
Making Query Execution Over Encrypted
Data Practical

Ken Smith, M. David Allen, Hongying Lan, and Andrew Sillers

Abstract The benefits of data outsourcing continue to grow, however owners of
sensitive data cannot take full advantage due to its risk profile. Encrypted query
processing promises to change this situation and allow data owners to securely
outsource their sensitive data: data is encrypted, installed in a database on a
remote (e.g., cloud) server, and standard queries are processed against the remote
encrypted data. Correct query answers are returned without ever exposing plaintexts
or decryption keys at the server. This chapter addresses three key challenges to
realizing, as a practical option, the promise of encrypted query processing: handling
query operations which cannot execute in ciphertext, implementing a working
system, and achieving acceptable query performance.

1 Background: Clouds and Outsourcing

The trend to outsource data to third party clouds continues to grow, however for
owners of sensitive data, clouds hold both great promise and vexing problems.

1.1 Outsourcing Data Management: The Promise

Renting a computing infrastructure frequently makes much better sense than owning
and running one. Outsourcing the management of computing assets allows an
organization to focus personnel, training, and hiring on their core business. It also
offers unprecedented agility, such as near instant expansion and contraction of the
organization’s IT footprint as software development cycles and seasonal business

K. Smith (�) • M.D. Allen • H. Lan • A. Sillers
The MITRE Corporation, McLean, VA, USA
e-mail: kps@mitre.org; dmallen@mitre.org; hlan@mitre.org; asillers@mitre.org

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__8,
© Springer Science+Business Media New York 2014

171

mailto:kps@mitre.org
mailto:dmallen@mitre.org
mailto:hlan@mitre.org
mailto:asillers@mitre.org

172 K. Smith et al.

demands require, and takes advantage of the cost efficiencies of a volume provider
of computing services, which have been compared to the efficiencies of household
gas, water, and electric utilities. Especially in the era of big data, the cost of
servers, disks, space, power, and cooling can far exceed the budget. Once purchased,
computing assets must be actively patched, repaired, and upgraded; such costs can
be avoided by renting.

In addition, outsourcing providers now offer a continually growing array of
services that its customers could not afford to develop themselves. For example,
Amazon Web Services offers rentable services such as inexpensive data archival,
on-demand map reduce clusters, and subnets with private IP addresses [18].

This combination of rentable computing infrastructure and novel computing
services makes widely available modes of computation which were previously
impossible, or out of reach due to cost. Consider a medical experiment which
generates and analyzes huge genetic datasets. The research funding to rent storage
and computing on an as needed basis is far less than that required to purchase these
and to pay professional staff to manage them. Using an outsourced infrastructure,
novel studies can be proposed which might not otherwise be feasible under research
funding.

1.2 Outsourcing Data Management: The Problem

Owners of sensitive datasets however, can be caught between the promise of
outsourcing and the problem of losing control of part of the computing stack (Fig. 1).
For an infrastructure as a service (IaaS) cloud, these stack layers include: hardware,
virtualization, fabric, and customer-installed software applications (e.g., DBMS,
web server, GUI); customers only control the final layer. Even with full confidence
in cloud-supplied layers (e.g., the customer does not expect hypervisors to ever
be compromised), cloud security engineering requires careful teamwork between

Fig. 1 Cloud security: the
challenge of letting go

Making Query Execution Over Encrypted Data Practical 173

the outsourcing vendor and the customer. The security features of vendor-supplied
layers and customer-supplied layers must mesh without a flaw when they are used
to implement a solution together. In this case, the utility analogy breaks down,
because consumers rarely interact with their household and gas utilities beyond
simply paying bills and turning service on and off.

Owners of sensitive datasets must also worry about the other participants in
a cloud ecosystem. Unlike a self-managed infrastructure, the cloud ecosystem
includes cloud neighbors, who typically belong to unknown organizations. In
several published attacks, the attacker becomes a cloud neighbor of their target to
stage the attack. For example, [22] illustrates a side-channel attack on a physically
collocated virtual machine (i.e., one sharing the same physical host as the attacker’s
virtual machine), enabling the attacker to steal a cryptographic key in the target
virtual machine by examining shared hardware resources.

The cloud ecosystem also includes vendor-supplied cloud administrators, who
are typically assumed to be “honest but curious” [11]. However, this is not always
the case. Recently, German citizens hiding their money in Swiss bank accounts to
evade high national taxation rates were identified because the German government
bribed the bank’s database administrator [17]. Owners of sensitive government data
cringe at the thought that a foreign government could influence a cloud administrator
to do something like this.

