Chapter 1
The Family of Map-Reduce

Sherif Sakr and Anna Liu

Abstract In the last two decades, the continuous increase of computational power
has produced an overwhelming flow of data, which called for a paradigm shift in the
computing architecture and large scale data processing mechanisms. MapReduce
is a simple and powerful programming model that enables easy development of
scalable parallel applications that can process vast amounts of data on large clusters
of commodity machines. MapReduce isolates the application from the details of
running a distributed program, such as issues on data distribution, scheduling and
fault tolerance. However, the original implementation of the MapReduce framework
had some limitations that have been tackled by many research efforts in following
up work. This chapter provides a comprehensive survey for a family of approaches
and mechanisms of large scale data analysis that have been implemented based on
the original father idea of the MapReduce framework, and are currently gaining a
lot of momentum in both research and industrial communities. Some case studies
are discussed as well.

1.1 Introduction

In the last two decades, the continuous increase of computational power has
produced an overwhelming flow of data which called for a paradigm shift in
the computing architecture and large scale data processing mechanisms. Powerful
telescopes in astronomy, particle accelerators in physics, and genome sequencers in
biology are putting massive volumes of data into the hands of scientists. Facebook
collects 15 TB of data each day into a PetaByte-scale data warehouse. Jim Gray,
a database software pioneer and a Microsoft researcher, called the shift a “fourth
paradigm” [26]. The first three paradigms were experimental, theoretical and,

S. Sakr (<) » A. Liu
NICTA and University of New South Wales, Sydney, NSW, Australia
e-mail: Sherif.Sakr@nicta.com.au; Anna.Liu@nicta.com.au

A. Gkoulalas-Divanis and A. Labbi (eds.), Large-Scale Data Analytics, 1
DOI 10.1007/978-1-4614-9242-9__1, © Springer Science+Business Media New York 2014

mailto:Sherif.Sakr@nicta.com.au
mailto:Anna.Liu@nicta.com.au

2 S. Sakr and A. Liu

Experiments Simulations Archives Literature Instruments

arXiv.org 0 E:‘E

Petabytes
Doubling every

2 years

Fig. 1.1 Data explosion in scientific computing [26]

more recently, computational science. Gray argued that the only way to cope
with this paradigm is to develop a new generation of computing tools to manage,
visualize and analyze the data flood. In general, current computer architectures
are increasingly imbalanced, where the latency gap between multi-core CPUs and
mechanical hard disks is growing every year, which makes the challenges of data-
intensive computing much harder to overcome [8]. Hence, there is a crucial need
for a systematic and generic approach to tackle these problems with an architecture
that can also scale into the foreseeable future. In response, Gray argued that the new
trend should instead focus on supporting cheaper clusters of computers to manage
and process all this data, instead of focusing on having the biggest and fastest single
computer.

Figure 1.1 illustrates an example of the explosion in scientific data which creates
major challenges for cutting-edge scientific projects. For example, modern high-
energy physics experiments, such as DZero,! typically generate more than 1 TB of
data per day. With datasets growing beyond a few hundreds of terabytes, scientists
have no off-the-shelf solutions that they can readily use to manage and analyze these
data [26]. Thus, significant human and material resources were allocated to support
these data-intensive operations, which led to high storage and management costs.

In general, the growing demand for large-scale data mining and data analy-
sis applications has spurred the development of novel solutions from both the
industry (e.g., web-data analysis, click-stream analysis, network-monitoring log
analysis) and the sciences (e.g., analysis of data produced by massive-scale simula-
tions, sensor deployments, high-throughput lab equipment) [37]. Although parallel
database systems serve some of these data analysis applications, they are expensive,
difficult to administer and lack fault-tolerance for long-running queries [34].
MapReduce [16] is a framework which is introduced by Google for programming

Thttp://www-d0.fnal.gov/.

http://www-d0.fnal.gov/.

1 The Family of Map-Reduce 3

commodity computer clusters to perform large-scale data processing in a single
pass. The framework is designed in a way that a MapReduce cluster can scale
to thousands of nodes in a fault-tolerant manner. An important advantage of this
framework is its reliance on a simple and powerful programming model. In addition,
MapReduce isolates the application developer from all the complex details of
running a distributed program, such as issues on data distribution, scheduling and
fault tolerance.

Recently, there has been a great deal of hype about cloud computing [5].
In principle, cloud computing is associated with a new paradigm for the provision
of computing infrastructure. This paradigm shifts the location of this infrastructure
to the network to reduce the costs associated with the management of hardware
and software resources. In particular, cloud computing has promised a number of
advantages for hosting the deployments of data-intensive applications, such as:

* Reduced time-to-market by removing or simplifying the time-consuming hard-
ware provisioning, purchasing and deployment processes.

* Reduced monetary cost by following a pay-as-you-go business model.

* Unlimited (virtually) throughput by adding servers if the workload increases.

In principle, the success of many enterprises often relies on their ability to
analyze expansive volumes of data. In general, cost-effective processing of large
datasets had been considered as a nontrivial undertaking. Fortunately, MapReduce
frameworks and cloud computing have made it easier than ever for everyone
to step into the world of Big data. This technology combination has enabled
even small companies to collect and analyze terabytes of data in order to gain
a competitive edge. For example, the Amazon Elastic Compute Cloud (EC2)? is
offered as a commodity that can be purchased and utilised. In addition, Amazon
has also provided the Amazon Elastic MapReduce® as an online service to easily
and cost-effectively process vast amounts of data without the need to worry about
time-consuming set-up, management or tuning of computing clusters or the compute
capacity upon which they sit. Hence, such services enable third-parties to perform
their analytical queries on massive datasets with minimum effort and cost, by
abstracting the complexity entailed in building and maintaining computer clusters.

The implementation of the basic MapReduce architecture had some limitations.
As a result, many research efforts have been triggered to tackle these limitations
by introducing several advancements in the basic architecture in order to improve
its performance. This chapter provides a comprehensive survey for a family of
approaches and mechanisms of large scale data analysis that have been imple-
mented based on the original father idea of the MapReduce framework and are
currently gaining a lot of momentum in both research and industrial communities.
In particular, the remainder of this chapter is organized as follows. Section 1.2
describes the basic architecture of the MapReduce framework. Section 1.3 discusses
several techniques that have been proposed to improve the performance and

Zhttp://aws.amazon.com/ec2/.

3http://aws.amazon.com/elasticmapreduce/.

http://aws.amazon.com/ec2/.
http://aws.amazon.com/elasticmapreduce/.

4 S. Sakr and A. Liu

capabilities of the MapReduce framework. Section 1.4 gives an overview of several
systems that support high level SQL-like interface for the MapReduce framework,
while Sect. 1.5 discusses the hybrid systems that support both MapReduce and
SQL-like interfaces. Several case studies are discussed in Sect. 1.6, before we
conclude the chapter in Sect. 1.7.

1.2 The MapReduce Framework: Basic Architecture

The MapReduce framework is introduced as a simple and powerful programming
model that enables easy development of scalable parallel applications which can
process vast amounts of data on large clusters of commodity machines [16, 17].
In particular, the framework is mainly designed to achieve high performance on
large clusters of commodity PCs. One of the main advantages of this approach is
that it isolates the application from the details of running a distributed program,
such as issues on data distribution, scheduling and fault tolerance. In this model,
the computation takes a set of input key/value pairs and produces a set of output
key/value pairs.

The user of the MapReduce framework expresses the computation using two
functions: Map and Reduce. The Map function takes an input pair and produces a
set of intermediate key/value pairs. The MapReduce framework groups together all
intermediate values associated with the same intermediate key / and passes them
to the Reduce function. The Reduce function receives an intermediate key I with
its set of values and merges them together. Typically just zero or one output value
is produced per Reduce invocation. The main advantage of this model is that it
allows large computations to be easily parallelized and re-executed to be used as the
primary mechanism for fault tolerance.

Figure 1.2 illustrates an example MapReduce program expressed in pseudo-
code for counting the number of occurrences of each word in a collection of
documents. In this example, the map function emits each word plus an associated
mark of occurrences, while the reduce function sums together all marks emitted
for a particular word. In principle, the design of the MapReduce framework has
considered the following main principles [46]:

map(String key, String value): || reduce(String key, Iterator values):

// key: document name // key: a word
// value: document contents // values: a list of counts
for each word w in value: int result = 0;

Emitintermediate(w, “1”); | | for each v in values:
result += Parselnt(v);

Emit(AsString(result));

Fig. 1.2 An example of a MapReduce program [16]

The Family of Map-Reduce 5

Low-Cost Unreliable Commodity Hardware: Instead of using expensive,
high-performance, reliable symmetric multiprocessing (SMP) or massively
parallel processing (MPP) machines equipped with high-end network and storage
subsystems, the MapReduce framework is designed to run on large clusters of
commodity hardware. This hardware is managed and powered by open-source
operating systems and utilities so that the cost is kept low.

Extremely Scalable RAIN Cluster: Instead of using centralized RAID-based SAN
or NAS storage systems, every MapReduce node has its own local off-the-
shelf hard drives. These nodes are loosely coupled in rackable systems that are
connected with generic LAN switches. These nodes can be taken out of service
with almost no impact to still-running MapReduce jobs. These clusters are called
Redundant Array of Independent (and Inexpensive) Nodes (RAIN).
Fault-Tolerant yet Easy to Administer: MapReduce jobs can run on clusters with
thousands of nodes or even more. These nodes are not very reliable as at any point
in time, a certain percentage of these commodity nodes or hard drives will be out
of order. Hence, the MapReduce framework applies straightforward mechanisms
to replicate data and launch backup tasks so as to keep still-running processes
going. To handle crashed nodes, system administrators simply take crashed
hardware off-line. New nodes can be plugged in at any time without much
administrative hassle. There is no complicated backup, restore and recovery
configurations like the ones that can be seen in many DBMS.

Highly Parallel yet Abstracted: The most important contribution of the Map-
Reduce framework is its ability to automatically support the parallelization of
task executions. Hence, it allows developers to focus mainly on the problem
at hand rather than worrying about the low level implementation details, such
as memory management, file allocation, parallel, multi-threaded or network
programming. Moreover, MapReduce’s shared-nothing architecture [38] makes
it much more scalable and ready for parallelization.

Hadoop* is an open source Java software that supports data-intensive distributed

applications by realizing the implementation of the MapReduce framework. On the
implementation level, the Map invocations are distributed across multiple machines
by automatically partitioning the input data into a set of M splits. The input
splits can be processed in parallel by different machines. Reduce invocations
are distributed by partitioning the intermediate key space into R pieces using a
partitioning function (e.g. hash(key) mod R). The number of partitions (R) and the
partitioning function are specified by the user. Figure 1.3 illustrates an example
of the overall flow of a MapReduce operation, which goes through the following
sequence of actions:

1. The input files of the MapReduce program are split into M pieces and many

copies of the program start up on a cluster of machines.

