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Abstract The uninterrupted growth of information repositories has progressively
led data-intensive applications, such as MapReduce-based systems, to the main-
stream. The MapReduce paradigm has frequently proven to be a simple yet flexible
and scalable technique to distribute algorithms across thousands of nodes and
petabytes of information. Under these circumstances, classic data mining algorithms
have been adapted to this model, in order to run in production environments. Unfor-
tunately, the high latency nature of this architecture has relegated the applicability
of these algorithms to batch-processing scenarios. In spite of this shortcoming, the
emergence of massively threaded shared-memory multiprocessors, such as Graphics
Processing Units (GPU), on the commodity computing market has enabled these
algorithms to be executed orders of magnitude faster, while keeping the same
MapReduce-based model. In this chapter, we propose the integration of massively
threaded shared-memory multiprocessors into MapReduce-based clusters, creating
a unified heterogeneous architecture that enables executing Map and Reduce
operators on thousands of threads across multiple GPU devices and nodes, while
maintaining the built-in reliability of the baseline system. For this purpose, we
created a programming model that facilitates the collaboration of multiple CPU
cores and multiple GPU devices towards the resolution of a data intensive problem.
In order to prove the potential of this hybrid system, we take a popular NP-hard
supervised learning algorithm, the Support Vector Machine (SVM), and show that a
36 � �192� speedup can be achieved on large datasets without changing the model
or leaving the commodity hardware paradigm.
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5.1 Introduction

The data mining community has often assumed that performance increase on
existing techniques would be given by the continuous improvement of processor
technology. Unfortunately, due to physical and economic limitations, it is not
recommendable to rely on the exponential frequency scaling of CPUs anymore.
Furthermore, the low price and ubiquity of data generation devices not only has
led to larger datasets that need to be digested on a timely manner, but also to
the growth of dimensionality, categories and formats of the data. Simultaneously,
an increasingly heterogeneous computing ecosystem has defined three computing
families:

1. Commodity Computing: It encompasses large-scale geographically distributed
commodity machine clusters running primarily open source software. Its reliabil-
ity to host batch processing systems, such as Hadoop [12], and storage systems,
such as BigTable [5] or Cassandra [17], across tens of thousands of nodes and
petabytes of data, have made commodity computing the foundation of internet-
scale companies and the cloud.

2. High Performance Computing/Supercomputing: It refers to centralized multi-
million computer systems capable of delivering high throughput for complex
tasks that demand large computational power. Typically, these are funded and
operated by governments or large corporations, and are utilized for the resolution
of scientific problems.

3. Appliance Computing: It refers to highly specialized systems exclusively
designed to carry out one or few similar tasks with maximum performance
and reliability. These nodes combine state-of-the-art processor, storage
and interconnect technologies and cost one order of magnitude less than
supercomputers. These computing appliances have been successfully utilized
for large-scale analytics and enterprise business intelligence operations.

Under these circumstances, it is required for the research community to investi-
gate the adaptation of classic and novel data intensive algorithms to this heteroge-
neous variety of parallel computing ecosystems and the technologies that compose
them. This adaptation process can be separated into two phases: The Extraction
Phase, in which the parallelizable parts, called parallel Tasks, of the algorithm
are identified and separated; and the Integration Phase, in which these tasks are
implemented for the most suitable parallel computing platform or combination of
them.

5.1.1 Extraction Phase

The extraction of parallelism on a data intensive algorithm can be carried out at
different levels, with different impacts on performance and increased programming
complexity:
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1. Independent Runs: This is the most common technique; it simply runs the
same algorithm with different configuration parameters on different processing
nodes. Each of the runs is independent and parallel execution does not speed up
individual runs.

2. Statistical Query & Summation: This technique decomposes the algorithm into
an adaptive sequence of statistical queries, and parallelizes these queries over
the sample [16]. This approach is satisfactory in speeding up slow algorithms, in
which little communication is needed.

3. Structural Parallelism: This technique is based on the exploitation of fine-
grained data parallelism [15]. This is achieved by handling each data point with
one or few processing threads.

These three techniques are complementary and are often combined to yield
maximum performance on a given target parallel computing platform. Successful
parallelization transforms a computationally limited problem into a bandwidth
bound problem, in which communication between processing units becomes the
bottleneck and optimizing for minimum latency gains critical importance. The
full exposure of the complexity of parallel programming will result in the largest
performance gain.

Individual parallel tasks extracted through both Statistical Queries & Summation
and/or Structural Parallelism, can be directly modeled using the MapReduce
programming paradigm [8]. The MapReduce framework is illustrated in Fig. 5.1.

