.0 (timespan/seconds 1 0 0 0))) ; Twice per day.
4 (lifespan
5 (timespan/seconds 14 0 0 0)) ; Fourteen days.
6 (camera
7 (resource/new (resource/root) uses rate lifespan))
8 (delegate
9 (lambda (x)

10 (or
11 (and (eq? x A) (<= (cpu/load) 3.7))
12 (and (eq? x B) (<= (cpu/load) 7.3))
13 (and (eq? x C) (<= (cpu/load) 10.1)))))
14 (path (list "camera" 3 "720p" 20))
15 (metadata (list (cons "delegate" delegate)))
16 (J@ (curl/new camera path metadata)))
17
18 (curl/send A@ J@)
19 (curl/send B@ J@)
20 (curl/send C@ J@))

Fig. 2.6 Generate a CURL that limits delegation on the basis of processor load

2.5 Motile/Island: A Reference Infrastructure

The COAST style imposes substantive constraints on how COAST-based ap-
plications must be built. Satisfying these constraints with a typical imperative
programming language is awkward so we have created an implementation platform
for constructing and deploying COAST applications: Motile, a mobile code lan-
guage whose semantics and implementation enforce key constraints on the use and
migration of capability, and Island, an infrastructure for Motile computations.

COAST Computations as Actors Each COAST computation is implemented as
an actor [3]. Each actor is an independent thread of computation that may transmit
asynchronous messages to other actors, receive asynchronous messages from other
actors, conduct private computations, and spawn new actors. All four actions are
implemented (and perhaps selectively restricted) by functions in binding environ-
ments. Spawning is implemented as a specialized kind of message sending. The
assumptions of the actor model, private computation and asynchronous messaging,
match those of COAST, where private computation is conducted only in the context
of a specific execution site. Actors are distinct from agents as, unlike agents [36],
each actor is immobile (closures and continuations are mobile but not actors). Also,
in many agent systems the identity of the agent is invariant as it moves from host to
host, whereas spawning a closure or continuation results in a new and distinct actor.

Motile Motile is a single-assignment, functional language for defining COAST
computations. All Motile actors are named by one or more CURLs, a base data
type in Motile. All Motile data structures are purely functional [173] (hence im-
mutable). This choice reduces the semantic distinctions between messaging where
sender and receiver share an address space and messaging where the sender and re-
ceiver occupy separate address spaces. Since all data structures (including messages)
are immutable the data synchronization races common to shared-memory, imperative

22 M. M. Gorlick and R. N. Taylor

languages are not possible. By implication, shared-memory attacks where values are
mutated after being shared with other actors are impossible.

Island An island is a single, homogeneous address space occupied by one or more
Motile actors. Islands implement the role of “execution host” discussed in Sect. 2.3.
Each island is uniquely identified by a triple: the public key half of a public/private
key pair, a DNS name, and an IP port number. All islands are self-certifying [155,
253] and all communication between islands is encrypted. Each island is instantiated
with an initial set of execution engines, binding environments, and a set of trusted
computations that allocate execution sites to visiting computations. Those trusted ac-
tors have access to implementation-level Motile primitives that other computations
are not permitted to call; for example, creating an actor, instantiating island-wide
user interfaces, and staging fixed island assets. These trusted actors also issue CURLs
naming themselves, with the distinction that their CURLs are durable—valid even
after an island is restarted. Computations holding a CURL for a trusted actor t are
permitted to send a closure to t to spawn a new COAST computation. The specific ex-
ecution engine and binding environment allocated to that new computation conform
to the security and usage policy enforced by t .

Capability URL Implementation Every CURL u denotes a specific computation
x and contains:

• An address, the public key, DNS name, and IP port number of island I

• A path (a list of Motile values, possibly empty), defining for x the domain of
interpretation of a message sent via u

• The resource key, a globally unique cryptographic identifier [142], used by island
I as an index to CURL-specific, island-side state (including CURL timestamps,
use count, and rate limit)

• The creation and expiration timestamps of u. After the deadline (the expiration
timestamp) any message sent via this CURL will be rejected

• A use count, a positive integer, giving the nominal maximum number of messages
that may be delivered to x via u

• A rate limit, a positive number, giving the nominal maximum rate (in Hz) at which
messages transmitted via u to x will be delivered to x

• Arbitrary metadata that may include primitive values, standard structures such as
lists or vectors, other CURLS, closures, continuations, and binding environments

• A cryptographic signature (over the contents of u) generated by the island I on
which computation x resides. The signing, based on the private key of island I ,
allows any computation holding CURL u to verify that u is a valid CURL for x

on I

A CURL supports, by construction, four base restrictions:

• Use count (total number of messages per CURL)
• Expiration date (after which the CURL is invalid)
• Rate limits (rate of message transmissions per CURL)
• Revocation (permanently withdraw, per CURL, the capability to communicate).

2 Communication and Capability URLs in COAST-based Decentralized Services 23

All are enforced by the issuing island I , since no island would reasonably trust
another to enforce its own restrictions, and all four restrictions require the issuing
island to maintain a small amount of state. Let u be a CURL for actor x. A trusted
actor of I inspects each CURL/message pair u/m on arrival, passing the pair onto
actor x if and only if CURL u is valid and the pair satisfy all I -imposed restrictions.
At CURL generation time, x and I may both insert arbitrary Motile expressions
into u in addition to customizing the base restrictions listed above. In this manner
x enforces x-specific, u-specific restrictions on communication including complex
temporal constraints (“only on alternate Thursdays before noon”), use scenarios
(“only legal expressions in a domain-specific language”), limits on delegation (only
messages from island J) and conditionals based on observables (“the price of gold
on NYMEX must be < $1657 per ounce”), and I in turn enforces restrictions it
places on x and its collaborators. Each CURL contains the mobile code and static
state that x will require to enforce those additional observable restrictions.

2.6 Related Work

COAST and Motile/Island have been influenced by prior work on mobile code
including remote evaluation [219–221], Scheme-based mobile code languages [89,
106, 245], the actor-like language Erlang [18], the object-capability language E
[160], and capability-based operating systems [194, 208]. Island self-certification
draws from self-certifying file systems [155] and URLs [115]. Our previous work
on CREST [65, 66, 68, 96] inspired computation exchange and led us to consider
the problem of secure decentralized services that COAST addresses.

The idiom of computation exchange is partially reflected in Emerald [114], a
system devoted to high-performance object mobility. Like computation exchange,
Emerald emphasizes fine-grain state and code transfers among hosts, but assumes a
single sphere of authority, identical host processors, and extends no further than a
local area network.

Kali Scheme [46] implemented distinct address spaces containing multiple threads
(the equivalent of islands) as a language construction and introduced closure and
continuation exchange in messages as a mechanism for spawning threads in remote
address spaces.

Self-protective behavior for the sake of ensuring progress (liveness) and system
integrity is a vital interest of local security. Resource sandboxing is a common de-
fense mechanism to forestall denial of service attacks via resource exhaustion and
is available in several languages including Java [145] and Racket [248]. Execu-
tion sandboxing denies executing programs unsafe access to critical resources. The
Google Native Client [256] employs software fault isolation [246] to confine the exe-
cution of untrusted native Intel x86 code. Extensions to Native Client [16] adapt these
techniques to the complex run-times of high-performance, dynamic, JIT-enhanced
languages such as JavaScript.

24 M. M. Gorlick and R. N. Taylor

Several mechanisms were employed by Telescript [148], an object-oriented, mo-
bile agent system, for which security was a concern [225]. Mobile Telescript agents
were executed by a host-independent virtual machine within places, virtual locations
devoted to a particular service: for example, ticket purchases, or catalog search. Mo-
bile agents and places were tagged with a designation of authority (the originating
organization). Agents were granted permits by the managing authority of the place,
which confined the capabilities granted to an agent and set resource caps. Telescript
can be regarded as a mobile-code-based decentralized SOA.

Agent technology draws from both distributed systems and programming lan-
guages, notably for strong mobility. For example, Agent Tcl [131] (now D’Agents)
had four principal goals: ease of agent migration, transparent communication among
agents, support for multiple agent languages, and effective security. Agent Tcl im-
plements “whole” agent mobility where the only unit of code mobility is the entire
binary image of the agent and relies on Safe Tcl to confine the executing Tcl agents.
A set of trusted Safe Tcl scripts provide limited access (based on access control lists)
to unsafe functionality.

Object capability security is a pivotal influence on COAST. A capability [61],
fuses access to, and designation of, a protected resource into a single, unforgeable
reference. The object capability security model [160] implements confinement [208],
revocation, and multilevel security [159]; offers patterns for non-delegation [163];
resolves the problem of the Confused Deputy [52, 107]; and is a base mechanism for
information flow control [30, 162]. The Emerald language [193] is an early example
of an object-capability language.

CURLs have precedent in the self-certifying URLs (YURLS) of Waterken [51],
the unique URLs of Second Life1, and the time-limited, signed URLs ofAmazon S32.
YURLs embrace “communication by introduction” in which a client, interacting with
a trusted partner, is granted the capability to communicate with a specialized service
acting on behalf of (or equivalently, as a proxy for) the trusted partner. Both YURLs
and CURLs contain one or more large, cryptographic numbers, in the former the SHA
hash of the public key of a web site and in the latter, the public key of an island and
the resource key of the resources account affiliated with the CURL. Consequently,
both YURLs and CURLs are impossible to guess but YURLs can be forged as they
are not signed. In contrast, since CURLs are signed with the private key of the issuer
they cannot be forged, are tamper-proof, and are non-repudiable.

2.7 Conclusion and Future Work

Since decentralized services, by definition, have no single defensible perimeter, all
of the constituent services must be self-defensive. Capability security is the princi-
pal defensive mechanism for COAST-based systems and takes two forms: functional

1 http://wiki.secondlife.com/wiki/Protocol#Capabilities
2 http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html

http://wiki.secondlife.com/wiki/Protocol#Capabilities
http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html

2 Communication and Capability URLs in COAST-based Decentralized Services 25

capability, circumscribed by the execution engine and binding environment of the
individual execution sites of computations, and communications capability, where
communication by introduction and Capability URLs limit and shape the ability of
computations to inter-communicate. By design CURLs prevent arbitrary communi-
cation among service components and, by constraining communication, reduce the
risks and consequences of both accidental errors and malicious attacks. Communi-
cation between computations x and y is possible only if at least one of the two holds
a CURL for the other. However, that is the minimum necessary condition, since any
messaging between the two must also satisfy a CURL-specific use cap (the total
number of messages that may be sent), rate limit (the frequency in Hertz at which
messages may be sent), and an expiration deadline (the “end of life” for the CURL).
With these constraints a computation can regulate the total number of messages that
it receives from another, the arrival rate of those messages, and the span of time over
which it can expect to hear from another computation—all of which can thwart or
reduce abuse of service and ensure fair service for others.

These basic constraints are useful but insufficient for enforcing service agreements
based on observables; real-world phenomena (weather, processor load, stock prices
. . .), the states of the communicating computations, or the states of computations
elsewhere. CURLs, when combined with embedded Motile mobile code, facilitate:
preconditions and use restrictions incorporating observables, explicit state transfer in
the spirit of REST, service customization, service transfer for which both the state of
the service and its implementation are completely explicit, and non-delegation that
incorporates arbitrary temporal and use constraints. The combination of communi-
cation by introduction and mobile code is a significant contribution to the safety and
security of decentralized services.

Mobile code embedded in CURLs can serve other functions as well, including
logging, message tracing, debugging, exception handling, event distribution, traffic
analysis, checkpointing, and service restart. Many interesting research questions
remain; for example, domain-specific security languages or service-level contracts
as embedded mobile code in CURLs, language constructions for incorporating, and
responding to, resource restrictions in CURLs, hierarchical constraints in CURLs that
reflect layered, system-level concerns, the roles of CURLs with embedded mobile
code in dynamic software update, and COAST-like communication by introduction
for embedded and soft real-time systems.

Acknowledgements We are indebted to Kyle Strasser whose implementation of COASTcast
broadened our understanding of communication capability in Motile/Island and the means by
which functional capability could be manipulated to support security. Our thanks as well to the
anonymous reviewers for their incisive and helpful comments.

This work was supported by the United States National Science Foundation under Grants CCF-
0917129 and CCF-0820222.

Chapter 3
Interoperability of Two RESTful Protocols:
HTTP and CoAP

Myriam Leggieri and Michael Hausenblas

3.1 The Internet of Things (IoT)

The Internet as we know it, is about to change, becoming a global digital nervous
system with consequences that deeply affect our lives. We have already entered a
state of always on connectivity, where people interact not only with each other and
common devices like PC and laptops, but also with things. Things interact with
each other through machine-to-machine (M2M) communication, they have been on
the Internet, but not directly connected to it or able to sense the surrounding real
world. What is currently undergoing is a massive attempt at scaling up the amount
of connected things on one side, and down the cost of connecting them on the other.
It is expected that by using the same standards, the integration with applications will
be simplified and higher-level interaction among resource-constrained devices—
abstracting away heterogeneities—will be possible. In fact, devices embedded in
any sort of objects are becoming natively IP-enabled and Internet-connected, while
Internet services monitor and control them. The phenomenon of expansion from the
original Internet set, is called the Internet of Things (IoT) (Fig. 3.1).

It starts from a core including a backbone of routers and servers with high capacity,
rarely changing; goes through the Fringe—including devices with human assistance
for connectivity e.g., laptop, PCs and, some mobile phones—and ends with IoT,
where embedded devices communicate with each other directly or through the Inter-
net without human intervention. IoT devices are key-enablers of enhancements in sev-
eral applications, e.g. logistics, building automation, smart metering and industrial
automation. This phenomenon has enormous proportions, e.g., the microcontroller
and microprocessor market sales grow up to 43 billions USD in 2009; the amount

∗ The bibliography that accompanies this chapter appears at the end of this volume and is also
available as a free download as Back Matter on SpringerLink, with online reference linking.

M. Leggieri (�)
Digital Enterprise Research Institute (DERI), National University of Ireland,
Galway, IDA Business Park, Lower Dangan, Galway, Ireland
e-mail: myriam.leggieri@deri.org

M. Hausenblas
DERI, NUI Galway, IDA Business Park, Lower Dangan, Galway, Ireland
e-mail: michael.hausenblas@deri.org

C. Pautasso et al. (eds.), REST: Advanced Research Topics and Practical Applications, 27
DOI 10.1007/978-1-4614-9299-3_3, © Springer Science+Business Media New York 2014

28 M. Leggieri and M. Hausenblas

Fig. 3.1 The Internet of Things Vision: Expansion from the core Internet backbone

Fig. 3.2 Connected Life:
exponential growth estimation
of embedded devices by 2020

of Internet-connected devices (Fig. 3.2) is expected to grow [195] up to 50 billion
USD by 2020 [72]. These estimates rise up to trillions if considering personal, local
and wide-area networks.

Unlike the homogeneous PC Information Technology—mostly aimed at home and
office environments—embedded devices span across disparate and money-saving
applications, from personal health to large-scale facility monitoring, leading to the
deployment of heterogeneous solutions. For instance, a facility management system
automating energy consumption according to specific bill rates, would cause money
and energy saving. However, realizing the IoT vision is not trivial, since IoT de-
vices are characterized by resource constraints that make expensive to apply Internet
protocols. IETF Working Groups are undergoing the definition of standard protocols

3 Interoperability of Two RESTful Protocols: HTTP and CoAP 29

Fig. 3.3 Embedded Devices
Architecture.

at different layers of the network stack to facilitate the translation into the Inter-
net ones, i.e., 6LoWPAN [210]—IPv6, for resource constrained devices replacing
the expensive fragmentation of IPv6 packets into small link-layer frames; and the
Constrained Application Protocol (CoAP) [54], a downscaled version of HTTP on
top of UDP for resource constrained machine-to-machine (M2M) applications. Spe-
cific protocol requirements for M2M are: built-in discovery, asynchronous message
exchange, multicast support, low header overhead and parsing simplicity.

We describe the embedded devices we are referring to in Sect. 3.2, which leads
us to define a set of requirements for resource-constrained environments in Sect. 3.3.
For each requirement we analyze whether and how it could be satisfied by the cur-
rent RESTful principles or new design directions should be required. We explain also
how the main Internet, RESTful, and constrained environment’s protocols, could cur-
rently deal with these requirements. We summarize the comparison these approaches
in Sect. 3.4. In Sect. 3.5 we describe the guidelines for handling the increasingly com-
mon scenario of heterogeneous networks, where HTTP, CoAP and ad-hoc networks
interact requiring a mapping between HTTP and CoAP. We conclude (Sect. 3.6) by
depicting an IoT current state summary, predicting the next steps towards the full
realization of the Future Internet vision.

3.2 Embedded Devices

Embedded devices are usually characterized by several resource constraints.
Figure 3.3 illustrates their typical architecture, where power supply, management,
memory (where the program code is stored), sensors, actuators, Input/Output and
peripherals rely on a microcontroller, the main processing unit. Microcontrollers are
special purpose and highly integrated with each of the components as in Fig. 3.3.
The ratio between their power and performance is optimized and their low price
(ranging between 0.25 and 10.00 USD) facilitates their dissemination among the
average people.

The main constraints usually apply on power and memory. Embedded devices
are often battery-powered, thus requiring them to enter into the sleep-mode for long
period of time, up to months. Their memory has a limited size, often shared with

30 M. Leggieri and M. Hausenblas

the program code and the operating system. They can be equipped with Random
Access Memory (RAM)—included on-board in microcontrollers—Read-Only Mem-
ory (ROM), serial flash external memory and Flash erasable programmable memory,
which can be read and written in blocks but with slow and power-consuming access.
For instance, the ATMEL microcontroller has a limited RAM up to 4 kB and limited
ROM up to 128 kB.

IoT encompasses a broad range of devices, with highly heterogeneous constraints
and capabilities, which arise several network challenges. These devices are usually
characterized by high loss and link variability (ranging around 100 kbit/s). The
physical layer packet size may be limited up to 100 bytes. For instance, the IEEE
802.15.4, a popular low-power (1 mW) radio, ranges between 0.9 and 2.4 GHz bands
at 868 MHz—according to the European directives—with 1 % duty cycle, 20 kbit/s
and its packet size limited to 127 bytes.

Embedded devices can be classified as follows, in terms of their constraints,
in order to deploy solutions that address the specific requirements of the class of
interest. 1. Class 0 (C0) devices are the most constrained ones, thus rarely reconfig-
ured or queried. They have to rely on proxies or gateways to participate in Internet
communications; 2. Class 1 (C1) devices are able to host a lightweight protocol stack
(e.g., CoAP over UDP) although not the Internet one; 3. Class 2 (C2) supports the
Internet protocol stack, although they can also benefit from lightweight and energy-
efficient protocols as the ones used by C1 devices. In this way, development costs
are reduced and the interoperability is increased; 4. Power constrained devices are
no constrained in terms of processor and memory, but have a limited energy supply.

3.3 Architectural Design for Constrained Environment

Architectural decisions have to be made, leveraging the specific embedded devices
features, described in Sect. 3.2. Our contribution to the architectural design pro-
cess, consists in discussing on strengths and weaknesses of the current RESTful
principles and main implementations, in a resource constrained context. We achieve
this, by describing the specific requirements [147] characterizing such environment
(Fig. 3.4), how much they could be covered by the REST architectural principles
and by which technical (Internet or CoRE) protocol implementation. Typical re-
quirements are asynchronous transactions, service and resource discovery, reliability,
multicast and simplicity. In general, traditional Internet protocols present several lim-
itations that make them not suitable for constrained environments, mostly because
of their overall complexity.

Figure 3.5 compares the typical IoT protocol stack with the traditional Internet
one. The choice of protocols to consider, is based on their widespread deployments.
At the application layer, we refer to HTTP on the Internet side and to CoAP for
the IoT. The Constrained Application Protocol (CoAP) [85] is the main focus of
the IETF’s Constrained RESTful Environment Working Group (CoRE WG), aimed
at enabling resource-oriented applications on constrained networks, fully compliant

3 Interoperability of Two RESTful Protocols: HTTP and CoAP 31

Fig. 3.4 Typical constrained environment architecture and its requirements

Fig. 3.5 Correspondence
between the protocol stacks
of the Web and the IoT

Ethernet/WLAN

Web IoT

Data Link/Physicaalll

Network

Transport

Application

ZigBee, etc.

IPv4/IPv6

TCP

HTTP

Application

IPv6 + 6LoWPAN

UDP

CoAP Request/Response

CoAP Message

Application

with the RESTful architectural principles. CoAP is a lightweight, binary protocol
that supports a subset of MIME types and HTTP-compatible method codes.

At the network layer, we refer to IPv6 on the Internet side and to 6LoWPAN for
the IoT. We believe that the transition to IPv6 is ineluctable, since the current 4 billion
IPv4 addresses are almost exhausted, and the number of Internet-connected devices
is growing. Nonetheless, IPv4 interconnectivity is easily achievable if necessary,
e.g., by applying IPv6-in-IPv4 tunneling and address translation. On the IoT side,
the IETF’s IPv6 over Low power WPAN Working Group (6LoWPAN WG) has
recently finalized its activity, defining 6LoWPAN to enable the efficient use of IPv6
over constrained devices in constrained (low-power, low-rate) wireless networks, by
relying on an adaptation layer and protocol optimizations.

32 M. Leggieri and M. Hausenblas

3.3.1 Reliability and Resiliency to Heterogeneity

The management architecture should support devices from any of the classes in
Sect. 3.2, but also scale with any network size and topology. It should be distributed,
to overcome the lacks of server connectivity by providing higher reliability, while
dealing with the cost of the increased complexity. Then, the management protocol
should be extensible to support changing requirements, to scale and provide a high
degree of resilience to support loose and unreliable links, high transmission error
rate, limited data rate and high latency.

To achieve this scalability, in addition to caching and aggregation techniques,
hierarchical management models can be deployed (top-down network configuration),
i.e., providing intermediary entities that take the responsibility for managing subsets
of the constrained network devices. REST principles with respect to dealing with
heterogeneity issues, have already been implemented in the Internet, to enable web
services cooperation and web applications. However, the HTTP approach does not
suit, since the HTTP clients support for the Expect header is poorly implemented,
i.e., clients often do not wait for the 100 Continue response from the server, before
beginning to send their requests. This could overload resource constrained devices. At
the Transport layer, TCP does not support the requirement for reliability, since it can
not detect congestions by distinguishing between packets dropped or lost on wireless
links. IPv6 offers almost unlimited scalability—e.g., by its address space of 2128
addresses instead of the 232 IPv4 ones—thus enabling peer-to-peer connectivity
and solving the NAT barrier—with specific and permanent IP addresses—for any
Internet-connected thing. This also grants seamless connection while moving from
one Internet access point to the other, in mobile scenarios. IPv6 supports multicast
and any kind of cast functionalities, self-configuration mechanisms, security and
authentication features, thanks to the mandatory IPSec capacities and the possibility
to use the address space to include encryption keys.

Reliability is enabled by the CoAP definition of specific types of messages and of
the procedure to process them. A CoAP message can be classified as 1. Confirmable
(CON) or Not-Confirmable (NON), in case the sender is going to wait to receive
a confirmation of successful reception from the recipient, or not; 2. Acknowledge
(ACK), as a successful reception of a message, sent by the recipient, so that the client
will stop retransmitting the request. This is called piggy-backed response (Fig. 3.6).

If the received message is a request that the server is able to satisfy but not
immediately, then the ACK message will be empty and followed by another CON
message containing the answer from the server, as soon as possible. While all the
exchanged messages will have the same Message ID, this last CON one will have
a different Message ID but it will still be possible to associate it with the correct
previous interaction by the Token option whose ID, indeed, will be the same all over
this specific exchange. This is called separate response (Fig. 3.7).

Reset (RST), in case the recipient is not able to either process a request, or provide
a suitable error response or process it later. This is not compulsory and would be
returned instead of an ACK message. One of these message types is specified in

3 Interoperability of Two RESTful Protocols: HTTP and CoAP 33

Fig. 3.6 Piggy-backed response example

Fig. 3.7 Separate response
example

the T field of the CoAP header. The Confirmable message enables reliability. They
are never empty and are retransmitted at an exponentially increasing rate, until they
either reach a timeout or get acknowledged with an ACK (empty or not) or an RST,
which all have to echo the same Message ID as the CON’s one. CoAP relies on the
client’s responsibility to keep strictly limited the amount of outstanding connections,
(i.e., CON requests or other kind of requests for which an ACK or a response has not
been received yet) with the same server. However, also servers should apply a rate
for its response transmission, according to the specific application requirements, for
congestion controlling in case of client malfunctions or attacks.

RESTful principles easily scale while do not specifically address reliability. A
related issue is the necessity for continuous connectivity which is covered by 6LoW-
PAN in the IoT stack. A LoWPAN is a collection of 6LoWPAN Nodes which share
the first 64 bits of their IPv6 address. Consequently, as long as a node moves inside a
LoWPAN, its IPv6 address never changes (respectively, it changes as the node moves
to another LoWPAN). The 6LoWPAN overview architecture is presented in Fig. 3.8.
It consists of nodes as hosts or routers, that can belong to one or more LoWPANs

34 M. Leggieri and M. Hausenblas

at the same time (multi-homing). LoWPANs can be classified as 1. Simple LoW-
PANs, i.e., connected to another IP network through an Edge Router; 2. Extended
LoWPANs, i.e., backbone link interconnecting multiple IP networks by their Edge
Routers; 3. Ad-hoc LoWPANs, i.e., LoWPAN that operates offline.

Edge Routers are responsible for routing traffic both inside and outside the
LoWPANs, handling compression and transparent, stateless bi-directional adapta-
tion between full IPv6 and LoWPAN format. This is required only outside of the
LoWPAN. These routers are also in charge of managing the Neighbor Discovery
(ND) algorithm process, where nodes register their presence to an Edge Router;
and are Internet-connected through backhaul links, e.g., GPS, DSL (as in Fig. 3.8).
The Simple LoWPAN and Extended LoWPAN Nodes communicate in an end-to-
end manner, are identified by permanent and unique IPv6 addresses and are able to
send and receive IPv6 packets. Since often the LoWPAN adaptation layer (deemed
to optimize IPv6 over IEEE 802.15.4 and similar link layers) is implemented to-
gether with IPv6, they can alternatively be shown together as part of the network
layer.

3.3.2 Asynchronous Reliable Messaging

In constrained environments, documents are not large, thus not requiring document
range and response continuation; and they are not meant for direct user consumption,
thus not requiring language and charset negotiation. Mainly the interaction model
needs to be asynchronous as a consequence of the resilience requirement detailed in
Sect. 3.3.1, in order to avoid high transmission error rate and unreliability to cause
network disruptions. In the integration between constrained and non-constrained
networks, lossless automated mapping between management protocols should be
possible, and the data models used in each network should be consistent with each
other and automatically mappable. Defining an underlying information model de-
sign is a key-enabler for future model reuse and interoperability, thus constitutes a
strong requirement. At least one management interface, should collect and expose
information about the device status, energy parameters, usage, available resources
and their estimated remaining availability.

Because of duty-cycling and of resource constraints, embedded devices can not be
considered able to support synchronous interactions as traditional REST implementa-
tions do. The roles that are usually associated with a RESTful server are reactiveness,
storage of authoritative versions of resources and management of namespaces and
resource states. Web services rely on TCP, HTTP, SOAP and XML, as depicted
in Fig. 3.9, which require complex transaction patterns. Also the Simple Network
Management Protocol (SNMP) is usually inefficient and complex.

IoT devices can enter the architecture as either clients or servers or both. CoAP
relies on an interaction model that is similar to the client/server one of HTTP,
since requests for an action (associated with a method code) are sent by a client
on a resource identified by a URI, and hosted by a server. However, for M2M,

3 Interoperability of Two RESTful Protocols: HTTP and CoAP 35

Fig. 3.8 6LoWPAN Architecture

the request/response interaction happens asynchronously over a datagram-oriented
transport layer, i.e., UDP. This is supported by CoAP through messaging, as depicted
in Fig. 3.5. Constrained devices tend to fit in the server role, providing sensor read-
ings and capabilities as resources to client, as in Fig. 3.10. As servers, they benefit of
continuity, eventually enabling on-demand merging of data, and of scaling—since
clients might not be stateless and, then, might not scale. Also, constrained devices
when considered servers exposing readings and metadata as resources, can leverage
on the extensibility of the resource model.

The interaction model asynchronicity is one of the most inherent characteristics—
thus most common—of constrained environments. Then, although even following

36 M. Leggieri and M. Hausenblas

Fig. 3.9 Web Service Paradigm

Fig. 3.10 REST request
example

RESTful principles, asynchronous messaging can be simulated—by defining a queue
resource representation on which the RESTful actions apply—a specific design for
this setting should be defined.

3.3.3 Data Representation Modeling

To configure networks in a top-down manner—as requested in Sect. 3.3.1—the con-
figuration data about individual devices should be abstracted in a network-wide
setting. At the same time, the resource-constraints require the management data to
be compact and space efficient, enabling small message sizes to save memory. In

3 Interoperability of Two RESTful Protocols: HTTP and CoAP 37

general, complexity—e.g., application layer transactions that require either large ap-
plication layer messages or the message reassembly at multiple layers in the protocol
stack—should be avoided.

Applying data compression or data encoding techniques, can help achieving this
result. However, compression requires additional code size, buffer and state infor-
mation; thus it is usually feasible only in mobile application scenarios, to reduce
transmission time and bandwidth, as long as C0 devices are not involved.

RESTful resources are abstract entities, whose representation is provided to clients
as hypermedia, i.e. information and controls through which the client can select
choices and actions. Hypermedia includes temporal anchors within a media stream;
which in our IoT scenario could translate in anchors for fastening the access to sen-
sor data streams. The resource representation can be provided in any format, which
can be negotiated; while the access is granted through a uniform interface. How-
ever, the HTTP implementation usually adds complexity independently from the
chosen resource representation, because of the protocol specification itself. On the
complexity side, parsing headers with quoting, separators—e.g., comma and semi-
colon—whitespace and continuation rules is expensive. Also, the HTTP Header is
carried along HTTP responses with no specific requirements for encoding and pars-
ing efficiency. For this reason, there is no specific support for defining the maximum
resource size, either; while this would be useful for embedded devices. Several differ-
ent ways to indicate the content-length are allowed, besides the HTTP specifications,
and require support by both clients and servers.

At the network layer, IPv6 requires support for multicast, which is extremely
resource consuming and not available for radio technologies (e.g., IEEE 802.15.4).
IPv6 messages also need to be fragmented since they use more bytes than the average
amount allowed to be transmitted in constrained networks. For instance, a minimum
of 1280 bytes, while the IEEE 802.15.4 standard has a 127 bytes of frame size
boundary limit, with the layer-2 payload size as low as 72 bytes.

CoAP is better designed to avoid complexity. CoAP options and the URI scheme
are fundamental for getting the most compact representation possible, as required in
environments that are usually constrained for bandwidth and energy. CoAP messages
are exchanged over UDP between endpoints and are identified by transport layer
multiplexing information, e.g., UDP port number and security association. Each
message contains a 4 bytes length binary header, a Message ID—to detect duplicates
and to support reliability (Sect. 3.3.1)—eventual binary CoAP options and a payload.
A CoAP message also carries request and response semantics as Method code or
Response code; while other metadata—URI and payload media type—are part of
the CoAP options section. CoAP options are never mandatory but some of them are
classified as critical since, when not supported, must cause any kind of request to
be rejected. Orthogonally to this distinction, CoAP options can also be marked as
safe or unsafe. If not supported, unsafe options must always cause any request to
be rejected while safe ones should always be forwarded by the proxy to the server
hosting the requested resource (origin server). The Code field of the CoAP header,
specifies whether a message contains either a request, a response or it is empty,
according to the definitions in the CoAP Code Registry [85]. To further support a

38 M. Leggieri and M. Hausenblas

compact data representation and transmission, the ETag option allows to indicate
the specific version of a resource that is preferred, among the ones that vary over
time. This also allows making requests conditional on the existence of a more recent
version of a target resource, when used in combination with the If-Match option (or,
as well, requests conditional on its non-existence, when combined with the If-None-
Match option). This lowers the client/server communication, while RESTful format
negotiations usually require more.

Also, when a CoAP server is hosted by a 6LoWPAN node that supports a port
number in the compressed UDP port space, header compression efficiency can be
improved. The LoWPAN format can be used to compress UDP, compacting down
the header to 6 bytes, as shown in Fig. 3.11. TCP, because of its inherent complexity
and inefficiency, could not be used in combination with 6LoWPAN.

The necessity to split the resource references is a direct consequence of the re-
quirement for a compact data representation. URIs have to be shorter for resource
efficiency, eventually decomposed in relative references. Resolving relative URIs us-
ing HTTP can be complex. Also, despite the HTTP specification directives, this kind
of URIs are often found in the Location header where absolute URIs are expected.

For energy efficiency reasons, the normal IoT approach is not to encode URIs
(still encoded or decoded URIs are considered equivalent) and to make use of spe-
cific CoAP options in order to decompose them, in a way that the full URI can be
reconstructed at any involved endpoint. The host, port, path and query components,
are removed from the URI and added as values of, respectively, the Uri-Host, Uri-
Port, Uri-Path (one for each portion of the path, excluding the slashes) and Uri-Query
(one for each parameter, excluding the question mark and the ampersands) options.
Similarly, the Location-Path and Location-Query options specify, respectively, one
segment of the absolute path to the requested resource and the argument parame-
terizing it. When combined together, they indicate a relative URI consisting of an
absolute path, a query string or both.

Avoiding complexity in the URI scheme is equally important, since URIs have to
be transmitted as well, and processed, in constrained environments. Figure 3.12 illus-
trates the COAP’s URI scheme. The host component can be an IP literal, IPv4 address
or a registered name—in this case requiring a name resolution service, e.g., DNS -.
It is followed by the UDP port specifications, which defaults to 5683. Similarly to
the HTTP URI scheme, resources are organized hierarchically as resembled in the
path component, which is followed by a query one, where a sequence of arguments
(usually in a key-value form and separated by ampersands) further parameterizes the
requested resource. Short but still descriptive URIs are encouraged.

As a conclusion, though CoAP follows the REST principles, it does not focus on
the concept of abstraction between a resource and its representation. While this is
justified by the more urgent necessity to compact the protocol itself, it should not be
overlooked since it could also support the data transmission reduction, e.g., avoiding
to send again data that refer to the same resource as an already transmitted one, but in
a different representation. Also, in the case of sensor data, a CoAP option to specify
their space and time for identifying specific data instances, could be more appropriate
than identifying them by a generic version concept (via the CoAP ETag option).

3 Interoperability of Two RESTful Protocols: HTTP and CoAP 39

Fig. 3.11 6LoWPAN-UDP Headers which compact down to 6 bytes

coap-URI = "coap:" "//" host [":" port] path-abempty ["?" query]

Fig. 3.12 CoAP URI scheme

3.3.4 Loose Coupling

Constrained devices often duty cycle themselves to save energy, intermediaries need
to be set in the network, to provide information on behalf of sleeping nodes or
support them in re-synchronizing after they wake up. Automatic synchronization is
relevant in order to keep consistency, although the network must tolerate temporary
inconsistency by properly distributing configuration parameters. Recovering from
inactivity or self-reconfiguration are activities that might imply restarting devices.
Then, the amount of state on each device must be minimized. Self-configuration
should be enabled also in case of failures and during the initialization phase, despite
additional information about the network topology might be unknown or uncertain;
eventually combined with self-monitoring, to quickly detect faults and recovery
(event-driven self-healing). It should be possible to apply delay schemes to incoming
and outgoing links on an overloaded intermediary node.

According to the REST principles, the application state is moved to the client-
side, while the resource state relies on the server-side. RESTful resources contain
both data and hyperlinks that represent valid state transitions. Clients keep a correct
application state only by navigating through hyperlinks. The client state then, affects
the resources access, rather than the resources themselves. However, this raises
security issues, since clients are allowed to provide a false client state to the server.
The state is exposed as a resource itself, rather than being hidden in a session, thus
enabling reuse, too.

A RESTful resource identification must be independent from the interaction. As a
consequence, a URI should allow any scheme, avoid to include either any description
of methods or fixed resource names or hierarchies (to not couple client and server) and
should be used for defining extended relation names and hypertext-enabled markup
for existing media types. In this way, servers keep complete control over their own

40 M. Leggieri and M. Hausenblas

namespace, while separating instructions for clients on how to build correct URIs
defined in media types and link relationships. HTTP stores the client state on Cookies,
which constitute a more convenient approach than embedding the state in every
resource representation. However, this approach causes side-effects, since the client-
side state is domain-specific—rather than embedded in the resource representation -
and is expensive.

The resource state on a CoAP server can change over time and it is relevant to notify
the interested clients, of these changes. An extension to the CoAP protocol called
CoAP Observe has been proposed [108], based on the observer design pattern [90]
where observers register at a specific provider (the subject) to be notified whenever
its status changes. Figure 3.13 shows the application of this pattern in CoAP, so that
subjects corresponds to resources in the namespace of a CoAP server, and observers
correspond to CoAP clients. The registration requires sending an extended GET
request to the server for both being added to the list of observers of that specific
resource and getting notified of the state updates. Figure 3.13 depicts a CoAP client
that receives a notification with the current state upon registration and then two
notifications as the resource status changes. Note the presence of the Observe option
and the echo of the token, specified in the original client request that easily correlates
the request with the future notifications. The server removes a client from the list of
observers as soon as an ACK message is skipped, in response to a notification. This
could also be due to packet loss. In this case, the client registers again, as soon as the
last notification’s expiration date is over and no updates have been received yet. This
is compliant with the REST principles, since the server is responsible for the state
and representation of resources in its namespace, while the client is responsible for
keeping the application state, and the stateless exchange of resource representations.
Intermediaries multiplex the interest of multiple clients in the same resource into a
single association, for efficiency and scalability. The Observe protocol extension also
grants consistency, since all the registered observers have a current representation
of the last resource state. In order to support clients subscription to changes on
only part of a resource representation status, the CoAP option Condition has been
introduced [144]. It allows the client to specify which condition must be verified for
the notification response to be sent. This procedure is called Conditional Observe.

We can conclude that the request for loose coupling is well covered by the RESTful
principles and, especially, by the CoAP implementation. However, keeping the ap-
plication state by just following hyperlinks is inefficient in constrained environment,
as we explain in Sect. 3.3.5.

3.3.5 Driving the Application State for Resource Discovery

Resource discovery is the process where a client queries a server to get a list of hosted
resources. A best-effort multicast can ease such discovery. This is extremely impor-
tant in M2M applications because, on one side, static interfaces result in fragility,
since there are no humans in the loop. On the other side, the management protocol

3 Interoperability of Two RESTful Protocols: HTTP and CoAP 41

Fig. 3.13 Observing a
resource in CoAP. Observer
Design Pattern
implementation

has to allow implementations where only a basic set of its primitives are supported, to
ease its deployment on highly constrained devices; thus it should also be possible to
discover which primitives (and which optional management capabilities) are avail-
able on each device. Also the network topology capabilities should be discoverable
and monitored, e.g., by using a topology extraction algorithm. The resource discovery
scenario can be split in the resource-directory and resource-collection sub-scenarios.
The first one, typically involves sleeping servers or bandwidth limited access in con-
strained networks, where it is desirable to provide a directory of resources stored
on other servers, without requiring access to each of them. The second one involves
common data collection nodes, e.g., to get a list of faults in an issue tracker.

RESTful resources and their states are retrieved, accessed and used by navigating
links, i.e., the resource representation is provided as hypermedia (see Sect. 3.3.3).
Clients should access the resources provided by a RESTAPI, with no prior knowledge
other than the initial URI and the set of standard media types. Afterwards, the client
could select the server-provided choices to drive the application state transitions
according to its local context. Automated agents base their choice on the knowledge
about typed relations, specific media types (every standard media type is associated
with a default processing model) and action elements that they share with the server,
i.e., a shared vocabulary which is exposed in the resource representation and which
the agents should be adaptable to.

A fundamental difference between the Web and sensor network realms relies on
the importance of the relation between a server and its hosted resources. While the
HTTP negotiation between a browser and different web servers to get the requested
content, is transparent and less relevant to the user, in constrained environments the
main discovery use case consists in getting acknowledged of which resources are
hosted by which server. On the Web side, The HTTP Link Header Field, aimed at
enabling the discovery of further information about a resource. However, headers
defined by the HTTP specifications other than [80] use incorrect syntax rules; while

42 M. Leggieri and M. Hausenblas

the standard OPTIONS request that should allow to discover the server capabilities
is poorly implemented. Links that grant access to further information associated with
a resource, constitute the fundamental structure of the Web but are an exception in
CoRE, where links are most aimed at the discovery of the resource itself, in machine-
to-machine (M2M) applications. For this reason, carrying link information about a
resource along with the protocol response, as defined by HTTP, should be avoided
in CoAP and constrained environments in general.

The CoRE WG has defined the CoRE Link Format (CoRE-LF), i.e., a particular
serialization of typed links which extends the format of the HTTP Link Header
field serialization [209]. It is carried as a resource representation of a well-known
URI, rather than along with the protocol response. In addition, it does not require
special parsing (being encoded as UTF-8, it can be compared bit-wise). In order to
support the described multiple resource discovery scenarios, the CoRE Link Format
specification defines: 1. the relation type host to link a resource with its hosting
server; 2. attributes for describing link metadata, which are detailed in Sect. 3.5;
3. resource registration to a resource directory by forwarding POST requests to an
entry point. The resource directory lists resources as links in the CoRE Link Format;
4. resource discovery on a resource directory by forwarding requests to a resource
directory lookup interface; 5. resource collections discovery by forwarding requests
to an entry point. The resource collection lists resources either as links in the CoRE
Link Format.

The entry points are referred to, using the path prefix /.well-known/core (Fig. 3.14)
which is considered a well known location in the namespace of a host and used to
enable the discovery of the host’s metadata. To locate each entry point, a unicast
resource discovery can be performed whenever a server’s IP address is already known;
otherwise, a GET request to the appropriate multicast address can be forwarded,
assuming that the scope in which to search for a resource is limited, IP multicast is
supported and precautions are followed to avoid response congestion.

The example in Fig. 3.14, shows a client discovering all the links to the resources
hosted by the queried CoAP server, and their metadata; by addressing the well-known
endpoint and interpreting the CoRE Link Format information. In this case, also the
content type supported for each resource is also specified.

CoRE-LF defines the following attributes to specify link metadata, with a focus
on identifying the type of resource that the link refers to, how to interact with it and
evaluating the cost of addressing a request to it: 1. Resource Type (rt), i.e., which
is a classification of the linked resource. It is meant to get a picture of the resource
capabilities at a glance. For instance, rt=“OutdoorHumidity”, indicates the type of
resource and, implicitly, the observed property (humidity) and its location. The rela-
tion type rt=“host” is the default one; since, as explained, it is of interest in the most
common resource discovery scenarios; 2. Interface Description (if), i.e., descrip-
tion of the exposed REST interface, either by referencing a WADL file or ad-hoc
identifiers; 3. Maximum Size (sz), i.e., maximum size of the object returned when
dereferencing the linked resource. This is relevant to determine whether requesting
a resource would imply exceeding the Maximum Transmission Unit (MTU).

3 Interoperability of Two RESTful Protocols: HTTP and CoAP 43

Fig. 3.14 Resource discovery
example

Fig. 3.15 CoAP messaging
between client and server

In the example in Fig. 3.15, during a piggy-backed request/response interaction,
the CoAP server returns a payload in the CoRE Link format, where the resource
type and interface description fields are used. In this case all the linked resources
described, expose the same REST interface, i.e., if=sensor, although the resource
types are all different, i.e., rt=LightLux and rt=TemperatureC. In particular, these
resource type names, implicitly indicate also the units of measurement-i.e., lux and
Celsius by appending the unit symbols as suffixes.

The Link Format is also meant to support situations in which a resource is too
constrained to answer most of the direct requests. In this case, rather than referencing
it, the link would consist of only a description of the relation type, while a URI
reference to the hosting server can be contained in the CoAP attribute “Context”.
However, to properly interact with a CoAP-enabled device, there are some dynamic
parameters that is necessary to know in advance, i.e., the supported CoAP options
(especially if critical ones rather than optional) and content formats.

These parameters can be specified by the CoAP Profile Description Format.
A profile about a resource can be retrieved by accessing the entry point /.well-
known/profile?path=<resourceID>, where the profile fields op and cf are used to list

44 M. Leggieri and M. Hausenblas

the CoAP options and the content formats that the resource hosting server supports.
When block-wise transfer is used, the profile fields b1s and b2s allow specifying
which block sizes are supported for Block1 and Block2. The example in Fig. 3.16,
shows a list of profiles for two different resources, i.e., resourceID1 and resourceID2,
and a default profile that applies to all the remaining resources hosted by the server.
This list can be filtered by using the “Uri-Query” CoAP option, e.g., the value “cf=50”
allows to retrieve only the profile of those resources for which an application/json
format is supported, thus filtering out the default profile in the Fig. 3.16.

The RESTful use of hypermedia in M2M applications involves interacting with
automated agents, as contrasted to the user deciding which HTML link to follow in
order to interact with a Web server. There should be then, server-controlled hyperme-
dia to advertise and navigate the server’s resources. While the RESTful architectural
principles, make design resilient to protocol and vocabulary changes, it causes two
issues in constrained sensor networks. First, it leads toward too verbose requests ex-
change between server and client, for navigating resources until the one of interest is
found and the correct content format is negotiated. Second, in time-critical scenarios,
the resource representation might have changed during the range between the time it
had been fetched and the time the next action had been chosen; thus becoming invalid.

3.3.6 Secured Communication

The transport protocol should be scalable, reliable and secure, providing authen-
tication, data integrity, and confidentiality. Security is particularly important for
constrained environments, since they are manipulating highly personal data as the
ones collected from the real, personal and everyday people’s life. The data should
be granted by enabling access control on managed constrained devices and man-
agement systems, supporting security bootstrapping mechanisms, space and time
efficient cryptographic algorithms.

The RESTful approach to security consists in point-to-point secure communi-
cations, using integrity checking and encryption. However, the HTTP protocol
implementation is too verbose, while the inter-device communication should be
reduced as much as possible. IPv6 includes optional support for IP Security through
IPsec authentication and encryption, but the web services techniques to deal with
this—like secure sockets or transport layer security mechanism—are too complex.
Also, network limitations and socket-based security, might prevent the use of the full
IPsec suite, enabled by IPv6.

The CoAP’s URI scheme addresses the necessity to secure UDP datagrams
through the use of DTLS, for privacy reasons. CoAP requests are never public and
the resources that they address, never share the identity to those addressed by CoAP
requests (which also applies when the same host on the same UDP port is invoked).
However, CoAP is subject to the security leaks inherited by UDP, (although several
approaches are applied to narrow the leak consequences). For instance, CoAP de-
fines a meaning for the entire range of encodable values; reduces complexity caused

3 Interoperability of Two RESTful Protocols: HTTP and CoAP 45

Fig. 3.16 CoAP request for the profiles of all the resources stored on the coap://www.example.org/
server, i.e., resourceID1, resourceID2 and others associated with a default profile description. The
supported CoAP options, block sizes and content formats are mapped with numerical IDs, used in
this example as values for the op, cf and b2s profile fields

by redundant representations of the same resource or by parsing, since it moves the
URI processing responsibility to the clients.

Proxies constitute another source of vulnerabilities. Since they are allowed to
break any IPsec or DTLS protection that a direct CoAP message exchange might
have, they usually are subject to attacks for breaking availability, confidentiality or
integrity of CoAP message exchanges. Finally, applications should try to minimize
the packet and payload sizes, so that the performance penalty—due to the message
fragmentation and reassembly applied by 6LoWPAN—can be reduced. It is impor-
tant to comply with the 1280 byte Maximum Transmission Unit (MTU) size required
by IPv6.

46 M. Leggieri and M. Hausenblas

Table 3.1 Coverage of constrained environments’ requirements by the RESTful principles, the IoT
protocols and the Internet protocols, respectively

Design vs Requirements H CC R ND AI IMI Simp LC RD SC

REST V V S S S V V V S S
IoT protocols V V V V V V V V V S
Internet protocols V V S S X S X S S S

3.4 Discussion

To summarize, the REST architecture has proven to be robust enough to cover almost
any of the constrained environments’ requirements, as shown in Table 3.1. However,
some of them should be explicitly addressed - because of their critical importance -
while they are currently only inefficiently covered by the RESTful principles, adding
complexity to the system. In Table 3.1, these requirements, which are currently cov-
ered but inefficiently, are indicated by S; while those that are completely covered
are indicated by V and those that are not covered at all are indicated by X. The re-
quirements’ names have been shortened for convenience. They are, respectively, (1)
Dealing with Heterogeneity (H) (2) Continuous Connectivity (CC) (3) Reliability
(R) (4) Neighbor Discovery (ND) (5) Asynchronous Interaction (AI) (6) Informa-
tion Model Interoperability (IMI) (7) Simplicity (Simp) (8) Loose Coupling (LC)
(9) Resource Discovery (RD) (10) Secured Communication (SC). The secured com-
munication is a requirement that has always an inherently weak coverage, since at
each level of the stack implementation or design solution, every approach has its
own workarounds. In general, it is difficult to build HTTP client and server libraries
because they are used in unexpected ways. Also the Apache HTTP Components,
project claimed the excessive simplicity and flaws of most of the available HTTP
client libraries, which causes both less code reuse and the proliferation of free and
commercial independent HTTP clients. This leads the Internet protocols to additional
complexity while covering any of the requirements.

