
Aris Gkoulalas-Divanis
Abderrahim Labbi Editors

Large-Scale
Data Analytics

Large-Scale Data Analytics

Aris Gkoulalas-Divanis • Abderrahim Labbi
Editors

Large-Scale Data Analytics

123

Editors
Aris Gkoulalas-Divanis
IBM Research – Ireland
Damastown Industrial Estate
Mulhuddart, Ireland

Abderrahim Labbi
IBM Research – Zurich
Rüschlikon, Switzerland

ISBN 978-1-4614-9241-2 ISBN 978-1-4614-9242-9 (eBook)
DOI 10.1007/978-1-4614-9242-9
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013954541

© Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

In recent years, we are witnessing a data explosion: almost 90 % of today’s data have
been produced only in the last 2 years, with data being nowadays produced in the
order of Zettabytes! This data comes from various sources, including sensors, social
networking sites, mobile phone applications, electornic medical record systems and
e-commerce sites, just to name a few. Apart from its massive volume, this data is
also characterized by variety (heterogeneity) and velocity (streams of data).

Traditional approaches and algorithms are not able to process and analyze
such massive and complex datasets. This has signified the need for a paradigm
shift, where new hardware and software technology is emerging to efficiently
and reliably manage, store, process, analyze and synthesize very large amounts
of complex data generated by massively distributed data sources. Beside their
massively distributed nature, which requires new distributed architectures for data
analysis, the heterogeneity of such sources imposes significant challenges for the
efficient analysis of the data under numerous constraints, such as consistent data
integration, data homogenization and scaling, privacy and security preservation.
Moreover, the emerging real-world applications in domains such as healthcare,
weather forecasting, financial engineering, urban planning, traffic management and
environmental monitoring impose extra requirements for large-scale data analysis.

This edited book contains contributions on cutting edge research related to
large-scale data analytics in the following core areas: databases, data mining,
supercomputing, data visualization and privacy. Our goal is to present to students,
researchers, professionals and practitioners the state-of-the-art research, which will
help shape up the future of large-scale analytics, leading the way to the design
of new approaches and technologies that can analyze and synthesize very large
amounts of heterogeneous data, generated by massively distributed data sources.

Each chapter of the book presents a survey of an area in large-scale data
analytics, or individual results of the emerging research in the field. Chapters 1
and 2 are devoted to the MapReduce framework. In particular, the first chapter
provides a comprehensive survey for a family of approaches and mechanisms of
large scale data analysis that have been implemented based on the MapReduce
framework. Chapter 2 focuses on optimization approaches for plain MapReduce

v

vi Preface

jobs, as well as for parallel data flow systems. Chapters 3 and 4 present two
important application areas of the MapReduce framework: mining tera-scale graphs
for patterns and anomalies (Chap. 3), and analyzing customer behavioral data for the
Telecom industry (Chap. 4). In Chap. 5, the authors describe a unified heterogeneous
architecture that integrates massively threaded shared-memory multiprocessors into
MapReduce-based clusters to enable executing Map and Reduce operators on
thousands of threads, across multiple GPU devices and nodes. The proposed hybrid
system can be used to accelerate machine learning algorithms, such as support
vector machines, achieving significant speedup. Chapter 6 is devoted to large-scale
social network analysis, offering a comprehensive survey of the state-of-the-art in
this area, with focus on parallel algorithms and libraries for the computation of
network centrality metrics. An overview of data visualization methods that help
users to gain insight into large, heterogeneous, dynamic textual datasets is provided
in Chap. 7. The last chapter of the book is devoted to technologies for offering
security and privacy at large scale. The authors of this chapter present a novel
framework for privacy-preserving, distributed data analysis that is practical for many
real-world applications.

We, as editors, are genuinely grateful to all contributors of this book for the time
and effort they put into this project, despite the heavy burden that we put on them.
We also owe special thanks to the effort of the external reviewers for their help in this
effort. Last but not least, we are indepted to Susan Lagerstrom-Fife and Courtney
Clark from Springer, for their great support towards the preparation and completion
of this work. Their editing suggestions were valuable to improving the organization,
readability and appearance of the manuscript.

Mulhuddart, Ireland Aris Gkoulalas-Divanis
Rüschlikon, Switzerland Abderrahim Labbi

Contents

1 The Family of Map-Reduce . 1
Sherif Sakr and Anna Liu

2 Optimization of Massively Parallel Data Flows . 41
Fabian Hueske and Volker Markl

3 Mining Tera-Scale Graphs with “Pegasus”: Algorithms
and Discoveries . 75
U Kang and Christos Faloutsos

4 Customer Analyst for the Telecom Industry . 101
David Konopnicki and Michal Shmueli-Scheuer

5 Machine Learning Algorithm Acceleration Using Hybrid
(CPU-MPP) MapReduce Clusters . 129
Sergio Herrero-Lopez and John R. Williams

6 Large-Scale Social Network Analysis . 155
Mattia Lambertini, Matteo Magnani, Moreno Marzolla,
Danilo Montesi, and Carmine Paolino

7 Visual Analysis and Knowledge Discovery for Text . 189
Christin Seifert, Vedran Sabol, Wolfgang Kienreich,
Elisabeth Lex, and Michael Granitzer

8 Practical Distributed Privacy-Preserving Data Analysis
at Large Scale . 219
Yitao Duan and John Canny

Index . 253

vii

Contributors

John Canny Computer Science Division, University of California, Berkeley, CA,
USA

Yitao Duan NetEase Youdao, Beijing, China

Christos Faloutsos School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA

Michael Granitzer University of Passau, Passau, Germany

Sergio Herrero-Lopez Technologies, Equities and Currency (TEC) Division,
SwissQuant Group AG, Zurich, Switzerland

Fabian Hueske Technische Universität Berlin, Berlin, Germany

U Kang Department of Computer Science, KAIST University, Republic of Korea

Wolfgang Kienreich Know-Center Graz, Graz, Austria

David Konopnicki IBM Haifa Research Lab, Haifa, Israel

Mattia Lambertini Department of Computer Science and Engineering, University
of Bologna, Bologna, Italy

Elisabeth Lex Know-Center Graz, Graz, Austria

Anna Liu NICTA and University of New South Wales, Sydney, NSW, Australia

Matteo Magnani Department of Information Technology, Uppsala University, 751
05 Uppsala, Sweden

Volker Markl Technische Universität Berlin, Berlin, Germany

Moreno Marzolla Department of Computer Science and Engineering, University
of Bologna, Bologna, Italy

Danilo Montesi Department of Computer Science and Engineering, University of
Bologna, Bologna, Italy

ix

x Contributors

Carmine Paolino Department of Computer Science, Vrije Universiteit, Amsterdam,
The Netherlands

Vedran Sabol Know-Center Graz, Graz, Austria

Sherif Sakr NICTA and University of New South Wales, Sydney, NSW, Australia

Christin Seifert University of Passau, Passau, Germany

Michal Shmueli-Scheuer IBM Haifa Research Lab, Haifa, Israel

John R. Williams Massachusetts Institute of Technology, Cambridge, MA, USA

List of Figures

Fig. 1.1 Data explosion in scientific computing [26] . 2
Fig. 1.2 An example of a MapReduce program [16] . 4
Fig. 1.3 An overview of the flow of execution in a MapReduce

operation [16] . 6
Fig. 1.4 Execution steps of the WordCount example

using MapReduce . 7
Fig. 1.5 Decision tree for choosing between various join

strategies on the MapReduce framework [10] . 8
Fig. 1.6 An overview of the Map-Reduce-Merge framework [46] 9
Fig. 1.7 A sample execution of the Map-Reduce-Merge framework [46] . . 10
Fig. 1.8 An overview of the HaLoop architecture [11] . 13
Fig. 1.9 Example file co-location in CoHadoop [20] . 16
Fig. 1.10 An example SQL query and its equivalent Pig

Latin program [23] . 18
Fig. 1.11 Pig compilation and execution steps [33] . 19
Fig. 1.12 An example of a Sawzall program [35] . 20
Fig. 1.13 Basic syntax of SQL/MR query function [22] . 21
Fig. 1.14 Two equivalent SCOPE scripts in SQL-like style and

in MapReduce-like style [13] . 22
Fig. 1.15 The SCOPE/Cosmos execution platform [13] . 23
Fig. 1.16 LINQ-expression execution in DryadLINQ [47] 26
Fig. 1.17 A sample Jaql script [9] . 27
Fig. 1.18 The Jaql system architecture [9] . 28
Fig. 1.19 An example HiveQl query [40] . 30
Fig. 1.20 The architecture of HadoopDB [1] . 32

Fig. 2.1 The MapReduce programming model . 46
Fig. 2.2 The MapReduce execution model . 47
Fig. 2.3 Hive partitioning feature: (a) Hive metastore and

(b) Hive query execution. 54
Fig. 2.4 The Starfish architecture . 56

xi

xii List of Figures

Fig. 2.5 A Dryad program DAG and a Dryad communication graph 61
Fig. 2.6 Input contracts: (a) Cross, (b) Match and (c) CoGroup 65
Fig. 2.7 Comparing massively parallel data flow system stacks 68

Fig. 3.1 Radius plot of the YahooWeb graph. Notice the
effective diameter is surprisingly small. Also notice
the multi-modality, which is possibly due to a mixture
of relatively smaller subgraphs . 78

Fig. 3.2 Average diameter vs. number of nodes in lin-log scale
for the three different Web graphs, where M and B
represent millions and billions, respectively. (0.3M):
Web pages inside nd.edu at 1999, from Albert et al.’s
work [2]. (203M): Web pages crawled by Altavista at
1999, from Broder et al.’s work [6]. (1.4B): Web pages
crawled by Yahoo at 2002 (YahooWeb in Table 3.1).
The annotations (Albert et al., Sampling, HADI) near
the points represent the algorithms for computing
the diameter. The Albert et al.’s algorithm seems to
be an exact breadth first search, although not clearly
specified in their paper. Notice the relatively small
diameters for both the directed and the undirected
cases. Also notice that the diameters of the undirected
Web graphs remain near-constant . 79

Fig. 3.3 (a) Static radius plot (count versus radius) of U.S.
Patent graph. Notice the bi-modal structure with
‘outsiders’ (nodes in the disconnected components),
‘core’ (central nodes in the giant connected
component), and ‘whiskers’ (nodes connected to the
giant connected component with long paths). (b) The
decomposition of the radius plot using the connected
components information. Biggest curve with radius
ranging from 11 to 35 the distribution for the giant
connected component; small curves on the bottom, left
several disconnected components . 80

Fig. 3.4 Evolution of the effective diameter of real graphs. The
diameter increases until a ‘gelling’ point, and starts to
shrink after the point. (a) Patent. (b) LinkedIn . 80

Fig. 3.5 Radius distribution over time. “Expansion”: the radius
distribution moves to the right until the gelling point.
“Contraction”: the radius distribution moves to the left
after the gelling point. (a) Patent-expansion.
(b) Patent-contraction. (c) LinkedIn-expansion.
(d) LinkedIn-contraction . 81

List of Figures xiii

Fig. 3.6 The evolution of connected components. (a) The giant
connected component grows for each year. However,
the second largest connected component do not grow
above Dunbar’s number (�150) and the slope of the
size distribution remains constant after the gelling
point at year 2003. (b) As in LinkedIn, notice the
growth of giant connected component, the size of the
second largest connected component bounded above,
and the constant slope of the size distribution . 82

Fig. 3.7 Connected components size distribution of YahooWeb.
Notice the two anomalous spikes which deviate
significantly from its neighbors . 82

Fig. 3.8 The degree vs. participating triangles of some
‘celebrities’ in Twitter accounts. Also shown are
accounts of adult sites advertisers which have smaller
degree, but belong to an abnormally large number of
triangles. The reason of the large number of triangles
is that adult accounts are often created from the same
provider, and they follow each other to form a clique,
to possibly boost their rankings or popularity . 84

Fig. 3.9 GIM-V NNB. The matrix elements are grouped into
2 � 2 blocks denoted by Bi;j . The vector elements are
grouped into length 2 blocks denoted by Vi . The matrix
and vector are joined block-wise, not element-wise 89

Fig. 3.10 Non-clustered vs. clustered adjacency matrices for two
isomorphic graphs. Each node has a self loop which is
omitted in the figure for clarity. The edges are grouped
into 2 by 2 blocks. The right matrix uses only three
blocks while the left matrix uses nine blocks. GIM-V
CCB uses the clustered matrix . 90

Fig. 3.11 Machine scalability of our proposed CCB method. The
Y-axis shows the ratio of the running time TM with M

machines, and T25, for PageRank queries. Note the
running time scales up near-linearly with the number
of machines . 91

Fig. 3.12 Edge scalability of our proposed CCB method.
The Y-axis shows the running time in seconds, for
PageRank queries on Kronecker graphs. Note the
running time scales up near-linearly with the number
of edges for all the settings (10, 25, and 40 machines) 91

xiv List of Figures

Fig. 3.13 Effectiveness of our proposed CCB method compared
to the naive NNB method. (a) File size comparison
after clustering and compression. The Y-axis is in log
scale. Note our proposed method reduces the data
size up to 43� smaller than the naive method. The
‘Random’ graph has better performance gain than
real-world graphs since the density is much higher.
(b) Running time comparison of PageRank queries.
Our proposed method outperforms the naive method by 9.2� 92

Fig. 3.14 Comparison of running time between different skewed
matrix-matrix multiplication methods in MapReduce.
Our proposed CBMM outperforms naive methods by
at least 76�. The slowest matrix-matrix multiplication
algorithm (MM) even didn’t finish and the job failed
due to the excessive amount of data . 97

Fig. 4.1 The customer analyst library . 116
Fig. 4.2 (a) Telcom flow using customer analyst,

and (b) end-to-end flow . 119
Fig. 4.3 Percentage of the different match levels . 122
Fig. 4.4 Runtime performance (in hours) with respect to

increasing in number of processed days . 123

Fig. 5.1 MapReduce primitives and runtime . 132
Fig. 5.2 Decomposition of K-means into MapReduce tasks 133
Fig. 5.3 Decomposition of EM using Gaussian mixtures into

MapReduce tasks . 133
Fig. 5.4 Decomposition of SVM into MapReduce tasks . 134
Fig. 5.5 The MapReduce architecture . 138
Fig. 5.6 Data node (DN) . 139
Fig. 5.7 Massively parallel processor node (MPPN). 140
Fig. 5.8 Port abstraction and its components . 142
Fig. 5.9 Scatter-Gather using ports and MPPs . 143
Fig. 5.10 Binary SVM decomposed into MapReduce tasks 147
Fig. 5.11 Multiple-MPP device SVM .. 148

Fig. 6.1 An example of the main centrality measures . 161
Fig. 6.2 Three graphs with 50 nodes and different structures:

from left to right, a random graph (with wiring
probability: 0.05), a Watts-Strogatz small world
network and a Barabàsi-Albert free-scale network 162

Fig. 6.3 Schematic of shared memory architectures. (a) UMA.
(b) NUMA .. 163

Fig. 6.4 Schematic representation of the distributed memory
architecture . 166

List of Figures xv

Fig. 6.5 Different partitioning strategies may lead to very
different performance of the same algorithm. Arrows
denote (directed) graph edges . 168

Fig. 6.6 Graph replication and partitioning example.
(a) Replication. (b) Partitioning . 169

Fig. 6.7 Computing all-pair shortest paths on four processors;
shaded areas denote the portions of matrix d.i; j /

which must be stored within processor 3 . 171
Fig. 6.8 Speedup and execution time of the betweenness

centrality algorithm in Boost, executed on the Intel
cluster. The input graph (28,250 nodes, 692,668 edges)
is replicated across the computing nodes. (a) Speedup.
(b) Execution time . 180

Fig. 6.9 Execution time for a Small-World graph with
28,250 nodes and 692,668 edges. The input graph is
distributed across the computing nodes . 181

Fig. 6.10 Speedup and execution time of the betweenness
centrality algorithm in SNAP on the IBM p575, for a
Small-World graph with 28,250 nodes and 692,668
edges. (a) Speedup. (b) Execution time . 182

Fig. 6.11 Speedup and execution time of the betweenness
centrality algorithm in SNAP on the IBM p575, for
a larger Small-World graph with 224,288 nodes and
3 million edges. (a) Speedup. (b) Execution time 183

Fig. 6.12 Execution time of the betweenness centrality algorithm
provided by the PBGL and by SNAP. Both algorithms
have been run on the commodity cluster; SNAP has
been executed on a single server using both CPU cores. 184

Fig. 7.1 The processing pipeline for visual analysis of text
combines data-intensive tasks (top) and user-centric
tasks (bottom). Solid black lines indicate data flows
while dashed red lines indicate user feedback to adapt
automatic processes . 191

Fig. 7.2 Semantic enrichment steps starting at single artifacts,
e.g., documents, news articles, patents (left), and
resulting in enriched representations in an index (center). 193

Fig. 7.3 A visualization showing a search result set as a
combination of tag clouds. Each polygonal area
corresponds to a category of the documents in
the search result set. Displayed named entities are
enhanced with symbols indicating their type (person,
location, data) . 200

xvi List of Figures

Fig. 7.4 An information landscape showing approx. 6,000 news
articles on “computer industry” is used for drilling
down to documents of interest: beginning with an
overview (left) the user narrows down using topical
cluster labels (right) . 201

Fig. 7.5 Multidimensional visualization for books. Left:
Scatterplot visualizing publication year (x-axis), page
count (y-axis), file size (icon size), author (icon type);
right: parallel coordinates showing nine metadata
types on parallel axes . 202

Fig. 7.6 Geo-visualization of Austria showing geo-references
in news articles (cones). The size of the cone
corresponds to the number of news articles for the
particular geo-reference . 204

Fig. 7.7 A stream visualization of approx. 750 news documents
on “oil spill”, showing temporal development.
Different gray values correspond to different topics. 205

Fig. 7.8 A graph visualization of relationships between
concepts extracted from a text data set (data courtesy
of German National Library of Economics, 2011).
Note that edge bundling is used to improve clarity and
reduce clutter in the edge layout . 206

Fig. 7.9 Examples for visually enhanced feedback. Left: Search
results (circles) for comparing the topic overlap of
different search engines (colors). Results with similar
content are close. Sources can be interactively added
or removed. Right: Visualizing classification decisions.
Classes are arranged in a circle, data points are
placed inside the circle according to their a-posteriori
probabilities. Decisions can be corrected by drag and
drop, classifier is retrained . 209

Fig. 7.10 A coordinated multiple views GUI showing 6,900
news documents on “space”. Document selection
(by time: from June to August), document coloring
(each topical cluster in different color) and navigation
in the hierarchy (location: Cluster 3 “shuttle, mars,
columbia”) are coordinated . 210

Fig. 7.11 A visualization of occurrences of Austrian politicians
in search results. A rendered model of the parliament
is used as visual metaphor. The figures of politicians
are colored in their party color and scaled relative to
the occurrence count. Clicking on a figure narrows the
search result to articles containing the selected politician. 212

List of Figures xvii

Fig. 7.12 A visualization of co-occurrences of Austrian
politicians in recent news media. Politicians are
displayed as nodes connected by links representing
co-occurrence strength by line width. Links are
bundled to reveal high-level edge patterns. The
strongest link visible is between the chancellor and the
vice-chancellor . 213

Fig. 7.13 The “Knowledge Space” visualization displaying the
context of the encyclopedia entry for the mountaineer
Reinhold Messner (center). The disc is divided into
segments representing topics (e.g., “society” in the
front). Related articles are represented by objects
placed on the disc; shape, size and color encode
additional metadata. For example, in the leftmost
segment a geographic article (circle) and a premium
content article (diamond) about the Mountain Everest is shown . . 214

Fig. 8.1 Private SVD with P4P. 238
Fig. 8.2 Runtime ratios between homomorphic encryption

based solutions and P4P . 247

List of Tables

Table 2.1 A comparison of the discussed approaches for
optimization of massively parallel data flows . 70