In addition, in the advanced persistent threat (APT) attacker model [21], cited for
the exfiltration of significant amounts of intellectual property, any person’s online
identity can be compromised (e.g., via a phishing attack) allowing the APT attacker
to masquerade with the full privileges of the compromised identity. Therefore, any
member of a cloud ecosystem could potentially become an attacker.

Due to such problems, owners of sensitive data are currently conflicted with
respect obtaining the agility, services, division of labor, and efficiencies clouds can
offer.

2 Using Data Encryption

A potentially game-changing strategy is the use of encryption to protect sensitive
data in clouds. Encrypted data is mathematically transformed so only the possessor
of a decryption key can reconstitute the original plaintext data without A pro-
hibitively expensive computational effort. Thus, if sensitive cloud data is encrypted,
an exfiltration attack does not truly succeed unless the attacker can additionally
obtain the decryption key, or successfully attack the cryptosystem. This is true
regardless of the stack layer the attack originates from, or the cloud denizen who
executes it.

174 K. Smith et al.

2.1 Pre-transmission Dataset Encryption

A simple strategy having these benefits is to encrypt each dataset prior to its
transmission to the cloud, and to only decrypt it upon retrieval from the cloud.
The downside of this strategy is that cloud applications cannot operate over these
encrypted datasets, they must be downloaded before use. Consider the query “What
is the location of helicopter 21?”. In a normal cloud database deployment, the
database would look up helicopter 21, and return a very small result relative to the
size of the entire data set. For monolithic encrypted files and datasets, there is no
way for the server to look up helicopter 21. Instead of returning a small answer, the
entire database would need to be retrieved. With “big data” era terabyte and larger
datasets, downloading the entire dataset before use is simply impractical.

2.2 Data-at-Rest Encryption

Data at rest encryption protects sensitive data in a storage system, can be used with
cloud-based data, and allows computation over that data. Data is encrypted when
stored on any cloud storage device, and decrypted when requested by an application.
Data at rest encryption is used for many types of sensitive data, including personal
health data covered by HIPAA, and sensitive but unclassified military information.
Data at rest encryption is especially useful against physical attacks, such as a
stolen laptop or disk drive, and mature products exist in which the user need not
be an expert cryptographer or make large performance sacrifices. For example,
Oracle’s Transparent Database Encryption product (TDE) [14] now provides at
rest encryption for Oracle DBMS’s, exploiting new hardware encrypt/decrypt
instructions [10].

Unfortunately, data at rest encryption does not protect data in use. It requires
a decryption key to be available in the cloud so data can be decrypted and used
by applications. As mentioned earlier, many attacks are aimed exactly at obtaining
the decryption key. Furthermore, the moment a query hits a cloud application (e.g.,
a TDE encrypted database), data is decrypted and brought into cloud memory as
plaintext. Thus, attackers do not actually need to obtain the key to defeat data at
rest encryption, they simply need to exfiltrate plaintexts from cloud memory. Note
that performing data in use encryption has not been added to standard security
requirements simply because useful commercial solutions do not exist at this time.

2.3 Homomorphic Encryption and Computing Over
Ciphertexts

Homomorphic cryptosystems promise the best of both worlds:

1. The ability to expose neither plaintext data nor decryption keys in clouds.

Making Query Execution Over Encrypted Data Practical 175

2. The ability for applications to nonetheless compute over encrypted data while it
resides in the remote cloud.

Cryptosystems are valued primarily for their ability to secure information.
As a side-effect, however, operations on their corresponding ciphertexts in some
cryptosystems correspond to useful operations on plaintexts, which is called a
homomorphism [5].

For example, in the Paillier [15] cryptosystem, the modular multiplication of
two ciphertexts corresponds to the addition of their plaintexts. Thus, for two
plaintext numbers m1 and m2, given only E(m1) and E(m2) (the encryptions
of m1 and m2 respectively), and the public encryption key, it is possible to
compute E(m1 +m2) without access to the corresponding plaintexts. Other pairs
of ciphertext and plaintext operations, although not strictly homomorphic provide
identical utility. For example, in any deterministic cryptosystem, equality tests on
ciphertexts correspond to equality tests on plaintexts. Thus, through the use of such
cryptosystem properties, it is possible to perform useful operations on data without
ever decrypting it.

Paillier is additively homomorphic because its homomorphism implements
addition over plaintexts. Other cryptosystems (e.g., RSA) are multiplicatively
homomorphic. The question naturally arises as to whether any cryptosystem is fully
homomorphic, enabling any computable operation over plaintexts to be performed
using ciphertext datasets.