“http://hadoop.apache.org/.

http://hadoop.apache.org/.

6 S. Sakr and A. Liu

User
Program

(1) fork .- .. (1) fork

(1)§f0rk

2) S (2)
assign assign
~“map reduce

| () N
split 0 ‘e«\O (6) write_ | output
: 9 o0 file O

split 1 4) local write © e @ e
split2 (3) read) /
split 3

P : @ output
split 4 file 1

Input files Map phase Intermediate files Reduce phase Output files
(on local disks)

Fig. 1.3 An overview of the flow of execution in a MapReduce operation [16]

2. One of the copies of the program is elected to be the master copy, while the rest
are considered as workers that are assigned their work by the master copy. In
particular, there are M map tasks and R reduce tasks to assign. The master picks
idle workers and assigns each one a map task or a reduce task.

3. A worker who is assigned a map task reads the contents of the corresponding
input split, parses key/value pairs out of the input data and passes each pair to
the user-defined Map function. The intermediate key/value pairs produced by the
Map function are buffered in memory.

4. Periodically, the buffered pairs are written to local disk, partitioned into R regions
by the partitioning function. The locations of these buffered pairs on the local
disk are passed back to the master, who is responsible for forwarding these
locations to the reduce workers.

5. When a reduce worker is notified by the master about these locations, it reads the
buffered data from the local disks of the map workers, which is then sorted by the
intermediate keys so that all occurrences of the same key are grouped together.
The sorting operation is needed because typically many different keys map to the
same reduce task.

6. The reduce worker passes the key and the corresponding set of intermediate
values to the user’s Reduce function. The output of the Reduce function is
appended to a final output file for this reduce partition.

1 The Family of Map-Reduce 7

Input Splitting Mapping Shuffling Reducing Final result
: Bear, 1 Bear,2 |.
Deer, 1 Bear, 1

Car, 1
Car, 1 Car, 3
Car, 1

L
A
>
A

- River, 1 |
Deer Bear River Car, 1
Car Car River —| Car Car River | » Car 1
Deer Car Bear River, 1 | /
- ; Deer, 1 u-| Deer.2 |
. w| Deer, 1 .
Bear, 1 “ | River, 1 -| River, 2 Jl "

3 River. 1

Fig. 1.4 Execution steps of the WordCount example using MapReduce

7. When all map tasks and reduce tasks have been completed, the master program
wakes up the user program. At this point, the MapReduce invocation in the user
program returns back to the user code.

Figure 1.4 illustrates a sample execution for the example program (WordCount),
depicted in Fig. 1.2, using the steps of the MapReduce framework, which are
illustrated in Fig. 1.3. During the execution process, the master pings every worker
periodically. If no response is received from a worker in a certain amount of time,
the master marks the worker as failed. Any map tasks marked completed or in
progress by the worker are reset back to their initial idle state and therefore become
eligible for scheduling on other workers. Completed map tasks are re-executed on a
failure because their output is stored on the local disk(s) of the failed machine and is
therefore inaccessible. Completed reduce tasks do not need to be re-executed since
their output is stored in a global file system.

1.3 Improvements on the MapReduce Framework

In practice, the basic implementation of MapReduce is very useful for handling
data processing and data loading in a heterogenous system with many different
storage systems. Moreover, it provides a flexible framework for the execution of
complicated functions that can be directly supported in SQL. However, the basic
architecture suffers from certain limitations. Dean and Ghemawat [18] reported
a set of possible improvements that need to be incorporated into the MapReduce
framework. These include:

* MapReduce should take advantage of natural indices whenever possible.

* Most MapReduce output should be left unmerged since there is no benefit of
merging them if the next consumer is just another MapReduce program.

* MapReduce users should avoid using inefficient textual formats.

8 S. Sakr and A. Liu

Preprocessing

No Yes

Cheaper to replicate
reference table than Preprocessing maintainability
repartition log table?

r\/ \es High Low

Improved Broadcast Semi-join or Prepartitioning with
per-split semi-join @ large number
of partitions

Fig. 1.5 Decision tree for choosing between various join strategies on the MapReduce frame-
work [10]

In the following subsections, we discuss some research efforts that have been
conducted in order to deal with these challenges, as well as the different improve-
ments that have been made on the basic implementation of the MapReduce
framework in order to achieve these goals.

1.3.1 Map-Reduce-Merge

One main limitation of the MapReduce framework is that it does not support
the joining of multiple datasets in one task. However, this can still be achieved
with additional MapReduce steps. For example, users can map and reduce one
dataset and read data from other datasets on the fly. Blanas et al. [10] report on
a study that evaluated the performance of different distributed join algorithms (e.g.,
Repartition Join, Broadcast Join) using the MapReduce framework. Figure 1.5
illustrates a decision tree that summaries the tradeoffs of the considered join
strategies, according to the results of that study. Based on statistics, such as the
relative data size and the fraction of the join key referenced, this decision tree tries
to determine what is the right join strategy for a given circumstance. If data is not
preprocessed, the right join strategy depends on the size of the data transferred
via the network. If the network cost of broadcasting an input relation R to every
node is less expensive than transferring both R and projected L, then the broadcast

1 The Family of Map-Reduce 9

[driver —I :coordinat(_* ‘

process
— TOTK

X

il ;
B MPPPET S reducerY
split — mapper ——
spiit - J reducer

ma er' - '
-apllt> it ./ 'reducerll

] ma erl’ [
.’Pm | Pp l 3 | mergerk Ol.[lp].l‘l

» rnapper 3 [output
split reducer] bl il bl

.S_pl“ — mapper: : ._ | I_ rEducer y 3 merger L output
apE > mapper T
split — f reducer

split — mapper

rrnsen p communication

o |:| DFS file/chunks

! internal transfer
*, =———— DFS input/output
'.. remote transfer

Fig. 1.6 An overview of the Map-Reduce-Merge framework [46]

join algorithm should be used. When preprocessing is allowed, semi-join, per-split
semi-join and directed join with enough partitions are the best choices. Semi-join
and per-split semi-join offer further flexibility since their preprocessing steps are
insensitive to how the log table is organized, and thus suitable for any number of
reference tables. In addition, the preprocessing steps of these two algorithms are
cheaper since there is no shuffling of the log data.

To tackle the limitation of the join phase in the MapReduce framework, Yang
et al. [46] have proposed the Map-Reduce-Merge model that enables the processing
of multiple datasets. Figure 1.6 illustrates the framework of this model, where the
map phase transforms an input key/value pair (k1,v1) into a list of intermediate
key/value pairs [(k2, v2)]. The reduce function aggregates the list of values [v2]
associated with k2 and produces a list of values [v3] which is also associated with
k2. Note that inputs and outputs of both functions belong to the same lineage ().
Another pair of map and reduce functions produce the intermediate output (k3, [v4])
from another lineage (8). Based on keys k2 and k3, the merge function combines
the two reduced outputs from different lineages into a list of key/value outputs
[(k4,v5)]. This final output becomes a new lineage (). If « = B then this merge
function does a self-merge which is similar to self-join in relational algebra. The
main differences between the processing model of this framework and the original
MapReduce is the production of a key/value list from the reduce function instead
of just that of values. This change is introduced because the merge function needs
input datasets organized (partitioned, then either sorted or hashed) by keys and these
keys have to be passed into the function to be merged. In the original framework,
the reduced output is final. Hence, users pack whatever needed in [v3] while passing
k2 for the next stage is not required.

Figure 1.7 illustrates a sample execution of the Map-Reduce-Merge frame-
work. In this example, there are two datasets: Employee and Department, where

10 S. Sakr and A. Liu

emp-id emp-info: dept-id emp-info: bonus dept-id dept-info: bonus adjustment
1 B innovation award ($100) B 1.1
i B hard worker award ($50) A 09
2 A NULL (80) }
3 A high-performer ($150) | RHS mapper retrieves bonus adjustment |
3 A Innovation award ($100)
dept-id bonus adjustment
LHS mapper cnmPutes emp bonuses J 335
¥ i
emp-id dept-id bonus 095
1 B $100 ¥
RHS red modified bonus adjustment and
: B 850 || sorts on dept-id
2 A 80 r 3
3 A 8150 dept-id bonus adjustment
3 A $100 w5 A 0.95
et B 1.15
LHSmducersm‘tsml pt-id, gi L o5 "
pair and up* emp b o’ /
emp.id deptiid.**" |, bonus-spm’’ \I mdeh w on M |
2 A [T 8o
L.
3 A . $250 p
B‘ $150 smelid bonue A sort-merge merger joins LHS and
80 || RHS red d outputs, then

82375 || computes final emp bonuses.
81725

CA AL

Fig. 1.7 A sample execution of the Map-Reduce-Merge framework [46]

Employee’s key attribute is emp-id and the Department’s key is dept-id.
The execution of this example query aims to join these two datasets and compute
employee bonuses. On the left hand side of Fig. 1.7, a mapper reads Employee
entries and computes a bonus for each entry. A reducer then sums up these bonuses
for every employee and sorts them by dept-id, then emp-id. On the right
hand side, a mapper reads Department entries and computes bonus adjustments.
A reducer then sorts these department entries. At the end, a merger matches the
output records from the two reducers on dept - 1d and applies a department-based
bonus adjustment on employee bonuses. Yang and Parker [45] have also proposed
an approach for improving the Map-Reduce-Merge framework by adding a new
primitive, called traverse. This primitive can process index file entries recursively,
select data partitions based on query conditions and feed only selected partitions to
other primitives.

Afrati and Ullman [3] have presented another approach to improve the join phase
in the MapReduce framework. This approach begins by identifying the map-key,
the set of attributes that identify the Reduce process to which a Map process must
send a particular tuple. Each attribute of the map-key gets a “share”, which is the
number of buckets into which its values are hashed, to form a component of the
identifier of a Reduce process. Relations have their tuples replicated in limited
fashion, where the degree of replication depends on the shares for those map-key
attributes that are missing from their schema. The approach considers two important
special join cases: chain joins (represents a sequence of 2-way join operations where
the output of one operation in this sequence is used as an input to another operation
in a pipelined fashion) and star joins (represents joining of a large fact table with

1 The Family of Map-Reduce 11

several smaller dimension tables). In each case, the proposed algorithm is able to
determine the map-key and determine the shares that yield the least replication.
The proposed approach is not always superior to the conventional way of using
map-reduce to implement joins. However, there are some cases where the proposed
approach results in clear wins, such as:

* Analytic queries in which a very large fact table is joined with smaller dimension
tables.

* Queries involving paths through graphs with high out-degree, such as the Web or
a social network.