Table 3.1 Graphs used (M: million. K: thousand) . 77
Table 3.2 GIM-V in terms of SQL . 86
Table 3.3 Parallelization choices. The last column of the table

indicates whether the operation is parallelized in
HEIGEN. Some operations are better to be run in
parallel, since the input size is very large, while
others are better in a single machine, since the input
size is small and the overhead of parallel execution
overshadows its decreased running time . 95

Table 4.1 Example of a user profile with top-4 categories . 119
Table 4.2 Top-10 categories along with their ODP precision and

recall values . 121
Table 4.3 Increase in runtime with respect to different

aggregation levels . 123

Table 5.1 Datasets. 149
Table 5.2 SVM experiments . 150
Table 5.3 Performance results for SVM training . 150

Table 6.1 Summary of parallel graph libraries . 174
Table 6.2 Technical specifications of the machines used for the tests 178

Table 7.1 Levels of and techniques used for semantic integration. 194

Table 8.1 Performance comparison of existing MPC implementations 228
Table 8.2 Characteristics of the datasets . 245
Table 8.3 Round complexity and precision . 245
Table 8.4 SVD of large matrices . 248

xix

Acronyms

AHP Analytical hierarchical process
APA Austrian Press Agency
API Application Programmer Interface
APP Mobile application
AQL Asterix query language
BFS Breadth-First Search
BGL Boost Graph Library
BOW Bag of Words
C2S Client to server
CC Connected components
CDR Call data record
CMV Coordinated multiple views
DAG Directed acyclic Graph
DBMS Database Management System
DC Disconnected component
DDL Data definition language
DFS Depth-First Search/Distributed File System
DML Data manipulation language
EC2 Amazon Elastic Compute Cloud
ECC Elliptic curve cryptography
EDR Event data/detail record
EFF Electronic Frontier Foundation
EM Expectation maximization
FIFO First In First Out
GCC Giant connected component
GFS Google File System
GIM-V Generalized iterative matrix-vector multiplication
GPU Graphics processing unit
HDFS Hadoop Distributed File System
IAAS Infrastructure As A Service
IE Information extraction

xxi

xxii Acronyms

IRAM Implicitly Restarted Arnoldi Method
JSON JavaScript object notation
KD Knowledge discovery
LAN Local area network
LINQ Language INtegrated Query
LSI Latent semantic indexing
MDS Multidimensional scaling
MPC Secure multi-party computation
MPI Message Passing Interface
MPP Massively parallel processing/processor
MPPN Massively parallel processing node
MRF MapReduce framework
MSA Massive scale analytics
MST Minimum spanning tree
MTGL Multi-Threaded Graph Library
NAS Network attached storage
NUMA Non-uniform memory access
ODP Open Directory Project
PACT Parallelization contract
PBGL Parallel Boost Graph Library
PCA Principal component analysis
POS Part of speech
PPDM Privacy preserving data mining
PRG Pseudo-random number generator
QP Quadratic programming
RAID Redundant array of independent/inexpensive disks
RAIN Redundant array of independent/inexpensive nodes
RDBMS Relational Database Management System
RDF Resource Description Framework
RRS Recursive random search
RWR Random Walk with Restart
S2S Server to Server
SAN Storage area network
SCC Strongly connected components
SCOPE Structured Computations Optimized for Parallel Execution
SMO Sequential minimal optimization
SMP Symmetric multi-processing machine
SNA Social network analysis
SNAP Small-world Network Analysis and Partitioning
SNS Social network site
SQL Structured query language
SSSP Single source shortest path
SVD Singular value decomposition
SVM Support vector machine
TCP Transmission Control Protocol

Acronyms xxiii

UDF User-defined function
UMA Uniform memory access
URL Uniform resource locator
VSS Verifiable secret sharing
ZKP Zero-knowledge proof

Chapter 1
The Family of Map-Reduce

Sherif Sakr and Anna Liu

Abstract In the last two decades, the continuous increase of computational power
has produced an overwhelming flow of data, which called for a paradigm shift in the
computing architecture and large scale data processing mechanisms. MapReduce
is a simple and powerful programming model that enables easy development of
scalable parallel applications that can process vast amounts of data on large clusters
of commodity machines. MapReduce isolates the application from the details of
running a distributed program, such as issues on data distribution, scheduling and
fault tolerance. However, the original implementation of the MapReduce framework
had some limitations that have been tackled by many research efforts in following
up work. This chapter provides a comprehensive survey for a family of approaches
and mechanisms of large scale data analysis that have been implemented based on
the original father idea of the MapReduce framework, and are currently gaining a
lot of momentum in both research and industrial communities. Some case studies
are discussed as well.

1.1 Introduction

In the last two decades, the continuous increase of computational power has
produced an overwhelming flow of data which called for a paradigm shift in
the computing architecture and large scale data processing mechanisms. Powerful
telescopes in astronomy, particle accelerators in physics, and genome sequencers in
biology are putting massive volumes of data into the hands of scientists. Facebook
collects 15 TB of data each day into a PetaByte-scale data warehouse. Jim Gray,
a database software pioneer and a Microsoft researcher, called the shift a “fourth
paradigm” [26]. The first three paradigms were experimental, theoretical and,

S. Sakr (�) • A. Liu
NICTA and University of New South Wales, Sydney, NSW, Australia
e-mail: Sherif.Sakr@nicta.com.au; Anna.Liu@nicta.com.au

A. Gkoulalas-Divanis and A. Labbi (eds.), Large-Scale Data Analytics,
DOI 10.1007/978-1-4614-9242-9__1, © Springer Science+Business Media New York 2014

1

mailto:Sherif.Sakr@nicta.com.au
mailto:Anna.Liu@nicta.com.au

2 S. Sakr and A. Liu

Experiments Simulations InstrumentsArchives Literature

Petabytes
Doubling every

2 years

Fig. 1.1 Data explosion in scientific computing [26]

more recently, computational science. Gray argued that the only way to cope
with this paradigm is to develop a new generation of computing tools to manage,
visualize and analyze the data flood. In general, current computer architectures
are increasingly imbalanced, where the latency gap between multi-core CPUs and
mechanical hard disks is growing every year, which makes the challenges of data-
intensive computing much harder to overcome [8]. Hence, there is a crucial need
for a systematic and generic approach to tackle these problems with an architecture
that can also scale into the foreseeable future. In response, Gray argued that the new
trend should instead focus on supporting cheaper clusters of computers to manage
and process all this data, instead of focusing on having the biggest and fastest single
computer.

Figure 1.1 illustrates an example of the explosion in scientific data which creates
major challenges for cutting-edge scientific projects. For example, modern high-
energy physics experiments, such as DZero,1 typically generate more than 1 TB of
data per day. With datasets growing beyond a few hundreds of terabytes, scientists
have no off-the-shelf solutions that they can readily use to manage and analyze these
data [26]. Thus, significant human and material resources were allocated to support
these data-intensive operations, which led to high storage and management costs.

In general, the growing demand for large-scale data mining and data analy-
sis applications has spurred the development of novel solutions from both the
industry (e.g., web-data analysis, click-stream analysis, network-monitoring log
analysis) and the sciences (e.g., analysis of data produced by massive-scale simula-
tions, sensor deployments, high-throughput lab equipment) [37]. Although parallel
database systems serve some of these data analysis applications, they are expensive,
difficult to administer and lack fault-tolerance for long-running queries [34].
MapReduce [16] is a framework which is introduced by Google for programming

1http://www-d0.fnal.gov/.

http://www-d0.fnal.gov/.

1 The Family of Map-Reduce 3

commodity computer clusters to perform large-scale data processing in a single
pass. The framework is designed in a way that a MapReduce cluster can scale
to thousands of nodes in a fault-tolerant manner. An important advantage of this
framework is its reliance on a simple and powerful programming model. In addition,
MapReduce isolates the application developer from all the complex details of
running a distributed program, such as issues on data distribution, scheduling and
fault tolerance.

Recently, there has been a great deal of hype about cloud computing [5].
In principle, cloud computing is associated with a new paradigm for the provision
of computing infrastructure. This paradigm shifts the location of this infrastructure
to the network to reduce the costs associated with the management of hardware
and software resources. In particular, cloud computing has promised a number of
advantages for hosting the deployments of data-intensive applications, such as:

• Reduced time-to-market by removing or simplifying the time-consuming hard-
ware provisioning, purchasing and deployment processes.

• Reduced monetary cost by following a pay-as-you-go business model.
• Unlimited (virtually) throughput by adding servers if the workload increases.

In principle, the success of many enterprises often relies on their ability to
analyze expansive volumes of data. In general, cost-effective processing of large
datasets had been considered as a nontrivial undertaking. Fortunately, MapReduce
frameworks and cloud computing have made it easier than ever for everyone
to step into the world of Big data. This technology combination has enabled
even small companies to collect and analyze terabytes of data in order to gain
a competitive edge. For example, the Amazon Elastic Compute Cloud (EC2)2 is
offered as a commodity that can be purchased and utilised. In addition, Amazon
has also provided the Amazon Elastic MapReduce3 as an online service to easily
and cost-effectively process vast amounts of data without the need to worry about
time-consuming set-up, management or tuning of computing clusters or the compute
capacity upon which they sit. Hence, such services enable third-parties to perform
their analytical queries on massive datasets with minimum effort and cost, by
abstracting the complexity entailed in building and maintaining computer clusters.

The implementation of the basic MapReduce architecture had some limitations.
As a result, many research efforts have been triggered to tackle these limitations
by introducing several advancements in the basic architecture in order to improve
its performance. This chapter provides a comprehensive survey for a family of
approaches and mechanisms of large scale data analysis that have been imple-
mented based on the original father idea of the MapReduce framework and are
currently gaining a lot of momentum in both research and industrial communities.
In particular, the remainder of this chapter is organized as follows. Section 1.2
describes the basic architecture of the MapReduce framework. Section 1.3 discusses
several techniques that have been proposed to improve the performance and

2http://aws.amazon.com/ec2/.
3http://aws.amazon.com/elasticmapreduce/.

http://aws.amazon.com/ec2/.
http://aws.amazon.com/elasticmapreduce/.

4 S. Sakr and A. Liu

capabilities of the MapReduce framework. Section 1.4 gives an overview of several
systems that support high level SQL-like interface for the MapReduce framework,
while Sect. 1.5 discusses the hybrid systems that support both MapReduce and
SQL-like interfaces. Several case studies are discussed in Sect. 1.6, before we
conclude the chapter in Sect. 1.7.

1.2 The MapReduce Framework: Basic Architecture

The MapReduce framework is introduced as a simple and powerful programming
model that enables easy development of scalable parallel applications which can
process vast amounts of data on large clusters of commodity machines [16, 17].
In particular, the framework is mainly designed to achieve high performance on
large clusters of commodity PCs. One of the main advantages of this approach is
that it isolates the application from the details of running a distributed program,
such as issues on data distribution, scheduling and fault tolerance. In this model,
the computation takes a set of input key/value pairs and produces a set of output
key/value pairs.

The user of the MapReduce framework expresses the computation using two
functions: Map and Reduce. The Map function takes an input pair and produces a
set of intermediate key/value pairs. The MapReduce framework groups together all
intermediate values associated with the same intermediate key I and passes them
to the Reduce function. The Reduce function receives an intermediate key I with
its set of values and merges them together. Typically just zero or one output value
is produced per Reduce invocation. The main advantage of this model is that it
allows large computations to be easily parallelized and re-executed to be used as the
primary mechanism for fault tolerance.

Figure 1.2 illustrates an example MapReduce program expressed in pseudo-
code for counting the number of occurrences of each word in a collection of
documents. In this example, the map function emits each word plus an associated
mark of occurrences, while the reduce function sums together all marks emitted
for a particular word. In principle, the design of the MapReduce framework has
considered the following main principles [46]:

Fig. 1.2 An example of a MapReduce program [16]

1 The Family of Map-Reduce 5

• Low-Cost Unreliable Commodity Hardware: Instead of using expensive,
high-performance, reliable symmetric multiprocessing (SMP) or massively
parallel processing (MPP) machines equipped with high-end network and storage
subsystems, the MapReduce framework is designed to run on large clusters of
commodity hardware. This hardware is managed and powered by open-source
operating systems and utilities so that the cost is kept low.

• Extremely Scalable RAIN Cluster: Instead of using centralized RAID-based SAN
or NAS storage systems, every MapReduce node has its own local off-the-
shelf hard drives. These nodes are loosely coupled in rackable systems that are
connected with generic LAN switches. These nodes can be taken out of service
with almost no impact to still-running MapReduce jobs. These clusters are called
Redundant Array of Independent (and Inexpensive) Nodes (RAIN).

• Fault-Tolerant yet Easy to Administer: MapReduce jobs can run on clusters with
thousands of nodes or even more. These nodes are not very reliable as at any point
in time, a certain percentage of these commodity nodes or hard drives will be out
of order. Hence, the MapReduce framework applies straightforward mechanisms
to replicate data and launch backup tasks so as to keep still-running processes
going. To handle crashed nodes, system administrators simply take crashed
hardware off-line. New nodes can be plugged in at any time without much
administrative hassle. There is no complicated backup, restore and recovery
configurations like the ones that can be seen in many DBMS.

• Highly Parallel yet Abstracted: The most important contribution of the Map-
Reduce framework is its ability to automatically support the parallelization of
task executions. Hence, it allows developers to focus mainly on the problem
at hand rather than worrying about the low level implementation details, such
as memory management, file allocation, parallel, multi-threaded or network
programming. Moreover, MapReduce’s shared-nothing architecture [38] makes
it much more scalable and ready for parallelization.

Hadoop4 is an open source Java software that supports data-intensive distributed
applications by realizing the implementation of the MapReduce framework. On the
implementation level, the Map invocations are distributed across multiple machines
by automatically partitioning the input data into a set of M splits. The input
splits can be processed in parallel by different machines. Reduce invocations
are distributed by partitioning the intermediate key space into R pieces using a
partitioning function (e.g. hash(key) mod R). The number of partitions (R) and the
partitioning function are specified by the user. Figure 1.3 illustrates an example
of the overall flow of a MapReduce operation, which goes through the following
sequence of actions:

1. The input files of the MapReduce program are split into M pieces and many
copies of the program start up on a cluster of machines.

4http://hadoop.apache.org/.

http://hadoop.apache.org/.

6 S. Sakr and A. Liu

split 0

split 1

split 2

split 3

split 4

(1) fork

(3) read
(4) local write

(1) fork
(1) fork

(6) write

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

worker

worker

(2)
assign
map

(2)
assign
reduce

(5) re
mote

read

Input files Map phase Intermediate files
(on local disks)

Reduce phase Output files

Fig. 1.3 An overview of the flow of execution in a MapReduce operation [16]

2. One of the copies of the program is elected to be the master copy, while the rest
are considered as workers that are assigned their work by the master copy. In
particular, there are M map tasks and R reduce tasks to assign. The master picks
idle workers and assigns each one a map task or a reduce task.

3. A worker who is assigned a map task reads the contents of the corresponding
input split, parses key/value pairs out of the input data and passes each pair to
the user-defined Map function. The intermediate key/value pairs produced by the
Map function are buffered in memory.

4. Periodically, the buffered pairs are written to local disk, partitioned into R regions
by the partitioning function. The locations of these buffered pairs on the local
disk are passed back to the master, who is responsible for forwarding these
locations to the reduce workers.

5. When a reduce worker is notified by the master about these locations, it reads the
buffered data from the local disks of the map workers, which is then sorted by the
intermediate keys so that all occurrences of the same key are grouped together.
The sorting operation is needed because typically many different keys map to the
same reduce task.

6. The reduce worker passes the key and the corresponding set of intermediate
values to the user’s Reduce function. The output of the Reduce function is
appended to a final output file for this reduce partition.

1 The Family of Map-Reduce 7

Fig. 1.4 Execution steps of the WordCount example using MapReduce

7. When all map tasks and reduce tasks have been completed, the master program
wakes up the user program. At this point, the MapReduce invocation in the user
program returns back to the user code.

Figure 1.4 illustrates a sample execution for the example program (WordCount),
depicted in Fig. 1.2, using the steps of the MapReduce framework, which are
illustrated in Fig. 1.3. During the execution process, the master pings every worker
periodically. If no response is received from a worker in a certain amount of time,
the master marks the worker as failed. Any map tasks marked completed or in
progress by the worker are reset back to their initial idle state and therefore become
eligible for scheduling on other workers. Completed map tasks are re-executed on a
failure because their output is stored on the local disk(s) of the failed machine and is
therefore inaccessible. Completed reduce tasks do not need to be re-executed since
their output is stored in a global file system.

1.3 Improvements on the MapReduce Framework

In practice, the basic implementation of MapReduce is very useful for handling
data processing and data loading in a heterogenous system with many different
storage systems. Moreover, it provides a flexible framework for the execution of
complicated functions that can be directly supported in SQL. However, the basic
architecture suffers from certain limitations. Dean and Ghemawat [18] reported
a set of possible improvements that need to be incorporated into the MapReduce
framework. These include:

• MapReduce should take advantage of natural indices whenever possible.
• Most MapReduce output should be left unmerged since there is no benefit of

merging them if the next consumer is just another MapReduce program.
• MapReduce users should avoid using inefficient textual formats.

8 S. Sakr and A. Liu

Fig. 1.5 Decision tree for choosing between various join strategies on the MapReduce frame-
work [10]

In the following subsections, we discuss some research efforts that have been
conducted in order to deal with these challenges, as well as the different improve-
ments that have been made on the basic implementation of the MapReduce
framework in order to achieve these goals.

1.3.1 Map-Reduce-Merge

One main limitation of the MapReduce framework is that it does not support
the joining of multiple datasets in one task. However, this can still be achieved
with additional MapReduce steps. For example, users can map and reduce one
dataset and read data from other datasets on the fly. Blanas et al. [10] report on
a study that evaluated the performance of different distributed join algorithms (e.g.,
Repartition Join, Broadcast Join) using the MapReduce framework. Figure 1.5
illustrates a decision tree that summaries the tradeoffs of the considered join
strategies, according to the results of that study. Based on statistics, such as the
relative data size and the fraction of the join key referenced, this decision tree tries
to determine what is the right join strategy for a given circumstance. If data is not
preprocessed, the right join strategy depends on the size of the data transferred
via the network. If the network cost of broadcasting an input relation R to every
node is less expensive than transferring both R and projected L, then the broadcast

1 The Family of Map-Reduce 9

Fig. 1.6 An overview of the Map-Reduce-Merge framework [46]

join algorithm should be used. When preprocessing is allowed, semi-join, per-split
semi-join and directed join with enough partitions are the best choices. Semi-join
and per-split semi-join offer further flexibility since their preprocessing steps are
insensitive to how the log table is organized, and thus suitable for any number of
reference tables. In addition, the preprocessing steps of these two algorithms are
cheaper since there is no shuffling of the log data.

To tackle the limitation of the join phase in the MapReduce framework, Yang
et al. [46] have proposed the Map-Reduce-Merge model that enables the processing
of multiple datasets. Figure 1.6 illustrates the framework of this model, where the
map phase transforms an input key/value pair .k1; v1/ into a list of intermediate
key/value pairs Œ.k2; v2/�. The reduce function aggregates the list of values Œv2�

associated with k2 and produces a list of values Œv3� which is also associated with
k2. Note that inputs and outputs of both functions belong to the same lineage (˛).
Another pair of map and reduce functions produce the intermediate output .k3; Œv4�/

from another lineage (ˇ). Based on keys k2 and k3, the merge function combines
the two reduced outputs from different lineages into a list of key/value outputs
Œ.k4; v5/�. This final output becomes a new lineage (�). If ˛ = ˇ then this merge
function does a self-merge which is similar to self-join in relational algebra. The
main differences between the processing model of this framework and the original
MapReduce is the production of a key/value list from the reduce function instead
of just that of values. This change is introduced because the merge function needs
input datasets organized (partitioned, then either sorted or hashed) by keys and these
keys have to be passed into the function to be merged. In the original framework,
the reduced output is final. Hence, users pack whatever needed in Œv3� while passing
k2 for the next stage is not required.