Since being posed in 1979, the fully homomorphic encryption (FHE) problem
remained open for over 30 years. It was recently solved by Craig Gentry [6], for
which he won the 2009 ACM Dissertation award. Although Gentry’s cryptosystem
is fully homomorphic, and semantically secure, its performance degrades sharply
with its security parameter. For a practical degree of security, performance of
Gentry’s original algorithm has been estimated to be as bad as 10 orders of
magnitude worse than the corresponding plaintext operations [4], such that a one
second computation would take over three centuries. To address this disparity, in
2011 DARPA initiated the PROCEED program [4]; research on the optimization of
FHE is now very active, with several orders of magnitude improvement realized for
various portions of FHE (e.g., key generation) [7,19]; portions of this research have
also been released as open source code [9]. However, for the foreseeable future, FHE
remains computationally impractical. In addition, an efficient FHE implementation
would not immediately enable users to execute conventional queries in a cloud-
based PBMS. As the entire DBMS would have to be rewritten as a homomorphic
function, a massively complex undertaking. Thus, in the following, we focus on the
use of homomorphisms within the context of an existing DBMS.

2.4 Making Practical Tradeoffs

The FHE algorithms in Gentry’s thesis illustrate a general principle regarding
homomorphic computing. As illustrated in Fig. 2, a three-dimensional space of
desirable features exists for homomorphic encryption: functionality, security, and

176 K. Smith et al.

efficiency. Gentry’s FHE algorithms provide full computational functionality over
plaintext, a very high level of security (i.e., semantic security), but very poor
efficiency with respect to the equivalent operations over plaintext.

A cryptosystem with ideal qualities on all three axes does not exist, however,
other useful points in this space make tradeoffs differently than Gentry’s FHE.
The Paillier cryptosystem has similar security to FHE, provides only partial
homomorphic functionality (i.e., addition), but is much more efficient than FHE
(within two orders of magnitude of plaintext addition. Microsoft researchers have
recently developed a partially homomorphic cryptosystem [13] which can add
integers in about 200 μs per addition (versus 15 μs in Paillier), however, their
partially homomorphic functionality is much greater, enabling the computation of
statistics like the variance over ciphertexts.

The key insight is that it is not necessary to realize fully homomorphic function-
ality to to provide practical benefits for users today who want to use sensitive data in
clouds. It is sufficient to securely and efficiently achieve the functionality required to
implement a useful cloud application. For example, most computations in the SQL
language can be implemented without requiring full Turing-complete functionality.

2.5 The Database as a Service Architecture

In a groundbreaking 2002 paper [8], Hacigümüş et al. proposed a software
architecture for implementing practical (i.e., sufficiently efficient, secure, and
functional) SQL computations over a remote encrypted database server (e.g.,
hosted in an outsourced cloud infrastructure). Instead of relying on a single fully
homomorphic cryptosystem, this architecture can utilize a carefully-chosen set of
partially homomorphic cryptosystems. In other words, this architecture can be used
to exploit the individual strengths of multiple points in the space of Fig. 2. Plaintext

Fig. 2 A three dimensional
tradeoff space for
homomorphic encryption

Making Query Execution Over Encrypted Data Practical 177

SQL operations are translated into the appropriate homomorphic operations, similar
to how a compiler translates programming language constructs into the appropriate
machine codes.

As shown in Fig. 3, the user’s original plaintext SQL query (bottom center)
is translated into a query over encrypted data within a trusted client (left side).
The correctness of the encrypted query is ensured by translation algorithms which
substitute plaintext SQL operations for equivalent homomorphic operations.

The encrypted query is then sent off to a standard relational DBMS at the
untrusted server (right side). While the table names, column names, and constants
of encrypted query are ciphertext, the query itself remains a syntactically correct
SQL query. The untrusted server DBMS thus naively executes it, and produces a
set of encrypted results, which are then returned to the client (the temporary results
area) and decrypted. In the final step, as discussed in the following section, the query
executor applies any necessary post-processing to the decrypted results to generate
the final correct plaintext answer, which is then returned to the user.

Thus, even though the database is fully encrypted and neither plaintexts nor
decryption keys are ever exposed to the server, the end user issues the same SQL
query and receives the same answer as if the database were standard plaintext.

2.6 Current Status and Prototypes

The vision of this paper has grown more compelling with time, as cloud architec-
tures and their need for security has increased in importance, leading to its receipt
of the 2012 ACM SIGMOD 10 year Test of Time award [1]. A large literature has
also resulted from this initial paper, exploring suitable cryptosystems (e.g., varieties
of order preserving encryption [2, 3]) and “bucketization” strategies which enable

Client Site Query
Executor

Query
Translator

Meta
Data

Web Browser
(USER)

Service Provider

Server Site
Temporary

Results
Encrypted Results

Encrypted
Client

Database

A
ct

ua
l R

es
ul

ts

Query over Encrypted Data

Original Query

Fig. 3 Database as a service architecture

178 K. Smith et al.

a tradeoff between the security and efficiency dimensions of the space in Fig. 2.
However, as cited in the Test of Time award, no practical, commercially available,
product which executes queries over encrypted data is available at this time.