1.3.2 MapReduce Online

The basic architecture of the MapReduce framework requires the entire output of
each map and reduce task to be materialized into a local file before it can be
consumed by the next stage. This materialization step allows for the implementation
of a simple and elegant checkpoint/restart fault tolerance mechanism. Alvaro
et al. [4] proposed a modified architecture in which intermediate data is pipelined
between operators, while preserving the programming interfaces and fault tolerance
models of previous MapReduce frameworks. This pipelining approach provides
important advantages to the MapReduce framework, such as:

e The reducers can begin their processing of the data as soon as it is produced
by mappers. Therefore, they can generate and refine an approximation of their
final answer during the course of execution. In addition, they can provide initial
estimates of the results several orders of magnitude faster than the final results.

e It widens the domain of problems to which MapReduce can be applied. For
example, it facilitates the ability to design MapReduce jobs that run continuously,
accepting new data as it arrives and analyzing it immediately (continuous
queries). This allows MapReduce to be used in applications such as event
monitoring and stream processing.

e Pipelining delivers data to downstream operators more promptly, which can
increase opportunities for parallelism, improve utilization as well as reduce
response time.

1.3.3 MRShare

With the emergence of cloud computing, the use of an analytical query processing
infrastructure (e.g., Amazon EC2) can be directly mapped to monetary value. Taking
into account that different MapReduce jobs can perform similar work, there could
be many opportunities for sharing the execution of their work. This sharing can
reduce the overall amount of work, which consequently leads to the reduction
of the monetary charges incurred while utilizing the resources of the processing

12 S. Sakr and A. Liu

infrastructure. Nykiel et al. [32] have proposed MRShare as a sharing framework
which is tailored to transform a batch of queries into a new batch that will be
executed more efficiently by merging jobs into groups and evaluating each group
as a single query. Based on a defined cost model, they described an optimization
problem that aims to derive the optimal grouping of queries in order to avoid
performing redundant work and, thus, resulting in significant savings on both
processing time and associated cost. In particular, the proposed approach considers
exploiting the following sharing opportunities:

* Sharing Scans. To share scans between two mapping pipelines M; and M, the
input data must be the same. In addition, the key/value pairs should be of the
same type. Given that, it becomes possible to merge the two pipelines into a
single pipeline and scan the input data only once. However, it should be noted
that such combined mapping will produce two streams of output tuples (one for
each mapping pipeline M; and M;). In order to distinguish the streams at the
reducer stage, each tuple is tagged with a tag () part. This tagging part is used
to indicate the origin mapping pipeline during the reduce phase.

e Sharing Map Output. If the map output key and value types are the same for
two mapping pipelines M; and M, then the map output streams for M; and M;
can be shared. In particular, if Map; and Map; are applied to each input tuple,
then the map output tuples coming only from Map; are tagged with tag (i)
only. If a map output tuple was produced from an input tuple by both Map; and
Mapj,itis then tagged by tag (i) +tag (j) . Therefore, any overlapping parts
of the map output will be shared. In principle, producing a smaller map output
leads to savings on sorting and copying intermediate data over the network.

* Sharing Map Functions. Sometimes the map functions are identical and thus they
can be executed once. At the end of the map stage two streams are produced, each
tagged with its job tag. If the map output is shared, then clearly only one stream
needs to be generated. Even if only some filters are common in both jobs, it is
possible to share parts of map functions.

In practice, sharing scans and sharing map-output yield I/O savings, while
sharing map functions (or parts of them) additionally yield CPU savings.

1.3.4 Haloop

Many data analysis techniques (e.g., the PageRank algorithm, recursive relational
queries, social network analysis) require iterative computations. These techniques
have a common requirement which is that data are processed iteratively until the
computation satisfies a convergence or stopping condition. The basic MapReduce
framework does not directly support these iterative data analysis applications.
Instead, programmers must implement iterative programs by manually issuing
multiple MapReduce jobs and orchestrating their execution using a driver program.
In practice, there are two key problems with manually orchestrating an iterative
program in MapReduce:

1 The Family of Map-Reduce 13

Master Slaves
A A
— ~ ~
I
I
g | |Taskll‘ [Task12] [Taski3)]
2 | Job1 | | sob2 | | sob3 | |
2 = 7 = | [Taskan] ‘TaskZZ‘ ‘TaskZB‘
& N I // |
< N ! [Task3l] [Task32| [Task3]
\, I z |
D ! 2 1
A T LN % """""""
1
s . i
5 / Task Scheduler -+ Task Tracker
. I
54 3
|
] \ Loop Control i :
= P |
= Task Queue i Caching Indexing
N [I W W
r
g Distributed File System ‘
b7
&
o Local File System
=
\
<«— Local communication =~ = «------- Remote communication

l:’ Identical to Hadoop |:| Modified from Hadoop |:| New in HaLoop

Fig. 1.8 An overview of the HalLoop architecture [11]

* Even though much of the data may be unchanged from iteration to iteration, the
data must be re-loaded and re-processed at each iteration, wasting 1/O, network
bandwidth and CPU resources.

* The termination condition may involve the detection of when a fixpoint has been
reached. This condition may itself require an extra MapReduce job on each
iteration, again incurring overhead in terms of scheduling extra tasks, reading
extra data from disk and moving data across the network.

Bu et al. [11] have presented the HaLoop system which is designed to efficiently
handle the above types of applications. HalLoop extends the basic MapReduce
framework with two main functionalities:

1. A MapReduce cluster can cache the invariant data in the first iteration and then
reuse them in later iterations.

2. A MapReduce cluster can cache reducer outputs, which makes checking for a
fixpoint more efficient, without an extra MapReduce job.

Figure 1.8 illustrates the architecture of HalLoop as a modified version of the
basic MapReduce framework. In order to accommodate the requirements of iterative
data analysis applications, HalLoop has incorporated the following changes to the
basic Hadoop MapReduce framework:

* It exposes a new application programming interface to users that simplifies the
expression of iterative MapReduce programs.

14 S. Sakr and A. Liu

* Haloop’s master node contains a new loop control module that repeatedly starts
new map-reduce steps that compose the loop body, until a user-specified stopping
condition is met.

» Ituses a new task scheduler for iterative applications that leverages data locality
in these applications.

It caches and indices application data on slave nodes. In principle, the task tracker
not only manages task execution but also manages caches and indices on the slave
node and redirects each task’s cache and index accesses to the local file system.

1.3.5 Hadoop++

An important limitation of the Basic MapReduce framework is that it is designed in
a way that jobs can only scan the input data in a sequential-oriented fashion. Hence,
the query processing performance of the MapReduce framework does not match
the one of a well-configured parallel DBMS [34]. In order to tackle this challenge,
Dittrich et al. [19] have presented the Hadoop++ system, which aims to boost
the query performance of the Hadoop project (the open source implementation of the
MapReduce framework) without changing any of the system internals. They achieve
this goal by injecting their changes through user-defined functions (UDFs), which
only affect the Hadoop system from inside without any external effect. In particular,
they introduce the following main changes:

e Trojan Index: The original Hadoop implementation does not provide index
access due to the lack of a priori knowledge of schema and the MapReduce
jobs being executed. Hence, the Hadoop++ system is based on the assumption
that if we know the schema and the anticipated MapReduce jobs, then we can
create appropriate indices for the Hadoop tasks. In particular, trojan index is an
approach to integrate indexing capability into Hadoop in a non-invasive way.
These indices are created during the data loading time and thus have no penalty
at query time. Each trojan index provides an optional index access path which
can be used for selective MapReduce jobs. The scan access path can still be used
for other MapReduce jobs. These indices are created by injecting appropriate
UDFs inside the Hadoop implementation. Specifically, the main features of trojan
indices can be summarized as follows:

— No External Library or Engine: Trojan indices integrate indexing capability
natively into the Hadoop framework without imposing a distributed SQL-
query engine on top of it.

— Non-Invasive: They do not change the existing Hadoop framework. The index
structure is implemented by providing the right UDFs.

— Optional Access Path: They provide an optional index access path which can
be used for selective MapReduce jobs. However, the scan access path can still
be used for other MapReduce jobs.

1 The Family of Map-Reduce 15

— Seamless Splitting: Data indexing adds an index overhead for each data split.
Therefore, the logical split includes the data as well as the index, as it
automatically splits the indexed data at logical split boundaries.

— PFartial Index: Trojan index need not be built on the entire split. However, it
can be built on any contiguous subset of the split as well.

— Multiple Indexes: Several trojan indexes can be built on the same split. How-
ever, only one of them can be the primary index. During query processing,
an appropriate index can be chosen for data access based on the logical query
plan and the cost model.

* Trojan Join: Similar to the idea of the trojan index, the Hadoop++ system
assumes that if we know the schema and the expected workload, then we can
co-partition the input data during the loading time. In particular, given any two
input relations, they apply the same partitioning function on the join attributes
of both the relations at data loading time and place the co-group pairs, having
the same join key from the two relations, on the same split and hence on the same
node. As a result, join operations can be then processed locally within each node
at query time. Implementing the trojan joins does not require any changes to be
made to the existing implementation of the Hadoop framework. The only changes
are made on the internal management of the data splitting process. In addition,
trojan indices can be freely combined with trojan joins.

1.3.6 CoHadoop

In the basic implementation of the Hadoop project, the objective of the data
placement policy is to achieve load balancing by distributing the data evenly across
the data servers, independently of the intended use of the data. This simple data
placement policy works well with most Hadoop applications that access just a single
file. However, there are other applications that process data from multiple files,
which can get a significant boost in performance with customized strategies. In these
applications, the absence of data co-location increases the data shuffling costs,
increases the network overhead and reduces the effectiveness of data partitioning.
For example, log processing is a very common usage scenario for the Hadoop
framework. In this scenario, data are accumulated in batches from event logs, such
as clickstreams, phone call records, application logs or a sequences of transactions.
Each batch of data is ingested into Hadoop and stored in one or more HDFS
files at regular intervals. Two of the most common operations in log analysis of
these applications are (1) joining the log data with some reference data and (2)
sessionization, i.e., computing user sessions. The performance of such operations
can be significantly improved if they utilize the benefits of data co-location.
CoHadoop [20] is a lightweight extension to Hadoop which is designed to enable
co-locating related files at the file system level, while at the same time retaining the
good load balancing and fault tolerance properties. CoHadoop introduces a new
file property to identify related data files and modify the data placement policy

16 S. Sakr and A. Liu

File B 7
An HDFS cluster of 5
Nodes, with 3-way
replication
Block 2

1| fileA, fileB

2 | fileC

6 | fleD

n| fileO \ y
Locator Table

Fig. 1.9 Example file co-location in CoHadoop [20]

of Hadoop to co-locate all copies of those related files in the same server. These
changes are designed in a way that retains the benefits of Hadoop, including load
balancing and fault tolerance.