Figure 1.7 illustrates a sample execution of the Map-Reduce-Merge frame-
work. In this example, there are two datasets: Employee and Department, where

10 S. Sakr and A. Liu

Fig. 1.7 A sample execution of the Map-Reduce-Merge framework [46]

Employee’s key attribute is emp-id and the Department’s key is dept-id.
The execution of this example query aims to join these two datasets and compute
employee bonuses. On the left hand side of Fig. 1.7, a mapper reads Employee
entries and computes a bonus for each entry. A reducer then sums up these bonuses
for every employee and sorts them by dept-id, then emp-id. On the right
hand side, a mapper reads Department entries and computes bonus adjustments.
A reducer then sorts these department entries. At the end, a merger matches the
output records from the two reducers on dept-id and applies a department-based
bonus adjustment on employee bonuses. Yang and Parker [45] have also proposed
an approach for improving the Map-Reduce-Merge framework by adding a new
primitive, called traverse. This primitive can process index file entries recursively,
select data partitions based on query conditions and feed only selected partitions to
other primitives.

Afrati and Ullman [3] have presented another approach to improve the join phase
in the MapReduce framework. This approach begins by identifying the map-key,
the set of attributes that identify the Reduce process to which a Map process must
send a particular tuple. Each attribute of the map-key gets a “share”, which is the
number of buckets into which its values are hashed, to form a component of the
identifier of a Reduce process. Relations have their tuples replicated in limited
fashion, where the degree of replication depends on the shares for those map-key
attributes that are missing from their schema. The approach considers two important
special join cases: chain joins (represents a sequence of 2-way join operations where
the output of one operation in this sequence is used as an input to another operation
in a pipelined fashion) and star joins (represents joining of a large fact table with

1 The Family of Map-Reduce 11

several smaller dimension tables). In each case, the proposed algorithm is able to
determine the map-key and determine the shares that yield the least replication.
The proposed approach is not always superior to the conventional way of using
map-reduce to implement joins. However, there are some cases where the proposed
approach results in clear wins, such as:

• Analytic queries in which a very large fact table is joined with smaller dimension
tables.

• Queries involving paths through graphs with high out-degree, such as the Web or
a social network.

1.3.2 MapReduce Online

The basic architecture of the MapReduce framework requires the entire output of
each map and reduce task to be materialized into a local file before it can be
consumed by the next stage. This materialization step allows for the implementation
of a simple and elegant checkpoint/restart fault tolerance mechanism. Alvaro
et al. [4] proposed a modified architecture in which intermediate data is pipelined
between operators, while preserving the programming interfaces and fault tolerance
models of previous MapReduce frameworks. This pipelining approach provides
important advantages to the MapReduce framework, such as:

• The reducers can begin their processing of the data as soon as it is produced
by mappers. Therefore, they can generate and refine an approximation of their
final answer during the course of execution. In addition, they can provide initial
estimates of the results several orders of magnitude faster than the final results.

• It widens the domain of problems to which MapReduce can be applied. For
example, it facilitates the ability to design MapReduce jobs that run continuously,
accepting new data as it arrives and analyzing it immediately (continuous
queries). This allows MapReduce to be used in applications such as event
monitoring and stream processing.

• Pipelining delivers data to downstream operators more promptly, which can
increase opportunities for parallelism, improve utilization as well as reduce
response time.

1.3.3 MRShare

With the emergence of cloud computing, the use of an analytical query processing
infrastructure (e.g., Amazon EC2) can be directly mapped to monetary value. Taking
into account that different MapReduce jobs can perform similar work, there could
be many opportunities for sharing the execution of their work. This sharing can
reduce the overall amount of work, which consequently leads to the reduction
of the monetary charges incurred while utilizing the resources of the processing

12 S. Sakr and A. Liu

infrastructure. Nykiel et al. [32] have proposed MRShare as a sharing framework
which is tailored to transform a batch of queries into a new batch that will be
executed more efficiently by merging jobs into groups and evaluating each group
as a single query. Based on a defined cost model, they described an optimization
problem that aims to derive the optimal grouping of queries in order to avoid
performing redundant work and, thus, resulting in significant savings on both
processing time and associated cost. In particular, the proposed approach considers
exploiting the following sharing opportunities:

• Sharing Scans. To share scans between two mapping pipelines Mi and Mj , the
input data must be the same. In addition, the key/value pairs should be of the
same type. Given that, it becomes possible to merge the two pipelines into a
single pipeline and scan the input data only once. However, it should be noted
that such combined mapping will produce two streams of output tuples (one for
each mapping pipeline Mi and Mj). In order to distinguish the streams at the
reducer stage, each tuple is tagged with a tag() part. This tagging part is used
to indicate the origin mapping pipeline during the reduce phase.

• Sharing Map Output. If the map output key and value types are the same for
two mapping pipelines Mi and Mj , then the map output streams for Mi and Mj

can be shared. In particular, if Mapi and Mapj are applied to each input tuple,
then the map output tuples coming only from Mapi are tagged with tag(i)
only. If a map output tuple was produced from an input tuple by both Mapi and
Mapj , it is then tagged by tag(i)+tag(j). Therefore, any overlapping parts
of the map output will be shared. In principle, producing a smaller map output
leads to savings on sorting and copying intermediate data over the network.

• Sharing Map Functions. Sometimes the map functions are identical and thus they
can be executed once. At the end of the map stage two streams are produced, each
tagged with its job tag. If the map output is shared, then clearly only one stream
needs to be generated. Even if only some filters are common in both jobs, it is
possible to share parts of map functions.

In practice, sharing scans and sharing map-output yield I/O savings, while
sharing map functions (or parts of them) additionally yield CPU savings.

1.3.4 HaLoop

Many data analysis techniques (e.g., the PageRank algorithm, recursive relational
queries, social network analysis) require iterative computations. These techniques
have a common requirement which is that data are processed iteratively until the
computation satisfies a convergence or stopping condition. The basic MapReduce
framework does not directly support these iterative data analysis applications.
Instead, programmers must implement iterative programs by manually issuing
multiple MapReduce jobs and orchestrating their execution using a driver program.
In practice, there are two key problems with manually orchestrating an iterative
program in MapReduce:

1 The Family of Map-Reduce 13

Task Queue

.

.

.

Task21 Task22 Task23

Task31 Task32 Task33

Task11 Task12 Task13

Identical to Hadoop New in HaLoop

Local communication Remote communication

Modified from Hadoop

Fig. 1.8 An overview of the HaLoop architecture [11]

• Even though much of the data may be unchanged from iteration to iteration, the
data must be re-loaded and re-processed at each iteration, wasting I/O, network
bandwidth and CPU resources.

• The termination condition may involve the detection of when a fixpoint has been
reached. This condition may itself require an extra MapReduce job on each
iteration, again incurring overhead in terms of scheduling extra tasks, reading
extra data from disk and moving data across the network.

Bu et al. [11] have presented the HaLoop system which is designed to efficiently
handle the above types of applications. HaLoop extends the basic MapReduce
framework with two main functionalities:

1. A MapReduce cluster can cache the invariant data in the first iteration and then
reuse them in later iterations.

2. A MapReduce cluster can cache reducer outputs, which makes checking for a
fixpoint more efficient, without an extra MapReduce job.

Figure 1.8 illustrates the architecture of HaLoop as a modified version of the
basic MapReduce framework. In order to accommodate the requirements of iterative
data analysis applications, HaLoop has incorporated the following changes to the
basic Hadoop MapReduce framework:

• It exposes a new application programming interface to users that simplifies the
expression of iterative MapReduce programs.

14 S. Sakr and A. Liu

• HaLoop’s master node contains a new loop control module that repeatedly starts
new map-reduce steps that compose the loop body, until a user-specified stopping
condition is met.

• It uses a new task scheduler for iterative applications that leverages data locality
in these applications.

• It caches and indices application data on slave nodes. In principle, the task tracker
not only manages task execution but also manages caches and indices on the slave
node and redirects each task’s cache and index accesses to the local file system.

1.3.5 HadoopCC

An important limitation of the Basic MapReduce framework is that it is designed in
a way that jobs can only scan the input data in a sequential-oriented fashion. Hence,
the query processing performance of the MapReduce framework does not match
the one of a well-configured parallel DBMS [34]. In order to tackle this challenge,
Dittrich et al. [19] have presented the Hadoop++ system, which aims to boost
the query performance of the Hadoop project (the open source implementation of the
MapReduce framework) without changing any of the system internals. They achieve
this goal by injecting their changes through user-defined functions (UDFs), which
only affect the Hadoop system from inside without any external effect. In particular,
they introduce the following main changes:

• Trojan Index: The original Hadoop implementation does not provide index
access due to the lack of a priori knowledge of schema and the MapReduce
jobs being executed. Hence, the Hadoop++ system is based on the assumption
that if we know the schema and the anticipated MapReduce jobs, then we can
create appropriate indices for the Hadoop tasks. In particular, trojan index is an
approach to integrate indexing capability into Hadoop in a non-invasive way.
These indices are created during the data loading time and thus have no penalty
at query time. Each trojan index provides an optional index access path which
can be used for selective MapReduce jobs. The scan access path can still be used
for other MapReduce jobs. These indices are created by injecting appropriate
UDFs inside the Hadoop implementation. Specifically, the main features of trojan
indices can be summarized as follows:

– No External Library or Engine: Trojan indices integrate indexing capability
natively into the Hadoop framework without imposing a distributed SQL-
query engine on top of it.

– Non-Invasive: They do not change the existing Hadoop framework. The index
structure is implemented by providing the right UDFs.

– Optional Access Path: They provide an optional index access path which can
be used for selective MapReduce jobs. However, the scan access path can still
be used for other MapReduce jobs.

1 The Family of Map-Reduce 15

– Seamless Splitting: Data indexing adds an index overhead for each data split.
Therefore, the logical split includes the data as well as the index, as it
automatically splits the indexed data at logical split boundaries.

– Partial Index: Trojan index need not be built on the entire split. However, it
can be built on any contiguous subset of the split as well.

– Multiple Indexes: Several trojan indexes can be built on the same split. How-
ever, only one of them can be the primary index. During query processing,
an appropriate index can be chosen for data access based on the logical query
plan and the cost model.

• Trojan Join: Similar to the idea of the trojan index, the Hadoop++ system
assumes that if we know the schema and the expected workload, then we can
co-partition the input data during the loading time. In particular, given any two
input relations, they apply the same partitioning function on the join attributes
of both the relations at data loading time and place the co-group pairs, having
the same join key from the two relations, on the same split and hence on the same
node. As a result, join operations can be then processed locally within each node
at query time. Implementing the trojan joins does not require any changes to be
made to the existing implementation of the Hadoop framework. The only changes
are made on the internal management of the data splitting process. In addition,
trojan indices can be freely combined with trojan joins.

1.3.6 CoHadoop

In the basic implementation of the Hadoop project, the objective of the data
placement policy is to achieve load balancing by distributing the data evenly across
the data servers, independently of the intended use of the data. This simple data
placement policy works well with most Hadoop applications that access just a single
file. However, there are other applications that process data from multiple files,
which can get a significant boost in performance with customized strategies. In these
applications, the absence of data co-location increases the data shuffling costs,
increases the network overhead and reduces the effectiveness of data partitioning.
For example, log processing is a very common usage scenario for the Hadoop
framework. In this scenario, data are accumulated in batches from event logs, such
as clickstreams, phone call records, application logs or a sequences of transactions.
Each batch of data is ingested into Hadoop and stored in one or more HDFS
files at regular intervals. Two of the most common operations in log analysis of
these applications are (1) joining the log data with some reference data and (2)
sessionization, i.e., computing user sessions. The performance of such operations
can be significantly improved if they utilize the benefits of data co-location.

CoHadoop [20] is a lightweight extension to Hadoop which is designed to enable
co-locating related files at the file system level, while at the same time retaining the
good load balancing and fault tolerance properties. CoHadoop introduces a new
file property to identify related data files and modify the data placement policy

16 S. Sakr and A. Liu

Fig. 1.9 Example file co-location in CoHadoop [20]

of Hadoop to co-locate all copies of those related files in the same server. These
changes are designed in a way that retains the benefits of Hadoop, including load
balancing and fault tolerance.

In principle, CoHadoop provides a generic mechanism that allows applications
to control data placement at the file-system level. In particular, a new file-level
property, called a locator, is introduced and the Hadoop’s data placement policy
is modified so that it makes use of this property. Each locator is represented by a
unique value (ID), where each file in HDFS is assigned to at most one locator and
many files can be assigned to the same locator. Files with the same locator are placed
on the same set of datanodes, whereas files with no locator are placed via Hadoop’s
default strategy. It should be noted that this co-location process involves all data
blocks, including replicas. Figure 1.9 shows an example of co-locating two files, A
and B, via a common locator. All of A’s two HDFS blocks and B’s three blocks are
stored on the same set of datanodes. To manage the locator information and keep
track of co-located files, CoHadoop introduces a new data structure, the locator
table, which stores a mapping of locators to the list of files that share this locator. In
practice, the CoHadoop extension enables a wide variety of applications to exploit
data co-location by simply specifying related files, such as co-locating log files
with reference files for joins, co-locating partitions for grouping and aggregation,
co-locating index files with their data files and co-locating columns of a table.

1.4 SQL-Like MapReduce Implementations

For programmers, a key appealing feature of the MapReduce framework is that there
are only two high-level declarative primitives, map and reduce, which can be written
in any programming language of choice, without worrying about the details of their
parallel execution. On the other hand, the MapReduce programming model has its
own limitations, such as:

1 The Family of Map-Reduce 17

• Its one-input and two-stage data flow is extremely rigid. As we previously
discussed, to perform tasks having a different data flow (e.g. joins or n stages),
inelegant workarounds have to be devised.

• Custom code has to be written for even the most common operations (e.g.
projection and filtering), which leads to the fact that the code is usually difficult
to reuse and maintain.

• The opaque nature of the map and reduce functions impedes the ability of the
system to perform optimizations.

Moreover, many programmers could be unfamiliar with the MapReduce frame-
work and they would prefer to use SQL (because they are more proficient in) as
a high level declarative language to express their task, while leaving all of the
execution optimization details to the backend engine. In addition, it is beyond
doubt that high level language abstractions enable the underlying system to perform
automatic optimization. In what follows, we discuss research efforts to tackle these
problems and add the SQL flavor on top of the MapReduce framework.

1.4.1 Pig Latin

Gates et al. [23] have presented a programming language, called Pig Latin, which
takes a middle position between expressing tasks using a high-level declarative
querying model in the spirit of SQL, and low-level/procedural programming using
MapReduce. Pig Latin is implemented in the scope of the Apache Pig project5 and
is used by programmers at Yahoo! for developing data analysis tasks.

Writing a Pig Latin program is similar to specifying a query execution plan (e.g.,
a data flow graph). To experienced programmers, this method is more appealing
than encoding their task as an SQL query and then coercing the system to choose
the desired plan through optimizer hints. In general, automatic query optimization
has its limits especially with uncataloged data, prevalent user-defined functions and
parallel execution, which are all features of the data analysis tasks targeted by the
MapReduce framework.

Figure 1.10 shows an example SQL query and its equivalent Pig Latin program.
Given a URL table with the structure .url; category; pagerank/, the task of the
SQL query is to find each large category and its average pagerank of high-pagerank
URLs (>0.2). A Pig Latin program is described as a sequence of steps, where each
step represents a single data transformation. This characteristic is appealing to many
programmers. At the same time, the transformation steps are described using high-
level primitives (e.g. filtering, grouping, aggregation) much like in SQL.

Pig Latin has several other features that are important for casual ad-hoc data
analysis tasks. These features include support for a flexible, fully nested data model,

5http://incubator.apache.org/pig.

http://incubator.apache.org/pig

18 S. Sakr and A. Liu

Fig. 1.10 An example SQL query and its equivalent Pig Latin program [23]

extensive support for user-defined functions and the ability to operate over plain
input files without any schema information. In particular, Pig Latin has a simple
data model consisting of the following four types:

• Atom: An atom contains a simple atomic value, such as a string or a number, e.g.,
“alice”.

• Tuple: A tuple is a sequence of fields, each of which can be any of the data types,
e.g., (“alice”, “lakers”).

• Bag: A bag is a collection of tuples with possible duplicates. The schema of the
constituent tuples is flexible, where not all tuples in a bag need to have the same
number and type of fields

e.g.,

�
(“alice”, “lakers”)
(“alice”, (“iPod”, “apple”))

�

• Map: A map is a collection of data items, where each item has an associated key
through which it can be looked up. As with bags, the schema of the constituent
data items is flexible. However, the keys are required to be data atoms, e.g.,�

“k1”! (“alice”, “lakers”)
“k2”! “20”

�

To accommodate specialized data processing tasks, Pig Latin has extensive
support for user-defined functions. The input and output of UDFs in Pig Latin
follow its fully nested data model. Pig Latin is architected such that the parsing
of the Pig Latin program and the logical plan construction is independent of the
execution platform. Only the compilation of the logical plan into a physical plan
depends on the specific execution platform chosen. Currently, Pig Latin programs
are compiled into sequences of MapReduce jobs, which are executed using the
Hadoop MapReduce environment.

In particular, a Pig Latin program goes through a series of transformation
steps [33] before being executed, as depicted in Fig. 1.11. The parsing steps
verifies that the program is syntactically correct and that all referenced variables
are defined. The output of the parser is a canonical logical plan with a one-to-
one correspondence between Pig Latin statements and logical operators, which are
arranged in a directed acyclic graph (DAG). The logical plan generated by the
parser is passed through a logical optimizer. In this stage, logical optimizations,
such as projection pushdown, are carried out. The optimized logical plan is then

1 The Family of Map-Reduce 19

Fig. 1.11 Pig compilation
and execution steps [33]

compiled into a series of MapReduce jobs, which are then passed through another
optimization phase. The DAG of optimized MapReduce jobs is then topologically
sorted and jobs are submitted to Hadoop for execution.

1.4.2 Sawzall

Sawzall [35] is a scripting language used at Google on top of MapReduce. A Sawzall
program defines the operations to be performed on a single record of the data. There
is nothing in the language to enable examining multiple input records simultane-
ously, or even to have the contents of one input record influence the processing of
another. The only output primitive in the language is the emit statement, which
sends data to an external aggregator (e.g., Sum, Average, Maximum, Minimum)
that gathers the results from each record, after which the results are correlated
and processed. The authors argue that aggregation is done outside the language
for a couple of reasons: (1) a more traditional language can use the language
to correlate results but some of the aggregation algorithms are sophisticated and
are best implemented in a native language and packaged in some form, and (2)
drawing an explicit line between filtering and aggregation enables a high degree of
parallelism and hides the parallelism from the language itself.

Figure 1.12 depicts an example Sawzall program where the first three lines
declare the aggregators count, total and sum of squares. The keyword table

20 S. Sakr and A. Liu

count: table sum of int;
total: table sum of float;
sumOfSquares: table sum of float;
x: float = input;
emit count $<$- 1;
emit total $<$ -x;
emit sumOfSquares $<$- x * x;

Fig. 1.12 An example of a Sawzall program [35]

introduces an aggregator type, which are called tables in Sawzall even though they
may be singletons. These particular tables are sum tables which add up the values
emitted to them, ints or floats as appropriate. The Sawzall language is implemented
as a conventional compiler, written in C++, whose target language is an interpreted
instruction set, or byte-code. The compiler and the byte-code interpreter are part
of the same binary, so the user presents source code to Sawzall and the system
executes it directly. It is structured as a library with an external interface that accepts
source code which is then compiled and executed, along with bindings to connect to
externally-provided aggregators. The datasets of Sawzall programs are often stored
in Google File System (GFS) [24]. The business of scheduling a job to execute on a
cluster of machines is handled by software, called Workqueue, which creates a large-
scale time sharing system out of an array of computers and their disks. It schedules
jobs, allocates resources, reports status and collects the results.

1.4.3 SQL/MapReduce

In general, a user-defined function is a powerful database feature that allows
users to customize database functionality. Friedman et al. [22] introduced the
SQL/MapReduce (SQL/MR) UDF framework, which is designed to facilitate
parallel computation of procedural functions across hundreds of servers working
together as a single relational database. The framework is implemented as part of
the Aster Data Systems6 nCluster shared-nothing relational database.