Three notable prototyping projects exist, however, which provide valuable
insights into the requirements for the practical realization of this technology. The
first was developed as part of Hacigümüş’ dissertation, and includes a general
planner for encrypted query execution and introduced the bucketization strategy.
The second, CryptDB [16] was developed as part of Raluca Popa’s dissertation at
MIT. CryptDB introduced features like onion encryption, and implemented several
novel cryptosystems (e.g., a cryptosystem supporting dynamic joins between tables
whose join keys were not previously encrypted with a congruent encryption key,
along with algorithms for query processing time re-encryption of join keys). The
third system is the MITRE DataStorm project [20], which contributed the IDEA
system for generating the encrypted schema, a more detailed system architecture,
and whose general focus is identifying and addressing the major barriers to practical
computation over encrypted data.

3 Overview of Remainder of Chapter

These projects have yielded valuable insights. In the remaining sections we address
three important challenges to the practical realization of this vision of executing
database queries over encrypted data:

1. Unexecutable query operations: how do we execute query operations which
cannot be executed over encrypted data? (Sect. 3),

2. System implementation: How do we mitigate the complexity of selecting an
appropriate set of cryptosystems to apply to a specific user’s query workload,
using them to create an encrypted database on the server, and setting up a client-
server system to service user queries over encrypted data? For this technology to
be practical, a user should not be required to have a good understanding of fields
like cryptography and query planning. (Sect. 5),

3. Ciphertext query performance: In addition to encryption and decryption, homo-
morphic operations over ciphertexts may be slower than their plaintext versions,
and ciphertext expansion of plaintext may result in network delays. Where are
the “sweet spots” for the performance of encrypted queries? (Sect. 6).

In each section, we describe the challenge, discuss how it can be addressed, and
discuss the prospects for a practical solution. We draw heavily on the experiences
of the DataStorm project due to its practical direction, however we also bring in
lessons from the other two projects as well. Finally, in Sect. 7, we discuss general
prospects for the future.

Making Query Execution Over Encrypted Data Practical 179

4 Unexecutable Query Operations

The first challenge is that some user queries may contain operations which, for
several different reasons, cannot be executed over a ciphertext database. From the
perspective of relational query optimization, we typically desire to push selections
deeper in the query execution tree, but sometimes cannot. Analogously, here we
desire to push operations in the plaintext query into an encrypted execution at the
remote cloud server, but for the reasons given below, we cannot.

4.1 Reasons Operations Cannot Be Executed Over Ciphertext

While fully homomorphic encryption (FHE) is a reality, it is not a practical option
for cloud users due to its current performance profile. Without the availability
of a secure fully homomorphic cipher, we seek to compose a set of partially
homomorphic ciphers which will cover the needs of database query operations.
So far, we have presented the Paillier cryptosystem as a running example of a
partially (additively) homomorphic cipher, but there are many other possibilities.
For example, unpadded RSA and ElGamal [12] are multiplicatively homomorphic,
and the Goldwasser-Micali cryptosystem is homomorphic with respect to the
exclusive-or operation. However, at the present time, the set of operations in SQL is
greater than the set for which we have direct translations into partially homomorphic
cryptosystems. This is one reason for unexecutable query operations.

Furthermore, ciphers are of course not created equal with respect to their strength
and security; in some situations (such as the use of unpadded RSA, which loses
semantic security) although a partially homomorphic cipher may provide the desired
operation, it not be a reasonable choice because it does not meet the security
requirements of an application.

A third type of operation which cannot be executed in ciphertext is one that
results in what we call an “encryption type mismatch”, an issue first identified
in [16]. Consider the < operation in the query segment WHERE age < (SELECT
SUM(years) FROM employee). If the input to the SUM() operation (an
encryption of the integer year) is a Paillier ciphertext to enable the computation of
a summation over ciphertexts, the output will also be a Paillier ciphertext. However,
Paillier ciphertexts cannot be used in the ensuing order test, because Paillier is not an
order-preserving cryptosystem. Although plaintext operands must only agree with
their operator in datatype (e.g., string, integer), ciphertext operands must agree not
only in datatype but also in encryption type. In this example, the < order test cannot
be executed in ciphertext because its second operand is of the wrong encryption
type.