The main gaps in the RESTful principles and Internet protocols, are all bridged by
the specific IoT protocols implementations. However, a more efficient REST design,
could further improve the performances. In particular, the RESTful architectural
principles miss to explicitly address the reliability issue, the neighbor discovery and
asynchronous interaction, in a resource-efficient way. Finally the resource discov-
ery through the hypermedia representation, should be optimized, as explained in
Sect. 3.3.5.

3.5 Scenario: CoAP and HTTP Heterogeneous Network

The typical IoT setting interconnects both sensor networks where either proprietary
or CoRE protocols are implemented, with the Internet and its protocols. A central
role in this setting, is played by proxies which, connected with proper backends,

3 Interoperability of Two RESTful Protocols: HTTP and CoAP 47

enable transparent communication between ad-hoc, CoAP and HTTP networks. A
network manager who wishes to develop such a proxy—although some open source
implementations are already available1—should make the following considerations.
Simply compressing HTTP would not be a solution because it would still retain the
complexity and rely on the underlying TCP, in addition to the CPU cost required to
perform the compression and the consequent gain of available bytes. CoAP supports
a subset of the HTTP method, compliant to the RESTful principles. This is the key
to enable the integration between resource constrained devices and the Web, as in
the IoT. Then the proxying between CoAP and HTTP (as depicted in Fig. 3.17) is
the most interesting one; although CoAP can be equally proxied to other protocols,
e.g., XMPP, SIP. Only the Request/Response model of CoAP is mapped to HTTP,
while the underlying messaging model must not be affected.

The communication between clients and servers is then intermediated by the
proxy, which forwards requests and relay back responses; eventually performing
caching, namespace or protocol translations. It can be classified either as a forward-
proxy in case it performs requests on behalf of the client; as a reverse-proxy, in case
it satisfies requests on behalf of one or more servers; or as a cross-proxy, in case it
translates between different protocols. To avoid request loops, a proxy must be able
to recognize all of its server names, aliases, local variations and IP addresses. This
communication is based on messaging. CoAP allows addressing GET, POST, PUT
and DELETE requests for resource constrained nodes. The GET method is both safe
(i.e., the resource state on the server remains unchanged regardless of how many
time the same URI is invoked) and idempotent (i.e., the resource state on the server
remains unchanged regardless of how many times the same operation is repeated)
and retrieves a representation for the information that currently corresponds to the
resource identified by the request URI. The format of the representation is specified in
the Content-Type header (otherwise it has to be derived from the specific application)
and the preferred one can be set in the Accept request header. The POST method is
neither safe nor idempotent and can result in either the creation, the update or the
deletion of a resource. In case a resource is created, its URI should be specified in a
sequence of one or more Location-Path or Location-Query options. The PUT method
is not safe but it is idempotent. In fact, invoking the same URI more than once, would
cause a not existing resource to be created, but an existing one to be only a modified
version of the existing one. Finally, the DELETE method causes a resource to be
deleted, if existing, this it is not safe, but it is idempotent. For seamless integration,
reverse proxies can convert 6LoWPAN to IPv6 and CoAP/UDP to HTTP/TCP, so
that sensor data can be accessed by using these omnipresent protocols. Also, Internet-
based clients could directly use CoAP on top of UDP [29]. Despite the current gaps in
REST, because of CoAP sticking to the RESTful principles, the cross-communication
between heterogeneous networks is only a matter of proper proxy implementations.

1 http://code.google.com/p/jcoap/

48 M. Leggieri and M. Hausenblas

Fig. 3.17 The Embedded
Web: architecture of a
Cross-protocol proxying
between HTTP and CoAP

3.6 Conclusion

We are currently witnessing a revolution in the interaction between humans and the
real world. If we consider that we can only control what we can measure, then the
growing amount of embedded devices by sending continuous streams of phenomenon
(e.g., odor, light, noise, proximity) measurements are giving an augmented control
to the people over the reality we live in. Combining these streams of data on the
Internet of Things is however necessary, in order to grant a seamless data access
and improve the data quality. Due to tight resource constraints on such devices, this
too early claimed realization of the IoT vision, has not happened yet. However the
research has moved further and, only a few months ago, an IETF WG finalized the
6LoWPAN, network layer protocol that unlocks IP-enabled devices, so that they
can be directly connected to the Internet, as in the IoT vision. At the same time,
ongoing IETF standardization efforts are directed towards an application protocol,
CoAP, that is compliant with both resource constrained environments and REST-
ful principles’ requirements. We painted a picture of the transformations that the
Internet as-we-know-it is undergoing and the eventually necessary evolution of its
underlying architectural design, REST. From a protocol stack perspective, we show
which successful traditional Internet and IoT protocols’ approaches can be lever-
aged, and which others should be addressed for their weaknesses. We focus on the
successful features of the RESTful Web architecture on one side, and on its applica-
tion in constrained environments on the other; discussing the main limitations. The
current research direction seems the right one toward the enablement of a global
nervous system of Internet-connected things, humans, animals and plants, which
would increasingly resemble childhood fairy tales, where even a tree could speak2.

2 http://hello-tree.com/

http://hello-tree.com/

3 Interoperability of Two RESTful Protocols: HTTP and CoAP 49

Acknowledgements The authors would like to thank Zach Shelby, Prof. Dr.-Ing. Carsten Bormann,
Prof. Dr. Elgar Fleisch and Lisa Dusseault for the inspirational content published online and for the
permission to include their images. This work is funded by the Science Foundation Ireland (Grant
No. SFI/08/CE/I1380 - Líon-2) and by the European Union (Grant ICT-258885 - SPITFIRE).

Chapter 4
Enabling Real-Time Resource Oriented
Architectures with REST Observers

Vlad Stirbu and Timo Aaltonen

4.1 Introduction

The Web is build upon a simple interaction pattern. The web browser initiates a
request to a resource and the web server responds with a representation that contains
the current state of the respective resource. The web browser can check at a later
time if the resource state has changed by making a new request and comparing the
newly received representation against the previous one.

This basic model is inefficient and expensive for both browser and server, and
valuable resources are wasted in the process. For example, the web server can be
overloaded with requests to resources that have not changed while the users have
to request new representations of resources of interest, and visually check in the
browsers if there are changes. Additionally, because the refresh operation sends the
entire representation of the resource, network bandwidth is used unnecessarily. Web
caching and syndication related technologies mitigate some of these inefficiencies by
reducing the frequency of requests, or the need to transfer representations. However,
the interaction is still limited to a request-response pattern and the server has no
means to initiate pushing changes to clients, when they occur.

In this chapter we present the REST observer, a framework for observation and
notification that allows web clients to receive real-time events about state changes
in resources of interest. First, we present the established mechanisms that improve
interactiveness on the web. Second, we describe the REST observer pattern and the
implementation in the Web context. Third, we analyze the qualities of the proposal
in the context of the REST architectural style [81], and how such a system can be
used in practice.

∗ The bibliography that accompanies this chapter appears at the end of this volume and is also
available as a free download as Back Matter on SpringerLink, with online reference linking.

V. Stirbu (�)
Mannikonkatu 4 A 3, Tampere 33820, Finland
e-mail: vlad.stirbu@ieee.org

T. Aaltonen
Tampere University of Technology, Korkeakoulunkatu 10, FI-33720, Tampere, Finland
e-mail: timo.aaltonen@tut.fi

C. Pautasso et al. (eds.), REST: Advanced Research Topics and Practical Applications, 51
DOI 10.1007/978-1-4614-9299-3_4, © Springer Science+Business Media New York 2014

52 V. Stirbu and T. Aaltonen

4.2 Motivation and Related Work

In this section we describe the main mechanisms that facilitate more efficient and
interactive interactions between web clients and servers.

4.2.1 Web Syndication and Search Engines

Search engines were one of the first categories of user agents that consumed large
amounts of information exposed on the web by automatically following the links
embedded in web documents, the information being gathered to create indexes.
The index is updated regularly by repeating the crawling process. To facilitate the
process, web sites maintainers publish a Sitemap document [214] containing the list
of resources that changed, when the change happen, how often it changes and how
important document are in relation with other documents on the site. On another track,
end users or web sites that aggregate content from third parties need more information
when web documents change. They typically follow specific topic and are interested
in a summary of the change that allows them to decide if the content should be
retrieved. These updates are packaged as an RSS [201] or Atom [172] list, each entry
being time-stamped, allowing clients to track back what happened on the site since
the last visit. For large content publishers, polling their feeds is still expensive. To
reduce the load, they publish feeds of feeds, like Simple Update Protocol (SUP) [40],
which allows consumers to detect which feed is updated using a single operation.
Although not proper push protocols, these mechanisms speed up considerably the
process of propagating changes, while reducing the publishing costs.

4.2.2 Server-to-Server Change Propagation

PubSubHubbub (PuSH) [83] is a server-to-server protocol that notifies in close to
real time when published content is updated. PuSH extends RSS and Atom protocols
so that publishers inform consumers when the content changes eliminating the need
for polling. The protocol involves the producer, the consumer and the hub, with an
interaction that follows the publish/subscribe pattern. First, the consumer fetches
the feed from the producer. The response contains a link to the hub that can deliver
updates. Then, the consumer expresses interest in the respective feed to the hub.
Whenever the content changes, the producer notifies the hub, which fetches the
new content and makes it available to the consumer. Functional Observer REST
(FOREST) [56] proposes a mechanism that allows web resources that depend on the
state of other resources to be notified when the state change so that they can update
their own state. The protocol that propagates the changes has an interaction pattern
that is similar to PuSH.

4 Enabling Real-Time Resource Oriented Architectures with REST Observers 53

4.2.3 Server-to-Client Change Propagation

The simplest method for a client to find out if a web resource has changed is to
regularly request, or poll, the representations of the respective resource. The client
checks the received representation against the previous known one and determines if
there was a change. Long-polling is a more elaborate mechanism in which the server
does not provide a representation until a change happens. Once the representation
is received, the client repeats the procedure and waits for the next change. Alter-
natively, the server might choose not to close the connection and stream new data
as it becomes available. These techniques are employed typically in web browsers
through Asynchronous JavaScript and XML (Ajax) [158]. Alternatively, a server can
push messages to a web browser using Server-Sent Events [110], which are typi-
cally streamed to the recipients. To receive these events, the client must have prior
knowledge of the resource emitting the events, or becomes aware of the respective
resource via a script.

WebSocket is technology that enables interactive communications between the
browser and a web server. The clients can send messages to the server and receive
responses without having to poll the server for a reply. Although, it simplifies the
complexity around bi-directional web communication and connection management,
it relies on an entirely new WebSocket protocol [75] that uses HTTP only during
handshake.

4.2.4 Summary

We listed above the mainstream mechanisms that can be considered enablers for
propagating changes in a resource’ state. We can observe a group of mechanisms
that are able to deliver the push-like notifications in real time, such as PuSH and
FOREST, that require server functionality on the recipient end. On another hand, the
Server-Send Event delivers the events to clients, but the expressiveness of the events
it limited (e.g. they are text/event-stream messages), and the client has to have prior
knowledge of the event emitting resource.

Our work is inspired by the functionality of the WATCH method proposed in
ARRESTED [120], which extends the REST architectural style to support distributed
and decentralized systems. However, unlike defining a new method, we wanted a
push-like notification mechanism that can operate within the boundaries of the HTTP
1.1 [80] protocol.

4.3 The REST Observer Architecture Pattern

In this section we describe a pattern that enhances the REST architectural style [81]
with event observation and notification capabilities. To realize these features we
rely on the Observer pattern [90]. The proposed architecture is an instantiation of
the internet-scale event observation and notification framework [200]. We are going

54 V. Stirbu and T. Aaltonen

Resource
of Interest

RecipientInvoker C S

Update
Delete

Observer S C

Event

Resource User Agent Uniform interface

Fig. 4.1 The REST observer architectural model

through each of the models introduced by this design framework and describe how
each concept is mapped to the REST observer architecture.

The Object Model The REST architectural style consists of clients and servers
that interact using a uniform interface consisting of create, read, update, and delete
(CRUD) operations. In this environment, an invoking user agent uses one of the op-
erations provided by the uniform interface to acquire a representation corresponding
to the current state of a resource that exposes the object of interest. For the remainder
of the paper we will identify the object of interest as the resource of interest. Addi-
tional user agents interested in the state of the object of interest are the notification
recipients. The architecture model of the REST observer is depicted in Fig. 4.1.

The Event Model The uniform interface allows the user agents to create a new
resource, to read the current state of a resource, to update the resource determining
a change in its state, or to delete the resource. Although all these operations trig-
ger events, we are interested only in those events that occur due to changes in the
representations of the resources of interest, or changes in relationships with other
resources. Therefore, we consider RESTful events only those events that are trig-
gered by a successful completion of an update or delete operation on the resource of
interest.

The Naming Model The naming model used in our system is based on Uniform
Resource Identifiers (URIs) [26]. Therefore, following the REST architectural style,
the resources of interest are identified using unique URIs, while the user agents
are identified by the identification of the user on which behalf the user acts, or
anonymously, if the user agent is not identifiable.

The Observation Model The observation of events is realized using special
resource type called observer. In the REST observer architecture we employ syn-
chronous observation, event occurrences being explicitly communicated to the
observers. The information policy mandates that event-specific information must
contain enough data to allow the observer to recover the current state of the resource
of interest. The minimal observer implementation does not enforce any observation
policy, allowing an observer implementer to select the appropriate mechanism, for
its environment, that achieves event observation.

The architecture does not specify a pattern abstraction policy or a filter policy,
recipient user agents being notified about all individual events, as the observer
does not filter any events and does not recognize any event patterns. The parti-
tioning policy is considered an implementation detail of the resource of interest.
Additionally, a minimal implementation of the observer is not required to maintain
observations history.

4 Enabling Real-Time Resource Oriented Architectures with REST Observers 55

The Time Model The REST observer architecture does not assume the existence
of a global clock. Each event occurs in the context of a resource of interest and the
local clock of that resource is used.

The Notification Model The communication between the recipient and the observer
has two components. Initially, the recipient expresses interest in receiving events
using the uniform interface of the observer. Then, the observer delivers notifications
of every occurrence of an event to all recipients that have expressed the interest for
as long as the recipients maintain the interest. The observer is the publisher and the
recipient is the subscriber.

The Resource Model The resource of interest, the invoking user agent and the recip-
ient user agent’s lifetime does not depend on the occurrences of events or notification
deliveries. In the resource model we are interested in the lifecycle of the observer. As
the observer is a resource identifiable using a unique URI, we define that an observer
is initiated with regard to a resource of interest if there is a relationship between the
resource and the observer. Similarly, the observer is terminated if the relationship is
ended. The existence of the relationship is conveyed in the representations provided
by the resource of interest. The REST observer architecture does not define any
management mechanism related to the lifecycle of the observer resource itself.

4.4 The Web-Based Realization of REST Observer

In this section we describe the implementation of the REST Observer pattern for the
World Wide Web. We adapt the architecture pattern to the Web architecture [112],
and provide examples of how to implement the mechanism using the HTTP protocol.

4.4.1 The Resource of Interest

A resource that has the ability to notify recipient user agents that its state or relation-
ships with other resources have changed, can indicate such a capability by including
the Link header [169] with a monitor [197] value in the response of the GET request:

1 #Request
2 GET {resource} HTTP/1.1
3
4 #Response
5 HTTP/1.1 200 OK
6 Link: {observerURI}; rel="monitor"
7
8 <!-- Resource representation -->
9 ...

A user agent that understands the semantics of the Link header and the monitor
relationship may decide to connect to the provided URI to receive notification related

56 V. Stirbu and T. Aaltonen

to changes in resource’ state. Some resources may include the relationship with the
observer resource using representation specific mechanisms, such as the LINK header
in the head section of HTML documents, or the link element in Atom documents1.
The user agents that do not understand these mechanisms would ignore the resource
relationship with the observer.

4.4.2 The Observer Resource

This resource provides the observer functionality. Because the state of the observer
resource changes only over the event observation channel, user agents can only read
the state of the resource.

4.4.2.1 Notification Delivery

The notifications are streamed by the observer resource, to each connected user
agent, as entities within a single chunked encoded multipart/mixed message-body.
Each notification must contain the HTTP protocol version, the status code and at
least the Content-Type and Last-Modified headers.

1 # Request
2 GET {observerURI} HTTP/1.1
3
4 # Response
5 HTTP/1.1 200 OK
6 Content-Type: multipart/mixed;
7 boundary="boundary-string"
8 Transfer-Encoding: "chunked"
9
10 --boundary-string
11 HTTP/1.1 {statusCode} {reasonPhrase}
12 Content-Type: {mimeType}
13 Last-Modified: {httpDate}
14 ...
15
16 <!-- An optional message body -->
17 ...
18 --boundary-string
19 HTTP/1.1 {statusCode} {reasonPhrase}
20 Content-Type: {mimeType}
21 Last-Modified: {httpDate}
22 ...
23
24 <!-- Another optional message body -->
25 ...

1 Conveying the resource’s relationship with the observer in the representation is the preferred
method if the user agent is a browser that interacts with the observer using Ajax requests. In this
environment, the browser engine implementation might not grant access to the HTTP headers
included in the response, if the request was cross origin.

4 Enabling Real-Time Resource Oriented Architectures with REST Observers 57

The value of the Last-Modified header conveys to the recipient user agent the time
when the resource of interest changed state, while the Content-Type header describes
if the notification is delivered inline or external.

4.4.2.2 Inline Delivery

An inline delivery notification contains the response to an HTTP request as if the
notified user agent has made a GET request on the monitored resource. The inline
notification must indicate the media type of the enclosed message body and the URI of
the corresponding monitored resource, using the Content-Type and Content-Location
headers:

1 ...
2 --boundary-string
3 HTTP/1.1 200 OK
4 Content-Type: {mimeTypeOfTheMessageBody}
5 Content-Location: {monitoredResourceURI}
6 Last-Modified: Fri, 2 Nov 2012 22:16:08 GMT
7
8 <!-- Message body -->
9 ...
10 --boundary-string
11 ...

The notification is equivalent with the following HTTP request-response interaction:

1 # Request
2 GET {monitoredResourceURI} HTTP/1.1
3
4 # Response
5 HTTP/1.1 200 OK
6 Content-Type: {mimeType}
7 Last-Modified: Fri, 2 Nov 2012 22:16:08 GMT
8
9 <!-- Message body -->

10 ...

4.4.2.3 External Delivery

An external delivery notification contains enough information to allow the recipient
user agent to find out the latest state of a monitored resource using a subsequent
GET request. The notification is represented as a message having the media type
message/external-body [86]. The value of the encapsulated Content-ID header indi-
cates the URI of the resource of interest being monitored. The notification itself does
not include an actual body:

58 V. Stirbu and T. Aaltonen

1 ...
2 --boundary-string
3 HTTP/1.1 204 No Content
4 Content-Type: message/external-body;
5 access-type=http
6

7 Content-ID: {monitoredResourceURI}
8 Last-Modified: Fri, 2 Nov 2012 22:55:08 GMT
9

10 --boundary-string
11 ...

The recipient user agent of an external notification message may decide not to follow
the URL indicated by the encapsulated Content-ID header, if its interest is limited
only to knowledge that the resource has changed.

The server uses chunked transfer encoding to deliver the notifications to the clients.
As the server can switch back and forth between inline and external deliveries without
prior agreement, a client must understand both delivery mechanisms to work properly.

4.4.3 Notification Semantics

Each notification contains information that conveys to the recipient user agent the
state of the monitored resource. The response status code and the message indicate
the nature of the change, such as the resource of interest was updated or deleted.
Optionally, a notification with inline delivery contains also the latest representation
of a resource.

4.4.3.1 Updating or Editing

A resource is updated whenever a user agent successfully completed a PUT, a POST,
or a PATCH [63] request on the monitored resource. The recipient user agent is not
able to distinguish if the state change is a result of a partial or a complete update.

1 ...
2 --boundary-string
3 HTTP/1.1 200 OK
4 Content-Type: {mimeType}
5 Content-Location: {updatedOrEditedResourceURI}
6
7 <!-- Message body -->
8 ...
9

10 --boundary-string
11 ...

4 Enabling Real-Time Resource Oriented Architectures with REST Observers 59

4.4.3.2 Deletion

A resource is deleted whenever a user agent successfully completed a DELETE re-
quest on the monitored resource. The information is conveyed using the 410 response
code and the status message Gone. The behavior is similar as if the recipient user
agent would have made a GET request on the deleted resource of interest.

1 ...
2 --boundary-string
3 HTTP/1.1 410 Gone
4 Content-Location: {deletedResourceURI}
5
6 --boundary-string
7 ...

4.4.3.3 Creation

A user agent cannot subscribe to non-existing resources. To be able to monitor a
resource, the user agent must find first the existence of the new resource. This can
happen either by monitoring a collection to which the new resource is a member or
by receiving a link to the resource in an update from an existing resource. We call
this indirect monitoring.

4.4.4 Interaction

The typical interaction between the user agents and resources involved in the REST
observer is initiated by the recipient user agent, see Fig. 4.2. The user agent makes
a request on a specific resource and receives in the representation or as a header
the URL where the resource can be monitored. Then, the user agents initiate the
connection to the observer. To accommodate any possible changes in state in the
resource of interest since the user agent received the response for the resource of
interest since the connection with the observer was established, the observer sends
a notification containing the last known state of the resource of interest. Later on,
new notifications are delivered to the user agent as the observer becomes aware of
changes in the resource’ state.

4.5 Implementation Experience

To gain first hand experience with the REST observer pattern we created a prototype
environment for a multiplayer turn-based game. The state of the game is maintained
on a server while the players engage in the games using their mobile devices. As
players complete their turns we want the other players to be notified about the game
progress without having to poll the server.

60 V. Stirbu and T. Aaltonen

Object of
Interest

RecipientInvoker Observer

GET

Link: {observerURL}, rel="monitor"

GET

PUT

new state

last known state

PATCH

new state new state

Fig. 4.2 Interaction example

Table 4.1 Model-resource mapping Model Resource

User /usera

Game /games/{gameId}
Turn /turns/{turnId}
Observer /observera

a mapped based on successful authentication

4.5.1 The Prototype Environment

The server is implemented using express.js2, a simple and flexible web framework
running on node.js3 that enables rapid creation of RESTful web applications. The
client functionality is implemented as a single-page web application that is packaged
as a native application using PhoneGap4 framework. The application interacts with
the server using Asynchronous JavaScript and XML (AJAX) requests.

4.5.2 Resources and Representations

The system is build around the following four resources: user, game, turn, and
observer (see Table 4.1). The user resource exposes the games the user is involved
in. The game resource is responsible for managing the life-cycle of games. For
example, a user agent interacting with the resource can inspect that current state of a
game, represented as an ordered list of turns, or can create new games. Whenever a
new game is created the user resource of the players involved in the games is updated.
The turn resource manages the game turn. A player can advance the game by filling
in the turn requirements specific to the corresponding game type. Advancing to a new
turn propagates to the associated game resource that updates its state, the time-stamp

2 http://expressjs.com
3 http://nodejs.org
4 http://www.phonegap.com

4 Enabling Real-Time Resource Oriented Architectures with REST Observers 61

Fig. 4.3 Domain model used
in prototype environment

User Game

Turn

Observer

1

1

1

1

1

*

**

owns

hasplays

1

*

notifiesnotifies

being changed to the time the last turn was played. For brevity, the system maintains
one observer resource for each user of the system. Therefore, a single observer
resource will deliver notifications for all resources associated with the particular user.
The domain model used in the prototype environment, including the resources, the
relationships between the resources, and cardinalities of the relationships is depicted
in Fig. 4.3.

The representation of the user resource is a Collection+JSON document [12].
This document conveys to the client the nature of the collection, using the profile
relationship, and the where the resource can be monitored:

{
"collection": {

3 "version": "1.0",
"href": "/user",
"links": [

{
"rel": "monitor",

8 "href": "/observer",
"prompt": "Observer"

},
{

"rel": "profile",
13 "href": "/profiles/games",

"prompt": "Profile"
}

],
"items": [

18 {"href": "/games/{gameId}"},
...

]
}

}

The client application becomes aware of the games played by the user it can retrieve
the representations of individual games. Each game representation is a collection of
turn items:

62 V. Stirbu and T. Aaltonen

{
"collection": {

3 "version": "1.0",
"href": "/games/{gameId}",
"links": [

{
"rel": "monitor",

8 "href": "/observer",
"prompt": "Observer"

},
{

"rel": "profile",
13 "href": "/profiles/turns",

"prompt": "Profile"
}

],
"items": [

18 {"href": "/turns/{turnId}", data: [...]},
...

]
}

}

4.5.3 Notifications Mechanics

When the application retrieves the representation of user and game resources it knows
that it can monitor their state using the observer resource. Because the frequency of
updates is relatively low, we decided to implement only the inline notifications.

When a new game is created, the user resource of all users invited to the game gets
updated. As a result a notification is delivered through the observer to all connected
user agents:

1 ...
2 --boundary-string
3 HTTP/1.1 200 OK
4 Content-Type: application/vnd.Collection+JSON
5 Content-Location: /user
6
7 {
8 "collection": {
9 ...

10 "items": [
11 ...
12 {"href": "/games/{newGameId}"},
13],
14 ...
15 }
16 }
17 --boundary-string
18 ...

Similarly, when a game turn is completed, a notification is delivered to all players
involved in the game:

4 Enabling Real-Time Resource Oriented Architectures with REST Observers 63

1 ...
2 --boundary-string
3 HTTP/1.1 200 OK
4 Content-Type: application/vnd.Collection+JSON
5 Content-Location: /games/{updatedGameId}
6
7 {
8 "collection": {
9 ...

10 "items": [
11 {"href": "/turn/{firstGameTurnId}", data: [...]},
12 ...
13 {"href": "/turn/{completedGameTurnId}", data: [...]},
14 ...
15 {"href": "/turn/{lastGameTurnId}", data: [...]},
16],
17 ...
18 }
19 }
20 --boundary-string
21 ...

Because the application runs in mobile devices, we maintain the connection estab-
lished with the observer only when the application runs in the foreground. When the
application is switched to background the connection with the observer is closed.
Whenever new updates are available the backend service pushes a notification to the
mobile device using the operating system specific push mechanism, such as Apple
Push Notification (APN) for iOS [17]. The payload size of the operating system
specific notification is typically small: an APN notification cannot exceed 256 bytes,
including the information on how the notification is presented to the user, therefore it
can not carry the required payload. Whenever the device receives such a notification
and the user decides not to ignore it, the application is moved in the foreground and
re-establishes the connection to the observer resource.

4.6 Discussion

4.6.1 On the RESTfulness of the REST Observer Pattern

The REST architectural style consist of a set design guidelines that enable a network-
based software system to have desirable properties such as “enhanced scalability of
component interactions, generality of interfaces, independent deployment of compo-
nents, and intermediary components to reduce interaction latency, enforce security
and encapsulate legacy systems” [81].

By studying the REST observer pattern from this perspective, it is easy to no-
tice that it follows the above design guidelines. The system is client-server with
clearly separated responsibilities for the corresponding components. The interaction
between the client and the server is stateless, as the recipient user agent interactions
with the resource of interest and the observer happens in isolation. The data provided

64 V. Stirbu and T. Aaltonen

in the notifications can be cached by the recipient user agent, each representation
being valid until the observer notifies of a new change, or by the observer, which can
deliver a change to multiple recipients. The components of the system interact using
a uniform interface. The system is layered, as there might be intermediary observers
that provide load balancing or shared-caching.

Additionally, the Resource Oriented Architecture (ROA) introduces a practical
approach for describing the implementation of RESTful architectures, in the context
of the World Wide Web, using four concepts (e.g. resources, URIs, representations,
and links between the resources), and four properties (e.g. addressability, stateless-
ness, connectedness and uniform interface). The REST observer introduces a new
resource, the observer, that can be identified using a URI, delivering to the client well
known representations for inline and external notifications. The observer resource
is connected with the resource of interest that is monitored using web linking. The
observer pattern integrates easily into a ROA system, as it provides also address-
ability of the observer resource, the interaction between recipient user agents and
observer is stateless, the observer is connected with the resource of interest, and the
interaction is done using the GET verb of the HTTP protocol.

Further, we can see that the REST observer obeys the hypermedia as the engine
of application state (HATEOAS) principle, as a recipient user agent does not have to
have prior knowledge of how to interact with the observer. It simply discovers if a
particular resource of interest is able to deliver notifications, on its state change via an
observer, by looking if the response headers contain web links or the representation
has embedded links to the respective observer resource.

4.6.2 On the Implementation of the Uniform Interface

The REST observer pattern allows a user agent to be notified when a resource of
interest state has changed. This goal is achieved using the observer resource and
augmenting the GET interface of the resource of interest to include a link to the
observer resource. The arrangement isolates the implementation of the resource of
interest from the recipient user agent. Using only the GET method, the recipient
user agent can observe the changes in state of the respective resource, while also
discovering the observer resource that delivers the change notifications. The resource
of interest implementer may decide to allow other methods, besides the ones defined
by HTTP 1.1, to change the state of the resource. For example, we used PATCH [63]
in our prototype environment to update the state of the game. However, regardless
of how the resource state has changed, the recipient user agent receives the new state
as if it would have made a GET request. Therefore, the implementation details of
the resource of interest interface are not exposed to the recipient user agent over the
observer resource interface.

The overall perceived behavior of the REST observer pattern is equivalent in func-
tionality with the WATCH method proposed by ARRESTED. However, obtaining

4 Enabling Real-Time Resource Oriented Architectures with REST Observers 65

Resource
of Interest

S

Observer 2 S

Observer 1 S

External

Inline

Recipient 1C

Recipient 2C

Fig. 4.4 Scenario with one resource having two observers

the same results by with the GET method has immediate deployment and opera-
tional advantages. For example, existing software tools can be leveraged to develop
the REST observer and to augment already implemented ROA services. Addition-
ally, HTTP intermediaries do not have adverse side effects as they are expected to
understand and handle correctly GET and POST methods [1].

4.6.3 Observation Granularity and Filtering

The REST observer pattern enables two levels of descriptiveness for the delivered
notifications. The inline notification delivers the representation that corresponds to
the new state of the resource of interest, allowing a user agent to have an up to
date state of the resource without further actions. On the other hand, the external
notification informs the user agent that the resource has changed and when, but the
user agent has to make a subsequent request to become aware of the state of the
resource. This level of control enables a user agent interested only when the resource
state changed to stay informed about this situation. Further, there are situations when
a user agent is not interested in the full state of the resource but only in partial states.
A resource that is able to distinguish the partial states can notify interested user agents
using the URI query parameters or fragments.

4.6.4 Example Deployments

The relationships between the resources of interest and observers are an implementa-
tion specific. However, there are a few deployment scenarios that are worth discussing
to emphasize how the observer pattern can be used in practice.

In the scenario presented in Fig. 4.4, there are a number of user agents that are
interested to know only if the resource of interest has changed but not what is the
latest state. To accommodate this situation, the resource of interest implementer
decides to provide two observer resources: one delivers inline notifications, and the

66 V. Stirbu and T. Aaltonen

Resource
of Interest

S
Observer

S

External

Inline

Recipient 1C

Recipient 2C

Fig. 4.5 Scenario with one resource having one observer

other delivers external notifications. The relationship is conveyed to the user agents,
using web linking:

1 #Request
2 GET /resource HTTP/1.1
3
4 #Response
5 HTTP/1.1 200 OK
6 Link: </observer1>; rel="monitor"; type="application/json",
7 </observer2>; rel="monitor"; type="message/external-body"
8 <!-- Resource representation -->
9 ...

A similar result as above can be obtained using a single observer that has the ability
to filter itself the inline and external notifications based on the preferences expressed
by the recipient user agents. This environment is depicted in Fig. 4.5.

The resource of interest would inform the user agents on how to interact with the
observer through web linking:

1 #Request
2 GET /resource HTTP/1.1
3
4 #Response
5 HTTP/1.1 200 OK
6 Link: </observer?notification=inline>; rel="monitor";
7 type="application/json",
8 </observer?notification=external>; rel="monitor";
9 type="message/external-body"
10 <!-- Resource representation -->
11 ...

A more elaborate scenario involves chained observers, in which downstream ob-
servers provide features that are not available upstream, is presented in Fig. 4.6. The
resource of interest, aware of the observer chains, would inform the user agents on
how to interact with the observer using web linking:

4 Enabling Real-Time Resource Oriented Architectures with REST Observers 67

1 #Request
2 GET /resource HTTP/1.1
3
4 #Response
5 HTTP/1.1 200 OK
6 Link: </observer1>; rel="monitor",
7 </observer2?notification=inline>; rel="monitor";
8 type="application/json",
9 </observer2?notification=external>; rel="monitor";
10 type="message/external-body"
11 <!-- Resource representation -->
12 ...

External

Inline

Recipient 1C

Recipient 2C

Observer 1 S
Observer 2

SC

Fig. 4.6 Scenario with chained observers

4.7 Conclusions and Future Work

The REST observer pattern delivers push-like functionality that enables users agents
interested in the state of a resource to stay updated when the state of the resource of
interest has changed. However, instead of using entirely new protocols, like Web-
Sockets, or define new methods as proposed in ARRESTED, we achieve equivalent
results within the boundaries on the HTTP 1.1 protocol.

We plan to improve the REST observer by developing an observer life-cycle mech-
anism that allows observer resources to be created on demand, and an event filtering
mechanisms that allow user agents to specify which events are of interest, so that
observer delivers only those events. We also intend to investigate more complex de-
ployment scenarios in which chained observers provide sophisticated event filtering.
Additionally, the responsiveness of the system can be improved by delivering partial
representations of new states, or event updates on partial states. For example, instead
of delivering full-size JSON implementations, the server could deliver JSON Patch
[39] documents that contain only the difference form the previous delivered state.

Chapter 5
Survey of Semantic Description of REST APIs

Ruben Verborgh, Andreas Harth, Maria Maleshkova, Steffen Stadtmüller,
Thomas Steiner, Mohsen Taheriyan and Rik Van de Walle

5.1 Introduction

The REST architectural style assumes that client and server form a contract with
content negotiation, not only on the data format but implicitly also on the semantics
of the communicated data, i.e., an agreement on how the data have to be interpreted
[247]. In different application scenarios such an agreement requires vendor-specific
content types for the individual services to convey the meaning of the communicated
data. The idea behind vendor-specific content types is that service providers can

∗ The bibliography that accompanies this chapter appears at the end of this volume and is also
available as a free download as Back Matter on SpringerLink, with online reference linking.

R. Verborgh (�)
Multimedia Lab – Ghent University – iMinds, Gaston Crommenlaan 8 bus 201,
Ledeberg-Ghent 9050, Belgium
e-mail: ruben.verborgh@ugent.be

A. Harth · M. Maleshkova · S. Stadtmüller
Institute AIFB, Karlsruhe Institute of Technology (KIT), Karlsruhe 76128, Germany
e-mail: harth@kit.edu

M. Maleshkova
e-mail: maria.maleshkova@kit.edu

S. Stadtmüller
e-mail: steffen.stadtmueller@kit.edu

T. Steiner
Departament de Llenguatges i Sistemes Informatics, Universitat Politècnica
de Catalunya, Jordi Girona, 29, Barcelona 08034, Spain
e-mail: tsteiner@lsi.upc.edu

M. Taheriyan
Information Science Institute, University of Southern California, Admiralty Way,
Suite 1001, Marina del Rey, CA 4676, USA
e-mail: mohsen@isi.edu

R. Van de Walle
Multimedia Lab – Ghent University – iMinds, Gaston Crommenlaan 8 bus 201,
Ledeberg- Ghent 9050, Belgium
e-mail: rik.vandewalle@ugent.be

C. Pautasso et al. (eds.), REST: Advanced Research Topics and Practical Applications, 69
DOI 10.1007/978-1-4614-9299-3_5, © Springer Science+Business Media New York 2014

70 R. Verborgh et al.

reuse content types and service consumers can make use of specific processors for
the individual content types. In practice however, we see that many RESTful APIs
on the Web simply make use of standard non-specific content types, e.g., text/xml or
application/json [150]. Since the agreement on the semantics is only implicit, pro-
grammers developing client applications have to manually gain a deep understanding
of several APIs from multiple providers.

Common Web APIs are typically either exclusively described textually1, or far
less frequently—and usually based on third-party contributions—a machine-readable
WADL [104] API description exists2. However, neither human-focused textual, nor
machine-focused WADLAPI descriptions carry any machine-processable semantics,
i.e., do not describe what a certain API does. Instead, they limit themselves to
a description of machine-readable in- and output parameters in the case of WADL,
or a non-machine-readable prose- and/or example-driven description of theAPI in the
case of textual descriptions. While this may suffice the requirements of developers
in practice, the lack of semantic descriptions hinders many more advanced use cases
such as API discovery or API composition.

Machine-interpretable descriptions can serve several purposes when developing
client applications:

• One can generate textual documentation from the standardised machine-
interpretable descriptions, which leads to a more coherent presentation of the
APIs, similar to what JavaDoc has achieved in the Java world (see also Knuth’s
idea of literal programming [125]).

• A standardised way to access REST APIs introduce a higher degree of automation
for high level tasks such as composition.

• Machine-interpretable descriptions facilitate a more structured approach to de-
veloping APIs, which means that automated tools can check coherence and the
RESTful-ness of an API (e.g., according to the Richardson Maturity Model3).

With hypermedia being an essential constraint of the REST architectural style
[78], the transitions between different application states of a REST API have to
be hypermedia-driven. In that sense, semantic API descriptions complement the
hypermedia-driven interactions by providing additional clues for machine clients
that help them make informed decisions.

In a RESTful interaction with Web resources, only the constraint set of HTTP
methods can be applied to the resources. The semantics of the HTTP methods itself
is defined by the IETF [80] and do not need to be explicitly described for individ-
ual resources. We can distinguish between safe and non-safe methods, where safe
methods guarantee not to affect the current state of resources. Additionally, some of
the methods require additional input data to be provided for their invocation. The
communicated input data can be subject to requirements that need to be described to
allow an automated interaction. Furthermore, the effect on the resources state of an

1 For example, the Twitter REST API: https://dev.twitter.com/docs/api
2 A large archive of WADL descriptions is available on GitHub: https://github.com/apigee/wadl-
library
3 http://martinfowler.com/articles/richardsonMaturityModel.html

5 Survey of Semantic Description of REST APIs 71

application of a non-safe method has needs to be assessable before the actual invoca-
tion to allow clients to decide how to interact with the resources. The effected change
of resources after applying an HTTP method can also depend on the communicated
input data. This dependency between communicated input and the resulting state of
resources has also to be subject of a description.

In the chapter we classify the various approaches for providing machine-
interpretable descriptions of Web APIs. Section 5.2 surveys lightweight semantic
descriptions. Section 5.3 introduces descriptions based on graph patterns (a subset of
the SPARQL query language for RDF, a graph-structured data format). Section 5.4
covers logic-based descriptions. Section 5.5 covers JSON-based descriptions.
Section 5.6 contains a description of two tools for annotating existing APIs, and
Sect. 5.8 concludes.

5.2 Lightweight Semantic Descriptions

5.2.1 Syntactic REST API Descriptions

Web services enable the publishing and consuming of functionalities of existing
applications, facilitating the development of systems based on decoupled and dis-
tributed components. WSDL [49, 254] is an XML-based language for describing the
interface of a Web service. A WSDL service description specifies: (1) the supported
operations for consuming the Web service; (2) its transport protocol bindings; (3)
the message exchange format; and (4) its physical location. In this way, the WSDL
description contains all information necessary for invoking a service and since it is
XML-based, conforming to the WSDL xml schema, it is also machine-processable.

WSDL Similarly, toWeb services, which provide access to the functionality of exist-
ing components, Web APIs and Web applications conforming to the REST paradigm,
provide access to resources by using the WWW as an infrastructure platform.
Based on this parallel between the two types of services, WSDL was extended to
Version 2.0 [254], which can also be used for formally describing RESTful services.
As a result WSDL is a machine-processable, platform- and language-independent
form of describing Web services and RESTful services alike.

The difficulty of using WSDL for RESTful services, is that it was not especially
designed for resource-oriented services and as a result, everything has to be described
in an operation-based manner. In addition, WSDL introduces some difficulties with
specifying the message exchange format and limits HTTP authentication methods.
Moreover, the most important drawback is that it lacks support for simple links.
There is no mechanism in WSDL 2.0 to describe new resources that are identified
by links in other documents. However, one of the most important characteristics of
RESTful services is that they consist of collections of interlinked resources. Finally,
the adoption of WSDL as means for describing Web APIs would requite that all
providers update or completely change their websites with documentation, moving

72 R. Verborgh et al.

away for using only text in HTML form. Similarly developers would need to learn
to deal with WSDL instead of simply reading a natural language description.

WADL In contrast to WSDL, the Web Application Description Language (WADL,
[104]) was especially designed for describing RESTful services in a machine-
processable way. It is also XML-based and is platform and language independent.
As opposed to WSDL, WADL models the resources provided by a service, and the
relationships between them in the form of links. A service is described using a set
of resource elements. Each resource contains descriptions of the inputs and method
elements, including the request and response for the resource. In particular, the re-
quest element specifies how to represent the input, what types are required and any
specific HTTP headers. The response describes the representation of the service’s
response, as well as any fault information, to deal with errors.

Currently, neither WADL nor WSDL are widely accepted and used for Web
APIs and RESTful services. A Google search for WADL files returns only 49
unique results4, while from the popular Web 2.0 applications only delicious5 and
YahooSearch6 have WADL descriptions. The main difficulty of using WADL de-
scriptions is that they are complex, in comparison to text-based documentation, and
require that developers have a certain level of training and tool support that enables
the application development on top of WADL. This complexity contradicts with
the current proliferation of Web APIs, which can be greatly attributed to simplicity
and direct used of the infrastructure provided by the Web, which enable the easy
retrieving of resources only thought an HTTP request, directly in the Web browser.

Web APIs evolve rather autonomously without conforming to a shared set of
guidelines or standards, especially evident by the fact the documentation is usually
given in natural language as part of a webpage. The developer has to decide what
structure to use and what information to provide. As a result, everyone who is able
to create a Web page is also able to create a Web API description.

However, plain text/HTML descriptions, in contrast to WSDL and WADL de-
scriptions, are not meant for automated machine-processing, which means that if
developers want to use a particular service, they have to go to an existing description
Web page, study it and write the application manually. Therefore, current research
proposes the creation of machine-interpretable descriptions on top of existing HTML
descriptions by using microformats [119]. Microformats offer means for anno-
tating human-oriented Web pages in order to make key information automatically
recognisable and processable, without modifying the visualization or the content.

hREST One particular approach for creating machine-processable descriptions for
RESTful services by using microformats is hRESTS (HTML for RESTful Services)
[129]. hRESTS enables the marking of service properties including operations, in-
puts and outputs, HTTP methods and labels, by inserting HTML tags within the
HTML. In this way, the user does not see any changes in the Web page, however,

4 Search done on October 5th, 2009
5 http://delicious.com/
6 http://search.yahoo.com/

5 Survey of Semantic Description of REST APIs 73

based on the tags, the service can be automatically recognized by crawlers and the
service properties can directly be extracted by applying a simple xsl transforma-
tion. The result is an HTML page that also contains the syntactical information of
the described Web API and therefore, no longer relies solely on human interpreta-
tion. Versioning in hRESTS is dealt with the same way as in microformats through
backwards-compatible additions of class names7, potentially requiring wrapping
elements.

RDFa An alternative to using hRESTS is offered by RDFa [2] that enables the
embedding of RDF data in HTML. RDFa is similar to using microformats, but
is somewhat more complex and offers more HTML markup options, as opposed
to hRESTS. Approaches, based on making existing RESTful service descriptions
machine-processable by using HTML tags are simpler and more lightweight as op-
posed to WSDL and WADL. In addition, as already mentioned, they can be applied
directly on already available descriptions, rather then creating new service descrip-
tions from scratch. The adoption by developers is also easier, since the creation of
a machine-processable RESTful service description is equivalent to Web content
creation or modification.

5.2.2 MicroWSMO/SA-REST

In contrast to research in the area of Semantic Web Services, which has been quite
prolific, the number of semantic frameworks targeted at capturingWebAPI character-
istics is relatively limited. Web APIs have only recently achieved greater popularity
and wider use, thus raising the interest of the research community. In this section we
discuss the two main approaches—MicroWSMO and SA-REST, aiming to support a
greater level of automation of common service tasks through employing semantics.
We also consider further description languages and ontologies, including ReLL and
ROSM.

MicroWSMO MicroWSMO [128] is a formalism for the semantic description of
Web APIs, which is based on adapting the SA-WSDL [73] approach. MicroWSMO
uses microformats for adding semantic information on top of HTML service doc-
umentation, by relying on hRESTS for marking service properties and making
the descriptions machine-processable. It uses three main types of link relations:
(1) modelReference, which can be used on any service property to point to appro-
priate semantic concepts identified by URIs; (2) liftingSchemaMapping and (3)
loweringSchemaMapping, which associate messages with appropriate transforma-
tions (also identified by URIs) between the serialization format such as XML and a
semantic knowledge representation format such as RDF. Therefore, MicroWSMO,
based on hRESTS, enables the semantic annotation of Web APIs in the same way in
which SA-WSDL, based on WSDL, supports the annotation of Web services.

7 http://microformats.org/wiki/microformats-2#backward_compatible

74 R. Verborgh et al.

Fig. 5.1 Unifying SA-WSDL
and MicroWSMO through
WSMO-Lite

In addition, MicroWSMO can be complemented by the WSMO-Lite service on-
tology specifying the content of the semantic annotations (see Fig. 5.18). Since
both Web APIs and WSDL-based services can have WSMO-Lite annotations, this
provides a basis for integrating the two types of services. Therefore, WSMO-Lite
enables unified search over both WebAPIs and WSDL-based services, and tasks such
as discovery, composition and mediation can be performed based on WSMO-Lite,
completely independently from the underlyingWeb service technology (WSDL/soap
or REST/HTTP).

SA-REST Another formalism for the semantic description of RESTful services
is SA-REST [212], which also applies the grounding principles of SA-WSDL but
instead of using hRESTS relies on RDFa [2] for marking service properties. Simi-
larly to MicroWSMO, SA-REST enables the annotation of existing HTML service
descriptions by defining the following service elements: input, output, operation,
lifting, lowering, or fault and linking these to semantic entities. The main differ-
ences between the two approaches are not the underlying principles but rather the
implementation techniques. In addition, MicroWSMO aims to add semantics as
means for Web service automation, while SA-REST is more oriented towards en-
abling tool support in the context of service discovery and composition by mashup or
smashup [211].

5.2.3 Minimal Service Model

The Minimal Service Model (MSM) represents an operation-based approach towards
describing Web APIs. It is a simple rdf(s) ontology that supports the annotation of
common Web API descriptions. It also aims to enable the reusability of existing
Semantic Web service approaches by capturing the maximum common denominator
between existing conceptual models for services. Additionally, as opposed to most
semantic Web services research up to date, MSM targets to support both traditional
Web services, as well as Web APIs with procedural view on resources, so that they
can be handled in a unified way.

8 http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=semanticweb

5 Survey of Semantic Description of REST APIs 75

Originally the MSM was introduced together with hRESTS [129], aiming to cover
for the fact that Web API descriptions do not typically have any structure in terms
of the resources handled or the operations exposed. Although its initial purpose was
to provide structure to hRESTS, it has been subsequently adjusted and updated to
its current form, in order to provide means for integrating heterogeneous services
(i.e., WSDLs and Web APIS), and together with WSMO-Lite it has been used as a
means to facilitate a common framework covering the largest common denominator
of the most used Semantic Web service formalisms on the Web. On the basis of MSM
and WSMO-Lite, generic publication and discovery machinery has been developed
that supports SA-WSDL, WSMO-Lite, hREST/MicroWSMO, and OWL-S services
[186]. The Semantic Web Services exposed by this infrastructure [185] put the em-
phasis on reducing the complexity of conceptual models and integrating services with
existing Linked Data [33]. This integration serves both as a means to simplify the cre-
ation and management of Semantic Web Services through reuse, as well as it provides
a new view over semantic Web services understood as a means to support the gener-
ating and processing Linked Data on the Web. Subsequent work around the Minimal
Service Model is focused on supporting the invocation and authentication of Web
APIs [143], [149].

The original MSM [129] defined a Web API in terms of Services that has a number
of Operations, which have an Input, an Output, and Faults. However, the original
MSM, which was used as a basis for SA-REST [212] and MicroWSMO [128], fails
to capture some significant parts of the descriptions, such as optional, default and
mandatory parameters, which can have a crucial effect on discovery and invocation.
In addition, it does not enable the description of the inputs, parts of the input, and
parts of the parts of the input. As a result, the MSM has been extended [186] to
support further service characteristics.

The MSM, in its current version [186], is visualized in Fig. 5.2. The MSM, denoted
by the msm namespace, defines Services with a number of Operations. Operations in
turn have input, output and fault MessageContent descriptions. A MessageContent
may be composed of MessageParts, which can be mandatory or optional. The intent
of the message part mechanism is to support finer-grain discovery based on message
parts and allowing distinguishing between mandatory and optional parts.

The MSM is used as the core model for describingWebAPIs, while supplementary
models are defined for capturing details that are of particular relevance for the separate
service tasks. As part of identifying extensions to the MSM, work on supporting the
automation of authentication [149] was conducted.

5.2.4 Further Semantic Approaches

ROSM The Resource-Oriented Service Model (ROSM [82]) ontology is a
lightweight approach to the structural description of resource-oriented RESTful
services, compatible with WSMO-Lite annotations. It enables the annotation of
resources belonging to a service. In turn the resources can be described as being

76 R. Verborgh et al.

Fig. 5.2 Minimal service model

part of collections and having addresses (URIs) serving as endpoints for access and
manipulation. The organization of resource in collections, which again belongs to
a service, allows capturing an arbitrary number of resources and attaching service
semantics to them following the SA-WSDL approach.