In principle, CoHadoop provides a generic mechanism that allows applications
to control data placement at the file-system level. In particular, a new file-level
property, called a locator, is introduced and the Hadoop’s data placement policy
is modified so that it makes use of this property. Each locator is represented by a
unique value (ID), where each file in HDFS is assigned to at most one locator and
many files can be assigned to the same locator. Files with the same locator are placed
on the same set of datanodes, whereas files with no locator are placed via Hadoop’s
default strategy. It should be noted that this co-location process involves all data
blocks, including replicas. Figure 1.9 shows an example of co-locating two files, A
and B, via a common locator. All of A’s two HDFS blocks and B’s three blocks are
stored on the same set of datanodes. To manage the locator information and keep
track of co-located files, CoHadoop introduces a new data structure, the locator
table, which stores a mapping of locators to the list of files that share this locator. In
practice, the CoHadoop extension enables a wide variety of applications to exploit
data co-location by simply specifying related files, such as co-locating log files
with reference files for joins, co-locating partitions for grouping and aggregation,
co-locating index files with their data files and co-locating columns of a table.

1.4 SQL-Like MapReduce Implementations

For programmers, a key appealing feature of the MapReduce framework is that there
are only two high-level declarative primitives, map and reduce, which can be written
in any programming language of choice, without worrying about the details of their
parallel execution. On the other hand, the MapReduce programming model has its
own limitations, such as:

1 The Family of Map-Reduce 17

e Its one-input and two-stage data flow is extremely rigid. As we previously
discussed, to perform tasks having a different data flow (e.g. joins or n stages),
inelegant workarounds have to be devised.

e Custom code has to be written for even the most common operations (e.g.
projection and filtering), which leads to the fact that the code is usually difficult
to reuse and maintain.

* The opaque nature of the map and reduce functions impedes the ability of the
system to perform optimizations.

Moreover, many programmers could be unfamiliar with the MapReduce frame-
work and they would prefer to use SQL (because they are more proficient in) as
a high level declarative language to express their task, while leaving all of the
execution optimization details to the backend engine. In addition, it is beyond
doubt that high level language abstractions enable the underlying system to perform
automatic optimization. In what follows, we discuss research efforts to tackle these
problems and add the SQL flavor on top of the MapReduce framework.

1.4.1 Pig Latin

Gates et al. [23] have presented a programming language, called Pig Latin, which
takes a middle position between expressing tasks using a high-level declarative
querying model in the spirit of SQL, and low-level/procedural programming using
MapReduce. Pig Latin is implemented in the scope of the Apache Pig project® and
is used by programmers at Yahoo! for developing data analysis tasks.

Writing a Pig Latin program is similar to specifying a query execution plan (e.g.,
a data flow graph). To experienced programmers, this method is more appealing
than encoding their task as an SQL query and then coercing the system to choose
the desired plan through optimizer hints. In general, automatic query optimization
has its limits especially with uncataloged data, prevalent user-defined functions and
parallel execution, which are all features of the data analysis tasks targeted by the
MapReduce framework.

Figure 1.10 shows an example SQL query and its equivalent Pig Latin program.
Given a URL table with the structure (url, category, pagerank), the task of the
SQL query is to find each large category and its average pagerank of high-pagerank
URLSs (>0.2). A Pig Latin program is described as a sequence of steps, where each
step represents a single data transformation. This characteristic is appealing to many
programmers. At the same time, the transformation steps are described using high-
level primitives (e.g. filtering, grouping, aggregation) much like in SQL.

Pig Latin has several other features that are important for casual ad-hoc data
analysis tasks. These features include support for a flexible, fully nested data model,

Shttp://incubator.apache.org/pig.

http://incubator.apache.org/pig

18 S. Sakr and A. Liu

saL Pig Latin
SELECT category, AVG(pagerank) good_urls = FILTER urls BY pagerank > 0.2;
EROM urls groups = GROUP good_urls BY category;

big_groups = FILTER groups BY COUNT(good_urls)>108;
output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank);

WHERE pagerank > 0.2

GROUP BY category
HAVING COUNT(*) > 106

Fig. 1.10 An example SQL query and its equivalent Pig Latin program [23]

extensive support for user-defined functions and the ability to operate over plain
input files without any schema information. In particular, Pig Latin has a simple
data model consisting of the following four types:

e Arom: An atom contains a simple atomic value, such as a string or a number, e.g.,
“alice”.

* Tuple: A tuple is a sequence of fields, each of which can be any of the data types,
e.g., (“alice”, “lakers”).

* Bag: A bag is a collection of tuples with possible duplicates. The schema of the
constituent tuples is flexible, where not all tuples in a bag need to have the same
number and type of fields
. { (“alice”, “lakers”) %

(“alice”, (“iPod”, “apple™))

e Map: A map is a collection of data items, where each item has an associated key
through which it can be looked up. As with bags, the schema of the constituent
data items is flexible. However, the keys are required to be data atoms, e.g.,

“k1” — (“alice”, “lakers”)
% “k2” — “20” }

To accommodate specialized data processing tasks, Pig Latin has extensive
support for user-defined functions. The input and output of UDFs in Pig Latin
follow its fully nested data model. Pig Latin is architected such that the parsing
of the Pig Latin program and the logical plan construction is independent of the
execution platform. Only the compilation of the logical plan into a physical plan
depends on the specific execution platform chosen. Currently, Pig Latin programs
are compiled into sequences of MapReduce jobs, which are executed using the
Hadoop MapReduce environment.

In particular, a Pig Latin program goes through a series of transformation
steps [33] before being executed, as depicted in Fig.1.11. The parsing steps
verifies that the program is syntactically correct and that all referenced variables
are defined. The output of the parser is a canonical logical plan with a one-to-
one correspondence between Pig Latin statements and logical operators, which are
arranged in a directed acyclic graph (DAG). The logical plan generated by the
parser is passed through a logical optimizer. In this stage, logical optimizations,
such as projection pushdown, are carried out. The optimized logical plan is then

1 The Family of Map-Reduce 19

and execution steps [33]

Fig. 1.11 Pig compilation
[Parser

—

[Logical Optimizer

—

N

MapReduce
L Comfller
MapReduce
Optimizer
|\ J
4 N\
Hadoop
|\ J

compiled into a series of MapReduce jobs, which are then passed through another
optimization phase. The DAG of optimized MapReduce jobs is then topologically
sorted and jobs are submitted to Hadoop for execution.

1.4.2 Sawzall

Sawzall [35] is a scripting language used at Google on top of MapReduce. A Sawzall
program defines the operations to be performed on a single record of the data. There
is nothing in the language to enable examining multiple input records simultane-
ously, or even to have the contents of one input record influence the processing of
another. The only output primitive in the language is the emit statement, which
sends data to an external aggregator (e.g., Sum, Average, Maximum, Minimum)
that gathers the results from each record, after which the results are correlated
and processed. The authors argue that aggregation is done outside the language
for a couple of reasons: (1) a more traditional language can use the language
to correlate results but some of the aggregation algorithms are sophisticated and
are best implemented in a native language and packaged in some form, and (2)
drawing an explicit line between filtering and aggregation enables a high degree of
parallelism and hides the parallelism from the language itself.

Figure 1.12 depicts an example Sawzall program where the first three lines
declare the aggregators count, total and sum of squares. The keyword table

20 S. Sakr and A. Liu

count: table sum of int;

total: table sum of float;
sumOfSquares: table sum of float;
x: float = input;

emit count $<$- 1;

emit total $<$ -x;

emit sumOfSquares $<$- x * Xx;

Fig. 1.12 An example of a Sawzall program [35]

introduces an aggregator type, which are called tables in Sawzall even though they
may be singletons. These particular tables are sum tables which add up the values
emitted to them, ints or floats as appropriate. The Sawzall language is implemented
as a conventional compiler, written in C++, whose target language is an interpreted
instruction set, or byte-code. The compiler and the byte-code interpreter are part
of the same binary, so the user presents source code to Sawzall and the system
executes it directly. It is structured as a library with an external interface that accepts
source code which is then compiled and executed, along with bindings to connect to
externally-provided aggregators. The datasets of Sawzall programs are often stored
in Google File System (GFS) [24]. The business of scheduling a job to execute on a
cluster of machines is handled by software, called Workqueue, which creates a large-
scale time sharing system out of an array of computers and their disks. It schedules
jobs, allocates resources, reports status and collects the results.

1.4.3 SQL/MapReduce

In general, a user-defined function is a powerful database feature that allows
users to customize database functionality. Friedman et al. [22] introduced the
SQL/MapReduce (SQL/MR) UDF framework, which is designed to facilitate
parallel computation of procedural functions across hundreds of servers working
together as a single relational database. The framework is implemented as part of
the Aster Data Systems® nCluster shared-nothing relational database.

The framework leverages ideas from the MapReduce programming paradigm
to provide users with a straightforward API through which they can implement
a UDF in the language of their choice. Moreover, it allows maximum flexibility
as the output schema of the UDF is specified by the function itself at query plan-
time. This means that a SQL/MR function is polymorphic as it can process arbitrary
input because its behavior, as well as output schema, are dynamically determined
by information available at query plan-time. This also increases reusability as the
same SQL/MR function can be used on inputs with many different schemas or

Shttp://www.asterdata.com/.

http://www.asterdata.com/

1 The Family of Map-Reduce 21

Fig. 1.13 Basic syntax of SELECT ...

SQL/MR query function [22] FROM functionname (

ON table-or-query
[PARTITION BY expr, ...]
ORDER BY expr, ...]
[clausename(arg, ...) ...]

)

with different user-specified parameters. In particular, SQL/MR allows the user to
write custom-defined functions in any programming language and insert them into
queries that otherwise leverage traditional SQL functionality. A SQL/MR function
is defined in a manner that is similar to MapReduce’s map and reduce functions.

The syntax for using a SQL/MR function is depicted in Fig. 1.13, where the
SQL/MR function invocation appears in the SQL FROM clause and consists of the
function name followed by a set of clauses that are enclosed in parentheses. The ON
clause specifies the input to the invocation of the SQL/MR function. It is important
to note that the input schema to the SQL/MR function is specified implicitly at query
plan-time in the form of the output schema for the query used in the ON clause.

In practice, a SQL/MR function can be either a mapper (Row function) or a
reducer (Partition function). The definitions of row and partition functions ensure
that they can be executed in parallel in a scalable manner. In the Row function, each
row from the input table or query will be operated on by exactly one instance of
the SQL/MR function. Semantically, each row is processed independently, allowing
the execution engine to control parallelism. For each input row, the row function
may emit zero or more rows. In the Partition function, each group of rows, as
defined by the PARTITION BY clause, will be operated on by exactly one instance
of the SQL/MR function. If the ORDER BY clause is provided, the rows within
each partition are provided to the function instance in the specified sort order.
Semantically, each partition is processed independently, allowing parallelization by
the execution engine at the level of a partition. For each input partition, the SQL/MR
partition function may output zero or more rows.