So to summarize, there are three key reasons preventing operations in plaintext
queries from being translated into operations which can be executed over ciphertext
(i.e., pushed to a cloud).

180 K. Smith et al.

1. No available homomorphic operation. The plaintext operation (e.g. string con-
catenation, cube roots) simply lacks an appropriate homomorphic ciphertext
operation.

2. Insufficiently secure homomorphic operation. Although homomorphic ciphertext
operations exist, none have a security profile which meets the requirements of a
local security policy. For example, an order test in plaintext queries (e.g., WHERE
age < 21) is directly and efficiently implemented via an order preserving
cryptosystem. However, such a cryptosystem reveals the order of the encrypted
plaintexts. If this is the only ciphertext implementation of an order test, and it
violates local security policy, order tests cannot be executed over ciphertext.

3. Encryption type mismatches. A plaintext operation cannot be translated into a
homomorphic operation whose operands have the required ciphertext type.

If a plaintext query, or a coherent plaintext query workload, contains any
unexecutable operations, encrypted query execution is unavailable without way to
address these operations. In the following we discuss the use of a post-processing
architecture to enable the execution of queries and query workloads which contain
unexecutable operations.

4.2 Post-processing

Post-processing is illustrated by the architecture in Fig. 4 (which is representative
of the Hacigümüş and DataStorm prototypes). The data owner initially encrypts
their schema and database instances and installs these on the outsourced server
as the Encrypted DB. During query processing, the user or application submits
a plaintext query Q to a middleware application (developed to enable encrypted
query execution) within its trusted client. The middleware’s planner rewrites Q into
a set of queries represented by Q′ and Q′′ in Fig. 4 which execute: (a) at the server
in the encrypted database, and (b) (for any query components with unexecutable
operations) at the client in the middleware post-processor, over decrypted plaintext
results returned from the encrypted server. A correct plan produces the same results
as running Q against the original plaintext database.

Consider query Q in Fig. 5. Q’s WHERE clause contains two parts, one which
is executable over ciphertext and one which is not (due to the SQL LIKE clause).
The planner generates query Q′ for execution at the encrypted server. Note that table
names, column names, and constants are all encrypted in Q′, however it remains a
well-formed SQL query. The encrypted database sends the results of Q′ back to the
middleware where they are decrypted. In the middleware post-processor, query Q′′
is executed (in an in-memory DBMS) over the decrypted results, applying the final
portion of the query and returning the final correct answer.

Post-processing thus makes it possible to execute queries containing opera-
tions which are unexecutable over ciphertext (e.g., LIKE, cos(), encryption type
mismatches).

Making Query Execution Over Encrypted Data Practical 181

4.3 Planning

Query planning can be simple in many cases. If the query contains no unexecutable
operations, all execution occurs at the server and the post-processing step is skipped.
For many more queries, for example Q in Fig. 5, a relatively simple “U-shaped” plan
is the best choice (i.e., it is correct and no more efficient plan can be found).

However, some queries require a more sophisticated plan. Consider a query to
retrieve all 30 year old employees who make less than the average salary:

SELECT * FROM emp
WHERE emp.age = 30 AND emp.salary <
SELECT AVG(emp.salary) FROM emp

Application

Encrypted DB

SQL
Query

Q

EDB
Query

Encrypted
Query
Results

Post-proc
Query

Final
Results

Middleware

Planner Query Post-
Processor

Fig. 4 Post processing
architecture

Original Query (Q):
SELECT Name, Salary
FROM Employee
WHERE Salary < 100,000

AND Loc LIKE ‘%McLean%’

WHERE col3 LIKE ‘%McLean%’

Encrypted DB Query ():
SELECT e(Name), e(Salary)
FROM e(Employee)
WHERE e(Salary) < e(100,000)

Post-processing Query ():
SELECT col1, col2
FROM Result

Q’

Q”

Fig. 5 Query rewriting

182 K. Smith et al.

Note that the average contains a division. If we encrypt salary with the Paillier
cryptosystem, we can compute the sum (and count) at the server over ciphertext, but
not the final division, which must be computed back at the client after decryption.
However, to execute a simple “U-shaped” execution plan would require us to bring
back the entire emp table across the network as well to compute the rest of the query,
which could be extremely costly for a large table.

A maximal push (MP) heuristic, which constructs a better performing plan, is
shown in Fig. 6. Starting with a baseline plan that returns everything to the client
for post-processing, a maximal push plan is constructed by pushing every possible
operation to the server. This heuristic is presented in the original Hacigümüş et al.
paper: “we would attempt to rewrite the query tree, such that most of the effort
of evaluating the query occurs at the server, and the client does the least amount
of work [8].” Not only can the MP plan minimize the server result set size (and
the resulting network traffic), pushing every possible operation to the server also
exploits the query optimizer, any indices, and likely much more powerful computing
resources available at the DBMS server.