Furthermore, resources can have certain HTTP methods associated with them,
which define how it is possible to interact with a resource, which are connected
through an operation. These operations are modeled in a much-more fine-grained
way, since they basically only have to support the uniform interface of HTTP. In ad-
dition, ROSM9 enables the explicit modeling of requests and responses with their as-
sociated aspects (e.g., parameters or response codes). In summary, ROSM represents
a simple ontology for describing resource-centered services, in terms of resources,
collection of resources, addresses and HTTP methods. The specific semantics of the
ROSM annotations can be described by linking to the WSMO-Lite ontology.

Servont is an ontology-based hybrid approach where different kinds of match-
making strategies are combined together to provide an adaptive, flexible and efficient
service discovery environment [62]. Semantic-enriched frameworks are considered
a key issue to enforce timely discovery and dynamic composition of services. In
contrast, the ServFace project aims at creating a model-driven service engineering
methodology for an integrated development process for service-based applications10.
Finally, the Simple Semantic Web Architecture and Protocol (sswap) is the driv-
ing technology for the iPlant Semantic Web Program11. It combines Web service

9 http://www.wsmo.org/ns/rosm/0.1/
10 http://www.servface.eu/
11 http://sswap.info/

5 Survey of Semantic Description of REST APIs 77

functionality with an extensible semantic framework to satisfy the conditions for
high throughput integration [91]. sswap originates from the Semantic moby project,
which is a branch of Biomoby project [251]. Using sswap, users can create scien-
tific workflows based on the discovery and execution of Web services and RESTful
services.

5.3 SPARQL-Based Descriptions

Following the motivation to look beyond the exposure of fixed datasets, an extension
of Linked Data with REST technologies has been proposed and explored for some
time [24], [134], [168], [249], [217], [240]. These approaches extend the traditional
use of HTTP in Linked Data, consistent with REST, by allowing all HTTP operations
to be applied to Linked Data resources. REST services in this context are often
perceived RDF prosumers, i.e., the state of resources is made available encoded
in RDF, at least as an alternative via Content Negotiation. Clients can interact with
Linked Data resources by submitting RDF input data with HTTP methods (e.g., post,
put) resulting in the manipulation or creation of resources. The output data a client
receives after the successful submission of data describes the effected state change
of resources (i.e., their new content after creation or manipulation) and is serialized
in RDF as well.

Such REST services contribute to the Web of Data by interlinking output data
with existing Linked Data sets.

RESTful Linked Data resources consider how the data that results from compu-
tation over input can carry explicit semantics and base their service descriptions on
the notion that Linked Data provides a description for resources’ input and output
requirements: the graph patterns provided by the SPARQL query language or the
N3 notation. Graph pattern provide the advantage of a more thorough description of
what should be communicated, familiarity to Linked Data producers and consumers,
and the possibility for increased tool support.

The rational behind the descriptions for RESTful Linked Data resources is that
the current state of a resource can be retrieved with an HTTP Get, while the data
exchange that constitutes a manipulating interaction with a resource is described
with two graph patterns:

• A graph pattern that describes the RDF input data that is submitted to a resource
(e.g., with HTTP post), which is necessary to invoke the manipulation.

• A graph pattern that describes the RDF output data the client receives after a
successful call.

The description implies that the input pattern has to match the input data to invoke
the service and the output pattern will match the output data returned by the service.

To illustrate the use of graph pattern-based io descriptions we introduce an ex-
ample based on an API of a social network platform. A common feature of social
networks is to post a message to the timeline of a user. The approach in the context

78 R. Verborgh et al.

Table 5.1 Example
description for a timeline
resource in a social network

Input: { ?post a sioc:Post.
?post sioc:content ?content.
?post sioc:has-creator ?user. }

Output: { ?post sioc:content ?content.
?post dcterms:created ?date. }

of Linked Data would be to wrap this call to provide the information in RDF, reusing
existing vocabularies. Here the natural choice is the sioc vocabulary12.

The description of a resource representing the timeline of a user, would make
explicit as required input for an HTTP post call the content of the message and its
creator identified in that social network. Furthermore the output would be described
as the created message with enriched with additional information (e.g., the creation
date). A client would receive data matching this pattern together with the HTTP status
code indicating the success of the call. The resulting input and output descriptions
for the Linked API are represented in Table 5.1.

Note that the reuse of the variables ?post and ?content across input and output
implies that this variable will have the same binding in the output as provided in
the input. In SPARQL terms these would be ‘safe variables’ if we considered the
service to be a SPARQL CONSTRUCT query from the input to the output patterns.
Variables in the output pattern that do not appear in the input pattern are bound by
the functionality of the resource, i.e., the binding is a result of the manipulation or
creation of a resource.

Graph pattern based descriptions allow for a thorough descriptions of what a
client has to communicate to successfully interact with a RESTful Linked Data
resource. The output descriptions that share variables with the input descriptions
allow clients to anticipate the result of their interaction with respect to the input they
intended to provide. Such an anticipation is due to the circumstance that the actual
output message of an interaction is intended to convey the effected state change of
an interaction. The predictability of effects of manipulating actions is essential to
enable (semi-)automated clients that use Linked Data REST services.

5.4 Logic-Based Descriptions

Since its inception, the Semantic Web has always had a strong link with logic [27].
The impact of logic is visible in essential building stones such as RDF [123], whose
open world assumption prohibits conclusions based on the absence of certain triples.
Two logic families are predominant on the Semantic Web: description logic, the
underlying model of OWL [156], is the most widespread, followed by first-order
logic, which is typically expressed in extensions of RDF with rules. Description
logic is in essence a decidable fragment of first-order logic, at the cost of a loss in
expressivity.

12 http://sioc-project.org/ontology/

5 Survey of Semantic Description of REST APIs 79

This reduced expressivity is a motivator for LOS and LIDS to adopt SPARQL
and the reason for a few other methods use rule-based expression languages. For
example, in OWL-S [153], one of the early semantic description formalisms for
traditional Web services, rule languages such as kif or swirl have to be used to
express various aspects that extend beyond the expressivity of RDF. These languages
capture expressions for pre- and postconditions, results, and effects of a Web service
invocation. In general, rules are a straightforward mechanism to express dynamic
relationships, such as those that occur with Web APIs.

5.4.1 RESTdesc

RESTdesc [240], [241] is a logic-based description method that focuses on expos-
ing the functional aspect of Web APIs in machine-processable form. Concretely,
RESTdesc descriptions are rules expressed in the Notation3 language (N3 [25]),
which adds support for variables and quantification to RDF. The latter is a prerequi-
site to natively describe statements such as “all requests to y result in x”, which is
not directly supported in RDF (i.e., only through the use of modeling vocabularies).
In fact, RESTdesc uses quantification to express functionality as follows:

∀x preconditions(x) ⇒ ∃r(request(r , x) ∧ postconditions(x))

Herein, the predicates are expressed as RDF graphs, called formulae in N3. Reasoners
interpret the above as “for every situation x where certain preconditions are met, there
exists a specified request r that makes certain postconditions true.” Moreover, for
specific situations xn, reasoners can instantiate the above rule, thereby creating an
RDF representation of a concrete HTTP request rn, which can be executed by any
RDF-compatible HTTP client.

Descriptions can be used to express the effects that occur as a result of a post
request, including the description of that request itself. Representations are not de-
scribed, as RESTdesc aims to be representation-independent, but it can describe
properties of these representations. This is not unlike the graph patterns used in
SPARQL-based methods (see Sect. 5.3), but represented in a syntax that integrates
the request description. RESTdesc descriptions can also be useful to describe requests
with safe methods such as GET, in order to explain what properties the response will
satisfy, again without constraining the representation. This can be useful in two
cases: (a) if the client does not want to retrieve the resource (for instance, if there
are too many) or (b) if the resource does not exist yet, but can be created as the result
of another action. In both cases, clients can then predict certain properties of the
resource, without actually accessing it.

Since RESTdesc descriptions are expressed as rules, they inherit the logical
functionality, in particular the chaining property:

P ⇒ Q, Q ⇒ R
 P ⇒ R

Therefore, existing SemanticWeb reasoners with N3 support can create compositions
of RESTdesc-described Web APIs by chaining RESTdesc descriptions [238], either

80 R. Verborgh et al.

in a forward or backward (goal-driven) manner. This enables agents to respectively
discover possible actions and to find a sequence of actions to satisfy a predetermined
goal.

RESTdesc descriptions have been designed [240] to support hypermedia-driven
applications [78], as they essentially enable machines to anticipate on possible con-
trols a resource might have. Client still need to operate as hypermedia consumers by
following links, but the descriptions allow them to predict beforehand what resources
can be of interest. For example, understanding that a POST request on a certain re-
source will lead to the creation of a subresource with a certain affordance, allows to
client to reason about whether this action is desired.

Further work on RESTdesc includes the incorporation of quality parameters,
possibly subjective, in Web API descriptions [239].

5.5 JSON-Based Descriptions

So far we have explored solutions that are directly based on Semantic Web tech-
nologies. However, many Web developers are reluctant to integrate RDF, SPARQL
or N3 in their applications. Lanthaler and Gütl provide three reasons for what they
call semaphobia [137]. Firstly, they observe that the perceived complexity of the
Semantic Web, in combination with its background in artificial intelligence, makes
developers assume integration will be difficult. Furthermore, some of them are un-
sure whether the integration cost will be worthwhile. After all, the Semantic Web is
sometimes regarded as a solution in search for a problem, suffering from the chicken-
and-egg syndrome and thus still waiting for a killer application (although the W3C
maintains a list of case studies and use cases [20]). Finally, the Semantic Web is
often incorrectly considered a disruptive technology that is hard to implement in an
evolving ecosystem [215].

Whatever the reasons for semaphobia, adoption is often a decisive factor for tech-
nologies. Therefore, description formats anchored on a technology Web developers
are already familiar with have a head start. As of 2012, more than 44 % of all APIs
on ProgrammableWeb, the largest API index [64], communicate in JSON. JSON is
the JavaScript Object Notation language, which quickly became popular on the Web
as it was natively parsed by JavaScript, the only scripting language supported by
the majority of browsers. Its simplicity and extensibility make it also an interesting
target for many other environments [207].

5.5.1 SEREDASj

As the letter j in its name suggests, SEREDASj (semantic restful data services [137])
is a semantic description language format expressed in JSON. The motivation behind

5 Survey of Semantic Description of REST APIs 81

SEREDASj is to provide simpler descriptions (in contrast to OWL-S [153] or WSMO
[141]) that contain necessary semantics (such as SA-REST and MicroWSMO,
see Sect. 5.2.2) in a widely used machine-targeted media type (application/json).
SEREDASj defines a syntactic structure for JSON documents and a corresponding
interpretation. It enables the representation of hypermedia links, which are not na-
tively present in JSON. It is, however, not a strictly validated approach such as JSON
schema [258], which enforces the presence of certain elements and properties in
a JSON document.

The authors of SEREDASj put forward three use cases [137]. Firstly, they en-
vision it as a means of creating documentation, both in machine-processable and
human-readable form. The human-readable counterpart is generated from labels of
predicates defined in ontologies, which are referenced by uri in the SEREDASj de-
scription. The benefit here is reuse—on the one hand by having a single description
for humans and machines, and on the other hand by referencing to existing ontologi-
cal definitions. Secondly, the goal is to enable more flexibility in Web API clients. By
adding support for hyperlinks to JSON, SEREDASj descriptions become a hyper-
media format through which clients can navigate a Web API in accordance with the
hypermedia constraint [78]. Thirdly, SEREDASj aims to facilitate data integration,
as its annotations enable the transformation of JSON into RDF. However, as we will
argue below, other means to this end exist, so employing SEREDASj specifically for
this last use case might prove suboptimal.

Generally speaking, one SEREDASj description is created per resource type.
As SEREDASj currently only supports JSON, it is assumed that resources of this
type have at least a JSON representation. The accompanying SEREDASj description
documents the elements in these JSON documents by mapping them to predicates
of ontologies in RDF format. This principle can be applied to the whole hierarchy
of the document, including arrays, which represent multi-valued properties. Every
subtree can additionally be associated with an RDF type. Next to this, SEREDASj
describes the controls to navigate through the Web API in the form of uri templates
[99], as well as the RDF predicates they correspond to, capturing their meaning.
SEREDASj can furthermore detail the format of entities for use in put or post
requests.

Part of the functionality of SEREDASj is currently offered by JSON-LD [139],
whose specification is currently a W3C editor’s draft [218]. JSON-LD similarly
provides predicate and type annotations that allow JSON data to be translated into
RDF, but these annotations are included in the JSON document itself as opposed to
a separate SEREDASj description document. However, the question arises whether
it would not be more beneficial for servers to provide separate JSON and RDF
representations of a resource, allowing clients to indicate through content negotiation
with which representation they would like to proceed.

Further work on SEREDASj includes an architecture to integrate Web APIs into
the Web of Data, which makes use of SEREDASj descriptions [140].

82 R. Verborgh et al.

5.6 Tools

In previous sections, different solutions for describing semantics of REST APIs
have been investigated. However, there are some obstacles preventing them from
being widely adopted. First, writing semantic service descriptions by hand is a time
consuming and tedious task. Furthermore, to model APIs, most of these approaches
require some degree of expertise in Semantic Web languages such as RDF, SPARQL,
and N3 in addition to the domain knowledge. Tools can play a significant role by pro-
viding a user interface to rapidly build semantic descriptions, making the complexity
of formal specification transparent to the user.

The here introduced formalisms, including MicroWSMO, SA-REST and the
MSM, which make HTML service descriptions machine-processable and enable
the adding of semantic information, provide the means for creating semantic de-
scriptions of Web APIs. However, without supporting tools or guidelines, developers
would have to modify and enhance the descriptions manually by using a simple
text/HTML editor. In addition, the complete annotation process would have to be
completed manually, if there are no tools, which enable the search for suitable do-
main ontologies or the reuse of annotations of previously semantically described
services.

5.6.1 Karma

Karma13 [232] is a Web-based framework for integrating structured data from a
variety of sources. Users can load data from relational databases, spreadsheets, de-
limited text files, kml (Keyhole Markup Language) files, and semi-structured Web
pages. Users can clean and normalize data with a programming by example interface
[255]. Then, Karma semi-automatically builds a semantic model of the source by
mapping it a domain ontology chosen by the user [124]. Karma models each column
in terms of the classes and data properties defined in the ontology, and models the
relationships among columns using object properties. Once data is modeled, Karma
can translate the data into a variety of formats including RDF. The semantic mod-
els also enable Karma to integrate information from multiple sources and to invoke
services to compute new information.

The main goal in Karma is to make it easy and efficient for users to perform all
information integration tasks. Karma enables users to perform operations on a small
set of input instances, and then learns from these examples a general procedure that it
can apply to all inputs. Compared to other data integration tools, Karma significantly
reduces the time and effort needed to perform the data integration tasks.

Recently, Karma has been extended with the capability to build semantic descrip-
tions of Web APIs as a foundation to compose data sources and Web services [223].

13 http://www.isi.edu/integration/karma

5 Survey of Semantic Description of REST APIs 83

In this section, we explain how it enables users to rapidly generate semantic service
descriptions.

To model services, Karma first asks the user to provide samples of the API invo-
cations URLs. This conforms to the main idea of Karma that examples are the basis
to carry out the tasks. These sample URLs can also be automatically extracted from
the documentation pages of the APIs. Next, the user interactively builds a semantic
model of the API by mapping the service inputs and outputs to the domain ontology.
Building semantic models is the central part of the approach and it is very similar to
how Karma models the data from other sources. Once the semantic model is built,
Karma formalizes it using a new expressive RDF vocabulary that represents both the
syntactic part and the functionality of theAPI. Karma stores the service specifications
in a triple store, enabling users to query the service models using SPARQL. Finally,
Karma deploys a Linked API that consumes and produces Linked Data. The Linked
API provides REST interfaces enabling users to send RDF data in the body of a post
request and get back RDF output linked to the input. In the following paragraphs,
we explain each step in more detail.

The input to the system is a set of examples of the API requests. Karma parses
the URLs and extracts the individual input parameters along with their values. For
each invocation example, Karma calls the API and extracts the output attributes and
their values from the XML or JSON response. Then, Karma joins the input and the
output values into one table and shows that in a worksheet. Karma treats this table as
a regular data source and applies its source modeling technique to build a semantic
model of the API.

The goal of semantic modeling is to express the API functionality in terms of
classes and properties defined in a domain ontology. The modeling process consists
of two steps. The first step is to identify the type of data by assigning a semantic type
to each column. A semantic type can be either an ontology class or a pair consisting of
a data property and its domain. Karma uses a conditional random field (CRF) [135]
model to learn the assignment of semantic types to columns of data [93]. Karma
uses this classifier to automatically suggest semantic types for new data columns. If
the correct label is not among the suggested labels, users can browse the ontology
through a user-friendly interface to find the appropriate type. The system re-trains
the CRF model after these manual assignments.

The second part of the modeling process is to extract the relationships between
the inferred semantic types. Given the domain ontology and the assigned semantic
types, Karma creates a graph that defines the space of all possible mappings between
the source and the ontology [124]. The nodes in this graph represent classes in the
ontology connected by direct and inferred properties. Once Karma constructs the
graph, it computes the API model as the minimal tree that connects all the semantic
types. It is possible that multiple minimal trees exist, or that the correct model of
the data is captured by a non-minimal tree. In these cases, Karma allows the user to
interactively impose constraints on the algorithm to build the correct model. Karma
provides an easy-to-use gui where the user can adjust the relationships between the
columns.

84 R. Verborgh et al.

The models that Karma builds are themselves represented in RDF according to
an ontology14 reusing existing ontologies such as SWRL15 and hRESTS16 [223].
This ontology is semantically richer than WSMO-Lite17 and Minimal Service Model
(MSM) [187] because in addition to annotating each input and output with semantic
types, it also explicitly represents the relationships among inputs and outputs. An-
other advantage of the Karma models is that they are represented in RDF, making it
possible for clients to query and discover models using SPARQL. Other approaches
use graph patterns to represent the service models, so it is not possible to use SPARQL
to query the models.

The Karma API models are expressive enough that it would be possible to export
then to other formal specifications such as LOS and MSM. This is a direction for
future work [224].

Karma also has a Web server where the modeled API will be deployed as a Linked
API. The Linked API implements a REST interface allowing clients to send RDF
data in a post request. One benefit of service descriptions in Karma is that they
contain all the information needed to automatically execute APIs and do the required
lowering and lifting, obviating the need to manually write separate instructions using
formalisms such as XSLT and SPARQL. Once the Web server receives the user post
request, it uses the service description in the Linked API repository to lower the RDF
data and build the invocation URL. Then, it invokes the Web API and again uses the
service description to automatically lift the XML or JSON response to generate
linked data. Karma is available as an open source18 software and users can use it to
model the APIs based on their own needs.

5.6.2 SWEET

To facilitate the easier adoption of semantic description of Web APIs by supporting
users in their creation, KMi has developed SWEET: Semantic Web sErvices Editing
Tool19.

SWEET is developed as a Web application that can be launched in a common
Web browser and does not require any installation or additional configuration. It
provides key functionalities for modifying the HTML Web API descriptions in order
to include markup that identifies the different parts of the API, such as operations,
inputs and outputs, and also supports the adding of semantic annotations by link-
ing the different service parts to semantic entities. As a result, SWEET enables the
creation of complete semantic Web API descriptions, based on the previously intro-
duced models, given only the existing HTML documentation. More importantly, the

14 http://isi.edu/integration/karma/ontologies/model/current#
15 Semantic Web Rule Language: http://www.w3.org/Submission/SWRL
16 http://purl.org/hrests/current#
17 http://www.w3.org/Submission/WSMO-Lite
18 http://github.com/InformationIntegrationGroup/Web-Karma-Public
19 http://sweet.kmi.open.ac.uk

5 Survey of Semantic Description of REST APIs 85

tool hides formalism and annotation complexities from the user by simply visualiz-
ing and highlighting the parts of the API that are already annotated and produces an
HTML description that is visually equivalent to the original one but is enhanced with
metadata that captures the syntactical and semantic details of the APIs. The resulting
HTML description also serves as the basis for extracting an RDF-based semantic
Web API description, which can be published and shared in a service repository,
such as iServe, enabling service browsing and search.

SWEET20 is a Web application developed using JavaScript and Extgwt21, which
is started in a Web browser by calling the host URL. It is part of a fully-fledged
framework, developed within the scope of the SOA4All European project22, for
supporting the lifecycle of services, particularly targeted at enabling the creation
of semantic Web API descriptions. SWEET takes as input an HTML Web page
documenting a Web API and offers functionalities for annotating service properties
and for associating semantic information with them. A current version of the tool
can be found online23.

SWEET is designed as a classical three-layered Web application. The architecture
of SWEET consists of three main components, including the visualization com-
ponent, the data preprocessing component and the annotations recommender. The
visualization component is based on a model-view-controller architecture design pat-
tern, where the model implements an internal representation of the annotated Web
API, in accordance with the elements foreseen by the semantic formalisms detailed
in the previous sections. In this way, every time the user adds a new annotation via
the interface, the model representation of the Web API description is automatically
updated. Similarly, when parts of the model representation are altered or deleted,
the highlighting and visualization in the user interface is also adjusted. When the
annotation process is complete, the resulting HTML and RDF Web API descriptions
are generated based on the produced internal model.

The gui of the visualization component is shown in Fig. 5.3 and it has three
main panels. The HTML of the Web API is loaded in the Navigator panel, which
implements a reverse proxy that enables the communication between the annotation
functions and the HTML by rerouting all sources and connections from the original
HTML through the Web application. Based on this, the HTML dom of the RESTful
service can freely be manipulated by using functionalities of the Annotation Edi-
tor panel. The current status of the annotation is visualized in the form of a tree
structure in the Semantic Description panel, which is implemented by automatically
synchronizing the visualization of the service annotation with an internal model
representation, every time the user manipulates it.

In addition to these three main panels, SWEET offers a number of supplementary
useful functionalities. It guides the user thorough the process of marking service
properties with hRESTS tags, by limiting the available tags depending on the current

20 http://sweet.kmi.open.ac.uk
21 http://extjs.com/products/gxt/
22 SOA4Alleu project fp7 - 215219, http://soa4all.eu/
23 http://sweetdemo.kmi.open.ac.uk/soa4all/MicroWSMOeditor.html

86 R. Verborgh et al.

Fig. 5.3 SWEET: Inserting hRESTS tags

state of the annotation. This implements measures for reducing possible mistakes
during the creation of annotations. In addition, based on the hRESTS tagged HTML,
which provides the structure of the Web API, the user can link service properties to
semantic content. This is done by selecting service properties, searching for suitable
domain ontologies by accessing Watson [59] in an integrated way, and by browsing
ontology information. Based on this details the user can decide to associate a ser-
vice property with particular semantic information by inserting a SA-WSDL model
reference tag.

In summary, SWEET takes as input the HTML Website description of the Web
API, which is loaded in the central panel, and returns a semantically annotated version
of the HTML or a RDF semantic description. In order to do this the user needs to
complete the following four mains steps:

1. Identify service properties (service, operation, address, HTTP method, input,
output and label) by inserting hRESTS tags in the HTML service description.

2. Search for domain ontologies suitable for annotating the service properties.
3. Annotate service properties with semantic information.
4. Save or export the annotated Web API.

The first step can easily be completed by simply selecting the part of the HTML,
which describes a particular service property, and clicking on the corresponding tag
in the inset hTags pane. In the beginning, only the Service node of the hRESTS tree
is enabled. After the user marks the body of the service, additional tags, such as
the Operation and Method, are enabled. In this way, the user is guided though the
process of structuring the RESTful service description and is prevented from making
annotation mistakes. After the user structures the HTML description and identifies
all service properties, the adding of semantic information can begin. The new version

5 Survey of Semantic Description of REST APIs 87

of SWEET, just like the bookmarklet, supports users in searching for suitable domain
ontologies by providing an integrated search with Watson [59]. The search is done by
selecting a service property and sending it as a search request to Watson. The result
is a set of ontology entities, matching the service property search. Once the user has
decided, which ontology to use for the service property annotation, he/she can do
an annotation by selecting a part of the service HTML description and clicking on
Semantic Annotation in the Service Properties context menu. This results in inserting
a model attribute and a reference pointing to the uri, of the linked semantic concept.

The resulting descriptions can be directly posted to iServe [186] or can be re-
posted on the Web. The use of the microformat tags enables the automated search
and crawling for APIs, since it serves as a basis for distinguishing simple HTML
websites from Web API descriptions. Furthermore, when posted to iServe, the Web
API descriptions can be browsed and searched alongside with WSDL-based services.
Since the semantic Web API descriptions use SA-WSDL-like annotations in combi-
nation with the WSMO-Lite service ontology, both WSDL-based services and APIs
can be retrieved by using the same queries. For example, a search query for music
services would return the Last.fm description as well as all other APIs or services
related to music. As a result, all type of services, can be retrieved in a unified way.

5.7 Open Problems and Future Work

5.7.1 Cross-Origin Resource Sharing (CORS)

The XMLHttpRequest specification [19] defines an API that provides scripted client
functionality for transferring data between a client and a server. In today’s common
Web applications like online spreadsheets, word processors, presentation tools etc.—
and even more in so-called mash-up applications24—the majority of data transfers
between server and client happen based on XMLHttpRequest. An important security
aspect of XMLHttpRequest, however, is the so-called Same Origin Policy (SOP).
This policy permits scripts running on pages originating from the same site to access
each other’s methods and properties with no specific restrictions, however, prevents
access to most methods and properties across pages on different sites. While provid-
ing at least some protection from rogue Web pages accessing private data, SOP also
has severe implications for cases where cross-origin data transfers are actually legit.
Past attempts to legally circumvent SOP include using proxy servers, Adobe Flash,
and JSON-P,25 however, more recently, the tendency goes in the direction of properly
handling cross-origin resource sharing (CORS) through a mechanism documented
in a em w3c Working Draft [236]. The CORS standard works by adding new HTTP

24 Web applications that combine data from multiple sources to create new services, many of them
listed in [64].
25 First documented appearance of JSON-P in Bob Ippolito’s December 2005 blog post:
http://bob.ippoli.to/archives/2005/12/05/remote-json-jsonp/.

88 R. Verborgh et al.

headers that allow servers to serve resources to permitted origin domains. Browsers
support these headers and enforce the restrictions they establish. While not all APIs
support CORS yet, there is a remarkable momentum of Web API and data providers
in general to open up their data and becoming CORS-enabled26.

5.7.2 Authentication

The IEEE defines27 authentication as the act of confirming the truth of an attribute
of a datum or entity. This might involve confirming the identity of a person [. . .],
or assuring that a computer program is a trusted one. In the world of APIs, simple
authentication paradigms include (but are not limited to) API keys (codes passed in
by computer programs calling an API to identify the calling program, its developer,
or its user to the API provider), HTTP Basic authentication, HTTP headers, or HTTP
cookies. In recent times, different versions of the authorization protocol OAuth28

gain traction as the de facto default standard for authorization. Authentication is
the mechanism whereby systems may securely identify their users. Authorization,
by contrast, is the mechanism by which a system determines what level of access
a particular authenticated user should have to secured resources controlled by the
system29. In the case of OAuth, if the user grants access to a resource, the applica-
tion can retrieve the unique identifier for establishing the identity in turn by using
the particular API calls, and thus effectively enabling pseudo-authentication using
OAuth.

[149] provides as extensive overview of currently used authentication approaches,
the required credentials, ways of transmitting the credentials and used authentication
mechanisms. The provided solution is based on defining authentication extensions
to the MSM defined in Sect. 2.

5.7.3 CORS and Authentication in API Descriptions

To the best of our knowledge, neither authentication nor CORS are covered by the
before-mentioned API description formats, the honorable exception being the Web
Application Description Language (WADL [104]), where (authentication) HTTP
headers can be described for API query parameters. While the implementation status
of CORS can be determined at runtime by examining a sample API request and
checking for the existence of the particular HTTP header, there is no general way to
discover the authentication requirements of an API at runtime. In consequence, both
CORS and authentication and ways to semantically describe them remain a field for
future research.

26 http://enable-cors.org/
27 http://technav.ieee.org/tag/2585/authentication
28 http://oauth.net/
29 http://www.duke.edu/∼rob/kerberos/authvauth.html

5 Survey of Semantic Description of REST APIs 89

5.8 Conclusion

We have surveyed the current state-of-the-art in descriptions of Web APIs and clas-
sified the various approaches. The main strength of RESTful APIS, the flexibility
which with the APIs can be designed and deployed, at the same time burdens client
application developers with the manual work of understanding, interpreting, and
reconciling the various approaches to API design. Almost all of today’s Web APIs
come with a textual description, lacking coherence. A little structure in architecting
and documenting the APIs could greatly benefit application developers and reduce
the amount of manual effort required when integrating multiple APIs.

Acknowledgments R. Verborgh and R. Van de Walle are funded by Ghent University, the In-
terdisciplinary Institute for Broadband Technology (iMinds), the Institute for the Promotion of
Innovation by Science and Technology in Flanders (iwt), the Fund for Scientific Research Flanders
(fwo Flanders), and the European Union. A. Harth and S. Speiser acknowledge the support of
the European Commission’s Seventh Framework Programme FP7/2007-2013 (PlanetData, Grant
257641). S. Stadtmüller has been supported by a Software Campus grant.

Chapter 6
APIs to Affordances: A New Paradigm for
Services on the Web

Mike Amundsen

6.1 Background

In the last several years, the landscape of the Internet has changed noticeably. There
are many more connected devices, more connected applications, and thousands of
Web “APIs” to service them. This represents a new “ecosystem” for the Web; one
dominated by small devices loaded with specialized applications, all talking across
the Web using shared application programming interfaces (APIs). While the shift did
not happen all at once, probably the date that best marks the start of this new era in
the Web would be January 10, 2007; the day the first Apple iPhone was introduced
[100].

The resulting sales boom launched competitors and an industry has grown up
around the devices themselves. As an example, even the work force needed to support
the creation of applications for hand-held devices is considered worthy of scrutiny.

6.1.1 More Devices

The common wisdom is that the number of devices connected to the Internet is
growing rapidly. In May of 2009, Intel predicted that the number of ‘connected
devices’ would grow from the then estimated 5 billion to 15 billion by the year 2015
[60]. In anApril 2010 press release [242], the CEO of the Swedish telecommunication
company, Ericsson, predicted the number of connected devices will balloon to as
many as 50 billion by the year 2020.

∗ The bibliography that accompanies this chapter appears at the end of this volume and is also
available as a free download as Back Matter on SpringerLink, with online reference linking.

M. Amundsen (�)
Principal API Architect for Layer 7 Technologies, Washington, USA,
e-mail: mamundsen@layer7tech.com

C. Pautasso et al. (eds.), REST: Advanced Research Topics and Practical Applications, 91
DOI 10.1007/978-1-4614-9299-3_6, © Springer Science+Business Media New York 2014

92 M. Amundsen

6.1.2 The “App Economy”

Much has also been made of the “App Economy” —a burgeoning market that exists
to feed the many devices we all own and use. This economy is now viewed by some as
a “job creator” worthy of special attention. Researcher Dr. Michael Mandel estimates
466,000 new jobs have been created since the introduction of the iPhone in 2007.
[151]

These apps are increasingly written in code that is “native” to the device; thus
requiring custom builds for each targeted device or family of devices. Not surpris-
ingly, new products have appeared to decrease the effort needed to produce the
numerous native code builds (i.e. PhoneGap1, Appcelerator2, and others). Of course,
there continues to be debate within the mobile community on whether a “native” or
“browser-based” approach is preferable.

6.1.3 More Services

To match the growth in devices and applications, a similar growth is occurring in
services (or “APIs”) to support the ecosystem. The Programmable Web, a site which
catalogs such things, recorded more than 8000 Web APIs as of November 2012 and
proudly stated “The whole web as a platform has come a long way and done so very
quickly.” [237]

6.1.4 Summary

Each of these areas of growth represent great opportunities. Growth means new
markets, expanding use of the Web, and the chance to improve the quality and
quantity of data available to all users.

But there are challenges, too. These rapidly expanding markets are, for the present,
continuing to rely on dated technologies and mental models. Despite the incredible
growth of the Web both in real (device) and virtual (applications & APIs) terms, the
most common approaches to service this market are still based on software theories
developed at the dawn of personal computing; when devices where most often “stand-
alone” machines, sometimes connected to each other over local area networks, and
only on occasion (and for brief periods) connected over slow communication lines
to other, remote devices.

1 http://phonegap.com/
2 http://www.appcelerator.com/

http://phonegap.com/
http://www.appcelerator.com/

6 APIs to Affordances: A New Paradigm for Services on the Web 93

6.2 The Problem

There are a number of problems posed by the current trend in adding many small,
dedicated devices to the Internet. This chapter focuses on a set of problems at the
level of software architecture; problems related directly to the work of enabling
communication between connected devices.

6.2.1 Technical Difficulties

One type of shortcoming in the common implementation model for Web APIs are
technical in nature. Primarily these are due to incomplete or inappropriate imple-
mentation of the HTTP protocol. While there are many possible minor difficulties
to implementing HTTP (misuse of methods, status codes, headers, etc.) two general
problems are identified here:

• Treating HTTP as a Transport
• Lack of Component-Connector Modeling

6.2.1.1 Treating HTTP as a Transport

Most of the Web API implementations continue to use traditional RPC-style in-
terfaces. The messages sent over the wire are simple data blocks, often meant to
faithfully represent a server’s internal objects or data graphs. Usually the informa-
tion in carried via a simple data format such as XML, JSON, CSV, etc. This approach
has the effect of treating HTTP as a transport protocol [165] and weakens one of the
three pillars of Fielding’s architectural style: the Data element [76].

When this happens, the ability to communicate options to the recipient is lost.
Client applications are expected to have a complete understanding of not only the
message received, but also any other possible messages that could be received or
even requested. This dependence on clients to make all the decisions means that
there is almost no “shared understanding” between clients and servers other than
an understanding of the data format used to pass messages back and forth and the
protocol used to send them.

Using HTTP as a transport can also result in implementation models that limit
client server interactions to only those that easily map to the protocol’s method set.
This is commonly referred to as HTTP-CRUD [233]. Combining this limitation of
the client-server interaction with the dependence on simple data formats for messages
not only misses key properties of HTTP, it also limits the usability of the Web for
anything other than purpose-built client applications that rely on a static, isolated
understanding of the problem domain represented by a single server.

94 M. Amundsen

6.2.1.2 Loss of Connector-Component Model

The Connector-Component Model was first described by Taylor, et al in 1995 [226] as
Chiron-2 or C2. The original model was used to coordinate independent user interface
components using a connector to pass messages between them. Later, Fielding used
similar terminology to describe network-level communications where independent
components (running on separate machines) use protocol connectors to communicate
across the network [76]. For Fielding, Component, Connector, and (as seen above)
Data were the three key architectural elements of consideration for his REST style.

This architectural model (one that relies on independent components using con-
nectors as intermediaries) has allowed the Web to continue to scale not just at the
runtime level, but also at the implementation level. Since components only need to
know how to talk to connectors and connectors only need to know how to talk to other
connectors, it is possible to independently build parts of the network with minimal
design-time co-ordination between parties.

The recent trend in building “native” applications for connected devices can result
in a loss of the component-connector paradigm and, in turn, cause problems at scale;
at both the implementation and runtime levels. Employing cross-platform build tools
only masks the problem.

6.2.2 Competing Priorities

On a more practical level, creating Web services that are both flexible and easy to
use is a challenge. An easy-to-use Web service is essential for attracting customers.
A flexible, evolvable service that does not tax developers by obsoleting their work
too often, is important for retaining customers over time. In some cases these are
competing priorities. For example, flexible evolvable systems can be viewed by
developers as difficult to understand.

6.2.2.1 Immediate Usability

As more Web services appear, they compete for the attention of developers and sub-
scribers. Along with reliability and performance, Web service providers are growing
increasing aware that usability is a key factor for increasing adoption.

If developers cannot understand the Web service, can’t easily connect and quickly
build working solutions for it, they are likely to look elsewhere. In addition, once
a developer settles on a provider, that developer is not likely to switch to a new
provider since most web service integration today requires special coding for each
and every service; even for the same service provided by two different vendors (i.e.
peer-to-peer messaging, photo-sharing, etc.).

6 APIs to Affordances: A New Paradigm for Services on the Web 95

Thus usability is a key factor in acquiring new customers. Web services need to of-
fer familiar, easy-to-understand examples and documentation in formats developers
understand and can quickly convert into working code.

6.2.2.2 Long-Term Evolvability

At the same time, one of the desirable properties of large-scale systems is the ability
to support evolution of the service over time; evolvability. Fielding defines this as
“Evolvability represents the degree to which a component implementation can be
changed without negatively impacting other components.” [76]

A common way to support long-term evolvability is to use hypermedia affordances
within response representation. Fielding’s REST style, which relies on the use of
hypermedia was conceived with long-term evolvability in mind. In a 2010 interview
Fielding states “Most of REST’s constraints are focused on preserving independent
evolvability over time, which is only measurable on the scale of years.” [161]

6.2.3 The Time Dimension

Another important aspect of supporting large networks is the element of time; not
at the micro, but the macro level. Few architectural models consider the passage of
time and how it affects both the participants and the messages they share.

6.2.3.1 REST Resources Over Time

In Fielding’s REST style, a resource (that which can be named) is “a conceptual
mapping to a set of entities, not the entity that corresponds to the mapping at any
particular point in time.” In this way, not only the representation of the resource
can change over time, the data upon which the resource is based may change as
well; including a case that results in an “empty” resource. Under these conditions,
enforcing contracts on what an identifier will return at some point in time in the future
is likely impossible. Instead, in REST, “The only thing that is required to be static for
a resource is the semantics of the mapping, since the semantics is what distinguishes
one resource from another.” In other words, the conceptual meaning identified when
the resource was created is expected to remain constant. If, at the time of creation,
the identified resource is meant to represent “the latest edition of Document A”, it
can be expected to continue to represent “the latest edition of Document A” at any
future point. However, the contents of that document cannot be expected to remain
static over time.

96 M. Amundsen

6.2.3.2 Static Contracts

Unlike Fielding’s focus on the semantics of the identified resource, the most common
attempts to describe how clients and servers interact over the network (i.e. WSDL
[50], WADL [103], etc.) rely on static interface contracts that do not change over
time. Whereas message-based media types whose processing models describe pos-
sible affordances (controls) which could appear within responses, typical Web API
contracts contain a set of function calls (including arguments and return types) which
the client can use to “compose” their own set of interactions with the server (usually
after some level of coordination via additional documentation). Web APIs have no
clear means for communicating the semantics of the identified resources.

Static contracts can result in ‘frozen’ implementations that are unable to easily
evolve over time as the problem domain changes. Even more important, focusing on
‘native’ implementation strategies can result in mixing the connector semantics (i.e.
HTTP protocol) with the component semantics (i.e. the problem domain) in ways
that make it more difficult to modify the application over time.

It is possible that application vendors have little incentive to create long-lived
applications since their revenue maybe derived from the constant update/replacement
of ‘obsolete’ apps. However, many app providers may not be focused on gaining
revenue through the replacement of what could be perfectly acceptable applications
if implemented differently.

6.2.3.3 Transient Devices, Persistent Networks

Current trends indicate that hand-held computing devices are not only seen as es-
sential in today’s world, they are also treated as disposable. A 2010 report estimated
Americans dispose of 130 million cell phones each year [213].

While devices can be viewed as transient, the networks themselves continue to run
24x7 and, now more then ever, are available via wireless connection to the point where
it is possible to remain connected throughout the day, even while traveling. With
continued use of CDNs (Content Delivery Networks) and the rise in SaaS (Software
as a Service), not only can users stay connected, there is increasing likelihood they
can access their personal content at all times.

In this light, continuing to focus efforts on programming each device natively,
encoding all the domain knowledge on these devices, may not be the best way to
make use of software developers’ (and architects’) energies. Instead it may make
more sense to leverage the network itself; to actually program the network instead
of the connected devices. This idea represents not just an adjustment in focus, but
also a change in the way network applications are architected and implemented.

6 APIs to Affordances: A New Paradigm for Services on the Web 97

6.3 Other Disciplines

Before moving on to a proposed alternate paradigm for modeling communication
along the network it may be informative to highlight similarities in observations
about perception and communicate from other disciplines. Here five perspectives on
the way humans perceive and communicate information are offered for the reader’s
consideration. The purpose here is to identify a similar thread throughout multiple
disciplines; a thread that may be applied to modeling communication on widely
distributed networks.

6.3.1 Architecture

In 1979 Christopher Alexander released the first in a series of texts describing his
approach to physical architecture: “The Timeless Way of Building” [8]. In it, he
asserts that “[P]eople can shape buildings . . . using pattern languages” and that “A
pattern language gives each person who uses it the power to create an infinite variety
of new and unique buildings, just as ordinary language gives him the power to create
an infinite variety of sentences.”

In 1987, Beck and Cunningham presented a workshop at OOPSLA-87: “Using
Pattern Languages for Object-Oriented Programs” [22]. The abstract contained the
following report: “Our initial success using a pattern language for user interface de-
sign has left us quite enthusiastic about the possibilities for computer users designing
and programming their own applications.”

For Alexander, patterns (and languages built up from them) are a transcendent
means of communication. Alexander’s pattern language relies on the notion that all
individuals can recognize abstract patterns, regardless of variance of time (over the
centuries) or place (Rome, Africa, China, theAmericas, etc.). Beck and Cunningham,
and many who followed them, were able to apply this same notion to software
designed to support direct human interaction (i.e. graphical interfaces).

6.3.2 Visual Perception

Around the time that Beck and Cunningham were applyingAlexander’s pattern model
to implementing graphical user interfaces, psychologist James Gibson explored the
concept of “affordance” in his book “The EcologicalApproach toVisual Perception.”
[92] For Gibson, affordances were the “action possibilities” of the environment in
which the subject resides. These possibilities were perceived by the subject in relation
their abilities. For example, an short opening two feet wide might be perceived as a
“doorway” to a small creature, but not to an animal six feet tall.

Gibson claimed that animals continually “sampled” their surroundings and made
decisions based on the affordances available to them at the moment. For Gibson, the

98 M. Amundsen

world was divisible into ecological niches—each with their own set of affordances—
and animals within that niche became expert at exploiting the available affordances.
Affordances (and therefore options) were everywhere and, like Alexander, Gibson
believed these affordances could be described in general terms (doorway, chair, step,
etc.) that applied across environments.

6.3.3 Industrial Design

The notion of affordances was further refined by Donald Norman in his 1988 book
“The Design of Everyday Things.” [167] Norman applied Gibson’s ideas to industrial
design and HCI (Human-Computer Interaction) to help launch the field of Usability.
Along the way Norman identified the Seven Stages ofAction to describe how humans
usually interact with their environment in order to accomplish a goal:

1. Set a goal
2. Form an intention to reach that goal
3. Specify and action
4. Execute that action
5. Perceive the state of the world
6. Interpret the state of the world
7. Evaluate the outcome against the goal.

Norman also described the notion that humans approach the environment (and its
affordances) with some level of information already “in the head” and use their
perception to discover information “in the world”. It is this mix of “in the head” and
“in the world” that determines the usability of an object (for that individual).

By detailing a series of steps humans use to reach their goals and acknowledging
that information resides both within and without the individual, Norman’s vision of
the world includes not just Alexander’s patterns and Gibson’s affordances, but also
the knowledge and goals of the participant.

6.3.4 Cross-Cultural Mono-Myth

American mythologist and writer Joseph Campbell described a different kind of
shared pattern in his 1949 work “The Hero with a Thousand Faces.” [42] For
Campbell the “hero’s journey” was a story which not only appeared in multiple
cultures across both space and time, but it retained the same general pattern which
he summarized as follows:

A hero ventures forth from the world of common day into a region of supernatural wonder:
fabulous forces are there encountered and a decisive victory is won: the hero comes back
from this mysterious adventure with the power to bestow boons on his fellow man.

6 APIs to Affordances: A New Paradigm for Services on the Web 99

Campbell’s work explored the idea that this shared story was evidence of com-
munication based on archetype and metaphor; something that transcends any single
language or culture. For Campbell, the Mono-Myth was a way to share understand-
ing across the divides of clan, kingdom, and time. However, unlike Alexander who
focused on self-standing patterns in the world, Campbell asserts that entire portions
of culture and story can be viewed as a single “shared understanding.”

6.3.5 The Map is not the Territory

Another view of human communication was put forward by Alfred Korzybski in his
1933 tome “Science and Sanity.” [130] Here, Korzybski outlines his view that human
knowledge is limited not only by our ability to perceive the world but also the language
we use to describe what we perceive. For him, our perception is always incomplete;
always missing details and filtered by our current beliefs. It was Korzybski who
coined the phrase: “The map is not the territory.”

Korzybski acknowledged that this ability to function using only a general de-
scription of the world allowed humans to develop language, create names for things
and share understanding (however imperfect). Shared understanding of the general
nature of the world is how humans successfully interact with the environment and it
is through language that they share knowledge over space and time. Thus, like Camp-
bell, Korzybski saw understanding as rooted in the language we used to describe our
surroundings.

6.3.6 Summary

What all these examples have in common is the notion that there are identifiable
entities (patterns, affordances, general concepts, etc.) to which we all can relate;
across culture, time and distance. For Alexander, a “doorway” is a universal concept
that can be referenced by all. For Gibson, this “doorway” is recognizable even when
it has only the barest visual resemblance to our common idea of a doorway (i.e. an
entrance to a cave). For Norman, doorways can be rendered more (or less) usable
through the application of design principles that can be applied across cultures. For
Campbell, the possible meanings of a doorway (as a threshold to a magical place, as
a metaphor for moving to a new stage of life, etc.) are also shared.

And finally, Korzybski tells us that all communication is essentially approximate.
That the concept of a “doorway” is useful (possibly more so) when it’s left vague and
general. This generality of shared semantic understanding is the basis for our ability
to communicate. We’d be eternally frustrated and lost if we could only successfully
communicate when all of us agreed on the exact meaning of every utterance.

100 M. Amundsen

So, if the notion of shared understanding through general concepts - ones that
are only loosely defined - is a useful paradigm in the fields of architecture, prod-
uct design, psychology, and story-telling, could it not also be useful in the design
and implementation of systems built specifically for sharing information? Do these
other disciplines lead us to an alternate way of thinking about information networks
themselves?

Instead of working to narrow the scope and meaning—to remove the ambiguity—
of network communications; instead of working to create static interfaces that are
tied to a specific place and time, maybe there is a way to mimic pattern languages on
the network itself; to improve shared understanding by dealing in general concepts
communicated through the use of mutually understood affordances in ways that allow
for local interpretation and embellishment without the loss of basic meaning.

What would such a system look like? How would it be organized? What are the
details of how this kind of communication can be shared over the network?

6.4 An Affordance Paradigm

If we accept the notion that our view of the world is, by nature, always imperfect and
that it is shaped not only by our observation but also the language we use to describe
it then it may be possible to us a new description language to help us alter our view
of the way devices can communication over the Web.

To this end, this chapter identifies two new maxims for the implementation of
distributed network applications:

1. Program the network, not the device
2. Rely on affordance-rich messages for communication

The current paradigm for programming network devices is to use the available net-
work as a mere transport over which to ship serialized objects and data graphs based
on static programming interfaces. This model is based in the early event-driven,
object-oriented paradigm typified by Smalltalk-80. [94] This approach fit well with
the (then new) pattern theories of Alexander and Beck & Cunningham. It made sense
for handling the interaction of small components arranged within a local graphical
interface.

But a model for enabling communication between UI components all running
in the same computing space is not the best approach for enabling communication
between components over a widely distributed heterogeneous network. Fielding
outlined this point of view in his 2001 dissertation [76] using an example architectural
style he labeled REST. What Fielding did not fully explore, however, were the
details of what data messages in his REST style looked like and how components
and connectors worked together to enable communication via these messages. One
line from the dissertation has been singled out as the only description of what this
message style might entail:

6 APIs to Affordances: A New Paradigm for Services on the Web 101

REST is defined by four interface constraints: identification of resources; manipulation of
resources through representations; self-descriptive messages; and, hypermedia as the engine
of application state.

6.4.1 Affordance-Rich Messages (ARMs)

Fielding mentioned hypermedia as the way to modify state on a distributed network.
In this he meant “the simultaneous presentation of information and controls such
that the information becomes the affordance through which the user obtains choices
and selects actions.” [77]

These affordances are, essentially, the pattern language described by Alexander.
They are the environmental elements of Gibson’s world. Fielding’s description also
tracks very closely to that of Norman. Applications that rely not just on rules and
operations within the code (“in the head” as Norman would say) are capable of
recognizing and reacting to affordances in the message itself (similar to Norman’s
“in the world”). Affordance-rich messages allow for increased shared understanding.
They represent more than raw data passed between parties. Additional information
about the semantics associated with the data and the options available at that moment
in time are also available to the recipient.

And, as outlined by Campbell and Korzybski, sharing the exact meaning of each
and every affordance and semantic detail is not necessary in order to share general
understanding. Knowledge that an in-message control “affords sending data” or
“affords filtering results” is sufficient to support a wide range of operations. Rather
than designing systems that fail unless all the exact details in are in place, a better
approach is to design what Norman refers to as “explorable” systems; ones that allow
users to safely make attempts at reaching their goals.

Think of each action by the user as an attempt to step in the right direction; an error is simply
an action that is incompletely or improperly specified. . . . Try to support, not fight, the user’s
responses. . . . Design explorable systems. [167]

Affordance-Rich Messages (ARMs) can make it possible to design “explorable”
systems.