1.4.4 SCOPE

SCOPE (Structured Computations Optimized for Parallel Execution) is a scripting
language which is targeted for large-scale data analysis and is used for a variety
of data analysis and data mining applications inside Microsoft [13]. SCOPE is a
declarative language. It allows users to focus on the data transformations required
to solve the problem at hand and hides the complexity of the underlying platform
and implementation details. The SCOPE compiler and optimizer are responsible for
generating an efficient execution plan and the runtime for executing the plan with
minimal overhead.

22 S. Sakr and A. Liu

sQlL-Like MapReduce-Like

SELECT query, e = EXTRACT query
COUNT(*) AS count FROM “search.log" USING LogExtractor;
FROM "search.log" s1=SELECT query, COUNT(*) as count FROM e
USING LogExtractor GROUP BY query;
GROUP BY query s2= \S/\I/E;Ié(é;quer\i, collé)rg)toFROM sl
count > ;

:’:\SISRGB::(OUM g 1;:;;% s3 = SELECT query, count FROM s2

count DESE; ORDER BY count DESC;
OUTPUT TO "gcount.result"; OUTPUT s3 TO “gcount.result";

Fig. 1.14 Two equivalent SCOPE scripts in SQL-like style and in MapReduce-like style [13]

Like SQL, data is modeled as sets of rows composed of typed columns. SCOPE is
highly extensible. Users can easily define their own functions and implement their
own versions of operators: extractors (parsing and constructing rows from a file),
processors (row-wise processing), reducers (group-wise processing) and combiners
(combining rows from two inputs). This flexibility greatly extends the scope of the
language and allows users to solve problems that cannot be easily expressed in
traditional SQL. SCOPE provides a functionality which is similar to that of SQL
views. This feature enhances modularity and code reusability. It is also used to
restrict access to sensitive data. SCOPE supports writing a program using traditional
SQL expressions or as a series of simple data transformations.

Figure 1.14 illustrates two equivalent scripts in two different styles that are used
to find from a search log queries that have been requested at least 1,000 times.
In the MapReduce-like style, the EXTRACT command extracts all query string
from the log file. The first SELECT command counts the number of occurrences
of each query string. The second SELECT command retains only rows with a count
greater than 1,000. The third SELECT command sorts the rows on count. Finally,
the OUTPUT command writes the result to a file.

Microsoft has developed a distributed computing platform, called Cosmos, for
storing and analyzing massive data sets. Cosmos is designed to run on large
clusters consisting of thousands of commodity servers. Figure 1.15 shows the main
components of the Cosmos platform, described as follows:

* Cosmos Storage: A distributed storage subsystem designed to reliably and
efficiently store extremely large sequential files.

» Cosmos Execution Environment: An environment for deploying, executing and
debugging distributed applications.

* SCOPE: A high-level scripting language for writing data analysis jobs. The
SCOPE compiler and optimizer translate these scripts to efficient parallel
execution plans.

The Cosmos Storage System is an append-only file system that reliably stores
petabytes of data. The system is optimized for large sequential I/O. All writes are
append-only and concurrent writers are serialized by the system. Data is distributed

1 The Family of Map-Reduce 23

SCOPE Script

e
SCOPE Compiler

L SCOPE

e Optimizer
SCOPE Runtime

S 4

& =N

Cosmos Execution Environment
A y
Cosmos Storage System
A 4

]
—

Fig. 1.15 The SCOPE/Cosmos execution platform [13]

and replicated for fault tolerance and compressed to save storage and increase 1/O
throughput. In Cosmos, an application is modeled as a dataflow graph: a directed
acyclic graph with vertices representing processes and edges representing data
flows. The runtime component of the execution engine is called the Job Manager,
which represents the central and coordinating process for all processing vertices
within an application.

The SCOPE scripting language resembles SQL but with C# expressions. Thus,
it reduces the learning curve for users and eases the porting of existing SQL scripts
into SCOPE. Moreover, SCOPE expressions can use C# libraries, where custom
C# classes can compute functions of scalar values, or manipulate whole rowsets.
A SCOPE script consists of a sequence of commands which are data transformation
operators that take one or more rowsets as input, perform some operation on the
data and output a rowset. Every rowset has a well-defined schema to which all its
rows must adhere. The SCOPE compiler parses the script, checks the syntax and
resolves names. The result of the compilation is an internal parse tree which is then
translated to a physical execution plan. A physical execution plan is a specification
of a Cosmos job, which describes a data flow DAG where each vertex is a program
and each edge represents a data channel. The translation into an execution plan is
performed by traversing the parse tree in a bottom-up manner.

24 S. Sakr and A. Liu

For each operator, SCOPE has an associated set of default implementation
rules. Many of the traditional optimization rules from database systems are clearly
also applicable in this new context, for example, removing unnecessary columns,
pushing down selection predicates and pre-aggregating when possible. However, the
highly distributed execution environment offers new opportunities and challenges,
making it necessary to explicitly consider the effects of large-scale parallelism
during optimization. For example, choosing the right partitioning scheme and
deciding when to partition, are crucial for finding an optimal plan. It is also
important to correctly reason about partitioning, grouping and sorting properties
and their interaction, to avoid unnecessary computations [49].

Using a similar approach to that of SCOPE, Murray and Hand [31] have
presented Skywriting as a purely-functional script language with its execution
engine for performing distributed and parallel computations. A Skywriting script
can create new tasks asynchronously, evaluate data dependencies and perform
unbounded (while-loop) iteration. This enables Skywriting to describe a more
general class of distributed computations.

1.4.5 DryadLINQ

Dryad is a general-purpose distributed execution engine introduced by Microsoft
for coarse-grain data-parallel applications [27]. A Dryad application combines
computational vertices with communication channels to form a dataflow graph.
Dryad runs the application by executing the vertices of this graph on a set of
available computers, communicating as appropriate through files, TCP pipes and
shared-memory FIFOs. The Dryad system offers to the developer fine control over
the communication graph, as well as the subroutines that live at its vertices. A Dryad
application developer can specify an arbitrary directed acyclic graph to describe the
application’s communication patterns and express the data transport mechanisms
(files, TCP pipes and shared-memory FIFOs) between the computation vertices.
This direct specification of the graph gives the developer greater flexibility to easily
compose basic common operations, leading to a distributed analogue of piping
together traditional Unix utilities, such as grep, sort and head.

Dryad is notable for allowing graph vertices (and computations in general)
to use an arbitrary number of inputs and outputs, while MapReduce restricts all
computations to take a single input set and generate a single output set. The overall
structure of a Dryad job is determined by its communication flow. A job is a directed
acyclic graph where each vertex is a program and edges represent data channels. It is
a logical computation graph that is automatically mapped onto physical resources
by the runtime. At run time, each channel is used to transport a finite sequence of
structured items. A Dryad job is coordinated by a process called the Job Manager
that runs either within the cluster or on a user’s workstation with network access
to the cluster. The job manager contains the application-specific code to construct
the job’s communication graph along with library code to schedule the work across

1 The Family of Map-Reduce 25

the available resources. All data is sent directly between vertices and thus the job
manager is only responsible for control decisions and is not a bottleneck for any
data transfers. Therefore, much of the simplicity of the Dryad scheduler and fault-
tolerance model come from the assumption that vertices are deterministic.

Dryad has its own high-level language called DryadLINQ [47]. It generalizes
execution environments, such as SQL and MapReduce, in two ways: (1) adopting
an expressive data model of strongly typed .NET objects and (2) supporting
general-purpose imperative and declarative operations on datasets within a tradi-
tional high-level programming language. DryadLINQ’ exploits LINQ (Language
INtegrated Query,® a set of .NET constructs for programming with datasets) to
provide a powerful hybrid of declarative and imperative programming. The system
is designed to provide flexible and efficient distributed computation in any LINQ-
enabled programming language including C#, VB and F#.° Objects in DryadLINQ
datasets can be of any .NET type, making it easy to compute with data such
as image patches, vectors and matrices. In practice, a DryadLINQ program is a
sequential program composed of LINQ expressions that perform arbitrary side-
effect-free transformations on datasets and can be written and debugged using
standard .NET development tools. The DryadLINQ system automatically translates
the data-parallel portions of the program into a distributed execution plan which
is then passed to the Dryad execution platform. Figure 1.16 illustrates the flow of
execution when a program is executed by DryadLINQ [47].

1. When a .NET user application runs, it creates a DryadLINQ expression object.

2. The application triggers a data-parallel execution, where the expression object
is handed to DryadLINQ.

3. DryadLINQ compiles the LINQ expression into a distributed Dryad execution
plan. In particular, it performs the following tasks:

(a) Decomposes the expression into subexpressions, where each expression can
be assigned to run in a separate Dryad vertex.

(b) Generates the code and static data for the remote Dryad vertices.

(c) Generates the serialization code for the required data types.

4. DryadLINQ invokes a custom Dryad job manager.

5. The job manager creates the job graph and schedules the vertices as resources
become available.

6. Each Dryad vertex executes a vertex-specific program as created in Step 3(b).

7. When the Dryad job completes successfully, it writes the data to the output
table(s).

http://research.microsoft.com/en-us/projects/dryadling/.
8http://msdn.microsoft.com/en-us/netframework/aa904594.aspx.
“http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/.

http://research.microsoft.com/en-us/projects/dryadlinq/
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/

26

S. Sakr and A. Liu

(cii

lient machine

_‘/

Output
Dryad Table
Invoke =~
(4) Results
Vertex Exec
code plan |::> b ®)
Input J\ Dryad Output
tables Execution Tables

Data center
.

(6)

—_

7)

Fig. 1.16 LINQ-expression execution in DryadLINQ [47]

8. The job manager process terminates and returns control back to DryadLINQ,
which creates objects encapsulating the outputs of the execution. These objects
may be used as inputs to subsequent expressions in the user program.

9. Control returns to the user application. The iterator interface over a DryadTable
allows the user to read its contents as .NET objects.

10. The application may generate subsequent DryadLINQ expressions that can be
executed by a repetition of Steps 2-9.

1.4.6 Jaql

Jagl'® is a query language which is designed for Javascript Object Notation
(JSON),'! a data format that has become popular because of its simplicity and
modeling flexibility. JSON is a simple, yet flexible way to represent data that
ranges from flat, relational data to semi-structured, XML data. Jaql is primarily
used to analyze large-scale semi-structured data. It is a functional, declarative query
language which rewrites high-level queries (when appropriate) into a low-level

10http://code.google.com/pl/jaql/.

http://www.json.org/.

http://code.google.com/p/jaql/
http://www.json.org/

1 The Family of Map-Reduce 27

import myrecord
count Fields = fn(records) (
records
-> transform myrecord: :names ($)
-> expand
-> group by fName = $ as occurrences
into { name: fName, num: count (occurrences) }

read (hdfs ("docs.dat"))
-> countFields ()
-> write(hdfs("fields.dat"));

Fig. 1.17 A sample Jaql script [9]

query, consisting of Map-Reduce jobs that are evaluated using the Apache Hadoop
project. Core features include user extensibility and parallelism. Jaql consists of a
scripting language and compiler, as well as a runtime component [9]. It is able to
process data with no schema or only a partial schema. However, Jagl can also exploit
rigid schema information when it is available, for both type checking and improved
performance.