The Map and Reduce operators are defined with respect to structured (key, value)
pairs. Map (M ) takes one pair of data with a type in one domain, and returns a list
of pairs in a different domain:

M Œk1; v1� ! Œk2; v2� (5.1)

The Map operator is applied in parallel to every item in the input dataset. This
produces a list of (k2, v2) pairs for each call. Then, the framework collects all the
pairs with the same key and groups them together. The Reduce (R) operator is then
applied to produce a v3 value.

R Œk2; fv2g� ! Œv3� (5.2)

The advantage of the MapReduce model is that makes parallelism explicit, and
more importantly, language or platform agnostic, which allows executing a given
algorithm on any combination of platforms in the parallel computing ecosystem. M

or R tasks are distributed dynamically among a collection of Workers. The Workers
is an abstraction that can represent nodes, processors or Massively Parallel Processor
(MPP) devices.

Researchers have focused their effort on the decomposition of Machine Learning
algorithms as iterative flows of Map and Reduce tasks. Next, the decomposition of
three classic Machine Learning algorithms into flows of Map (M ) and Reduce (R)
tasks is explained:
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Fig. 5.1 MapReduce primitives and runtime

• K-means: The K-means clustering algorithm can be represented as an iterative
sequence of (M , R) tasks that run until the stop criteria are met. M represents the
assignation of points to clusters and R the recalculation of the cluster centroids.
K-means is illustrated in Fig. 5.2.

• Expectation Maximization: The EM algorithm for Gaussian mixtures is rep-
resented by iterations of (M , R, R, R) tasks running until convergence. M

corresponds to the E-step of the algorithm, while (R, R, R) correspond to the
M-step that calculates the mixture weights ai , means N�k and covariance matrices
˙k , respectively. EM is illustrated in Fig. 5.3.

• Support Vector Machine: The resolution of the dual SVM problem using the
Sequential Minimal Optimization (SMO) [20] is represented by iterations of
(M , M , R, M ) tasks running until convergence. These tasks reproduce the
identification of the two Lagrange multipliers to be optimized in each iteration,
and their analytic calculation. The SVM is illustrated in Fig. 5.4.

5.1.2 Integration Phase

The integration of parallel MapReduce tasks into diverse computing platforms
spans a wide and heterogeneous variety of parallel system architectures. Originally,
internet-scale companies decomposed indexing and log-processing jobs into Map



5 ML Algorithm Acceleration Using Hybrid (CPU-MPP) MapReduce Clusters 133

Fig. 5.2 Decomposition of K-means into MapReduce tasks

Fig. 5.3 Decomposition of EM using Gaussian mixtures into MapReduce tasks

and Reduce tasks that were executed in batches on top of a distributed file system
hosted by hundreds or thousands of commodity nodes. Its proven reliability in
production, along with its symbiosis towards virtualized environments, led the
MapReduce model to be one of the key data processing paradigms of cloud
service infrastructures. Research initiatives have investigated the applicability of
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Fig. 5.4 Decomposition of SVM into MapReduce tasks

this model in scientific environments and enterprise analytics, and have tested the
implementation of MapReduce tasks on alternative platforms, such as multicore or
MPPs (GPUs, Cell microprocessors or FPGAs), aiming to boost the performance of
computationally expensive jobs.

In this chapter, a hybrid solution that boosts the computational throughput of
commodity nodes is proposed, based on the integration of multiple MPPs into
the MapReduce runtime. For this purpose, a programming model to orchestrate
MPPs is developed. In order to test the computational capabilities of this solution,
a multiclass Support Vector Machine (SVM) is implemented for this hybrid system
and its performance results for large datasets reported.

The rest of this chapter is organized as follows: Sect. 5.2 reviews previous
initiatives that accelerate the execution of data intensive MapReduce jobs, either by
optimizing the cluster runtimes or exploiting the capabilities of massively parallel
platforms. Section 5.3 enumerates the research contributions presented by this work.
Our proposed unified heterogeneous architecture, is described in Sect. 5.4. The
decomposition of the SVM problem into MapReduce tasks and its integration into
the GPU cluster architecture is explained in Sect. 5.5. Section 5.6 contains details
of the performance gain provided by our massively threaded implementation. The
conclusions of this work are presented in Sect. 5.7.
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5.2 Related Work

In general, the research efforts for the performance improvement of large-scale
Machine Learning algorithms, expressed as MapReduce jobs, can be classified into
two families, namely cluster category and multiprocessor category.

Cluster Category: These efforts focus on the adaptation of the cluster runtime
to satisfy the particular needs of Machine Learning algorithms and facilitate
their integration into clusters. These needs have been identified as: (1) support
for iterative jobs, (2) static and bariable data types, and (3) dense and sparse
BLAS operations. Ekanayake et al. [10] presented Twister, a modified runtime that
accommodates multiple Machine Learning algorithms by supporting long-running
stateful tasks. Ghoting et al. [11] designed System-ML, a declarative language to
express Machine Learning primitives and simplify direct integration into clusters.
The Apache Mahout [1] project compiled a library of the most popular MR-able
algorithms for the standard Hadoop implementation of MapReduce.