6.4.2 Programming the Network

Programming the network means focusing on the messages that are passed along
the network instead of the devices sending and receiving those messages. There are
a number of reasons this shift from device-orientation to network-work orientation
can benefit software architects and developers.

First, in widely distributed networks where components have little to no view into
the workings of other components on the network, the message passed between them
is the only means “in the world” by which communication is possible. In this light,

102 M. Amundsen

it makes sense to consider a way in which the network itself can be “programmed.”
It is through messages that both sender and recipient share understanding and the
network is where this understanding lives.

Second, programming the network is not only possible, it is essential in order to
support networks as they grow in both the space and time dimension. Think of the
possibility of communicating with devices at great distances (i.e. in outer space).
It is reasonable to include affordances and additional options within messages that
might not reach their recipient for minutes, hours, or even days in order to allow
the recipient to engage in additional evaluation of available options before making
a (local) decision. As the reach of the network grows, the messages carried by that
network need to be more rich and informative.

Finally, by adopting a paradigm where the messages contain “programming code”,
the network of machines that touch the message as it moves along to its final destina-
tion can participate in the communication. The HTTP protocol today is designed to
support one level of communication at the network level (the HTTP Header space)
and one at the sender-recipient level (the body). Manipulating the message meta-
data sends signals to intermediaries along the network path; signals devices may
understand and act upon when appropriate. This, too, is programming the network.

The network is “programmable” today using ARMs and message metadata over
HTTP.

6.4.3 A Working Model

What would a working model of a programmable network look like? We already have
all the technical tools needed to make this a reality. What is needed is to delineate
the necessary parts of a working system and show how they can be used to support
the proposed paradigm.

The following elements of a working model for programmable networks are
described:

• ARM-Aware Network
• ARM-Capable Devices
• ARM Design Model
• ARM Evaluation Model

NOTE: While this section of the paper describes the working model using HTTP
as the protocol, ARM-style communication is protocol-agnostic as it sits atop the
transfer protocol. As HTTP changes and/or new transfer protocols become available,
the ARM paradigm can still be a viable model for programming the network.

6.4.3.1 An ARM Network

ARMs are of benefit when network communication may span notable distances.
When these distances (either in space or time) are long enough to be noticeable

6 APIs to Affordances: A New Paradigm for Services on the Web 103

by either the recipient or sender (i.e. messages take more than a few seconds to
travel between parties), enriching the message with affordances that explain what
the recipient can do adds benefit. This includes allowing recipients to store (and
possibly forward) messages for later use.

HTTP request/response today has all the properties needed to support this aspect
of programmable networks. The HTTP header space contains enough information
to know whether the message is fresh or stale, the origin of the message, etc. HTTP
responses may also include a body (the part that holds theARM) which recipients can
parse, process, and act upon independent of the sender who originated the message.

A network of machines that understands HTTP can be an ARM-Aware network.

6.4.3.2 ARM-Capable Devices

Currently most connected devices utilize either a generic HTTP browser or a “native”
application with a built-in HTTP library in order to communicate along the network.
ARM-Capable devices would be able to leverage available support for a protocol (i.e.
HTTP) plus one or more ARM processors. This is close to the way Web browsers
work; they have strong support for the HTTP protocol and a limited number of
affordance-rich media types (i.e. HTML). However current browsers do not easily
support adding new media-type processors. ARM-capable devices would be able to
treat ARM processors as ‘plug-ins’ and make it easy to upgrade a device by adding
new ARM processors.

ARM-capable devices are ones that not only have strong support for one ore more
network protocols, they also have support for multiple message models and/or can
add new message models as they become available.

6.4.3.3 ARM Design Model

In an environment where networks support ARM-style communication and devices
can support new ARM processors as they become available, having a clear design
model for affordance-rich messages is critical. Luckily, one already exists: Hypetext
media types or Hypermedia Types. [14]

<root>
<customer id="123">

<name>Smith,Inc.</name>
<region>South</region>
<balance>1000</balance>

</customer>
</root>

Example 1: Non-ARM Response

104 M. Amundsen

Media types with native hypermedia controls provide the affordances needed to
support ARM-style designs (compare Examples 1 & 2). The author has previously
identified a candidate set of these affordances as H-Factors in the book “REST:
From Research to Practice.” [14] Additional material on a design methodology for
Hypermedia Types was detailed in “Building Hypermedia APIs with HTML5 and
Node.” [12]

<root>
<customer id="123" rel="item" href="...">

<name>Smith,Inc.</name>
<region>South</region>
<balance>1000</balance>
<link rel="edit" href="..."/>
<linkrel="collection" href="..."/>
<linkrel="search" href="..."/>

</customer>
</root>

Example 2: ARM-style Response

Designing messages that carry affordances is, essentially, designing a language
through which clients and servers can share understanding. Designs can be targeted
(See Example 2) or very general (See Example 3). The design style chosen should
fit the needs of the network participants and the nature of the problem domain.

<root>
<item id="123" rel="customer" href="...">

<dataname="name">Smith,Inc.</data>
<dataname="region">South</data>
<dataname="balance">1000</data>
<link rel="edit" href="..."/>
<link rel="collection" href="..."/>
<link rel="search" href="..."/>

</item>
</root>

Example 3: General ARM-style Response

6.4.3.4 ARM Evaluation Model

Producing affordance-rich messages is only helpful if network participants can “un-
derstand” and use them when they arrive. A consistent evaluation model for ARMs
is needed; one which clients and servers can count on when attempting to use
ARM-style responses.

6 APIs to Affordances: A New Paradigm for Services on the Web 105

Donald Norman’s seven stages of action (see above) provides an likely candidate
for evaluating (and acting upon) ARM-style responses. Network participants can
be coded to perform the same general steps as humans when interacting with the
environment:

1. Identify a goal
2. Establish a set of tasks to reach that goal
3. Execute the identified task
4. Capture the results of that action
5. Evaluate the captured results
6. Compare the results to the identified goal

These steps can be applied to response messages on the network by creating ARM
processors that can identify goals, establish, execute, and evaluate the results of tasks
performed to reach that goal. This is the heart of any goal-seeking state machine.
There are quite a number of possible ways to implement ARM processors. It could
be done using a human to perform the stages directly or via automation by relying
on “crowd-sourcing” logic for the establishment of tasks and the evaluation of the
results.

By treating each ARM design separately and providing processors that under-
stand the ARM “language”, connected devices can become active participants in the
programmable network.

6.5 Related Work

While much of the ideas in this paper have been identified previously, there are no
tangible ARM-style implementations extant on the Web today. There are however,
some encouraging examples. The items mentioned here fall short of the paradigm of
“programming the network through affordance-rich messages” but they do represent
attempts to solve the same problem or mitigate similar perceived shortcomings in
the current implementation models.

6.5.1 Web Intents

Paul Kinlan’s Web Intents [121] “is a discovery mechanism and extremely light-
weight RPC system between web apps, modeled after the similarly-named system
in Android.” While a decidedly RPC-style approach (as opposed to the ARM-style
described in this paper), the general aim of Web Intents is similar. Clients are able
to discover and register with providers to handle actions using a declarative model
from within the common browser. Like the ARM-style paradigm, client applications
can “augment” their ability to handle affordances as they appear within responses.

106 M. Amundsen

6.5.2 ql.io

Ebay’s ql.io3 project is a “declarative data-retrieval and aggregation gateway for
quickly consuming HTTP APIs.” Even though this project does not use affordances
as means to interact along the network, it does provide a similar service to client
applications; a gateway to normalize Web API interactions. This service, like ARM-
style designs makes it possible for client applications to better utilize remote services
on the network.

6.5.3 Hypertext Application Language (HAL)

The HAL media type “is a lean, domain-agnostic hypermedia type in both JSON and
XML, and is designed specifically for exposing RESTful hypermedia APIs” and it
could be used to craft ARM-style responses. HAL defines a small set of hypermedia
affordances (Resources and Links) and allows designers to use Link Relations[171] to
add semantic meaning to the representations. In this way, HAL represents a tangible
example of a message design aimed at increasing the reliance on affordances used
in network communication.

6.6 Conclusion

Moving from an object-oriented API paradigm to a network-oriented affordance
paradigm allows software architects and developers to begin programming the net-
work using affordance-rich messages (ARMs) instead of using traditional functional
APIs to program the devices connected to the network. This requires a working
model where 1) the network is able to support ARM-style responses (which HTTP
does today), 2) connected devices understand not just the transfer protocols in use
(HTTP, FTP, IRC, etc.) but also the ARMs being transferred, 3) message designs
that allow developers to successfully map actions to affordances, and 4) a message
evaluation model that follows Norman’s seven stages of action.

While the current Web can support this paradigm, there are only faint examples
of this model emerging at this time (i.e. Web Intents, ql.io, HAL, JSON-LD). What
is needed at this time is an increased focus on coding clients that can support ARM
evaluation and a parallel increase of new ARM-style implementations and message
designs.

3 http://ql.io

http://ql.io

Chapter 7
Leveraging Linked Data to Build
Hypermedia-Driven Web APIs

Markus Lanthaler

7.1 Introduction

The fact that the REST architectural style forms the fundament of the Web, the most
successful distributed system of all time, should be evidence enough of its benefits
in terms of scalability, maintainability, and evolvability. One of the fundamental
principles of REST is the use of hypermedia to convey valid state transitions at run-
time instead of agreeing on static contracts at design time. When building traditional
Web sites, developers intuitively use hypermedia to guide visitors through their sites.
They understand that no visitor is interested in reading documentation that tells them
how to handcraft the URLs necessary to access the desired pages. Developers spend
considerable time to ensure that the site is fully interlinked so that visitors are able
to reach every single page in just a few clicks. To achieve that, links have to be
labeled so that users are able to select the link bringing them one step closer to their
goal. Often that means that multiple links with different labels but the same target
are presented to make sure that a visitor finds the right path. This is most evident
when looking at the checkout process of e-commerce sites which usually consists
of a single path leading straight to the order confirmation page (plus a typically de-
emphasized link back to the homepage or shopping cart). On this path, the user has
to fill in a number of forms asking for order details such as the shipping address or
the payment details. It is not a coincidence that these forms tend to use exactly the
same language on completely different e-commerce sites. It is also not a coincidence
that the same names for the form fields are chosen to allow the user’s browser to fill
the fields automatically in or, at least, offer auto-completion. HTML5 tries to push
that even further by introducing an autocomplete attribute along with a set of
tokens in order to standardize the auto-completion support across browsers1. All this

∗ The bibliography that accompanies this chapter appears at the end of this volume and is also
available as a free download as Back Matter on SpringerLink, with online reference linking.

1 http://www.whatwg.org/specs/web-apps/current-work/#autofilling-form-controls:-the-autocomp-
lete-attribute

M. Lanthaler (�)
Institute for Information Systems and Computer Media,
Graz University of Technology, Rechbauerstraße 12 8010 Graz, Graz, Austria
e-mail: mail@markus-lanthaler.com

C. Pautasso et al. (eds.), REST: Advanced Research Topics and Practical Applications, 107
DOI 10.1007/978-1-4614-9299-3_7, © Springer Science+Business Media New York 2014

http://www.whatwg.org/specs/web-apps/current-work/#autofilling-form-controls:-the-autocomplete-attribute
http://www.whatwg.org/specs/web-apps/current-work/#autofilling-form-controls:-the-autocomplete-attribute

108 M. Lanthaler

is part of purposeful optimization with the clear goal to increase conversion rates,
i.e., to ensure that visitors achieve their goal. It is therefore surprising to see that
most of the time developers completely ignore hypermedia when using the Web for
machine-to-machine interaction, or, more commonly speaking, Web APIs.

Instead of using dynamic contracts that are retrieved and analyzed at runtime,
which would, just as on the human Web, allow clients to adapt to ad-hoc changes,
developers chose to use static contracts. All the knowledge about the API a server
exposes is typically directly embedded into the clients. This leads to tightly cou-
pled systems which impede the independent evolution of its components. When a
service’s domain application protocol [179], which defines the set of legal inter-
actions necessary to achieve a specific, application-dependent goal, is defined in a
static, non-machine-readable document served out-of-band, it becomes impossible
to dynamically communicate changes to clients. Even though such approaches might
work in the short term, they are condemned to break in the long term as assumptions
about server resources will break as resources evolve over time.

Another problematic aspect in the development of Web APIs is the proliferation of
custom data formats instead of building systems on top of standardized media types.
This makes it impossible to write generic clients and inhibits serendipitous reuse. As
Steve Vinoski argues in his excellent article [243], platforms, although efficient for
their target use case, often inhibit reuse and adaptation by creating highly specialized
interfaces; even if they stick to industry standards. He argues “the more specific a
service interface [is], the less likely it is to be reused, serendipitously or otherwise,
because the likelihood that an interface will fit what a client application requires
shrinks as the interface’s specificity increases.” This observation surely applies to
most current Web APIs which are, due to their specializations, rarely flexible enough
to be used in unanticipated ways.

This chapter is an attempt to address the issues outlined above. We will start off
by exploring why hypermedia is not used for machine-to-machine communication
and what the current best practices for developing Web APIs are. After introducing
Linked Data and JSON-LD, we will present a lightweight vocabulary able to express
concepts needed in most Web APIs. Along with a short list of design guidelines,
we will finally show how easily all those techniques can be integrated in current
Web frameworks. Based on a simple prototype we will then demonstrate how truly
RESTful services that are accessible by a generic client can be build in considerably
less time by using these technologies. Last but not least, we will give an outlook of
how the proposed approach opens the door to other Semantic Web technologies that
have been built in more than ten years of research.

7.2 Hypermedia-Driven Web APIs: Challenges
and Best Practices

As outlined in the introduction, developers instinctively use hypermedia when build-
ing traditional Web sites but seem to ignore it completely when building Web APIs.
One of the reasons behind this might be the different level of tooling support. Since,

7 Leveraging Linked Data to Build Hypermedia-Driven Web APIs 109

in contrast to the human Web, no generic clients exist, developers usually not only
need to develop the server side part, but also a client (library), which is then used by
other developers to access the WebAPI. It is not surprising that these two components
are often tightly coupled, given that they are usually developed in lockstep by the
same team or at least the same company.

One of the reasons for this is certainly that for Web APIs no accepted, standardized
media type with hypermedia support exists. JSON, which is much easier to parse and
has a direct in-memory representation in most programming languages, is typically
favored instead of using HTML as on the human Web. Unfortunately, this often leads
to the exposure of internals resulting in a tight coupling between the server and its
clients. A common example for this is the inclusion of local, internal identifiers in
representations instead of including links to other entities. This requires out-of-band
knowledge of IRI (Internationalized Resource Identifier) templates to reconstruct the
URLs to retrieve representations of entities referenced in such a way. Since, in most
cases, the documentation about those IRI templates is not machine-readable, they
are hardcoded into clients which consequently means that clients break whenever
the server implementation changes.

The current best practice for developing truly RESTful JSON-based Web APIs is
to define a custom media type which extends JSON to support labeled hyperlinks.
Effectively this means that HTML’s anchor or link tags with their relation attributes
(rel) are imitated by some JSON structure. Since there is a common need for such
functionality, there have already been some efforts to standardize such extensions to
JSON such as, e.g., Collection+JSON [13], but so far their adoption is very limited.
Far more often these proprietary extensions are documented out-of-band on the API
publisher’s homepage. Apart from the description of how hyperlinks are expressed,
these documentations generally also include a list of resource types (such as products
and orders) describing their semantics, properties, and their serializations. Last but
not least, a number of link relations along with the supported HTTP operations, the
expected inputs and outputs, and the consequences of invoking those operations are
documented. This allows developers to get an overview of the API’s service surface
and to implement specialized clients.

Clients for such APIs are usually small libraries to parse retrieved representations,
serialize data to be transmitted to the Web API, and to invoke HTTP operations.
Not uncommonly, clients for object-oriented programming languages also include
classes to represent the various resource types as native objects. While simple
libraries are usually statically bound to the server’s URL space, more sophisticated
clients embrace hypermedia to eliminate this tight coupling. This allows them
to browse through the server’s information space and, to a certain degree, to
dynamically adapt to changes in interaction flows. Typically such client libraries
support a static set of resource types and are able to recognize a set of link relations
which allows them to find the paths to achieve specific goals. In a sense, it could
be said that those libraries understand the representations they retrieve from the
API, but effectively this understanding is very limited. These clients do nothing
more than interpreting representations by looking for specific tokens that are used
to trigger certain operations. Since the semantics of those tokens are very weak, no
further algorithmic automation is facilitated.

110 M. Lanthaler

The problem with the practices outlined above is that they result in specialized im-
plementations targeting specific use cases and not generalizations that can be reused
across application domains. Therefore, every API created with such an approach is
unique and needs to be documented. Even though most of the code to access such
services is very similar, there are still minor differences which make it difficult to
reuse code and almost impossible to write generic clients. On the human Web this
problem is addressed by a generic media type (HTML) which decouples the clients
from the servers they are accessing. Admittedly HTML could be used for Web APIs
as well, but its nature, which targets human facing Web pages which are essentially
graphical user interfaces, is fundamentally different to machine-to-machine com-
munication. A format such as JSON is a much better fit for such use cases which
just require the transfer of structured data; having to parse HTML for this has typ-
ically a too big overhead. Thus, to solve this problem also for Web APIs, a generic
media type with inherent support for hypermedia is needed. Just adding support for
hyperlinks to JSON, as most current approaches do, is not enough because it only
solves part of the problem. Since the interaction with Web APIs could generally be
seen as a data integration problem, other aspects, such as globally unique identifiers
for both the entities and their properties, become important as well. As we will see
in the next sections, Linked Data with its dereferenceable identifiers along with a
serialization format which is 100 % compatible with JSON might be a solution to
solve this problem.

7.3 Linked Data and JSON-LD

The human Web consists of billions and billions of interlinked pages. Hyperlinks are
such a fundamental building block of the Web’s architecture that it feels natural to
browse across sites from completely different publishers. It is taken for granted that
content links to other relevant content; relevant links are generally seen as a sign of
quality. Surprisingly, exactly the opposite is the case for Web APIs. Very rarely do
Web services link to external data. As a matter of fact, most times even links to other
resources within the same service itself are missing. Therefore, in 2006 Tim Berners-
Lee, the inventor of the World Wide Web, postulated the so called Linked Data
principles [23] in an attempt to change that. He urged to use URLs to name things that
dereference to useful information in a standardized format. Additionally, the returned
data should contain links to other relevant data resulting in a giant graph of data.
Linked Data could thus be seen as the direct data-centric counterpart of the document-
centric human Web. While the amount of Linked Data has grown significantly over
the last couple of years, it is still far from mainstream adoption. The reasons for the
slow adoption of Linked Data and the Semantic Web technologies are manifold, but
the main problem was probably that the community behind them derailed into the
artificial intelligence domain instead of concentrating on more practical data-oriented
applications. A lot of potential users were alienated by this and developed an aversion
to those technologies—a phenomenon we denoted as Semaphobia [138]. A solution

7 Leveraging Linked Data to Build Hypermedia-Driven Web APIs 111

to this problem might be a more gradual introduction to those principles and practices
by the use of less disruptive technologies. JSON-LD [218] is an attempt to achieve
that by providing a generic serialization format for Linked Data on top of the popular
JSON.

One of the design goals in the development of JSON-LD was to require as little
effort as possible from developers to create and understand JSON-LD documents
and thus great efforts were put in its simplicity and terseness. Instead of the normally
triple-centric approach that other common serialization formats for Linked Data use,
an entity-centric approach was chosen for JSON-LD. The rationale was to resemble
the programming models most developers are familiar with and to reflect the way
JSON is used. This and the fact that JSON-LD is 100 % compatible with traditional
JSON allow developers to build on existing infrastructure investments. Thus, in many
respects, JSON-LD forms an entire ecosystem for developers to work with Linked
Data without the high entry barrier other Linked Data respectively Semantic Web
technology stacks entail.

Additionally to the features JSON provides, JSON-LD supports hyperlinks,
universal identifiers for entities and their properties in the form of IRIs, string in-
ternationalization, definition and use of arbitrary data types, support for unordered
sets and ordered lists, and, last but not least, a facility to express data graphs. These
features not only dramatically simplify data integration, which is the underlying
problem in most Web API usage scenarios, but also enable developers to express
their data with much stronger semantics.

To use JSON-LD’s basic functionality, a developer familiar with JSON only needs
to know the two JSON-LD keywords@context and@id. The@contextkeyword
is used to include or reference a so called context which allows JSON properties to be
mapped to IRIs in order to become uniquely identifiable across the Web and, possibly,
dereferenceable. The@id keyword does the same for entities by assigning identifiers
to JSON objects. It can also be used to express hyperlinks to other resources. A very
simple document could look as follows:

{
"@context": "http://example.com/c/person.jsonld",

3 "@id": "http://example.com/people/markus",
"name": "Markus Lanthaler",
"homepage": "http://www.markus-lanthaler.com/",
"knows": {
"@id": "/people/john",

8 "name": "John Doe"
}

}

The document above contains information about a person identified by
the IRI http://example.com/people/markus with the name Markus
Lanthaler. It also contains a reference to another person whose identifier is
http://example.com/people/john (the relative IRI is resolved against the
document’s base IRI). This reference also shows how some of the properties (in this
case the name) of a referenced entity can be directly embedded. This allows devel-
opers to fine-tune the performance of Web APIs by reducing the number of HTTP

112 M. Lanthaler

requests necessary for clients to retrieve the desired information. The referenced con-
text maps the JSON properties to IRIs allowing clients to retrieve more information
about them. Assuming that FOAF [37] is used as the vocabulary, the context would
look something like this:

{
"@context": {
"name": "http://xmlns.com/foaf/0.1/name",
"homepage": "http://xmlns.com/foaf/0.1/homepage",

5 "knows": " http://xmlns.com/foaf/0.1/knows"
}

}

Instead of including a reference to the context, it is also possible to embed it
directly into the document. Furthermore, it is possible to include/reference multiple
contexts by wrapping them into an array. This allows, e.g., to reference an external
context and to overwrite some of the mappings locally in the document.

The alert reader might notice that the document contains a link to the person’s
homepage (http://www.markus-lanthaler.com/) without using the
@id construct—and also the context does not contain any further information to
disambiguate that IRI from a regular string. This is where the @type keyword
comes into play. It allows type information to be assigned to properties as well as
to individual values and entities. The mapping for homepage in the context above
could therefore be rewritten to include such type information allowing clients to
interpret the value as IRI:

"homepage": {
"@id": "http://xmlns.com/foaf/0.1/homepage",

3 "@type": "@id"
},

In the example above, @id is used as the value of @type to express that the data
type is an IRI—all other types are identified, just as everything else, with IRIs. The
most commonly used data types are already standardized as part of XML Schema [31]
and it is recommended to reuse them whenever possible to improve interoperability.
It is also possible to use @type directly in a document to express a value’s or entity’s
type. The initial example could for instance be enriched with its type and a typed
creation date:

1 {
"@context": "http://example.com/c/person.jsonld",
"@id": "http://example.com/people/markus",
"name": "Markus Lanthaler",
"@type": "http://xmlns.com/foaf/0.1/Person",

6 ...
"created_at": {
"@value": "2012-09-05",
"@type": "http://www.w3.org/2001/XMLSchema#date"

}
11 }

7 Leveraging Linked Data to Build Hypermedia-Driven Web APIs 113

The first use of @type above associates a class (FOAF’s Person class) with the
entity identified by the@id keyword. The second use of@type associates a data type
(XML Schema’sdate) with the value expressed using the@value keyword. This is
similar to object-oriented programming languages where both scalar and structured
types use the same typing mechanism, even though scalar types and structured types
are inherently different. As a general rule, when @value and @type are used in
the same JSON object, the @type keyword is expressing a data type to be used with
scalars otherwise it is expressing an entity type, i.e., a class.

Another use of @value is to language-tag strings, which is essential for multi-
lingual applications. This can be done with the @language keyword which tags
a string with the supplied language code. Just as the @type keyword it can either
be used in the context or, along with @value, in a document’s body. The example
below shows how the academic title of the person could be added in both English
and German:

{
"@context": "http://example.com/c/person.jsonld",
"@id": "http://example.com/people/markus",

4 "name": "Markus Lanthaler",
...
"title": [
{ "@value": "MSc", "@language": "en" },
{ "@value": "Dipl.Ing." , "@language": "de" }

9]
}

This brings us to the only case were JSON-LD differs from traditional JSON, i.e.,
arrays are generally considered as being unordered sets instead of being ordered lists.
This stems from the fact that JSON-LD’s underlying data model is a set of directed
graphs in which edges are inherently unordered. In most cases that is a minor detail
that only matters when JSON-LD is transformed to other serialization formats or,
e.g., persisted into a database. JSON-LD, however, has also built-in support for
ordered lists in the form of the @list keyword which can be used to express that
an array has to be interpreted as an ordered list. It can either be used directly in the
document by wrapping an object with only a @list property around the array or
be mapped to a property in the context by setting @container to @list (@set
can be used to express explicitly that an array has to be interpreted as an unordered
set). Both methods are outlined in the following example:

{
"@context": {

"propertyA": "http://example.com/vocabulary/A",
"propertyB": {

5 "@id": "http://example.com/vocabulary/B",
"@container": "@list"

}
},
"propertyA": { "@list": ["a", "b", "c"] },

10 "propertyB": ["a", "b", "c"]
}

114 M. Lanthaler

As the examples shown so far already suggest, it is often cumbersome and error-
prone to include all IRIs necessary to transform a JSON document to Linked Data.
JSON-LD supports two mechanisms to simplify that. The first one is to define prefix
mappings in the context to shorten long IRIs. By using prefixes, the context from the
beginning of this section could be rewritten to

{
"@context": {
"foaf": "http://xmlns.com/foaf/0.1/",

4 "name": "foaf:name",
"homepage": "foaf:homepage",
"knows": "foaf:knows"

}
}

This not only makes the context much smaller, but also much more readable, which
reduces the cognitive load put on developers. Prefixes can also be used directly in
properties in the body of a document. A JSON-LD processor expands all compact
IRIs (that is how IRIs using prefixes are called in JSON-LD) by first splitting them
into a prefix and a suffix at the colon and then concatenating the IRI mapped to the
prefix to the suffix.

Another way to avoid the manual mapping of terms to full IRIs is the use of
@vocab. It basically defines an implicit global prefix which is used for properties
that are not explicitly mapped to an IRI. Since this method automatically affects every
non-mapped property in a document, it is recommended to use this mechanism only
when (a) every property should be mapped to an IRI and (b) all properties can be
mapped to the same vocabulary by using a common IRI prefix. By using@vocab, the
initial example could be rewritten as follows to automatically expand all properties
to the corresponding properties in the FOAF vocabulary:

{
2 "@context": {

"@vocab": "http://xmlns.com/foaf/0.1/",
"homepage": { "@type": "@id" }

},
"@id": "http://example.com/people/markus",

7 "name": "Markus Lanthaler",
"homepage": "http://www.markus-lanthaler.com/",
"knows": {

"@id": "/people/john",
"name": "John Doe"

12 }
}

Data serialized with JSON-LD has the form of a graph, and, at times, it becomes
necessary to make statements about the graph itself rather than just about the entities,
i.e., the nodes, it contains. That is exactly the purpose of the last remaining keyword:
@graph (actually there is one more, @index, which is used for an advanced feature
that is beyond the scope of this chapter). It makes it possible to assign properties and
an identifier to the graph itself. The following example shows how a graph can be
annotated with its creation date:

7 Leveraging Linked Data to Build Hypermedia-Driven Web APIs 115

{
2 "@context": {

...
"generatedAt": {
"@id": "http://www.w3.org/ns/prov#generatedAtTime",
"@type": "xsd:date"

7 }
},
"@id": "/graphs/1",
"generatedAt": "2012-09-05",
"@graph": {

12 "@id": "/people/markus",
"name": "Markus Lanthaler",
"homepage": "http://www.markus-lanthaler.com/",
"knows": {

"@id": "/people/john",
17 "name": "John Doe"

}
}

}

Additionally to the serialization format described above, JSON-LD also defines a
number of algorithms and an API [118] to process such documents. The algorithms
allow JSON-LD documents to be expanded, compacted, and flattened. Expansion
is the process of taking a JSON-LD document and applying all embedded and ref-
erenced contexts such that all IRIs, types, and values are expanded in a way that
the contexts are no longer necessary. This makes it much easier to write tools and
libraries on top of a JSON-LD processor as it already processed all the information
contained in the context; flattening simplifies this even more by normalizing a doc-
ument’s structure. The counterpart to expansion is compaction. It takes a JSON-LD
document and applies a supplied context such that the most compact form of the
document is generated. Furthermore, the algorithms define how JSON-LD can be
converted to RDF and vice versa.

7.4 Hydra: A Lightweight Vocabulary for Hypermedia-Driven
Web APIs

As shown in the previous section, JSON-LD provides a generic media type for Linked
Data, but, to implement a concrete Web API, also a shared vocabulary, understood by
both the server exposing theAPI and the client consuming it, is needed. Hydra, which
stands for Hypermedia-Driven API, is an attempt to define a minimal vocabulary to
achieve just that. By specifying a number of concepts which are commonly used in
Web APIs it can be used as the foundation to build truly RESTful, hypermedia-driven
services that can be accessed with a generic API browser. Even though a detailed
description of Hydra [136] with all its details is beyond the scope of this chapter,
we would like to, at least briefly, introduce the high-level concepts and the rationale
behind them.

Simply speaking a RESTful WebAPI consists of a number of interlinked resources
whereby each is identified by an IRI. To find its way through the resource space, a

116 M. Lanthaler

client has to understand the semantics of a hyperlink, i.e., be able to identify in which
relation a resource stands to another resource. Typically those relationships, as well
as the resource types themselves, are domain-specific. Nevertheless, it is possible to
extract a number of such link relations and resource types that are generic enough
to be applicable to a wide range of application domains. Collections are a good
example for this. In Web APIs a collection is often used to reference a number of
related resources. They are also often used to expose functionality such as the creation
of new resources by POSTing representations to the collection’s IRI or searching for
specific resources in the collection by accessing the collection with specific URL
parameters describing the query.

To support these use cases, Hydra defines the resource types Collection
and PagedCollection. PagedCollection is a subtype of Collection
and, instead of holding references to all member resources, just holds a partial list.
To navigate through the partial lists of a PagedCollection, a client can use
its firstPage, nextPage, previousPage, and lastPage properties. A
PagedCollection also has an itemsPerPage and a totalItems property
which tells a client how many items there are in total and how many items are in-
cluded in a single page. Sometimes it is desirable to allow a client to decide how
many items should be returned per page. To achieve that and other functionality,
Hydra has built-in support for IRI templates.

AnIriTemplate has atemplate and amappings property. While the value
of thetemplate property is simply the IRI template itself, themappings property
holds a set of variable-to-property mappings, i.e., every variable in an IRI template
can be mapped to a specific property. For instance, in a PagedCollection the
firstPage property can be set to an IriTemplate which includes a variable
that is mapped to the itemsPerPage property. That way a client can control how
many items it wants to retrieve per page.

Another common use case is to search for certain items in a collection. Hydra’s
Collection includes a search property whose value is an IRI template. A deve-
loper can use the generic IRI templating mechanism to add as many search facets
as desired. Most of these facets are application-specific and thus not represented
in Hydra. The only facet build into it are free-text queries. All a developer has
to do to model a free-text query is to map a variable in the IRI template to the
freetextQuery property.

So far all of the described concepts address read-only aspects of an API, but
one of the key differentiators of Hydra compared to other, similar approaches
is that it has full read-write support. To facilitate that, every resource might
have an operations property. This property can hold a set of valid opera-
tions that a client might invoke. Each Operation consists of an HTTP method,
an optional expects input type, an optional returns type on success, as well
as a title and a description. It is also possible to document statusCodes
that might be returned with a description. This allows a developer to un-
derstand what to expect when invoking an operation. It has, however, not to be
considered as an extensive list of all potentially returned status codes; it is merely
a hint. Developers should expect to encounter other HTTP status codes as well.
Furthermore, Hydra also has a built-in concept to convey additional information
about an Error at runtime in case that an HTTP status code is not detailed enough.

7 Leveraging Linked Data to Build Hypermedia-Driven Web APIs 117

To express the semantics of an Operation in a machine-readable way, i.e.,
without relying on its natural-language description, a developer should create spe-
cific subclasses thereof. Hydra already contains operations to create, replace, and
delete resources out of the box. The CreateResourceOperation, e.g., is de-
fined to create a resource of the type specified inreturns by taking a representation
of expects as input. One might wonder why the search property exists given
that everything could be expressed by using operations as well. The reason for this
is that the search property specifies the relationship between an instance of a
Collection and a filtered collection which is, strictly speaking, a different re-
source. Operations, on the other hand, apply to a specific resource or a specific class
of resources.

7.5 Design Guidelines

JSON-LD and Hydra are two building blocks that allow developers to build
hypermedia-driven Web APIs. To ensure that APIs created on top of them share
REST’s benefits in terms of loose coupling, maintainability, evolvability, and
scalability, a number of design guidelines have to be followed.

The most important aspect developers have to keep in mind is to not expose
implementation details. That means that a change in the implementation on the
server should not result in changes in the API it exposes over the Web. In practice
that means that developers should introduce an abstraction layer decoupling the
internals from the data exposed in the Web API. There exist a number of well-known
design patterns to achieve, e.g., the Adaptor or the Composite pattern [90]. The fact
that there exists a generic client (that we will present later in this chapter) from the
very beginning allows API “usability tests" to be run similar to the usability tests
that are typically done for Web sites. This helps to ensure that the API is usable
without knowledge of server internals.

From a Linked Data perspective, a vital principle is to reuse existing vocabularies
as much as possible. This allows code reuse on the client-side and simplifies data
integration. Nevertheless, developers often want to keep full control over the vocabu-
laries they use to provide a unified experience. In such cases, specific concepts should
either be sub-typed or declared as being equivalent to concepts in existing vocabular-
ies. This allows more elaborated clients to interpret the data even if they only support
the already existing vocabulary. There are significant research efforts to support users
in this mapping process which is typically referred to as ontology alignment.

Related to the reuse of already existing vocabularies is the reuse of existing in-
stance data. Just as Web sites typically link to other related Web sites, data exposed by
a Web API should link to other related data on the Web; otherwise, services will con-
tinue to remain islands in the vast information sea of the Web. This is also a cost effec-
tive opportunity for developers to provide their customers with additional data outside
of their main business focus. As paradox it might sound, but the more data there is,
and the more interconnected it is, the easier it becomes to integrate it with other data.

118 M. Lanthaler

The data model beneath the exchanged data is a graph. It is therefore possible
to serialize the same data in a number of different shapes. When building clients,
developers should thus ensure that they do not depend on a specific serialization
structure but just on the raw data itself. This is different to how JSON is typically
used where the structure is an essential aspect of the contract between the client
and the server. Clients have to rely on the structure as that is how the only locally
valid semantics are communicated. On the other hand, JSON-LD, with its universal
identifiers and unambiguous properties, is much more flexible compared to JSON.
Consequently clients are able to use the data independent of the specific serialization
structure chosen by the server.

Another important principle to follow when developing clients is to be prepared
that everything might change or even break. The machine-readable contract published
by the API should be retrieved and analyzed at runtime and not be embedded directly
into the client. All the documentations about things such as available operations or
possible errors should be seen as hints rather than static contracts. At the moment
they are used they might already be outdated and the server might respond in a totally
different way than expected. Clients should be able to detect and possibly recover
from such errors. As a last resort, the client might need to ask its user for assistance,
report an error, or file a bug report.

7.6 Adding Hydra Support to Web Frameworks

Armed with JSON-LD, Hydra, and a small set of design guidelines, we developed a
prototype to demonstrate the feasibility of the principles and technologies presented
in this chapter. It shows how easily the proposed building blocks can be integrated
in real-world systems. The prototype consists of a server exposing an API and
a generic client accessing it. The two components communicate by exchanging
JSON-LD over HTTP(S).

The server component is based on Symfony2, a Web development framework
implemented in PHP. It is, as most other current frameworks, based on a Model-
View-Controller (MVC) architecture. MVC is a design pattern that separates the
presentation of information from its processing to allow code reusability and sep-
aration of concerns. The models represent the relevant entities in the system, the
views (in Web frameworks usually templates) are used to create representations of
those entities, and the controller is responsible for processing inputs, manipulating
the models, and finally returning an updated representation by using the according
views. Web frameworks often further modularize the code by dividing controllers
into Front Controllers, which handle all requests for a Web site, and Page Controllers
or Commands, which are only responsible for certain requests [84]. Therefore, the
front controller’s job is typically to parse the received HTTP request, extract the
request IRI and method, and then pass the control to a specific page controller or
command which then, in turn, invokes specific models and views.

While for human-facing Web sites the view layer is crucial and the templates vary
widely, it is rarely required in Web APIs. Their view layer is typically much simpler
and consists of just a serializer turning the models, i.e., the entities, directly into

7 Leveraging Linked Data to Build Hypermedia-Driven Web APIs 119

representations in a specific format. In object-oriented programming languages enti-
ties are usually represented by objects. The prototype we implemented thus extends
Symfony2 by a custom bundle, i.e., a plugin, which serializes entities into valid
JSON-LD representations. Furthermore, it generates machine-readable documenta-
tion based on Hydra describing the entity types and their properties. This allows
a client, e.g., to automatically render forms to create valid requests or to provide
additional information about the semantics of a specific property.

The serialization component relies, similar to the work of Quasthoff and Meinel
[192], on code annotations to control the serialization of entities and the documen-
tation of their types. While this is more complex than simply serializing all public
members of an entity, it provides much more flexibility. Not all members should be
exposed (all the time) and sometimes transformations, such as converting a numeric
identifier into an IRI, might be necessary. The advantage of using annotations is that
the information is kept close to the source code it documents, which makes it much
easier to keep the two in sync.

Additional to the server component a generic API console or browser was devel-
oped for this proof of concept. It is implemented as a single-page Web application
using a number of well-known libraries such as Bootstrap, Backbone, Underscore
and a slightly modified JSON-LD processor. The JSON-LD processor had to be
modified to include additional information in the parsed responses required by the
response renderer for tooltips etc.; otherwise a standard JSON-LD processor could
have been used as well. The functionality of the client includes the retrieval of re-
source representations, their parsing and rendering (which includes displaying the
related documentation), as well as the invocation of various HTTP operations on em-
bedded hyperlinks, which, in some cases, implicates the dynamic creation of forms
to gather the required data to construct valid requests.

7.6.1 Case Study: Issue Tracker

To demonstrate how the just described framework can be used in practice, we im-
plemented a hypermedia-driven Web API for an issue tracker as a case study. This
not only allows us to show how such a system might be used in practice but also to
describe the underlying framework in more detail.

The first thing to do when developing an API is to define the domain concepts
which have to be implemented. In this case, the application domain consists of
issues, comments on those issues, and users. Issues have a title, a description, a state
(open/closed), a creation date, and a reference to the user who created it. Comments
associated to an issue have a description, a reference to the user who created it, and a
creation date. Users, finally, have a name, an e-mail address, and a password. Using
the user type as an example, we will show how classes can be augmented with the
annotations necessary for their serialization and the generation of a machine-readable
vocabulary.

As shown in the following extract of the User class definition, the fields to be ex-
posed when an instance is being serialized are annotated with a@Hydra\Expose()
annotation. The password, e.g., will never be serialized, as it is marked as write-only.

120 M. Lanthaler

Nevertheless it will be documented in the automatically generated vocabulary and be
used when deserializing requests. The class itself has a @Hydra\Id() annotation
which converts the internal identifier (an integer) to a globally valid identifier in the
form of an IRI. This is done by referencing the corresponding route which essen-
tially represents an IRI template—in this case /users/id. The class also has a
@Hydra\Operations() annotation which documents the supported operations
on this entity. In this example it references routes to replace (update) and delete users.

namespace ML\DemoBundle\Entity;
use ML\HydraBundle\Mapping as Hydra;

/**
5 * User

*
* @Hydra\Expose()
* @Hydra\Id(
* route = "user_retrieve",

10 * variables = { "id" : "id" }
*)
* @Hydra\Operations({"user_replace", "user_delete"})
*/

class User
15 {

/**
* @var integer An internal unique identifier
*/

private $id;
20

/**
* @var string The user’s full name
* @Hydra\Expose()
*/

25 private $name;

/**
* @var string The user’s email address
* @Hydra\Expose()

30 */
private $email;

/**
* @var string The user’s password

35 * @Hydra\Expose(writeonly = true)
*/

private $password;

/**
40 * The issues raised by this user

*
* @var ArrayCollection<ML\DemoBundle\Entity\Issue>
* @Hydra\Expose()
* @Hydra\Collection("user_raised_issues_retrieve")

45 */
private $raised_issues;

// ... getters, setters, and other methods
}

7 Leveraging Linked Data to Build Hypermedia-Driven Web APIs 121

The raised_issues property in the code above returns an array of the issues
the user raised. The @Hydra\Collection() annotation tells the serializer that
it should wrap that array in a Hydra Collection that can be accessed via the
specified route. The alert reader might wonder why there is no variable mapping as
in the class’ ID annotation. The reason for this is that the serializer is smart enough
to create those mappings itself if the IRI template’s variables correspond directly
to a property of the class. In this case, there is a direct correspondence to the id
property. This approach is commonly known as convention over configuration and is
used to decrease the amount of code/annotations a developer has to write. The same
reasoning applies to the automatic code generation of simple CRUD-controllers. All
a developer has to do to generate a controller for the just defined User class is to
invoke the following command in the shell:

php app/console hydra:generate:crud--entity=MLDemoBundle:User
--route-prefix=/users/--with-write --no-interaction

This will create a page controller supporting all CRUD operations which listens to
requests on the /users/ IRI prefix. If a developer omits the parameters, a wizard
will ask for the required information step-by-step. The code to retrieve the issues
raised by a user cannot generated automatically and has thus to be added manually.
This is trivial as the code shows:

1 /**
* Retrieves the issues raised by a User
*
* @Route("/{id}/raised_issues",
* name="user_raised_issues_retrieve")

6 * @Method("GET")
* @Hydra\Operation(
* status_codes = {
* "404" = "If the User entity was not found."
* })

11 * @Hydra\Collection()
* @return ArrayCollection<ML\DemoBundle\Entity\Issue>
*/
public function getRaisedIssuesAction(User $entity)
{

16 return $entity->getRaisedIssues();
}

The @Hydra\Operation() annotation above shows how to docu-
ment an operation. In this case, the operation would be exposed as
GetRaisedIssuesOperation and would contain the additional information
about when a response with a status code of 404 is returned and what it means in
this context (in this case not that no raised issues exist, but that the user does not
exist). In the long term, we could envision that a large number of such operations
are “standardized" and thus recognized by generic clients—Hydra’s built-in CRUD
operations are just the beginning. The methods generated by the CRUD controller
code generator are automatically mapped to Hydra’s built-in operations. This allows
the prototype API console we implemented to, e.g., prefill the form generated for a
ReplaceResourceOperation with the data of the entity.

122 M. Lanthaler

Fig. 7.1 The Hydra console showing a user entity

Implementing the rest of the API is just a matter of implementing the domain
concepts and documenting them with the appropriate annotations. The system is
then able to automatically generate both a human-readable documentation in the
form of an HTML page and a machine-readable vocabulary in JSON-LD for the
client. As the response in Fig. 7.1 shows, it also allows the system to automatically
serialize the entities returned by the page controllers into JSON-LD documents that
look, apart from the link to a context definition and the @id and @type keywords,
almost exactly the same as responses of current JSON-based Web APIs.

The advantage of this approach manifests itself in the fact that it is possible to
implement fully generic clients. To demonstrate this, we implemented anAPI console
which allows the user to browse through the API as well as to invoke operations on
the various resources. Figure 7.1 shows how a User entity is displayed.

The parsed JSON-LD response is shown in the pane to the left. If the
user moves his mouse over a property, a tooltip is shown and the correspond-
ing documentation is loaded in the pane at the right. In Fig. 7.1 the user
has his mouse over the raised_issues property which expands to the IRI
http://hydra.test/vocab#raisedIssues, as the tooltip shows. In the
background the API console dereferences this IRI, looks for the property definition
in the response, displays the documentation of the class associated with the property,
and finally highlights the property itself in the displayed documentation. Following
links or sending HTTP requests other than GET is as easy as clicking on a link and
selecting the desired operation as shown in Fig 7.2. If the expected input type for
an operation is documented, a form to gather the required data for the creation of a
valid request is rendered automatically.

7.7 Conclusions and Outlook

The REST architectural style along with the Linked Data principles builds a foun-
dation to bring many of the key success factors of the human Web to the Web of
machines. Instead of building Web APIs with highly specialized interfaces, all the

7 Leveraging Linked Data to Build Hypermedia-Driven Web APIs 123

Fig. 7.2 Users can create HTTP requests directly in the API console

modeling happens on a semantic layer completely independent of the underlying
serialization format which mitigates the proliferation of custom media types. By
using a format such as JSON-LD to serialize the data, a gradual introduction of such
a, at first sight, disruptive approach becomes possible. Apart from a few additional
properties the responses from such a Web API look almost exactly the same as the
ones of current JSON-based APIs. As shown in this chapter, this greatly simplifies
the integration into current Web frameworks allowing developers to build on exist-
ing infrastructure investments. To the best of our knowledge, no other comparable
projects exist that allow the creation of hypermedia-driven APIs in such an integrated
manner. The W3C is currently working on a similar approach called Linked Data
Platform [216], but so far it does not go beyond standardizing interfaces to implement
CRUD services for RDF data serialized in Turtle.

The prototype still misses a few important features due to the early stage of
development. Most notably is the lack of support for authentication. To implement
that, probably not only the Hydra core vocabulary has to be extended, but also new
vocabularies for the different authentication mechanisms have to be created. This
modularity in the vocabularies should encourage clients to be modular as well.

In future work we would like to implement a programming library to access such
APIs in a programmatic way instead of having to use the user-facing API console
shown in this chapter. The long-term goal is to allow a more declarative, goal-oriented
access of Web APIs. If the used vocabularies are based on formal semantics (just
as RDF’s core vocabularies are), it becomes possible to implement reasoners able
to infer conclusions which are not expressed explicitly in the data. That, combined
with techniques such as hierarchical state machines or behavior trees that allow the
creation of reusable blocks of logic, could pave the way for much smarter clients
than possible today. By open-sourcing both the client and the server component, we
hope to foster the interest of the community to work towards such an ambitious goal.

Chapter 8
RestML: Modeling RESTful Web Services

Robson Vincius Vieira Sanchez, Ricardo Ramos de Oliveira and Renata
Pontin de Mattos Fortes

8.1 Service Oriented Computing

In the last decade, it was possible to witness a significant change on IT applications,
which evolved from distributed computation paradigm to a service-oriented com-
puting (SOC) paradigm, which is gaining prominence as an effective approach to
integrate applications in distributed heterogeneous environments [154] in order to
solve the problem of lack of communication between different information systems
present in corporate environments. Because of this interest, studies related to Web
Services have increased.

RESTful web services have emerged as a way to simplify the development of
web services, following the principles of REST architecture, to ensure the same
portability achieved by the Web and making it easier to publish and utilize the web
services [184].

The already existing patterns, which are widely used on the Web, such as HTTP,
XML, URI, and others, were used for the development of RESTful services, avoiding
excessive standardization present in SOAP Web services.

Among the advantages present in REST architecture, the most frequent are
presented next ones are [184, 196]:

• Simplicity in development: by using Web patterns, and preventing over-
standardization;

• Scalability: by allowing support to cache, clustering and load balancing;

∗ The bibliography that accompanies this chapter appears at the end of this volume and is also
available as a free download as Back Matter on SpringerLink, with online reference linking.

R. V. V. Sanchez (�) · R. R. de Oliveira · R. P. de M. Fortes
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
Avenida Trabalhador São-carlense, 400 – Centro CEP, São Carlos, SP 13566-590, Brazil
e-mail: robsonvinicius@gmail.com

R. R. de Oliveira
e-mail: ricardoramos@icmc.usp.br

R. P. de M. Fortes
e-mail: renata@icmc.usp.br

C. Pautasso et al. (eds.), REST: Advanced Research Topics and Practical Applications, 125
DOI 10.1007/978-1-4614-9299-3_8, © Springer Science+Business Media New York 2014

126 R. V. V. Sanchez et al.

• Possibility of multiple representations of a resource: it allows the use of light
formats to improve the performance;

• Stateless communication: it leads to independent requests, allowing bookmark
of URIs and improvements of scalability;

• Hypermedia as the engine of application state (HATEOAS): it allows to
connect the resources by using hyperlinks;

• Uniform Interface: it uses the methods of HTTP protocol to perform the
operations on the resources in a uniform way.

While efforts are being devoted to simplify integration of information systems us-
ing Web technologies, new approaches to modeling Web applications have been
proposed to systematize the development of these applications, as well as to make
the development platform-independent [203]. In order to make it possible, the new
approaches use, in general, the model-driven development (MDD) paradigm.

8.2 Model Driven Development

Model Driven Development (MDD) is a method that focuses on the construction
of models and on the definition of transformations which automatically generate
source code (or other models) from artifacts [229], allowing engineers and developers
to work on a higher level of abstraction during the software development. Using
a model-driven approach it is possible to simplify and to systematize the various
activities that constitute the software development lifecycle [105].

The MDD approach assumes that models are essential artifacts in the software
development process and it is based on the models that applications will be built,
while in a conventional software development, modeling is used mainly to facilitate
analysis of the problem, thus the models are used as a support to developers in
the later stages of a project. Thereby, in a conventional software development, the
developers implement the code manually, which often makes the models previously
created inconsistent with the actual software developed. On the other hand, by using
MDD, because the models are responsible for the code generation, they are always
updated facilitating the maintenance and documentation of software.

