
Selective and Fine-Grained Access to Data
in the Cloud

Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

Abstract This chapter surveys some of the research results related to the protection
and efficient access to data stored and managed by external cloud servers. We
first provide an overview of the security and privacy problems and challenges that
need to be considered, and then illustrate emerging approaches for protecting data
externally stored, and for enforcing fine-grained (queries) and selective (access
control) accesses on them. Finally, we show how the combined application of
the solutions discussed may introduce privacy problems that should be carefully
considered.

1 Introduction

Emerging paradigms like data outsourcing and cloud computing have attracted the
attention of the research and industrial communities thanks to their advantages in
terms of reduced costs for IT resources, increased storage, flexibility in resource
management, and higher scalability. These advantages however do not come for
free. In fact, these emerging paradigms also introduce a number of privacy and
security risks that may represent a serious obstacle for their wide development and
for their acceptance by users and companies. Security and privacy may relate to
different aspects, including resources, data and network isolation, attacks to the
cloud servers, compliance with laws and regulations, reliability of applications and
services, protection of the confidentiality and integrity of data, and data availability
(e.g., [11,19,38,39,44]). In this chapter, we will provide an overview of the problems
and solutions related to the proper protection of the confidentiality of the data
and to the efficient access to them. These problems become quite complex in a

S. De Capitani di Vimercati • S. Foresti • P. Samarati (�)
Università degli Studi di Milano – Dipartimento di Informatica
Via Bramante 65, 26013 Crema, Italy
e-mail: pierangela.samarati@unimi.it

S. Jajodia et al. (eds.), Secure Cloud Computing, DOI 10.1007/978-1-4614-9278-8__6,
© Springer Science+Business Media New York 2014

123

mailto:pierangela.samarati@unimi.it

124 S. De Capitani di Vimercati et al.

cloud scenario since users release and store their data on external servers that are
outside their control. Also, the advances in the Information and Communication
Technologies (ICTs), including the possibility of combining and analyzing more
information from several data sources, intensify the data protection problem.

The protection of potentially sensitive data stored and managed by external cloud
servers poses interesting challenges. In fact, cloud servers can be characterized
by different levels of trust, ranging from honest-but-curious servers, meaning that
they are trusted for the management of the data but cannot know (access) the data
they store, to servers that may intentionally behave improperly in the storing and
processing of the data. Data are therefore encrypted by the data owner before their
storage in the cloud. Since cloud servers cannot decrypt data, there is the problem
of defining techniques (e.g., indexes) for enforcing fine-grained retrieval of the data
without compromising their privacy. However, techniques that support effective and
efficient accesses to the outsourced data are not enough. In fact, if the server (or a
generic observer) monitors the accesses by users, it may be able to draw inferences
on which data have been accessed. Also, the presence of multiple users who rely on
external storage for making their data available to others, introduces the problem of
enforcing selective (read and write) access to the outsourced data.

In this chapter, after a brief overview of the different security and privacy
problems that can arise in a cloud computing scenario, we survey and discuss
research results related to the protection of the privacy of outsourced data, and on
the fine-grained and selective retrieval of data. We also show that the combination of
techniques addressing a specific problem can cause privacy breaches. The remainder
of the chapter is organized as follows. Section 2 provides an overview of the
main security and privacy risks in a cloud scenario. Section 3 illustrates some
approaches and open issues related to the protection of data confidentiality, indexing
for query support, and selective access. Section 4 describes how the combination of
indexes for query support and fragments for data confidentiality can cause leakage
of confidential information. Section 5 describes how the combination of indexes
and selective encryption may allow unauthorized users to infer (or reduce their
uncertainty on) information that they are not authorized to access. Finally, Sect. 6
provides our conclusions.

2 Security and Privacy in the Cloud

The security and privacy problems that arise when data are stored at external
servers have been the subject of many studies (e.g., [22, 31, 37]). Depending on
the considered aspect, the security and privacy problems can be related to: (i) the
privacy of users; (ii) the privacy and integrity of data storage; (iii) the privacy and
integrity of queries; and (iv) the secure and private data computations involving
multiple providers. Figure 1 illustrates the reference cloud scenario where users
interact with external cloud servers for accessing data and services, and different

Selective and Fine-Grained Access to Data in the Cloud 125

Fig. 1 Reference cloud scenario

cloud servers collaborate for offering a service or responding to a query. In the
remainder of this section, we provide a description of each of the four categories of
security and privacy problems mentioned above.

Privacy of users. Cloud services allow users to access applications and data on
demand every-time they need. To successfully complete the required access, users
may be asked to provide some information while however wishing to protect their
identities for privacy reasons. For instance, a user can be interested in querying a
cloud server for collecting information about a given illness without revealing her
identity to avoid possible correlations between the illness and herself or a person
close to her. The techniques developed for supporting anonymous communication
between parties and attribute-based access control can be helpful in protecting the
privacy of the users. In fact, anonymous communication techniques allow users to
communicate on the Internet without revealing their identities [9], meaning that an
observer cannot trace who is communicating with whom, or who is interacting with
which server or searching for which data. Attribute-based access control solutions
allow users to access resources or data without reveling their identities [13]. The
idea is that, instead of declaring their identities, users prove that they satisfy the
conditions needed for the access. To this purpose, a user can disclose a credential (a
set thereof) certifying the information necessary for the access. The server verifies
whether the credential is valid and whether the information it certifies satisfies the
policy regulating access to the resource. The research community has also devoted
considerable attention to the use of anonymous credentials [16] for access control
(e.g., [4]). An anonymous credential allows a user to make statements about attribute
values, maintaining the values private. For instance, anonymous credentials permit
to selectively release a subset of the properties in a credential or to prove that
they satisfy some conditions, without revealing any information about their values.
Anonymous credentials can be at the basis of a new generation of access control
policy languages that can be particularly suited to open and dynamic scenarios like
the cloud.

126 S. De Capitani di Vimercati et al.

Recently, some proposals have started to address the problem of regulating the
release of users’ personal information according to privacy preferences expressed
by the users themselves. These proposals have introduced models relying on user
preferences that permit to associate a higher or lower sensitivity with the combined
release of a set of properties/credentials (e.g., [5–7,40,53]). For instance, a user may
consider the joint release of her name and credit card number more sensitive than
the release of each information singularly taken. Although these solutions represent
a first step towards the definition of a comprehensive approach for the protection of
users’ privacy, there are still several open issues: the development of user-friendly
approaches for expressing privacy preferences; the ability of defining privacy
preferences that depend on the context; and the integration of these approaches with
server-side solutions supporting fine-grained policy disclosure, which permit the
server to obfuscate the portions of its policies considered sensitive, while providing
the user with enough information for releasing the information necessary to possibly
gain access (e.g., [8]).

Privacy and integrity of data storage. When data are outsourced to an external
server that is outside the control of the data owner, the protection of the confi-
dentiality and of the integrity of the data, as well as the efficient access to them
become clearly of paramount importance. In this context, the research community
has been very active and produced advancements in several areas: solutions for
protecting data confidentiality (e.g., encryption and fragmentation [1, 21, 37]);
indexes for supporting queries (e.g., [17, 37]), solutions for supporting selective
access to outsourced data (e.g., [24]), solutions for ensuring data integrity (e.g.,
signatures [14, 35, 43]). These approaches typically consider a scenario where a
data owner outsources her data to an external server that can be trusted to properly
manage the data, making them available to requesting users, but it is not trusted to
read the content of the data it stores (i.e., honest-but-curious server). The outsourced
data can be of any type, including files and relational tables. In the remainder
of this chapter, for simplicity and without loss of generality, we will assume that
the outsourced data are organized in a single relation r, stored in a (distributed)
relational database. Relation r is defined over relational schema R(a1, . . . ,an), with
attribute ai defined over domain Di, i = 1, . . . ,n. The presentation of solutions and
issues related to the protection of the privacy of outsourced data will be the subject
of the following sections.