The framework leverages ideas from the MapReduce programming paradigm
to provide users with a straightforward API through which they can implement
a UDF in the language of their choice. Moreover, it allows maximum flexibility
as the output schema of the UDF is specified by the function itself at query plan-
time. This means that a SQL/MR function is polymorphic as it can process arbitrary
input because its behavior, as well as output schema, are dynamically determined
by information available at query plan-time. This also increases reusability as the
same SQL/MR function can be used on inputs with many different schemas or

6http://www.asterdata.com/.

http://www.asterdata.com/

1 The Family of Map-Reduce 21

SELECT ...
FROM functionname(
 ON table-or-query
 [PARTITION BY expr, ...]
 ORDER BY expr, ...]
 [clausename(arg, ...) ...]
)

Fig. 1.13 Basic syntax of
SQL/MR query function [22]

with different user-specified parameters. In particular, SQL/MR allows the user to
write custom-defined functions in any programming language and insert them into
queries that otherwise leverage traditional SQL functionality. A SQL/MR function
is defined in a manner that is similar to MapReduce’s map and reduce functions.

The syntax for using a SQL/MR function is depicted in Fig. 1.13, where the
SQL/MR function invocation appears in the SQL FROM clause and consists of the
function name followed by a set of clauses that are enclosed in parentheses. The ON
clause specifies the input to the invocation of the SQL/MR function. It is important
to note that the input schema to the SQL/MR function is specified implicitly at query
plan-time in the form of the output schema for the query used in the ON clause.

In practice, a SQL/MR function can be either a mapper (Row function) or a
reducer (Partition function). The definitions of row and partition functions ensure
that they can be executed in parallel in a scalable manner. In the Row function, each
row from the input table or query will be operated on by exactly one instance of
the SQL/MR function. Semantically, each row is processed independently, allowing
the execution engine to control parallelism. For each input row, the row function
may emit zero or more rows. In the Partition function, each group of rows, as
defined by the PARTITION BY clause, will be operated on by exactly one instance
of the SQL/MR function. If the ORDER BY clause is provided, the rows within
each partition are provided to the function instance in the specified sort order.
Semantically, each partition is processed independently, allowing parallelization by
the execution engine at the level of a partition. For each input partition, the SQL/MR
partition function may output zero or more rows.

1.4.4 SCOPE

SCOPE (Structured Computations Optimized for Parallel Execution) is a scripting
language which is targeted for large-scale data analysis and is used for a variety
of data analysis and data mining applications inside Microsoft [13]. SCOPE is a
declarative language. It allows users to focus on the data transformations required
to solve the problem at hand and hides the complexity of the underlying platform
and implementation details. The SCOPE compiler and optimizer are responsible for
generating an efficient execution plan and the runtime for executing the plan with
minimal overhead.

22 S. Sakr and A. Liu

Fig. 1.14 Two equivalent SCOPE scripts in SQL-like style and in MapReduce-like style [13]

Like SQL, data is modeled as sets of rows composed of typed columns. SCOPE is
highly extensible. Users can easily define their own functions and implement their
own versions of operators: extractors (parsing and constructing rows from a file),
processors (row-wise processing), reducers (group-wise processing) and combiners
(combining rows from two inputs). This flexibility greatly extends the scope of the
language and allows users to solve problems that cannot be easily expressed in
traditional SQL. SCOPE provides a functionality which is similar to that of SQL
views. This feature enhances modularity and code reusability. It is also used to
restrict access to sensitive data. SCOPE supports writing a program using traditional
SQL expressions or as a series of simple data transformations.

Figure 1.14 illustrates two equivalent scripts in two different styles that are used
to find from a search log queries that have been requested at least 1,000 times.
In the MapReduce-like style, the EXTRACT command extracts all query string
from the log file. The first SELECT command counts the number of occurrences
of each query string. The second SELECT command retains only rows with a count
greater than 1,000. The third SELECT command sorts the rows on count. Finally,
the OUTPUT command writes the result to a file.

Microsoft has developed a distributed computing platform, called Cosmos, for
storing and analyzing massive data sets. Cosmos is designed to run on large
clusters consisting of thousands of commodity servers. Figure 1.15 shows the main
components of the Cosmos platform, described as follows:

• Cosmos Storage: A distributed storage subsystem designed to reliably and
efficiently store extremely large sequential files.

• Cosmos Execution Environment: An environment for deploying, executing and
debugging distributed applications.

• SCOPE: A high-level scripting language for writing data analysis jobs. The
SCOPE compiler and optimizer translate these scripts to efficient parallel
execution plans.

The Cosmos Storage System is an append-only file system that reliably stores
petabytes of data. The system is optimized for large sequential I/O. All writes are
append-only and concurrent writers are serialized by the system. Data is distributed

1 The Family of Map-Reduce 23

Cosmos
Files

Cosmos Storage System

SCOPE Compiler

SCOPE Runtime

SCOPE
Optimizer

SCOPE Script

Cosmos Execution Environment

Fig. 1.15 The SCOPE/Cosmos execution platform [13]

and replicated for fault tolerance and compressed to save storage and increase I/O
throughput. In Cosmos, an application is modeled as a dataflow graph: a directed
acyclic graph with vertices representing processes and edges representing data
flows. The runtime component of the execution engine is called the Job Manager,
which represents the central and coordinating process for all processing vertices
within an application.

The SCOPE scripting language resembles SQL but with C# expressions. Thus,
it reduces the learning curve for users and eases the porting of existing SQL scripts
into SCOPE. Moreover, SCOPE expressions can use C# libraries, where custom
C# classes can compute functions of scalar values, or manipulate whole rowsets.
A SCOPE script consists of a sequence of commands which are data transformation
operators that take one or more rowsets as input, perform some operation on the
data and output a rowset. Every rowset has a well-defined schema to which all its
rows must adhere. The SCOPE compiler parses the script, checks the syntax and
resolves names. The result of the compilation is an internal parse tree which is then
translated to a physical execution plan. A physical execution plan is a specification
of a Cosmos job, which describes a data flow DAG where each vertex is a program
and each edge represents a data channel. The translation into an execution plan is
performed by traversing the parse tree in a bottom-up manner.

24 S. Sakr and A. Liu

For each operator, SCOPE has an associated set of default implementation
rules. Many of the traditional optimization rules from database systems are clearly
also applicable in this new context, for example, removing unnecessary columns,
pushing down selection predicates and pre-aggregating when possible. However, the
highly distributed execution environment offers new opportunities and challenges,
making it necessary to explicitly consider the effects of large-scale parallelism
during optimization. For example, choosing the right partitioning scheme and
deciding when to partition, are crucial for finding an optimal plan. It is also
important to correctly reason about partitioning, grouping and sorting properties
and their interaction, to avoid unnecessary computations [49].

Using a similar approach to that of SCOPE, Murray and Hand [31] have
presented Skywriting as a purely-functional script language with its execution
engine for performing distributed and parallel computations. A Skywriting script
can create new tasks asynchronously, evaluate data dependencies and perform
unbounded (while-loop) iteration. This enables Skywriting to describe a more
general class of distributed computations.

1.4.5 DryadLINQ

Dryad is a general-purpose distributed execution engine introduced by Microsoft
for coarse-grain data-parallel applications [27]. A Dryad application combines
computational vertices with communication channels to form a dataflow graph.
Dryad runs the application by executing the vertices of this graph on a set of
available computers, communicating as appropriate through files, TCP pipes and
shared-memory FIFOs. The Dryad system offers to the developer fine control over
the communication graph, as well as the subroutines that live at its vertices. A Dryad
application developer can specify an arbitrary directed acyclic graph to describe the
application’s communication patterns and express the data transport mechanisms
(files, TCP pipes and shared-memory FIFOs) between the computation vertices.
This direct specification of the graph gives the developer greater flexibility to easily
compose basic common operations, leading to a distributed analogue of piping
together traditional Unix utilities, such as grep, sort and head.

Dryad is notable for allowing graph vertices (and computations in general)
to use an arbitrary number of inputs and outputs, while MapReduce restricts all
computations to take a single input set and generate a single output set. The overall
structure of a Dryad job is determined by its communication flow. A job is a directed
acyclic graph where each vertex is a program and edges represent data channels. It is
a logical computation graph that is automatically mapped onto physical resources
by the runtime. At run time, each channel is used to transport a finite sequence of
structured items. A Dryad job is coordinated by a process called the Job Manager
that runs either within the cluster or on a user’s workstation with network access
to the cluster. The job manager contains the application-specific code to construct
the job’s communication graph along with library code to schedule the work across

1 The Family of Map-Reduce 25

the available resources. All data is sent directly between vertices and thus the job
manager is only responsible for control decisions and is not a bottleneck for any
data transfers. Therefore, much of the simplicity of the Dryad scheduler and fault-
tolerance model come from the assumption that vertices are deterministic.

Dryad has its own high-level language called DryadLINQ [47]. It generalizes
execution environments, such as SQL and MapReduce, in two ways: (1) adopting
an expressive data model of strongly typed .NET objects and (2) supporting
general-purpose imperative and declarative operations on datasets within a tradi-
tional high-level programming language. DryadLINQ7 exploits LINQ (Language
INtegrated Query,8 a set of .NET constructs for programming with datasets) to
provide a powerful hybrid of declarative and imperative programming. The system
is designed to provide flexible and efficient distributed computation in any LINQ-
enabled programming language including C#, VB and F#.9 Objects in DryadLINQ
datasets can be of any .NET type, making it easy to compute with data such
as image patches, vectors and matrices. In practice, a DryadLINQ program is a
sequential program composed of LINQ expressions that perform arbitrary side-
effect-free transformations on datasets and can be written and debugged using
standard .NET development tools. The DryadLINQ system automatically translates
the data-parallel portions of the program into a distributed execution plan which
is then passed to the Dryad execution platform. Figure 1.16 illustrates the flow of
execution when a program is executed by DryadLINQ [47].

1. When a .NET user application runs, it creates a DryadLINQ expression object.
2. The application triggers a data-parallel execution, where the expression object

is handed to DryadLINQ.
3. DryadLINQ compiles the LINQ expression into a distributed Dryad execution

plan. In particular, it performs the following tasks:

(a) Decomposes the expression into subexpressions, where each expression can
be assigned to run in a separate Dryad vertex.

(b) Generates the code and static data for the remote Dryad vertices.
(c) Generates the serialization code for the required data types.

4. DryadLINQ invokes a custom Dryad job manager.
5. The job manager creates the job graph and schedules the vertices as resources

become available.
6. Each Dryad vertex executes a vertex-specific program as created in Step 3(b).
7. When the Dryad job completes successfully, it writes the data to the output

table(s).

7http://research.microsoft.com/en-us/projects/dryadlinq/.
8http://msdn.microsoft.com/en-us/netframework/aa904594.aspx.
9http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/.

http://research.microsoft.com/en-us/projects/dryadlinq/
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx
http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/

26 S. Sakr and A. Liu

Client machine

Compile

(1)

(9)

Output
Dryad Table(3)

(2)

ToDryadTable foreach

DryadLINQ

.NET

Output
Tables

Input
tables

Exec
plan

Dryad
Execution

Data center

Results

.NET
Objects

LINQ
Expr

JM

Invoke
(4)

(6)

(5)

(7)

(8)

Vertex
code

Fig. 1.16 LINQ-expression execution in DryadLINQ [47]

8. The job manager process terminates and returns control back to DryadLINQ,
which creates objects encapsulating the outputs of the execution. These objects
may be used as inputs to subsequent expressions in the user program.

9. Control returns to the user application. The iterator interface over a DryadTable
allows the user to read its contents as .NET objects.

10. The application may generate subsequent DryadLINQ expressions that can be
executed by a repetition of Steps 2–9.

1.4.6 Jaql

Jaql10 is a query language which is designed for Javascript Object Notation
(JSON),11 a data format that has become popular because of its simplicity and
modeling flexibility. JSON is a simple, yet flexible way to represent data that
ranges from flat, relational data to semi-structured, XML data. Jaql is primarily
used to analyze large-scale semi-structured data. It is a functional, declarative query
language which rewrites high-level queries (when appropriate) into a low-level

10http://code.google.com/p/jaql/.
11http://www.json.org/.

http://code.google.com/p/jaql/
http://www.json.org/

1 The Family of Map-Reduce 27

import myrecord;
count Fields = fn(records) (
 records

-> transform myrecord: :names($)
-> expand
-> group by fName = $ as occurrences
 into { name: fName, num: count (occurrences) }
);

read(hdfs("docs.dat"))
-> countFields()
-> write(hdfs("fields.dat"));

Fig. 1.17 A sample Jaql script [9]

query, consisting of Map-Reduce jobs that are evaluated using the Apache Hadoop
project. Core features include user extensibility and parallelism. Jaql consists of a
scripting language and compiler, as well as a runtime component [9]. It is able to
process data with no schema or only a partial schema. However, Jaql can also exploit
rigid schema information when it is available, for both type checking and improved
performance.

Jaql uses a very simple data model; a JDM value is either an atom, an array
or a record. Most common atomic types are supported by Jaql, including strings,
numbers, nulls and dates. Arrays and records are compound types that can be
arbitrarily nested. In more detail, an array is an ordered collection of values and
can be used to model data structures, such as vectors, lists, sets or bags. A record
is an unordered collection of name-value pairs and can model structs, dictionaries,
and maps. Despite its simplicity, JDM is very flexible. It allows Jaql to operate
with a variety of different data representations for both input and output, including
delimited text files, JSON files, binary files, Hadoop’s SequenceFiles, relational
databases, key-value stores or XML documents. Functions are first-class values in
Jaql. They can be assigned to a variable and are high-order in that they can be
passed as parameters or used as a return value. Functions are the key ingredient for
reusability as any Jaql expression can be encapsulated in a function, and a function
can be parameterized in powerful ways.

Figure 1.17 depicts an example of a Jaql script that consists of a sequence of
operators. The read operator loads raw data, in this case from Hadoop’s Distributed
File System (HDFS), and converts it into Jaql values. These values are subsequently
processed by the countFields subflow, which extracts field names and computes
their frequencies. Finally, the write operator stores the result back into HDFS.
In general, the core expressions of the Jaql scripting language include:

1. Transform: The transform expression applies a function (or projection) to every
element of an array to produce a new array. It has the form e1->transform
e2, where e1 is an expression that describes the input array and e2 is applied to
each element of e1.

28 S. Sakr and A. Liu

I/O Layer

File Systems
(hdfs, gpfs, local)

Databases
(DBMS, HBase)

Streams
(Web, Pipes)

Evaluation

MapReduce Local …

Interactive Shell Applications

Explain

Rewriter

Parser
Expr

Script

I/O Desc Value

Variables

ModulesCompiler

Fig. 1.18 The Jaql system architecture [9]

2. Expand: The expand expression is most often used to unnest an input array.
It differs from transform in two primary ways: (1) e2 must produce a value v
that is an array type, and (2) each of the elements of v is returned to the output
array, thereby removing one level of nesting.

3. Group by: Similar to SQL’s GROUP BY, Jaql’s group-by expression partitions
its input on a grouping expression and applies an aggregation expression to each
group.

4. Filter: The filter expression, e� >filter p, retains input values from e for
which predicate p evaluates to true.

5. Join: The join expression supports equijoin of 2 or more inputs. All of the options
for inner and outer joins are also supported.

6. Union: The union expression is a Jaql function that merges multiple input arrays
into a single output array. It has the form: union(e1,...) where each ei is an
array.

7. Control-Flow: The two most commonly used control-flow expressions in Jaql are
if-then-else and block expressions. The if-then-else expression
is similar to conditional expressions found in most scripting and programming
languages. A block establishes a local scope where zero or more local variables
can be declared and the last statement provides the return value of the block.

At a high-level, the Jaql system architecture, depicted in Fig. 1.18, is similar to
most database systems. Scripts are passed into the system from the interpreter or
an application, compiled by the parser and rewrite engine, and either explained
or evaluated over data from the I/O layer. The storage layer is similar to a
federated database. It provides an API to access data of different systems, including
local or distributed file systems (e.g., Hadoop’s HDFS), database systems (e.g.,
DB2, Netezza, HBase), or from streamed sources like the Web. Unlike federated
databases, however, most of the accessed data is stored within the same cluster
and the I/O API describes data partitioning, which enables parallelism with data
affinity during evaluation. Jaql derives much of this flexibility from Hadoop’s I/O

1 The Family of Map-Reduce 29

API. It reads and writes many common file formats (e.g., delimited files, JSON text,
Hadoop Sequence files). Custom adapters are easily written to map a data set to
or from Jaql’s data model. The input can even simply be values constructed in the
script itself. The Jaql interpreter evaluates the script locally on the computer that
compiled the script, but spawns interpreters on remote nodes using MapReduce.
The Jaql compiler automatically detects parallelization opportunities in a Jaql script
and translates it to a set of MapReduce jobs.

1.5 Hybrid Systems

Originally, the applications of the MapReduce framework have been mainly focus-
ing on analyzing very large non-structured datasets, e.g., web indexing, text
analytics, and graph data mining. Recently, however, as MapReduce is steadily
developing into the de facto data analysis standard, it repeatedly becomes employed
for querying structured data [7]. For a long time, relational database and its standard
query language (i.e., SQL) has dominated the deployments of data warehousing
systems and data analysis on structured data. Therefore, there has been an increasing
interest in combining MapReduce and traditional database systems in an effort
to maintain the benefits of both worlds. In the following section, we present
some systems that have been designed to achieve this goal of integrating the two
environments.

1.5.1 Hive

The Hive project12 is an open-source data warehousing solution which has been built
by the Facebook Data Infrastructure Team on top of the Hadoop environment [40].
The main goal of this project is to bring the familiar relational database concepts
(e.g., tables, columns, partitions) and a subset of SQL to the unstructured world
of Hadoop, while still maintaining the extensibility and flexibility that Hadoop
enjoyed. Thus, it supports all the major primitive types (e.g., integers, floats, strings)
as well as complex types (e.g., maps, lists, structs).

Hive supports queries expressed in an SQL-like declarative language, called
HiveQL,13 and therefore can be easily understood by anyone who is familiar
with SQL. These queries are compiled into MapReduce jobs that are executed
using Hadoop. In addition, HiveQL enables users to plug in custom MapReduce
scripts into queries. For example, the canonical MapReduce word count example
on a table of documents (Fig. 1.2) can be expressed in HiveQL as depicted in

12http://hadoop.apache.org/hive/.
13http://wiki.apache.org/hadoop/Hive/LanguageManual.

http://hadoop.apache.org/hive/
http://wiki.apache.org/hadoop/Hive/LanguageManual

30 S. Sakr and A. Liu

FROM (
MAP doctext USING ’python wc_mapper.py’ AS (word, cnt)
FROM docs
CLUSTER BY word

) a
REDUCE word, cnt USING ’python wc_reduce.py’;

Fig. 1.19 An example HiveQl query [40]

Fig. 1.19, where the MAP clause indicates how the input columns (doctext) can
be transformed using a user program (‘python wc_mapper.py’) into output columns
(word and cnt). The REDUCE clause specifies the user program to invoke (‘python
wc_reduce.py’) on the output columns of the subquery.

HiveQL supports Data Definition Language (DDL) statements, which can be
used to create, drop and alter tables in a database [41]. It allows users to load
data from external sources and insert query results into Hive tables, via the load
and insert Data Manipulation Language (DML) statements, respectively. However,
HiveQL currently does not support the update and deletion of rows in existing
tables (in particular, INSERT INTO, UPDATE and DELETE statements), which
allows the use of very simple mechanisms to deal with concurrent read and
write operations without implementing complex locking protocols. The metastore
component is the Hive’s system catalog which stores metadata about the underlying
table. This metadata is specified during table creation and reused every time the
table is referenced in HiveQL. The metastore distinguishes Hive as a traditional
warehousing solution when compared with similar data processing systems that are
built on top of MapReduce-like architectures, such as Pig Latin [33].