The construction of models as an abstraction of the software being implemented
allows the developers to focus on their efforts on modeling the problem domain
and not on a programming level solution [203], hiding the possible implementation
details, which increases the portability and reuse properties of the software.

The advantages of MDD are achieved due to the possibility of automatically
generating source code, by transforming the models and artifacts in general, and
preventing the developers of performing repetitive tasks for writing source codes.
Among the advantages pointed out by [122, 146], we mention:

• Productivity: increased productivity in the process of software development.
Mainly due to reduction of repetitive tasks by the developers and also to the
possibility of reuse;

8 RestML: Modeling RESTful Web Services 127

• Correctness: transformations used by MDD for generation of source code prevent
to perform repetitive and manual tasks by the developers, avoiding accidental
errors such as typo errors, thus ensuring a source code more accurate and error-free
documents;

• Portability: different transformations are applied to a model capable of generating
code for different platforms, thus favoring portability;

• Maintainability: in conventional development process, the maintenance or evo-
lution of software is performed directly in the source code, which can spend a
great effort that is almost comparable to the effort spent during development. On
the other hand, in MDD the maintenance is performed on the models and code is
then re-generated from them;

• Documentation: in MDD the models are the main artifacts of the software devel-
opment process and for that reason the artifacts do not become out of date since
the code is generated from them (the models). Thus, the system documentation
is always kept updated;

• Communication: the models are easier to understand than the source code, which
makes communication easier between the developers and the other team members;

• Reuse: in MDD, reuse of models means that the code can be re-generated auto-
matically for a different context, without the developers having to perform manual
tasks, which does not occur in conventional development.

A domain specific language (DSL) is a machine processable language whose terms
are derived from a model of an specific domain, i.e. they are used for special field
and capture precisely the semantics of this field [230]. In a very simple definition,
DSL can be considered a small, usually declarative language, focused on a particular
problem domain [235]. Therefore, these languages are created specifically to solve
problems in this area.

At the level of the modeling languages, UML (Unified Modeling Language) is one
of the most popular languages, widely used for modeling systems based on the object-
oriented paradigm. UML is a modeling language considered of general purpose,
but can be specialized by extension mechanisms, known as Profiles, making it a
domain-specific language. As an example, we have the UML Profile For Enterprise
Application Integration [175], specialized for applications integration, or even the
UML Profile for Modeling and Analysis of Real-Time and Embedded Systems [177]
that is specific to the development of embedded and real-time systems.

This chapter aims to present a DSL capable of modeling RESTful Web Services
and generate source code by means of transformations according to the principles of
the model-driven development.

8.3 Related Work

Web Engineering focuses on the methodologies, techniques and tools that are the
basis for the development of web applications, and therefore it is considered a domain
in which the MDD approach can be useful, especially in the treatment of problems
related to evolution and adaptation of web systems [126].

128 R. V. V. Sanchez et al.

Among the existing approaches (e.g., [205, 222]), three of them will be analyzed:
UWE [127], WebML [48] and OOWS [234].

UML-based Web Engineering (UWE) is an approach proposed to help the model-
ing of web applications. Its main goal is to reinforce the separation of concerns. There
are different models for presentation, contents, structure hypertext and processes
[133]. The approach has a metamodel based on UML. Thus, a major advantage of the
UWE metamodel is related to the fact that it remains compatible to the MOF (Meta-
Object Facility) meta-metamodel, used for the definition of UML, which was defined
by the OMG and therefore follows the approach of Model Driven Architecture (MDA
[126].

Besides the previously mentioned advantage of UWE approach, another im-
portant aspect is the possible integration with modeling tools that work with UML
Profiles, becoming more familiar to the developers that are familiar to model using
UML. However, despite these advantages the UWE metamodel has been developed
for modeling Web applications and has no specific elements for modeling Restful
Web Services.

Web Modeling Language (WebML) was defined in 1998 as a conceptual model
for specification of web applications with large capacity data [47], i.e. its primary
goal was to generate or manipulate contents stored in one or more data sources [152].
While other conceptual models focus more on the early stages of the development
process, e.g. requirements gathering, WebML focuses in the later stages, such as the
project and the implementation’s phases.

The WebML is extensible and allows the definition of custom modules, which can
be used to include new operations in the web application, for instance RESTful Web
services. However, RESTful services provided by WebML do not conform to the
strict REST architecture specification, producing a hybrid REST-RPC architecture
(RPC — Remote Procedure Call). Additionally the WebML is not defined in an
specific meta-model, which makes impossible the use of custom transformation
languages, such as the ones that are used in MDA.

[234] proposes a Model-Driven approach to integrate REST APIs in Web ap-
plications using Web engineering methods. The authors defined a meta-model that
describes RESTful Web services, however the approach has the goal of integrating
Web applications with REST APIs, and not elaboration of RESTful Web services.

In this context, we present the domain-specific language RESTML, which has the
objective of modeling RESTful Web services according to the REST architecture
strict specification. RESTML is defined in an UML based meta-model which can
produce domain models that can be transformed into other models and source code,
using the MDA approach proposed by OMG.

8.4 RestML

In the context of MDD, this chapter aims at describing the definition of a DSL able
to represent the static and behavioral characteristics of RESTful web services in
order to create models that could help the developers to specify the corresponding
representative web services. The DSL must therefore be complete enough so that

8 RestML: Modeling RESTful Web Services 129

the generated models based on the DSL may be used as input for the automated
transformations that generate the source code.

The DSL named RestML is defined as a UML Profile since its main moti-
vation is to use the Model Driven Architecture approach [174] for model-driven
development, which would permit to build models as an extension of UML 2
and would transform them using languages for model transformation as QVT
(Query/View/Transformation).

8.4.1 UML Profile

UML provides a set of extension mechanisms (stereotype, tagged values and con-
straints) in order to specify its elements, which allows the elaboration of custom UML
extensions for specific domains (PIMs) or platforms (PSMs) [88]. These extensions
are grouped in an UML Profile which allows the customization of any meta-model
defined in MOF.

The extension mechanisms of the UML Profile are available by means of an
UML package, which contains the stereotype �profile
. Two UML Profiles were
defined in RESTML: one for defining Platform Independent Models for representing
RESTful Web Services and another one for defining Java Enterprise Edition (JavaEE)
models (PSM) [178].

8.4.2 Modeling RESTful Web Services

The RESTML language was implemented as an UML Profile for modeling RESTful
Web Services, in order to include information in UML models according to the
proposal established in the REST architecture style. Stereotypes and tagged values
were elaborated to map the architecture constraints defined in REST and allow that
the models, which are created using this Profile, be automatically transformed into
other models.

Thus, RESTML has the goal of providing developers with a modeling tool for
RESTful Web Services, which conform to the strict definition of REST architectures
and is free of platform specific details. These models can be then specialized for
different platforms.

Figure 8.1 illustrates how the diagrams can be built to express the characteris-
tics and relationships among different components in a RESTful Web Service. The
defined components are:

• Resource: receives external requisitions by means a uniform interface;
• Service: component which is responsible for the business logic in the application;
• Representation: data format for one specific resource;
• Exception: identifies problems that might have occurred during the execution of

a service;
• Data access: components that are capable of accessing data that is external to the

application.

130 R. V. V. Sanchez et al.

Fig. 8.1 RestML Profile for modeling RESTful Web Services

Each of these components has a distinct objective in the REST architecture pro-
posed in the RESTML language and need to be correctly represented so that the
transformations can be performed in all components. The different types of repre-
sentation are modeled using the stereotypes defined in the UML Profile for each of
the components of an application.

The stereotypes introduce a new model element as an extension/classification of
a previously defined element [7]. In this context, the stereotypes should be applied
in class and sequence diagrams. As the stereotypes are applied to a model element,
its property values are attached to the element and can be retrieved as tagged values,
which are stored in the element in a key-value pair.

In the RESTML UML Profile ten stereotypes were defined:

1. Application: identifies a resource that represents the application. This stereotype
should be applied only in the classes definition;

2. Resource: identifies a resource of the system. This stereotype can be applied in
the classes definition;

3. Create: identifies the creation of a new resource. This stereotype should be
applied only for methods;

4. Retrieve: identifies a search resource. This stereotype should be applied only for
methods;

5. Update: identifies a resource update. This stereotype should be applied only for
methods;

8 RestML: Modeling RESTful Web Services 131

6. Delete: identifies the exclusion of an existent resource. This stereotype should
be applied only for methods;

7. Service: identifies a component that represent the business logic, therefore it
should describe a transactional behavior;

8. Representation: identifies a data format that represents a resource of the
application;

9. Exception: identifies a component that is responsible of informing an error
condition on the system;

10. DataAccess: identifies a component that is responsible of accessing external
data on the application, for instance, database, files, RMI, Web Services, among
others.

This UML Profile definition provides developers with a platform independent mod-
eling tool for RESTful Web Services. Next section describes a platform specific
UML Profile definition for JavaEE.

8.4.3 RESTful Web Services in JavaEE Platform

The RestML Profile for Modeling RESTful Web Services aims to model the common
characteristics of RESTful web services independently of platform, however it is
important that the models created with this profile are transformed into specific
models of a platform so that the models can be used to automatically generate source
code.

To fulfill this approach, this project proposes another UML Profile called RestML
JavaEE Profile for Modeling RESTful Web Services, which aims at providing Java En-
terprise Edition specific platform models (PSM) that can be generated from RestML
Profile for Modeling RESTful Web Services models (PIM).

In Fig. 8.2 we illustrate the definition of RestML JavaEE Profile for Modeling
RESTful Web Services.

Figure 8.2 illustrates that there is a great number of stereotypes and tagged values
that are required to specify details of the platform in which the application will be
implemented.

The transformation between the two profiles described in this chapter will be
discussed in more detail in Sect. 8.4.8.

8.4.4 MDA Approach

Using the MDA approach, three types of models can be constructed:

• CIM (Computer Independent Model): also called domain model, it does not show
details of the structures of the system, only a vocabulary familiar to professionals
in the field, which is used to perform the specifications. Thus, the professionals do
not know the models and artifacts used to create the functionality of the system,

132 R. V. V. Sanchez et al.

Fig. 8.2 RestML JavaEE profile for modeling RESTful Web Services

knowing only their requirements expressed by the CIM. Hence, this model is
important to realize the connection between the experts’work in the field (domain
experts) with the experts in design, responsible for the construction of artifacts.

• PIM (Platform Independent Model): consists of a vision of the system that is
platform independent, focused on the functionality of the system, hiding the
details of each specific platform.

• PSM (Platform Specific Model): a PSM combines the specifications of the PIM
with the details of an specific platform.

Hereafter, the requirements of a scheduling system for boards at an university do-
main will be modeled as services of a web application as a proof of concept, using
RestML. The transformations that are applied to the models in order to generate Java
Programming language source code automatically are also defined.

8.4.5 Case Study: AgendaWS

An important activity in the final year of undergraduate courses consists of the pre-
sentation of works that students individually develop as a concluding research. And
at the end of the period, they usually have to present the results of this research to
a board constituted by lecturers. The need for communication among the students

8 RestML: Modeling RESTful Web Services 133

and the lecturers in order to collect information to schedule convenient and available
dates for presenting their works was the main motivation for the development of a
group calendar system (GCS).

GCS are calendars that can be shared in the web and aim to support the need of
schedule information integration for personal use or for use by a particular group.
In the context of the undergraduate boards for presentation of their final researches,
it was proposed an evolution of a already existing GCS, with the inclusion of new
features and allowing the data to be accessed by different applications present in the
university environment.

To address these requirements, a web application containing “AgendaWS” REST-
ful web services was proposed to be developed. The web services needed to be
capable of providing a simple and uniform interface allowing integration with other
applications. The “AgendaWS” RESTful web services were then developed using
the paradigm of Model-Driven Development through the MDA approach with the
use of language RestML. To support the development of the models, the RestMDD
tool was used, which besides enabling the design of models according to the RestML
language, it also performs the necessary transformations between them.

Figure 8.3 shows the life cycle of the MDA. Initially in “analysis” phase, the
domain specialist receives the requirements for developing the application and gen-
erates a CIM from the requirements. After this step, in “design” phase, the specialist
in design turns the CIM to PIM models needed to represent the functionality of the
system as proposed earlier. Then, PIM can be transformed into one or more PSMs that
possess the information specific to each platform. Next, “coding” phase, the PSMs
are submitted to a transformation to generate the source code of the application.

In the next sections each of the models developed for designing the applica-
tion AgendaWS will be described, and how these models represent the relevant
characteristics of RESTful web services.

8.4.6 The Domain Models (CIM)

The first step in developing an application using the MDA approach is to elaborate the
domain models whose main objective is to represent the application requirements
through a common vocabulary to specialists in domain and to experts in design.
In that way, modeling the behavior of the system is possible without the need to
know the artifacts required to implement the functionality. In RestML, three types
of domain models were defined:

1. Use Cases
2. Use Cases Diagrams
3. Activities Diagrams

The models are usually defined by experts in the field based on a requirements
document of the system and serve as input for the construction of the platform
independent models.

134 R. V. V. Sanchez et al.

Fig. 8.3 The MDA Life Cycle [228]

8.4.6.1 Use Cases

An Use Case is a rather description of possible sequences of interactions between
the system under discussion and its external actors, related to a particular goal [53].
In a simple definition, a use case describes how an user interacts with the system and
how the system answers to him [198].

8 RestML: Modeling RESTful Web Services 135

By means of modeling using use cases, we identified the events that must be
realized so that a requirement is addressed and the interactions that the actors need
to perform in the system. Thus, use cases can be considered the foundation of the
dynamic behavior of the system.

In RestML the development of RESTful web services depend on the modeling of
a use case for each task that can be performed by users. Adopting the MDA approach,
the use cases are first-class artifacts and through them, the other models can be built.

In this context, the contents of a use case model should contain the following
components:

• Name: name of the use case, utilized to identify it.
• Description: a brief summary of the purpose of the use case. In the description

references to the requirement to which the use case serve can be found.
• Actors: relation of actors that can perform this use case.
• Type: identifies the type of use case. The allowed values are: Create, Retrieve,

Update and Delete. This type will be important to identify which method of the
uniform interface of RESTful services should be used.

• Resource: resource name that will be the gateway to the execution of the use
case.

• Pre-condition: initial state of the system that is required so that the use case can
be executed.

• Main Flow: contains the tasks that the actor must perform as well as the answers
produced by the system.

• Alternative Flow: takes into account the exceptions of the main ow.
• Post-condition: expected result after the execution of the use case.

In Fig. 8.4 there is an example of an use case of the system AgendaWS that includes
the registration of a university.

The REST architectural style enables all communication between client and server
to be performed using a uniform interface. Therefore, the use case models should be
inform the use case type and its resource, so that it becomes possible to relate the
use case with the uniform interface of the resource.

Once the use cases have been modeled, we create a use case diagram, obtaining
a simple, visual representation of existing use cases and also their relationships with
actors.

8.4.6.2 Use Case Diagrams

An use case diagram is able to show the relationships among actors and use cases
within a system [10]. In general is used for:

• Providing an overview of the requirements of a system;
• Communicating the scope of a project;
• Modeling the analysis on the requirements in the form of a systemic use case

model.

136 R. V. V. Sanchez et al.

Fig. 8.4 Use case: Enrollment of a university

In the scope of the RestML language, the use case diagram will be constructed from
the use case definitions and their respective actors, so by automated tool “RestMDD”.

It is possible to create different use case diagrams representing independent parts
of the system. Then an example of a use case diagram of the generic operations
related to maintenance of AgendaWS implementation is shown in Fig. 8.5.

The use case diagram is not used directly to the creation of other artifacts and
models of an application, but it has a fundamental role in the documentation of the

8 RestML: Modeling RESTful Web Services 137

Fig. 8.5 Use Case Diagram

system and also for the communication between team members. We argue that the
abstraction of models must always be liable to reading and understanding by the
application’s developers.

8.4.6.3 Activity Diagram

Activity diagrams are usually applied for modeling business processes, for capturing
the logical description of a single use case or to model in details the logic of a business
rule [11].

The activity diagrams can be classified as domain models since they do not offer
any information about how the activity will be implemented, hiding the technical
details that are irrelevant to the solution design. The activity diagrams only identify

Fig. 8.6 Activity Diagram

138 R. V. V. Sanchez et al.

which activities should be performed by the use case to happen, without informing
the inner workings of each of these activities.

In the scenario described in this chapter, an activity diagram will be constructed
for each use case previously registered. The activity diagrams should be generated
automatically by transformations applied to use case models, in such a way that each
basic event flow and also the alternative flows are transformed into activities at the
diagram.

A representation of the structure of the diagrams is defined in XMI format (XML
Metadata Interchange) [176], a format for representing models in XML can do the
exchange of UML and other models based on MOF. Thus, XMI defines a mapping
of UML / MOF to XML, which is capable of integrating tools, applications and
repositories.

In Fig. 8.6, an activity diagram generated by the tool RestMDD from the use case
model defined in Fig. 8.4 is illustrated.

Therefore, we can model the dynamic behavior of an application in its different
usage scenarios and by means of the behavior, designers can model the platform
independent models, which will document the internal behavior of each software
component. At the moment the development of the software moves from Analyze
phase to Design phase.

8.4.7 Platform Independent Models (PIM)

In short, a PIM is a formal view of the functionality and structure of a software
system without reference to any particular computing platform [157]. These types of
models are created from transformations applied to domain model and they model
how the implementation of system functionality will be, but without containing
specific aspects of a platform or programming language. Accordingly, we can obtain
different models of the software solution design portable to different environments.

In the context of language RestML two types of platform independent models
were defined:

1. Class Diagrams
2. Sequence Diagrams

Each one of these models have different goals in modeling, the class diagrams being
responsible for the definition of the application given its static structures such as
resources, entities, representations, among others. And the sequence diagrams define
the dynamic behavior of the system showing the message exchange between the
various components of the architecture.

8 RestML: Modeling RESTful Web Services 139

8.4.7.1 Class Diagram

Class diagrams are used for a variety of purposes, from conceptual modeling until de-
tailed design modeling. The diagrams show the system’s classes, their inter-relations
(including aggregation, inheritance and association) and the operations and attributes
for each class [9].

In the registration of the use cases the analyst tells the resource to which the use
case is associated, as well as its type. Based on this information, it is possible to gen-
erate a class diagram defining the classes for resources and their methods. It should
is applied the stereotype �Resource
 for these classes of resources and one of the
following stereotypes: �Create
, �Retrieve
, �Update
 or �Delete
 are
applied to the methods. For each resource defined in the use cases, a resource class
must be created. Furthermore, every use case has a type that will served to include
a method in the resource class.For the use cases of type Registration, a method with
�Create
 stereotype must be created; for the use cases of type Change a method
must have the stereotype �Update
; for the use cases of type Exclusion the stereo-
type �Delete
 should be used and finally the use cases of type Query the stereotype
�Retrieve
 should be used.

The resource class will become responsible for receiving the request from cus-
tomers, validate the input parameters, invoke a method of the class of service that
will take care of all the business logic and finally build the response to be sent to
the user. Therefore, for any resource class, a class of service must also be created.
This service class will be responsible for the business logic of the process and must
contain the stereotype �Service
. The name must match the methods in the two
classes.

Each resource requires that a class is created and this class will define the repre-
sentation containing all the attributes representing that resource. The representation
class must have the stereotype �Representation
. In order to access the external
data the application needs to define a class of data access with the stereotype �Data
Access
.

Finally, in the use cases execution faults can occur and should be reported with
different codes and error messages. Therefore, classes that represent these failures
need to be created (�Exception
).

In Fig. 8.7 the class diagram created from the use cases defined in Fig. 8.4 is
shown.

8.4.7.2 Sequence Diagram

The sequence diagrams model the logic flow within the system in a visual manner,
allowing the documentation and validation of its logic. The sequence diagrams are
very popular artifacts for modeling dynamic with the focus on identifying the system
behavior [11].

In synthesis, sequence diagram is one of the UML tools used to represent inter-
actions between objects of a scenario, performed by the methods, emphasizing the
sorting time at which messages are exchanged between objects.

140 R. V. V. Sanchez et al.

Fig. 8.7 Class diagram

The definition of a sequence diagram using the language RestML will be held in a
semi-automated manner with information coming from the activity diagram created
in the Analysis phase.

For each activity of the activity diagram, it is necessary the definition of what
components will perform this activity and which messages will be exchanged be-
tween them. The developer, using only the classes identified as Resource, Service,
Data Access and Exception, must set this message exchange. This modeling has
some restrictions:

• It is allowed only one component of each type;
• The actor must start the flow of messages within the diagram and should only

communicate with the resource;
• The resource can only send messages to your service, to the actor or himself (self

message);
• The service communicates only with the resource and data access class;
• The data access class communicates only with the service.

After completing the modeling, the environment RestMDD will generate a sequence
diagram as shown in Fig. 8.8.

8 RestML: Modeling RESTful Web Services 141

Fig. 8.8 Sequence diagram

8.4.8 Platform Specific Model (PSM)

The next step in the process of software development using the RestML language is
to transform the platform-independent model (PIM) into a platform specific model
(PSM). A PSM combines the specifications obtained in PIM with the details that are
specific to a platform, i.e., the model represents a view of the system placed in the
context of a specific platform.

Thus, the language RestML proposed only one transformation to the Java Enter-
prise Edition platform which includes several API’s for Web development together
with the Spring Framework, which provides a container capable of performing in-
version of control (IoC) and dependency injection, and JAX-RS that provides API’s
for development RESTful Web Services.

This transformation basically consists in applying RestML JavaEE Profile for
Modeling RESTful Web services in existing classes. However, it is necessary that
some activities are conducted:

142 R. V. V. Sanchez et al.

• Classes that contain stereotypes �Application
 and �Resource
 should re-
ceive the stereotype �WebResource
, identifying these classes as application
resources;

• Classes that contain the stereotype �Representation
 will have two stereotypes
�Representation
 and �Entity
. The first identifies that this class is a repre-
sentation of the resource and the second stereotype indicates that this class is an
entity of the entity-relationship model of the database accessed by the application;

• Classes that contain stereotype �Service
 need to receive the stereotype �Tran-
sactionalService
, identifying a transactional business component;

• The exceptions with the stereotype �Exception
 will be �WebException
.
The tagged value httpErrorCode should contain the HTTP error code according to
its type. Exceptions like “notFound” must have the code 404, type “badRequest”
must have the code 400; already type “conflict” must have the code 409 and lastly
exceptions of type “internalError” with code 500;

• The data access class with the stereotype �DataAccess
 needs to receive the
stereotype �Repository
. The tagged value dataSource must contain the name
of the data source configured on the server;

• The methods with stereotypes �Create
, �Retrieve
, �Update
 and
�De-lete
 will become �POST
, �GET
, �PUT
 and �DELETE
,
respectively.

In the diagram there are no significant changes in the exchange of messages between
application components. Classes transformed from PIM to PSM continue exchanging
messages in the same temporal order defined in PIM.

8.4.9 Source-Code

After all domain specific models are built, the next phase of software development
is coding, which is performed by transforming these models into source code. The
transformation is performed with the support of open-source framework AndroMDA.

In short, AndroMDA can get different models (UML models usually produced by
CASE tools and stored in XMI format) combined with various plugins (cartridge and
translation-libraries) and produces different types of components [15]. Is possible to
create components in several programming languages and platforms just writing or
customizing plugins that support the transformation of XMI models into source code.

Plugins in the AndroMDA framework were built, for the RestML language, which
made possible to transform the diagrams, created during design phase, into source
code in Java language for the platform using JavaEE frameworks Spring and JAX-RS.

8 RestML: Modeling RESTful Web Services 143

8.4.10 Packaging and Deployment

Once all the source code was generated in Java programming language it is important
to package these artifacts so that they can be run on a Web server as a library or even
within an already existing web application. Thus, there are two possibilities:

1. A WAR file: creation of a Web Archive (WAR) that can be implemented directly
within a Servlet container;

2. A JAR file: creation of a Java Archive (JAR) that should be used in other
applications as a library Web

The packaging is accomplished by the tool RestMDD, according to the preference
of the developer.

8.5 Final Remarks

In this chapter an approach to Model Driven Development for the construction
of RESTful web services through a domain-specific language called RestML was
described. The RESTful Web services were defined through a UML profile and
designed following the principles of MDA architecture.

It was also documented all models created in each phase of the development of
a RESTful web service and all the features that these models must possess. Further-
more, it was shown the relationship between domain models, platform independent
models, platform specific models and source code.

Finally, it was shown both forms of packaging and deployment of the generated
source code.

Acknowledgments Acknowledgments to USP and Fapesp.

Part II
Practical Applications

Chapter 9
A Lightweight Coordination Approach for
Resource-Centric Collaborations

Morteza Ghandehari and Eleni Stroulia

9.1 Introduction

Today we are witnessing an abundance of technologies, conceived to support the
development of web-based applications in general, and web-based service-oriented
systems in particular. In the service-oriented paradigm, processes are typically sup-
ported through service orchestration; the various steps of the process are delegated
to services, and service orchestration is employed for coordinating the operations.
Traditionally, the steps are implemented by WSDL/SOAP web-services operations,
and the process model is specified using WS-BPEL as the de-facto standard language
for web-service orchestration; furthermore, the process itself can be published as a
new service, implemented on a WS-BPEL engine.

More recently, the REST (Representational State Transfer) [76] architectural style
has emerged as an alternative approach for development of web-based systems and
there are three reasons for this phenomenon.

1. First, the REST approach is conceptually and syntactically simple; it relies on
the HTTP protocol, with XML (or JSON) as the exchange format for the payload
data, and a simple syntactic style for formulating HTTP requests as traversals of
the XML schemas of the underlying resources.

2. This simplicity makes the related learning curve smoother, since developers can
easily migrate from standard web-based development to exposing their systems
as resources accessed through REST APIs.

3. The increased availability of interesting information and simple development tools
(some based on the demonstrational-programming paradigm) through REST
APIs has spurred the interest of web users to develop information mash-ups.

∗ The bibliography that accompanies this chapter appears at the end of this volume and is also
available as a free download as Back Matter on SpringerLink, with online reference linking.

M. Ghandehari (�) · E. Stroulia
Department of Computing Science, University of Alberta,
2-21 Athabasca Hall Edmonton, Alberta T6G 2E8, Canada
e-mail: morteza.ghandehari@ualberta.ca

E. Stroulia
e-mail: stroulia@ualberta.ca

C. Pautasso et al. (eds.), REST: Advanced Research Topics and Practical Applications, 147
DOI 10.1007/978-1-4614-9299-3_9, © Springer Science+Business Media New York 2014

148 M. Ghandehari and E. Stroulia

Given the conceptual simplicity of the REST style, many service providers are
now publishing their services as REST services, instead of (or in addition to)
WSDL/SOAP web-services. At the same time, governments, following the “open
data” movement, are making rich information repositories publicly available. As
a result, the number of information resources accessible through REST APIs is
increasing and so is the number of web-based interactive tools for using and manip-
ulating these resources. The question then becomes how to coordinate the activities
supported by these various tools.

In this work, we focus on resource-centric collaborations. The term resource-
centric collaboration refers to a type of human-intensive workflows1 in which a
group of people work together on shared information resources. The information is
available to the collaborators in a resource-centric environment and can have various
types such as XML data, text files, or bibliographic references. The objective of the
collaborative activity is to develop and manage the various resources by taking turns
editing them, annotating them with metadata, and evaluating their degree of progress
and completion. Examples of this type of collaborative work include coauthoring a
scholarly publication, producing a project report, and coding/annotating an original
text with metadata.

Let us consider a simple project-report coauthoring collaboration where a group
of students work together to produce a report on their team project. A team mem-
ber may develop the first version of the report and provide it as a resource on the
Web. Then other team members may take turns editing the report, with the turn-
taking order being ad-hoc, or possibly depending on the members’ roles in the team.
Each team member, when she is done with her turn, indicates the availability of
the resources (the report and its sections) to the team, possibly through an explicit
notification mechanism. At some point, a team member, who has been designated to
regularly inspect and assess the quality of the report, may decide that the report is no
longer a “draft” but has been “completed” and submit the report to their supervisor
for approval. The supervisor receives the report and evaluates it. If the supervisor
approves it, the resource is “published”; otherwise, the report is sent back to the
team, possibly with specific comments to be addressed, for further editing.

Resource-centric collaborations, of which the above project-report coauthoring
story is an instance, share several common properties.

• They involve many “people” activities: While various editors and tools are
involved in the overall activity, the collaborative activity is initiated and driven
mostly by the people participating. In the example discussed above, it is the
responsibility of each team member (a) to receive the URL of the resource and
start editing, when they are notified by the system, and (b) to decide when to release
the resource to the rest of the team. Contrast this with automated workflows where
the various steps are performed by automatically invoked software services that
explicitly signal their completion with their return parameters.

1 In this paper, we use the terms “workflow” and “process” interchangeably.

9 A Lightweight Coordination Approach for Resource-Centric Collaborations 149

• Their steps are loosely ordered: Resource-centric collaborations are semi-
structured. In other words, the control over the various tasks is non-deterministic,
and in many cases, a particular task can be performed any time. In our example,
although the report may consist of specific sections, the order in which these
sections are edited is unlikely to be predetermined; any section can be edited any
time and it is only important that all the sections are written before the report
can be considered “completed”. In contrast, in automated workflows, although
there may be alternative control-flow paths, each one is annotated by an explicit
condition on when it is taken.

• They have simple structure: The process models of resource-centric collab-
orations usually do not have complex control elements, computation, or data
transformations. They usually involve the evaluation of conditions (e.g. to assess
whether a particular person may access the resource), simple service calls (e.g. to
receive notifications of activities that have occurred through the users’ interactive
tools, and to generate notifications for other users about the state of the process),
and value assignment (e.g. to manage the transition of the resource through its
lifecycle phases). In contrast, web-service orchestrations must support the map-
ping of complex parameters through services, the maintenance of global variables,
and the evaluation of complex control structures. Therefore, languages such as
BPEL [227] are too complex and a simpler language would be more appropriate
for specifying them.

• They have undemanding performance requirements: Finally, resource-centric
collaborations do not usually have complex or strict performance requirements.
For example, automated workflows may indicate upper limits in the response
time of a service (and upon its expiry the middleware may invoke a fall-back
alternative). In contrast, resource-centric collaborations may need to conform to
deadlines for the overall completion of the coordinated task, but it is unlikely that
any of the individual activities involved is time-critical.

Current solutions in support of resource-centric collaboration (Fig. 9.1) include tools
such as collaborative editors, document repositories and software version-control
systems. These tools usually provide some basic coordination support, like control-
ling access to documents and receiving and sending notifications based on CRUD
(Create-Read-Update-Delete) operations. They are relatively inexpensive and light-
weight. However, they are not powerful enough to support customized coordination
requirements, such as monitoring deadlines, coordination of individual collabora-
tors, ordering of steps, and they do not allow for integration with other tools. On
the other extreme in the coordination spectrum, classic business process manage-
ment systems, e.g. BPEL systems, are powerful and capable of supporting various
forms of coordination. However, they are costly and complex to operate and main-
tain. In fact, these systems are too heavy-weight when considering the requirements
of resource-centric collaborations as described above. A third family of solutions
involves the development of special-purpose workflow-management systems from
scratch, based on the particular collaboration task at hand. While a custom-made
system can be tailored according to the requirements of the project, developing a

150 M. Ghandehari and E. Stroulia

Fig. 9.1 Comparison of different solutions for supporting resource-centric collaborations

comprehensive workflow management system is far from trivial and substantially
increases the effort required for supporting collaboration.

The problem of developing a systematic conceptual and software framework for
supporting resource-centric collaboration is compelling, given the abundance of these
activities. More specifically, our problem is to develop a “collaboration as a service”
framework, through which to add sufficient coordination to a multi-user, multi-tool
resource-processing environment on the web. In this paper, we describe exactly
such a collaborating system that we have developed for supporting resource-centric
collaborations, which properly balances flexibility and coordination needs.

The rest of the paper is organized as follows. Section 2 explores the related work.
In Sect. 3, we briefly describe the language we designed for specifying collabora-
tion activities. The architecture of our collaboration system is explained in Sect. 4.
The methodology for integrating our collaboration-as-a-service system with other
existing systems is outlined in Sect. 5. In Sect. 6, a sample project in which the
collaboration system has been employed is provided. In Sect. 7, we present some
possible future work and conclude with a summary and discussion.

9.2 Related Work

This work relates to several areas of software engineering including business pro-
cess management, computer-supported cooperative work, and service-orientated
software-engineering. This is why, this section is necessarily eclectic, and reviews

9 A Lightweight Coordination Approach for Resource-Centric Collaborations 151

previous research that shares some basic characteristics with our conceptualization of
resource-centric collaboration support. One of the key properties of resource-centric
collaborations is the flexibility required in modeling and modifying the rules of the
collaborative activity. Workflow flexibility is one of the major research topics in
workflow management and has been studied for more than a decade [109]. There is
substantial research on various aspects of workflow flexibility such as ad-hoc mod-
ification, flexible modeling, semi-structured workflows, and workflow adaptation.
Burkhart and Loos [41], Schonenberg et al. [204], and Carlsen et al. [44] have
surveyed different approaches for enhancing workflow flexibility and evaluated the
support of workflow flexibility in a selection of workflow management systems.
These approaches address the flexibility requirements of many types of workflows,
but they do not provide a specific and comprehensive solution for resource-centric
collaboration, as they do not intend to. However, many parts of this work were
motivated by earlier research on workflow flexibility.

The artifact-centric approach [111] to business-process modeling shares some
properties with our envisioned resource-centric collaborations. This approach fo-
cuses on the business data, named artifacts, manipulated and augmented during the
life-cycle of workflows. There are various studies on artifact-centric workflows, e.g.
[28, 87 166], but all of them share the idea of managing artifacts (which capture
business goals) and developing services (which manipulate artifacts according to
business rules). The two approaches share similar motivations and “artifacts” are
akin to “resources”. In fact, in our work, we use the term “resources” in a manner
similar to “artifacts”: in the REST sense of the term, “resources” are conceived as
web-accessible repositories of “artifacts”, whose XML representations are accessed
through CRUD operations enable their clients to transition their internal behavior
states. However, the artifact-centric approaches are deeply concerned with the in-
ternal structure of the artifacts, while our approach is agnostic of this structure and
simply relies on the fact that resource representations are accessible through REST-
style APIs. Furthermore, as artifact-centric approaches require a complete model
of the structure of the involved artifacts, which may not be available, they do not
provide the flexibility required by resource-centric collaborations.

Another related area of research is that of web-service orchestration, which fo-
cuses on the process of creating composite services by combining and coordinating
a set of simpler web-services [188]. In the context of the traditional (SOAP-based)
service-oriented paradigm, complex coordinated processes are typically supported
by service orchestration. Process steps are performed through the invocation of web-
service operations and the process logic is enacted by an orchestration system. The
Business Process Execution Language, also known as BPEL, is the most popular
web-service orchestration language [43]. There are plenty of engines, which support
and execute orchestration specifications written in BPEL. Although BPEL is power-
ful, it does not properly support workflows that require intensive human interactions.
BPEL4People [4] introduces an extension for BPEL to address human interactions
as a first-class citizen. In fact, BPEL4People enables BPEL to integrate role-based
human activities in orchestrations. While BPEL4People extends BPEL to support
human participation, the combination of BPEL and BPEL4People is too complex

152 M. Ghandehari and E. Stroulia

and rigid for supporting lightweight and flexible workflows such as resource-centric
collaborations [58]. As a result, much research has been devoted to address this
limitation. Some approaches adopt a RESTful approach [76] as the replacement for
complex interaction protocols used in BPEL. Pautasso [180] proposed an extension
for BPEL, named “BPEL for REST”, which aims at enabling BPEL to support the
native composition of REST services in addition to WSDL-based web-services. The
same author also introduced a REST service composition system named JOpera
[181]. Casati et al. [45] and Thone et al. [231] also developed models and sys-
tems for flexible service composition as alternatives to BPEL. Vrieze et al. [244]
proposes a mash-up approach for supporting enterprise business processes. All the
above-mentioned projects somewhat address the agility and flexibility requirements
of the types of resource-centric collaborations we are interested in. However, they
are not in accordance with human-driven nature of the collaborations. In addition,
their language models do not provide first-level support for loose, non-deterministic
ordering of steps.

Finally, we have to mention one more line of research related to collabo-
rative workflows and resource-centric collaborations. Schuster et al. [206, 252]
proposed a service-oriented approach and a system for supporting a type of collab-
orations, named “creative document collaboration”, which shares many properties
with resource-centric collaboration. Their approach mainly focuses on documents
with compound internal structures, while our approach is conceived more generally to
support any kind of resources. In addition, we believe that our coordination approach
is more powerful than the rule-based model introduced in their work. Bite [58, 199]
is a workflow-based composition model for web applications. It enables the creation
of web-scale workflows through its lightweight and extensible composition language
and engine. Bite can be considered as a genuine system for supporting collaborative
processes as it addresses some of the main requirements of these processes such
as web-human integration, lightweight process model, and flexible configuration.
In fact, one of the Bite goals is to provide the support for collaborative workflows.
However, Bite employs a sequential activity-based process model, which is not ap-
propriate for modeling semi-structured workflows with loosely ordered steps, which
is essential in the class of processes our work aims to support.

9.3 The Collaboration-Specification Language

The first step in supporting collaborations is modeling them. A collaboration model,
a.k.a. collaboration specification, must define the elementary tasks that the collab-
orators may perform and the control structures through which these tasks will be
coordinated. We studied various approaches and languages for modeling workflows.
As we discussed in the previous section, there are numerous expressive coordination
languages, which are not very appropriate for modeling resource-centric collabora-
tions, as they are designed for structured workflows and support complex expressions
for specifying a complete order among the process steps. On the other hand, there are

9 A Lightweight Coordination Approach for Resource-Centric Collaborations 153

yet other languages, which consider flexibility, but do not provide the right amount of
coordination for these collaborations and do not support the specification of “hooks”
with external systems that may be used by the individual process steps. As a result,
we decided to design a specific workflow language for supporting resource-centric
collaborations, which balances between the required flexibility and coordination
support. In the process of designing our workflow language, we took into account
the properties and requirements of the collaborations in order to develop an intuitive
workflow language, which is sufficiently expressive but not overly complex.2

The language is based on the event-driven paradigm, since resource-centric col-
laborations are human-driven and, as a result, the core coordination mechanism is
responsible for monitoring and reacting to the actions of the users as they interact
with existing interactive tools. At its core, the proposed coordination mechanism is
superimposed [35, 116] on an existing ecosystem of tools, extending and regulat-
ing the functionalities of the existing tools with a coordination layer. At its weakest
form, expectative superimposition does not affect the behavior of the basic layer; it
simply “inspects” it. Regulative superimposition additionally allows the regulator to
restrict the basic layer, by either delaying or blocking certain operations. Finally, in-
vasive superimposition allows intrusive regulation, whereby the superimposed code
is permitted to modify the underlying variables. Adopting this view in the context
of an ecosystem of tools that support REST APIs, we develop a coordination ser-
vice that combines expectative superimposition, to monitor the invocations of the
underlying layer’s REST APIs, and invasive superimposition, to invoke these APIs
as required for coordination purposes. The coordination itself is specified in terms
of ECA (Event-Condition-Action) rules. In these ECA rules, “events” are messages
generated by external components (i.e., intercepted invocations of the REST APIs
of the underlying systems used by the collaborating team members to perform their
tasks) or other collaboration instances. “Conditions” are logical expressions regard-
ing the state of the collaborative process. Finally, “actions” define behavior as the
response to an expected event, under some conditions; these actions may be invo-
cations of the underlying layer’s REST APIs, or notifications forwarded to the tool
users. The model of our collaboration language is illustrated in Fig. 9.2.

Types are data elements used for storing values in collaboration instances. They
may be associated with methods for accessing and manipulating their values. The
basic types supported in our language are Boolean, Integer, String, and Time. We
also defined a special type named User in order to provide a first-level support for
working with the data of the people involved. In addition, we included two collection
types in the language, Strings and Users.

Functions are system-level methods used for managing collaborations instances
and facilitating interactions. The supported functions include methods for invoking
web services, triggering events, and publishing errors. Using these functions, a col-
laboration instance can communicate with other collaboration instances and external
systems.

2 The language is only partially described in this paper due to lack of space. The complete description
will be available in Ghandehari’s MSc thesis.

154 M. Ghandehari and E. Stroulia

Fig. 9.2 The meta-model of our collaboration specification language

Control structures are used for defining the control flow among the collaboration
steps, based on events and conditions. Control constructs supported in the language
are: sequence, selection, and repetition. Sequencing is achieved through ordered
execution of statements. Selection is supported by an IfElse statement and Repetition
can be performed using While and Foreach statements.

In addition, the language supports collaboration composition and inter-process
communication. Collaboration composition enhances the reusability by providing a
mechanism for orchestrating a group of related processes and declaring a new com-
plex process. Inter-process communication enables the interactions among different
process instances at run time.

The language supports two styles for collaboration specification: state-based style
and rule-based style. Each collaboration should be written in one of these styles. In
the state-based style, one has to identify the states through which the collaboration
instance passes during its life-cycle, and group the ECA rules based on the states to
which they belong. In this style, ECA rules enable the transition of the collaboration
instance from one state to another. In the rule-based style, there is no explicit concept
of state or state transition; thus, a rule-based collaboration specification is roughly a
set of ECA rules. Although these two styles support different means for organizing
ECA rules, they are equivalent in terms of their expressiveness, and a specification
written in one style can be transformed into the other. However, there is a significant
difference in their applications. The state-based style best fits the collaborations that
require more structured models as this style demands complete state-based behaviors

9 A Lightweight Coordination Approach for Resource-Centric Collaborations 155

Fig. 9.3 The state chart
diagram of the sample project
report coauthoring
collaboration

of the collaborations. On the other hand, the rule-based style is more natural for
semi-structured collaborations as the style allows more flexibility in specifying the
collaborations. Finally, it should be mentioned that one system can have collaboration
specifications written in both of the styles, and the collaborations can interact with
each other no matter in which styles they are written.

In addition to collaboration specifications, a configuration specification should
be provided to the system. In this configuration specification, the elements used for
interacting with the collaborations are defined. These elements include event defini-
tions, pre-defined service calls, and methods for manipulating roles and relations. In
a system, the configuration specification is shared among all collaborations.

Figure 9.3 depicts the state chart diagram of the project report coauthoring collab-
oration described previously in the paper. According to the diagram, the collaboration
is initially in the “Draft” state, in which students collaboratively edit and update the
report. Upon submission of the report, the state changes to “Pending”, where the
participants wait until the supervisor of the project decides about the quality and
completion of the report. If the report is accepted, the collaboration proceeds to the
“Published” state, which is the final state. Otherwise, the collaboration goes back to
“Draft”, so that the students may continue working on it.

In order to specify this collaboration example, we first need to write a configu-
ration specification in which we define the events, roles, relations and services for
interacting with the collaboration. In particular, events are the incoming channels by
which external components send messages to collaborations; while roles, relations,
and services are the means by which the collaboration responds to events or gets
additional information. At the compile time, events are translated into methods on
the REST API of the system, used by external components, which trigger events on
relevant collaborations; while roles, relations, and services are compiled into sys-
tem methods, used by collaborations, which make calls to external components. A
sample configuration specification for this system is in Listing 9.1

Based on this configuration specification, we can now define our collaboration
specifications. Written in the state-based style, the specification for our sample
project-report coauthoring is provided in Listing 9.2. In this collaboration speci-
fication, we declare two fields for storing persistent data needed in the collaboration,
i.e., the IDs of the project and report. The “Create” Entry, which works as a construc-
tor, instantiates the collaboration and initializes the state and the fields of the newly
created collaboration instance. The initial state, named “Draft”, contains two event
handlers: the “Edit” event handler only checks whether the person who triggered the
event is a student and a member of the team; the “Submit” event-handler, in addition

156 M. Ghandehari and E. Stroulia

1 // Event Definitions
2 Event Create (String projectID, String reportID);
3 Event Edit ();
4 Event Submit ();
5 Event Accept ();
6 Event Reject();
7
8 // Role Definitions
9 Role Student;

10 Role Professor;
11
12 // Relation Definitions
13 Relation Supervises(User supervisor, String projectID);
14 Relation Members(User user, String projectID);
15
16 // Service Definitions
17 String POST Lock (String reportID);
18 String POST Unlock (String reportID);
19 String POST Email (Users receivers, String content);
20 String POST Publish (String reportID);

Listing 9.1 The configuration specification for the sample project report coauthoring collaboration

to performing the authorization check, changes the state into Pending, informs the
supervisor about the state change, and locks the report. The “Pending” state has two
event handlers, both related to supervisor actions. If supervisor rejects the report by
triggering the “Reject” event, the team is notified by email, the report is unlocked for
further editing, and the collaboration returns to the “Draft” state. On the other hand,
if the supervisor triggers the “Accept” event, it calls the “Publish” method, which
finalizes the report, and the collaboration changes its state to “Published”.

1 Collaboration StateBased ReportingCollaboration {
2 // Field Declarations
3 String projectID;
4 String reportID;
5
6 // Entry Specifications
7 Entry Create {
8 projectID = e.projectID;
9 reportID = e.reportID;

10 To(Draft);
11 }
12
13 // State Specifications
14 State Draft {
15 @Edit [Student]{
16 If(! (e.Sender Members projectID))
17 Exception ("Permission Denied.");
18 }
19 @Submit [Student]{
20 If(! (e.Sender Supervises projectID))
21 Exception ("Permission Denied.");
22 Lock(reportID);
23 Email(supervisor, "Submitted");
24 To(Pending);
25 }
26 }
27 State Pending {
28 @Accept[Professor] {
29 If(! (e.Sender Supervises projectID))
30 Exception ("Permission Denied.");
31 Publish(reportID);
32 To(Published);
33 }
34 @Reject[Professor] {
35 If(! (e.Sender Supervises projectID))
36 Exception ("Permission Denied.");
37 UnLock(reportID);
38 Email(team, "Rejected");
39 To(Draft);
40 }
41 }
42 Final State Published;
43 }

Listing 9.2 The specification of the sample project report coauthoring collaboration

9 A Lightweight Coordination Approach for Resource-Centric Collaborations 157

1 Collaboration RuleBased DocumentCheckCollaboration {
2 // Field Declarations
3 Boolean TextChecked;
4 Boolean FigureChecked;
5 Boolean ReferenceChecked;
6
7 // Entry Specifications
8 Entry Start {
9 TextChecked = False;

10 FigureChecked = False;
11 ReferenceChecked = False;
12 }
13
14 // Event-handler Specifications
15 @TextCheck {
16 TextChecked = True;
17 If (TextChecked And FigureChecked And ReferenceChecked) {
18 Trigger(Checked());
19 }
20 }
21 @FigureCheck {
22 FigureChecked = True;
23 If (TextChecked And FigureChecked And ReferenceChecked) {
24 Trigger(Checked());
25 }
26 }
27 @ReferenceCheck {
28 ReferenceChecked = True;
29 If (TextChecked And FigureChecked And ReferenceChecked) {
30 Trigger(Checked());
31 }
32 }
33 }

Listing 9.3 The specification of the sample document check collaboration

Let us now consider a slightly more complex version of the project-report coau-
thoring collaboration. In this version, after the submission of a project report, a set of
checks – i.e., text check, figures check, and references check – should be performed
to ensure that the report is ready for the final review by the supervisor. There is no
specific execution order among these checks, but it is important that all these checks
are performed before the report is sent to the supervisor. In order to make this check-
ing process reusable, we chose to implement it as a separate collaboration, named
“DocumentCheckCollaboration”. The specification of “DocumentCheckCollabora-
tion” written in the rule-based style is presented in Listing 9.3. This collaboration has
three fields to indicate whether the corresponding checks have been performed yet
or not. The collaboration is instantiated and its fields are initialized when it receives
the “Start” event. Upon completion of a check on the document, an event indicating
the type of the completed check is sent to the collaboration that sets the value of the
corresponding field to “True”. When all fields are evaluated to “True”, signifying
that all the checks have been done, the collaboration triggers “Checked” event to
inform its parent about the completion of the collaboration. In order to employ the
“DocumentCheckCollaboration” in our “ReportingCollaboration”, we first need to
add the definition of the new events used in the “DocumentCheckCollaboration”
in the configuration specification; then, we should modify the “ReportingCollabo-
ration” collaboration specification to include “DocumentCheckCollaboration” as a
“sub-collaboration”.3

3 Note that the underlying assumption in developing rule-based process specifications is that for
each event type a single ECA rule is specified, thus eliminating the need for prioritizing or resolving
conflicts among multiple applicable rules.

158 M. Ghandehari and E. Stroulia

We used the state-based style for specifying the “ReportingCollaboration” and
the rule-based style for specifying the “DocumentCheckCollaboration”. The state-
based style is more suitable for the “ReportingCollaboration”, because there is a
logical order among the steps of the collaboration; the corresponding states and their
sequencing capture this logical dependency. Had we chosen the rule-based style,
the states would have to be “simulated” using variables, which would result in a
specification much more complex to write and to understand. On the other hand, the
rule-based style is more natural for specifying the “DocumentCheckCollaboration”,
since the three checks can be performed in any arbitrary order. If we had chosen to
write the “DocumentCheckCollaboration” in the state-based style, we would have
needed to define nine different states to represent the possible combinations of the
order in which the checks might be completed. Each of the states would have a couple
of event-handlers but all of the event-handlers would almost do the same actions.