Note, however, that an MP plan is not always optimal: it would be cheaper
to return the operands of a cross product and compute the cross product at the
client, than to compute the cross product at the server and return the entire result!
Thus, straightforward heuristics like the U-shaped plan, and the maximal push
plan, cover a great deal of practical cases. However, a very general query planner
for encrypted query processing must be sufficiently sophisticated to generate and
evaluate alternative query execution plans. The requirements for a given scenario
depend on the type of queries being executed, the size of data tables, and (as the
next section demonstrates) local security requirements.

5 System Implementation

A working client-server system which can execute query plans over encrypted data
can be a practical challenge to implement, due to:

1. Query diversity: The plan for one query might require cryptosystems which are:
additively homomorphic, order preserving, and deterministic, whereas the plan
for another query might require none of these. And a query might have operations
which cannot be executed by any currently available partially homomorphic
cryptosystem. Thus, some type of automated query planning is needed.

2. User scenario diversity: Interactions with users have shown dramatically differ-
ent requirements. For example, some users will not use a cryptosystem unless it
is on an approved list. Others, realizing they are exposing plaintexts, welcome the
use of novel forms of encryption. User priorities may change as well, for example
if threat levels are very high. Thus, although a planner is needed, it is difficult

Making Query Execution Over Encrypted Data Practical 183

Fig. 6 Maximal push query plan

184 K. Smith et al.

to automatically determine an encrypted query execution plan; unlike standard
query optimization with its single focus on optimizing query performance, some
user feedback about priorities is necessary to guide the generation of a good plan.

3. Cryptosystem diversity: Each partially homomorphic cryptosystem has a distinc-
tive and complex profile of security, functionality, and efficiency features. There
are frequently multiple cryptosystems of a given type (e.g., order preserving),
and more are being published every day. Thus, the job of creating the encrypted
database which will be installed on the server is a significant challenge.

Ordinary business users who simply want to execute their queries more security
cannot be required to possess depth in both cryptography and database performance,
or the promise of this technology will never be realized.

Given a plaintext database, and a query workload over it, users need to somehow
generate a ciphertext database (involving various cryptosystems) and a set of query
plans to execute their query workload over that database. To mitigate the complexity
of system implementation, the DataStorm architecture, shown in Fig. 7, includes an
intuitive multi-step workflow by which non-specialist users can accomplish these
tasks. The first two steps (design and migration) help the user create an appropriate
encrypted database. The third step (execution) enables the user to generate and
execute query plans in a client-server architecture. These steps are discussed in more
detail in the following.

1. Design Time. The interactive database encryption advisor (IDEA) automatically
generates an encryption map, a mapping from plaintext columns to encrypted
columns based on: (a) the original plaintext schema, (b) the user’s plaintext
query workload, and (c) the cryptosystems available in the encryption library.
IDEA’s initial mapping is based on generation of MP plans for each query.
Users may interactively override IDEA’s encryption recommendations (e.g., due
to local security policy constraints), causing IDEA to suggest a new encryption
map. IDEA uses a lattice-based visualization of encryption types to simplify
interaction for those unfamiliar with cryptosystems, as described in [20].

2. Migration. Based on the final encryption map and the plaintext database, the
migration tool creates the encrypted database on the server.

3. Execution. The planner takes a user’s plaintext query as an input, and builds an
execution plan, as described in Sect. 4.3. The plan object produced consists of (a)
a set of queries executed at the server, (b) a set of queries executed at the client,
and (c) operations to transform, decrypt, and encrypt data. The execution engine
traverses the plan tree, sending queries to the client and/or server as appropriate,
and assembles the final result.

Although DataStorm’s architecture does not consist of commercial grade tools,
their use has nonetheless made setting up a working client-server query system
much easier.

Making Query Execution Over Encrypted Data Practical 185

Fig. 7 DataStorm system architecture

6 Ciphertext Query Performance

A basic question potential users of encrypted database queries must ask is: how
much does it cost in performance to execute a query over ciphertext, with respect to
executing the same query over plaintext?

At a coarse level, there are three major categories of costs to consider:

1. Client processing: query planning, decryption of results, and post-processing.
2. Network: all transfers, especially returning ciphertext answers to the server.
3. Server processing: answering the ciphertext query.

Client processing times can vary widely, and are highly optimizable. For
example, Paillier decryptions take a very slow 44 ms per integer. However, opti-
mizations like hardware decryption (e.g., most new chips include AES decryption
in their instruction set), and client-side ciphertext caching can speed decryption up
significantly.