Privacy and integrity of queries. Accessing information from external cloud
servers and performing queries over outsourced data introduce several privacy
and integrity issues. Existing data management architectures typically assume that
the data obtained from distributed parties have not been tampered with, and are
available only to authorized parties. Such assumptions do not apply anymore in
cloud scenarios, where multi-tenant infrastructures orchestrate different services.
Assurances on the fact that the privacy of the queries is preserved and that
computations on data are processed in the expected way (integrity and verifiability)
are becoming more and more important. In fact, there is an increasing need for novel

Selective and Fine-Grained Access to Data in the Cloud 127

techniques that support not only data privacy, but also the privacy of the accesses
that users make on such data. This problem has been traditionally addressed by
Private Information Retrieval (PIR) proposals (e.g., [18]), which provide protocols
for querying a database that prevent the external server from inferring which data
are being accessed. PIR solutions however have high computational complexity,
and alternative approaches have been proposed. These novel approaches rely on
the Oblivious RAM structure (e.g., [33, 47, 48]) or on the definition of specific tree-
based data structures combined with a dynamic allocation of the data (e.g., [29,30]).
The goal is to support the access to a collection of encrypted data while preserving
access and pattern confidentiality, meaning that an observer can infer neither what
data are accessed nor whether two accesses aim to the same data. Besides protecting
access and pattern confidentiality, it is also necessary to design mechanisms for
protecting the integrity and authenticity of the computations, that is, to guarantee
the correctness, completeness, and freshness of query results. Most of the techniques
that can be adopted for verifying the integrity of query results operate on a single
relation and are based on the idea of complementing the data with additional data
structures (e.g., Merkle trees) or of introducing in the data collection fake tuples that
can be efficiently checked to detect incorrect or incomplete results (e.g., [41,46,50–
52]). Interesting aspects that need further analysis are related to the design of
efficient techniques able to verify the completeness and correctness of the results
of complex queries (e.g., join operations among multiple relations, possibly stored
and managed by different cloud servers with different levels of trust).

Secure and private data computations. More and more emerging scenarios
require different cloud servers to cooperate to the aim of sharing information and/or
performing distributed computations. This sharing process can be clearly selective,
meaning that different servers may have different access privileges. Recently, a
significant amount of research has addressed the problem of processing distributed
queries under protection requirements (e.g., [2, 15, 26]). Some proposals are based
on the concept of access pattern, a profile associated with each relation/view [15].
For each attribute of the relation/view, the access pattern includes a value that may
be either i for input or o for output. When accessing a relation, the values for all
i attributes must be supplied to obtain the corresponding values of o attributes.
Sovereign joins [2] are an alternative solution for securely processing joins. This
solution is based on a secure coprocessor, which is involved in query execution, and
exploits cryptography. Other approaches propose an authorization model to regulate
the view that each server can have on the data, ensuring that query computation
exposes to each server only the data that the server can view [26]. The idea is that
a relation (base or resulting from the evaluation of a query) can be released to a
server whenever the information it carries (either directly or indirectly when the
relation has been obtained as the result of a query) is visible from the receiving
party. The proposed authorization model operates at the schema level and supports
the definition of generic view patterns, thus nicely meeting both expressiveness and
simplicity requirements.

128 S. De Capitani di Vimercati et al.

Fig. 2 Summary of security and privacy issues and corresponding solutions

Figure 2 summarizes the main categories of security and privacy issues discussed
above (gray boxes) along with some of the corresponding solutions (white boxes).
Note that this classification does not aim to be complete but only to provide a quick
overview of the solutions mentioned.

3 Privacy of Data Storage

The problem of protecting outsourced data while enjoying effective and efficient
data management and retrieval operations has attracted the attention of many
researches, and several investigations have been carried out. The problem is quite
complex and involves several aspects, including basic techniques for protecting
data at rest (Sect. 3.1), techniques for efficiently accessing encrypted data without
compromising their confidentiality (Sect. 3.2), and data-centric techniques for
supporting selective access to the outsourced data without relying on the data owner
and/or on the honest-but-curious server storing the data (Sect. 3.3). We now describe
more in details these aspects.

3.1 Encryption and Fragmentation

The problem of protecting the confidentiality of outsourced data has been one of
the first issues investigated in the data outsourcing and cloud scenarios. In fact, the
risk that unauthorized parties (or even the external server itself) can access sensitive

Selective and Fine-Grained Access to Data in the Cloud 129

PATIENTS
SSN Name YoB Job Disease

t1 123456789 Alice 1980 Clerk Asthma
t2 234567891 Bob 1980 Doctor Asthma
t3 345678912 Carol 1970 Nurse Asthma
t4 456789123 David 1970 Lawyer Bronchitis
t5 567891234 Eva 1970 Doctor Bronchitis
t6 678912345 Frank 1960 Doctor Gastritis
t7 789123456 Gary 1960 Teacher Gastritis
t8 891234567 Hilary 1960 Nurse Diabetes

c0 = {SSN}
c1 = {Name, Disease}
c2 = {Name, Job}
c3 = {Job, Disease}

a b

Fig. 3 An example of plaintext relation (a) and of a set of confidentiality constraints over it (b)

information is one of the main factors for which users (and not only) are often
reluctant to adopt the cloud for storing their data. The solutions proposed to protect
data confidentiality are based on encryption and fragmentation, which can be used
either singularly or in combination.

Encryption consists in wrapping a protective layer of encryption around data
before storing them at an external server (e.g., [17,34,37,44]). Since the encryption
key is known only to the data owner and to authorized users, this technique
protects the data against both external (malicious) parties, and the server itself.
While effective, this approach is based on the conservative assumption that all the
outsourced data are equally sensitive and must therefore be protected. However,
as first observed in [1, 20, 21], often data are not sensitive per se but what is
sensitive is their association with other data. As an example, the list of the names
of hospitalized patients and the list of diseases cured in a hospital are not sensitive.
On the contrary, the association of patients’ names with the illness they suffer from
is highly sensitive and should therefore be kept confidential. Data confidentiality
can then be achieved by properly protecting sensitive associations. Given a relation
r over relation schema R(a1, . . . ,an), both sensitive attribute values and sensitive
associations among them can be modeled through confidentiality constraints [1]. A
confidentiality constraint c over R is a subset of the attributes in R (i.e., c⊆R),
modeling a sensitive association on the values of the attributes in c. Constraint
c states that, for each tuple t in r: (i) value t[a] is considered sensitive per se,
if c is a singleton constraint (i.e., c = {a}); (ii) the joint visibility of the values
of the attributes in c is considered sensitive, if c is an association constraint (i.e.,
c ={ai, . . . ,a j}). For instance, Fig. 3b illustrates a set of confidentiality constraints
over relation PATIENTS in Fig. 3a. Singleton constraint c0 states that the list of
Social Security Numbers is considered sensitive per se. The remaining association
constraints state that the association of: patients’ name with the disease they suffer
from (c1), patients’ names with their job (c2), and patients’ job with their disease
(c3) are considered sensitive, respectively.

Given a relation r and a set C of confidentiality constraints over it, the goal is
to combine fragmentation and encryption techniques to guarantee that sensitive
values and sensitive associations are properly obfuscated. Intuitively, singleton

130 S. De Capitani di Vimercati et al.

constraints are enforced by encrypting the attribute values before outsourcing or by
not outsourcing the attribute values at all. Association constraints are enforced by
partitioning the attributes in R in different subsets (fragments), or by not releasing
(in clear form) at least one of the attributes in the constraint. A fragmentation
correctly enforces the confidentiality constraints if no fragment stored at the external
server represents all the attributes in a constraint in clear form, and fragments cannot
be joined by unauthorized users.

The approaches that rely on fragmentation and encryption for enforcing confi-
dentiality constraints differ in how they guarantee that fragments cannot be joined,
and in how they protect attribute values considered sensitive per se. Based on these
differences, existing techniques can be classified as follows.

• Non-communicating pair of servers [1]. The data owner partitions relation R in
two fragments, F1 and F2, stored at two non-communicating servers. Those
attributes that cannot be stored at any of the two servers without violating
confidentiality constraints are encoded and the result is stored at the two servers
(e.g., the attribute values are encrypted via one-time-pad, and the result of
encryption is stored at one server, while the key is stored at the other one).
Only users who can access both the versions of an encoded attribute can
reconstruct its plaintext values. Figure 4 illustrates an example of fragmentation
for relation PATIENTS in Fig. 3a that satisfies the confidentiality constraints in
Fig. 3b. It is composed of fragments F1 = {tid, Name, YoB, SSNk, Diseasek}
and F2 = {tid, Job, SSNk, Diseasek}. Attribute tid is a tuple identifier
introduced in the two fragments to permit authorized users to correctly join F1

and F2 to reconstruct the original content of relation PATIENTS. Attributes SSNk

and Diseasek represent the encoded version of attributes SSN and Disease,
respectively.