Clearly, these two styles for writing collaboration specifications have different
usage scenarios and they complement each other. In our system, the collaboration
editor supports both styles, so users can select which style they want to employ for
writing each collaboration specification based on the properties of the collaboration.

9.4 The Software Framework

Having developed a language for specifying collaborations, the task becomes to
develop a corresponding software system to support the specification and enact-
ment of resource-centric collaborative activities. In fact, we are aiming to build a
comprehensive tool-set to be integrated with multi-user, multi-tool resource-centric
environments, in order to support resource-centric collaborations. In other words,
we want to build neither a resource-processing environment nor tools to be used
directly by end-users, but a behind-the-scenes supporting coordination-as-a-service
system, which leverages the capabilities of existing resource-processing environ-
ments to support process awareness and coordinated user collaborations. The system
consists of a set of software tools to specify collaborations and to manage their in-
stances at run time, including the interaction of these collaboration instances with
the users’ activities, in the context of the existing systems. The main components of
our collaboration-management system and their interactions are shown in Fig. 9.4
and are described in detail below.

The collaboration engine is the fundamental component of the collaboration sys-
tem, which enacts the collaborations at run-time. The collaboration engine is respon-
sible for: (a) instantiating collaboration instances; (b) delivering events to the collab-
oration instances; and (c) managing collaboration instances through their life-cycle.
Once the configuration and collaboration specifications are written using the collab-
oration editor and compiled into executable collaboration specifications, they are de-
ployed in the collaboration engine to be executed. When the engine receives an event
requesting instantiation of a specific collaboration, the engine creates an instance
and places it in the pool of active collaboration instances. The engine continuously

9 A Lightweight Coordination Approach for Resource-Centric Collaborations 159

Fig. 9.4 The architecture of the software framework

listens for incoming events, whether from external systems or from active collabora-
tions. Receiving an event, the engine triggers it on the corresponding collaboration
instance, which causes the execution of the relevant event-handlers of the instance. If
there is an event-handler defined in the collaboration for the incoming event type, and
if the associated conditions are satisfied, the engine executes the enclosed actions,
which may involve a state transition, sending a notification, or any other method call.

Interactions between the collaboration system and external components are pos-
sible through the system’s REST API. This API exposes the collaboration instances
as web resources, which can be accessed and manipulated using HTTP methods.
Receiving HTTP requests, the API transforms them into events and directs them
to the corresponding collaboration instances. In addition, the API responds to the
queries regarding the engine and the collaboration instances

The instances database hosts the active collaboration instances and archives the
completed ones. This component is composed of a database management system and
an access layer on top of it. Each collaboration instance is stored in the database as
a set of records that include some generic metadata, such as ID and creation date of
the instance, and some collaboration-specific data and their values. The engine uses
the access layer to store and retrieve collaboration instances in/from the database. In
addition, the access layer provides a caching mechanism for performance reasons.

The control panel supports system administration, including starting/stopping
the engine, deploying specifications of collaborative processes, reviewing system
logs, and configuring system parameters, such as the cache size, for example. In
addition, it provides the ability for manually applying ad-hoc modifications on
process instances in exceptional circumstances.

The editor is used for editing collaboration specifications. The editor is an Eclipse-
based application, developed using the Xtext4 framework. Given the grammar of our

4 http://www.eclipse.org/Xtext/

http://www.eclipse.org/Xtext/

160 M. Ghandehari and E. Stroulia

language, Xtext creates an Eclipse-based editor for specifying collaboration in the
language and builds a parser for the produced specifications. The resulting grammar-
aware editor supports several interesting features, such as syntax coloring, code
completion, code folding, and static error checking. Using this editor, users with
not much programming knowledge, can easily specify a new, syntactically correct
collaboration by following the editor’s suggestions.

Since the collaboration specifications written in our language are not immediately
understandable by our collaboration engine, it is required to transform them into
executable specifications. To achieve that, we developed a compiler to go through
the collaboration specifications, check their validity, and translate it to the target
language. The input of the compiler is one configuration specification file, and one
or more collaboration specifications; the output of the compiler is the corresponding
collaboration implementations in Java language.

9.5 The Integration Model

One of our main goals in the design of the collaboration system was generality, so
that the system can be employed in a variety of resource-centric environments. In
fact, it should be possible to integrate the collaboration system with any arbitrary
ecosystem of tools, in order to support the coordination necessary for their collab-
orative activities. For example, if we have a collaborative real-time editor, which
provides an environment for sharing and co-editing documents but falls short in sup-
porting the coordination requirements, we can integrate our system with the editor
to employ the coordination capabilities of the system in the editor. To facilitate the
integration process, we have developed a methodology for integrating the collabo-
ration system within an ecosystem of other systems and tools, as depicted in 9.5. In
this section we discuss at a high level model (and process) of integrating our system
with an existing set of tools. In the next section, this will become clearer through the
description of our case study.

The collaboration system refers to our toolkit as described in Sect. 4. The
main responsibility of the system is to coordinate the users at run-time (using the
collaboration engine) according to the rules specified using the editor.

The base system includes the users’ resource-centric tools that need to be coordi-
nated as part of the collaboration process. It is actually the target component, with
which we want to integrate our collaboration-as-a-service system. Usually, the base
system includes a set of editors and tools for working on shared resource repositories.
In this work, we do not discuss how to develop a base system.

The base API mediates the interaction between the base system and the collabo-
ration system. This API is actually an integrated interface into different elements of
the base system; thus, calling one of its methods may result to calls to the editors,
tools, or repository. Given the specific protocol according to, which the collabora-
tion engine expects to communicate with the base system, it is unlikely that the base
system directly supports the base API. In this case, we need to implement such an

9 A Lightweight Coordination Approach for Resource-Centric Collaborations 161

Fig. 9.5 Our suggested model for integrating the collaboration system with other tools

API as a part of the integration process. The set of methods required for the API
depends on the events and actions expected from the collaboration system.

As we employ an event-driven approach for modeling and implementing collabo-
rative activities, the collaboration engine needs to know about the actions performed
in the base system. In fact, we need a mechanism to inform the engine about these
actions. The logs database collects the logs of all the actions of interest, performed in
the base system. The base system is responsible for populating this database; there-
fore, whenever an action is performed, the base system should generate and place the
corresponding logs into the database. In addition, the logs database is responsible for
publishing the changes; thus, it informs the listeners to the logs database whenever a
new action log is added to the database. The adapter is responsible for transforming
the action logs into events understandable by the collaboration engine. Effectively,
this is the middleware implementing the connection between the base system and the
coordination layer executing the collaborative specification. The adapter registers it-
self with the logs database and listens to log-change messages. Whenever a message
is received, the adapter creates an event and sends it to the collaboration engine.

External services are used to extend the capabilities of the collaboration engine.
External services can be called during the collaboration execution, using the ser-
vice call function provided by the collaboration language. Therefore, if some more
complex processing is required during the collaboration execution, which cannot be
supported by the collaboration language, it can be implemented as a web service
using any scripting or programming language, and then be invoked by the engine.

162 M. Ghandehari and E. Stroulia

In addition, using external services is the mechanism for reusing already-available
web services.

A typical scenario of interactions among the components above is as follows.

1. A user accesses a resource and starts working on it, using an editor, which is one
of the tools of the base system.

2. Upon completion of the editing session, the editor updates the resource, which
causes an action log to be added to the logs database.

3. The adapter inspecting the logs database recognizes a change message in the logs
database, builds the corresponding event(s), and sends them to the collaboration
engine.

4. The engine reacts to the event(s) by executing the relevant collaboration instances,
which may involve calls to external services, such as for example to notify users
through email, and invocations of the base-system APIs.

5. Invocations of the base API may result in further updates of the shared resources.

While designing the integration model, we focused primarily on ease of integration
and low coupling between the workflow system and the base system. According to
the superimposition model, the base system is not aware of the collaboration-as-a-
service system, which monitors and coordinates the base-system activities. The base
system only logs relevant actions with the coordinating-systems logs database. This
may occur naturally; when the base system uses REST APIs to access a resource,
these API invocations can be trapped to also inform the coordinating-system’s logs
database. If this assumption is not met by the base system, special-purpose “glue
code” may have to be developed to accomplish this. The collaboration system lis-
tens to the log changes, with help of the adapter and acts upon them appropriately.
Therefore, it is possible to change or replace the collaboration system completely
without any need to modify the base system. In addition, the adapter makes the in-
tegration easy since we can change the base system without any need to modify the
engine; but we only need to modify the adapter. Similarly, the collaboration system
is only coupled to the base API; therefore, as long as the API is not changed, it is not
important how each method of the API is implemented or if the internal structure of
the base system changes, e.g. a tool is replaced or a new editor is added.

9.6 Case Study

The GRAND (Graphics Animation and New Media) Network of Centres of
Excellence5 is a multidisciplinary research network exploring the application and
advancement of graphics, animation and new media in Canada. The GRAND Forum
is a web-based application, designed to collect information about the people in the
GRAND community, their relations, and their products and activities. The Forum
has been implemented based on Mediawiki6 framework, which is a web-based wiki
software application, used for building various wikis such as Wikipedia.

5 http://grand-nce.ca/
6 http://www.mediawiki.org/wiki/MediaWiki

http://grand-nce.ca/
http://www.mediawiki.org/wiki/MediaWiki

9 A Lightweight Coordination Approach for Resource-Centric Collaborations 163

Fig. 9.6 The realized integration model for GRAND project

In the Forum, it is possible to modify the underlying information resources using
the provided HTML forms; however, this does not support the desired flexibility and
the dynamics in performing the tasks. Many of the GRAND collaborations require
interactions among various researchers, but the Forum was not designed to support
these types of interactions. For example, when a new researcher requests to join a
project, the manager of the system and the leaders of the project should consent;
however, it is not possible to support this collaboration completely in the Forum as
there is no way to ask the questions and act according to the responses.

After analyzing the collaborations needed in the Forum, we found out that they
share most of their properties and requirements with resource-centric collaborations.
Therefore, we decided that our collaboration system can fit appropriately in the
Forum and provide the support for implementing the required collaborations. In
order to employ the collaboration system in the Forum, we tried to realize the
integration model in the context of the Forum. The resulted integration model is
depicted in Fig. 9.6.

According to this figure, the Forum is actually the base system to which we
add collaboration support. In this context, the front-end of the Forum acts as the
editors and tools of the integration model. The Forum has an underlying database
management system integrated with Mediawiki. It is a MySQL database, which
acts as the resource repository of our model and maintains all the data of the
Forum. It also hosts the logs database of the coordination engine; to that end,
we created a special table, named Event table, in which the actions performed in
the Forum are logged. We modified the front-end so that when a user performs a
collaboration-related action, typically submits a form, the front-end generates the
corresponding action logs and add them to the Event table.

164 M. Ghandehari and E. Stroulia

For publishing the actions logs, we employed the trigger mechanism of the
MySQL database. Therefore, whenever a new record is added to the Event table,
the defined trigger gets executed; consequently, the action log is sent to the adapter
as a JSON message. Receiving a message, the adapter parses the message, creates
an event and sends it to the REST API of the collaboration system. In practice, the
adapter is responsible for transforming action logs form JSON messages created by
the Forum into URL-encoded events understandable by the collaboration engine.

Using an extension mechanism provided by Mediawiki, we developed a REST
API into the Forum that in fact is the realization of the Base API of the integration
model. This API contains methods for accessing and updating entities and the re-
lations of the Forum; examples of these methods include methods for getting the
information of a researcher, creating a new project, and adding a membership relation
between a researcher and a project.

During the execution of GRAND collaborations, there are situations where some
information should be provided to or asked from a user or a group of users; for exam-
ple, the decision of a project leader on admitting or rejecting a new researcher. The
Forum already had a notification mechanism that we used for providing information
to users; however, the Forum did not provide the capability to dynamically collect
data from users. To solve this problem, we extended the notification mechanism of
the Forum by developing special types of notifications that ask recipients for data.
The basic type is ConfirmationNotification that asks a yes-or-no question from a user.
In order to enable the collaborations to use the notification mechanism, we added
a method on the REST API of the Forum by which the collaboration engine can
send notifications to users. When a user responds to a special notification, an action
log containing the data collected from the response is added to the Event table that
results in executing an event on the corresponding collaboration instance.

9.7 Conclusions and Future Work

In this work, we studied a prevalent type of collaborative work, namely resource-
centric collaborations, in which a group of people collaborates in the development
(i.e., creation, updating and deletion) of shared resources. We reviewed classic
workflow-management systems, both aimed at enacting automated workflows as
well as the ones designed to support collaborative resource manipulation, and we
discussed their shortcomings. As a solution, we introduced our own collaboration-
as-a-service system, for supporting this type of resource-centric collaborative work.
We briefly explained the architecture of our system and the language it supports. In
addition, we described the process for integrating our system with other base systems
through which the participating users manipulate the underlying resources. Finally,
we discussed a case study, in the context of which we validated our language and the
corresponding resource-centric collaboration support system.

The main contributions of this work are our conceptualization of collaboration
“as a service” and our the system we have developed to support collaboration in a

9 A Lightweight Coordination Approach for Resource-Centric Collaborations 165

resource-centric environment. The approach is designed according to the require-
ments we identified for resource-centric collaborations, and the system enables
the intuitive specification of the collaborations through its expressive collabora-
tion language. The system is comprehensive in that it includes support for editing
and enacting workflows; at the same time, it is light-weight enough to be used
in resource-centric environment such as web-based systems. Finally, through the
GRAND Forum case study, we have demonstrated that our integration model is flex-
ible enough to enables the deployment of our system in the context of any ecosystem
of collaborative systems and tools.

There are several improvements that we envision for this work, specially its
usability and extensibility. Currently, collaborations are written in a textual format
using our Eclipse-based collaboration editor. Although the editor provides some sup-
port for authoring collaborations, a graphical editor would make the process much
easier. We are working on a web-based graphical collaboration editor, which will
be integrated in the control panel. During our work on the GRAND project, we
discovered that collaborative projects usually have many similar collaborations such
as membership management, reporting, and publishing. In addition, collaborations
in a project or across various projects share some common collaboration fragments
such as voting for distributed decision making. We believe that identification and
classification of resource-centric collaborations and collaboration patterns will sig-
nificantly contribute to this field. As the next step, the languages and the editors
of collaborative systems can provide the support for these patterns, such as sug-
gesting the patterns or facilitating their implementations. Finally, resource-centric
collaborations typically have some steps that require asking questions from users and
collecting the responses. In fact, this is the main method by which the collaborations
can interact with human participants. This type of interaction almost exists in all of
resource-centric collaborations we studied. For the GRAND project, we developed a
notification mechanism by which the questions are sent to the users, and the responses
are collected and informed to the collaboration engine. Based on the requirements of
GRAND collaborations, we develop some general questions that can be used in any
of GRAND collaborations. In fact, many of these questions exist in similar forms in
various resource-centric collaboration project, for example yes-no question. There-
fore, it is valuable to identify common questions, more generally common types of
user interactions, and extends the collaboration language and system to support these
questions/user interactions as first class citizens.

Acknowledgements This work was supported by the GRAND Network of Centres of Excellence,
NSERC, AITF and IBM.

Chapter 10
Connecting the Dots: Using REST
and Hypermedia to Publish Digital Content

Luis Cipriani and Luiz Rocha

10.1 Introduction

Media companies are very dependent on Content Management Systems (CMS) to
accelerate and increase quality of generation, publication and distribution of content
to its readers. This type of system is commonly found as open source or proprietary
ready-to-use solutions, but our company decided to create one from scratch: the
Alexandria Platform. This chapter presents a practical application of REST architec-
tural constraints that is the basis of operation of Abril Mídia, and to share the lessons
learned in 3 years of development.

The company is introduced in Sect. 10.2 as well as how its structure influences
the chosen solution. Section 10.3 shows how the Platform is organized in technical
terms. Section 10.4 presents how we applied each REST’s architectural constraints.
Section 10.5 is dedicated to the Uniform Interface constraint, because it has specific
information about our interface. Section 10.6 shows some result analysis from the
established goals. Then we wrap up everything with the conclusion in Sect. 10.7 and
show the next steps to take with the Platform.

10.2 Abril Group

The Abril Group is one of the largest communications conglomerates in Latin Amer-
ica, it works with information, education and entertainment for a wide variety of
customers segments, with integrated operations in several types of media. Founded

∗ The bibliography that accompanies this chapter appears at the end of this volume and is also
available as a free download as Back Matter on SpringerLink, with online reference linking.

L. Cipriani (�) · L. Rocha
Abril Midia Digital, Rua Sumidouro, 747 Pinheiros, 8th floor,
São Paulo 05428-070, Brasil
e-mail: lfcipriani@gmail.com

L. Rocha
e-mail: lsdrocha@gmail.com

C. Pautasso et al. (eds.), REST: Advanced Research Topics and Practical Applications, 167
DOI 10.1007/978-1-4614-9299-3_10, © Springer Science+Business Media New York 2014

168 L. Cipriani and L. Rocha

in 1950 and headquartered in São Paulo, Brazil, the Abril Group has more than 7000
employees, posting net revenues of BRL$ 3 billion in 2009. This Group is divided
into four major areas:

• Media: produces content for magazines, their online version and other digital
products;

• Distribution & Logistics: is a holding company responsible to distribute and
sells the Abril Group publications;

• Print Department: the publications brought out by the Media and Education
publishing houses are printed in this area;

• Education: offer a widely diversified Portfolio of more than 3000 titles consisting
of textbooks and other teaching materials, collections and supplementary works.

The distributed system subject of this chapter was developed by the Media area, which
encompasses the EditoraAbril publishing house, MTV Brasil (television channel and
Internet portal), Internet and Elemidia network company. Editora Abril is the first
company in the Group to produce content for magazines and their online version. The
Internet area develops products, content and services on a wide variety of platforms
and in many different formats, responding to the expectations of consumers attuned
to electronic media. It runs over more than 80 websites, in addition to more than 130
channels and services developed for mobile phones.

More details about the company can be found at the Institutional website [101,
102].

10.2.1 How Company Structure Influences the Solution?

Organizations that design systems are constrained to produce designs that are copies of the
communication structures of these organizations. - Conway’s Law [38, 55]

As cited before, the media area generates content to be published no matter if it’s
printed or exposed in a digital environment. The process of managing and publish-
ing content involves a set of activities, such as: writing, organizing, classifying,
publishing, distributing, associating content, generating knowledge, reusing, etc.

A naive analysis could consider that creating a system that performs the tasks
cited above is not so complex, given that several types of libraries, frameworks or
proprietary solutions are available and ready to use. But when the non-technical
or company-specific variables are added to the solution evaluation, the ready-to-use
systems or libraries starts to be removed from the list of available options. Abril Mídia
is a big area inside a big company, so it’s very probable to expect a high diversity
of several aspects intrinsic to the company structure that couldn’t be ignored when
deciding how to provide the solution that makes every relevant need met by the
system specification.

These are important high diversity aspects we need to take into account for the
decisions made by the product managers and software architects:

10 Connecting the Dots: Using REST and Hypermedia to Publish Digital Content 169

• Business domains: Abril Mídia has publishing houses that create content for
several segments, such as: economics, politics, entertainment, fashion, tourism,
cars, adult, lifestyle, children, science, women, art. These diverse segments have
a huge impact in the list of requirements a system needs to meet, since each
publishing house will have business domain specific requirements.

• Business resources: the publishing houses deals with a set of business resources
(for example: people, venues, articles) that should have a common information
structure between them, but sometimes that’s not true. For example, the metadata
that constitutes a Person to an economics magazine is different from a celebrity
magazine.

• Budget and Team size: there is a large discrepancy in publishing houses budgets
and team sizes that is related to how its business domain fits into company strategy
or how profitable they are.

• People and Culture: given that we are dealing with a big company that works
in several segments, we also need to deal with several kinds of people and work
cultures.

As a premise, the system built to meet the requirements of content creation and
distribution should make viable any initiative coming from the publishing houses,
no matter how diverse are the aspects involved, given that this initiative fits to the
company strategy and budget.

From these aspects we could extract some important architectural characteristics
the proposed solution should have:

• Modularity: the system should group similar features/resources in a way that en-
ables a specialized team or system to deal with it independently of the interactions
with other modules;

• Extensibility: a system with this ability will have a low friction to include more
features based on different needs from the stakeholders;

• Independent evolvability: a module should be capable to evolve without impac-
ting the development of other modules;

• Scalability: different publishing houses will have different server loads, the
system must be able to scale for different types of load models.

• Uniformity: the grow of the system should be guaranteed by controlling the
way each module communicate the data that powers the creation of the company
products.

The next section shows the Alexandria Platform, the distributed system created to
meet all these characteristics.

10.3 Alexandria Platform

Abril Mídia has a long presence in the Brazilian Internet history, since 1996 it pub-
lished from magazine websites to Internet products. Despite that long experience in
the digital world, content management is always a big challenge a media company

170 L. Cipriani and L. Rocha

needs to face, given the changes of platforms of publication, storage technologies,
metadata, business evolution, user needs and so on. In the end of 2009, the company
started to rethink the way content was being handled, because the legacy content
management systems were breaking some of new digital initiatives. Then, the fol-
lowing goals for the new Content Management System were derived from the needs
of stakeholders:

• The system should be capable of extracting greater value from the content
produced;

• The system should accelerate the processes of managing and publishing content;
• The system should accelerate the creation of user interaction enabled products.

Combining these simple but meaningful goals with the architectural characteristics
from the previous section, we show, in this section, how the Alexandria Platform was
structured and implemented, and how this structure can empower the achievement
of the stated goals.

Defining it technically, the Alexandria Platform is a system of systems, dis-
tributed, decentralized but interconnected, that allows each component to evolve
independently and the Platform to grow organically as we add support for more
business needs. We could divide each component of this distributed system into
initial four categories (the number could increase with the evolution).

10.3.1 Domains

A Domain is responsible for managing and storing a set of resources that are related
to a specific business domain. Clients use it to access and manipulate the resources,
as shown in Table 10.1.

Each domain is an independently deployed system (usually web server + data-
base + application server) that is exposed with an uniform interface (API) for client
use. For example, to create a digital product for travelers we could use Editorial,
Media, Annotation and Venues APIs.

The metadata that describe each resource is controlled and should be respected by
the users to avoid inconsistencies and a consequent information lost due to incoherent
data.

Other relevant point is that if a publishing house has a very specific resource to
handle that is not supported by an existing domain, it could extend the functionality
by creating a specific domain inside the product that could later evolve and one day
be assigned as part of Alexandria Platform (the only premise is to “speak” the same
language).

10 Connecting the Dots: Using REST and Hypermedia to Publish Digital Content 171

Table 10.1 List of Alexandria
Domains and Resources

Domain Domain Resources

Editorial Articles, editorial lists, media galleries
Media Images, videos
Annotation Comments, ratings
People People, professionals, celebrities
Venues Restaurants, theaters, bars, stores, hotels
Attractions Movies, plays, shows
Polls Polls, Quizzes
Cultural contest Cultural contests (questions and answers)

Table 10.2 List of
Alexandria Services

Service Description

Abril ID End user identification system
Social Core User behavior tracking, social graph
Notification A service to enable email, toasta, SMS and mobile

notifications
Search Enable business domain specific search
ICE External content import tool
Clickcounter Real time Portal homepages performance
MCP Provides corporate employee identification for

internal systems
a As defined by Wikipedia, Toast (in computing) is a small, in-
formational window displayed by certain kinds of software, espe-
cially instant messaging clients. See http://en.wikipedia.org/wiki/
Toast_(computing)

10.3.2 Services

The Services exist to manipulate and consume resources to enrich it before a product
finally consumes it. Each service handle a specific business need and there is a high
diversity of services. We can see the current available Services in the Table 10.2.

Each service is a independently deployed system (usually web server + application
server, sometimes with a database) that is exposed with an uniform interface (API)
for client use. A final product uses a Service the same way it uses a Domain with the
goal of providing a better experience or a different context to end users.

10.3.3 Data Entry

This is the front-end system that journalists use to create content that later will be
published on any digital media available in the Platform (see Fig. 10.1). Usually
there is one Data Entry application for each Domain. Additionally, it must provide
ways that accelerate the creation of content, such as to easily upload and edit images,
classify the content and associate with other (types of) contents, control the state of
an article (draft, available, etc.).

http://en.wikipedia.org/wiki/Toast_(computing)
http://en.wikipedia.org/wiki/Toastprotect LY1	extunderscore (computing)

172 L. Cipriani and L. Rocha

Fig. 10.1 Data entry: A screenshot of the form for editing an article, a resource handled by Editorial
Domain. The bar on top shows links to other Data Entries or to managers of other Resources one
Data Entry could handle

10.3.4 Site Tools

These are the set of tools the Webmasters of each publishing house that has a product
published in the Alexandria Platform use to control how the website will look and
how it will be structured. The tool does the association of content with the digital
media it will be published. In a similar way as the Data entries, it must provide ways
to accelerate the administration of a website, organize the home page, publishing of
articles, scheduling of publications, etc.

The group of Data entries and Site tools is called Console (as showed in Fig. 10.1),
that has the important role to empower the publishing house to create and publish
content, and also provide ways to manage the performance of its digital products in
qualitative and quantitative ways.

10.3.5 System Interactions

Alexandria is a decentralized platform. The lack of a central coordination authority
allows each one of its systems to interact with any other. Some interactions are more
frequent than others. The overall picture of the system use and interactions is:

• Domains and Services interact with each other to manage, transform, distribute
and enrich content;

• Data entries input and manage content to Domains and Services;
• Site tools access, query and manipulate content to enable the creation of digital

products for the company;

10 Connecting the Dots: Using REST and Hypermedia to Publish Digital Content 173

Fig. 10.2 High level representation of Abril Mídia Digital Systems Organization. Alexandria layer
shows the system of systems architecture constituted of Domains and Services that interact with
each other handling or enriching content (resources). All interactions inside this organization uses
our defined uniform interface. (detailed in Sect. 10.5)

• Internal systems evaluate the current state of the business metrics and drive the
next decisions aligned with the company strategy.

• There are some corporate systems (for example, Abril employee identification)
that are used inside Alexandria through the implementation of Service Gateways.
The same is done with External News Sources.

Figure 10.2 shows a diagram of each Alexandria component type and how they are
connected to enable production and deliver of digital content.

The common case for Service-Domain interaction is the search engine pulling
data from all available domains to generate indexes based on each resource and
allow systems to query and find content by metadata, without the need to know
the content identification or resource location. This is a key feature of the platform,
products built on top of it make use of this ability to deliver webpages based on topics
and other relevant metadata instead of being limited to human-managed content only.

174 L. Cipriani and L. Rocha

To allow journalists to create media-rich content and establish relationship be-
tween articles, videos, images and other resources, Data entries interact with
Domains to find and edit content, as well as validate any created relationship. It also
interacts with Services such as authentication and authorization service to validate
the user credentials before any action.

In the same fashion, the Site tools interacts with Domains and Services to allow
webmasters to find and publish content. The Site tools then interacts with the prod-
ucts, pushing any definition set by the webmaster, enabling the product to pull data
from Domains and Services.

The most frequently used Domains are the Editorial and Media Domains since all
products built on top of Alexandria deliver in one way or another, media-rich news
(articles with video or image galleries). This also explains why Search is the most
used Service, as all of Alexandria products have a mechanism to allow end users to
peruse in published news.

10.3.6 Operational and Technical Details

User access There are four types of users in Alexandria Platform and each one has
a way to access and be identified in the systems:

• End users: represented by visitors in the websites powered by Alexandria. When
a website offers exclusive content or functionality to these users, they use Abril
ID service, which can be instantiated through a widget placed on the product page
and in the future will provide also a OAuth1 interface;

• Product system: represented by the product servers. They use a distributed au-
thority identification scheme, in which some services must to know that a product
will need to have access to it and all the authentication is done locally for them,
without involving an external authority.

• Content creators: represented by journalists, graphic designers, reporters, editors,
etc. They are identified through a corporate authentication system available from
a gateway that exposes resources compliant with our uniform interface;

• Webmasters: the editors of the website structure. They are identified by the same
way as content creators.

Authorization roles and permissions are implemented just for end users, content
creators and webmasters. We do not enforce authorization schemes between systems
to avoid implementation overheads that could decrease system performance. In this
case, we rely on the security enforced by network standards.

In the Domains, the destructive operations (POST, PUT, DELETE) need to be
authenticated by some user, so they need to check their authenticity in a central
authority (the corporate one or Abril ID, depending on the type of the user).

1 See http://oauth.net/

10 Connecting the Dots: Using REST and Hypermedia to Publish Digital Content 175

10.3.6.1 Platform Evolution

The process of adding a new component (Domain or Service) inside Alexandria
involves to be compliant with the following constraints:

• The system must be compliant with all REST constraints;
• The system should implement and be adherent with our uniform interface. For

a long time this constraint was verified manually, but an automatic validator is
being created to ensure that no interface inconsistencies are added to the Platform;

• All interactions with other system must be done with applied principles of system
robustness;

• The system should ensure that any destructive operation is being done with user
or system identification;

Depending on the project, more constraints could apply, and the new set is defined by
the technical or business roles of the Platform team. It is worth to mention that was
really hard to enforce these restrictions on an environment that allow components
to be included in a independent way and with several projects being developed in
parallel. Still today we need to deal with some interface inconsistencies across several
projects.

Once the system is created and deployed in production, changes are needed to be
done in the products or other components of Alexandria to effectively use the new
features, which means that the system coordination is manually maintained. Our
experience shows that automatic system coordination isn’t necessary (adding new
components happens not so often) and could bring a set of risks that could decrease
the performance of the Platform.

When the situation is adequate, there is the concern to extract a part of the system
as a library that could be reused by our Platform and sometimes even by external
users, through an open source license2. We don’t think that the whole Platform could
be reused by other company, since it has a set of very specific requirements and
the priority was to deliver a good solution that could fasten the way the company
publishes digital content.

10.3.6.2 Team Organization

Each Alexandria component or Product is a separate project, that could contain more
than one code repository. A team is responsible by one or more projects. It is usual to
group some similar projects in a concept, for example, Content Delivery solutions,
User Interactions, and a team could be responsible for a whole group.

Every team has developers, a software architect, a project manager and a product
manager. Sometimes a role could be acted by the same person across more than one
team. Currently we have the following distribution in Alexandria Platform team3:

2 See Abril Github page at https://github.com/abril
3 These numbers have a high variation, they represent the situation at the time of writing this chapter.

176 L. Cipriani and L. Rocha

• 50 Software Engineers (back-end, front-end and test developers)
• 12 Software Architects
• 12 Information Architects (user experience architects and graphic designers)
• 6 Project Managers
• 4 Product Managers
• 1 Platform Advocate

They are responsible of:

• 8 Domains
• 12 Services
• 14 End user Products

A large growth is expected in the number of End user Products (Abril has at least 80
websites) as they are migrated from the legacy CMS to Alexandria. The growth in the
number of domains and services is stagnating and should not increase significantly
in the next years, because all the important types of contents are already present.
Also a growth is expected in the complexity of the End user Products, Services and
Data Entries as they evolve from a business perspective to a scenario that increases
user interaction, real time content delivering and knowledge generation.

10.3.6.3 Technology Applied

The most frequent technologies employed on Alexandria are:

• Languages: Ruby and Java (50 % each)
• Application protocol: HTTP 1.1
• Storage systems: MongoDB, MySQL, HBase, HDFS, PostgreSQL, Redis,

Memcached
• Web servers: Apache, Nginx, Passenger, Jetty
• Web frameworks: Rails, Sinatra, Play, Goliath, Jersey
• Other tools: Solr, Hadoop, RabbitMQ, Varnish, New Relic
• Application deployed in virtual and physical environments, located in our own

Data Center or Third-part Services (AWS, Heroku)
• Private Cloud for development environments

The reason that we choose between Ruby and Java as official languages is simply
because before Alexandria development was started, Abril had several Java devel-
opers and projects in production. The Ruby influence came from a startup called
Webco that was acquired by Abril in 2009. We had experience with other languages
in non-critical projects, but Ruby and Java naturally became the main choices.

Given that each Domain and Service is a different system deployed and everything
communicates with an uniform interface, we have the freedom to choose the most
adequate technology to solve a specific problem. However, it’s important to keep
focus because if happens to have a high diversification of tools employed, it starts to
get really difficult to hire specialized people to take care of all these technologies.

10 Connecting the Dots: Using REST and Hypermedia to Publish Digital Content 177

Table 10.3 Instances of Separation of Concerns

Client Server

Website: use the resources to create a specific
experience to reader

Domain: manage and store the resources

Data entry: creates a better user experience for
journalists to create and manipulate resources

Domain:manage and store the resources

Domain: uses services to create relationships
between resources

Service: provides specific data that enriches
some resources

The inherent independence existent between each system brings some great
advantages, such as:

• It eases problem solving, once it’s all isolated;
• Gives freedom of technology choice, a characteristic that is valuable for good

developers;
• Enable decentralized project management;
• It eases incremental adoption of development process improvements;
• Narrow focus when defining product roadmap.

10.4 REST Constraints Applied

This section shows how we applied each of REST architectural constraints proposed
by Roy Fielding in his Dissertation, “Architectural Styles and the Design of Network-
based SoftwareArchitectures” [76], in our Platform. In Sect. 5.1.8 of his Dissertation,
Fielding shows a summary of the style derivation that constitutes what REST is, and
the proposal is that REST is: REST = LCODC$SS + U

The formula above can be read as: REST is a architectural style that is derived from
Layered Code-on-Demand Client Cache Stateless Server plus a Uniform Interface.
This section will show just the LCODC$SS part, and Uniform Interface will be
detailed in Sect. 10.5.

10.4.1 Client-Server (CS)

This architectural style is very often encountered in distributed systems and it’s not
an exception to Alexandria Platform, in which all applications deployed follows this
style. Fielding [76] identifies three properties that influences Client-Server style and
by so, influences how our system behaves.

Separation of concerns is achieved by separating the responsibilities between the
Alexandria Domains, Services, Data entries, Site tools and Products created by the
publishing houses. The Table 10.3 shows some instances of separation of concern
property that occur in the Platform.

178 L. Cipriani and L. Rocha

It’s very important to take care of the responsibilities of each system, because we
found it’s easy to break the separation of concerns especially when teams are being
pressured to deliver features fast and do this by relaxing the architectural constraints.

Sometimes we could find components, such as Alexandria Domains, that act as
clients in some situations, and as server in others. This is common for Alexandria and
didn’t generate any problem, since each instance of separation of concerns behaves
differently and don’t share concerns.

By separating functionalities, we simplify the interface and force the client to
decide how to use that set. This simplification decreases the risks and complexity,
achieving scalability. For example, Domains only deals with resources and this
brings simplicity when we need to scale our system.

Independent evolution is the only property that we couldn’t guarantee in 100 %
of the Platform, because it depends strongly on interface consistency across all com-
ponents. Some of the reasons we believe that we couldn’t keep interface consistency
are:

• Initial uncertainty of the set of responsibilities a component should have;
• Teams working independently without common knowledge sharing;
• Known tech debits that were not prioritized by the Platform strategy, sometimes

due to pressure for delivery.

To keep interface consistency is probably one of the biggest challenges when you deal
with a large and diverse Platform, with teams working independently and pressure to
deliver fast. Is highly recommended to prioritize the creation and control of Platform
interface.

10.4.2 Stateless (S)

Since the beginning of the architecture design, the Alexandria Platform was imple-
mented to be as compliant as possible with this constraint, because scalability is one
of the main non-functional requirements that should be present on the system. Fur-
thermore, stateless architectural style is a consolidated practice in teams that work
with web applications or back end distributed systems, so even when, accidentally,
the software engineer forgot to apply this constraint by design the problem got solved
indirectly by the frameworks or libraries used to implement.

However, we needed to break this constraint in some situations by maintaining
some state for destructive operations in resources, in order to identify the user of
the service that’s doing it. This was implemented with a cookie that represented an
opened session in the Data entry. Despite the fact that this is a technical debit that
could be solved with other authentication techniques, we decided to assume what
we consider a low risk, because only affects destructive operations.

There are other important observations about the properties of this architectural
constraint:

10 Connecting the Dots: Using REST and Hypermedia to Publish Digital Content 179

• Visibility: to keep the interface visible to components, beyond the need of not
maintaining any state between the requests and responses, we also avoided to use
SSL in the Platform and assume that we need to control the systems (internally
or externally) that have access to the network.

• Reliability: not maintaining state eases the problem solving because we can
isolate the failures.

• Network performance: despite the fact repetitive information is sent in the
requests to implement stateless architectural style and this makes the network
performance decrease, by far we assume that this risk isn’t critical to the overall
performance of the Platform.

10.4.3 Cache ($)

This architectural style brings great benefits to network efficiency, scalability and
the performance perceived by the user, however it demands an efficient caching
strategy to guarantee that the user never gets a stale resource, that can decrease the
reliability of the system.

At Alexandria Platform we use HTTP as the application protocol, so we have a
great availability of caching tools ready to use (we largely adopt Varnish, as shared
caches), but one cannot assume this as an applied constraint until each API has a
caching strategy implemented and tested. The main points that needed to be defined
when implementing a good caching strategy are:

• What need to be cached;
• How long each resource should be fresh to use;
• What to do when you have a stale resource.

We faced some problems with caching and very often the reason was an inexistent or
inefficient caching strategy, especially because the understanding that caching is an
optimization technique and could be taken into account in later phases of the project
combined with the prioritization of the product backlog. Given this, we share some
lessons learned when dealing with caching strategies:

• Caching strategy could be created earlier, even if based on few assumptions about
the resource time-to-live;

• As your system and the user load model changes, your caching strategy needs to
evolve together;

• Avoid the need of cache purge, this breaks the client-server constraint, introduces
a global coordination problem and the system won’t scale. Try to rely only in your
time-to-live strategy.

• Don’t abuse of shared caches, sometimes is better to have one caching tier per
client-server communication to ease solving of problems and scalability.

• Try other cache locations such as Local Caches to shorten the path between the
request and response for heavy loaded services.

180 L. Cipriani and L. Rocha

10.4.4 Layered System (L)

As we need to maintain a large distributed system that has some external dependen-
cies, the Layered System architectural style is crucial to encapsulate complexity
(bringing simplicity to the user) and allow an independent evolution of the com-
ponents. Even with the decrease of user perceived performance, by adding layers
of communication, we also assume that this is a low risk we take, given the great
benefits we obtain.

Beyond the obvious instances of this architectural style, such as shared caches
and load balancers, that is also a very consolidated practice in distributed systems
focused to deliver digital products, the Alexandria Platform used this style to solve
some critical integration problems, such as:

• Encapsulation of corporate employee identification: at Abril, the system re-
sponsible to identify the employee is implemented with proprietary technologies
and uses another interface. To solve this, we implemented a gateway to this system
that exposes an interface that is compliant with Alexandria Platform directives.

• Encapsulation of legacy systems: the old publication systems and legacy end user
identification systems were encapsulated with gateways that expose the required
uniform interface. Another benefit is that we could evolve the legacy systems
incrementally to the current uniform interface without stopping to use it, it’s just
a matter of disable the legacy gateway feature API entry point as we activate the
newly implemented feature API entry point.

• Gateways to expose the APIs externally: for information security issues, all
Alexandria Platform network is controlled and used only internally, but there are
requirements that forces the architecture to have points of exposure of this API to
external users, for example, to build web widgets or to enable company providers
to create products on top of the Platform. Expose an API implies to take care of
user rate limits, enhanced access security, better caching strategies, so the Layered
System style has an important influence in the implementation.

10.4.5 Code-on-Demand (COD)

REST allows client functionality to be extended by downloading and executing code
in the form of applets or scripts. This simplifies clients by reducing the numbers of
features required to be pre-implemented. Allowing features to be downloaded after
deployment improves system extensibility. However, it also reduces visibility, and
thus is only an optional constraint within REST [76].

Alexandria Platform applies this constraint only for the Data entries, which are rich
client applications where the journalists create content and Webmasters manage the
website. The code-on-demand comes in the form of reusable JavaScript widgets that
encapsulate a common action, for example, creating relationships between contents
or uploading a media (images, videos, etc.).

10 Connecting the Dots: Using REST and Hypermedia to Publish Digital Content 181

With the premise that we (providers of Alexandria Platform) control the metadata,
Code-on-demand could also be used to generate Data entries based on a domain
specific language that defines the content metadata and how to handle it. But this
scenario is too advanced for the current architecture and still not crucial for the needs
of the Platform.

10.5 Uniform Interface

Uniform Interfaces, as proposed by Fielding [76] in his thesis, need four constraints
to be introduced in order to achieve the expected architectural behavior from its
components:

• Self-descriptive messages
• Identification of resources
• Manipulation of resources through representations
• Hypermedia as the engine of application state (HATEOAS)

While necessary to create a uniform interface to system resources, this set of con-
straints is not sufficient to fully design the application programmable interfaces (API)
the Alexandria Platform need. For that, we’re required to map business needs and
translate it to a set of guidelines to describe and manipulate resources too.

10.5.1 Resources

The first thing to do is set up a set of constraints to allow resources to be uniquely
identifiable. In the Alexandria Platform, a resource must have both of the following
properties:

• Unique Domain ID: every resource must have an id, and this id must be unique
in the Domain that the resource belongs.

• Resource type: every resource must explicitly declare its type. Resource type is
closely tied with the Domain responsible for maintaining it.

Every Alexandria resource has a unique Domain id and an explicit type, no matter
how simple or complex a resource is, it must have these properties implemented. This
way, we can link to a resource anywhere in the Platform knowing that we’ll reach the
desired resource. This also creates a clear distinction between anAlexandria resource
and a simple, structure data used elsewhere.

182 L. Cipriani and L. Rocha

Table 10.4 Expected
Properties of a Content
Resource

Property Purpose

Brand Identify the magazine and/or business unit that
“owns” the Content

Source The source of the Content
Slug A more human-friendly way to address the Content
Status Whether the Content is available to consumption or

not

10.5.1.1 Abstract Resources

We also selected a few common properties a resource could have and bundled those
properties in a concept we called Abstract Resources. One of those Abstract Re-
sources is a Content. Naming those specific set of properties proved to be useful,
helping organize and create a shared understanding of things. Table 10.4 lists the
expected properties of a Content resource.

Content properties can be extended. For instance, if a new Content needs more
than the two statuses defined, it can add their own, as long as it keeps the base statuses
untouched.

We applied the same pattern of picking a few significant properties and bundling
it in named resources to abstract away a few other concepts such as:

• Auditable Content: keep basic audit data
• Related Content: list of Contents related to a given resource
• Classified Content: lists of attributes that classify a resource
• Geotagged Content: adds geolocation properties to a resource

Breaking down desired properties in clear abstractions allowed actual, concrete re-
sources to be assembled by composition. It also helps organizing desired resources
properties in coherent packages, which makes understanding straightforward.

It is an important business constraint too, as it makes it possible for Alexandria
to support a large range of resources, sharing common properties and yet separate
whatever the business considers to be different.

But most of all, separating desired properties in a generic, composable fashion
allows for a better media type design and makes implementing representations easier.
Each building blocks has a clear purpose and can be independently evolved. The
ability to glue together pieces of domain-specific data and properties to a group
of well-known properties is key to building a hypermedia-driven architecture, as it
provides a clear way to build self-descriptive messages.

That said, it was our desire to avoid to classic pitfalls, the HTML soup tag and the
XML Schema proliferation. Having no shared understanding or allowing resources to
implement the same set of properties in incompatible fashion was out of the question,
as it would raise the costs of the Platform and generate much more noise in the
development. Having too much extensibility would incur in a increasing complexity
to maintain media types.

10 Connecting the Dots: Using REST and Hypermedia to Publish Digital Content 183

10.5.1.2 Concrete Resources

Once we defined Abstract Resources and made them composable, creating our Con-
crete Resources is a matter of understanding the business needs and modeling the
resource specific properties accordingly.

To understand how Concrete Resources are built, lets analyze the most common
resource in use. All digital products currently built on top of Alexandria uses Articles
in some fashion. Articles have properties like author, title, caption, and article body.
An Article is a Content too and, as such, inherits its properties. Therefore, an Article
resource looks like this:

• Article: author, title (or headline), caption, article body
• Content (inherited): brand, source, slug, status
• Resource (inherited): unique id and resource type

Actually, this is just a constricted example. An Article also inherits from Classified
Content, Auditable Content and might have a list of Related Content as well, which
makes it a little more detailed and complex.

Concrete Resource may share properties, attributes and even be composed with
the same abstract resources and still be different business objects, as long as they
have different resource types and each instance is uniquely identified.

10.5.2 Resource Identification

Alexandria resources are uniquely identified in the whole platform by its unique
Domain id and resource type, this properties also reflect in the choice for a platform
Relative URI Reference [26] convention:

This approach has some advantages; it provides a simple rule to build URI ref-
erences for resources, making it easier to implement them, it also introduces a little
predictability, which helps developers and testers during the development stages of
the Platform.

But the main benefit expected from this convention was take further advantage of
the layered nature of the Platform architecture and let each layer represent a given
resource according to its purpose. For instance, the domain serving a Venue resource
will deliver it using the appropriate representation (more on that in Sect. 10.5.3) while
a website built on top of Alexandria, will render the same resource as a web page. In
both cases, the Relative URI Reference stays the same—still the same resource—but
the host (and thus, the Absolute URI) handling the request differs, as in one case we
have a domain serving the resource and in the other, a website.

On the other hand, this approach limited the amount of customizations business
analysts, webmasters and editors could do to the website URIs, in order to leverage
off-the-shelf Web metrics applications, SEO practices and all sorts of tools that
use website URLs to extract business intelligence. And while it did not hamper
development and operation of any digital product, it proved to be a questionable
trade-off.

184 L. Cipriani and L. Rocha

10.5.3 Representations

The media type of choice for the Alexandria Platform is JSON [57]. It has been
widely used in the web since 2004, has built-in support in almost all mainstream
programming languages, has more than enough tools available to edit and visualize
and is perfectly human-readable, which is an asset during development.

The other options at early stages were using Atom [172] and AtomPub [98]. They
seemed a better option at first, especially to handle Articles, Comments and other
editorial content, but as we built the Platform, JSON proved to be more flexible.

Representations also have to be self-descriptive. A tendency in REST architectures
is believe this Uniform Interface constraint should only be applied to messages and
not the data being moved in the network. But designing representations to be self-
descriptive is key to leverage independent evolvability and the longevity promoted
by the architecture, making it future-compatible and robust. Specially when using a
free-format like JSON.

As an example, when implementing the Venue resource, the first proposal made
by the development team was to list each single service provided by the Venue as a
key in the document root, something like this:

{
2 "service_1": "service 1 name",

"service_2": "service 2 name",
"service_2_notes": "general notes regarding service 2"

}

While perfectly valid JSON, this implies that the client will have to have previous
understanding of the semantics to make sense of the data. There is too much coupling
and brittleness in this as it requires clients to evolve with the server, when the latter
introduces changes to the Venue representation.

A better approach, later proposed by the same team is:

{
"services": [

{
"id": "service_1",

5 "name": "service 1"
},
{

"id": "service_2",
"name": "service 2",

10 "notes": "service 2 notes"
}

]
}

While the second version of the representation is definitely more verbose, it’s also
more self-descriptive, has enough metadata to allow clients to search for what they

10 Connecting the Dots: Using REST and Hypermedia to Publish Digital Content 185

need and the introduction/removal of elements in each element does not break clients
that do not understand the new semantics.

Again, this is a basic example. But we found out that badly designed represen-
tations can and will introduce coupling, limit visibility and hinder the ability of the
platform to evolve independently.

10.5.4 Hypermedia

At the beginning of the Alexandria platform development, no JSON hypermedia link
standard [170] had emerged or was being actively advertised, therefore, we rolled out
our own format for JSON linking. Obviously, as soon as a standard emerges, we’ll
take the time to update our representations. For now, our JSON hyperlinks look like
this:

{
2 "links": [

{
"href": "http://editorial.api/articles/id-1",
"type": "application/json",
"rel": "article"

7 },
{

"href": "http://venue.api/venues/id-1",
"type": "application/json",
"rel": "venue"

12 }
]

}

This format has been in production since the launch of the platform and worked
out pretty well so far, but suffers from one problem. It advertises only one media
type per link, which is restrictive. This creates coupling as Clients might use this as
an authoritative information instead of passing what they can handle using an Accept
Header. On the bright side, it uses the resource type as a Link Relation [171] and lets
the Client pick whatever resource it wants to navigate to. This has proven to be a nice
engineering decision. It also implements the self-descriptive approach described on
the previous section, making it possible to add and remove a number of links without
breaking clients, as this is not a coupling point.

In some cases, a bit more metadata is introduced in the link structure to allow more
complex decisions when navigating between resources and to reduce unnecessary
requests. The most common case is, the web editor only wants to render the links
of resource in a “related content” box in the website page. To avoid extra requests
to each linked content just to retrieve its title or headline, we embed this metadata
inside the link:

186 L. Cipriani and L. Rocha

,

1 {
"links": [

{
"href": "http://editorial.api/articles/id-1"
"type": "application/json",

6 "rel": "article",
"title": "sample article",
"preview": "http://medias.api/media/id-314.jpg"

}
]

11 }

This has an obvious trade-off; if the headline of the linked article happens to
change, the metadata in the link will not be updated, so there’s a good chance of
“metadata rot” in doing this. The business stakeholders accepted this risk, but perhaps
the best approach for a situation like this is to implement a Partial GET, allowing the
client to specify what it wants in a query string like this:

1 GET /articles/id-1?fields=headline,preview HTTP/1.1
2 Host: editorial.api

This approach is good because it keeps consistency and leverages the Cache
constraint of a RESTful architecture.