Network times are heavily impacted by the answer size. Note that this is true
for plaintext queries at a remote server as well, however ciphertext expansion (the
factor by which a ciphertext is larger than its corresponding plaintext) compounds

186 K. Smith et al.

this cost. Network times are also impacted by the network’s overall speed and by
competition for network bandwidth, but often not in a predictable fashion due to
network protocols which dynamically allocate bandwidth.

Despite hard-to-quantify variability, however, for both client processing and
network transfers smaller answer sizes are strongly correlated with better overall
query performance. This is ideal for a simple and common query like “Find the
location of Helicopter 21”. Even on a database of many terabytes, the answer size
remains small, thus little client processing or network transfer cost is incurred.

In the following, we focus solely on a direct comparison of server processing
speeds for plaintexts and ciphertexts. In Fig. 8, we compare a basic equality test
query (like the Helicopter 21 query) on an indexed field. Identical server databases
were set up in three sizes (10, 100, 1,000 K tuples), one in plaintext and one in
ciphertext at each size. The ciphertext database used AES encryption (deterministic
AES was used for the indexed field). Both query plans are identical, use the index,
and return 4 % of the server database as the answer. To eliminate network variability,
both databases were run on localhost using a standard Intel laptop with 3.5 GB of
RAM running Postgres 9.1.4. After cache warmup, timings were computed as the
average of 10 runs.

Fig. 8 Tests on equality
query; times in ms

Figure 8 shows a stable ratio of ciphertext to plaintext execution times (between
1.59 and 2.17); ciphertext being around twice as slow. Decryption and query
planning are a negligible fraction of these times. Much of this slowdown is
attributable to the increased size of ciphertexts, resulting in more data pages
being touched for the same query and data. A two-fold slowdown at the server is
acceptable in many cases, especially for queries with a small fixed size answer (e.g.,
for web queries which populate forms) whose overall cost is dominated by the delay
of communicating with a remote server over a network.

Figure 9 shows a similar experiment for a summation query; Paillier encryption
was used for the field being summed. The database performed the homomorphic
operation, a modular multiplication of ciphertexts, via a user defined aggregate
function (UDAF) written in C in about 15 μs. In this case, working with ciphertexts
is 67–82 times worse than plaintexts (still much faster than current fully homomor-
phic encryption algorithms). Note, however, that summation is an “embarrassingly
parallel” operation, and commercial clouds make it possible to rent groups of
compute servers for parallel computations. Paillier summations are thus an ideal
candidate for speedup via cloud parallelism, and this ratio could be substantially
reduced, even to unity. In addition, summation is a dramatically data reducing
operation: terabytes operands can be reduced to a single answer, which incurs little

Making Query Execution Over Encrypted Data Practical 187

network delay. Thus, massive summations and the queries that rely on them (e.g.,
averages, business intelligence aggregates) are promising candidates for encrypted
query execution as well.

Fig. 9 Tests on summation
query; times in ms

7 Conclusions

In conclusion, challenges to query execution over encrypted data do exist, including
individual query operations which cannot be executed over ciphertext, imple-
menting a working client-server query execution system, and the performance
of queries executed over ciphertext. However, as discussed in this chapter, these
are well addressed by query planning, tools which assist the user with system
implementation, and aiming for performance sweet spots, such as queries retrieving
small objects and parallel summation queries.

As new cryptosystems are continually being developed and cloud services (e.g.,
parallelism on demand) grow, the future of encrypted query processing for cloud
security is promising. Synergy between the information management and cryptog-
raphy research communities, with their differing focus and priorities, is improving
and has recently resulted in beneficial research. As that dialogue continues to grow,
it will benefit this developing area. Further work is needed to develop commercial
grade query planners/optimizers and system implementation tools, and efficient and
secure cryptosystems with the partially homomorphic functionality to enable more
types of queries to be processed at the server instead of post-processing.

References

1. ACM, Test of time award, www.sigmod.org/2012/awards_sigmod.shtml, 2012.
2. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu, Order preserving

encryption for numeric data, Proceedings of the 2004 ACM SIGMOD international conference
on Management of data (New York, NY, USA), SIGMOD ’04, ACM, 2004, pp. 563–574.

3. Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill, Order-preserving
symmetric encryption, Advances in Cryptology – EUROCRYPT 2009 (Antoine Joux, ed.),
Lecture Notes in Computer Science, vol. 5479, Springer Berlin Heidelberg, 2009, pp. 224–
241.