• Multiple fragments [21]. The data owner partitions relation R in an arbitrary
set of fragments, {F1, . . . ,Fm}, possibly stored at the same server. Fragments
are disjoint, meaning that no attribute is represented in clear form in more than
one fragment. All the attributes in R that are not represented in clear form in
a fragment are however represented in encrypted form in the fragment (i.e.,
each fragment is complete). Figure 4 illustrates an example of fragmentation
for relation PATIENTS in Fig. 3a that satisfies the confidentiality constraints in
Fig. 3b. It is composed of three fragments: F1 = {salt, enc, Name, YoB},
F2 = {salt, enc, Job}, and F3 = {salt, enc, Disease}. Attribute
salt is a randomly chosen value, different for each tuple in each fragment.
Attribute enc is the result of the encryption of the attributes in the original
relation that are not represented in clear form in the fragment, concatenated with
salt. For readability, in all our examples tuples in fragments are in the same
order as in the original relation, even if the order in which tuples are stored in
fragments is independent from the order in which they appear in the original
relation. Note that the possibility of using an arbitrary number of fragments has
the advantage that all attributes that are not involved in singleton constraints can
be represented in clear form in a fragment (in the worst case, we can have a
fragment for each attribute), as it is visible from the example above.

Selective and Fine-Grained Access to Data in the Cloud 131

F1

tid Name YoB SSNk Diseasek

1 Alice 1980 jdkis hyaf4k
2 Bob 1980 u9hs9 j97;qx
3 Carol 1970 j9und 9jp‘md
4 David 1970 p0vp8 p;nd92
5 Eva 1970 8nn[0-mw-n
6 Frank 1960 j9jMK wqp9[i
7 Gary 1960 87l’D L0MB2G
8 Hilary 1960 8pm}n @h8hwu

F2

tid Job SSNk Diseasek

1 Clerk uwq8hd jsd7ql
2 Doctor j-0.dl; 0],nid
3 Nurse 8ojqdkf j-0/?n
4 Lawyer j0i12nd 5lkdpq
5 Doctor mj[9;’s j0982e
6 Doctor aQ14l[jnd%d
7 Teacher 8qsdQW OP[’
8 NURSE 0890UD UP0D@

Non-communicating pair of servers (two can keep a secret) [1]

F1
salt enc Name YoB

s11 Bd6!l3 Alice 1980
s12 Oij3X. Bob 1980
s13 9kEf6? Carol 1970
s14 ker5/2 David 1970
s15 C:mE91 Eva 1970
s16 4lDwqz Frank 1960
s17 me3,op Gary 1960
s18 zWf4g> Hilary 1960

F2
salt enc Job

s21 8de6TO Clerk
s22 X’mlE3 Doctor
s23 wq.vy0 Nurse
s24 nh=I3a Lawyer
s25 hh%kj) Doctor
s26 ;vf5eS Doctor
s27 e4+YUp Teacher
s28 pgt6eC Nurse

F3
salt enc Disease

s31 ew3)V! Asthma
s32 LkEd69 Asthma
s33 w8vd66 Asthma
s34 1”qPdd Bronchitis
s35 (mn2eW Bronchitis
s36 wD}x1X Gastritis
s37 0opEl Gastritis
s38 Sw@Fez Diabetes

Multiple fragments [21]

Departing from encryption (keep a few) [20]

Fo

tid SSN Job Disease

1 123456789 Clerk Asthma
2 234567891 Doctor Asthma
3 345678912 Nurse Asthma
4 456789123 Lawyer Bronchitis
5 567891234 Doctor Bronchitis
6 678912345 Doctor Gastritis
7 789123456 Teacher Gastritis
8 891234567 Nurse Diabetes

Fs

tid Name YoB

1 Alice 1980
2 Bob 1980
3 Carol 1970
4 David 1970
5 Eva 1970
6 Frank 1960
7 Gary 1960
8 Hilary 1960

Fig. 4 An example of fragmentation of relation PATIENTS in Fig. 3a according to the non-
communication pair of servers, multiple fragments, and departing from encryption scenarios

• Departing from encryption [20]. The data owner partitions relation R in two
fragments, Fo and Fs, and locally stores one of them (Fo), while the other is
outsourced to an external server (Fs). Since only authorized users can access
Fo, neither the server nor unauthorized users can join Fo and Fs to possibly
reconstruct sensitive associations. Note that fragment Fo can both include
attributes considered sensitive per se and sensitive associations. This solution
completely departs from encryption, but it requires the data owner to locally store
a portion of her data and to cooperate with the external server in query evaluation.
Figure 4 illustrates an example of fragmentation for relation PATIENTS in Fig. 3a
that satisfies the confidentiality constraints in Fig. 3b. It is composed of fragment
Fo = {tid, SSN, Job, Disease} stored at the data owner side, and fragment
Fs = {tid, Name, YoB} stored at the external server side.

132 S. De Capitani di Vimercati et al.

PATIENTSk

tid enc In Iy Ij Id

1 T8/lO? π α δ η
2 1wfTg< π α ε θ
3 vFe!d2 ρ β δ ω
4 f3iJ:y ρ β ζ κ
5 ;x0d9D σ β ε λ
6 kO6i)G σ γ ε μ
7 u2eW[b τ γ ζ ν
8 vY7’.1 τ γ δ ξ

Fig. 5 An example of encrypted and indexed version of relation PATIENTS in Fig. 3a

Encryption, fragmentation, and their combinations are powerful mechanisms for
protecting data confidentiality. However, there are still several open issues that need
to be further investigated. In fact, fragmentation and encryption break associations
among attribute values that could be considered of interest for final recipients, thus
compromising the utility of released data. Alternative solutions that protect data
while preserving a certain utility are therefore needed [25]. Also, confidentiality
constraints are defined over relation schemas, while they could be extended to
operate at the instance level (i.e., at the attribute values level). We also observe that
encryption and fragmentation work under the assumption that the data collection
never changes. Techniques supporting updates to the outsourced data collection
without compromising confidentiality still need to be designed.

3.2 Indexes

The adoption of encryption for protecting data confidentiality makes query exe-
cution difficult. In fact, confidentiality demands that data decryption must be
possible only at the user side. Solutions have been then developed to enable cloud
servers to execute queries directly on encrypted data. These solutions complement
the outsourced relation with a set of indexes, which are metadata information
built on the plaintext values of the attributes [44]. Formally, a relation r, defined
over schema R(a1, . . . ,an), is represented at the server side through an encrypted
relation rk over schema Rk(tid, enc, Ii1 , . . . , Ii j). Attribute tid is a numerical
attribute added to the original relation and acting as a primary key. Attribute
enc represents the encrypted tuple. Attribute Iil , l = 1, . . . , j, is the index defined
over attribute ail in R. Each tuple t in r is represented by an encrypted tuple
tk in rk where tk[enc]=Ek(t), with E a symmetric encryption function with
key k, and tk[Iil]= ι(t[ail]), with ι an index function defined over Dil . Note that
Rk has an index only for those attributes in R on which conditions need to be
evaluated. Figure 5 illustrates an example of encrypted and indexed version of
relation PATIENTS in Fig. 3a, with indexes over attributes Name (In), YoB (Iy),
Job (I j), and Disease (Id).

Selective and Fine-Grained Access to Data in the Cloud 133

Different indexing techniques have been proposed in the literature to support
different kinds of conditions. Most of these indexing techniques can be classified in
the following three classes, depending on how the corresponding index function ι
maps the original values to the corresponding index values.

• Direct index. Index function ι maps each plaintext value to a different index
value and vice versa. An example of direct index is represented by encryption-
based indexes (e.g., [22]). For each tuple t∈r, the value of index I , defined over
attribute a, is computed as ι(t[a])=Ek(t[a]). For instance, index Iy in relation
PATIENTSk in Fig. 5 represents an example of direct index over attribute YoB of
relation PATIENTS in Fig. 3a.