Jaql uses a very simple data model; a JDM value is either an atom, an array
or a record. Most common atomic types are supported by Jaqgl, including strings,
numbers, nulls and dates. Arrays and records are compound types that can be
arbitrarily nested. In more detail, an array is an ordered collection of values and
can be used to model data structures, such as vectors, lists, sets or bags. A record
is an unordered collection of name-value pairs and can model structs, dictionaries,
and maps. Despite its simplicity, JDM is very flexible. It allows Jaql to operate
with a variety of different data representations for both input and output, including
delimited text files, JSON files, binary files, Hadoop’s SequenceFiles, relational
databases, key-value stores or XML documents. Functions are first-class values in
Jagl. They can be assigned to a variable and are high-order in that they can be
passed as parameters or used as a return value. Functions are the key ingredient for
reusability as any Jaql expression can be encapsulated in a function, and a function
can be parameterized in powerful ways.

Figure 1.17 depicts an example of a Jaql script that consists of a sequence of
operators. The read operator loads raw data, in this case from Hadoop’s Distributed
File System (HDFS), and converts it into Jaql values. These values are subsequently
processed by the countFields subflow, which extracts field names and computes
their frequencies. Finally, the write operator stores the result back into HDFS.
In general, the core expressions of the Jaql scripting language include:

1. Transform: The transform expression applies a function (or projection) to every
element of an array to produce a new array. It has the form el->transform
e2, where el is an expression that describes the input array and e2 is applied to
each element of e1.

28

S. Sakr and A. Liu

Interactive Shell | Applications

4»
Compiler . Script +__
Pars‘er - c /v
Rowtter > =" | _ Variables |

Evaluati N
/O Desc & valuation +— Value
\ MapReduce | Local |
I/O Layer
File Systems Databases Streams
(hdfs, gpfs, local) (DBMS, HBase) (Web, Pipes)

Fig. 1.18 The Jaql system architecture [9]

. Expand: The expand expression is most often used to unnest an input array.

It differs from transform in two primary ways: (1) e2 must produce a value v
that is an array type, and (2) each of the elements of v is returned to the output
array, thereby removing one level of nesting.

. Group by: Similar to SQL’s GROUP BY, Jaql’s group-by expression partitions

its input on a grouping expression and applies an aggregation expression to each
group.

. Filter: The filter expression, e— >filter p, retains input values from e for

which predicate p evaluates to true.

. Join: The join expression supports equijoin of 2 or more inputs. All of the options

for inner and outer joins are also supported.

. Union: The union expression is a Jaql function that merges multiple input arrays

into a single output array. It has the form: union (e;, . . .) where each e; is an
array.

. Control-Flow: The two most commonly used control-flow expressions in Jagl are

if-then-else and block expressions. The if-then-else expression
is similar to conditional expressions found in most scripting and programming
languages. A block establishes a local scope where zero or more local variables
can be declared and the last statement provides the return value of the block.

At a high-level, the Jaql system architecture, depicted in Fig. 1.18, is similar to

most database systems. Scripts are passed into the system from the interpreter or
an application, compiled by the parser and rewrite engine, and either explained

or

evaluated over data from the I/O layer. The storage layer is similar to a

federated database. It provides an API to access data of different systems, including
local or distributed file systems (e.g., Hadoop’s HDFS), database systems (e.g.,
DB2, Netezza, HBase), or from streamed sources like the Web. Unlike federated
databases, however, most of the accessed data is stored within the same cluster
and the I/O API describes data partitioning, which enables parallelism with data
affinity during evaluation. Jaql derives much of this flexibility from Hadoop’s I/O

1 The Family of Map-Reduce 29

APIL. It reads and writes many common file formats (e.g., delimited files, JSON text,
Hadoop Sequence files). Custom adapters are easily written to map a data set to
or from Jaql’s data model. The input can even simply be values constructed in the
script itself. The Jaql interpreter evaluates the script locally on the computer that
compiled the script, but spawns interpreters on remote nodes using MapReduce.
The Jaql compiler automatically detects parallelization opportunities in a Jagl script
and translates it to a set of MapReduce jobs.

1.5 Hybrid Systems

Originally, the applications of the MapReduce framework have been mainly focus-
ing on analyzing very large non-structured datasets, e.g., web indexing, text
analytics, and graph data mining. Recently, however, as MapReduce is steadily
developing into the de facto data analysis standard, it repeatedly becomes employed
for querying structured data [7]. For a long time, relational database and its standard
query language (i.e., SQL) has dominated the deployments of data warehousing
systems and data analysis on structured data. Therefore, there has been an increasing
interest in combining MapReduce and traditional database systems in an effort
to maintain the benefits of both worlds. In the following section, we present
some systems that have been designed to achieve this goal of integrating the two
environments.

1.5.1 Hive

The Hive project'? is an open-source data warehousing solution which has been built
by the Facebook Data Infrastructure Team on top of the Hadoop environment [40].
The main goal of this project is to bring the familiar relational database concepts
(e.g., tables, columns, partitions) and a subset of SQL to the unstructured world
of Hadoop, while still maintaining the extensibility and flexibility that Hadoop
enjoyed. Thus, it supports all the major primitive types (e.g., integers, floats, strings)
as well as complex types (e.g., maps, lists, structs).

Hive supports queries expressed in an SQL-like declarative language, called
HiveQL,"? and therefore can be easily understood by anyone who is familiar
with SQL. These queries are compiled into MapReduce jobs that are executed
using Hadoop. In addition, HiveQL enables users to plug in custom MapReduce
scripts into queries. For example, the canonical MapReduce word count example
on a table of documents (Fig.1.2) can be expressed in HiveQL as depicted in

2http://hadoop.apache.org/hive/.
Bhttp://wiki.apache.org/hadoop/Hive/LanguageManual.

http://hadoop.apache.org/hive/
http://wiki.apache.org/hadoop/Hive/LanguageManual

30 S. Sakr and A. Liu

FROM (
MAP doctext USING ’'python wc_mapper.py’ AS (word, cnt)
FROM docs
CLUSTER BY word

) a

REDUCE word, cnt USING ’'python wc_reduce.py’;

Fig. 1.19 An example HiveQl query [40]

Fig. 1.19, where the MAP clause indicates how the input columns (doctext) can
be transformed using a user program (‘python wc_mapper.py’) into output columns
(word and cnt). The REDUCE clause specifies the user program to invoke (‘python
wc_reduce.py’) on the output columns of the subquery.

HiveQL supports Data Definition Language (DDL) statements, which can be
used to create, drop and alter tables in a database [41]. It allows users to load
data from external sources and insert query results into Hive tables, via the load
and insert Data Manipulation Language (DML) statements, respectively. However,
HiveQL currently does not support the update and deletion of rows in existing
tables (in particular, INSERT INTO, UPDATE and DELETE statements), which
allows the use of very simple mechanisms to deal with concurrent read and
write operations without implementing complex locking protocols. The metastore
component is the Hive’s system catalog which stores metadata about the underlying
table. This metadata is specified during table creation and reused every time the
table is referenced in HiveQL. The metastore distinguishes Hive as a traditional
warehousing solution when compared with similar data processing systems that are
built on top of MapReduce-like architectures, such as Pig Latin [33].

1.5.2 HadoopDB

Parallel database systems have been commercially available for nearly two decades
and there are now about a dozen of different implementations in the marketplace
(e.g., Teradata,'* Aster Data,'> Netezza,'® Vertica,!” ParAccel,'® Greenplum'®).
The main aim of these systems is to improve performance through the par-
allelization of various operations, such as loading data, building indices and

14http://www.teradata.com/.
Bhttp://www.asterdata.com/.
Iohttp://www.netezza.com/.
http://www.vertica.com/.
Bhttp://www.paraccel.com/.

Yhttp://www.greenplum.com/.

http://www.teradata.com/
http://www.asterdata.com/
http://www.netezza.com/
http://www.vertica.com/
http://www.paraccel.com/
http://www.greenplum.com/

1 The Family of Map-Reduce 31

evaluating queries. These systems are usually designed to run on top of a shared-
nothing architecture [38], where data may be stored in a distributed fashion and
input/output speeds are improved by using multiple CPUs and disks in parallel. On
the other hand, there are some key reasons that make MapReduce a more preferable
approach over a parallel RDBMS in some scenarios [10], such as:

* Formatting and loading a huge amount of data into a parallel RDBMS in a timely
manner is a challenging and time-consuming task.

* The input data records may not always follow the same schema. Developers often
want the flexibility to add and drop attributes, and the interpretation of an input
data record may also change over time.

» Large scale data processing can be very time consuming and therefore it is
important to keep the analysis job going even in the event of failures. While most
parallel RDBMSs have fault tolerance support, a query usually has to be restarted
from scratch, even if just one node in the cluster fails. In contrast, MapReduce
deals more gracefully with failures and can redo only the part of the computation
that was lost because of a failure.

There has been a long debate on the comparison between the MapReduce
framework and parallel database systems2® [39]. Pavlo et al. [34] have conducted
a large scale comparison between the Hadoop implementation of the MapReduce
framework and parallel SQL database management systems, in terms of perfor-
mance and development complexity. The results of this comparison have shown
that parallel database systems displayed a significant performance advantage over
MapReduce in executing a variety of data intensive analysis tasks. On the other
hand, the Hadoop implementation was significantly easier and more straightforward
to set up and use in comparison to that of the parallel database systems. MapReduce
have also shown to have superior performance in minimizing the amount of work
that is lost when a hardware failure occurs. In addition, MapReduce (with its open
source implementations) represents a very cheap solution in comparison to the
expensive parallel DBMS solutions [39].

The HadoopDB project®! is a hybrid system that tries to combine the scalability
advantages of MapReduce with the performance and efficiency advantages of
parallel databases [1]. The basic idea behind HadoopDB is to connect multiple
single node database systems (PostgreSQL) using Hadoop as the task coordinator
and network communication layer. Queries are expressed in SQL but their execution
is parallelized across nodes using the MapReduce framework; however, as much
of the single node query work as possible is pushed inside of the corresponding
node databases. Thus, HadoopDB tries to achieve fault tolerance and the ability
to operate in heterogeneous environments by inheriting the scheduling and job
tracking implementation from Hadoop. Parallely, it tries to achieve the performance
of parallel databases by doing most of the query processing inside the database
engine.