10.6 Evaluation

In Sect. 10.2.1 we mentioned four important architectural characteristics that should
be addressed: Modularity, Extensibility, Scalability, Uniformity. So let’s evaluate
how each aspect was implemented:

Modularity is achieved with Domains and Services, each component entails a
partition of the set of features Alexandria Platform offer to its users. A relevant
trade-off that appeared by the increasing number of modules was the impact on
the operation team that needed to adapt fast to be able to handle and monitor all
the new components. Extensibility is enabled by the independence between all
Platform components and the adoption of a standard uniform interface; then one
team can build an extension inside a new component and all will be integrated with
the uniform interface. Scalability comes from the stateless nature of the components
(which is also a REST constraint) and its inherent simplicity; we also take care of
adopting technologies that have support for this requirement. Uniformity was shown
in details in Sect. 10.5, but even with all the established definitions, this aspect was
the hardest to ensure because we had several teams working in parallel when it was
being defined; so it’s a common sense for us that the uniform interface will change
to evolve as the Platform become more mature.

Section 10.3 introduced the company goals for digital content. They are more
related to the functional aspects of the Platform and the current situation is the
following:

10 Connecting the Dots: Using REST and Hypermedia to Publish Digital Content 187

• The system should be capable of extracting greater value from the content pro-
duced: we could consider that this goal is being reached gradually, since the
majority of our current work is still focused to deliver a more reliable platform
and to do maintenance in the production deployed systems. We didn’t explore the
full potential of extracting and enriching content to generate knowledge.

• The system should accelerate the processes of managing and publishing content:
is achieved by the work User Experience team have done in the Data Entries; jour-
nalists and webmasters are gaining confidence gradually with the new interface
and its evolutions;

• The system should accelerate the creation of user interaction enabled products:
Annotation Domain and Services such Social Core, Abril ID, Notifications are
the solutions available to address this goal.

From the development process point of view, despite the fact that the platform was
built to make agile delivery of new products, the experienced time to deliver was
slower than the time used for projects that used legacy systems. However this is easy
explained by the fact that the new Platform enforces constraints that were never took
into account before, such as uniform interface, robustness and performance. So we
are taking longer time, but the quality is way better than before.

From a business and cultural perspective, we faced some problems to convince
corporate users to change their mindset to a new publishing platform, given that the
legacy publishing system is much more flexible, in an aspect that they have all the
freedom to do whatever they want to (just) deliver content, but any other initiative
such as, extracting value and knowledge, expose an API, share content between
publishing houses would be broke by the legacy system architecture. We needed to
do a lot of meetings and corporate trainings to be able to change the way Alexandria
concepts and goals were understood.

All websites powered by Alexandria (at the time of writing), from January 15th
2013 to February 14th 2013, delivered 12.5 million pageviews. The most used do-
mains, Editorial Domain (that serves articles) has an average throughput of 4130
requests/minute; Midia Domain (servers images, videos) has an average throughput
of 4730 requests/minute. We consider our infrastructure stable.

From a perspective of how the concepts of REST are understood by developers,
the same frustration cited by Roy Fielding in the blog post “REST APIs must be
hypertext-driven” [79] applies to us. This misunderstand that happens with REST
principles was a factor that indirectly influenced the teams to make some wrong
design decisions in the code base. Our experience showed to us that spending some
time explaining and coaching teams about the principles could eliminate some in-
consistencies, developer frustrations and doubts about the real advantages of doing
the system with that constraints.

188 L. Cipriani and L. Rocha

10.7 Conclusion

After 3 years developing the Platform and digital products on top of it, we can pretty
much state that the promise of extensibility, uniformity, modularity, scalability and
independent evolvability associated with adopting REST as the Platform architectural
style has paid off.

We made our fair share of mistakes and bad decisions. A few driven by business
pressure and a few from bad design or engineering decisions. But overall, the proper-
ties we wanted and expected were realized and, with that we have a resilient enough
Platform to evolve together as our business strategy evolves.

Some of the bad choices will get fixed eventually and some will not and the
Platform will live with it. It is impossible to have a picture perfect architecture and
still implement all that the business needs and desires. Most, if not all, of our trade-off
are well known, though, which makes working with this decisions easier.

10.7.1 Lessons Learned

There was a lot to be learned building the Alexandria and there will be a lot more
to in keeping it up to date for years to come, specially considering how quick the
digital media business changes. Below is a list of what we learned in this first years
of Alexandria and consider the most valuable lessons so far.

10.7.1.1 Robustness Over Protocol Optimization

The protocol is the set of rules and guidelines that determine how distinct parties
communicate back and forth. On a system of systems platform likeAlexandria, which
consists fundamentally by heterogeneous parties communicating back and forth, the
protocol is of utmost importance. And in a platform where the heterogeneous parties
are encouraged to evolve independently from each other, the chosen protocol must
be flexible and robust.

We learned that picking flexible protocols have trade-offs on its own. Robustness
and flexibility comes with a price that forbids local optimization of the protocol. To
allow a protocol to favor a use case or system will, invariably, hurt all other systems.
In some sense one can argue that flexibility and robustness is, itself, an optimized
state.

The truth is that trying to preview what changes and business needs the platform
will be supporting is an exercise in futility. Digital media is a shifting business and
the platform has to be able to support it for as long as it is in production. Alexandria
must be future-proof.

One of the choices we did regarding protocol robustness was picking JSON instead
of Atom and AtomPub as the Media Type of the Alexandria. While there’s nothing
absolutely wrong with Atom, it was a great fit for our need at the time, which was

10 Connecting the Dots: Using REST and Hypermedia to Publish Digital Content 189

publishing articles and associated media. But exercising a little creativity, we saw
that if we needed to evolve it a little bit to support future Alexandria needs, like
Venues and Notifications for example, it would require us much more effort to fit
it in Atom. Atom was optimal for basic content, but it would be a bad fit for other
things we believed we’d have to implement.

On the other hand, JSON wasn’t a great fit for our (at the time) need. But its
loose format would allow us to model it in any shape we wanted, making it a great
future-proof choice, even if we had to develop some tools that Atom already had.

REST is a long term bet We believe that the duration of our effort and the time spent
discussing and elaborating specifications proved to us the trueness of the following
Roy Fielding quote in one of the comments of a blog post: “REST is software design
on the scale of decades: every detail is intended to promote software longevity and
independent evolution. Many of the constraints are directly opposed to short-term
efficiency.” [79]

It is still hard for us to enforce REST constraints for projects that should be de-
livered in short-time and has lower relevancy for the company. The most difficult
aspect to be enforced is the Uniform Interface that is frequently stated as implemen-
tation overhead. The drawback generated by systems that don’t respect the interface
is incoherence and decrease of integrability of the systems. The interesting is that in
some cases, assuming these risks isn’t a bad idea and a later refactor of the project
after gaining more business maturity is a better way of dealing with this lesson.

We consider that our scenario fits very well in the REST constraints and the initial
assumptions of the process of building the whole platform never considered a short-
time to execute. Therefore, we placed the bet and we yet haven’t any critical reason
to think we are losing.

The protocol interface and metadata must be kept sane Sometimes, in order to
deliver something fast or to avoid what was perceived at the time as over-engineering,
we are compelled to abuse or introduce small but significant changes to our metadata
or the interface. From a single system viewpoint, stuff like that doesn’t look like a
major crime. As a matter of fact, this little changes never lead to systems crashing,
databases being corrupted or anything like that.

But as interfaces and metadata rot, any agreements and conventions previously
established will rot with them. This slowly increase the maintainability costs of the
whole architecture as it creates precedents to introduce small abuses in other systems,
raises the cost of integration and the need of abstraction layers between systems and,
to make matters worse, making increasingly harder to prevent rot.

Alexandria documents, for example, have a metadata called “status” to control
whether a document is available or not to the platform. This is not a business def-
inition, is an architectural one. Domains are supposed to deliver only available
documents if the client system doesn’t ask for a specific status. One of our domains,
at a given moment, implemented a state machine on top of the “status” metadata,
which in turn, changed the behavior of the domain API and breaking the convention.
The impact of this in all other systems was small at the time as it was a little more

190 L. Cipriani and L. Rocha

painful to integrate with this Domain in particular, but eventually led to some Do-
mains trying (and being denied) to implement business-specific states into a metadata
that was supposed to control a system behavior.

This does not means that there should be no evolution to the set of interfaces
and metadata of the whole platform. But this should be done considering the whole
ecosystem and not to optimize one system locally. The common interfaces and meta-
data are the tools in place to keep the system of systems glued together and thus must
be kept sane.

Documentation is a must have Because REST is simpler than the SOA model
based on SOAP and the WS-* standards, we assumed in the beginning that a very
thorough documentation wouldn’t be needed. Developers would just get REST and,
in doubt, would look for the adequate RFCs for clarification on Headers or whatever
made them confused. It was a mistake.

First of all, there’s a lot of misinformation in the Web about REST. This alone
already leads to a significant problem of understanding and communication. Also,
different people with different past experiences and professional backgrounds will
have different, and some times conflicting, interpretation the specs.

Second, and most important, REST defines a style of architecture to build
hypermedia-driven systems. That’s all. Everything else, how documents will be
represented, which (and how much) metadata will need to be added to documents,
in order to make them usable to any one in the ecosystem, how will a document
declare its type and why should be care about a self-descriptive document, all this
things need not only to be defined and agreed upon, but be clearly communicated to
all developers and professionals that work with the platform.

At last but not least, decisions must be documented, including the trade-offs, to
allow any one to revisit.

What we learned is that documentation is a must have in a large-scale distributed
system like Alexandria. And while it is possible to build a system this size without
documentation, the amount of time wasted by not having it will quick add up in cost.

Monitoring is an unceasing effort Single applications or small-scaled systems
have well defined nodes and interactions, known bottlenecks and, most of the time,
developers and software architects are aware of those bottlenecks. Large-scale, dis-
tributed systems don’t. This kind of system have too many moving parts, too many
contact surfaces between subsystems and, as a consequence, performance hits and
bottlenecks shift depending on how the whole system is being demanded.

The need to find and address performance bottlenecks inAlexandria began as soon
as the first products were being delivered in production. We found out that without
widespread monitoring of all systems of the platform, it would be impossible to
understand what was causing a hit, whether it was a single system responsible for a
perceived performance degradation or if it there were more systems to blame. It was
also very hard to trace back an improvement to a set of changes or to visualize any
side-effects caused by a new feature or a system update.

The bottom line is that there’s no purpose in building a platform that hampers the
development of new, novel digital products. But novel products will almost always

10 Connecting the Dots: Using REST and Hypermedia to Publish Digital Content 191

require you system to interact in unexpected ways, leading to unforeseeable effects.
To be able to adjust to this effects, this flexibility comes with the price of not knowing
beforehand where there can be a performance bottleneck or even a rupture to a system.
The only way to deal with this, to understand what is going on and to react to any
undesired behavior, is to monitor and measure continually and unceasingly.

10.7.2 Future Improvements

Besides delivering new features to support business requirements, there are two
improvements in line to be implemented in the architecture of the Platform, they are:

Better HTTP Network Interface vanilla HTTP libraries found in most program-
ming languages are limited in the way they use the network. Few implement HTTP
Keep-Alive and most, if not all, do not handle parallel requests in an efficient man-
ner. While the properties of the architecture guarantee that we will be able to scale
horizontally if the need comes, as our systems gets bigger with addition of more
Domains and Services, perform HTTP request more efficiently will be crucial to
keep network costs low and client-server efficiency high.

Web Semantics the next step in self-descriptive messages is add semantic context
to our resources. This will add an important dimension in our Platform, as it will
improve the wayAlexandria delivers content to both human users (journalists, editors,
webmasters, end-users) and machines (services, external clients), using context-rich
tools instead of plain and simple keyword matching.

The properties achieved by applying the REST constraints and the nature of the
architecture gives us the flexibility to add this improvement in an incremental and
reliable way.

Chapter 11
In-Process REST at the BBC

Marcel Weiher and Craig Dowie

11.1 Introduction

In the summer of 2003, the authors were hired by BBC News Interactive as team
leader and technical architect to head up the so-called Sport Stats team and improve
or replace the system the team was responsible for, a feeds processing platform for
transforming structured XML information of live sporting events to HTML output
for the BBC website in soft1 real time.

The reasons for replacing the existing system were manifold: it was quite resource
intensive, effectively unmaintainable, extremely unreliable with usually several fail-
ures per day and not capable of actually keeping up with the feeds in real time,
sometimes getting backlogged by several hours or failing completely.

In addition the team itself, consisting primarily of junior level programmers, was
shell shocked by working on a system where every code change would almost in-
variably lead to new failures, and of course the BBC Sports Interactive editorial team
was also not happy with the services provided, and though there were requirements
for new services, new sports and new output media such as the UK Teletext system
Ceefax or Wireless Application Protocol (WAP) for pre-smartphone mobile phones,
achieving those goals with the current system seemed impossible.

In the process of replacing the system, we discovered that our design princi-
ples drove us away from the very typical enterprise architecture we had originally
envisaged towards an architecture that appeared very REST-like, despite not being

∗ The bibliography that accompanies this chapter appears at the end of this volume and is also
available as a free download as Back Matter on SpringerLink, with online reference linking.

1 Results degrade significantly in value if they are late, but lateness does not constitute total system

failure (hard real-time) or reduce the value of results to zero (firm real-time).

M. Weiher (�)
Metaobject Ltd., 26 York Street, London W1U 6PZ, United Kingdom
e-mail: marcel@metaobject.com

C. Dowie
Betfair, The Waterfront Winslow Road London, London W6, United Kingdom
e-mail: craig.dowie@betfair.com

C. Pautasso et al. (eds.), REST: Advanced Research Topics and Practical Applications, 193
DOI 10.1007/978-1-4614-9299-3_11, © Springer Science+Business Media New York 2014

194 M. Weiher and C. Dowie

distributed. As we embraced some of these REST-like qualities, our system became
simpler, faster and more robust.

The remainder of this chapter will describe the task to be solved, describe the
original system and analyze its shortcomings (Sect. 11.2). Then we describe the
overall architecture (Sect. 11.3) and implementation (Sect. 11.4) of our replacement
system. After presenting the results we got in Sect. 11.5 and performing a more
in-depth evaluation in Sect. 11.6. we conclude with a look at related work and a look
at possible implications of our work.

11.2 The Task and Its First Solution

The BBC uses feeds from different sports data providers to deliver basic sports
information such as schedules, scores, tables and live updates during matches. This
information is provided using XML files, which are provided via FTP, ingested into
the system and used to update an internal model of all the sporting events and their
associated metadata, such as teams, players, leagues and competitions.

Arrival of data not only causes updates to the model, but also trigger output of the
pages affected by the incoming data. Pages are written to a dedicated export system
that is mirrored to the live-servers that serve static HTML pages.

11.2.1 Version 1

The existing system that was to be replaced was SportStats version 1, the replacement
project was SportStats version 2, or just v2 as the team tended to call it. Version 1
consisted of more than 100 processes, instances of 8 different types of programs,
running on 10 Windows machines, all backed by an Oracle SQL database server
running on a Sun SPARC server.

The central components of the system were implemented in around 40 thousand
lines of Objective-C code using version 4.5 of Apple’s WebObjects2 web application
server, Enterprise Objects Framework Object Relational Mapper (ORM) and several
helper programs written in Perl, mostly for fetching files from FTP servers and
moving them to different feed directories.

A number of Populator processes would watch the feed directories, parse any
XML files found there, populate the database with the information and queue up
trigger information for Builder processes. The Builder processes would poll the
database for these triggers, and then use HTTP requests to Renderer processes to
actually generate the HTML, capture their output and then place the generated files
on an output file system, along with metadata that would tell the output processes
(part of the BBC infrastructure and not part of SportStat) where to place the HTML
files on the live site.

Figure 11.1 is part of the original documentation of the v1 system and is included
to illustrate the complexity of the system as deployed. It shows the processes involved
in generating a small part of the football site and only includes the Populator and
Builder processes for that part of the site, Renderers are not included.

2 http://www.apple.com/ca/webobjects/

11 In-Process REST at the BBC 195

Fig. 11.1 Original diagram describing part of the deployment architecture of v1

The Renderer processes had MVC-style templates for each different kind of
HTML page produced. The URLs used to interact with the Renderer processes also
reflected the MVC style, effectively encoding the template kind, not the location of
the document in the output.

Due to the fact that WebObjects is an web application framework, actually pro-
ducing HTML output was considered part of the view, and owned by the framework’s
request/response loop. This made republishing difficult in case there was an incon-
sistency on the site: the only way to republish a page was to rerun the feed input and
hope that it would trigger the output again.

As mentioned earlier, rendering was quite slow, taking anywhere from two seconds
to two minutes to generate a single page, and that’s not counting the time taken by
the FTP processes, Populators and Builders. Adding more machines and processes
didn’t seem to improve the situation.

The whole system had no automated tests.

11.2.2 Analysis

A couple of things stood out immediately. First, there simply is no good reason why
generating around 100 kb of HTML should take two minutes, or over a millisecond
per byte on 1 GHz class machines.

Second, there were way too many boxes and processes, and these were not helping
performance, but hurting it. Another problems was the overuse of the relational
database, not just for sports data, but also to act as a message queue. One of the
reasons adding machines never helped was that the database server was saturated at
100 % CPU and I/O load.

196 M. Weiher and C. Dowie

���������	
��
����������������
�������
�������������
�������
�

��������
����������� ������!�
�
"� ��#�$�����%�	����&����#�
�

machine process

page-type arguments

Fig. 11.2 URLs used in SportStats v1

While use of SQL databases was pretty much standard in enterprise settings,
we were getting very little actual benefit from the database: since we were not
the originators of the data, but just republishers, we couldn’t really maintain any
sort of meaningful integrity even if we wanted to. Additionally, sports data is highly
irregular, so relational modeling proved impractical for most data, which was instead
maintained as serialized dictionaries that were stored as BLOBs in the database.

While the use of URLs by Builders to request specific HTML from their Render-
ers seemed promising in terms of RESTful implementation, in practice it combined
the worst of both worlds: the URLs (see Fig. 11.2) were dictated by the application
framework and action-oriented rather than resource-centric, specifying the process
and specific page-type to render rather than the document’s location, which was
specified elsewhere. On the other hand, the way the application framework had en-
capsulated URL handling and the request/response loop meant that generating HTML
pretty much required the two separate Builder and Renderer processes mentioned
above.

What we wanted was the exact opposite: resource-oriented URLs, but only a
single process, rather than action-oriented URLs with multiple processes.

11.2.3 Solution Sketch

Since performance was a major goal of the rewrite and a message-send inside a
process is around 1 million times faster than a network hop (nanoseconds vs. mil-
liseconds), one of the main aims of the rewrite was to keep as much processing inside
a single process as possible. Another impetus for this was the desire to construct the
system using a Test Driven Development (TDD [21]) style, which also strongly favors
having all functionality unit-testable, rather than having system-level or integration
tests.

Although we wanted to keep using the web application framework in question
for example in order to make use of the templating system that was well known
within the organization (though updated to the 5.0 version based on Java instead of
Objective-C), we wanted to have URLs that reflected the final output’s document
structure rather than program structure.

11 In-Process REST at the BBC 197

Core
Application

"Business
Objects"

H
TT

P
ad

ap
te

r

FT
P

ad
ap

te
r

TDD Adapter

Unit tests

XM
L

ad
ap

te
r

te
st

 fe
ed

s

WWW

Disk feed
storage

H
TM

L Adapter

disk adapter

BBC
Website

Ceefax

TM
L Adapter

XML FTP
feeds

Fig. 11.3 Hexagonal Architecture

Due to the irregular structure of sports data mentioned above, modeling was to be
object-oriented instead of relational. The SQL database would be used as a key-value
store with minimal structuring, and we would keep all the original feed data in order
to have full accountability and traceability.

Although we expected the architecture to help with our performance goals, we
expected most of the gains to come from improved code quality, which experiments
with the v1 system and selected implementation spikes for the new architecture
confirmed as feasible.

11.3 Architecture

Our desire for performance and testability drove us towards what is now known as
Hexagonal Architecture3, also known as Ports and Adapters: all relevant functionality
is provided as callable and testable APIs in the system’s programming language, so
in our case Java. All interfaces to the outside world, be they input, output or data
storage, are provided via thin and semantic-free wrappers. Figure 11.3 shows the
architecture adapted to the SportStats v2 system.

3 http://alistair.cockburn.us/Hexagonal+architecture

198 M. Weiher and C. Dowie

v2 running on nolparser08

preview
(http)

ftp.bbc.co.uk
feed files
check every 5 seconds
(ftp)

nolmcs01

status
(http)

site files (stm/inc)
PUT files
(SMB mount)

live servers

FTP publish queues

SportStats

Fig. 11.4 Deployment architecture of SportStats v2

By keeping functional units in-process, the deployment architecture of SportStats
v2 could be dramatically simplified. Figure 11.4 is part of the original v2 docu-
mentation showing the complete deployment architecture of SportStats v2: a single
machine running a single Java process processing both the input feeds and providing
monitoring. Compare this to Fig. 11.1, which shows just a small part of the v1 system,
whereas the v2 diagram was actually expanded a bit to show machines responsible
for monitoring and other infrastructure in order to have more than a single box.

11 In-Process REST at the BBC 199

SiteMap:
Football

Site

fixtures

players

teams

siteUpdate
(PUT)

FeedProcessors

FeedTransaction

sportUpdate
(PUT)

Pages

OutputBridge:
HTMLGET

Fig. 11.5 Internal architecture of SportStats v2

In keeping with the XP best practice of only implementing what is absolutely
necessary, we discovered that after we had implemented the feed reader (necessary)
and the internal model (necessary), we actually had a working system without ever
getting around to hooking up the database, which we promptly removed from the
architecture.

Since we were keeping a safety log of the incoming feeds and processing those
feeds was very quick, we could recover our initial state by simply replaying those
feeds to the system with output disabled.

This architecture, with an in-memory model and an external source of events
that affect the model and can be replayed was later given the name EventPoster4

by Martin Fowler, so what we really have is a combination of EventPoster and
Hexagonal architectures, two styles that fortunately aren’t inconsistent with each
other.

Keeping to the theme of simplicity, we wanted our internal structure to map as
directly to our result as possible. Figure 11.5 shows the result using the example of
a Football site: the core application consists of a Sport object and a SiteMap. The
former models all the background information about a particular sport, the latter the
actual output that is supposed to exist on the live servers.

Following the hexagonal architecture and our desire for simplicity, the objects that
the Sport maintains are essentially 1:1 representations of the XML feeds received,
whereas the SiteMap is a 1:1 representation of the particular website. All semantically
relevant transformations occur between the Sport and the SiteMap, without any
reference to external representations.

4 http://martinfowler.com/bliki/EventPoster.html

200 M. Weiher and C. Dowie

The FeedLoop (not shown) drives individual FeedTransactions through the sys-
tem, from the input ports through the core system to the output ports. URIs are the
lingua franca used throughout the system: they define which files need to be fetched,
which nodes of the SiteMap need to be updated, for which nodes new output needs to
be generated and where that output needs to be written. The FeedTransaction keeps
track of these changing sets of URIs as processing ripples through the system.

It should be noted that the externally imposed interfaces of the system are not
those of a traditional RESTful server: rather than waiting for either PUT/POST or
GET requests, it both actively pulls source data via FTP and actively pushes results,
also via FTP.

Had we followed the REST style in a more traditional fashion, both the Sport
object and the SiteMap object would have been modeled as REST servers running in
separate processes, with the FeedLoop an external process that manages the URIs and
drives the other components via HTTP. However, this seemed like complexity that
was both wholly unnecessary and also conflicted with our goals of unit-testability
and performance, so we instead moved those APIs in-process.

Figure 11.6 shows the evolution of the architecture from the process- and database-
centric structure in V1 via a more traditional multi-process REST-like architecture
to the single process that we ended up with.

The initial move to a more RESTful architecture sees a reduction in the number of
processes and a move away from active processes and passive data-stores to servers
that actively model/manage specific types of data and provide document-centric
interfaces for them.

Many of the architectural benefits we saw came from switching to a RESTful
architecture, but there didn’t seem any good reason for requiring multiple processes
just to adhere to the idea that RESTful interfaces must match up to process boundaries,
so our final step was to simply move those interface into the process.

Figure 11.7 shows two FeedTransactions as displayed by the system’s HTML
logging console, which simply runs as another port into the core system. For each
FeedTransaction it shows what input files were processed and what output pages
were affected, in addition to various timings that give an indication of whether the
system is healthy or not. All the affected pages listed are clickable hyperlinks that
are rendered live by the system from its internal state.

11.4 Implementation

The architecture just described was implemented as a single Java application us-
ing the WebObjects 5 web framework with a total of around 10 thousand lines of
production code and 2000 lines of testing code in more than 200 individual tests.
More precisely, the architecture was discovered incrementally as we implemented the
system following our guidelines and principles as well as the business requirements.

There is no database, no RPC or distributed processing of any kind and no multi-
threading of the processing loop. In-memory performance is so much faster than I/O
that multi-threading was simply not necessary. Deployment is a single java archive
(JAR) along with a platform specific script to run the JAR.

11 In-Process REST at the BBC 201

Sport:
Football

SiteMap:
Football

Site

siteUpdate
(PUT)

FeedProcessors

FeedLoop and
FeedTransaction

sportUpdate
(PUT)

OutputBridge:
HTML

GET

Populator

Sport DB
(SQL)

Disk
Directory

Feed
Ingest

FTP
Directory

Generator

Renderer

Web
Server

Directory

pollpoll

poll

HTTP GET (RPC URLs)

read

write

processes

storage

Site Server

Site

V1, multiple processes, not RESTful

V2 RESTful, multiple processes

V2, RESTful interface in-process

Sport Server

Sport
Data

FTP
Directory

poll
Web

Server
Directory

write

HTTP GET

Ingest/Generator/Populator

FTP
Directory

poll

Web
Server

Directory

writeHTTP PUT HTTP GET (Document URLs)

Fig. 11.6 Architecture evolution from processes to In-Process REST

202 M. Weiher and C. Dowie

Recent Transactions

Page : 20 of 21

previous
next

Transaction times:
Start: 2005-01-15 15:42:07
got file list: +172 ms = 172 ms
Updated internal structures: +5156 ms = 5328 ms
pages generated: +156 ms = 5484 ms
output to SOLFilePutter on: \\nolmcs01\inetpub\wwwlive\: +1563 ms = 7047 ms
Read I/O time: 5140 ms (subtract from "update internal structures" to get processing time)
feed files:

matchlive_2391765_20050115154132.xml
matchlive_2393234_20050115154132.xml
matchlive_2391748_20050115154129.xml
matchlive_2393235_20050115154129.xml
matchlive_2391749_20050115154128.xml
matchlive_2391764_20050115154129.xml
matchlive_2391780_20050115154126.xml
matchlive_2391766_20050115154127.xml
matchlive_2391758_20050115154124.xml
matchlive_2393238_20050115154138.xml
matchlive_2391747_20050115154138.xml
matchlive_2391768_20050115154136.xml
matchlive_2393234_20050115154136.xml
matchlive_2391776_20050115154134.xml
matchlive_2393238_20050115154134.xml
matchlive_2393236_20050115154134.xml
matchlive_2391744_20050115154134.xml
matchlive_2391760_20050115154133.xml
matchlive_2391769_20050115154133.xml

affected pages:

/sport/hi/english/static/football/statistics/teams/b/brentford/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/s/swansea_city/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/l/leeds_united/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/b/blackpool/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/p/port_vale/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/p/plymouth_argyle/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/c/coventry_city/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/b/barnsley/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/d/dundee_utd/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/t/tranmere_rovers/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/m/mansfield_town/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/h/heart_of_midlothian/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/k/kilmarnock/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/d/dunfermline_athletic/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/c/chester/commentary_hi.inc

/sport/hi/english/static/football/statistics/teams/i/inverness_ct/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/r/rochdale/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/h/huddersfield_town/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/m/motherwell/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/h/hartlepool_united/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/t/torquay_united/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/w/wrexham/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/c/cambridge_utd/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/d/dundee/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/s/swindon_town/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/c/chelsea/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/i/ipswich_town/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/t/tottenham_hotspur/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/g/gillingham/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/c/cardiff_city/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/r/rangers/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/p/peterborough_united/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/w/wycombe_wanderers/commentary_hi.inc
/sport/hi/english/static/football/statistics/teams/h/hull_city/commentary_hi.inc

Transaction times:
Start: 2005-01-15 15:42:05
got file list: +235 ms = 235 ms
Updated internal structures: +1531 ms = 1766 ms
pages generated: +31 ms = 1797 ms
output to SOLFilePutter on: \\nolmcs01\inetpub\wwwlive\: +125 ms = 1922 ms
Read I/O time: 218 ms (subtract from "update internal structures" to get processing time)
feed files:

m2392877_20050115_154142.4740.xml

affected pages:

/mobile/bbc_sport/football/other_scottish/div_1/results/index.wml
/mobile/bbc_sport/football/other_scottish/div_1/results/rd0.wml
/sport/hi/english/static/football/statistics/scot_div_1/live_hi.inc

Transaction times:
Start: 2005-01-15 15:41:54
got file list: +203 ms = 203 ms
Updated internal structures: +4266 ms = 4469 ms
pages generated: +125 ms = 4594 ms
output to SOLFilePutter on: \\nolmcs01\inetpub\wwwlive\: +1438 ms = 6032 ms
Read I/O time: 4266 ms (subtract from "update internal structures" to get processing time)
feed files:

matchlive_2391779_20050115154124.xml
matchlive_2391753_20050115154123.xml
matchlive_2391757_20050115154123.xml
matchlive_2393234_20050115154120.xml
matchlive_2391756_20050115154122.xml
matchlive_2391750_20050115154120.xml

Fig. 11.7 FeedTransaction log

The architecture diagram in Fig. 11.5 is organized by the FeedTransaction that
moves data through the system. In what follows, we will use the same organization
to explain the implementation in more detail.

11.4.1 Feeds and Domain Objects

Incoming XML feeds are converted to mostly data-bearing domain objects such as a
Player, a Team, and a Fixture by various individual FeedProcessors. After generating
the domain objects, the processors pass them on to their corresponding Sport objects
via the SportUpdate interface.

Specific Sport objects such as Football or Cricket maintain all that is known about
a particular sport, in essence they store all the most current versions of the incoming
feed data.

11.4.2 SiteMaps

Each of several SiteMap object holds a tree of PresentationObject objects that
represent the actual pages the system should generate for a particular site. Each

11 In-Process REST at the BBC 203

PresentationObject object is connected to its parent, recursively up to the root object
of the tree, and can potentially have named child objects, just like a filesystem. The
SiteMap objects have methods finding PresentationObjects by URI (public Presen-
tationObject presentationObjectForUri(String path)), but tree management itself is
outsourced to the PresentationObjects themselves.

A MultiSite allows different sites to be combined into a single composite site,
similar to the Unix mount command.

The different Sport objects maintain state in their respective SiteMaps via the
SportUpdate protocol, which usually updates single PresentationObjects with a new
domain object, essentially like an HTTP PUT. Each modified object notes its paths
as having been modified in the FeedTransaction.

Effectively, the SiteMap is a complete, fully expressed model of the web-site we
wish to maintain, but stored in memory. This in-memory web-site gets set up once
at startup and afterwards gets updated via the equivalent of PUT requests, and when
updates are complete, gets mirrored to the actual web-site using the bridges.

11.4.3 Bridges and Templates

Once all the updates to the internal model have been performed, the FeedTransaction
proceeds to generate the output for all the PresentationObjects that have changed.
To do this, it uses the list of changed URIs to effectively perform a GET against the
respective SiteMap, but this time via an OutputBridge. The OutputBridge in turns
uses that URI to fetch the PresentationObject in question and then does bridge-
specific processing to generate an output-representation, in the case of HTML it
applies an HTML template.

This corresponds closely to the role of the Builder processes in SportStats v1,
and in fact even the processing performed is very similar: an HTML template with
variables is applied to PresentationObject and the result returned. However, the
semantics are quite different, in v1 a specific type of page-renderer was asked to
create a type of HTML page, whereas in v2 we are simply retrieving a resource, a
page of our site that we want in a specific representation. In addition, v2 does all of
this processing in memory, whereas in v1 the Builder process had to send the URI
to a Renderer process.

The need to run in memory was driven primarily by the requirement of having a
completely unit-testable system. Having to run in memory required major surgery
to parts of the web framework in order to decouple the rendering from the request
handling, because we needed to render HTML templates without having an external
request. Having removed the request handling, we no longer had framework-defined,
action-oriented URLs to deal with, but instead were faced with the task of having to
define what those URLs should look like ourselves, and in this case, why not make
them document-oriented instead?

Once we were running in memory, we noticed that performance was simply no
longer an issue, so we could simplify the system down to a single process, running
only a single processing thread.

204 M. Weiher and C. Dowie

11.4.4 Ceefax and WAP

Ceefax, the BBC’s videotext system which ran from 1974 to 2012, was straightfor-
ward to support, despite having a completely different structure. Ceefax, which is
transmitted in the vertical blanking interval of analog television sets, is organized
into numbered pages, each of which has a fixed 40 character by 24 row format. The
individual pages are defined in a binary-coded format similar to terminal control
sequences, so nothing like HTML.

After defining a simple one-level URI namespace for Ceefax pages and a spe-
cial output mapper that translated our Videotext Markup Language into command
sequences for the Plasma system that maintained Ceefax, working with Ceefax was
just like working with the website: the Sport would update the SiteMap representing
Ceefax pages, and those pages would then get mirrored to the Plasma system.

The Wireless Application Protocol (WAP) was even more straightforward to sup-
port than Ceefax, due to the fact that the Wireless Markup Language is just an XML
dialect and could therefore be supported using our existing templating logic.

11.5 Results

SportStats v2 was highly successful in meeting its goals, improving on the original
system in all key metrics, sometimes significantly, as shown in Fig. 11.8.

Performance was improved an average of 200-fold, so the system was no longer the
bottleneck and instead started putting a strain on other parts of the BBC infrastructure
that so far had been shielded from the onslaught of real time sports data by the
weakness of the old system. For example, we started hitting the ephemeral port
limitations of the standard FTP protocol that was used both on the feed input and
page output side.

It should be noted that the application code itself received hardly any optimization
work, at times being almost willfully non-optimized. The performance gains we
experienced were due almost exclusively to the architecture in question, allowing
day-to-day work to almost completely ignore performance concerns.

Major failures, which had previously been an almost weekly occurrence disap-
peared almost completely. The three failures that did happen over the course of two
years were the following:

1. A Java VM configuration error. The team’s experience with Java deployment was
limited so no one knew that the default maximum heap size for a VM was only
64 MB. Since we had an entire machine to ourselves we subsequently set the heap
size to 2 GB and never had a problem again.

2. UI code that hadn’t been unit tested and had a significant bug, made worse by hav-
ing untrained users interact with the buggy UI. We learned more about factoring
out the functionally significant parts of UI code into unit-testable parts.

11 In-Process REST at the BBC 205

0

15

30

45

60

75

90

105

120

135

150

Sports Output Media KLOC Machines Processes Pages/s CPU % Failures/year

V1 V2

Fig. 11.8 Comparison of V2 with V1

3. A hiccup in our incoming FTP chain caused feed files to back up. Once the files
had piled up, our I/O bandwidth was insufficient to catch up. We implemented an
addition to our FTP processor that identified obsolete data in the FTP directory
by filename alone and deleted old files if newer data was also available at the
same time. The same technique was also used to prune the feed archive.

206 M. Weiher and C. Dowie

Nice side effects included that both code bulk and resource usage were reduced
drastically, from 40 KLOC to 10KLOC and from 10 machines to only one required
for the system, though we eventually deployed on two machines in order to have
a failover option. Relieving the team from emergency response and repair work
allowed much more editorial work to occur, adding new sports, competitions or
output media, but more importantly it also boosted team morale, confidence and
productivity.

11.6 Evaluation

Although we did not set out to apply REST principles in-process, and in fact most
of the team hadn’t even heard or never mind read Fielding’s thesis [76], our other
architectural goals and principles slowly pushed us into that direction: on the one
hand, a REST-like approach promised to greatly simplify our system, on the other
hand staying in-process greatly increased testability and performance and further
reduced complexity.

The idea of organizing mutable application state as resources that can be navigated
using paths and queried/updated using clearly defined operations like GET, PUT and
POST, with similar semantic guarantees seems very powerful to us. Having such a
store, where objects have place in addition to identity has obvious organizational
benefits, and building a system in this way shouldn’t require splitting it into multiple
processes, just so communication can be HTTP between processes. Having the in-
memory representation be the primary one generally makes domain modeling [71]
easier, and certainly did in our case.

11.6.1 REST Constraints

The REST architectural style consists of a number of constraints. Here, we discuss
to what extent SportStats v2 did or did not adhere to those principles and what the
impact was.

Client-server This is the constraint we purposely did not adhere to, at
least in the traditional sense of client and server being
separate computers or at least processes: our FeedTrans-
action object is the client, the SiteMap and Sport objects
the servers, and they all co-exist in the same process.
However, having objects stand in for actual computers
is one of the quintessential features of object-oriented
programming: “Smalltalk semantics are a bit like hav-
ing thousands and thousands of computer all hooked
together by a very fast network” [117]. By this defi-
nition, we have adhered to the client-server constraint,
even if we do not have separate client and server com-
puters.
Determining whether either definition of client-server

11 In-Process REST at the BBC 207

Stateless The state of the transaction is fully contained in the
FeedTransaction object, the servers do not maintain any
of this state though they are modified in response to it.

Cacheable The fact that the servers are stateless makes them
cacheable. In fact, an experimental version of the sys-
tem that directly served HTML to clients rather than
pushing it to distribution servers added a cache for
the generated HTML, thus pushing performance to the
tens-of-thousands requests per second.

Layered system Our internal SiteMap were actually later combined into
MultiSite objects that distributed incoming requests to
their sub-sites, with clients being no wiser as to whether
they were dealing with a MultiSite or a SiteMap.

Code on demand (optional) This optional constraint was not applicable to our
system.

Uniform interface Using URIs uniformly throughout the system was one
of the driving factors of the design and had the most vis-
ible benefits, such as introspection, ease of construction
and maintenance, logging and debugging.
However, we did not apply this principle as uniformly as
we would have liked. For example, the connections be-
tween the Sport objects and both the feeds themselves
and the SiteMap were standard Java interfaces rather
than actual PUTs with URIs and update objects.
Hypermedia as the Engine of Application State (HA-
TEOAS) was at least partially adhered to, as the
FeedTransaction’s state consisted mostly of URIs that
indicated what pages to fetch and where to deliver them,
and those URIs were provided by the servers. These
URIs did not contain the next action to take, that was
hard-coded in the FeedTransaction, but the actions were
really trivial: push update, fetch changed URIs, fetch
results from URIs.

Overall, we were able to adhere fairly closely to the REST constraints as outlined, and
adhering to those principles made our system better despite not being a classic HTTP-
based client server system. The question becomes whether client-server needs to be
defined in the classic networking sense for REST-conformance or can be loosened
to the object-oriented definition of client-server.

This adherence to the REST constraints mostly applies to the in-process interfaces
we have been discussing. Our external interfaces were pre-defined legacy and not
RESTful at all, with the system actively pulling and pushing data via FTP, rather
than being a server responding to GET and PUT/POST requests. Although the down-
stream interface could easily have been converted to use HTTP GET, and in fact was
for monitoring and as an experiment, the upstream interface actually benefitted from
active polling: combining multiple new feed files into a single transaction smoothed

208 M. Weiher and C. Dowie

out both load spikes and service interruptions, and allowed our downstream infras-
tructure to throttle the load produced by our system. Reacting to every individual
feed file sent via a POST would have drastically increased our downstream load,
possibly beyond the capacity of the available infrastructure.

11.6.2 Drawbacks

One of the drawbacks of this approach was that the URIs that essentially become
the identifiers used in our system were mostly strings, which had to be processed at
runtime and passed as arguments to methods dealing with them. Having language
support for user-defined, rich identifiers in URI form would have been very helpful.

Another disadvantage of our approach is that the application state must actually
fit in memory. Apart from configuration errors, this turned out not to be a problem
for us, and with multi-gigabyte main memories now standard equipment, even com-
modity hardware is able to accommodate a large subset of applications. Restoring
application state from secondary storage can be more problematic: our system some-
times required over a minute to re-read its archived feed, but this was sufficiently
fast for our requirements that we only performed very rudimentary optimizations.

11.7 Related Work

The lack of scalability of database- and I/O-centric architectures has recently led to
developments such as the memcached 5, caching layer, which is often seen as crucial
to the scalability of popular website, but also requires modification to actually handle
the load6. In fact, it is so crucial that in the end, the caching layer often becomes
the primary storage mechanism, at which point the complexity of the tiered system
becomes increasingly questionable.

Project Voldemort is one attempt at reducing this complexity by designing for
in-memory operations from the start.7 Storage is pluggable and needs not be disk-
based. VoltDB8 similarly claims massive reductions in complexity and increases in
performance by designing a relational database from the start for (single-threaded)
in-memory operations. A project taking this type of approach much further than we
did is the LMAX trading system created by Betfair and described by Martin Fowler9.
They claim 6 million transactions per second throughput on commodity hardware.

However, none of these in-memory systems appear to have adopted a REST-like
internal storage model.

5 http://memcached.org
6 http://www.facebook.com/note.php?note_id=39391378919 and http://engineering.twitter.com/
2012/07/caching-with-twemcache.html
7 http://www.project-voldemort.com/voldemort/
8 http://www.voltdb.com/
9 http://martinfowler.com/articles/lmax.html

http://engineering.twitter.com/2012/07/caching-with-twemcache.html
http://engineering.twitter.com/2012/07/caching-with-twemcache.html

11 In-Process REST at the BBC 209

Some of the new NoSQL databases such as CouchDB10 do sport document-based
interfaces, but do so only via a HTTP, so are not used in-process.

The Plan 9 operating system [190, 191] tried to organize as many resources and
services in hierarchical file-systems as possible and had a per-process unified file-
system that acted as a name-space for organizing these resources, but those resources
were still managed by servers outside the process, with access mediated via the kernel.

11.8 Conclusion and Outlook

Working on our (replacement) feeds processing application, we found that design
principles such as testability and simplicity drove us towards both a REST-like design
and a fully in-process model, and consequently to applying REST-like principles to
a non-distributed system. The approach proved to be surprisingly fruitful in terms of
simplicity/tractability, performance, reliability and productivity.

Looking back, it probably would have been helpful to apply the principles even
more broadly, for example also organizing the domain objects stored in the different
Sport objects as a tree with path access, rather than as nested dictionaries. This
would likely have reduced the number iterations we had with this design and made
the system even more uniform, but was difficult due to the lack of language support
for URI-based interfaces.

Better language support for URIs to be expressed directly rather than specified
indirectly through strings and helper path objects would also have helped, because
the very clean and simple path-based access structures were often hidden in the
string-manipulation code required to create or access them.

Overall, we were very encouraged by how well REST principles scaled down to
modeling parts of a program or system that are not distributed, in addition to their
well-documented success for distributed systems. We will be using this approach in
future system and look forward to better library and language support, as well as
more research into consequences and theoretical foundations.

10 http://couchdb.apache.org

References

1. Paul Adamczyk, Munawar Hafiz, and Ralph Johnson. Non-compliant and Proud:
A Case Study of HTTP Compliance. DCS-R-2935, University of Illinois, August 2008.
http://hdl.handle.net/2142/11424. 53

2. Ben Adida, Mark Birbeck, Shane McCarron, and Iván Herman. RDFa Core 1.1—
Second Edition: Syntax and processing rules for embedding RDF through attributes. World
Wide Web Consortium, Proposed Edited Recommendation PER-rdfa-core-20130625, June
2013. 60, 61

3. Gul Abdulnabi Agha. Actors: a model of concurrent computation in distributed systems.
MIT Press Cambridge, MA, USA, 1986. 14

4. Ashish Agrawal, Mike Amend, Manoj Das, Mark Ford, Chris Keller, Matthias
Kloppmann, Dieter König, Frank Leymann, Ralf Müller, Gerhard Pfau, Karsten
Plösser, Ravi Rangaswamy, Alan Rickayzen, Michael Rowley, Patrick Schmidt,
Ivana Trickovic, Alex Yiu, Matthias Zeller. WS-BPEL Extension for People
(BPEL4People), Version 1.0. Retrieved on November 2012 from http://docs.oasis-
open.org/bpel4people/bpel4people-1.1.html, 2007. 135

5. Rosa Alarcón, Cesare Pautasso, and Erik Wilde, editors. Third International Workshop
on RESTful Design (WS-REST 2012), Lyon, France, April 2012. xvii, 199

6. Rosa Alarcón, Cesare Pautasso, and Erik Wilde, editors. Fourth International Workshop
on RESTful Design (WS-REST 2013), Rio de Janeiro, Brazil, April 2013. xvii

7. Omar Aldawud, Tzilla Elrad, and Atef Bader. UML Profile for Aspect-Oriented Soft-
ware Development. In The Third International Workshop on Aspect Oriented Modeling, 2003.
115

8. Christopher Alexander. A Timeless Way of Building. Oxford University Press, 1979. 82
9. Scott W. Ambler. The Object Primer: Agile Model-Driven Development with UML 2.0.

Cambridge University Press, 2004. 123
10. Scott W. Ambler. The Elements of UML 2.0 Style. Cambridge University Press, 2005. 120
11. Scott W. Ambler. Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software

Delivery in the Enterprise. IBM Press, 2012. 122, 124
12. Mike Amundsen. Building Hypermedia APIs with HTML5 and Node. O’Reilly Media, Inc.,

November 2011. 49, 88
13. Mike Amundsen. Collection + JSON—Hypermedia Type. Retrieved October 29, 2012, from

http://amundsen.com/media-types/collection/, 2011. 95
14. Mike Amundsen. Hypermedia Types. In Wilde and Pautasso [250], pages 93–116. 88
15. AndroMDA. What is AndroMDA?, 2012. 127. http://www.andromda.org/
16. Jason Ansel, Petr Marchenko, Úlfar Erlingsson, Elijah Taylor, Brad Chen, Derek

L Schuff, David Sehr, Cliff L Biffle, and Bennet Yee. Language-independent sandbox-
ing of just-in-time compilation and self-modifying code. In Proceedings of the 2011 ACM
Conference on Programming Language Design and Implementation (PLDI), volume 46:6,
pages 355–366. ACM, 2011. 16

C. Pautasso et al. (eds.), REST: Advanced Research Topics and Practical Applications, 211
DOI 10.1007/978-1-4614-9299-3, © Springer Science+Business Media New York 2014

212 References

17. Apple. Local and Push Notification Programming Guide. iOS Developer Library, August
2011. 52

18. Joe Armstrong. Programming Erlang. Pragmatic Bookshelf, 2007. 16
19. Julian Aubourg, Jungkee Song, and Hallvord R. M. Steen. XMLHttpRequest.

World Wide Web Consortium, Working Draft WD-XMLHttpRequest-20121206, December
2012. 73

20. Thomas Baker, Natasha Noy, Ralph Swick, and Ivan Herman. Semantic WebCase
Studies and Use Cases, 2007–2012. 67

21. Kent Beck. Test-Driven Development by Example. Addison-Wesley, Boston, 2003. 176
22. Kent Beck and Ward Cunningham. Using Pattern Languages for Object-Oriented Pro-

grams. Technical Report CR-87-43, Tektronix, Inc., 1987. http://c2.com/doc/oopsla87.
html. 82

23. Tim Berners-Lee. Linked Data, Design Issues for the World Wide Web. Retrieved June 6,
2010, from http://www.w3.org/DesignIssues/LinkedData.html, 2006. 96

24. Tim Berners-Lee. Read-Write Linked Data, August 2009. 64
25. Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable RDF syntax. W3C Team

Submission, March 2011. 65
26. Tim Berners-Lee, Roy Thomas Fielding, and Larry Masinter. Uniform Resource

Identifier (URI): Generic Syntax. Internet RFC 3986, January 2005. 42, 164
27. Tim Berners-Lee, James A. Hendler, and Ora Lassila. The Semantic Web. Scientific

American, 284(5):34–43, 2001. 65
28. Kamal Bhattacharya, Cagdas Gerede, Richard Hull, Rong Liu, and Jianwen Su.

Towards formal analysis of artifact-centric business process models. In Proceedings of the 5th
international conference on Business process management, BPM’07, pages 288–304, Berlin,
Heidelberg, 2007. Springer-Verlag. 135

29. Dennis Pfisterer, Kay Römer, Daniel Bimschas, Oliver Kleine, Richard Mietz,
Cuong Truong, Henning Hasemann, Alexander Kröller, Max Pagel, Manfred
Hauswirth, Marcel Karnstedt, Myriam Leggieri, Alexandre Passant, and Ray
Richardson, SPITFIRE: toward a semantic web of things, IEEE Communications Magazine,
Volume:49, Issue: 11, Pages: 40-48

30. Arnar Birgisson, Alejandro Russo, and Andrei Sabelfeld. Capabilities for information
flow. In Proceedings of the ACM SIGPLAN 6th Workshop on Programming Languages and
Analysis for Security (PLAS’11), volume 5, pages 1–15. ACM, 2011. 17

31. Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes Second Edi-
tion. World Wide Web Consortium, Recommendation REC-xmlschema-2-20041028, October
2004. 98

32. Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems, 2(1):39–59, 1984. 5

33. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data—The Story So Far.
International Journal On Semantic Web and Information Systems, 5(3):1–22, 2009. 62

34. Allen C Bomberger, William S Frantz, Ann C Hardy, Norman Hardy, Charles R
Landau, and Jonathan S Shapiro. The KeyKOS Nanokernel Architecture. In USENIX
Workshop on Microkernels and Other Kernel Architectures, pages 95–112, 1992. 6

35. L. Bougé and N. Francez. A compositional approach to superimposition. In Proceedings
of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL’88, pages 240–249, New York, NY, USA, 1988. ACM. 136

36. Peter Braun and Wilhelm R Rossak. Mobile agents: Basic concepts, mobility models,
and the tracy toolkit. Morgan Kaufmann, 2005.