• Bucket-based index. Index function ι maps different plaintext values to the
same index value, generating collisions. Each plaintext value is however mapped
to only one index value. An example of bucket-based index is represented
by partition-based indexes, which partition the domain D of attribute a into
non-overlapping subsets of contiguous values, and associate a label with each
partition (e.g., [37]). For each tuple t∈r, the value of index I , defined over
attribute a, corresponds to the label of the unique partition to which value t[a]
belongs. For instance, index In in relation PATIENTSk in Fig. 5 represents an
example of partition-based index over attribute Name of relation PATIENTS in
Fig. 3a. The domain of attribute Name has been partitioned in four intervals
depending on the initial of the name, with labels: π for names with initial in
the range [A,B], ρ for names with initial in the range [C,D], σ for names
with initial in the range [E,F], and τ for names with initial in the range [G,H].
Another example of bucket-based index is represented by the hash-based indexes
(e.g., [17]). For each tuple t∈r , the value of index I , defined over attribute
a, is computed as ι(t[a])= h(t[a]), where h is a secure hash function that
generates collisions. For instance, index I j in relation PATIENTSk in Fig. 5
represents an example of hash-based index over attribute Job of relation
PATIENTS in Fig. 3a. The hash function adopted generates collisions and, in
particular, is defined as follows: h(Clerk)= h(Nurse)= δ , h(Doctor)= ε , and
h(Lawyer)= h(Teacher)= ζ .

• Flattened index. Index function ι maps each plaintext value to a set of index
values to guarantee that all index values have the same number of occurrences
(flattening). Each index value represents one plaintext value only. The index can
be obtained by applying an encryption function to the plaintext values of the
attribute and a post processing that flattens the distribution of the index values
(e.g., [45]). For instance, index Id in relation PATIENTSk in Fig. 5 represents
an example of flattened index over attribute Disease of relation PATIENTS in
Fig. 3a, where each index value has exactly one occurrence.

These indexing techniques support the partial evaluation at the server-side of
SQL queries. Given a query q, it is translated into a query qs executed at the server
side on the encrypted relation, and a query qc executed at the client side on the
decrypted result of qs. Query qc includes all conditions that cannot be evaluated
by the server and aims at eventually discarding all spurious tuples returned by
qs, that is, all tuples that do not satisfy the original query submitted by the user.

134 S. De Capitani di Vimercati et al.

The translation of query q into query qs and qc depends both on the kind of indexes
defined for the attributes involved in the query and on the kind of query. As an
example, consider query q= “SELECT Att FROM R WHERE Cond”, where Att⊆R
and Cond is a set of equality conditions of the form a = v, with a∈R and v a
constant value in the domain D of a. Each equality condition a = v is translated
into an equivalent condition I IN ι(v), with I the index defined over a and ι the
corresponding index function. Query q is then translated into query qs = “SELECT

enc FROM Rk WHERE Condk”, where Condk includes, for each equality condition
a = v, the equivalent condition I IN ι(v). The client will decrypt the result of qs

computed by the server, and will execute query qc that eliminates spurious tuples,
evaluates conditions that cannot be performed at the server side, and projects only
the attributes in Att to obtain the result of q. For instance, query q= SELECT Name
FROM PATIENTS WHERE Job= ‘Nurse’ AND Disease= ‘Asthma’ is translated
into query qs = SELECT enc FROM PATIENTSk WHERE I j = δ AND Id∈{η ,θ ,ω},
which returns the first and third tuples in Fig. 5. The client then filters spurious
tuples from the result of qs by evaluating query qc = SELECT Name FROM Dk(Resk)
WHERE Job= ‘Nurse’, where Resk is the encrypted result returned by the server
and D the symmetric decryption function with key k. Query qc returns the value of
attribute Name of tuple t1 in Fig. 3a, which corresponds to the result of the original
query q formulated by the user.

Indexing techniques specifically aimed at supporting the efficient evaluation of
range conditions are based on order preserving encryption schemas (e.g., [3, 45]).
Indexes that support aggregate functions and the basic arithmetic operators (i.e.,
+,−,×) rely on homomorphic encryption techniques (e.g., [32, 36]). Additional
indexing techniques, which cannot be classified as mentioned above, are based,
for example, on the definition of data structures (e.g., B+-tree) coupled with the
encrypted relation and stored at the server [22].

The definition of indexes over outsourced relations must balance precision in
query evaluation and privacy of the data [17]. In fact, more precise indexes provide
more efficient query execution, at the price of a greater exposure to possible privacy
violations. Also, the number of indexes complementing an outsourced relation
should be carefully tuned, since each additional index may cause a rapid growth
to the risk of privacy violations.

3.3 Selective Encryption

In many real-world systems, different users may have different privileges on the
outsourced data. Traditional access control architectures are based on the presence
of a trusted component, called reference monitor, that is in charge of enforcing
the access control policy defined by the data owner. In a cloud scenario, however,
neither the data owner (for efficiency reasons) nor the cloud server storing the data
(for privacy reasons) can enforce the access control policy. An interesting solution
addressing this issue consists in adopting selective encryption [24], meaning that

Selective and Fine-Grained Access to Data in the Cloud 135

t1 t2 t3 t4 t5 t6 t7 t8
A 1 0 0 1 0 1 1 0
B 0 1 0 1 1 1 1 0
C 0 0 0 1 0 1 1 1
D 0 1 1 1 1 1 0 0
E 0 1 0 0 1 1 1 0

Fig. 6 An example of access matrix regulating access to relation PATIENTS in Fig. 3a

different keys are used for encrypting different data. The encryption keys are
then (directly or indirectly) released only to the users authorized to access the
corresponding data. The idea of using different keys for enforcing access control
is not new and has been first introduced in other contexts. For instance, in [42]
the authors propose to store encrypted XML documents on (potentially insecure
and vulnerable) Web servers. The decisions about access rights to different portions
of an XML document can be made by the document creator and are immediately
applied to the XML document by using different encryption keys for different
portions of the same XML document. To enforce access restrictions, users then
obtain only the keys associated with the portions of XML documents for which they
have an access right. Other proposals put forward the idea of using hierarchical-
based access control in the context of distributed environments and broadcast pay
tv content (e.g., [12, 49]). In the remainder of this section, we describe the main
characteristics of the selective encryption approach in [24], specifically designed
for the cloud scenario.

Given a set U of users and a relation r, the authorization policy regulating access
to tuples in r is represented by an access matrix M, with a row for each user u∈U
and a column for each tuple t∈r. Cell M[u,t] is equal to 1 (0, respectively), if user
u can (cannot, respectively) access tuple t. For each tuple t, acl(t) denotes the set
of users who can access it (i.e., its access control list). For instance, Fig. 6 illustrates
an example of access matrix regulating access to the tuples of relation PATIENTS in
Fig. 3a by a set U = {A,B,C,D,E} of users.

The authorization policy defined by the data owner is translated into an equiva-
lent encryption policy. The encryption policy regulates keys used to encrypt tuples
as well as key distribution to users and must be equivalent to the access control
policy defined by the data owner, that is, each user can decrypt all and only the
tuples she is authorized to access.

The translation of an authorization policy into an equivalent encryption policy
is driven by two requirements: (i) each user must manage at most one key, and (ii)
each tuple must be encrypted at most once (i.e., no replication). To satisfy these two
desiderata, the approach in [24] adopts a key derivation technique based on public
tokens, which permit to compute the value of an encryption key starting from the
knowledge of another key and a piece of publicly available information [10]. Each
key ki is associated with a public label li and, given keys ki and k j, token tokeni, j

is computed as k j⊕h(ki,l j), with ⊕ the bitwise xor operator, and h a deterministic
cryptographic function. Token tokeni, j permits to derive key k j from ki and public
label l j. Key derivation techniques are based on the definition of a key derivation

136 S. De Capitani di Vimercati et al.

AB

A AC ABC

B AD ABD ABCD

C BC ACD

D BD BCD

CD

user key

A kA
B kB
C kC
D kD

tuple key

t1 kA
t2 kBD
t3 kD
t4 kABCD
t5 kBD
t6 kABCD
t7 kABC
t8 kC

a b c

Fig. 7 An example of encryption policy equivalent to the access control policy in Fig. 6,
considering the subset {A,B,C,D} of users

graph, specifying which keys can be derived from other keys. A key derivation
graph is a directed acyclic graph whose vertices represent keys, and whose edges
represent tokens. The existence of a path from key ki to key k j in the key derivation
graph denotes the fact that k j can be (directly or indirectly, via a chain of tokens)
derived from ki. A key derivation graph correctly enforces an authorization policy
M if each user ui∈U can derive, starting from the key she knows, the keys used
to encrypt all and only the tuples t j∈r that she can access (i.e., with M[ui,t j]= 1).
To define such a graph, the idea is to exploit the set containment relationship ⊆
over U . A key derivation graph induced by ⊆ over U has a vertex for each subset
of users in U and a path from vertex vi to vertex v j if vi represents a subset of the
users represented by v j. The correct enforcement of the policy is guaranteed if each
user knows the key of the vertex representing herself in the graph, and each tuple
is encrypted with the key of the vertex representing its acl. For instance, consider
the portion of the access matrix in Fig. 6 defined for the subset {A,B,C,D} of users.
The encryption policy in Fig. 7 is equivalent to the access control policy represented
by the first four rows in Fig. 6. For readability, each vertex in the graph of Fig. 7 is
labeled with the set of users it represents. As an example, user A can decrypt tuples
t1, t4, t6, and t7 since she can derive, starting from vertex labeled A, the keys with
which these tuples are encrypted.