2Ohttp://databasecolumn.vertica.com/database-innovation/mapreduce- a-major-step-backwards/.
2l http://db.cs.yale.edu/hadoopdb/hadoopdb.html.

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://db.cs.yale.edu/hadoopdb/hadoopdb.html

32 S. Sakr and A. Liu

SQL Query
MapReduce Job
| SMS Planner I
MapReduce
Hadoopeore N\ ___ P

| | Master node 1|
| MapReduce |
| | HDFS Framework |
I | (@) —
[[NameNode] [JobTracker] | 8 8 g
I | 5 25
| | « =
: InputFormat Implementations] I

1
I [Database Connector] < 4
I J
: <) |
__________ Taskwith |

InputFormat
Node1 R FNBd_eE _______ B Node n

TaskTracker]

Data | | DataNode
base

[TaskTracker]		
T — b -		
I'	Data	
I'	base I I'	base I

Fig. 1.20 The architecture of HadoopDB [1]

TaskTracker]

Figure 1.20 illustrates the architecture of HadoopDB, which consists of two
layers: (1) a data storage layer or the Hadoop Distributed File System?? (HDFS),
and (2) a data processing layer or the MapReduce Framework. In this architecture,
HDFS is a block-structured file system managed by a central NameNode. Individual
files are broken into blocks of a fixed size and distributed across multiple DataNodes
in the cluster. The NameNode maintains metadata about the size and location of
blocks and their replicas. The MapReduce Framework follows a simple master-slave
architecture. The master is a single JobTracker and the slaves or worker nodes are
TaskTrackers. The JobTracker handles the runtime scheduling of MapReduce jobs
and maintains information on each TaskTracker’s load and available resources. The
Database Connector is the interface between independent database systems residing
on nodes in the cluster and TaskTrackers. The Connector connects to the database,
executes the SQL query and returns results as key-value pairs. The Catalog
component maintains metadata about the databases, their location, replica locations

22http://hadoop.apache.org/hdfs/.

http://hadoop.apache.org/hdfs/

1 The Family of Map-Reduce 33

and data partitioning properties. The Data Loader component is responsible for
globally repartitioning data on a given partition key upon loading and breaking
apart single node data into multiple smaller partitions or chunks. The SMS planner
extends the HiveQL translator [40] and transforms SQL into MapReduce jobs that
connect to tables stored as files in HDFS. Abouzeid et al. [2] have demonstrated
HadoopDB in action running two different application types: (1) a semantic web
application that provides biological data analysis of protein sequences, and (2) a
classical business data warehouse.

Teradata [44] has recently started to follow the same approach of integrating
Hadoop and parallel databases. It provides a fully parallel load utility to load
Hadoop data to its datawarehouse store. Moreover, it provides a database connec-
tor for Hadoop, which allows MapReduce programs to directly access Teradata
datawarehouses’ data via JDBC drivers without the need of any external steps of
exporting (from DBMS) and loading data to Hadoop. It also provides a Table user-
defined function which can be called from any standard SQL query to retrieve
Hadoop data directly from Hadoop nodes in parallel. This means that any relational
tables can be joined with the Hadoop data that are retrieved by the Table UDF, and
any complex business intelligence capability provided by Teradata’s SQL engine
can be applied to both Hadoop data and relational data. Hence, no extra steps of
exporting/importing Hadoop data to/from the Teradata datawarehouse are required.

1.6 Case Studies

MapReduce-based systems are increasingly being used for large-scale data analysis.
There are several reasons for this [28], such as:

o The interface of MapReduce is simple yet expressive. Although MapReduce
only involves two functions, map and reduce, a number of data analytical
tasks, including traditional SQL query, data mining, machine learning and graph
processing, can be expressed with a set of MapReduce jobs.

* MapReduce is flexible. MapReduce is designed to be independent of storage
systems and is able to analyze various kinds of data, structured and unstructured.

* MapReduce is scalable. An installation of MapReduce can run over thousands
of nodes on a shared-nothing cluster, while keeping to provide fine-grain fault
tolerance whereby only tasks on failed nodes need to be restarted.

The above-mentioned advantages have triggered several research efforts that aim
at applying the MapReduce framework for solving challenging data processing
problems on large scale datasets in a wide spectrum of domains. For example,
Mahout® is an apache project which is designed with the aim of building scalable
machine learning libraries using the MapReduce framework. Ricardo [15] is a

Zhttp://mahout.apache.org/.

http://mahout.apache.org/

34 S. Sakr and A. Liu

scalable platform for applying sophisticated statistical methods over huge data
repositories. It is designed to facilitate the frading between R (a famous statistical
software) and Hadoop, where each trading partner performs the tasks that it does
best. In particular, this trading is performed in a way that R sends aggregation-
processing queries to Hadoop, while Hadoop sends aggregated data to R for
advanced statistical processing or visualization.

MapDupReducer [43] is a MapReduce-based system which has been developed
for supporting the problem of near duplicate detection over massive datasets.
Vernica et al. [42] have proposed an approach to efficiently perform set-similarity
joins in parallel using the MapReduce framework. In particular, they have proposed
a 3-stage approach for end-to-end set-similarity joins. The approach takes as input a
set of records and outputs a set of joined records based on a set-similarity condition.
It partitions the data across nodes in order to balance the workload and minimize the
need for replication. Morales et al. [21] have presented two matching algorithms,
GreedyMR and StackMR, which are geared for the MapReduce paradigm and aim
to distribute content from information suppliers to information consumers on social
media applications. In particular, they seek to maximize the overall relevance of the
matched content from suppliers to consumers, while regulating the overall activity.

Surfer [14] is a large scale graph processing engine which is designed to execute
in the cloud. Surfer provides two basic primitives for programmers: MapReduce
and propagation. In this engine, MapReduce processes different key-value pairs
in parallel, and propagation is an iterative computational pattern that transfers
information along the edges from a vertex to its neighbors in the graph. In principle,
these two primitives are complementary in graph processing where MapReduce
is suitable for processing flat data structures (e.g., vertex-oriented tasks), while
propagation is optimized for edge-oriented tasks on partitioned graphs.

Lattanzi et al. [30] have presented an approach for solving graph problems using
the MapReduce framework. In particular, they present parallelized algorithms for
minimum spanning trees, maximal matchings, approximate weighted matchings,
approximate vertex and edge covers and minimum cuts. Cary et al. [12] presented
an approach for applying the MapReduce model in the domain of spatial data
management. In particular, they focus on the bulk-construction of R-Trees and aerial
image quality computation, which involves vector and raster data.

Abouzeid et al. [2] have demonstrated that HadoopDB in conjunction with a
column-oriented database can provide a promising solution for supporting efficient
and scalable semantic web applications. Ravindra et al. [36] have presented an
approach for parallelizing the processing of analytical queries on RDF graph
models. In particular, they extended the function library of Pig Latin to include
functions that aid in operator-coalescing and look-ahead processing to reduce the
I/O costs that arise from repeated processing and materialization of intermediate
results.

1 The Family of Map-Reduce 35

1.7 Discussion and Conclusions

MapReduce has emerged as a popular way to harness the power of large clusters
of computers. Currently, MapReduce serves as a platform for a considerable
amount of massive data analysis. It allows programmers to think in a data-centric
fashion where they can focus on applying transformations to sets of data records,
while the details of distributed execution and fault tolerance are transparently
managed by the MapReduce framework. Gu and Grossman [25] have reported the
following important lessons, which they have learned from their experiments with
the MapReduce framework:

* The importance of data locality. Locality is a key factor, especially when relying
on inexpensive commodity hardware.

* Load balancing and the importance of identifying hot spots. With poor load
balancing, the entire system can be waiting for a single node. Thus, it is important
to eliminate any “hot spots”, which can be caused by data access (accessing data
from a single node) or network I/O (transferring data into or out of a single node).

* Fault tolerance comes with a price. In some cases, fault tolerance introduces
extra overhead in order to replicate the intermediate results. For example, in the
cases of running on small to medium sized clusters, it might be reasonable to
favor performance and re-run any failed intermediate task when necessary.

* Streams are important. Streaming is important in order to reduce the total running
time of MapReduce jobs.

Jiang et al. [28] have conducted an in-depth performance study of MapReduce
using its open source implementation, Hadoop. As an outcome of this study,
they identified some factors that can have significant performance effect on the
MapReduce framework. These factors are described as follows:

* Although MapReduce is independent of the underline storage system, it still
requires the storage system to provide efficient I/O modes for scanning data. The
experiments of the study on HDFS show that direct I/O outperforms streaming
I/0 by 10-15 %.

* MapReduce can utilize three kinds of indices, namely range-indices, block-level
indices and database indexed tables, in a straightforward way. The experiments
of the study show that the range-index improves the performance of MapReduce
by a factor of 2 in the selection task and a factor of 10 in the join task when
selectivity is high.

* There are two kinds of decoders for parsing the input records: mutable decoders
and immutable decoders. The study claims that only immutable decoders intro-
duce performance bottleneck. To handle database-like workloads, MapReduce
users should strictly use mutable decoders. A mutable decoder is faster than an
immutable decoder by a factor of 10, and improves the performance of selection
by a factor of 2. Using a mutable decoder, even parsing the text record is efficient.

* Map-side sorting exerts negative performance effect on large aggregation tasks,
which require nontrivial key comparisons and produce millions of groups.

36 S. Sakr and A. Liu

Therefore, fingerprinting-based sort can be used to significantly improve the
performance of MapReduce on such aggregation tasks. The experiments show
that fingerprinting-based sort outperforms direct sort by a factor of 4-5, and
improves overall performance of the job by 20-25%.

e The scheduling strategy affects the performance of MapReduce, as it can be
sensitive to the processing speed of slave nodes, and slows down the execution
time of the entire job by 25-35% [48].

The experiments of the study show that with proper engineering for these factors,
the performance of MapReduce can be improved by a factor of 2.5-3.5, and
approaches the performance of Parallel Databases.

In general, to run a single program in a MapReduce framework, a number of
tuning parameters (e.g. memory allocation, concurrency, I/O optimization, network
bandwidth usage) have to be set by users or system administrators. In practice, users
may often run into performance problems because they do not know how to set
these parameters. In addition, as MapReduce is a relatively new technology, it is
not easy to find qualified administrators. Babu [6] has proposed some techniques
to automate the setting of tuning parameters for MapReduce programs. The aim
of these techniques is to provide good out-of-the-box performance for ad hoc
MapReduce programs that run on large datasets. Babu suggested the following
research agenda to automatically configure the parameters for MapReduce jobs:

* There is a need to conduct a comprehensive empirical study with a representative
class of MapReduce programs and different cluster configurations to understand
(and potentially model) parameter impacts, interactions, and response surfaces.

* Developing cost models that are useful to recommend good parameter settings
for MapReduce job configuration parameters.