4. DARPA, The darpa program for programming comuptation on encrypted data (proceed),
http://www.darpa.mil/Our_Work/I2O/Programs/, 2013.

www.sigmod.org/2012/awards_sigmod.shtml
http://www.darpa.mil/Our_Work/I2O/Programs/

188 K. Smith et al.

5. Caroline Fontaine and Fabien Galand, A survey of homomorphic encryption for nonspecialists,
EURASIP Journal on Information Security 1 (2007).

6. Craig Gentry, A fully homomorphic encryption scheme, Ph.D. thesis, Stanford University, 2009.
7. Craig Gentry and Shai Halevi, Implementing gentry’s fully-homomorphic encryption scheme,

Advances in Cryptology – EUROCRYPT 2011 (KennethG. Paterson, ed.), Lecture Notes in
Computer Science, vol. 6632, Springer Berlin Heidelberg, 2011, pp. 129–148.

8. Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra, Executing sql over encrypted
data in the database-service-provider model, Proceedings of ACM SIGMOD (New York, NY,
USA), SIGMOD ’02, ACM, 2002, pp. 216–227.

9. IBM, Ibm homomorphic encryption library project on github, https://github.com/shaih/HElib,
2013.

10. Intel, Intel advanced encryption standard instructions (aes-ni), http://software.intel.com
/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/, 2011.

11. Witold Litwin, Sushil Jajodia, and Thomas Schwarz, Privacy of data outsourced to a cloud
for selected readers through client-side encryption, Proceedings of the 10th annual ACM
workshop on Privacy in the electronic society (New York, NY, USA), WPES ’11, ACM, 2011,
pp. 171–176.

12. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of applied cryptography,
Discrete Mathematics and Its Applications, Taylor & Francis, 2010.

13. Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan, Can homomorphic encryption be
practical?, Proceedings of the 3rd ACM workshop on Cloud computing security workshop
(New York, NY, USA), ACM, 2011, pp. 113–124.

14. Oracle, Oracle advanced security transparent data encryption best practices, http://www.
oracle.com/technetwork/database/security/twp-transparent-data-encryption-bes-130696.pdf,
March 2012.

15. Pascal Paillier, Public-key cryptosystems based on composite degree residuosity classes,
Advances in Cryptology (EUROCRYPT ’99), Lecture Notes in Computer Science 1592
(1999), 223–238.

16. Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan,
Cryptdb: protecting confidentiality with encrypted query processing, Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles (New York, NY, USA),
SOSP ’11, ACM, 2011, pp. 85–100.

17. Reuters, German state ready to buy stolen bank data source, blogs.reuters.com/financial-
regulatory-forum/2010/02/04/german-state-ready-to-buy-stolen-bank-data-source/, 2010.

18. Amazon Web Services, products page, aws.amazon.com/products, 2013.
19. N.P. Smart and F. Vercauteren, Fully homomorphic simd operations, Designs, Codes and

Cryptography (2012), 1–25.
20. Ken Smith, Ameet Kini, William Wang, Chris Wolf, M. David Allen, and Andrew Sillers, Intu-

itive interaction with encrypted query execution in datastorm, 2012 IEEE 28th International
Conference on Data Engineering (ICDE), April 2012, pp. 1333 –1336.

21. Colin Tankard, Advanced persistent threats and how to monitor and deter them, Network
Security 2011 (2011), no. 8, 16 – 19.

22. Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart, Cross-vm side channels
and their use to extract private keys, Proceedings of the 2012 ACM conference on Computer
and communications security (New York, NY, USA), ACM, 2012, pp. 305–316.

https://github.com/shaih/HElib
http://software.intel.com
/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://www.oracle.com/technetwork/database/security/twp-transparent-data-encryption-bes-130696.pdf
http://www.oracle.com/technetwork/database/security/twp-transparent-data-encryption-bes-130696.pdf

	Making Query Execution Over Encrypted Data Practical
	1 Background: Clouds and Outsourcing
	1.1 Outsourcing Data Management: The Promise
	1.2 Outsourcing Data Management: The Problem

	2 Using Data Encryption
	2.1 Pre-transmission Dataset Encryption
	2.2 Data-at-Rest Encryption
	2.3 Homomorphic Encryption and Computing Over Ciphertexts
	2.4 Making Practical Tradeoffs
	2.5 The Database as a Service Architecture
	2.6 Current Status and Prototypes

	3 Overview of Remainder of Chapter
	4 Unexecutable Query Operations
	4.1 Reasons Operations Cannot Be Executed Over Ciphertext
	4.2 Post-processing
	4.3 Planning

	5 System Implementation
	6 Ciphertext Query Performance
	7 Conclusions
	References