Multiprocessor Category: In this category MapReduce jobs are scattered and
gathered among multiple processing cores on a shared-memory multiprocessor
device or multiple devices hosted by interconnected nodes. Typically the processing
units in these systems are constructed to run tens of threads simultaneously reducing
the load of MapReduce tasks assigned to each thread, while increasing the degree
of parallelism. Communication between cores is carried out through the shared-
memory hierarchy. Popular systems of this category are Phoenix (multicore) [27],
Mars (GPU) [13], CellMR (Cell) [21] and GPMR [22].

The hybrid MapReduce runtime proposed in this chapter is unique in the sense
that it combines the best of both worlds to deliver an efficient framework that meets
the specific needs of Machine Learning algorithms, and produces up to two orders
of magnitude of acceleration using massively threaded hardware.

Particularly for the case of SVM implementations for shared-memory multipro-
cessors, Chu et al. [23] provide an SVM solver for multicore based on MapReduce
jobs obtained through Statistical Query & Summation. Similarly, researchers have
been focused on the GPU adaptation of dual form SVMs for binary and multiclass
classification [3, 14]. Specifically for the case of SVM implementations in clusters,
Chang et al. [6] provide the performance and scalability analysis of a deployment
of their PSVM algorithm on Google’s MapReduce infrastructure.

5.3 Research Contributions

Typically, both system categories, Cluster and Multiprocessor, have shown comple-
mentary characteristics. Batch processing systems running on commodity clusters
provide high reliability through redundancy and near-linear scalability by adding
nodes to the cluster for a low cost. Nevertheless, by nature, its intensive cross-
machine communication leads to higher latencies and increased complexity for
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computer cluster administrators. On the contrary, shared-memory multiprocessors
do not have any built-in reliability mechanism and their scalability is limited
by the number of processing cores and the capacity of the memory hierarchy
in place. In these devices, latencies in cross-processor communication are orders
of magnitude lower, and single-node execution drastically reduces the system
administration complexity. Ideally, a unified system including the benefits of both
solutions and meeting the needs of Machine Learning algorithms is desired, in order
to execute these algorithms on large scale datasets and obtain the results on a timely
manner.

The authors of this chapter believe that both categories can be merged to create
a unified heterogeneous MapReduce framework and increase the computational
throughput of individual nodes. The contributions of this new hybrid system are
the following:

1. Runtime Adaptation: The original MapReduce runtime was not designed specif-
ically for Machine Learning algorithms. Even though libraries, such as Mahout
[1], implement a variety of classic algorithms, the framework has inherent
inefficiencies that prevent it from providing timely responses. Our proposed
hybrid design integrates a series of modifications to accommodate some of the
common needs of Machine Learning algorithms. These runtime modifications
are introduced next:

• Iterative MapReduce Jobs: Most Machine Learning algorithms are iterative.
The state of the algorithm is maintained through iterations and is reutilized
towards the resolution of the problem in each step. Like Twister [10],
our solution enables executing long-running iterative jobs that keep a state
between iterations.

• Static and Variable Data Support: Most iterative Machine Learning algo-
rithms define two types of data: static and variable. Static data is read-only
and is utilized in every iteration, while variable data can be modified and is
typically of smaller size. In order to minimize data movements and memory
transfers, our runtime allows specifying the nature of the data.

• Dense & Sparse BLAS: The execution of a task may require as input the
results of a dense or sparse BLAS operation. Our solution enables interleaving
massively threaded BLAS operations to prepare the input data of M and R

steps.

2. MPP Integration: As opposed to Mars [13], Phoenix [27] and CellMR [21],
which were constructed to run MapReduce jobs within a single isolated mul-
tiprocessor and not designed to scale out, our solution takes a different approach
based on the integration of MPPs into the existing MapReduce framework as
coprocessors. GPMR [22] follows the same direction, but keeping the same
runtime and not optimizing it for Machine Learning algorithms.

3. MPP Orchestration: A programming model to manage multiple MPPs towards
the execution of MapReduce tasks is presented. We use an abstraction, called
Asynchronous Port-based Programming, which allows creating coordination
primitives, such as Scatter-Gather.
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4. Massively Threaded SVM: While implementations of SVM solvers for
multiprocessors and clusters provided satisfactory performance as part of isolated
experiments, to the best of our knowledge, this work pioneers the execution
of a multiclass SVM on a topology of multiple MPPs intertwining tens of
CPU threads and thousands MPP threads collaboratively towards an even faster
resolution of the SVM training problem.