* Tune the performance of a MapReduce program that is run repeatedly (e.g., for
daily report generation) and whose current performance is unsatisfactory.

* Developing mechanisms that can automatically generate an execution plan,
which is composed of one or more MapReduce jobs for a higher-level operation,
like join.

The cluster-level energy management of the MapReduce framework is another
interesting research direction. Lang and Patel [29] have investigated the approach
to power down (and power up) MR nodes in order to save energy in periods of
low utilization. In particular, they compared between two strategies for MR energy
management: (1) Covering Set (CS) strategy that keeps only a small fraction of
the nodes powered up during periods of low utilization, and (2) All-In Strategy
(AIS) that uses all the nodes in the cluster to run a workload and then powers
down the entire cluster. The comparison shows that there are two crucial factors
that affect the effectiveness of these two methods: (1) the computational complexity
of the workload, and (2) the time taken to transition nodes to and from a low power
(deep hibernation) state to a high performance state. The comparison evaluation also
shows that CS is more effective than AIS only when the computational complexity
of the workload is low (e.g., linear), and that the time it takes for the hardware to

1 The Family of Map-Reduce 37

transition a node to and from a low power state is a relatively large fraction of the
overall workload time (i.e., the workload execution time is small). In all other cases,
the AIS shows better performance over CS in terms of energy savings and response
time performance.

We believe that this survey of the MapReduce family of approaches would be
useful for the future development of MapReduce-based data processing systems.
In addition, we are convinced that there is still room for further optimization and
advancement in several directions on the spectrum of the MapReduce framework
that is still required to bring forward the vision of providing large scale data analysis
as a commodity for novice end-users.

References

—

. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Rasin, D.A., Silberschatz, A.: HadoopDB: an
architectural hybrid of MapReduce and DBMS technologies for analytical workloads. PVLDB
2(1), 922-933 (2009)

2. Abouzeid, A., Bajda-Pawlikowski, K., Huang, J., Abadi, D., Silberschatz, A.: HadoopDB in
action: building real world applications. In: SIGMOD, Indianapolis, 2010, pp. 1111-1114

3. Afrati, F,, Ullman, J.: Optimizing joins in a map-reduce environment. In: EDBT, Lausanne,
2010, pp. 99-110

4. Alvaro, P., Hellerstein, J., Elmeleegy, K., Condie, T., Conway, N., Sears, R.: MapReduce
online. In: NSDI, San Jose, 2010

5. Armbrust, M., Fox, A., Rean, G., Joseph, A., Katz, R., Konwinski, A., Gunho, L., David, P,
Rabkin, A., Stoica, 1., Zaharia, M.: Above the clouds: a Berkeley view of cloud computing,
Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley, Tech. Rep.
UCB/EECS, vol. 28, 2009

6. Babu, S.: Towards automatic optimization of MapReduce programs. In: SoCC, Indianapolis,
2010, pp. 137-142

7. Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Paulson, E.: HadoopDB in action: efficient
processing of data warehousing queries in a split execution environment. In: SIGMOD, Athens,
2011, pp. 1165-1176

8. Bell, G., Gray, J., Szalay, A.: Petascale computational systems. IEEE Comput. 39(1), 110-112
(2006)

9. Beyer, K., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M., Kanne, C., Ozcan, F., Shekita,
E.: Jaql: a scripting language for large scale semistructured data analysis. PVLDB 4(11),
1272-1283 (2011)

10. Blanas, S., Patel, J., Ercegovac, V., Rao, J., Shekita, E., Tian, Y.: A comparison of join

algorithms for log processing in MapReduce. In: SIGMOD, Indianapolis, 2010, pp. 975-986
11. Bu, Y., Howe, B., Balazinska, M., Ernst, M.: Hal.oop: efficient iterative data processing on
large clusters. PVLDB 3(1), 285-296 (2010)

12. Cary, A., Sun, Z., Hristidis, V., Rishe, N.: Experiences on processing spatial data with
MapReduce. In: SSDBM, New Orleans, 2009, pp. 302-319

13. Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.: SCOPE:
easy and efficient parallel processing of massive data sets. PVLDB 1(2), 1265-1276 (2008)

14. Chen, R., Weng, X., He, B., Yang, M.: Large graph processing in the cloud. In: SIGMOD,
Indianapolis, 2010, pp. 1123-1126

15. Das, S., Sismanis, Y., Beyer, K., Gemulla, R., Haas, P., McPherson, J.: Ricardo: integrating R

and Hadoop. In: SIGMOD, Indianapolis, 2010, pp. 987-998

38

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

S. Sakr and A. Liu

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: OSDI,
San Francisco, 2004, pp. 137-150

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107-113 (2008)

Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun. ACM 53(1),
72-77 (2010)

Dittrich, J., Quiane-Ruiz, J., Jindal, A., Kargin, Y., Setty, V., Schad, J.: Hadoop++: making a
yellow elephant run like a cheetah (without it even noticing). PVLDB 3(1), 518-529 (2010)
Eltabakh, M., Tian, Y., Ozcan, F., Gemulla, R., Krettek, A., McPherson, J.: CoHadoop: flexible
data placement and its exploitation in Hadoop. PVLDB 4(9), 575-585 (2011)

Francisci Morales, G., Gionis, A., Sozio, M.: Social content matching in MapReduce. PVLDB
4(7), 460-469 (2011)

Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/MapReduce: a practical approach to self-
describing, polymorphic, and parallelizable user-defined functions. PVLDB 2(2), 1402-1413
(2009)

Gates, A., Natkovich, O., Chopra, S., Kamath, P., Narayanam, S., Olston, C., Reed, B.,
Srinivasan, S., Srivastava, U.: Building a highlevel data ow system on top of MapReduce:
the pig experience. PVLDB 2(2), 1414-1425 (2009)

Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. In: SOSP, Bolton Landing,
2003, pp. 2943

Gu, Y., Grossman, R.: Lessons learned from a year’s worth of benchmarks of large data clouds.
In: SC-MTAGS, Portland, 2009

Hey, T., Tansly, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scientific Discovery.
Microsoft Research, Redmond (2009)

Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel programs
from sequential building blocks. In: EuroSys, Lisbon, 2007, pp. 59-72

Jiang, D., Chin Ooi, B., Shi, L., Wu, S.: The performance of MapReduce: an in-depth study.
PVLDB 3(1), 472-483 (2010)

Lang, W., Patel, J.: Energy management for MapReduce clusters. PVLDB 3(1), 129-139
(2010)

Lattanzi, S., Moseley, B., Suri, S., Vassilvitskii, S.: Filtering: a method for solving graph
problems in MapReduce. In: SPAA, San Jose, 2011, pp. 85-94

Murray, D., Hand, S.: Scripting the cloud with Skywriting. In: HotCloud, USENIX Workshop,
Boston, 2010

Nykiel, T., Potamias, M., Mishra, C., Kollios, G., Koudas, N.: MRShare: sharing across
multiple queries in MapReduce. PVLDB 3(1), 494-505 (2010)

Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign
language for data processing. In: SIGMOD, Vancouver, 2008, pp. 1099-1110

Pavlo, A., Paulson, E., Rasin, A., Abadi, D., DeWitt, D., Madden, S., Stonebraker, M.:
A comparison of approaches to large-scale data analysis. In: SIGMOD, Providence, 2009,
pp. 165-178

Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the data: parallel analysis with
Sawzall. Sci. Program. 13(4), 277-298 (2005)

Ravindra, P, Deshpande, V., Anyanwu, K.: Towards scalable RDF graph analytics on
MapReduce. In: MDAC, Raleigh, 2010

Sakr, S., Liu, A., Batista, D., Alomari, M.: Hive — a survey of large scale data management
approaches in cloud environments. IEEE Commun. Surv. Tutor. 13(3), 311-336 (2011)
Stonebraker, M.: The case for shared nothing. IEEE Database Eng. Bull. 9(1), 4-9 (1986)
Stonebraker, M., Abadi, D., DeWitt, D., Madden, S., Paulson, E., Pavlo, A., Rasin, A.:
MapReduce and parallel DBMSs: friends or foes? Commun. ACM 53(1), 64-71 (2010)
Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy,
R.: Hive — a warehousing solution over a map-reduce framework. PVLDB 2(2), 1626-1629
(2009)

4

—

42.

43.

44,

45.

46.

47.

48.

49.

The Family of Map-Reduce 39

. Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy,

R.: Hive — a petabyte scale data warehouse using Hadoop. In: ICDE, Long Beach, 2010,
pp- 996-1005

Vernica, R., Carey, M., Li, C.: Efficient parallel set-similarity joins using MapReduce. In:
SIGMOD, Indianapolis, 2010, pp. 495-506

Wang, C., Wang, J., Lin, X., Wang, W., Wang, H., Li, H, Tian, W., Xu, J., Li, R.:
MapDupReducer: detecting near duplicates over massive datasets. In: SIGMOD, Indianapolis,
2010, pp. 1119-1122

Xu, Y., Kostamaa, P., Gao, L.: Integrating Hadoop and parallel DBMS. In: SIGMOD,
Indianapolis, 2010, pp. 969-974

Yang, H., Parker, D.: Traverse: simplified indexing on large map-reduce-merge clusters. In:
DASFAA, Brisbane, 2009, pp. 308-322

Yang, H., Dasdan, A., Hsiao, R., Parker, D.: Map-reduce-merge: simplified relational data
processing on large clusters. In: SIGMOD, Beijing, 2007, pp. 1029-1040

Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P., Currey, J.: DryadLINQ:
a system for general-purpose distributed data-parallel computing using a high-level language.
In: OSDI, San Diego, 2008, pp. 1-14

Zaharia, M., Konwinski, A., Joseph, A., Katz, R., Stoica, I.: Improving MapReduce perfor-
mance in heterogeneous environments. In: OSDI, San Diego, 2008, pp. 29-42

Zhou, J., Larson, P., Chaiken, R.: Incorporating partitioning and parallel plans into the SCOPE
optimizer. In: ICDE, Long Beach, 2010, pp. 1060-1071

	1 The Family of Map-Reduce
	1.1 Introduction
	1.2 The MapReduce Framework: Basic Architecture
	1.3 Improvements on the MapReduce Framework
	1.3.1 Map-Reduce-Merge
	1.3.2 MapReduce Online
	1.3.3 MRShare
	1.3.4 HaLoop
	1.3.5 Hadoop++
	1.3.6 CoHadoop

	1.4 SQL-Like MapReduce Implementations
	1.4.1 Pig Latin
	1.4.2 Sawzall
	1.4.3 SQL/MapReduce
	1.4.4 SCOPE
	1.4.5 DryadLINQ
	1.4.6 Jaql

	1.5 Hybrid Systems
	1.5.1 Hive
	1.5.2 HadoopDB

	1.6 Case Studies
	1.7 Discussion and Conclusions
	References