Although effective for enforcing the authorization policy, the solution above
defines more keys and tokens than necessary. Since the number of tokens in the
system influences the access time, the proposal in [24] reduces the number of
tokens by removing from the key derivation graph the vertices and edges that are
not necessary to enforce M. The problem of minimizing the number of edges in a
key derivation graph is however NP-hard. In [24] the authors propose an heuristic
approach, which has been proved to obtain good results, based on two observations:
(i) the vertices needed for correctly enforcing an authorization policy are those
representing singleton sets of users and the acls of tuples in r; (ii) when two or

Selective and Fine-Grained Access to Data in the Cloud 137

more vertices have more than two common direct ancestors, the insertion of a
vertex representing the set of users corresponding to these ancestors reduces the
total number of tokens. Figure 8a illustrates an example of key derivation graph
obtained adopting the approach in [24] over the access matrix in Fig. 6. As it is
visible from the figure, the graph includes a vertex for each user and for each acl of
a tuple in the system. It also includes an additional vertex (i.e., ABC), introduced to
limit the number of tokens in the system. Clearly, the encryption policy in Fig. 8 is
more convenient than the one in Fig. 7, as it reduces both the number of keys and
the number of tokens in the system, while managing an additional user.

A

B ABC

C ABCD

ABCDE

D ABCE

E BDE

user key

A kA
B kB
C kC
D kD
E kE

tuple key

t1 kA
t2 kBDE
t3 kD
t4 kABCD
t5 kBDE
t6 kABCDE
t7 kABCE
t8 kC

a b c

Fig. 8 An example of encryption policy equivalent to the access control policy in Fig. 6

Since the keys used to encrypt tuples depend on their access control lists,
whenever the authorization policy changes, the tuples involved in the policy update
may need to be re-encrypted to guarantee the equivalence of the encryption policy.
For instance, assume that user E is revoked the privilege to read tuple t6. Such a tuple
should be first decrypted using key kABCDE , and then encrypted using key kABCD.
However, re-encryption requires the direct involvement of the data owner and can
be computationally expensive. The number of re-encryption operations are therefore
minimized by adopting two layers of encryption that allow the server to manage
policy update operations [24]. The Base Encryption Layer (BEL) is applied by the
data owner before transmitting the relation to the server and consists in encrypting
the tuples according to the authorization policy existing at initialization time. The
Surface Encryption Layer (SEL) is performed by the server over the tuples already
encrypted by the data owner. It enforces the dynamic changes over the policy. The
basic idea consists in over-encrypting the tuples so that a user can access a tuple
only if she knows or can derive the key used for encrypting the tuples at both levels.

The solution in [24] enforces read privileges only and has been complemented
with another technique that allows the management of write operations [23]. This
work associates each tuple with a write tag. The write tag is a random value chosen
by the data owner independently from the tuple content, and is encrypted with a key

138 S. De Capitani di Vimercati et al.

known only to users who can modify the tuple and to the external server. The server
will then enforce a write operation on a tuple only if the requesting user proves to
know the write tag of the tuple. The proposal in [23] extends the key derivation
graph with a key for the server and the keys necessary for protecting write tags. For
instance, consider the read privileges in Fig. 6 over relation PATIENTS in Fig. 3a, and
assume that: tuples t1, t4, and t7 can be modified by user A only; tuples t2 and t6
can be modified by B, D, and E; tuples t3 and t5 can be modified by D; and tuple t8
can be modified by C. Figure 9 illustrates the encryption policy in Fig. 8, extended
to properly enforce write privileges. In the figure, we denote the external server as S.

A AS

B ABC

C CS ABCD

S ABCDE

D DS ABCE

E BDE BDES

user key

A kA
B kB
C kV
D kD
E kE

tuple read key write key

t1 kA kAS
t2 kBDE kBDES
t3 kD kDS
t4 kABCD kAS
t5 kBDE kDS
t6 kABCDE kBDES
t7 kABCE kAS
t8 kC kCS

a b c

Fig. 9 Encryption policy in Fig. 8, extended to enforce write authorizations

Open issues that still need to be addressed are related to the expressive power
of the supported access control policy, especially considering the ever-increasing
bring-your-own-device (BYOD) trend. In fact, it would be interesting to develop
solutions that will allow the specification of fine-grained restrictions, based on the
users’ context and on the specific device adopted for accessing data.

4 Indexes and Fragmentation

The fragmentation works illustrated in Sect. 3.1 permit to delegate to the server
the evaluation of any condition over attributes appearing plaintext in a fragment.
However, the client still needs to evaluate those queries that operate on encrypted
attributes, or that involve attributes that are not represented in plaintext in the same
fragment. For instance, consider the fragmentation in Fig. 4 obtained in the multiple
fragments scenario of relation PATIENTS in Fig. 3a. Query q= SELECT Name FROM

PATIENTS WHERE YoB= 1980 AND Disease= ‘Asthma’ cannot be evaluated
by the server, since attributes YoB and Disease do not appear in the clear in the
same fragment and the server can neither decrypt attribute enc nor join F1 and F3.
Hence, one of the two conditions in q must be evaluated by the client. To mitigate

Selective and Fine-Grained Access to Data in the Cloud 139

the client’s overhead in query evaluation, fragments can be complemented with
indexes over encrypted attributes. Figure 10 illustrates three versions of fragment
F1 in Fig. 4, complemented with index Id over attribute Disease, which has
been computed using each of the three kinds of indexes illustrated in Sect. 3.2.
The presence of indexes in a fragment could however cause unintended leakage
of sensitive information [28]. The exposure to leakage varies depending on the
knowledge that a curious observer (e.g., the external server) can exploit and the kind
of indexes. In particular, the following two kinds of knowledge can be exploited for
breaching data confidentiality.

F1
salt enc Name YoB Id

s11 Bd6!l3 Alice 1980 α
s12 Oij3X. Bob 1980 α
s13 9kEf6? Carol 1970 α
s14 ker5/2 David 1970 β
s15 C:mE91 Eva 1970 β
s16 4lDwqz Frank 1960 γ
s17 me3,op Gary 1960 γ
s18

s11
s12
s13
s14
s15
s16
s17
s18

s11
s12
s13
s14
s15
s16
s17
s18zWf4g> Hilary 1960 δ

F1
salt enc Name YoB Id

Bd6!l3 Alice 1980 ε
Oij3X. Bob 1980 ε
9kEf6? Carol 1970 ε
ker5/2 David 1970 η
C:mE91 Eva 1970 η
4lDwqz Frank 1960 θ
me3,op Gary 1960 θ
zWf4g> Hilary 1960 ε

F1
salt enc Name YoB Id

Bd6!l3 Alice 1980 κ
Oij3X. Bob 1980 λ
9kEf6? Carol 1970 μ
ker5/2 David 1970 ν
C:mE91 Eva 1970 ξ
4lDwqz Frank 1960 π
me3,op Gary 1960 ρ
zWf4g> Hilary 1960 σ

a b c

Fig. 10 Fragment F1 in Fig. 4 complemented with a direct index (a), a bucket-based index (b), and
a flattened index (c) over attribute Disease

Disease

Asthma
Asthma
Asthma
Bronchitis
Bronchitis
Gastritis
Gastritis
Diabetes

Name Disease

Alice Asthma

a b

Fig. 11 An example of vertical (a) and horizontal (b) knowledge by an observer

• Vertical knowledge is the knowledge of the projection of attribute a over relation
r , and is due to the presence of attribute a in the clear in one fragment and
indexed in other fragments. Vertical knowledge does not require any additional
external information for an observer since, apart from the case where the attribute
appears in a singleton constraint, it refers to information immediately present in
other accessible fragments. For instance, fragment F3 in Fig. 4 makes visible the
plaintext values (and their number of occurrences) of attribute Disease (see
Fig. 11a).