5.4 A Unified Heterogeneous Architecture

In this section we provide an overview of the foundations of MapReduce-based
batch processing systems. We take the Hadoop architecture as a reference due to
its popularity and public nature. First, we explain the characteristics and principles
of operation of currently existing data processing nodes, called Data Nodes (DN).
Then, we proceed to introduce our modifications by integrating more powerful
nodes composed by multiple Massively Parallel Processor (MPP) devices; we
call these nodes MPP Nodes (MPPN). DNs and MPPNs may coexist within a
MapReduce cluster, nevertheless, they are meant to address MapReduce jobs with
different requirements: DNs should work on batch, high latency jobs, whereas
MPPNs would take responsibility of compute intensive jobs.

5.4.1 MapReduce Architecture Background

Typically, the architecture of MapReduce and MapReduce-like systems consists of
two layers: (i) a data storage layer in the form of a Distributed File System (DFS)
responsible of providing scalability to the system and reliability through replication
of the files, and (ii) a data processing layer in the form of a MapReduce Framework
(MRF) responsible of distributing and load balancing tasks across nodes. Files in
the DFS are broken into blocks of fixed size and distributed among the DNs in the
cluster. The distribution and load balancing is managed centrally in a node called
NameNode (NN). The NN does not only contain metadata about the files in the DFS,
but also manages the replication policy. The MRF follows a master-slave paradigm.
There is a single master, called JobTracker, and multiple slaves, called TaskTrackers.
The JobTracker is responsible of scheduling MapReduce jobs in the cluster, along
with maintaining information about each TaskTracker’s status and task load. Each
job is decomposed into MapReduce tasks that are assigned to different TaskTrackers
based on locality of the data and their status. In general, the output of the Map task
is materialized to the disk before proceeding to the Reduce task. The Reduce task
may get shuffled input data from different DNs. Periodically, TaskTrackers sent a
heartbeat to the JobTracker to keep it up to date. Typically, TaskTrackers are single
or dual threaded and consequently, can launch one or two Map or Reduce tasks
simultaneously. Hence, each task is single-threaded and work on a single block point
by point sequentially. The architecture is illustrated in Fig. 5.5.
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Fig. 5.5 The MapReduce architecture

5.4.2 MPP Integration

We propose the addition of massively parallel processors in order to increase
the computational capabilities of the DNs. Currently, DNs use a single thread to
process the entire set of data points confined on a given block. This is shown in
Fig. 5.6. Parallelism is achieved through the partitioning of data into blocks and
the concurrent execution of tasks on different nodes, nevertheless, this setup does
not leverage fine-grained parallelism, which can be predominant on data mining
algorithms. Fortunately, the introduction of MPPs enables MapReduce tasks to be
carried out by hundreds or thousands of threads, giving to each thread one or few
data points to work with. This is described in Fig. 5.7. The main differences between
DNs and MPPNs are the following:

• Multithreading: In DNs the TaskTracker assigns the pair (Task, Block) to a
single core. Then, the thread running on that core executes the MapReduce
function point by point in the block sequentially. On the contrary, in MPPNs the
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Fig. 5.6 Data node (DN)

TaskTracker assigns the pair (Task, Block) to a massively threaded multiprocessor
device. Then the device launches simultaneously hundreds or thousands of
threads that will execute the same task on multiple data points simultaneously.

• Pipelining: In DNs the intermediate result generated by the Map task is material-
ized by writing the result locally in the node. Before the execution of the Reduce
task, the intermediate result is read from the disk and possibly transmitted over
the network to a different DN as part of the shuffling process. On the contrary,
MPPNs do not materialize the intermediate result. The output of the Map task is
kept on the MPP memory and, if necessary, is forwarded to a different device as
part of the shuffling process.
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Fig. 5.7 Massively parallel processor node (MPPN)

• Communication: In DNs the shuffling process requires slower cross-machine
communication leading to increased latency between MapReduce operators. On
the contrary, the shuffling process in MPPNs is carried out through message
passing between host CPU threads.

• Iteration: In DNs a job is terminated after the conclusion of the R step. Any
additional iteration would be executed as an independent job. MPPNs provide
support for iterative algorithms allowing repeatable tasks to be part of the same
long-running iterative job.
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5.4.3 MPP Orchestration

In general, DNs running on commodity hardware are single or dual threaded. Each
CPU thread operates on a different data block, and since the results of each task
are materialized to the disk, synchronization between CPU threads is not necessary.
Nevertheless, the introduction of MPPs into data nodes requires the interaction of
two different threading models, the classic CPU threads and the MPP threads.