1.5.2 HadoopDB

Parallel database systems have been commercially available for nearly two decades
and there are now about a dozen of different implementations in the marketplace
(e.g., Teradata,14 Aster Data,15 Netezza,16 Vertica,17 ParAccel,18 Greenplum19).
The main aim of these systems is to improve performance through the par-
allelization of various operations, such as loading data, building indices and

14http://www.teradata.com/.
15http://www.asterdata.com/.
16http://www.netezza.com/.
17http://www.vertica.com/.
18http://www.paraccel.com/.
19http://www.greenplum.com/.

http://www.teradata.com/
http://www.asterdata.com/
http://www.netezza.com/
http://www.vertica.com/
http://www.paraccel.com/
http://www.greenplum.com/

1 The Family of Map-Reduce 31

evaluating queries. These systems are usually designed to run on top of a shared-
nothing architecture [38], where data may be stored in a distributed fashion and
input/output speeds are improved by using multiple CPUs and disks in parallel. On
the other hand, there are some key reasons that make MapReduce a more preferable
approach over a parallel RDBMS in some scenarios [10], such as:

• Formatting and loading a huge amount of data into a parallel RDBMS in a timely
manner is a challenging and time-consuming task.

• The input data records may not always follow the same schema. Developers often
want the flexibility to add and drop attributes, and the interpretation of an input
data record may also change over time.

• Large scale data processing can be very time consuming and therefore it is
important to keep the analysis job going even in the event of failures. While most
parallel RDBMSs have fault tolerance support, a query usually has to be restarted
from scratch, even if just one node in the cluster fails. In contrast, MapReduce
deals more gracefully with failures and can redo only the part of the computation
that was lost because of a failure.

There has been a long debate on the comparison between the MapReduce
framework and parallel database systems20 [39]. Pavlo et al. [34] have conducted
a large scale comparison between the Hadoop implementation of the MapReduce
framework and parallel SQL database management systems, in terms of perfor-
mance and development complexity. The results of this comparison have shown
that parallel database systems displayed a significant performance advantage over
MapReduce in executing a variety of data intensive analysis tasks. On the other
hand, the Hadoop implementation was significantly easier and more straightforward
to set up and use in comparison to that of the parallel database systems. MapReduce
have also shown to have superior performance in minimizing the amount of work
that is lost when a hardware failure occurs. In addition, MapReduce (with its open
source implementations) represents a very cheap solution in comparison to the
expensive parallel DBMS solutions [39].

The HadoopDB project21 is a hybrid system that tries to combine the scalability
advantages of MapReduce with the performance and efficiency advantages of
parallel databases [1]. The basic idea behind HadoopDB is to connect multiple
single node database systems (PostgreSQL) using Hadoop as the task coordinator
and network communication layer. Queries are expressed in SQL but their execution
is parallelized across nodes using the MapReduce framework; however, as much
of the single node query work as possible is pushed inside of the corresponding
node databases. Thus, HadoopDB tries to achieve fault tolerance and the ability
to operate in heterogeneous environments by inheriting the scheduling and job
tracking implementation from Hadoop. Parallely, it tries to achieve the performance
of parallel databases by doing most of the query processing inside the database
engine.

20http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/.
21http://db.cs.yale.edu/hadoopdb/hadoopdb.html.

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://db.cs.yale.edu/hadoopdb/hadoopdb.html

32 S. Sakr and A. Liu

SMS Planner

SQL Query

MapReduce Job

Master node

Hadoop core

MapReduce
FrameworkHDFS

NameNode JobTracker

InputFormat Implementations

C
atalog

D
ata

Loader

Node 1

TaskTracker

DataNodeData
base

Node 2

TaskTracker

DataNodeData
base

Node n

TaskTracker

DataNodeData
base

Database Connector

MapReduce
Job

Task with
InputFormat

Fig. 1.20 The architecture of HadoopDB [1]

Figure 1.20 illustrates the architecture of HadoopDB, which consists of two
layers: (1) a data storage layer or the Hadoop Distributed File System22 (HDFS),
and (2) a data processing layer or the MapReduce Framework. In this architecture,
HDFS is a block-structured file system managed by a central NameNode. Individual
files are broken into blocks of a fixed size and distributed across multiple DataNodes
in the cluster. The NameNode maintains metadata about the size and location of
blocks and their replicas. The MapReduce Framework follows a simple master-slave
architecture. The master is a single JobTracker and the slaves or worker nodes are
TaskTrackers. The JobTracker handles the runtime scheduling of MapReduce jobs
and maintains information on each TaskTracker’s load and available resources. The
Database Connector is the interface between independent database systems residing
on nodes in the cluster and TaskTrackers. The Connector connects to the database,
executes the SQL query and returns results as key-value pairs. The Catalog
component maintains metadata about the databases, their location, replica locations

22http://hadoop.apache.org/hdfs/.

http://hadoop.apache.org/hdfs/

1 The Family of Map-Reduce 33

and data partitioning properties. The Data Loader component is responsible for
globally repartitioning data on a given partition key upon loading and breaking
apart single node data into multiple smaller partitions or chunks. The SMS planner
extends the HiveQL translator [40] and transforms SQL into MapReduce jobs that
connect to tables stored as files in HDFS. Abouzeid et al. [2] have demonstrated
HadoopDB in action running two different application types: (1) a semantic web
application that provides biological data analysis of protein sequences, and (2) a
classical business data warehouse.

Teradata [44] has recently started to follow the same approach of integrating
Hadoop and parallel databases. It provides a fully parallel load utility to load
Hadoop data to its datawarehouse store. Moreover, it provides a database connec-
tor for Hadoop, which allows MapReduce programs to directly access Teradata
datawarehouses’ data via JDBC drivers without the need of any external steps of
exporting (from DBMS) and loading data to Hadoop. It also provides a Table user-
defined function which can be called from any standard SQL query to retrieve
Hadoop data directly from Hadoop nodes in parallel. This means that any relational
tables can be joined with the Hadoop data that are retrieved by the Table UDF, and
any complex business intelligence capability provided by Teradata’s SQL engine
can be applied to both Hadoop data and relational data. Hence, no extra steps of
exporting/importing Hadoop data to/from the Teradata datawarehouse are required.

1.6 Case Studies

MapReduce-based systems are increasingly being used for large-scale data analysis.
There are several reasons for this [28], such as:

• The interface of MapReduce is simple yet expressive. Although MapReduce
only involves two functions, map and reduce, a number of data analytical
tasks, including traditional SQL query, data mining, machine learning and graph
processing, can be expressed with a set of MapReduce jobs.

• MapReduce is flexible. MapReduce is designed to be independent of storage
systems and is able to analyze various kinds of data, structured and unstructured.

• MapReduce is scalable. An installation of MapReduce can run over thousands
of nodes on a shared-nothing cluster, while keeping to provide fine-grain fault
tolerance whereby only tasks on failed nodes need to be restarted.

The above-mentioned advantages have triggered several research efforts that aim
at applying the MapReduce framework for solving challenging data processing
problems on large scale datasets in a wide spectrum of domains. For example,
Mahout23 is an apache project which is designed with the aim of building scalable
machine learning libraries using the MapReduce framework. Ricardo [15] is a

23http://mahout.apache.org/.

http://mahout.apache.org/

34 S. Sakr and A. Liu

scalable platform for applying sophisticated statistical methods over huge data
repositories. It is designed to facilitate the trading between R (a famous statistical
software) and Hadoop, where each trading partner performs the tasks that it does
best. In particular, this trading is performed in a way that R sends aggregation-
processing queries to Hadoop, while Hadoop sends aggregated data to R for
advanced statistical processing or visualization.

MapDupReducer [43] is a MapReduce-based system which has been developed
for supporting the problem of near duplicate detection over massive datasets.
Vernica et al. [42] have proposed an approach to efficiently perform set-similarity
joins in parallel using the MapReduce framework. In particular, they have proposed
a 3-stage approach for end-to-end set-similarity joins. The approach takes as input a
set of records and outputs a set of joined records based on a set-similarity condition.
It partitions the data across nodes in order to balance the workload and minimize the
need for replication. Morales et al. [21] have presented two matching algorithms,
GreedyMR and StackMR, which are geared for the MapReduce paradigm and aim
to distribute content from information suppliers to information consumers on social
media applications. In particular, they seek to maximize the overall relevance of the
matched content from suppliers to consumers, while regulating the overall activity.

Surfer [14] is a large scale graph processing engine which is designed to execute
in the cloud. Surfer provides two basic primitives for programmers: MapReduce
and propagation. In this engine, MapReduce processes different key-value pairs
in parallel, and propagation is an iterative computational pattern that transfers
information along the edges from a vertex to its neighbors in the graph. In principle,
these two primitives are complementary in graph processing where MapReduce
is suitable for processing flat data structures (e.g., vertex-oriented tasks), while
propagation is optimized for edge-oriented tasks on partitioned graphs.

Lattanzi et al. [30] have presented an approach for solving graph problems using
the MapReduce framework. In particular, they present parallelized algorithms for
minimum spanning trees, maximal matchings, approximate weighted matchings,
approximate vertex and edge covers and minimum cuts. Cary et al. [12] presented
an approach for applying the MapReduce model in the domain of spatial data
management. In particular, they focus on the bulk-construction of R-Trees and aerial
image quality computation, which involves vector and raster data.

Abouzeid et al. [2] have demonstrated that HadoopDB in conjunction with a
column-oriented database can provide a promising solution for supporting efficient
and scalable semantic web applications. Ravindra et al. [36] have presented an
approach for parallelizing the processing of analytical queries on RDF graph
models. In particular, they extended the function library of Pig Latin to include
functions that aid in operator-coalescing and look-ahead processing to reduce the
I/O costs that arise from repeated processing and materialization of intermediate
results.

1 The Family of Map-Reduce 35

1.7 Discussion and Conclusions

MapReduce has emerged as a popular way to harness the power of large clusters
of computers. Currently, MapReduce serves as a platform for a considerable
amount of massive data analysis. It allows programmers to think in a data-centric
fashion where they can focus on applying transformations to sets of data records,
while the details of distributed execution and fault tolerance are transparently
managed by the MapReduce framework. Gu and Grossman [25] have reported the
following important lessons, which they have learned from their experiments with
the MapReduce framework:

• The importance of data locality. Locality is a key factor, especially when relying
on inexpensive commodity hardware.

• Load balancing and the importance of identifying hot spots. With poor load
balancing, the entire system can be waiting for a single node. Thus, it is important
to eliminate any “hot spots”, which can be caused by data access (accessing data
from a single node) or network I/O (transferring data into or out of a single node).

• Fault tolerance comes with a price. In some cases, fault tolerance introduces
extra overhead in order to replicate the intermediate results. For example, in the
cases of running on small to medium sized clusters, it might be reasonable to
favor performance and re-run any failed intermediate task when necessary.

• Streams are important. Streaming is important in order to reduce the total running
time of MapReduce jobs.

Jiang et al. [28] have conducted an in-depth performance study of MapReduce
using its open source implementation, Hadoop. As an outcome of this study,
they identified some factors that can have significant performance effect on the
MapReduce framework. These factors are described as follows:

• Although MapReduce is independent of the underline storage system, it still
requires the storage system to provide efficient I/O modes for scanning data. The
experiments of the study on HDFS show that direct I/O outperforms streaming
I/O by 10–15 %.

• MapReduce can utilize three kinds of indices, namely range-indices, block-level
indices and database indexed tables, in a straightforward way. The experiments
of the study show that the range-index improves the performance of MapReduce
by a factor of 2 in the selection task and a factor of 10 in the join task when
selectivity is high.

• There are two kinds of decoders for parsing the input records: mutable decoders
and immutable decoders. The study claims that only immutable decoders intro-
duce performance bottleneck. To handle database-like workloads, MapReduce
users should strictly use mutable decoders. A mutable decoder is faster than an
immutable decoder by a factor of 10, and improves the performance of selection
by a factor of 2. Using a mutable decoder, even parsing the text record is efficient.

• Map-side sorting exerts negative performance effect on large aggregation tasks,
which require nontrivial key comparisons and produce millions of groups.

36 S. Sakr and A. Liu

Therefore, fingerprinting-based sort can be used to significantly improve the
performance of MapReduce on such aggregation tasks. The experiments show
that fingerprinting-based sort outperforms direct sort by a factor of 4–5, and
improves overall performance of the job by 20–25%.

• The scheduling strategy affects the performance of MapReduce, as it can be
sensitive to the processing speed of slave nodes, and slows down the execution
time of the entire job by 25–35% [48].

The experiments of the study show that with proper engineering for these factors,
the performance of MapReduce can be improved by a factor of 2.5–3.5, and
approaches the performance of Parallel Databases.

In general, to run a single program in a MapReduce framework, a number of
tuning parameters (e.g. memory allocation, concurrency, I/O optimization, network
bandwidth usage) have to be set by users or system administrators. In practice, users
may often run into performance problems because they do not know how to set
these parameters. In addition, as MapReduce is a relatively new technology, it is
not easy to find qualified administrators. Babu [6] has proposed some techniques
to automate the setting of tuning parameters for MapReduce programs. The aim
of these techniques is to provide good out-of-the-box performance for ad hoc
MapReduce programs that run on large datasets. Babu suggested the following
research agenda to automatically configure the parameters for MapReduce jobs:

• There is a need to conduct a comprehensive empirical study with a representative
class of MapReduce programs and different cluster configurations to understand
(and potentially model) parameter impacts, interactions, and response surfaces.

• Developing cost models that are useful to recommend good parameter settings
for MapReduce job configuration parameters.

• Tune the performance of a MapReduce program that is run repeatedly (e.g., for
daily report generation) and whose current performance is unsatisfactory.

• Developing mechanisms that can automatically generate an execution plan,
which is composed of one or more MapReduce jobs for a higher-level operation,
like join.

The cluster-level energy management of the MapReduce framework is another
interesting research direction. Lang and Patel [29] have investigated the approach
to power down (and power up) MR nodes in order to save energy in periods of
low utilization. In particular, they compared between two strategies for MR energy
management: (1) Covering Set (CS) strategy that keeps only a small fraction of
the nodes powered up during periods of low utilization, and (2) All-In Strategy
(AIS) that uses all the nodes in the cluster to run a workload and then powers
down the entire cluster. The comparison shows that there are two crucial factors
that affect the effectiveness of these two methods: (1) the computational complexity
of the workload, and (2) the time taken to transition nodes to and from a low power
(deep hibernation) state to a high performance state. The comparison evaluation also
shows that CS is more effective than AIS only when the computational complexity
of the workload is low (e.g., linear), and that the time it takes for the hardware to

1 The Family of Map-Reduce 37

transition a node to and from a low power state is a relatively large fraction of the
overall workload time (i.e., the workload execution time is small). In all other cases,
the AIS shows better performance over CS in terms of energy savings and response
time performance.

We believe that this survey of the MapReduce family of approaches would be
useful for the future development of MapReduce-based data processing systems.
In addition, we are convinced that there is still room for further optimization and
advancement in several directions on the spectrum of the MapReduce framework
that is still required to bring forward the vision of providing large scale data analysis
as a commodity for novice end-users.

References

1. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Rasin, D.A., Silberschatz, A.: HadoopDB: an
architectural hybrid of MapReduce and DBMS technologies for analytical workloads. PVLDB
2(1), 922–933 (2009)

2. Abouzeid, A., Bajda-Pawlikowski, K., Huang, J., Abadi, D., Silberschatz, A.: HadoopDB in
action: building real world applications. In: SIGMOD, Indianapolis, 2010, pp. 1111–1114

3. Afrati, F., Ullman, J.: Optimizing joins in a map-reduce environment. In: EDBT, Lausanne,
2010, pp. 99–110

4. Alvaro, P., Hellerstein, J., Elmeleegy, K., Condie, T., Conway, N., Sears, R.: MapReduce
online. In: NSDI, San Jose, 2010

5. Armbrust, M., Fox, A., Rean, G., Joseph, A., Katz, R., Konwinski, A., Gunho, L., David, P.,
Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: a Berkeley view of cloud computing,
Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley, Tech. Rep.
UCB/EECS, vol. 28, 2009

6. Babu, S.: Towards automatic optimization of MapReduce programs. In: SoCC, Indianapolis,
2010, pp. 137–142

7. Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Paulson, E.: HadoopDB in action: efficient
processing of data warehousing queries in a split execution environment. In: SIGMOD, Athens,
2011, pp. 1165–1176

8. Bell, G., Gray, J., Szalay, A.: Petascale computational systems. IEEE Comput. 39(1), 110–112
(2006)

9. Beyer, K., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M., Kanne, C., Ozcan, F., Shekita,
E.: Jaql: a scripting language for large scale semistructured data analysis. PVLDB 4(11),
1272–1283 (2011)

10. Blanas, S., Patel, J., Ercegovac, V., Rao, J., Shekita, E., Tian, Y.: A comparison of join
algorithms for log processing in MapReduce. In: SIGMOD, Indianapolis, 2010, pp. 975–986

11. Bu, Y., Howe, B., Balazinska, M., Ernst, M.: HaLoop: efficient iterative data processing on
large clusters. PVLDB 3(1), 285–296 (2010)

12. Cary, A., Sun, Z., Hristidis, V., Rishe, N.: Experiences on processing spatial data with
MapReduce. In: SSDBM, New Orleans, 2009, pp. 302–319

13. Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.: SCOPE:
easy and efficient parallel processing of massive data sets. PVLDB 1(2), 1265–1276 (2008)

14. Chen, R., Weng, X., He, B., Yang, M.: Large graph processing in the cloud. In: SIGMOD,
Indianapolis, 2010, pp. 1123–1126

15. Das, S., Sismanis, Y., Beyer, K., Gemulla, R., Haas, P., McPherson, J.: Ricardo: integrating R
and Hadoop. In: SIGMOD, Indianapolis, 2010, pp. 987–998

38 S. Sakr and A. Liu

16. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: OSDI,
San Francisco, 2004, pp. 137–150

17. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

18. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun. ACM 53(1),
72–77 (2010)

19. Dittrich, J., Quiane-Ruiz, J., Jindal, A., Kargin, Y., Setty, V., Schad, J.: Hadoop++: making a
yellow elephant run like a cheetah (without it even noticing). PVLDB 3(1), 518–529 (2010)

20. Eltabakh, M., Tian, Y., Ozcan, F., Gemulla, R., Krettek, A., McPherson, J.: CoHadoop: flexible
data placement and its exploitation in Hadoop. PVLDB 4(9), 575–585 (2011)

21. Francisci Morales, G., Gionis, A., Sozio, M.: Social content matching in MapReduce. PVLDB
4(7), 460–469 (2011)

22. Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/MapReduce: a practical approach to self-
describing, polymorphic, and parallelizable user-defined functions. PVLDB 2(2), 1402–1413
(2009)

23. Gates, A., Natkovich, O., Chopra, S., Kamath, P., Narayanam, S., Olston, C., Reed, B.,
Srinivasan, S., Srivastava, U.: Building a highlevel data ow system on top of MapReduce:
the pig experience. PVLDB 2(2), 1414–1425 (2009)

24. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. In: SOSP, Bolton Landing,
2003, pp. 29–43

25. Gu, Y., Grossman, R.: Lessons learned from a year’s worth of benchmarks of large data clouds.
In: SC-MTAGS, Portland, 2009

26. Hey, T., Tansly, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scientific Discovery.
Microsoft Research, Redmond (2009)

27. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel programs
from sequential building blocks. In: EuroSys, Lisbon, 2007, pp. 59–72

28. Jiang, D., Chin Ooi, B., Shi, L., Wu, S.: The performance of MapReduce: an in-depth study.
PVLDB 3(1), 472–483 (2010)

29. Lang, W., Patel, J.: Energy management for MapReduce clusters. PVLDB 3(1), 129–139
(2010)

30. Lattanzi, S., Moseley, B., Suri, S., Vassilvitskii, S.: Filtering: a method for solving graph
problems in MapReduce. In: SPAA, San Jose, 2011, pp. 85–94

31. Murray, D., Hand, S.: Scripting the cloud with Skywriting. In: HotCloud, USENIX Workshop,
Boston, 2010

32. Nykiel, T., Potamias, M., Mishra, C., Kollios, G., Koudas, N.: MRShare: sharing across
multiple queries in MapReduce. PVLDB 3(1), 494–505 (2010)

33. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign
language for data processing. In: SIGMOD, Vancouver, 2008, pp. 1099–1110

34. Pavlo, A., Paulson, E., Rasin, A., Abadi, D., DeWitt, D., Madden, S., Stonebraker, M.:
A comparison of approaches to large-scale data analysis. In: SIGMOD, Providence, 2009,
pp. 165–178

35. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the data: parallel analysis with
Sawzall. Sci. Program. 13(4), 277–298 (2005)

36. Ravindra, P., Deshpande, V., Anyanwu, K.: Towards scalable RDF graph analytics on
MapReduce. In: MDAC, Raleigh, 2010

37. Sakr, S., Liu, A., Batista, D., Alomari, M.: Hive – a survey of large scale data management
approaches in cloud environments. IEEE Commun. Surv. Tutor. 13(3), 311–336 (2011)

38. Stonebraker, M.: The case for shared nothing. IEEE Database Eng. Bull. 9(1), 4–9 (1986)
39. Stonebraker, M., Abadi, D., DeWitt, D., Madden, S., Paulson, E., Pavlo, A., Rasin, A.:

MapReduce and parallel DBMSs: friends or foes? Commun. ACM 53(1), 64–71 (2010)
40. Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy,

R.: Hive – a warehousing solution over a map-reduce framework. PVLDB 2(2), 1626–1629
(2009)

1 The Family of Map-Reduce 39

41. Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy,
R.: Hive – a petabyte scale data warehouse using Hadoop. In: ICDE, Long Beach, 2010,
pp. 996–1005

42. Vernica, R., Carey, M., Li, C.: Efficient parallel set-similarity joins using MapReduce. In:
SIGMOD, Indianapolis, 2010, pp. 495–506

43. Wang, C., Wang, J., Lin, X., Wang, W., Wang, H., Li, H., Tian, W., Xu, J., Li, R.:
MapDupReducer: detecting near duplicates over massive datasets. In: SIGMOD, Indianapolis,
2010, pp. 1119–1122

44. Xu, Y., Kostamaa, P., Gao, L.: Integrating Hadoop and parallel DBMS. In: SIGMOD,
Indianapolis, 2010, pp. 969–974

45. Yang, H., Parker, D.: Traverse: simplified indexing on large map-reduce-merge clusters. In:
DASFAA, Brisbane, 2009, pp. 308–322

46. Yang, H., Dasdan, A., Hsiao, R., Parker, D.: Map-reduce-merge: simplified relational data
processing on large clusters. In: SIGMOD, Beijing, 2007, pp. 1029–1040

47. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P., Currey, J.: DryadLINQ:
a system for general-purpose distributed data-parallel computing using a high-level language.
In: OSDI, San Diego, 2008, pp. 1–14

48. Zaharia, M., Konwinski, A., Joseph, A., Katz, R., Stoica, I.: Improving MapReduce perfor-
mance in heterogeneous environments. In: OSDI, San Diego, 2008, pp. 29–42

49. Zhou, J., Larson, P., Chaiken, R.: Incorporating partitioning and parallel plans into the SCOPE
optimizer. In: ICDE, Long Beach, 2010, pp. 1060–1071

Chapter 2
Optimization of Massively Parallel Data Flows

Fabian Hueske and Volker Markl

Abstract Massively parallel data analysis is an emerging research topic that is
motivated by the continuous growth of data sets and the rising complexity of data
analysis tasks. To facilitate the analysis of big data, several parallel data processing
frameworks, such as MapReduce and parallel data flow processors, have emerged.
However, the implementation and tuning of parallel data analysis tasks requires
expert knowledge and is very time-consuming and costly. Higher-level abstraction
frameworks have been designed to ease the definition of analysis tasks. Optimizers
can automatically generate efficient parallel execution plans from higher-level
task definitions. Therefore, optimization is a crucial technology for massively
parallel data analysis. This chapter presents the state of the art in optimization of
parallel data flows. It covers higher-level languages for MapReduce, approaches to
optimize plain MapReduce jobs, and optimization for parallel data flow systems.
The optimization capabilities of those approaches are discussed and compared with
each other. The chapter concludes with directions for future research on parallel data
flow optimization.

2.1 Introduction

Today, many companies and research groups from various domains are facing
challenges due to two ongoing trends. First, the amount of data that needs to
be processed grows at unpreceded rates [60]. Second, the depth of data analysis
steadily increases, i.e., analysis tasks become more complex [25]. Companies and
facilities that are affected by these trends come from the Internet business, biology,
climate, or astronomy research, just to name a few [21]. The sheer size of the
data sets prohibits the use of centralized systems and requires distributed hardware

F. Hueske (�) • V. Markl
Technische Universität Berlin, Berlin, Germany
e-mail: fabian.hueske@tu-berlin.de; volker.markl@tu-berlin.de

A. Gkoulalas-Divanis and A. Labbi (eds.), Large-Scale Data Analytics,
DOI 10.1007/978-1-4614-9242-9__2, © Springer Science+Business Media New York 2014

41

mailto:fabian.hueske@tu-berlin.de
mailto:volker.markl@tu-berlin.de

42 F. Hueske and V. Markl

architectures. Shared-nothing systems based on many commodity servers are very
scalable and provide impressive I/O bandwidth due to the large number of hard
disks. However, software frameworks running on such architectures must be capable
of handling node failures which become very common at large scales.

In 2004, Google promoted a software stack consisting of MapReduce [26] and
the Google File System (GFS) [35] to process huge amounts of data on large
clusters of commodity hardware. MapReduce offers a simple interface to implement
parallel data analysis tasks. Most aspects that make parallel software development
challenging, i.e., communication, scheduling, and fault-tolerance, do not need to be
handled by the programmer. Instead the MapReduce execution framework takes care
of those issues. Since its publication, the MapReduce paradigm has become very
popular. The Apache Hadoop project [7] provides open-source implementations of
MapReduce and GFS.

MapReduce differs from traditional approaches to manage and analyze large data
sets. David DeWitt and Micheal Stonebraker argue that MapReduce is “a major
step backwards” because it neglects 40 years of database research. Specifically,
they criticize the lack of schema information, sophisticated data access methods
and query processing algorithms, a declarative language interface, and a query
optimizer. Those features had significant share in the success of relational database
systems. However, the research and open-source communities, as well as industry,
have started numerous efforts to improve MapReduce in many aspects, e.g., by
building on top of MapReduce, extending it, or providing advanced MapReduce
algorithms.

While using MapReduce as a paradigm for massively parallel data analytics has
been very popular, alternative systems have been built [15, 16, 45]. These frame-
works process arbitrary acyclic data flows in a parallel fashion and incorporate many
techniques of traditional parallel database systems. In contrast to MapReduce which
includes a fixed execution model, the execution layer of parallel data flow processors
is much more flexible.

However, MapReduce as well as parallel data flow systems have in common
that implementation and tuning of massively parallel data analysis tasks requires
expert knowledge and is very time-consuming and costly. Several approaches, such
as higher-level languages and parallel programming models, have been proposed to
ease the definition of complex parallel data analysis tasks. Tasks defined on such a
level of abstraction must be compiled into an execution plan in order to be processed
by an execution framework. Optimizers automatically generate plans to efficiently
execute complex data analysis tasks at large scales. Therefore, optimization is a
crucial aspect for massively parallel data analysis.

This chapter discusses the state-of-the-art in massively parallel data flow opti-
mization. Although parallel Relational Database Management Systems (RDBMSs)
process parallel data flows, we do not cover this well-researched domain and focus
on current approaches, such as MapReduce and Dryad. Many approaches published
in recent years target the popular MapReduce programming and execution model.
Much work was proposed to improve MapReduce itself or to integrate techniques
which are well-known from the domain of relational databases. Some of these

2 Optimization of Massively Parallel Data Flows 43

approaches increase the optimization potential of MapReduce. Due to the amount
of publications in this context, we restrict the scope of the chapter to frameworks
that provide a user front end to specify data analysis tasks, an optimizer, and an
execution engine to process the optimized task.

Besides work targeting the popular MapReduce model, a couple of alternative
systems for large scale data analysis have been built. These systems are based on
massively parallel data flow engines. Due to their flexibility to process arbitrary
acyclic data flows, these systems are well suited for optimization. On top of these
flexible execution engines, innovative approaches to specify data analysis tasks
have been developed that incorporate sophisticated optimizers capable of many
optimizations known from parallel relational database systems.

The chapter is structured as follows. Section 2.2 recapitulates the basics of
query optimization in parallel relational database systems and the MapReduce
programming and execution models. The next sections present the state-of-the-art
in optimization of massively parallel data flows. Section 2.3 discusses higher-
level languages for MapReduce and Sect. 2.4 presents approaches to optimize
plain MapReduce jobs. In Sect. 2.5 parallel data flow systems, their programming
interfaces, and optimization capabilities are discussed. A summary and comparison
of the presented approaches is given in Sect. 2.6. Finally, Sect. 2.7 proposes areas of
future work and concludes the chapter.

2.2 Background

This section provides a brief overview of well-known techniques relevant to the
topics discussed in this chapter. We shortly recapitulate optimization in parallel rela-
tional database systems in Sect. 2.2.1 and give an introduction into the MapReduce
paradigm in Sect. 2.2.2.

2.2.1 Query Optimization in Parallel RDBMSs

Query optimization is one of the most extensively researched topics in the field
of information management. The popularity of SQL and the relational data model
necessitated and powered the advances in database optimization. In relational
database systems, the optimization potential rises from the relational algebra and
the declarative query language SQL. Rather than imperatively specifying what
should be done, SQL queries define the desired result. Declarative queries give a
database system the freedom to decide how to compute the requested result. Since
there are many ways to execute a single query, the goal of query optimization is to
find the most efficient execution plan for a given query. We first give a high-level
overview of database query optimization in general and then discuss issues that
emerge in the context of parallel database systems.

44 F. Hueske and V. Markl

Most modern database optimizers follow a three-staged approach [40]. After the
query is parsed, syntactically checked, and compiled into an internal representation,
logical optimization is performed. This is done by logically rewriting the internal
query representation. Common rewrite rules are selection and projection push-
down, incorporation of views and un-nesting of subqueries. Since these rules are
expected to generally improve query performance, they are applied when possible.

The third step is physical optimization and generates a physical execution
plan. This process includes the choice of physical operators and access paths, and
determines the order of joins.1 There are two common approaches to enumerate
plans in physical optimization: bottom-up and top-down. Bottom-up approaches
enumerate candidate execution plans by starting at the base relations and finishing
at the root of the execution plan. Commonly, dynamic programming techniques are
used to construct an optimal plan based on its optimal subplans [51,58]. In contrast,
top-down enumeration techniques start at the root of an execution plan and move
towards the base relations of a query. Branch and bound algorithms are often used to
prune large fractions of the search space [32, 36]. All techniques rely on the ability
to estimate the cost of a subplan. Cost estimates are used to compare equivalent
subplans and to prune the search space. Therefore, accurate estimates are crucial for
quality and performance of the optimization.

The cost model is a collection of functions that compute a cost metric, such as
resource consumption or response time. Input parameters of these functions include
statistics of the input data (e.g., cardinalities, distributions), query properties (e.g.,
local and join predicates), and the amount of available resources (e.g., memory and
CPU). The quality of the cost estimates significantly depends on the accuracy of the
input data statistics. The optimizer retrieves such information from a component,
called catalog, which stores metadata, such as table schemas and data statistics.

Query optimizers for shared-nothing parallel database systems must take several
additional aspects into account that blow the search space [27]. Parallel execution
plans consist of subplans that are concurrently executed on multiple machines
and linked by data reorganization steps, such as partitionings. Multiple database
instances process a query in parallel and ship partial results over the network in
order to compute the final result. Contrary to centralized systems, where costs for
disk I/O are predominant, network I/O costs account for the biggest portion of the
absolute costs in parallel database systems. Therefore, parallel cost models must
take shipping costs and concurrent execution into account [47].

In order to reduce the amount of data shipped over the network, several
techniques have been proposed. Data placement strategies, such as partitioning,
replication and co-location, enable the local computation of expensive operations,
such as joins and aggregations [47]. In many cases, large fractions of a query
can be processed without any network communication. Reasoning about existing
partitionings can significantly reduce the amount of shipped data and improve the

1The optimal join order depends on the choice of the physical operators. Therefore, join ordering
is done as part of the physical optimization, although it is a logical rewrite.

2 Optimization of Massively Parallel Data Flows 45

query runtime. Further techniques to reduce network traffic are semi-join reduction
and partial aggregation. Semi-join reduction improves distributed joins and reduces
relations prior to shipping, by filtering out tuples which will not match in the join
[17, 47]. Partial aggregation is similar to the MapReduce’s Combiner and reduces
shipped data sets by locally applying partial aggregation functions.

Most database systems follow one of two approaches to incorporate parallelism
into their optimizer. Either, the characteristics of the parallel execution environment
are integrated into an existing optimizer framework or an external parallelizer is
called after the query was optimized for a centralized environment. Due to lack of
space, we do not discuss the different approaches in detail here. Reference [52] gives
a detailed list of work in this context.

2.2.2 MapReduce

Google proposed MapReduce as an approach to process huge amounts of data in
a massively parallel fashion [26]. This paper introduces MapReduce as a program-
ming model and an execution model. Since its publication, MapReduce has gained
a lot of attraction in research, industry and the open-source community. A couple
of MapReduce frameworks have been implemented, among them the popular
Apache Hadoop framework [7]. Numerous MapReduce algorithms, extensions, and
components that are based on Hadoop have been published.

This section provides a brief overview of MapReduce. We start with the
MapReduce programming model and continue with the execution model. Finally,
MapReduce’s strengths and weaknesses, with respect to optimization, are discussed.

2.2.2.1 MapReduce Programming Model

The parallel MapReduce programming model is inspired by functional program-
ming and is very simple in its essence [26]. The programming model is based on
the principles of data parallelism, which enables processing at large scale. Data is
distributed over multiple compute nodes, each working on a subset of the data.

MapReduce’s data model are pairs of keys and values which can be of any
user-defined type. Atomic types, such as integer values, are supported as well as
complex data structures, e.g., hash tables or nested structures. MapReduce programs
consist of two second-order functions, called Map and Reduce, each processing
a bag of key/value pairs. A program is specified by implementing two first-order
user functions, one for Map and one for Reduce. These implementations can
perform arbitrary computations. The second-order functions Map and Reduce call
their first-order functions with subsets of their input. All calls of user functions
are independent from each other, which is the prerequisite for data parallelism.
Map and Reduce differ in the way they build the subsets of key/value pairs to
call the user code. Map calls its first-order function for each single key/value pair

46 F. Hueske and V. Markl

Map Reduce
Map UDF Call

Map UDF Call

Map UDF Call

Map UDF Call

Map UDF Call

Map UDF Call

Reduce UDF Call

Reduce UDF Call

Reduce UDF Call

Input
Pairs

Intermediate
Pairs

Result
Pairs

Fig. 2.1 The MapReduce programming model

separately. In theory, each pair could be processed on a dedicated machine due to
the independence of user code calls. Reduce calls its user function with a group of
key/value pairs, where a group consists of all pairs that share the same key. Both
user functions can modify the type and value of keys and values and emit none, one
or multiple pairs.

A MapReduce program has a fixed structure that is shown in Fig. 2.1. A data
source reads the input data and generates key/value pairs. Each pair is independently
processed by Map. Pairs resulting from Map are handed to Reduce which processes
them group-wise per key. Finally, the result of the Reduce function is emitted and
the program finishes.

2.2.2.2 MapReduce Execution Model

Along with the programming model, Dean et al. [26] introduce a model to execute
MapReduce programs at large scale in a fault tolerant fashion. The architectural
stack founds on a distributed file system, such as GFS [35]. The files stored in the
distributed file system are split into fixed-sized chucks. The chunks are distributed
and replicated among the nodes that belong to the file system cluster. Distribution
provides high performance parallel scans. Replication, on the other hand, ensures
fault tolerance and availability.

Figure 2.2 depicts the execution of a MapReduce job. A MapReduce job is split
into m Map and n Reduce tasks. Each task is scheduled to a compute node of the
cluster and processes a subset of the overall data. The m Map tasks read chunks of
the input file in parallel from the distributed file system. A task generates key/value
pairs from its chunk and hands them individually to the Map user function. All pairs
that are emitted from the Map function are collected. The pairs are partitioned into
n buckets using a deterministic partitioning function that is applied to the key. Each
bucket is written to the disk of the Map node. The i -th Reduce task collects from all
Map nodes their i -th buckets, pulls them over the network, and sorts them by key in

2 Optimization of Massively Parallel Data Flows 47

Map Task 2 Map Task 3Map Task 1

Reduce Task 1 Reduce Task 3Reduce Task 2

Generate K/V Pairs

Partition

Collect

Sort

Write K/V Pairs

Map UDF

Reduce UDF

Read File Chunk

Generate K/V Pairs

Partition

Collect

Sort

Write K/V Pairs

Map UDF

Reduce UDF

Read File Chunk

Generate K/V Pairs

Partition

Collect

Sort

Write K/V Pairs

Map UDF

Reduce UDF

Read File Chunk

Fig. 2.2 The MapReduce execution model

order to obtain a sequence of key/value pairs which is grouped by key.2 The Reduce
task calls the Reduce user function for each key-group and writes all pairs emitted
by the function to the distributed file system. The job is finished after all Map and
Reduce tasks are finished.3

2.2.2.3 MapReduce and Optimization

The popularity of the MapReduce paradigm is due to its simple programming
interface and the highly scalable and fault-tolerant execution model. In contrast to
parallel database systems, MapReduce frameworks are much easier to setup and
maintain, and enable ad-hoc analysis of large data sets.

These properties, however, pose several challenges for optimization as it is
known from relational database systems. MapReduce jobs are specified using
user-defined functions which impedes reasoning about the semantics of a job.
The lack of schema and data statistics prohibits most cost-based optimization
approaches. The usage of a distributed file system for data storage complicates the
application of sophisticated storage and data placement approaches, such as indexes
and data co-location. Finally, the fixed execution strategy reduces the degrees of
freedom for physical optimization. However, some MapReduce systems, such as

2Hadoop’s implementation varies from the original paper by performing partial sorts already within
the Map task. Subsequently, the Reduce task merges the sorted buckets.
3Due to lack of space, we do not explain the execution of the optional Combiner. Instead, we refer
the reader to the original paper [26].

48 F. Hueske and V. Markl

Hadoop, provide more interfaces than Map and Reduce [28] and many configuration
parameters [13]. In combination with alternative implementations for operations,
such as for joins, these options span the search space for physical optimization. The
approaches presented in the following sections address subsets of these challenges.

2.3 Higher-Level Languages for MapReduce

The motivation for higher-level languages on top of MapReduce is multifold. First,
writing data processing tasks with MapReduce requires programming experience
and familiarity with the programming model. This is even more true for the imple-
mentation of efficient programs and tasks that do not nicely fit the MapReduce
model. The development of such complex tasks is often very time consuming.
Second, many data processing tasks, such as filters, aggregations or joins, are
commonly used. Therefore, reuse of existing code is highly advisable. Finally,
many users of large-scale analytical platforms are analysts with a limited technical
background.

Higher-level languages provide well defined data models and implementations
of a set of common operations and allow non-technical persons to analyze massive
data sets. Furthermore, they significantly speed up development of analysis tasks
due to their high-level abstraction and re-usability.

Since MapReduce’s introduction, a couple of higher-level languages have been
proposed. Among them are Pig, Hive, Jaql, Sawzall and Cascading. Cascading
differs from the others by not providing a language interface. Instead, it offers
a Java API to define higher-level data flows, which are compiled to MapReduce
without applying any optimization [23]. Sawzall is a low-level language proposed
by Google [57]. It provides a scripting interface to ease the definition of MapReduce
jobs rather than enabling the specification of complex analysis tasks. This section
focuses on Pig, Hive and Jaql, which are semantically rich languages and perform
actual optimization. These languages differ in their data models, supported opera-
tions, extensibility and additional features. All have in common that their queries
are optimized and compiled to MapReduce programs

In the following, we present Pig, Hive, and Jaql. Subsequent to that introduc-
tion, we point out the differences between optimizing higher-level languages for
MapReduce and SQL for parallel DBMSs. We conclude this section discussing
optimizations that are applied to generate efficient MapReduce programs.