• Horizontal knowledge is the knowledge of the presence of a tuple t (or a set
thereof) in r, and is due to external knowledge by an observer. For instance, an
observer may know that Alice suffers from Asthma (see Fig. 11b).

140 S. De Capitani di Vimercati et al.

Let us now examine the exposure risk of indexed fragments under the assump-
tions of horizontal and vertical knowledge and of the presence of indexes belonging
to the three categories discussed in Sect. 3.2 [28].

• Direct index. Index function ι preserves the frequency distribution of plaintext
values, which can be exploited to reconstruct the value-index association by an
observer with vertical and/or horizontal knowledge. Vertical knowledge permits
to precisely reconstruct the value-index association for values characterized by
a unique number of occurrences (outliers). For instance, consider the indexed
fragment in Fig. 10a and the vertical knowledge in Fig. 11a. It is immediate to
see that ι(Asthma)=α and ι(Diabetes)= δ since these are the only plaintext
and index values with 3 occurrences and 1 occurrence, respectively. Hence,
an observer can infer that Alice, Bob, and Carol have Asthma and Hilary has
Diabetes. Horizontal knowledge permits to precisely reconstruct the value-index
association for the plaintext value v= t[a] known by the observer, exposing
all the tuples in r with value v for attribute a. For instance, in the example
above, knowing that Alice suffers from Asthma permits an observer to infer that
ι(Asthma)=α and then that also Bob and Carol suffer from the same illness.

• Bucket-based index. Index function ι does not preserve the frequency distribution
of plaintext values. However, the index value corresponding to plaintext value
v will have a frequency equal to or higher than (in case of collisions) the
frequency of v. Values with a high number of occurrences (outliers) are then
still exposed. Vertical knowledge permits to identify the index values associated
with frequent plaintext values, and then to reconstruct the value-index association
for such values with a known probability of error. For instance, consider the
indexed fragment in Fig. 10b and the vertical knowledge in Fig. 11a. Clearly,
ι(Asthma)= ε since this is the only index value with at least 3 occurrences. Also,
ι(Diabetes)= ε since Diabetes is the only plaintext value with 1 occurrence.
An observer can then infer that three patients among Alice, Bob, Carol, and
Hilary has Asthma (each with probability 0.75) and one has Diabetes (each
with probability 0.25). Horizontal knowledge permits to identify the index
value representing the known plaintext value v= t[a]. This index value may
however correspond also to other plaintext values, limiting the observer’s ability
to precisely reconstruct value-index associations. For instance, in the example
above, knowing that Alice suffers from Asthma permits an observer to infer
that ι(Asthma)= ε . However, nothing can be said about Bob, Carol, and Hilary
since ε could also represent other plaintext values (different from Asthma). By
combining horizontal with vertical knowledge, however, she can infer that two
among Bob, Carol, and Hilary suffer from Asthma (each with probability 0.66)
and one suffers from Diabetes (each with probability 0.33).

• Flattened index. Index function ι flattens the frequency distribution of index val-
ues. Vertical knowledge does not help in establishing correspondences between
plaintext values and index values. Horizontal knowledge permits to identify one
of the index values representing the known plaintext value v= t[a], exposing
only the tuples associated with this index value (in contrast to the possibly larger

Selective and Fine-Grained Access to Data in the Cloud 141

F1

salt enc Name YoB Id

s11
s12
s13

s14
s15

s16
s17

s18

Bd6!l3 Alice 1980 α
Oij3X. Bob 1980 α
9kEf6? Carol 1970 δ
ker5/2 David 1970 β
C:mE91 Eva 1970 β
4lDwqz Frank 1960 γ
me3,op Gary 1960 γ
zWf4g> Hilary 1960 δ

Fig. 12 Fragment F1 in Fig. 4 complemented with a flattened index with collisions over attribute
Disease

set of tuples with value v for a). For instance, consider the indexed fragment in
Fig. 10c and the horizontal knowledge in Fig. 11b. An observer can only learn
that ι(Asthma)= κ . However, no other association is exposed, because κ has
only one occurrence in F1 (although Asthma has frequency 3 in F3).

An index function ι that flattens the frequency distribution of index values and
that generates collisions provides protection against both horizontal and vertical
knowledge. In fact, as illustrated above, inference attacks caused by vertical
knowledge can be counteracted by flattening the frequency distribution of index
values. Inference attacks caused by horizontal knowledge are mitigated by index
functions that map different plaintext values to the same index value, generating
collisions. For instance, Fig. 12 illustrates fragment F1 in Fig. 4 complemented with
a flattened index with collisions over attribute Disease. This indexed fragment is
protected against both vertical and horizontal knowledge in Fig. 11. Indeed, vertical
knowledge cannot be exploited for frequency-based attacks (all the index values
have two occurrences). Horizontal knowledge permits to infer that ι(Asthma)=α
but, since ι generates collisions, the observer cannot say anything about the disease
from which Bob suffers. Although the proposal in [28] is focused on the adoption
of one index, the discussion can easily be extended to the case where fragments
are complemented with multiple indexes. In fact, flattening and collisions provide
adequate protection in different scenarios (e.g., multiple indexes in one fragment,
a same attribute indexed in different fragments, two attributes appearing one in
plaintext and the other indexed in one fragment and reversed in another fragment).

Although effective to protect data at rest, a flattened index function with
collisions has the disadvantage of reducing the performance in query evaluation.
In fact, flattening requires to retrieve different index values when searching for one
plaintext value, and collisions require a post-processing at the client side to remove
spurious tuples in the query result computed by the server. As an example, consider
fragment F1 in Fig. 12, condition Disease= ‘Asthma’ translates into condition Id

IN {α ,δ}. The evaluation of this condition would however return a tuple with value
Diabetes for attribute Disease (i.e., tuple t8), since Asthma and Diabetes are both
mapped to value δ . Also, flattened indexes with collisions remain still vulnerable
to dynamic observations (i.e., to adversaries who can observe users’ queries). In

142 S. De Capitani di Vimercati et al.

t acl(t)

A
BDE
D
ABCD
BDE
ABCDE
ABCE
C

PATIENTS
SSN Name YoB Job Disease

123456789 Alice 1980 Clerk Asthma

456789123 David 1970 Lawyer Bronchitis

678912345 Frank 1960 Doctor Gastritis
789123456 Gary 1960 Teacher Gastritis

PATIENTSk

tid enc In Iy Ij Id

1 T8/lO? π α δ η
2 1wfTg< π α ε θ
3 vFe!d2 ρ β δ ω
4 f3iJ:y ρ β ζ κ
5 ;x0d9D σ β ε λ
6 kO6i)G σ γ ε μ
7 u2eW[b τ γ ζ ν
8 vY7’.1 τ γ δ ξ

t1
t2
t3
t4
t5
t6
t7
t8

t1
t2
t3
t4
t5
t6
t7
t8

a b c

Fig. 13 Knowledge of user A over relation PATIENTS (b) and PATIENTSk (c)

fact, by observing a long enough sequence of queries, an observer can easily infer
the index values to which each plaintext value has been mapped, since they always
appear together in query conditions. With reference to the example above, every
query including condition Disease= ‘Asthma’ is translated into a query including
condition Id IN {α ,δ}. An observer can then easily infer that α and δ represent the
same plaintext value (Asthma, in our example). The protection against dynamic
observations represents an open issue that still needs to be addressed, along with
the problem of defining an efficient index function that provides both flattening and
collisions.

5 Indexes and Selective Encryption

Selective encryption approaches illustrated in Sect. 3.3 enforce access control
restrictions over outsourced data by guaranteeing that each user can decrypt all and
only the tuples she is authorized to access. However, when data are made selectively
available, the combination of selective encryption with indexes used for enabling
efficient query execution on encrypted data may open the door to inferences. In fact,
users may have visibility of indexes even of tuples they are not allowed to access.
Such visibility, together with their ability to view data for which they are authorized,
can allow them to possibly infer plaintext values of tuples they should not be able
to read. In the following, for clarity in the exposition but without loss of generality,
we will refer the discussion to one attribute a only.

The knowledge that a user u can exploit for inferences can be summarized as
follows: (i) index function ι used to define index I over attribute a (necessary to
translate user’ queries into queries that operate at the server side); (ii) plaintext
tuples that the user can access (i.e., t such that u∈acl(t)); (iii) all the encrypted tuples
in rk. For instance, consider relation PATIENTS in Fig. 3a and the authorization
policy in Fig. 6 (which is also summarized in Fig. 13a for the reader’s convenience),
Fig. 13b,c illustrate the knowledge of user A over the plaintext and encrypted
relation. Gray cells denote values that A is not authorized to read.