As opposed to CPU threads, which are heavy, MPP threads are lighter, they
have fewer registers at their disposal and will be slower, but can be launched
simultaneously in groups toward the execution of the same task. Furthermore, the
fact that MPP threads will run distributed across multiple devices within the same
node, raises a challenge not only on the efficient coordination of thousands of
these threads towards the collaborative execution of an algorithm, but also on the
responsiveness and error handling of the devices running these threads.

In this section, we propose an event-driven model to orchestrate both CPU and
MPP threads towards the execution of MapReduce tasks. Unlike ordinary event-
driven libraries, which usually directly build upon the asynchronous operations, the
method proposed in this chapter is based on the principles of Active Messages [25]
and the abstraction layer provided by the Concurrency and Coordination Runtime
(CCR) [7]. These abstractions are: the Port, the Arbiter and the Dispatcher Queue.

Figure 5.8 illustrates the three abstractions. The Port is an event channel in
which messages are received. Posting a message to a port is a non-blocking call
and the calling CPU thread continues to the next statement. The Arbiter decides
which registered callback method should be executed to consume the message or
messages. Once the method is selected, the arbiter creates the pair (Task, Block),
which is passed to the Dispatcher Queue associated to the port. This is an indirection
that enables the creation of high-level coordination primitives. Some of the possible
primitives are discussed later in this section. Each port is assigned a Dispatcher
Queue and multiple ports can be associated with the same Dispatcher Queue. The
Dispatcher Queue consists of a thread pool composed by one or more CPU threads.
Available threads pick (Task, Block) pairs passed by the Arbiter and proceed to the
execution of the task on the corresponding data block in the MPP. The MPP is
stageful. It keeps a state in the memory of the device (DState) across iterations to
minimize memory transfers. If necessary, it synchronizes with the state in the host
memory (HState).

Next, some of the coordination primitives that can be constructed using these
three abstractions are introduced:

• Single Item Receiver: It registers callback X to be launched when a single
message of type M is received in Port A.

• Multiple Item Receiver: Registers callback X to be launched when n messages
are received in Port A. p messages will be of type M (success) and q messages
of exception type (failures), so that p C q D n.

• Join Receiver: Registers callback X to be launched when one message of type
M is received in Port A and another in Port B .
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Fig. 5.8 Port abstraction and
its components

• Choice: Registers callback X to be launched when one message of type M is
received in Port A and registers callback Y to be launched when one message of
type N is received in Port A.

In the context of the MapReduce framework, these abstractions are utilized to
construct a Scatter-Gather mechanism in which a master CPU thread distributes
MapReduce tasks among available MPP devices, and, upon termination, these
return the control and the results back to the master thread. Each MPP device
will have a Port instance for every type of MapReduce task, a single Arbiter
and a single Dispatcher Queue. The Arbiter will register each Port following the
Single Item Receiver primitive with the assigned callback method that represents
the MapReduce task. Requests to launch a task will contain a pointer to the data
block to be manipulated and the response port in which all the responses need to be
gathered. The callback method will contain the invocation of the computing kernel,
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Fig. 5.9 Scatter-Gather using ports and MPPs

which spawns hundreds of MPP threads that operate the data simultaneously. The
response Port follows a Multiple Item Receiver primitive and is registered to launch
a callback method in the master thread when all the devices have answered.

This Scatter-Gather mechanism is illustrated in Fig. 5.9. One of the key benefits
of this event-driven model is that not only enables coordinating multiple MPP
devices towards the execution of MapReduce tasks, but also deals with the potential
failure of any device, which is fundamental to conserve the robustness of the
MapReduce framework.
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5.5 Massively Multithreaded SVM

In order to investigate the performance of the architecture proposed in Sect. 5.4, in
this section we take the SVM classifier, explore its decomposition into a MapReduce
job, and launch it on a MPPN composed by multiple MPP devices. First, we provide
a brief introduction to the SVM classification problem. Second, we describe the
MapReduce job that solves the training phase on a single MPP device. Third, we
coordinate various MPP devices using the Scatter-Gather primitive to solve a larger
classification problem. Figures in this section hide the Port, Arbiter, and Dispatcher
Queue components to facilitate the understanding of MapReduce task sequences.

5.5.1 Binary SVM

The binary SVM classification problem is defined as follows: Find the classification
function that, given l examples . Nx1; y1/ ; : : : ; . Nxl ; yl / with Nxi 2 Rn and yi 2
f�1; 1g 8i , predicts the label of new unseen samples Nzi 2 Rn. This is achieved
by solving the following regularized learning problem, where the regularization is
controlled via C .