2.3.1 Overview of Higher-Level Languages

This section gives a short overview of prominent higher-level languages for the
MapReduce programming model. We present their data and operator models and
discuss their distinguishing features.

2 Optimization of Massively Parallel Data Flows 49

2.3.1.1 Pig

The Apache Pig [10] project develops a platform for analyzing and processing
large data sets. Pig was started at Yahoo! Research [34, 55] and became an open-
source project in September 2008. Since then, it evolved to one of the most
recognized projects in Apache’s Hadoop environment. The platform features a
scripting language for data analysis and a compiler that translates scripts into
Hadoop MapReduce jobs.

Pig operates on a semi-structured and nested data model. Atomic and composed
data types, such as numeric values, text, records, bags and associative maps, are sup-
ported. Data types can be arbitrarily nested. Many of Pig’s operators are known from
relational algebra or operate on nested data. The operators have been chosen with
a focus on parallel execution. Therefore, non-equi-joins and correlated subqueries
are not supported. However, Pig can be easily extended by user-defined operators.
Pig follows a procedural programming style, i.e., scripts are composed step by step.
Each step performs a single or very few simple transformations or data operations
such as selection, grouping, or joining. The procedural style is an obvious contrast
to SQL’s declarative style. Another difference to SQL is that Pig scripts can compute
more than one result set. Due to its procedural programming style, extensive support
for user-defined operations and handling of semi-structured data, Pig is well suited
for complex data flow definitions, such as ETL processes.

2.3.1.2 Hive

Hive [8, 62, 63] is a data warehouse solution on top of Apache Hadoop. It was
designed at Facebook and joined the Apache Hadoop ecosystem as a second higher-
level language next to Pig. The first public version was released in April 2009.

Hive stores data as tables in Hadoop’s file system HDFS. Tables are organized
in partitions and smaller units, called buckets. Similar to Pig, Hive’s data model
consists of atomic types, maps, lists and struct types. Arbitrary nesting of types is
supported, as well as user-defined data types. In contrast to Pig, Hive features a
system catalog, called Metastore, which holds schema and partitioning information
of the data imported and managed by Hive. Hive’s query language resembles SQL
and follows its declarative programming style, which helps users who are familiar
with SQL. A common feature of Hive and Pig is the ability to chain and branch
queries. This can be used to compute more than one result. The Metastore and
the SQL-like language are Hive’s main features that qualify it as a large-scale data
warehouse.

50 F. Hueske and V. Markl

2.3.1.3 Jaql

Jaql [18] is a declarative scripting language to analyze semi-structured data.
It was designed by IBM Research, became an open-source project in 2009, and
is integrated into two IBM Big Data analysis products.

Jaql’s data model is based on the JavaScript Object Notation (JSON) data
model. JSON is semi-structured and nested. Jaql handles data with partial schema
information, i.e., Jaql processes schema-free data but in the presence of schema
information certain optimizations and more efficient processing techniques can be
applied. The language was inspired by XQuery, Pig, Hive and DryadLINQ. Jaql
supports operations such as transform, filter, expand, join and merge. In addition,
block and if-then-else control structures and error controlling operators, such as
catch, fence and timeout, are included. Jaql’s syntax follows a step-by-step style
similar to Pig, but resembles UNIX pipes for improved readability.

Jaql is built on concepts from functional programming, such as lazy evaluation
and higher-order functions. These techniques are responsible for its excellent
extensibility and re-usability. A feature that differentiates Jaql from Pig and Hive
is physical transparency. Low-level physical operators and high-level declarative
operators are conceptually the same. Both types of operators can be mixed when
writing Jaql scripts. This allows users to force the execution of certain strategies.
In addition, the result of optimization is a valid Jaql script, which significantly eases
debugging.

2.3.2 Comparing Higher-Level Languages and RDBMSs

Higher-level languages, such as Pig and Hive, provide an abstraction from the
MapReduce programming model. Data processing tasks are specified as queries
or scripts. In order to execute those tasks on a MapReduce framework, they are
compiled into MapReduce programs. Since most MapReduce frameworks use a
fixed execution strategy, the compile step is very similar to query optimization
in relational database systems. As discussed in Sect. 2.2.1, query optimizers aim
to choose the best performing execution plan among multiple candidates. The
optimization of higher-level languages for MapReduce differs in several aspects
from query optimization in relational database systems.

First, the presented languages have different characteristics than SQL. This
is mainly due to their semi-structured and nested data models and their focus
on extensibility. Some languages support the seamless integration of MapReduce
jobs which gives more flexibility than user-defined functions (UDFs) in traditional
database systems. Since the semantics of user-written data operations are hard to
reason about, queries of higher-level languages that use these features have only
limited optimization potential, i.e., holistic optimization that spans UDFs can not be
performed.

2 Optimization of Massively Parallel Data Flows 51

Relational database systems use a storage layer that enforces a strict schema.
In contrast, MapReduce approaches store data as files in a distributed file system.
The flexibility of file system storage and the support of schema-free data are often
listed among the key advantages of MapReduce over traditional database systems.
However, schema information is very important for many optimizations, especially
for storage organization and data access techniques. Furthermore, lack of schema
limits the amount of statistical information on data sets which is required for most
cost-based optimizations.

Finally, execution plans generated for relational database systems are complex
trees of physical data processing operators. In contrast, generated MapReduce
programs must obey the very strict structure of the programming model. Even rather
simple queries that perform a join and an aggregation are compiled into multiple
depending MapReduce jobs.

2.3.3 Optimization of Higher-Level Languages

This section discusses the optimization of higher-level languages for MapReduce
and the compilation into sequences of MapReduce jobs. The set of supported opti-
mizations varies among the presented languages. This is due to the characteristics of
the languages, the availability of additional information such as meta data, and the
maturity of the project. All presented languages have been released as open-source
and are constantly improved and extended.

2.3.3.1 Logical Optimization and Rewrite Heuristics

Pig, Hive, and Jaql include declarative operators with clearly defined semantics.
Therefore, logical optimization can be applied on tasks specified in any of these
languages. Although, they differ in syntax and programming style, all feature a
subset of the extended relational algebra, such as selection, join, grouping and
aggregation operators. Logical rewrite rules and heuristics known from relational
database optimizers are applicable in their context. The fact that Pig follows a
procedural programming style and Jaql a notion similar to UNIX pipes does not
impede such logical optimization.

At the current state, Pig [34], Jaql [18], and Hive [63] feature transformation-
based optimizers that apply heuristic rewrite rules. Depending on the concrete
system, those rules include selection and projection push-down, variable and
function inlining, nesting, un-nesting and field access rewrites. For example, the
Jaql optimizer features more than 100 rules which are greedily applied. All three
projects plan to implement a cost-based optimizer in the future.

Extensibility is among the key features of Jaql, Pig, and Hive. Logical
optimizations cannot be applied if the semantics of an affected operator are
unknown. Therefore, user-defined operations can limit the applicability of logical

52 F. Hueske and V. Markl

transformations. Even if the semantics of a user-defined operation are known,
certain rewrite rules can have a negative effect. For example, pushing down an
expensive selection predicate can result in high execution costs, since the predicate
might be evaluated very often. Therefore, usage of extensibility features can
impede certain optimizations. In order to preserve the optimization capabilities
for extensions, Jaql provides explicit annotations which reveal characteristics of
user code that can be exploited by the optimizer.

2.3.3.2 Physical Optimization

Physical optimization is performed after logical optimization and generates a
physical execution plan from a logical query plan. The challenge is to find the best
performing execution plan among all valid plans. The performance difference of
execution plans is due to alternative local execution and shipping strategies.

Most traditional database systems follow a cost-based approach for physical
optimization. Cost-based optimization has three main requirements. First, a cost
model that computes for an execution plan and relevant additional input parameters
a metric. The optimizer uses that metric to compare competing execution plans.
Second, relevant inputs for the cost model, such as data statistics (e.g., input
sizes, cardinalities and value distributions) and available resources are necessary
to compute the comparing metric. Finally, alternative execution strategies are an
essential part of the optimizers search space.

It is important to note that none of the presented languages features a cost-
based optimizer [18, 54, 63]. This is due to several reasons. A fully fledged cost
model for any of the presented languages would need to represent the performance
characteristics of the MapReduce execution framework. For Hadoop such a cost
model was developed [41] but has not been included in one of the languages.

Cost functions compute costs based on available system resources and certain
estimations, such as the size of intermediate results and the number of distinct
values. A starting point for these estimates is statistical information on the input
data. This information is propagated through the query plan, i.e., output estimates
of an operator are based on output estimates of its preceding operators. The
optimizer computes the estimates of intermediate results based on the semantics
of the emitting operation, such as filter or join. Current MapReduce-based systems
do not collect any statistical information. Hive’s catalog Metastore stores schema
definitions and partitioning information but does not hold any statistics in the current
version [63]. In addition, it is very hard to derive the semantics of user-defined
operations, which renders the computation of estimates often impossible. Due to
the propagation effect, UDFs usually brake the computation chain of estimates.
Therefore, cost-based optimization without input statistics and operator semantics
is a very tough problem.

Another issue is the static structure of the MapReduce programming model,
which complicates the implementation of certain alternative execution strategies.
Nonetheless, a couple of alternative strategies have been developed. Among them

2 Optimization of Massively Parallel Data Flows 53

are join strategies [19], indexes [28] and columnar storage layouts [48]. However,
only a subset of such improvements has been integrated into the presented lan-
guages. None of them features indexes or columnar storage layouts.

Instead of cost-based optimization, heuristics are used to compile logically
rewritten queries into MapReduce jobs. A commonly applied rule is to minimize
the number of MapReduce jobs. Usually, this heuristic produces good results since
each MapReduce job comes with high overhead costs resulting from the fixed
execution pipeline of reading the input, sorting, shuffling and writing the result.
A technique to reduce the number of MapReduce tasks is chaining of record-wise
computations within a single Map task [54]. Hive transforms multiple binary joins
on the same attribute into a multiway join [62] and automatically chooses the input
sides of Reduce-side joins to reduce the amount of data to be held in memory [63].
A more sophisticated approach to process multiple joins within a single Reducer
was presented by Ullman et al. [2].

Traditional join-order optimization is currently not applied by higher-level
language optimizers due to lack of precise statistical information. Gates et al. [34]
state that only few Pig scripts contain more than one join because of Pig’s nested
data models.

Alternative execution strategies, such as Map-side and Reduce-side joins, can
significantly reduce runtimes if chosen in the right context. To overcome the lack
of a cost-based optimizer, Pig, Jaql and Hive provide special user hints and leave
it to the programmer to explicitly choose the strategy to be used. Pig lets the user
pick from three join algorithms, namely a hash-based join, a sort-merge-based join
and a fragment-and-replicate join [34]. Hive offers even more hints to control the
execution. The programmer can specify to use hash-based partial aggregations and
map-side joins, and instruct special handling of skewed data sets [63]. In some
contexts the programmer also has to specify execution parameters, such as the
amount of main memory for hash-tables.

In contrast to Pig and Hive, Jaql’s optimizer performs source-to-source compila-
tion, i.e., the result of the optimization process are valid Jaql scripts that consist of
lower-level operators. Such a lower-level script is equivalent to a physical execution
plan. This feature is called physical transparency and has major implications. First,
users can directly use lower-level operators in order to fix the execution strategy,
which offers even more control than hints. Second, new lower-level operators can be
easily integrated and used without adapting the optimizer. Finally, source-to-source
compilation significantly eases debugging.

2.3.3.3 Storage Optimization

Parallel shared-nothing database systems typically use horizontal partitioning to
distribute data over all nodes of the system. The choice of the partitioning attribute
and function (e.g., hash, range or round-robin partitioning) enables various opti-
mizations and significantly affects the performance of queries. Among the possible
optimizations are reduction of scanned partitions due to filter predicates, directed

54 F. Hueske and V. Markl

DataNode 3DataNode 2DataNode 1

DFS Blocks

A, B
C
D
E, F
G
H, I, J

/rel_Sales/part_2011-01
/part_2011-02

/part_2011-04
/part_2011-05
/part_2011-06

/part_2011-03

FS Path

Sales

Relation

2011-01

Partition(Date)

2011-02
2011-03
2011-04
2011-05
2011-06

SELECT SUM(s.revenue) FROM sales s
 WHERE s.date < 2011-03-15;

I

D

E

A F

H

C GB

J

Reduce (Sum)

Map (Filter, Partially Sum)

a b

Fig. 2.3 Hive partitioning feature: (a) Hive metastore and (b) Hive query execution

and co-located joins, and local aggregations. By default, MapReduce systems store
data as files in distributed file systems. Large files are split into blocks, which are
replicated and distributed among nodes. This behavior basically resembles a round-
robin or random partitioning and does not provide any semantics that could be used
by an optimizer. Due to the transparent data placement of the distributed file system,
data co-locations can not be established.

Hive features horizontally partitioned storage, which is implemented on top of
Hadoop’s distributed file system. Hive splits tables into partitions and buckets,
and organizes these in a dictionary hierarchy within the file system. Partitioning
information is stored along with schema information in Hive’s catalog. During query
optimization, Hive checks the catalog and limits table scans to the required set of
partitions and buckets [62, 63]. Figure 2.3 depicts Hive’s partitioning feature.

Indexes and columnar storage schemes are well-known techniques to improve
data access in relational database systems. A couple of approaches to integrate these
techniques into MapReduce-based systems have been published [28, 33, 48]. Refer-
ences [31, 54] discuss advanced data placement optimizations that are applicable
in the context of MapReduce higher-level languages. Among them are automatic
replication of heavily used files, data co-location, and load balancing by separating
files that are seldom processed together. Another proposed technique is to store
and reuse the results of common operations. This strategy is especially beneficial if
some operations are repeatedly computed over unmodified input data. The presented
approaches have been extensively researched in the context of relational database
systems [3, 50]. However, none of these approaches has been integrated into any of
the presented languages.

2.3.3.4 Multi-result Optimization

Pig and Hive support the specification of multiple results within a single script or
query. This is different from SQL, where a query defines a single result. Since full
scans of the data are very expensive and intermediate results are always materialized
by the MapReduce execution framework, both systems consider results that can
be reused. Pig’s optimizer tries to minimize the computation effort for queries

2 Optimization of Massively Parallel Data Flows 55

with multiple results by multiplexing computations within a MapReduce job [34].
However, this approach can lead to performance degradation if the processed
data exceeds the available main memory. Pig’s optimizer is not able to reason
about this aspect. Instead, multiplexing is applied by default and the programmer
need to manually split multi-output scripts in order to avoid it. Hive applies
similar optimizations to reduce the number of MapReduce jobs for multi-output
queries [63].

File scans and intermediate results can also be shared by queries that are
concurrently executed or scheduled within a reasonably short time frame. Olston
et al. [54] propose a couple of optimization opportunities for concurrent work
sharing. Although shared scans reduce the I/O load, overly aggressive sharing
can lead to performance degradations in some cases. References [4] and [53]
study scheduling and sharing strategies for scans of large files in MapReduce. The
techniques are similar to multi-query optimization known from relational database
system research [39, 59]. None of the proposed techniques has been incorporated
into one of the presented languages yet.

2.4 Optimization of Plain MapReduce Programs

This section covers approaches that optimize the execution of plain MapReduce
jobs. Prior to its execution, a MapReduce job is intercepted and analyzed. Based on
that analysis, it is executed in an optimized fashion. In the following, we present
two research frameworks that transparently analyze and optimize the execution of
Hadoop jobs.

2.4.1 Starfish

Starfish [42, 43] generates optimized parameter settings for arbitrary Hadoop
MapReduce jobs. Hadoop provides more than 190 parameters of which about 25

have significant impact on the performance of a job [13]. Manual tuning of these
parameters is very difficult since the optimal configuration depends on the job,
the input data and the available compute resources. In addition, some parameters
interact with others. Therefore, automatic parameter tuning is highly desirable.
Starfish was designed as a general self-tuning system for big data analytics [43].
That includes tuning on different abstraction levels, namely job, workflow and
workload level. This chapter focuses on job level optimization, i.e., the optimization
of a single MapReduce job.

Starfish employs a job profiler, a What-If engine and a cost-based optimizer
to improve the execution of arbitrary MapReduce jobs. Prior to optimization,
the profiler monitors the job’s execution to derive its performance characteristics.
A so-called job profile is handed to the What-If engine which includes a cost model

56 F. Hueske and V. Markl

Profiler

OptimizerWhat-If Engine

Hadoop
Program p

Configuration co

M R

Input Data do

Compute
Resources ro

Compute
Resources rh

Hadoop Job

Job Profile
<p,do,ro,co>

Virtual Job Profile
<p,dh,rh,ch>

Profile Generator

Task Scheduler Simulator

Hadoop Job

Input Data dh

Hadoop
Program p M R

RSS Enumerator

Runtime Estimate for ch

Optimized Configuration c
and Runtime Estimate

Configuration ch

Hadoop
Execution Engine

Fig. 2.4 The Starfish architecture

for Hadoop’s execution model [41]. The engine simulates the execution of the
job for varying environmental conditions, such as different input sizes, compute
resources and parameter settings. The cost-based optimizer explores the search
space of parameter settings and uses the What-If engine to retrieve cost estimates
for given configurations. Figure 2.4 shows how Starfish’s components interact with
each other. In the following, each of them is discussed in more detail.

2.4.1.1 Profiler

The profiler collects statistical summaries that represent the performance char-
acteristics of a given MapReduce job by monitoring its execution. The Hadoop
MapReduce execution pipeline is split up into 13 phases [42]. During profiling,
the job’s behavior in each phase is monitored. The monitored data is aggregated
to derive the characteristic of each phase. The profiler uses multi-level hierarchical
aggregation to eagerly reduce the amount of processed profiling data. Finally, the
profiler emits a job profile consisting of more than 60 monitored values.

The profiler uses a technique, called dynamic instrumentation, to monitor the
Hadoop execution framework. During monitoring, solely the Hadoop engine is
accessed, not the user-code. Therefore, the approach is not limited to MapReduce

2 Optimization of Massively Parallel Data Flows 57

jobs written in a specific programming language. Dynamic instrumentation does
not cause overhead when profiling is deactivated. The profiler supports two modes
of task sampling. First, ad-hoc sampling, where only a fraction of the job’s tasks is
executed and monitored. In the second mode, the profiler hooks up to a regular run
of the job and monitors a fraction of the job’s tasks.

2.4.1.2 What-If Engine

Starfish’s What-If engine simulates the execution of a hypothetical MapReduce job
in two steps. First, a virtual job profile is generated based on an actual job profile
which was generated by the profiler. Second, the engine simulates the execution of
the hypothetical job using the virtual job profile. Both steps are described in more
detail in the following.

A job is defined by a MapReduce program p, input data d , resources r and a
configuration c. A virtual job profile captures the performance characteristics of a
hypothetical job. Given a hypothetical job < p; dh; rh; ch > and an observed job
profile for the program p with input data do, resources ro and configuration co, the
What-If engine computes a virtual profile. The engine captures the impact of the
varying configurations ch and co, using a set of mathematical and simulation white-
box models which have been published in a technical report [41]. Differences in the
input data sets dh and do, and resources rh and ro, are taken into account based on
dataflow proportionality and cluster homogeneity assumptions. The resulting virtual
job profile contains dataflow and cost estimations for the given hypothetical job.

After the virtual job profile has been derived, the What-If engine uses a Task
Scheduler Simulator to simulate the execution of the hypothetical job based on the
virtual job profile. The simulator resembles Hadoop’s FIFO scheduler and computes
various metrics, such as execution time and amount of local I/O. Based on the
derived information, the execution of a hypothetical job can even be visualized.
Finally, the computed metrics are returned to the optimizer that called the What-If
engine. Experiments show a high precision of the What-If engine’s estimations [42].