The information that a user with this knowledge can infer depends on the kind of
index adopted (see Sect. 3.2), as illustrated in the following [27].

Selective and Fine-Grained Access to Data in the Cloud 143

t acl(t)

A
BDE
D
ABCD
BDE
ABCDE
ABCE
C

SSN Name YoB Job Disease
123456789 Alice 1980 Clerk Asthma

1980 Asthma
1970 Asthma

456789123 David 1970 Lawyer Bronchitis
1970 Bronchitis

678912345 Frank 1960 Doctor Gastritis
789123456 Gary 1960 Teacher Gastritis

1960

tid enc In Iy Ij Id

1 T8/lO? π α δ η
2 1wfTg< π α ε θ
3 vFe!d2 ρ β δ ω
4 f3iJ:y ρ β ζ κ
5 ;x0d9D σ β ε λ
6 kO6i)G σ γ ε μ
7 u2eW[b τ γ ζ ν
8 vY7’.1 τ γ δ ξ

t1
t2
t3
t4
t5
t6
t7
t8

t1
t2
t3
t4
t5
t6
t7
t8

PATIENTS PATIENTSka b c

Fig. 14 Knowledge inferred by user A over relation PATIENTS

• Direct index. Index function ι is a bijective function that maps each plaintext
value to one index value (and vice versa). It then exposes all the tuples with
the same plaintext value for attribute a of a tuple that the user is authorized to
access. For instance, index Iy over attribute YoB in Fig. 13c has been computed
using a direct index function. Since user A can access tuple t1, she knows that
ι(1980)=α . She can then infer that t2[YoB]= 1980, even if she is not authorized
to access tuple t2. In a similar way, A can also infer that ι(1970)= β and that
ι(1960)= γ (i.e., she knows the plaintext value of attribute YoB of each tuple
in PATIENTS). The user also knows index function ι . Hence, she can compute
the index value ι(v) associated with each value v in the domain of attribute a,
and possibly reconstruct the value that attribute a assumes in each tuple t of the
outsourced relation, independently from her access privileges over t.

• Bucket-based index. Index function ι is a surjective function that maps multiple
plaintext values to one index value. The inference risks described for direct
indexes are mitigated by collisions. In fact, multiple occurrences of a same index
value may correspond to different plaintext values. The user’s knowledge of
index function ι could however reduce the uncertainty over the value assumed
by attribute a in a tuple t that she is not authorized to access. For instance, index
I j over attribute Job in Fig. 13c has been computed using a bucket-based index
function. Since user A can access tuple t1, she knows that ι(Clerk)= δ . However,
she does not know with certainty whether t3[Job]=Clerk and t8[Job]=Clerk
since function ι may generate collisions and map different plaintext values to
index value δ .

• Flattened index. Index function ι is an injective function that maps a plaintext
value to multiple index values, guaranteeing a flat distribution of the number of
occurrences of index values. Like direct indexes, flattened indexes expose all the
tuples with the same plaintext value for attribute a of a tuple that the user is autho-
rized to access. In fact, when decrypting a tuple t that she can access, the user
knows one of the index values representing value v= t[a]. By computing ι(v),
she exactly knows which tuples in rk have value v for attribute a. For instance,
index Id over attribute Disease in Fig. 13c has been computed using a flattened
index function. Since user A can access tuple t1, she knows that ι(Asthma)=η
and, since she can compute ι(v) for any v in the domain of attribute Disease,
she can compute the set of index values representing Asthma, that is, {η ,θ ,ω}.
She can then infer that t2[Disease]= t3[Disease]=Asthma.

144 S. De Capitani di Vimercati et al.

PATIENTSk PATIENTSk

tid enc Iy Iy

1 T8/lO? αA

2 1wfTg< αB , αD , αE

3 vFe!d2 βD

4 f3iJ:y βA , βB , βC , βD

5 ;x0d9D βB , βD , βE

6 kO6i)G γA , γB , γC , γD , γE

7 u2eW[b γA , γB , γC , γE

8 vY7’.1 γC

tid enc

1 T8/lO? αA

2 1wfTg< αB , αD , αE

3 vFe!d2 βD

4 f3iJ:y βA, βB , βC , βD

5 ;x0d9D βB , βD , βE

6 kO6i)G γA, γB , γC , γD , γE

7 u2eW[b γA, γB , γC , γE

8 vY7’.1 γC

a b

Fig. 15 An example of encrypted and indexed version of relation PATIENTS with index Iy over
YoB computed using a user-dependent function (a) and a salted user-dependent function (b)

Inferences by user A over relation PATIENTS are summarized in Fig. 14, where
light-gray cells represent values, reported in italic, that A is not authorized to access
but that she can infer from her knowledge.

From the observations above, we note that inference is mainly caused by the
presence of the same index value associated with tuples characterized by different
authorizations. In [27] the authors proposed a solution, which is focused on direct
indexes since they represent the worst case scenario, based on the principle that
different occurrences of the same index value must be mapped to different index
values when they should be visible to different subsets of users. The index value to
which t[a] should be mapped therefore depends, not only on value v= t[a], but also
on acl(t). To this purpose, each user u has its own index function ι u , which depends
on a private piece of information that she shares with the data owner. Given a tuple
t, the data owner computes a different index value ιu (t[a]) for each u∈acl(t). Each
user will then use her index function ιu to formulate queries to be evaluated by the
external server over indexes. For instance, Fig. 15a illustrates relation PATIENTSk,
where the index over attribute YoB has been computed adopting a user-dependent
function. In the figure, for simplicity, we indicate with a sub-script the user whose
index function generated the value (i.e., vu is a value generated by ιu). Note that
vui �= vu j .

Since all the index values associated with a specific plaintext value of attribute
a are visible to all the users in the system, the adoption of user-dependent index
functions is not sufficient to block all the inferences. In fact, tuples sharing the
same value for attribute a that are characterized by different but overlapping acls,
called conflicting tuples, are exposed to inferences by users who can access at least
one of these tuples. For instance, with reference to relation PATIENTSk in Fig. 15a,
user A cannot exploit her knowledge of tuple t1 to infer the value of t2[YoB].
However, by observing that βD appears in tuples t4 together with βA, A can infer
that βD represents value 1970 and hence that t3[YoB]= t4[YoB]= t5[YoB]= 1970.
To block this inference channel, conflicting tuples must be associated with disjoint
sets of index values. To impose diversity of indexes, the value computed by index
function ιu is differentiated by applying different randomly generated salts to

Selective and Fine-Grained Access to Data in the Cloud 145

conflicting tuples. For instance, Fig. 15a illustrates relation PATIENTSk, where the
index over attribute YoB has been computed adopting a salted user-dependent
function. In the figure, we denote salted versions of value v as v′ and v′′.

While effective, the solution illustrated above presents similar privacy risks to the
one described in Sect. 4. More precisely, this indexing technique remains vulnerable
to dynamic observations, since monitoring a sufficient number of queries would
permit an observer to reconstruct which (salted) index values represent the same
plaintext value. Furthermore, collusion between authorized users and the external
server may put data confidentiality at risk. The protection against these threats still
remains an open issue.

6 Conclusions

Cloud computing offers a variety of new opportunities to users and companies,
and many efforts have been therefore dedicated to the design of cloud-based ser-
vices, applications, and infrastructures. While appealing, cloud computing however
introduces new security and privacy issues. In this chapter, we analyzed the data
protection issues, and described approaches for the protection of data confidentiality,
and for the efficient and selective access to data. We also illustrated open problems
arising from the combined application of such solutions and highlighted possible
directions to address them.

Acknowledgements The chapter is based on joint work with Sushil Jajodia and Stefano Para-
boschi. This work was supported in part by the Italian Ministry of Research within PRIN
2010–2011 project “GenData 2020” (2010RTFWBH), and by Google under the Google Research
Award program.