min
f 2H

C

lX

iD1

.1 � yi f . Nxi //C C 1

2
kf k2

k ; (5.3)

where .k/C D max .k; 0/. Then slack variables �i are introduced to overcome the
problem introduced by its non-differentiability:

min
f 2H

C

lX

iD1

�i C 1

2
kf k2

k (5.4)

subject to: yi f .xi / � 1��i and �i � 0, i D 1; : : : ; l . The dual form of this problem
is given by:

max
˛2Rl

lX

iD1

˛i � 1

2
˛T K˛ (5.5)

subject to:
Pl

iD1 yi ˛i D 0 and 0 � ˛i � C , i D 1; : : : ; l , where Kij D
yi yj k

� Nxi ; Nxj

�
is a kernel function. Equation 5.5 is a quadratic programming

optimization problem and its solution defines the classification function:

f .x/ D
lX

iD1

yi ˛i k . Nx; Nxi / C b; (5.6)

where b is an unregularized bias term.
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5.5.2 MapReduce Decomposition of the SVM

The binary SVM problem can be solved using the Sequential Minimal Optimization
(SMO) algorithm [20]. SMO converts the dual form of the SVM problem into a large
scale Quadratic Programming (QP) optimization that can be solved by choosing
the smallest optimization problem at every step, which involves only two Lagrange
multipliers .˛Ilow ; ˛Iup /. For two Lagrange multipliers the QP problem can be solved
analytically without the need of numerical QP solvers. Next, we present SMO as an
iterative sequence of MapReduce operators.

First, there are two consecutive Map operators. The first Map updates the values
of the classifier function fi based on the variation of the two Lagrange multipliers,
�˛Ilow D ˛

0

Ilow
� ˛Ilow , �˛Iup D ˛

0

Iup
� ˛Iup , their label values

�
yIup ; yIlow

�
and

their associated kernel evaluations:

f
0

i D fi C �˛Iup yIup k. NxIup ; Nxi /

C �˛IlowyIlowk. NxIlow ; Nxi / (5.7)

with i D 1 : : : l . The initialization values for the first Map of the iterative sequence
are: fi D �yi , �˛Iup D �˛Ilow D 0, ˛Ilow D ˛Iup D 0, Ilow D Iup D 0.

M Œi; fi � !
h
i; f

0

i

i
(5.8)

The second Map classifies the function values f
0

i into two groups, kup and klow,
according to these filters, in which C is the regularization parameter, ki 2 kup; klow.

I0 D fi W yi D 1; 0 < ˛i < C g [
fi W yi D �1; 0 < ˛i < C g (5.9)

I1 D fi W yi D 1; ˛i D 0g (5.10)

I2 D fi W yi D �1; ˛i D C g (5.11)

I3 D fi W yi D 1; ˛i D C g (5.12)

I4 D fi W yi D �1; ˛i D 0g (5.13)

kup D fi 2 I0 [ I1 [ I2g (5.14)

klow D fi 2 I0 [ I3 [ I4g (5.15)

M Œi; ˛i � ! Œi; ki � (5.16)
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The Reduce operator takes the list of values generated by the Maps and applies
a different reduction operator based on the group they belong to. For kup min and
arg min are used, while klow requires max and arg max.

bup D min
˚
fi W ki D kup

�
(5.17)

Iup D arg minki Dkup fi (5.18)

blow D max ffi W ki D klowg (5.19)

Ilow D arg maxki Dklow fi (5.20)

The indices
�
Iup; Ilow

�
indicate the Lagrange multipliers that will be optimized.

R Œk; ffi gki Dk� ! Œb; I � (5.21)

The last Map uses these indices to calculate the new Lagrange multipliers:

˛
0

Iup
D ˛Iup � yIup .fIlow � fIup /

�
(5.22)

˛
0

Ilow
D ˛Ilow C s.˛Iup � ˛

0

Iup
/ (5.23)

where

s D yIup yIlow (5.24)

� D 2k. NxIlow ; NxIup / �
k. NxIlow ; NxIlow/ � k. NxIup ; NxIup / (5.25)

M Œi; ˛i � !
h
i; ˛

0

i

i
(5.26)

Convergence is achieved when blow < bup C 2� , where � is the stopping criteria.

5.5.3 Single-MPP Device SVM

As we advanced in Sect. 5.4.2, unlike single or dual core based MapReduce-
like systems, MPP devices can carry out multithreaded MapReduce tasks. For
the case of the single-device SVM, the data block provided by the TaskTracker
represents the entire training dataset. This data block is further split into subblocks
that are passed to the processors in the device. Typically, each processor can run
several threads simultaneously, which enables a large number of Map or Reduce
tasks being executed in parallel. Figure 5.10 schematically shows the flow of
MapReduce tasks on a MPP device. Two versions of the SVM MapReduce job were
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Fig. 5.10 Binary SVM decomposed into MapReduce tasks

constructed, one for each data structure type: dense and sparse. In general, sparse
data structures can reduce memory utilization and data transfer times, which benefits
communication within the MapReduce framework. Nevertheless, the performance
of sparse algebraic operations in the MPP directly depends on the degree of sparsity
of the data and the effect might be adverse, since the duplication of memory accesses
caused by the additional indirection can have a negative effect on performance. The
dense and sparse matrix-vector multiplications on MPPs used in this work are based
on Bell et al. [2] and Vazquez et al. [24], respectively. Their impact on the SVM
speed is reflected in Sect. 5.6.3.