37. Dan Brickley and Libby Miller. FOAF Vocabulary Specification 0.98. Retrieved January
17, 2011, from http://xmlns.com/foaf/spec/20100809.html, 2010. 97

38. Frederick P Brooks Jr. The Mythical Man-Month, Anniversary Edition: Essays on Software
Engineering. Pearson Education, 1995. 150

39. Paul C. Bryan and Mark Nottingham. JavaScript Object Notation (JSON) Patch. Internet
RFC 6902, April 2013. 56

http://c2.com/doc/oopsla87.html
http://c2.com/doc/oopsla87.html

References 213

40. Paul Buchheit. Simple Update Protocol, 2008. 40
41. Thomas Burkhart and Peter Loos. Flexible Business Processes—Evaluation of Current

Approaches. In Proceedings of Multikonferenz Wirtschaftsinformatik 2010, 2010. 135
42. Joseph Campbell. The hero with a Thousand Faces. Pantheon Books, 1949. 83
43. Jorge Cardoso. Semantic Web Services: Theory, Tools and Applications. IGI Publishing,

Hershey, PA, USA, 2007. 135
44. Steinar Carlsen, John Krogstie, and Odd Ivar Lindland. Evaluating Flexible Workflow

Systems. In Proceedings of the 30th Hawaii International Conference on System Sciences:
Information Systems Track-Collaboration Systems and Technology—Volume 2, HICSS ’97,
pages 230–, Washington, DC, USA, 1997. IEEE Computer Society. 135

45. Fabio Casati, Ski Ilnicki, Li-Jie Jin, and Ming-Chien Shan. An Open, Flexible, and
Configurable System for Service Composition. In Proceedings of the Second International
Workshop on Advance Issues of E-Commerce and Web-Based Information Systems (WECWIS
2000), WECWIS ’00, pages 125–, Washington, DC, USA, 2000. IEEE Computer Society. 135

46. Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-order distributed
objects. ACM Transactions on Programming Languages and Systems (TOPLAS), 17(5):
704–739, 1995. 16

47. Stefano Ceri, Marco Brambilla, and Piero Fraternali. The History of WebML Lessons
Learned from 10 Years of Model-Driven Development of Web Applications. In Alexander
Borgida, Vinay Chaudhri, Paolo Giorgini, and Eric Yu, editors, Conceptual Modeling:
Foundations and Applications, volume 5600 of Lecture Notes in Computer Science, pages
273–292. Springer Berlin/ Heidelberg, 2009. 114

48. Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai,
and Maristella Matera. Designing Data-Intensive Web Applications. Morgan Kaufmann,
2002. 113

49. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web Services Description Language (WSDL) 1.1. W3C Note, March 2001. 58

50. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web Services Description Language (WSDL) 1.1. World Wide Web Consortium, Note NOTE-
wsdl-20010315, March 2001. 81

51. Tyler Close. Decentralized identification, 2001. 17
52. Tyler Close. ACLs don’t. Technical Report HPL-2009-20, HP Laboratories, 2009. 17
53. Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley Professional, 2000. 120
54. Walter Colitti, Kris Steenhaut, Niccolo De Caro. Integrating Wireless Sensor

Networks with the Web. In IPSN, USA, 2011.
55. Melvin E Conway. How do committees invent? Datamation, 14(4):28–31, 1968. 20
56. Duncan Cragg. FOREST: An Interacting Object Web. In Erik Wilde and Cesare Pau-

tasso, editors, REST: From Research to Practice, pages 161–195. Springer New York,
2011. 40

57. Douglas Crockford. The application/json Media Type for JavaScript Object Notation
(JSON). IETF Request for Comments, July 2006. 164

58. Francisco Curbera, Matthew Duftler, Rania Khalaf, and Douglas Lovell. Bite:
Workflow Composition for the Web. In Proceedings of the 5th international conference on
Service-Oriented Computing, ICSOC ’07, pages 94–106, Berlin, Heidelberg, 2007. Springer-
Verlag. 135, 136

59. Mathieu D’aquin, Marta Sabou, Enrico Motta, Sofia Angeletou, Laurian
Gridinoc, Vanessa Lopez, and Fouad Zablith. What can be done with the Semantic Web?
An Overview of Watson-based Applications. In 5th Workshop on Semantic Web Applications
and Perspectives, 2008. 71, 72

60. Doug Davis. Intel Inside Becomes Intel Everywhere, March 2009. http://g.mamund.com/
nxmnj. 76

61. Jack B Dennis and Earl C Van Horn. Programming semantics for multiprogrammed
computations. Communications of the ACM, 9(3):143–155, 1966. 17

http://g.mamund.com/nxmnj
http://g.mamund.com/nxmnj

214 References

62. Michele Melchiori Devis Bianchini, Valeria Antonellis. Flexible semantic-based
service matchmaking and discovery. In Proceedings international conference on World Wide
Web, volume 11, pages 227–251, 2008. 63

63. Lisa Dusseault and James M. Snell. PATCH Method for HTTP. Internet RFC 5789, March
2010. 46, 53

64. Adam DuVander. 7,000 APIs: Twice as Many as This Time Last Year. ProgrammableWeb,
August 2012. 67, 73

65. Justin Ryan, Erenkrantz, Michael Gorlick, Girish Suryanarayana, and Richard
N. Taylor. From Representations to Computations: The Evolution of Web Architectures. In
6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The foundations of Software Engineering, Dubrovnik, Croatia, September
2007. ACM Press. 4, 16

66. Justin Ryan Erenkrantz. Computational REST:A New Model for Decentralized, Internet-
Scale Applications DISSERTATION. PhD thesis, University of California, Irvine, September
2009. 4, 16

67. Justin Ryan Erenkrantz, Michael M. Gorlick, Girish Suryanarayana, and Richard
N. Taylor. Harmonizing architectural dissonance in REST-based architectures. Institute
for Software Research, Technical Report UCI-ISR-06-18, University of California, Irvine,
December 2006. 4

68. Justin Ryan Erenkrantz, Michael M. Gorlick, and Richard N. Taylor. Rethinking
Web Services from First Principles. In 2nd International Conference on Design Science
Research in Information Systems and Technology, Pasadena, California, May 2007. 16

69. Justin Ryan Erenkrantz, Michael M. Gorlick, and Richard N. Taylor. CREST: A
New Model for Decentralized, Internet-Scale Applications. Technical Report UCI-ISR-09-4,
Institute for Software Research, University of California, Irvine, september 2009. 4

70. Thomas Erl. Service-oriented architecture, volume 8. Prentice Hall, New York, 2005. 5
71. Eric Evans. Domain-Driven Design: Tacking Complexity In the Heart of Software. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003. 186
72. Dave Evans. The Internet of Things: How the Next Evolution of the Internet is Changing

Everything, 2011. 20
73. Joel Farrell and Holger Lausen. Semantic Annotations for WSDL and XML Schema

(SAWSDL). W3C Recommendation, August 2007. 60
74. Mattias Felleisen. The theory and practice of first-class prompts. In Proceedings of the

15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
180–190. ACM, 1988. 6

75. Ian Fette and Alexey Melnikov. The WebSocket Protocol http://www.ietf.org/rfc/
rfc6455.txt. December 2011. 41

76. Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, Irvine, California, 2000. 79, 80,
85, 132, 135, 158, 159, 161, 162, 186

77. Roy Thomas Fielding. A Little REST and Relaxation. In ApacheCon, November 2008.
http://www.slideshare.net/royfielding/a-little-rest-and-relaxation. 86

78. Roy Thomas Fielding. REST APIs must be hypertext-driven. Untangled—Musings of Roy
T. Fielding, October 2008. 58, 66, 67

79. Roy Thomas Fielding. REST APIs must be hypertext-driven. Retrieved February 15, 2013,
from http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven, 2008. 168, 169

80. Roy Thomas Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry
Masinter, Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol—HTTP/1.1.
Internet RFC 2616, June 1999. 32, 41, 43, 58

81. Roy Thomas Fielding and Richard N. Taylor. Principled Design of the Modern Web
Architecture. ACM Transactions on Internet Technology, 2(2):115–150, May 2002. xv, 4, 5,
39, 41, 52

82. Florian F. Fischer and Barry Norton. D3.4.6 microWSMO v2– defining the second
version of microWSMO as a systematic approach for rich tagging. Soa4all project deliverable,
2010. 63

http://www.ietf.org/rfc/rfc6455.txt
http://www.ietf.org/rfc/rfc6455.txt

References 215

83. Brad Fitzpatrick, Brett Slatkin and Martin Atkins. PubSubHubbub Core 0.3,
February 2010. 40

84. Martin Fowler. Patterns of Enterprise Application Architecture. Addison Wesley, Reading,
Massachusetts, November 2002. 103

85. Brian Frank, Zach Shelby, Klaus Hartke, and Carsten Bormann. Constrained
Application Protocol (CoAP), 2012. 22, 28

86. Ned Freed and Nathaniel S. Borenstein. Multipurpose Internet Mail Extensions (MIME)—
Part Two: Media Types. Internet RFC 2046, November 1996. 45

87. Christian Fritz, Richard Hull, and Jianwen Su. Automatic construction of simple
artifact-based business processes. In Proceedings of the 12th International Conference on
Database Theory, ICDT ’09, pages 225–238, New York, NY, USA, 2009. ACM. 135

88. Lidia Fuentes-Fernández and Antonio Vallecillo-Moreno. An Introduction to UML
Profiles. UPGRADE, The European Journal for the Informatics Professional, 5(2):5–13,
2004. 115

89. Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding code
mobility. Software Engineering, IEEE Transactions on, 24(5):342–361, 1998. 4, 5

90. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, Reading, Massachusetts,
January 1995. 30, 41, 102

91. Damian D.G. Gessler, Gary S. Schiltz, Greg D. May, Shulamit Avraham, Christo-
pher D. Town, David Grant and Rex T Nelson. SSWAP: A simple semantic Webarchi-
tecture and protocol for semantic Webservices. BMC Bioinformatics, 10:309, 2009. 63

92. James J. Gibson. The Ecological Approach to Visual Perception. Psychology Press, 1986. 83
93. Aman Goel, Craig A. Knoblock, and Kristina Lerman. Exploiting Structure within

Data for Accurate Labeling Using Conditional Random Fields. In Proceedings of the 14th
International Conference on Artificial Intelligence (ICAI), 2012. 69

94. Adele Goldberg and Dave Robson. Smalltalk-80: The Language and Its Implemen-
tation. Addison Wesley, 1983. http://users.ipa.net/dwighth/smalltalk/bluebook/bluebook_
imp_toc.html—geprüft: 16. Dezember 2002. 85

95. Michael M. Gorlick, Samuel D. Gasster, Grace S. Peng, and Michael McAtee. Flow
Webs: Architecture and Mechanism for Sensor Webs. In Proceedings of the Ground Systems
Architecture Workshop, Manhattan Beach, California, USA, March 26–29 2007, 2007. 4

96. Michael M. Gorlick, Kyle Strasser, Alegria Baquero, and Richard N Taylor.
CREST: principled foundations for decentralized systems. In Proceedings of the ACM in-
ternational conference on Object oriented programming systems languages and applications
(SPLASH’11), Companion volume, pages 193–194. ACM, October 2011. 16

97. Michael M. Gorlick, Kyle Strasser, and Richard N. Taylor. COAST: An architec-
tural style for decentralized on-demand tailored services. In Software Architecture (WICSA)
and European Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP
Conference on, pages 71–80. IEEE, 2012. 4, 5, 12

98. Joe Gregorio and Bill de Hóra. TheAtom Publishing Protocol. Internet RFC 5023, October
2007. 165

99. Joe Gregorio, Roy Thomas Fielding, Marc Hadley, Mark Nottingham, and David
Orchard. URI Template. Internet RFC 6570, March 2012. 67

100. Lev Grossman. Apple’s New Calling: The iPhone. Time Magazine, January 2007. 75
101. Abril Group. Abril Group Sustainability Report. Retrieved November 5, 2012, from http://

www.grupoabril.com.br/arquivo/sustainability_report.pdf, 2011. 150
102. Abril Group. Abril Group Institutional Page. Retrieved November 5, 2012, from http://www.

grupoabril.com.br/IN/index.shtml, 2012. 150
103. Marc Hadley. WebApplication Description Language (WADL). Technical Report TR-2006-

153, Sun Microsystems, April 2006. 81
104. Marc Hadley. Web Application Description Language. World Wide Web Consortium,

Member Submission SUBM-wadl-20090831, August 2009. 57, 59, 74

http://users.ipa.net/dwighth/smalltalk/bluebook/bluebook_imp_toc.html
http://users.ipa.net/dwighth/smalltalk/bluebook/bluebook_imp_toc.html
http://www.grupoabril.com.br/arquivo/sustainability_report.pdf
http://www.grupoabril.com.br/arquivo/sustainability_report.pdf
http://www.grupoabril.com.br/IN/index.shtml
http://www.grupoabril.com.br/IN/index.shtml

216 References

105. Brent Hailpern and Peri Lynn Tarr. Model-driven development: The good, the bad, and
the ugly. IBM Systems Journal, 45(3):451–461, 2006. 112

106. David A Halls. Applying mobile code to distributed systems. PhD thesis, University of
Cambridge, June 1997. 16

107. Norm Hardy. The Confused Deputy:(or why capabilities might have been invented). ACM
SIGOPS Operating Systems Review, 22(4):36–38, 1988. 17

108. Klaus Hartke. Observing Resources in CoAP, 2012. 30
109. Petra Heinl, Stefan Horn, Stefan Jablonski, Jens Neeb, Katrin Stein, and Michael

Teschke. A comprehensive approach to flexibility in workflow management systems.
SIGSOFT Softw. Eng. Notes, 24(2):79–88, March 1999. 135

110. Ian Hickson. Server-Sent Events. World Wide Web Consortium, Candidate Recommenda-
tion CR-eventsource-20121211, December 2012. 41

111. Richard Hull. Artifact-Centric Business Process Models: Brief Survey of Research Results
and Challenges. In Proceedings of the OTM 2008 Confederated International Conferences,
CoopIS, DOA, GADA, IS, and ODBASE 2008. Part II on On the Move to Meaningful Internet
Systems, OTM ’08, pages 1152–1163, Berlin, Heidelberg, 2008. Springer-Verlag. 135

112. Ian Jacobs and Norman Walsh. Architecture of the World Wide Web, Volume One. W3C
recommendation, W3C, December 2004. http://www.w3.org/TR/2004/REC-webarch-20041-
215/. 43

113. Suresh Jagannathan. Metalevel building blocks for modular systems. ACM Transactions
on Programming Languages and Systems (TOPLAS), 16(3):456–492, 1994. 6

114. Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mobility
in the Emerald system. ACM Transactions on Computer Systems (TOCS), 6(1):109–133,
February 1988. 16

115. Michael Kaminsky and Eric Banks. SFS-HTTP: Securing the web with self-certifying
URLs, 1999. 16

116. Shmuel Katz. A superimposition control construct for distributed systems. ACM Trans.
Program. Lang. Syst., 15(2):337–356, April 1993. 136

117. Alan C. Kay. The Early History of Smalltalk. In Thomas J. Bergin, Jr. and Richard G.
Gibson, Jr., editors, History of Programming Languages—II, pages 511–598. ACM, New
York, NY, USA, 1996. 186

118. Gregg Kellogg, Markus Lanthaler, and Manu Sporny. JSON-LD 1.0 Processing
Algorithms and API. World Wide Web Consortium, Proposed Recommendation PR-json-ld-
api-20131105, November 2013.

119. Rohit Khare and Tantek Çelik. Microformats: A Pragmatic Path to the Semantic Web.
In 15th International World Wide Web Conference Posters, Edinburgh, UK, May 2006. ACM
Press. 59

120. Rohit Khare and Richard N. Taylor. Extending the Representational State Transfer
(REST) Architectural Style for Decentralized Systems. In Proceedings of the 26th Inter-
national Conference on Software Engineering, ICSE ’04, pages 428–437, Washington, DC,
USA, 2004. IEEE Computer Society. 41

121. Paul Kinlan. WebIntents. https://github.com/PaulKinlan/WebIntents. 90
122. Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven

Architecture: Practice and Promise. Addison-Wesley Professional, 2003. 112
123. Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF): Concepts

and Abstract Syntax. World Wide Web Consortium, Recommendation REC-rdf-concepts-
20040210, February 2004. 65

124. Craig Knoblock, Pedro Szekely, Jos Luis Ambite, Aman Goel, Shubham Gupta,
Kristina Lerman, Maria Muslea, Mohsen Taheriyan, and Parag Mallick. Semi-
Automatically Mapping Structured Sources into the Semantic Web. In Proceedings of the 9th
Extended Semantic Web Conference (ESWC), 2012. 68, 69

125. Donald E. Knuth. Literate Programming. Computer Journal, 27(2):97–111, 1984. 57
126. Nora Koch. Transformation techniques in the model-driven development process of UWE.

In Workshop proceedings of the sixth international conference on Web engineering, ICWE
’06, New York, NY, USA, 2006. ACM. 113

http://www.w3.org/TR/2004/REC-webarch-20041215/
http://www.w3.org/TR/2004/REC-webarch-20041215/

References 217

127. Nora Koch and Andreas Kraus. Towards a common metamodel for the development of
web applications. In Proceedings of the 2003 international conference on Web engineering,
ICWE’03, pages 497–506, Berlin, Heidelberg, 2003. Springer-Verlag. 113

128. J. Kopecký and T. Vitvar. microWSMO. CMS Working Draft, February 2008. 60, 62
129. Jacek Kopecký, Karthik Gomadam, and Tomas Vitvar. HRESTS:An HTML Microformat

for Describing RESTful Web Services. In Proceedings of the 2008 IEEE/ACMInternational
Conference on Web Intelligence (WI-08), 2008. 59, 61, 62

130. Alfred Korzybski. Science and Sanity. Colonial Press, 1993. 84
131. David Kotz, Robert Gray, Saurab Nog, Daniela Rus, Sumit Chawla, and George

Cybenko. Agent Tcl: Targeting the needs of mobile computers. Internet Computing, IEEE,
1(4):58–67, 1997. 16

132. Shriram Krishnamurthi, Peter Walton Hopkins, Jay McCarthy, Paul T Graunke,
Greg Pettyjohn, and Matthias Felleisen. Implementation and use of the PLT Scheme
web server. Higher-Order and Symbolic Computation, 20(4):431–460, 2007. 4

133. Christian Kroib and Nora Koch. UWE Metamodel and Profile: User Guide and Reference.
Technical Report 0802, 2008., 2008. 113

134. Reto Krummenacher, Barry Norton, and Adrian Marte. Towards Linked Open
Services. In FIS, 2010. 64

135. John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of
the 18th International Conference on Machine Learning, pages 282–289, 2001. 69

136. Markus Lanthaler. Hydra Core Vocabulary Specification. Retrieved from http://www.
markus-lanthaler.com/hydra/, 2013. 101

137. Markus Lanthaler and Christian Gütl. A semantic description language for REST-
fulData Services to combat Semaphobia. In Proceedings of the 5th IEEE International
Conference on Digital Ecosystems and Technologies Conference, pages 47–53, June 2011.
66, 67

138. Markus Lanthaler and Christian Gütl. A semantic description language for RESTful
data services to combat Semaphobia. In Digital Ecosystems and Technologies Conference
(DEST), 2011 Proceedings of the 5th IEEE International Conference on, pages 47–53. IEEE,
2011. 96

139. Markus Lanthaler and Christian Gütl. On using JSON-LD to create evolvable RESTful
services. In Proceedings of the Third InternationalWorkshop on RESTfulDesign, pages 25–32,
New York, NY, USA, 2012. ACM. 67

140. Markus Lanthaler and Christian Gütl. Seamless integration of RESTfulservices into
the Web of Data. Advances in Multimedia, 2012:1:1–1:14, January 2012. 68

141. Holger Lausen, Axel Polleres, and Dumitru Roman. Web Service Modeling Ontology
(WSMO). W3C Member Submission, June 2005. 67

142. Paul J. Leach, Michael Mealling, and Richard Salz. A Universally Unique IDentifier
(UUID) URN Namespace. Internet RFC 4122, July 2005. 15

143. Ning Li, Carlos Pedrinaci, Maria Maleshkova, Jacek Kopecký, and John Domingue.
Omnivoke: A framework for automating the invocation of WebAPIs. In Proceedings of Fifth
IEEE International Conference on Semantic Computing, pages 380–387, 2011. 62

144. Shitao Li, Jeroen Hoebeke, and Antonio J Jara. Conditional observe in CoAP, 2012. 31
145. Tim Lindholm and Frank Yellin. The Java virtual machine specification, volume 297.

Addison-Wesley Reading, 1997. 16
146. Daniel Lucrédio. Uma Abordagem Orientada a Modelos para Reutilização de Software.

PhD thesis, Universidade de São Paulo, 2009. 112
147. Mehmet Ersue, Dan Romascanu, and Juergen Schoenwaelder. Management of Net-

works with Constrained Devices: Use Cases and requirements, 2012. 22. IETF draft, exp.
April 28, 2014.

148. General Magic. Telescript Language Reference. General Magic, Sunnyvale, California,
USA, October 1995. 16

http://www.markus-lanthaler.com/hydra/
http://www.markus-lanthaler.com/hydra/

218 References

149. Maria Maleshkova, Carlos Pedrinaci, John Domingue, Guillermo Alvaro Rey, Ivan
Martinez. Using Semantics for Automating the Authentication of WebAPIs. International
Semantic Web Conference (ISWC), 2010. Shanghai, China. 62, 63, 74

150. Maria Maleshkova, Carlos Pedrinaci, and John Domingue. Investigating Web APIs on
the World Wide Web. In Proc. of the 8thIEEE European Conference on Web Services, 2010. 57

151. Michael Mandel. Where are the Jobs: TheApp Economy. Technical report, South Mountain
Economics, LLC, February 2012. 76

152. Ioana Manolescu, Marco Brambilla, Stefano Ceri, Sara Comai, and Piero Frater-
nali. Model-driven design and deployment of service-enabled web applications. ACM Trans.
Internet Technol., 5:439–479, August 2005. 114

153. David Martin, Mark Burstein, Jerry Hobbs, and Ora Lassila. OWLs: Semantic Markup
for Web Services. 65, 67

154. Christian Mayerl, Tobias Vogel, and Sebastian Abeck. SOA-Based Integration of IT
Service Management Applications. In Proceedings of the IEEE International Conference on
Web Services, ICWS ’05, pages 785–786, Washington, DC, USA, 2005. IEEE Computer
Society. 111

155. David Mazieres, Michael Kaminsky, M Frans Kaashoek, and Emmett Witchel. Sep-
arating key management from file system security. ACM SIGOPS Operating Systems Review,
33(5):124–139, 1999. 15, 16

156. Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language.
W3C Recommendation, February 2004. 65

157. Terry Merriman. MDA in Action: An Anatomy of a Platform-Independent Model, 2003.
123

158. Ali Mesbah and Arie van Deursen. An Architectural Style for Ajax. In Proceedings of the
Sixth Working IEEE/IFIP Conference on Software Architecture, pages 9–, Washington, DC,
USA, 2007. IEEE Computer Society. 41

159. Mark S Miller and Jonathan S Shapiro. Paradigm regained: Abstraction mechanisms for
access control. In Eighth Asian Computing Science Conference (ASIAN’03). Programming
Languages and Distributed Computation, pages 224–242. Springer, 2003. 17

160. Mark Samuel Miller. Robust composition: towards a unified approach to access control
and concurrency control. PhD thesis, Johns Hopkins University, Baltimore, Maryland, USA,
May 2006. 16, 17

161. Richard Morris. Roy Fielding: Geek of the Week, August 2010. https://www.simple-
talk.com/opinion/geek-of-the-week/roy-fielding-geek-of-the-week/. 80

162. Toby Murray. Analysing the security properties of object-capability patterns. PhD thesis,
Hertford College, University of Oxford, Oxford, UK, 2010. 17

163. Toby Murray and Duncan Grove. Non-delegatable authorities in capability systems.
Journal of Computer Security, 16(6):743–759, 2008. 17

164. Bruce Jay Nelson. Remote procedure call. PhD thesis, Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA, 1981. 5

165. Microsoft Software Developer Network. Using HTTP as an RPC Transport, September
2011. http://g.mamund.com/vxsoc. 79

166. Anil Nigam and Nathan S. Caswell. Business artifacts: An approach to operational
specification. IBM Syst. J., 42(3):428–445, July 2003. 135

167. Donald Norman. The Design of Everyday Things. Basic Books, September 2002. 83, 86
168. Barry Norton and Steffen Stadtmüller. Scalable Discovery of Linked Services. In

RED, 2011. 64
169. Mark Nottingham. Web Linking. Internet RFC 5988, October 2010. 43
170. Mark Nottingham. Linking in JSON. Retrieved November 5, 2012, from http://www.

mnot.net/blog/2011/11/25/linking_in_json, 2011. 166
171. Mark Nottingham, Julian Reschke, and Jan Algermissen. Link Relations. Retrieved

November 5, 2012, from http://www.iana.org/assignments/link-relations/link-relations.xml,
2012. 40, 165

http://www.mnot.net/blog/2011/11/25/linking_in_json
http://www.mnot.net/blog/2011/11/25/linking_in_json

References 219

172. Mark Nottingham and Robert Sayre. The Atom Syndication Format. Internet RFC 4287,
December 2005. 40, 165

173. Chris Okasaki. Purely functional data structures. Cambridge University Press, 1999. 8, 14
174. OMG. MDA Guide Version 1.0.1, 2003. 114
175. OMG. UML Profile for Enterprise Application Integration (EAI), 2004. 113
176. OMG. MOF 2.0/XMI Mapping, v2.1.1, 2007. 122
177. OMG. UML Profile for Modeling and Analysis of Real-time and Embedded Systems,

2009. 113
178. Oracle. Your First Cup: An Introduction to the Java EE Platform, 2012. 115
179. Savas Parastatidis, Jim Webber, Guilherme Silveira, and Ian Robinson. The Role of

Hypermedia in Distributed System Development. In Pautasso et al. [183], pages 16–22. 94
180. Cesare Pautasso. BPEL for REST. In Proceedings of the 6th International Conference

on Business Process Management, BPM ’08, pages 278–293, Berlin, Heidelberg, 2008.
Springer-Verlag. 135

181. Cesare Pautasso. Composing RESTful Services with JOpera. In Proceedings of the 8th In-
ternational Conference on Software Composition, SC ’09, pages 142–159, Berlin, Heidelberg,
2009. Springer-Verlag. 135

182. Cesare Pautasso, Erik Wilde, and Rosa Alarcón, editors. Second InternationalWorkshop
on RESTful Design (WS-REST 2011), Hyderabad, India, March 2011. xvii, 199

183. Cesare Pautasso, Erik Wilde, and Alexandros Marinos, editors. First International
Workshop on RESTful Design (WS-REST 2010), Raleigh, North Carolina, April 2010.
xvii, 198

184. Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. RESTful Web Services vs.
“Big” Web Services: Making the Right Architectural Decision. In Jinpeng Huai, Robin Chen,
Hsiao-Wuen Hon,Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and Xiaodong Zhang, editors,
17th International World Wide Web Conference, pages 805–814, Beijing, China, April 2008.
ACM Press. 111

185. Carlos Pedrinaci and John Domingue. Toward the Next Wave of Services: Linked Services
for the Web of Data. Journal of Universal Computer Science, pages 1694–1719, 2010. 62

186. Carlos Pedrinaci, Dong Liu, Maria Maleshkova, David Lambert, Jacek Kopecky,
John Domingue. iServe: A Linked Services Publishing Platform. Workshop: Ontology
Repositories and Editors for the Semantic Web at 7th Extended Semantic Web Conference,
2010. 62, 63, 72

187. Carlos Pedrinaci and John Domingue. Toward the Next Wave of Services: Linked Ser-
vices for the Web of Data. Journal of Universal Computer Science, 16(13):1694–1719, July
2010. 70

188. Chris Peltz. Web Services Orchestration and Choreography. Computer, 36(10):46–52,
October 2003. 135

189. Adrien Piérard and Marc Feeley. Towards a portable and mobile Scheme interpreter. In
Proceedings of the Scheme and Functional Programming Workshop, pages 59–68, 2007. 16

190. Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil Winterbottom.
The Use of Name Space in Plan 9. Operating Systems Review, 27(2):72–76, April 1993. 188

191. Dave Presotto and Phil Winterbottom. The Organization of Networks in Plan 9. In
USENIX Conference, pages 271–280, 1993. 188

192. Matthias Quasthoff and Christoph Meinel. Semantic Web Admission Free–Obtaining
RDF and OWL Data from Application Source Code. In Proceedings of the 4th International
Workshop on Semantic Web Enabled Software Engineering, Karlsruhe, Germany, pages 17–
25, 2008. 104

193. Rajendra K Raj, Ewan Tempero, Henry M Levy, Andrew P Black, Norman C
Hutchinson, and Eric Jul. Emerald: A general-purpose programming language. Software:
Practice and Experience, 21(1):91–118, 1991. 17

194. Jonathan Allen Rees. A security kernel based on the Lambda-Calculus. PhD thesis,
Massachusetts Institute of Technology, 1996. 16

195. Machina Research. The Connected Life: A USD4.5 trillion global impact in 2020, 2012. 20

220 References

196. Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly Media, 2007. 111
197. Adam Roach. A SIP Event Package for Subscribing to Changes to an HTTP Resource. RFC

5989 (proposed standard), IETF, August 2010. http://www.ietf.org/rfc/rfc5989.txt. 43
198. Doug Rosenberg and Matt Stephens. Use Case Driven Object Modeling with UML.

Apress, 2007. 120
199. Florian Rosenberg, Francisco Curbera, Matthew J. Duftler, and Rania Khalaf.

Composing RESTful Services and Collaborative Workflows: A Lightweight Approach. IEEE
Internet Computing, 12(5):24–31, 2008. 136

200. David S. Rosenblum and Alexander L. Wolf. A design framework for Internet-scale
event observation and notification. In Proceedings of the 6th European SOFTWARE ENGI-
NEERING conference held jointly with the 5th ACM SIGSOFT international symposium
on Foundations of software engineering, ESEC ’97/FSE-5, pages 344–360, New York, NY,
USA, 1997. Springer-Verlag New York, Inc. 41

201. RSS Advisory Board. Really Simple Syndication 2.0, March 2009. 40
202. Jerome H Saltzer. Protection and the control of information sharing in Multics. Communi-

cations of the ACM, 17(7):388–402, 1974. 6
203. Andrea Schauerhuber, Manuel Wimmer, and Elisabeth Kapsammer. Bridging existing

Web modeling languages to model-driven engineering: a metamodel for WebML. InWorkshop
proceedings of the sixth international conference on Web engineering, ICWE ’06, New York,
NY, USA, 2006. ACM. 112

204. Helen Schonenberg, Ronny Mans, Nick Russell, Nataliya Mulyar, and Wil M. P.
van der Aalst. Process Flexibility: A Survey of Contemporary Approaches. In Jan L. G.
Dietz, Antonia Albani, and Joseph Barjis, editors, CIAO!/ EOMAS, volume 10 of Lecture
Notes in Business Information Processing, pages 16–30. Springer, 2008. 135

205. Silvia Schreier. Modeling RESTfulApplications. In Pautasso et al. [182], pages 15–21. 113
206. Nelly Schuster, Christian Zirpins, and Ulrich Scholten. How to balance flexibility

and coordination? Service-oriented model and architecture for document-based collaboration
on the Web. In SOCA, pages 1–9, 2011. 136

207. Charles Severance. Discovering JavaScript Object Notation. Computer, 45(4):6–8, April
2012. 67

208. Jonathan Strauss Shapiro. EROS: A capability system. PhD thesis, University of
Pennsylvania, Philadelphia, USA, 1999. 16, 17

209. Zach Shelby. CoRE Link Format, 2012. 32
210. Zach Shelby and Carsten Bormann. 6LoWPAN: The Wireless Embedded Internet. Wiley,

2009. 20
211. Amit P. Sheth, Kunal Verma, and Karthik Gomadam. Semantics to Energize the Full

Services Spectrum. Comm. ACM, 49:55–61, 2006. 61
212. Amit P. Sheth, Karthik Gomadam, Jon Lathem. SAREST: Semantically Interoperable

and Easier-to-Use Services and Mashups. IEEE Internet Computing, 11(6):91–94, 2007. 61,
62

213. Elizabeth Shogren. Don’t Trash Or Stash Old Cell Phones; Recycle Them. NPR, April
2010. http://www.npr.org/templates/story/story.php?storyId = 125657764. 82

214. sitemaps.org. Sitemaps XML format. 0.90, Google, February 2008. http://www.sitemaps.
org/protocol.php. 40

215. Carlos A. Soto. 5 technologies that will change the market, August 2010. 67
216. Steve Speicher, John Arwe, and Ashok Malhotra. Linked Data Platform 1.0. World

Wide Web Consortium, Working Draft WD-ldp-20130730, July 2013. 108
217. Sebastian Speiser and Andreas Harth. Integrating Linked Data and Services with Linked

Data Services. In The Semantic Web: Research and Applications, volume 6643 of Lecture
Notes in Computer Science, pages 170–184. Springer, 2011. 64

218. Manu Sporny, Gregg Kellogg, and Markus Lanthaler. JSON-LD 1.0: A JSON-based
Serialization for Linked Data. World Wide Web Consortium, Proposed Recommendation
PR-json-ld-20131105, November 2013.

http://www.sitemaps.org/protocol.php
http://www.sitemaps.org/protocol.php

References 221

219. James W. Stamos and David K. Gifford. Implementing remote evaluation. Software
Engineering, IEEE Transactions on, 16(7):710–722, 1990. 16

220. James W. Stamos and David K Gifford. Remote evaluation. ACM Transactions on
Programming Languages and Systems (TOPLAS), 12(4):537–564, 1990. 5, 16

221. James W. Stamos. Remote evaluation. PhD thesis, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA, 1986. 5

222. Christoph Szymanski and Silvia Schreier. Case Study: Extracting a Resource Model
from an Object-Oriented Legacy Application. In Alarcón et al. [5], pages 19–24. 113

223. Mohsen Taheriyan, Craig A. Knoblock, Pedro Szekely, and Jose Luis Ambite. Rapidly
Integrating Services into the Linked Data Cloud. In Proceedings of the 11th International
Semantic Web Conference (ISWC), Boston, USA, 2012. 69

224. Mohsen Taheriyan, Craig A. Knoblock, Pedro Szekely, and Jose Luis Ambite. Semi-
Automatically Modeling Web APIs to Create Linked APIs. In Proceedings of the Linked APIs
for the Semantic Web Workshop (LAPIs), Heraklion, Crete, Greece, 2012. 70

225. Joseph Tardo and Luis Valente. Mobile agent security and Telescript. In Proceedings of
the 41st IEEE International Computer Conference (COMPCON’96), WA DC, USA, pages
58–63. IEEE Computer Society, 1996. 16

226. Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, E. James Whitehead,
Jr., Jason E. Robbins, Kari A. Nies, Peyman Oreizy, and Deborah L. Dubrow. A
Component- and Message-Based Architectural Style for GUI Software. IEEE Trans. Softw.
Eng., 22(6):390–406, June 1996. 79

227. OASIS Web Services Business Process Execution Language (WSBPEL) TC. Business
Process Execution Language for Web Services (BPEL) version 2.0, 2007. 133

228. Amis Technology. Model Driven Architecture (MDA), 2006. 119
229. Amit P. Sheth, Karthik Gomadam, Jon Lathem. Challenges in Deployment of Model

Driven Development. In Software Engineering Advances, 2009. ICSEA ’09. Fourth
International Conference on, pages 15–20, 2009. 112

230. Dave Thomas and Brian M. Barry. Model driven development: the case for domain
oriented programming. In Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, OOPSLA ’03, pages
2–7, New York, NY, USA, 2003. ACM. 113

231. Sebastian Thöne, Ralph Depke, and Gregor Engels. Process-Oriented, Flexible
Composition of Web Services with UML. In ER (Workshops), pages 390–401, 2002. 135

232. Rattapoom Tuchinda, Craig A. Knoblock, and Pedro Szekely. Building Mashups by
Demonstration. ACMTransactions on the Web (TWEB), 5(3), 2011. 68

233. Sameer Tyagi. RESTful Web Services. Technical report, Oracle Technology Network,
August 2006. http://www.oracle.com/technetwork/articles/javase/index-137171.html. 79

234. Francisco Valverde and Oscar Pastor. Dealing with REST Services in Model-driven Web
Engineering Methods. V Jornadas Cientfico-Tcnicas en Servicios Web y SOA, JSWEB, 2009.
113, 114

235. Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: an
annotated bibliography. SIGPLAN Not., 35:26–36, June 2000. 113

236. Anne van Kesteren. Cross-Origin Resource Sharing. W3C Working Draft, April 2012. 73
237. Adam Du Vander. 4,000WebAPIs: What’s Hot andWhat’s Next?, October 2011. http://blog.

programmableweb.com/2011/10/03/4000-web-apis-whats-hot-and-whats-next/. 77
238. Ruben Verborgh, Vincent Haerinck, Thomas Steiner, Davy Van Deursen, Sofie

Van Hoecke, Jos De Roo, Rik Van De Walle, and Joaquim Gabarró Vallés. Functional
Composition of Sensor Web APIs. In Proceedings of the 5th International Workshop on
Semantic Sensor Networks, November 2012. 66

239. Ruben Verborgh, Thomas Steiner, Joaquim Gabarró Vallés, Erik Mannens, and Rik
Van de Walle. A Social Description Revolution—Describing Web APIs’Social Parameters
with RESTdesc. In Proceedings of the AAAI 2012 Spring Symposia, March 2012. 66

240. Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Sam Coppens, Joaquim
Gabarró Vallés, and Rik Van de Walle. Functional Descriptions as the Bridge between

http://blog.programmableweb.com/2011/10/03/4000-web-apis-whats-hot-and-whats-next/
http://blog.programmableweb.com/2011/10/03/4000-web-apis-whats-hot-and-whats-next/

222 References

Hypermedia APIs and the Semantic Web. In Proceedings of the Third International Workshop
on RESTfulDesign. ACM, April 2012. 64, 65, 66

241. Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Jos De Roo, Rik Van de Walle,
and Joaquim Gabarró Vallés. Capturing the functionality of Web services with functional
descriptions. Multimedia Tools and Applications, 2013. 65

242. Hans Vestberg. CEO to shareholders: 50 billion connections 2020. Press Release, April 13,
2010, http://www.ericsson.com/thecompany/press/releases/2010/04/1403231. 76

243. Steve Vinoski. Serendipitous Reuse. IEEE Internet Computing, 12(1):84–87, January
2008. 94

244. Paul de Vrieze, Lai Xu, Athman Bouguettaya, Jian Yang, and Jinjun Chen. Process-
Oriented Enterprise Mashups. In Proceedings of the 2009Workshops at the Grid and Pervasive
Computing Conference, GPC ’09, pages 64–71, Washington, DC, USA, 2009. IEEE Computer
Society. 135

245. Dimitris Vyzovitis and Andrew Lippman. MAST: A dynamic language for programmable
networks. Technical report, MIT Media Laboratory, May 2002. 16

246. Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Graham. Effi-
cient software-based fault isolation. In Proceedings of the Fourteenth ACM Symposium on
Operating Systems Principles (SIGOPS), volume 27:5, pages 203–216. ACM, December
1993. 16

247. Jim Webber. REST in Practice: Hypermedia and Systems Architecture. O’Reilly, 2010. 57
248. Adam Wick and Matthew Flatt. Memory accounting without partitions. In Proceedings

of the 4th international symposium on Memory management, pages 120–130. ACM, October
2004. 16

249. Erik Wilde. REST and RDF Granularity, May 2009. 64
250. Erik Wilde and Cesare Pautasso, editors. REST: From Research to Practice. Springer-

Verlag, New York, NY, 2011. xvii, 191
251. M. D. Wilkinson and M. Links. BioMOBY: An open source biological web services

proposal. Briefings in Bioinformatics, 3:331–341, 2002. 63
252. Erik Wittern, Nelly Schuster, Jörn Kuhlenkamp, and Stefan Tai. Participatory Ser-

vice Design through Composed and Coordinated Service Feature Models. In Proceedings of
the 10th International Conference on Service Oriented Computing, pages 158–172, 2012. 136

253. Michael Scott Wolfe. SCURL authentication: A decentralized approach to entity
authentication. Master’s thesis, University of California, Irvine, October 2011. 15

254. WS Description Working Group. Web Service Description Language (WSDL) ersion 2.0,
W3C Proposed Recommendation, May 2007. 58

255. Bo Wu, Pedro Szekely, and Craig A. Knoblock. Learning Data Transformation Rules
through Examples: Preliminary Results. In 9th International Workshop on Information
Integration on the Web (IIWeb), 2012. 68

256. Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. Communications of the ACM, 53:91–99,
January 2010. 16

257. Aydan R Yumerefendi and Jeffrey S Chase. The role of accountability in dependable
distributed systems. In Proceedings of HotDep, volume 5, pages 3–3, 2005. 5

258. Kris Zyp. A JSON Media Type for Describing the Structure and Meaning of JSON
Documents. Internet Draft draft-zyp-json-schema-01, December 2009. 67

	Contents
	Contributors
	Editorial Board
	Chapter 1 Introduction
	1.1 REST Design Constraints
	1.2 REST Activities and this Book
	1.2.1 REST Research
	1.2.2 Practical Applications

	Part I REST Research
	Chapter 2 Communication and Capability URLs in COAST-based Decentralized Services
	2.1 Introduction
	2.2 Decentralized Systems via Computation Exchange
	2.3 The COAST Architectural Style
	2.4 Capability URLs in Detail
	2.5 Motile/Island: A Reference Infrastructure
	2.6 Related Work
	2.7 Conclusion and Future Work

	Chapter 3 Interoperability of Two RESTful Protocols: HTTP and CoAP
	3.1 The Internet of Things (IoT)
	3.2 Embedded Devices
	3.3 Architectural Design for Constrained Environment
	3.3.1 Reliability and Resiliency to Heterogeneity
	3.3.2 Asynchronous Reliable Messaging
	3.3.3 Data Representation Modeling
	3.3.4 Loose Coupling
	3.3.5 Driving the Application State for Resource Discovery
	3.3.6 Secured Communication

	3.4 Discussion
	3.5 Scenario: CoAP and HTTP Heterogeneous Network
	3.6 Conclusion

	Chapter 4
 Enabling Real-Time Resource Oriented Architectures with REST Observers
	4.1 Introduction
	4.2 Motivation and Related Work
	4.2.1 Web Syndication and Search Engines
	4.2.2 Server-to-Server Change Propagation
	4.2.3 Server-to-Client Change Propagation
	4.2.4 Summary

	4.3 The REST Observer Architecture Pattern
	4.4 The Web-Based Realization of REST Observer
	4.4.1 The Resource of Interest
	4.4.2 The Observer Resource
	4.4.2.1 Notification Delivery
	4.4.2.2 Inline Delivery
	4.4.2.3 External Delivery

	4.4.3 Notification Semantics
	4.4.3.1 Updating or Editing
	4.4.3.2 Deletion
	4.4.3.3 Creation

	4.4.4 Interaction

	4.5 Implementation Experience
	4.5.1 The Prototype Environment
	4.5.2 Resources and Representations
	4.5.3 Notifications Mechanics

	4.6 Discussion
	4.6.1 On the RESTfulness of the REST Observer Pattern
	4.6.2 On the Implementation of the Uniform Interface
	4.6.3 Observation Granularity and Filtering
	4.6.4 Example Deployments

	4.7 Conclusions and Future Work

	Chapter 5
 Survey of Semantic Description of REST APIs
	5.1 Introduction
	5.2 Lightweight Semantic Descriptions
	5.2.1 Syntactic REST API Descriptions
	5.2.2 MicroWSMO/SA-REST
	5.2.3 Minimal Service Model
	5.2.4 Further Semantic Approaches

	5.3 SPARQL-Based Descriptions
	5.4 Logic-Based Descriptions
	5.4.1 RESTdesc

	5.5 JSON-Based Descriptions
	5.5.1 SEREDASj

	5.6 Tools
	5.6.1 Karma
	5.6.2 SWEET

	5.7 Open Problems and Future Work
	5.7.1 Cross-Origin Resource Sharing (CORS)
	5.7.2 Authentication
	5.7.3 CORS and Authentication in API Descriptions

	5.8 Conclusion

	Chapter 6
 APIs to Affordances: A New Paradigm for Services on the Web
	6.1 Background
	6.1.1 More Devices
	6.1.2 The ``App Economy''
	6.1.3 More Services
	6.1.4 Summary

	6.2 The Problem
	6.2.1 Technical Difficulties
	6.2.1.1 Treating HTTP as a Transport
	6.2.1.2 Loss of Connector-Component Model

	6.2.2 Competing Priorities
	6.2.2.1 Immediate Usability
	6.2.2.2 Long-Term Evolvability

	6.2.3 The Time Dimension
	6.2.3.1 REST Resources Over Time
	6.2.3.2 Static Contracts
	6.2.3.3 Transient Devices, Persistent Networks

	6.3 Other Disciplines
	6.3.1 Architecture
	6.3.2 Visual Perception
	6.3.3 Industrial Design
	6.3.4 Cross-Cultural Mono-Myth
	6.3.5 The Map is not the Territory
	6.3.6 Summary

	6.4 An Affordance Paradigm
	6.4.1 Affordance-Rich Messages (ARMs)
	6.4.2 Programming the Network
	6.4.3 A Working Model
	6.4.3.1 An ARM Network
	6.4.3.2 ARM-Capable Devices
	6.4.3.3 ARM Design Model
	6.4.3.4 ARM Evaluation Model

	6.5 Related Work
	6.5.1 Web Intents
	6.5.2 ql.io
	6.5.3 Hypertext Application Language (HAL)

	6.6 Conclusion

	Chapter 7
 Leveraging Linked Data to Build Hypermedia-Driven Web APIs
	7.1 Introduction
	7.2 Hypermedia-Driven Web APIs: Challengesand Best Practices
	7.3 Linked Data and JSON-LD
	7.4 Hydra: A Lightweight Vocabulary for Hypermedia-Driven Web APIs
	7.5 Design Guidelines
	7.6 Adding Hydra Support to Web Frameworks
	7.6.1 Case Study: Issue Tracker

	7.7 Conclusions and Outlook

	Chapter 8
 RestML: Modeling RESTful Web Services
	8.1 Service Oriented Computing
	8.2 Model Driven Development
	8.3 Related Work
	8.4 RestML
	8.4.1 UML Profile
	8.4.2 Modeling RESTful Web Services
	8.4.3 RESTful Web Services in JavaEE Platform
	8.4.4 MDA Approach
	8.4.5 Case Study: AgendaWS
	8.4.6 The Domain Models (CIM)
	8.4.6.1 Use Cases
	8.4.6.2 Use Case Diagrams
	8.4.6.3 Activity Diagram

	8.4.7 Platform Independent Models (PIM)
	8.4.7.1 Class Diagram
	8.4.7.2 Sequence Diagram

	8.4.8 Platform Specific Model (PSM)
	8.4.9 Source-Code
	8.4.10 Packaging and Deployment

	8.5 Final Remarks

	Part II Practical Applications
	Chapter 9
 A Lightweight Coordination Approach for Resource-Centric Collaborations
	9.1 Introduction
	9.2 Related Work
	9.3 The Collaboration-Specification Language
	9.4 The Software Framework
	9.5 The Integration Model
	9.6 Case Study
	9.7 Conclusions and Future Work

	Chapter 10
 Connecting the Dots: Using REST and Hypermedia to Publish Digital Content
	10.1 Introduction
	10.2 Abril Group
	10.2.1 How Company Structure Influences the Solution?

	10.3 Alexandria Platform
	10.3.1 Domains
	10.3.2 Services
	10.3.3 Data Entry
	10.3.4 Site Tools
	10.3.5 System Interactions
	10.3.6 Operational and Technical Details
	10.3.6.1 Platform Evolution
	10.3.6.2 Team Organization
	10.3.6.3 Technology Applied

	10.4 REST Constraints Applied
	10.4.1 Client-Server (CS)
	10.4.2 Stateless (S)
	10.4.3 Cache ($)
	10.4.4 Layered System (L)
	10.4.5 Code-on-Demand (COD)

	10.5 Uniform Interface
	10.5.1 Resources
	10.5.1.1 Abstract Resources
	10.5.1.2 Concrete Resources

	10.5.2 Resource Identification
	10.5.3 Representations
	10.5.4 Hypermedia

	10.6 Evaluation
	10.7 Conclusion
	10.7.1 Lessons Learned
	10.7.1.1 Robustness Over Protocol Optimization

	10.7.2 Future Improvements

	Chapter 11
 In-Process REST at the BBC
	11.1 Introduction
	11.2 The Task and Its First Solution
	11.2.1 Version 1
	11.2.2 Analysis
	11.2.3 Solution Sketch

	11.3 Architecture
	11.4 Implementation
	11.4.1 Feeds and Domain Objects
	11.4.2 SiteMaps
	11.4.3 Bridges and Templates
	11.4.4 Ceefax and WAP

	11.5 Results
	11.6 Evaluation
	11.6.1 REST Constraints
	11.6.2 Drawbacks

	11.7 Related Work
	11.8 Conclusion and Outlook

	References