References

1. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Motwani, R.,
Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: A distributed architecture for secure
database services. In: Proc. of CIDR 2005. Asilomar, CA, USA (January 2005)

2. Agrawal, R., Asonov, D., Kantarcioglu, M., Li, Y.: Sovereign joins. In: Proc. of ICDE 2006.
Atlanta, GA, USA (April 2006)

3. Agrawal, R., Kierman, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data.
In: Proc. of SIGMOD 2004. Paris, France (June 2004)

4. Ardagna, C.A., Camenisch, J., Kohlweiss, M., Leenes, R., Neven, G., Priem, B., Samarati, P.,
Sommer, D., Verdicchio, M.: Exploiting cryptography for privacy-enhanced access control: A
result of the PRIME project. JCS 18(1), 123–160 (2010)

5. Ardagna, C.A., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Samarati, P.:
Minimizing disclosure of private information in credential-based interactions: A graph-based
approach. In: Proc. of PASSAT 2010. Minneapolis, MN, USA (August 2010)

146 S. De Capitani di Vimercati et al.

6. Ardagna, C.A., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Samarati, P.:
Supporting privacy preferences in credential-based interactions. In: Proc. of WPES 2010.
Chicago, IL, USA (October 2010)

7. Ardagna, C.A., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Samarati, P.:
Minimising disclosure of client information in credential-based interactions. IJIPSI 1(2/3),
205–233 (2012)

8. Ardagna, C.A., De Capitani di Vimercati, S., Paraboschi, S., Pedrini, E., Samarati, P.,
Verdicchio, M.: Expressive and deployable access control in open Web service applications.
IEEE TSC 4(2), 96–109 (April-June 2011)

9. Ardagna, C.A., Jajodia, S., Samarati, P., Stavrou, A.: Providing users’ anonymity in mobile
hybrid networks. ACM TOIT (2013)

10. Atallah, M., Blanton, M., Fazio, N., Frikken, K.: Dynamic and efficient key management for
access hierarchies. ACM TISSEC 12(3), 18:1–18:43 (January 2009)

11. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: On the propagation of faults and
their detection in a hardware implementation of the advanced encryption standard. In: Proc. of
ASAP 2002. San Jose, CA, USA (July 2002)

12. Blanton, M., Frikken, K.: Efficient multi-dimensional key management in broadcast services.
In: Proc. of ESORICS 2010. Athens, Grece (September 2010)

13. Bonatti, P., Samarati, P.: A uniform framework for regulating service access and information
release on the Web. JCS 10(3), 241–272 (2002)

14. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures
from bilinear maps. In: Proc. of EUROCRYPT 2003. Warsaw, Poland (May 2003)

15. Calì, A., Martinenghi, D.: Querying data under access limitations. In: Proc. of ICDE 2008.
Cancun, Mexico (April 2008)

16. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous creden-
tials with optional anonymity revocation. In: Proc. of EUROCRYPT 2001. Innsbruck, Austria
(May 2001)

17. Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Modeling and assessing inference exposure in encrypted databases. ACM TISSEC 8(1),
119–152 (February 2005)

18. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. Journal of
ACM 45(6), 965–981 (April 1998)

19. Cimato, S., Gamassi, M., Piuri, V., Sassi, R., Scotti, F.: Privacy-aware biometrics: Design and
implementation of a multimodal verification system. In: Proc. of ACSAC 2008. Anaheim, CA,
USA (December 2008)

20. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Keep a few: Outsourcing data while maintaining confidentiality. In: Proc. of ESORICS 2009.
Saint Malo, France (September 2009)

21. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Combining fragmentation and encryption to protect privacy in data storage. ACM TISSEC
13(3), 22:1–22:33 (July 2010)

22. Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.: Balancing
confidentiality and efficiency in untrusted relational DBMSs. In: Proc. of CCS 2003. Washing-
ton, DC, USA (October 2003)

23. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G. Paraboschi, S., Samarati, P.:
Enforcing Dynamic Write Privileges in Data Outsourcing. COSE 39(A), 47–63 (November
2013)

24. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Encryption
policies for regulating access to outsourced data. ACM TODS 35(2), 12:1–12:46 (April 2010)

25. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Fragments
and loose associations: Respecting privacy in data publishing. PVLDB 3(1), 1370–1381
(September 2010)

26. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Authorization
enforcement in distributed query evaluation. JCS 19(4), 751–794 (2011)

Selective and Fine-Grained Access to Data in the Cloud 147

27. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Private data
indexes for selective access to outsourced data. In: Proc. of WPES 2011. Chicago, IL, USA
(October 2011)

28. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: On
information leakage by indexes over data fragments. In: Proc. of PrivDB 2013. Brisbane,
Australia (April 2013)

29. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Efficient and
private access to outsourced data. In: Proc. of ICDCS 2011. Minneapolis, MN, USA (June
2011)

30. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.: Supporting
concurrency in private data outsourcing. In: Proc. of ESORICS 2011. Leuven, Belgium
(September 2011)

31. De Capitani di Vimercati, S., Foresti, S., Samarati, P.: Protecting data in outsourcing scenarios.
In: Das, S., Kant, K., Zhang, N. (eds.) Handbook on Securing Cyber-Physical Critical
Infrastructure. Morgan Kaufmann (2012)

32. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. of STOC 2009.
Bethesda, MA, USA (May 2009)

33. Goodrich, M., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-preserving group
data access via stateless Oblivious RAM simulation. In: Proc. of SODA 2012. Kyoto, Japan
(January 2012)

34. Hacigümüs, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proc. of ICDE 2002.
San Jose, CA, USA (February 2002)

35. Hacigümüs, H., Iyer, B., Mehrotra, S.: Ensuring integrity of encrypted databases in database
as a service model. In: Proc. of DBSec 2003. Estes Park, CO, USA (August 2003)

36. Hacigümüs, H., Iyer, B., Mehrotra, S.: Efficient execution of aggregation queries over
encrypted relational databases. In: Proc. of DASFAA 2004. Jeju Island, Korea (March 2004)

37. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data in the
database-service-provider model. In: Proc. of SIGMOD 2002. Madison, WI, USA (June 2002)

38. Jhawar, R., Piuri, V.: Fault tolerance management in IaaS clouds. In: Proc. of ESTEL 2012.
Rome, Italy (October 2012)

39. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource management
in cloud computing. In: Proc. of CSE 2012. Paphos, Cyprus (December 2012)

40. Kärger, P., Olmedilla, D., Balke, W.T.: Exploiting preferences for minimal credential disclosure
in policy-driven trust negotiations. In: Proc. of SDM 2008. Auckland, New Zealand (August
2008)

41. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index structures
for outsourced databases. In: Proc. of SIGMOD 2006. Chicago, IL, USA (June 2006)

42. Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In: Proc. of
VLDB 2003. Berlin, Germany (September 2003)

43. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in outsourced databases.
ACM TOS 2(2), 107–138 (May 2006)

44. Samarati, P., De Capitani di Vimercati, S.: Data protection in outsourcing scenarios: Issues and
directions. In: Proc. of ASIACCS 2010. Beijing, China (April 2010)

45. Wang, H., Lakshmanan, L.: Efficient secure query evaluation over encrypted XML databases.
In: Proc. of VLDB 2006. Seoul, Korea (September 2006)

46. Wang, H., Yin, J., Perng, C., Yu, P.: Dual encryption for query integrity assurance. In: Proc. of
CIKM 2008. Napa Valley, CA, USA (October 2008)

47. Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: Proc. of CCS
2012. Raleigh, NC, USA (October 2012)

48. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: Practical access pattern
privacy and correctness on untrusted storage. In: Proc. of CCS 2008. Alexandria, VA, USA
(October 2008)

49. Wong, C., Gouda, M., Lam, S.: Secure group communications using key graphs. IEEE/ACM
TON 8(1), 16–30 (February 2000)

148 S. De Capitani di Vimercati et al.

50. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data. In: Proc. of VLDB
2007. Vienna, Austria (September 2007)

51. Xie, M., Wang, H., Yin, J., Meng, X.: Providing freshness guarantees for outsourced databases.
In: Proc. of EDBT 2008. Nantes, France (March 2008)

52. Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated join processing in
outsourced databases. In: Proc. of SIGMOD 2009. Providence, RI, USA (June-July 2009)

53. Yao, D., Frikken, K., Atallah, M., Tamassia, R.: Private information: To reveal or not to reveal.
ACM TISSEC 12(1), 1–27 (October 2008)

	Selective and Fine-Grained Access to Data in the Cloud
	1 Introduction
	2 Security and Privacy in the Cloud
	3 Privacy of Data Storage
	3.1 Encryption and Fragmentation
	3.2 Indexes
	3.3 Selective Encryption

	4 Indexes and Fragmentation
	5 Indexes and Selective Encryption
	6 Conclusions
	References