5.5.4 Multiple-MPP Device SVM

In Sect. 5.5.3 a data block representing the entire training set was forwarded
to one MPP device where MapReduce tasks would be executed iteratively until
convergence, without any interaction with other devices. In this section we enhance
the decomposition of MapReduce tasks to be able to break the SVM problem into
multiple MPP devices. Figure 5.11 describes the interactions between four MPP
devices to solve a single SVM problem. The training dataset is split into four
data blocks stored in the distributed file system. The TaskTracker, that manages
the master thread, forwards the corresponding block to each device. Each device
performs the Map operator and a local Reduce on its local data block. The results
of the reduce are gathered by the master thread, which carries out a Global Reduce
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Fig. 5.11 Multiple-MPP device SVM

in order to find
�
bup; Iup

�
and .blow; Ilow/. Then these values are scattered to the

devices in order to update the lagrange multipliers
�
˛

0

Iup
; ˛

0

Ilow

�
. Finally, the master

thread synchronizes, checks for convergence, and if required, proceeds to scatter the
next Map task to the MPP group.

5.6 Implementation and Experimental Results

In this section we provide implementation details and performance results for the
MapReduce jobs presented in Sect. 5.5, along with the incremental performance
gain from one method to another. As a baseline for comparison, we take a
popular SVM solver, LIBSVM [4], which is a single-threaded version of the SMO
algorithm. Then, we compare LIBSVM to the SVM algorithm running on the
standard Hadoop platform. Having evaluated these two popular options, we proceed
to assess the performance boost obtained from the inclusion of GPUs in MapReduce
cluster nodes. Throughout all the experiments the same SVM kernel functions
k. Nxi ; Nxj /, regularization parameter C , and stopping criteria � were used.
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Table 5.1 Datasets

# # #
Dataset Training points Testing points (Features, classes) .C; ˇ/

WEB 49,749 14,951 (300,2) (64, 7.8125)
MNIST 60,000 10,000 (780,10) (10, 0.125)
RCV1 518,571 15,564 (47,236,53) (1, 0.1)
PROTEIN 17,766 6,621 (357,3) (10, 0.05)
SENSIT 78,823 19,705 (100,3) (1, 0.7)

5.6.1 Datasets

SVM training performance comparisons are carried out over five publicly available
datasets, WEB [20], MNIST [18], RCV1 [19], PROTEIN [26] and SENSIT [9].
These datasets were chosen based on their computational complexity since they
have hundreds of features per data sample. The sizes of these datasets and the
parameters used for training are indicated in Table 5.1. The Radial Basis kernel,

k
� Nxi ; Nxj

� D e�ˇk Nxi � Nxj k2

, was used for the training phase throughout all the
experiments, as well as � D 0:001. Multiclass datasets, such as MNIST, RCV1,
PROTEIN and SENSIT are decomposed into binary SVM problems following the
One-vs-All (OVA) output code. Then, the resulting collection of binary SVMs is
solved in parallel as independent MapReduce jobs.

5.6.2 Implementation and Setup

The measurements collected in the next subsection (i.e. Sect. 5.6.3) were carried out
in a single machine with a dual socket Intel Xeon E5520 @ 2.26 GHz (8 cores, 16
threads) and 32 GB of RAM.

Hadoop Setup: Using this machine as a host, the SVM algorithm running on
Hadoop was executed on 4 Virtual Machines (VMs), with a single core and 4 GB of
RAM each. The host ran the Master Node, which contained the NameNode and the
JobTracker, while the four VMs ran the DataNodes with the TaskTrackers.

Multiprocessor Setup: This machine also accommodated four GPUs. The multi-
processors utilized are NVIDIA Tesla C1060 GPUs with 240 Stream Processors @
1.3 GHz. Each GPU has 4 GB of memory and a memory bandwidth of 102 GB/s.
Similar to the Hadoop case, the host machine ran the Master Node, which contained
the NameNode with the JobTracker, and a MPP Node with four GPU devices.
The computing kernels representing MapReduce tasks were implemented using
NVIDIA CUDA.

The distribution of resources across different experiments is summarized in
Table 5.2. a C b represents a master threads and b device threads. We denote SD to
the single-GPU experiment and MD to the multi-GPU experiment.
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Table 5.2 SVM experiments

# Host # Virtual # GPU # GPU Host Device
Experiment threads machines devices threads mem (GB) mem (GB)

LIBSVM 1 – – – 4 –
Hadoop 1 C 4 4 – – 4 � 4 –
SD 1 C 1 – 1 1,024 4 4
MD 1 C 4 – 4 4,096 4 � 4 4 � 4

Table 5.3 Performance results for SVM training

Dataset Hadoop SD SVM SD SVM MD SVM MD SVM
(Non-zero %) LIBSVM SVM (Dense) (Sparse) (Dense) (Sparse)

WEB Time (s) 2,364.2 1,698.7 154.3 107.35 73.6 57.3
Gain (x) 1 1.39 15.32 22.02 32.12 41.26

(3 %) Accuracy (%) 82.69 82.69 82.69 82.69 82.69 82.69
MNIST Time (s) 118,943.5 66,753.5 2,010.3 2,321.75 726.9 923.16

Gain (x) 1 1.78 59.16 51.23 163.63 128.84
(19 %) Accuracy(%) 95.76 95.76 95.76 95.76 95.76 95.76
RCV1 Time (s) 710,664 231,486 N/A N/A N/A 3,686

Gain (x) 1 3.07 N/A N/A N/A 192.75
(0.1 %) Accuracy(%) 94.67 94.67 N/A N/A N/A 94.67
PROTEIN Time (s) 861 717.5 32.93 39.09 16.06 20.71

Gain (x) 1 1.2 26.14 22.02 53.61 41.57
(29 %) Accuracy(%) 70.03 70.03 70.03 70.03 70.03 70.03
SENSIT Time (s) 8,162 4,295.78 134.670 539.32 58.29 273.96

Gain (x) 1 1.9 60.61 15.13 140.02 29.79
(100 %) Accuracy(%) 83.46 83.46 83.46 83.46 83.46 83.46

5.6.3 Experimental Results

In this subsection we provide the performance gain obtained by each archi-
tecture/MapReduce task flow compared to the reference implementation for all
the datasets: WEB, MNIST, RCV1, PROTEIN and SENSIT. For each of the
experiments we present its training time, the measured acceleration with respect to
the reference implementation and the accuracy obtained from testing the calculated
Support Vectors (SVs) with the test dataset. These results are collected in Table 5.3.
The acceleration of the testing phase falls out of the scope this work due to its
triviality.

The execution of the Map and Reduce operators, introduced in Sect. 5.5.3, on the
standard Hadoop infrastructure yielded a modest performance improvement in the
range of (1:20 � �3:07�) when compared to LIBSVM. Nevertheless, the results
obtained from running these same operators on a SD SVM produced an order of
magnitude of acceleration in the range of (15:13 � �60:61�), which is consistent
with the values obtained by Catanzaro et al. [3] and Herrero-Lopez et al. [14].
Scaling out the problem to four GPUs (MD SVM) and using the GPU orchestration
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model presented in this paper outperformed all the previous solutions producing an
overall acceleration in the range of 29:79 � �192:75�. These results also show that
the use of sparse data structures is beneficial for cases with high degree of sparsity
(WEB and RCV1), while results adverse for the rest. The execution of the sparse
MD SVM on the WEB dataset produced a 1:28� gain compared to the dense MD
SVM on the same dataset, while the SVM for the RCV1 dataset could not be solved
on its dense SVM versions nor single device SVM form since data structures would
not fit in the GPU memory. The SVM for the RCV1 dataset was solved only for
the sparse MD SVM version, which produced the highest acceleration (192:75�)
for this set of experiments. Finally, it is necessary to point out that no accuracy loss
was observed and that the same classification results were obtained on all the testing
datasets across all the different systems.

5.7 Conclusions and Future Work

In this chapter, our goal was to accelerate the execution of Machine Learning
algorithms running on a MapReduce cluster, while maintaining the reliability and
simplicity of its infrastructure. For this purpose, we integrated massively threaded
multiprocessors into the nodes of the cluster, and proposed a concurrency model that
allows orchestrating host threads and thousands of multiprocessor threads spread
throughout different devices so as to collaboratively solve MapReduce jobs. In order
to verify the validity of this system, we decomposed the SVM algorithms into
MapReduce tasks, and created a combined solution that distills the maximum degree
of fine-grained parallelism. The execution of the SVM algorithm in our proposed
system yielded an acceleration in the range of 29:79 � �192:75�, when compared
to LIBSVM and in the range of 15:68 � �91:83�, when compared to the standard
Hadoop implementation. To the best of our knowledge this is the shortest training
time reported on these datasets for a single machine, without leaving commodity
hardware nor the MapReduce paradigm. In the future, it is planned to explore the
possibility of maximizing the utilization of the GPUs in the MPP Node through the
execution of multiple MapReduce tasks concurrently in each device.
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