2.4.1.3 Cost-Based Optimizer

The goal of the cost-based optimizer is to find an optimal parameter configuration
for a job that is executed on a specified data set and Hadoop setup. In order to
derive that configuration, the optimizer has to explore a high-dimensional, nonlinear,
non-convex and multimodal search space [42]. Babu [13] claims that about 25

parameters have significant impact on the performance of a Hadoop job. These
parameters are from different domains, such as binary, integer and decimal values,
and have varying validity ranges. In addition, some parameters interact with each
other. Hence, finding the optimal parameter configuration is a hard problem.

Starfish’s optimizer follows two approaches to tackle the optimization prob-
lem [42]. First, the highly dimensional search space is split into multiple subspaces

58 F. Hueske and V. Markl

with fewer dimensions. Many parameters have only impact on a subsection of
the whole MapReduce execution pipeline, such as the Map or the Reduce phase.
Parameters that interact or affect the same subsections of the pipeline are clustered.
The optimizer processes all clusters independently from each other. Second, the
optimizer employs a technique called Recursive Random Search (RRS) to find
good parameter settings within a cluster. RRS picks arbitrary points in the search
space. For each point, the What-If engine is called and computes a cost estimate.
In consecutive iterations, the optimizer inspects promising areas in more detail by
taking more samples from them. Finally, the optimizer returns the configuration with
the shortest estimated runtime found so far. Reference [42] evaluates the quality of
the optimizer’s decisions.

2.4.2 Manimal

Manimal is a hybrid of a relational database and a MapReduce system [22].
It follows a different optimization approach than Starfish. Manimal employs static
code analysis to infer the semantic of arbitrary user code. Based on the findings, the
user code is fully transparently modified and executed on the Hadoop framework.
The rationale behind Manimal’s approach is that certain programming patterns are
commonly used in many MapReduce jobs to perform relational operations, such as
selection or projection. Manimal aims to identify such patterns and reason about
their semantics which is required for optimization.

The system consists of four components. An analyzer performs code analysis and
detects optimization opportunities. A rule-based optimizer accesses a catalog that
holds information on available indexes and chooses the most promising optimization
among all possible optimizations. Finally, the job is executed on a modified Hadoop
execution framework called Execution Fabric. In the following, we shortly discuss
each of the four components focusing on the Analyzer.

2.4.2.1 Analyzer

The Manimal system accepts Hadoop MapReduce jobs written in Java. The analyzer
performs static code analysis on the compiled Java byte-code and identifies so-called
optimization descriptors. An optimization descriptor defines a certain optimization
opportunity. At the current state, Manimal supports optimizations of selections and
projections, and is able to add compression, i.e., delta compression for numerical
values and operations on compressed data [46]. Due to the hidden semantics in
user code, the analyzer follows a very conservative policy and only generates an
optimization descriptor if it can be undoubtedly identified. Most of the currently
supported optimizations are based on indexes. Along with optimization descriptors
that require an index, the analyzer emits an index creation program which creates
the necessary index from the original job input data.

2 Optimization of Massively Parallel Data Flows 59

Manimal’s optimizations are well-known from the context of relational database
systems. Its contribution comes from the fact that these optimizations are applied
to arbitrary user code instead of semantically rich declarative queries. However, the
applicability of static code analysis is limited. Map and Reduce implementations
of higher-level languages, such as Pig and Jaql, are essentially query interpreters
that are customized via runtime program parameters. Therefore, the semantic of the
program depends solely on the runtime parameters and cannot be determined by
Manimal’s analyzer. Also, specialized data structures as used by libraries, such as
Mahout [9], pose a big challenge for static code analysis. However, experiments
with third-party user code [56] show that Manimal’s analyzer is able to identify
most optimization opportunities in relational-style jobs [46]. Currently, the system
is restricted to single MapReduce jobs. Workflows consisting of multiple jobs can
not be optimized as a whole.

2.4.2.2 Optimizer, Catalog and Execution Fabric

Manimal’s optimizer applies simple rule-based heuristics [22]. It inspects all opti-
mization descriptors provided by the analyzer and tries to match these with available
indexes retrieved from the catalog. Based on that information, the optimizer chooses
the index that promises the best speed-up. At the current state, only one optimization
conflict might occur. The optimizer solves that conflict by always preferring
selection over compression optimization [46]. Finally, the Execution Fabric executes
MapReduce jobs optimized by Manimal. Instead of scanning the whole input file,
optimized jobs receive their data from the chosen index. If no optimizations were
applied, the job is executed using Hadoop’s default strategy.

The decision to create an index is not made by the system. Instead, the user has
to choose whether and which indexes to create. An index advisory component, such
as the ones available for relational database systems [3], is not part of Manimal.
Whenever an index is created, a corresponding entry is added to the catalog.

2.5 Parallel Data Flow Systems

Much of MapReduce’s popularity can be accounted to its simple programming
interface. However, the inflexibility of the programming and execution model often
impedes efficient data processing. In recent years, several systems have been built
that process arbitrary directed acyclic data flows in a massively parallel fashion.
These systems trade ease of task definition for flexibility and performance. However,
abstractions, such as query languages and programming models, have been built to
ease the definition of data processing tasks. Optimizers compile higher-level task
definitions into data flows that are executed in parallel.

This section presents three parallel data flow systems that have varying features
and differ in programming interfaces and optimization capabilities.

60 F. Hueske and V. Markl

2.5.1 The Dryad Ecosystem

Dryad is a parallel data processor designed by Microsoft Research. The system
processes acyclic data flows at large scales and is a very flexible execution platform
for massive parallel analysis tasks. Within Microsoft Research, a couple of projects
evolved that target Dryad as execution platform. Among them are DryadLINQ and
SCOPE. DryadLINQ extends LINQ for data parallel tasks and provides an optimizer
that compiles LINQ programs to Dryad data flows. SCOPE is a SQL-like higher-
level language that is also executed on Dryad systems. We briefly introduce the
relevant concepts of Dryad and continue discussing the features and optimization
techniques of DryadLINQ and SCOPE.

2.5.1.1 Dryad

Dryad is a massively parallel execution engine for data flows [29]. It is designed
to run on shared-nothing clusters of hundreds to thousands of commodity servers.
The system uses data parallelism to execute data flows in parallel and relieves the
programmer from many cumbersome issues of parallel data processing, such as task
scheduling, data transport and error handling [45].

Dryad data flows are defined as directed acyclic graphs (DAGs), where vertices
run arbitrary user code and edges represent communication channels between
vertices. A data flow may have multiple data sources and sinks. The data flows from
sources to sinks and passes on its way vertices that run sequential blocks of user
code. Dryad processes arbitrary black-box data items. The user code is responsible
for serialization and interpretation of the data.

When a Dryad program is executed, the system constructs a communication
graph by spanning vertices and channels (see Fig. 2.5). Multiple instances of a task
vertex are spawned on multiple machines. Each instance of a vertex processes a
subset of the task vertex’ input data. In order to establish communication and data
transport between vertex instances, communication channels must be replicated as
well. Thereby, channels can be constructed in multiple ways, i.e., 1:1, 1:N, and M:N
connection patterns, leading to different job semantics. Dryad features three kinds
of communication channels: files, TCP pipes, and shared-memory FIFOs. Although,
Dryad’s programming abstraction uses pipeline semantics, often batch processing is
internally used for higher efficiency.

Compared to MapReduce, Dryad offers a more flexible and efficient execution
engine. Both use a distributed file systems as default storage system. However,
writing well-performing data flow graphs is significantly harder than writing
MapReduce jobs. To perform a memory-safe, external join, a Dryad vertex must
implement a join strategy, such as an external sort-merge join or a hybrid-hash join,
which is a major undertaking. Dryad was specifically designed to be an execution
engine for job specifications with a higher abstraction [45].

2 Optimization of Massively Parallel Data Flows 61

A1

C1

D1

E1

B1

E2

A

C

D

E

B
A2

C2

D2

E3

B2

E4

A3

C3

D3

E5

B3

E6

Node 1 Node 2 Node 3

Fig. 2.5 A Dryad program DAG and a Dryad communication graph

2.5.1.2 DryadLINQ

Microsoft’s LINQ (Language INtegrated Query) is an approach to tightly integrate a
data processing and query framework into the higher-level programming languages
of the .NET framework, such as C#, F# or VisualBasic. Queries are stated in the
same language in which the application is written using a special LINQ library.
In contrast, SQL is an individual language whose queries are often included
into application code as strings. Together, LINQ and the hosting programming
language, offer characteristics of declarative and imperative languages. Embedded
LINQ queries are compiled by so-called LINQ providers and issued against data
processing systems, such as relational DBMSs or XML processors at runtime.

DryadLINQ provides LINQ extensions for data parallel processing and a LINQ
provider for the Dryad execution framework [65]. The tight integration of LINQ into
the hosting language allows to state data analysis tasks as a mixture of parallelizable
and sequential code sections. DryadLINQ’s data model is based on .NET objects,
which allows seamless integration with the application code.

The DryadLINQ provider extracts data parallel LINQ code from the application
and compiles it into Dryad DAGs. DryadLINQ’s optimizer shares many features
with traditional optimizers of parallel relational DBMSs [44]. At the current state,
it is based on greedy heuristics and applies optimizations, such as pipelining
of operations, minimizing repartitioning steps, eager aggregations, and reduction
of I/O by using TCP-pipe and memory-FIFO channels. The optimizer derives
much semantic from the program code by static typing, static code analysis, and
reflection. Using these techniques, it reasons about prevalent data properties, such as
partitioning and sorting. Partitioned data stores are supported as well. DryadLINQ
features a rich set of user annotations to hint potential optimizations and expected
memory consumption of user code. A notable feature is dynamic optimization.
DryadLINQ adapts execution plans at runtime in order to perform network-aware

62 F. Hueske and V. Markl

aggregations and tree broadcasting, and determines partitioning properties, such as
number of partitions and key-ranges for range-partitioning, to handle skewed data.
The source code of DryadLINQ is available for research upon request [30].

2.5.1.3 SCOPE

SCOPE is a declarative query language that heavily borrows from SQL [24]. The
data model is based on sets of rows consisting of typed attributes. In contrast to
Jaql, Hive and Pig, SCOPE’s data model does not support nested data structures.
The operator set and syntax originates from SQL as well. The language supports
selection, projection, inner and outer joins, and aggregations. SCOPE queries can
be written as nested queries or in an imperative style, similar to Pig and Jaql, where
multiple individual statements are linked. Nested subqueries are not supported.
Similar to Pig, Hive and Jaql, SCOPE is extensible and allows to define three types
of parallelizable UDFs, called Process, Reduce and Combine, which correspond to
the first-order functions of the MapReduce programming model.4

SCOPE’s optimizer compiles queries to parallel Dryad data flows. It is based on
the Cascades framework [36], uses transformations and features a cost model. The
optimizer includes transformations for selection and projection push-down, eager
aggregation, and chooses appropriate partitioning schemes. A special focus was
put on optimizing partitioning, sorting and grouping [66]. These data properties
are crucial for data parallel processing, required for many operations, and very
expensive to establish. Minimizing the number of partitioning, sorting and grouping
steps is a major optimization goal for parallel environments. When reasoning about
existing data properties, the SCOPE optimizer takes functional dependencies and
constraints on the data into account. The rather simple data model relieves such
reasoning. The order of joins is chosen based on heuristics, such as the preference
of equi-joins.

SCOPE uses many execution strategies known from parallel database systems,
such as alternative join algorithms and sort-based or hash-based grouping. The
system features basic runtime adaptions, such as topology-aware tree aggregations.

2.5.2 Asterix

The Asterix project researches and builds a scalable information management
system that operates on large clusters of commodity servers [11]. Asterix is a joint
project of UC Irvine, UC Riverside and UC San Diego. The goal of the project is
to store, index, process, analyze and query semi-structured data [16]. Key features
of the system are support for short and long running queries over structured and
semi-structured evolving data sets.

4Process is equivalent to Map.

2 Optimization of Massively Parallel Data Flows 63

The Asterix software stack consists of the Hyracks execution framework, index
structures, the Asterix query language (AQL) and algebra (Algebrix), and a query
optimizer. Queries stated in AQL are compiled by the optimizer to Hyracks jobs and
executed exploiting the available indexes. While the Hyracks framework is publicly
available, the remaining components of the system are planned to be released as
open-source in the future.

In the following, we highlight the features of Hyracks, describe the Asterix data
model and query language, and discuss the Asterix optimizer.

2.5.2.1 Hyracks

Hyracks is a data parallel execution framework for data-intensive compute tasks,
which operates on large shared-nothing clusters [20]. Similar to Dryad, Hyracks was
specifically designed to serve as an execution platform for higher-level languages
and is based on well-known techniques from parallel database systems.

Hyracks jobs are specified as DAGs with nodes being Hyracks operators and
edges being connectors. An important design issue was extensibility. Although
Hyracks comes with a set of common operators and connectors, own operators and
connectors can be defined. The system features an API to specify characteristics and
requirements of operators, such as memory consumption for user-defined operators.
This information is used to improve resource management and scheduling. The
set of included operators and connectors includes Mappers, Joiners, Aggregators,
Partitioners and Replicators. In contrast to Dryad vertices, Hyracks operators are
not atomic. Instead they are composed of activities. Hyracks plans explicitly specify
dependencies among activities. For example, the hash-join operator consists of a
hash-table build activity and a probe activity that cannot be started before the build-
ing activity is finished. Hyracks’ data model is a generalization of MapReduce’s
key/value pair data model and is based on tuples with fields of arbitrary types.
Furthermore, the system supports many operations on binary data.

Hyracks fragments jobs along activity dependencies into fully pipelined seg-
ments, called stages. When executing a job, Hyracks schedules and executes a stage
as soon as its dependencies are fulfilled. The lazy scheduling allows the system to
use the latest available information on resources and data characteristics.

2.5.2.2 Asterix Data Model and Query Language

The Asterix Data Model (ADM) is based on concepts from JSON, Avro and
structured data types of object database systems [16]. ADM is a nested data model
of primitive and derived types. Derived types are composed of primitive or derived
types. Supported derived types are enums, records, ordered and unordered lists and
unions. Also, optional values can be specified. Similar to Jaql, ADM features open
schemas, i.e., data items are allowed to contain more information than specified in

64 F. Hueske and V. Markl

the schema. However, schema enables optimizations and efficient processing. ADM
organizes data in data sets that can be indexed, partitioned and replicated.

AQL is inspired by XQuery, focusing on relational and nesting operations [16].
XQuery’s document-related and XML specific features are omitted. Nested sub-
queries are supported. AQL includes data set manipulation operations, such as
inserts and updates. Updates are performed using a timestamp model.

2.5.2.3 Asterix Algebra and Optimizer

Asterix features an algebra, called Algebrix. Prior to optimization, AQL queries
are parsed, checked and transformed into an algebra tree on which optimizations
are performed. Among the presented systems, Asterix is the only approach that
separates language from algebra. This design decision eases the porting of other
higher-level languages, such as Pig, Jaql or Hive, to the Asterix system. Algebrix
supports operations, such as selections, projections, joins, aggregations, group-
by and nesting [16]. In addition, data-model specific computations, such as filter
predicates and new data values, are included in the algebra. At the current state,
user-defined data types are not supported.

Static optimizations based on heuristics are preformed on the algebra tree [16].
The optimizer adds index accesses and aims to minimize data re-organizations, such
as partitioning, sorting and grouping. The resulting job is stage-wise executed by
Hyracks. A stage is executed as soon as its prerequisites are fulfilled. Thereby,
Hyracks decides on the degree of parallelism, node scheduling and resource allo-
cation. A distinguishing feature of Asterix is deferred optimization. The optimizer
can insert a so-called choose-plan operator instead of a physical operator, cf. [38].
Prior to execution, the choose-plan operator decides on the actual physical operator
to use based on information gathered while executing preceding stages. However,
this approach does not allow to change the global execution plan or to re-optimize
at runtime.

2.5.3 Stratosphere

The Stratosphere system [61] is an open-source research prototype resulting from
the Stratosphere project jointly researched by TU Berlin, HU Berlin and HPI
Potsdam. At the current state, the system consists of three components: the parallel
programming model PACT, the flexible and massively parallel data flow processor
Nephele and an optimizer that compiles PACT programs into Nephele data flows.
In the following, all three components are shortly discussed.

2 Optimization of Massively Parallel Data Flows 65

a b c

Fig. 2.6 Input contracts: (a) Cross, (b) Match and (c) CoGroup

2.5.3.1 PACT Programming Model

The PACT programming model is based on so-called Parallelization Contracts
(PACTs). PACT is a generalization and extension of the MapReduce programming
model [15]. Both have a couple of concepts in common, such as the key/value
pair data model and the concept of second-order system, and first-order user
functions. Second-order functions are called Input Contracts in the context of the
PACT programming model. In fact, PACT is a superset of MapReduce. Hence, all
MapReduce jobs can be expressed with PACT.5

However, PACT differs in three main aspects from MapReduce. First, it includes
additional Input Contracts that complement Map and Reduce. Cross, Match and
CoGroup associate key/value pairs from two inputs into subsets that are indepen-
dently processed by the first-order user functions (see Fig. 2.6). Cross builds a
Cartesian product and calls the user code for each element of the cross product.
Match basically performs an equi-join on the key and calls its user function for
each pair of key/value pairs that share the same key. CoGroup is a hybrid of Match
and Reduce. Second, the PACT programming model features user code annotations
called Output Contracts that exhibit information about the user code behavior. This
information is used by the PACT optimizer to generate efficient execution plans.
Finally, PACT programs are composed as arbitrary DAGs with possibly multiple
data sources and sinks, i.e., they do not have a static structure. Vertices of a DAG
are PACTs, which consist of an Input Contract, user code and an optional Output
Contract.

Due to the higher expressiveness resulting from the richer set of second-order
functions and the flexible program structure, the PACT programming model is better
suited to define complex data analysis tasks than MapReduce. Alexandrov et al. [6]
provide a detailed comparison of MapReduce and the PACT programming model.

5This is true for the pure programming model, not necessarily for its implementations, such as
Hadoop.

66 F. Hueske and V. Markl

2.5.3.2 Nephele Data Flow Engine

Nephele is an efficient parallel execution engine for cloud environments [64]. The
system processes data flows specified as DAGs. From the data flow specification
point of view, Nephele is similar to Dryad. Data flows are composed from
vertices and communication channels. Vertices run arbitrary user code and channels
transport data from one vertex to another. Vertices can be annotated with explicit
scheduling information, such as intra-node parallelism or task instance co-location.

Nephele was designed to run in cloud environments. It connects to infrastructure-
as-a-service (IAAS) providers, such as Amazon EC2 or the Eucalyptus framework.
Nephele is able to adapt compute resources to a task’s requirements, by dynamically
starting and stopping virtual machines while the task is executed.

2.5.3.3 PACT Optimizer

The optimizer compiles PACT programs into Nephele data flows. The optimization
potential originates from two properties of the programming model, the declarative
character of Input Contracts and the Output Contract code annotations [15].

Input Contracts declaratively specify the partitioning of data into subsets that
are processed by independent user function calls. The choice of the strategy to
establish the partitioning is a degree of freedom for the system. For example, a
Match performs an equi-join on the key and can be processed using a repartition or
broadcast shipping strategy, and a sort-merge or hash-based local strategy. Optional
Output Contracts reveal information about behavior of user code that is relevant
for the optimizer. When executing a PACT program, data is frequently partitioned,
sorted or grouped, before the user code is called. Since user functions can perform
arbitrary operations, the system can not infer that those properties are also valid
for the function’s output. Output Contracts help the system to infer which data
properties are existent at a specific point in the data flow graph.

The Stratosphere system uses a cost-based optimizer to compile PACT programs
into Nephele DAGs [5, 15]. At the current state, the optimizer aims to reduce
network communication cost. Input sizes and cardinalities are obtained by light-
weight sampling. Size estimates for intermediate data sets are computed based on
the sampled information, available Output Contracts and compiler hints. During
optimization, candidate execution plans are enumerated and costed. The search
space is limited by the relatively few execution strategies which are available at
the moment. Therefore, the full search space can be explored. The optimizer tracks
and tries to reuse existing data properties such as partitioning, sorting and grouping.
This is very similar to the approach that SCOPE’s optimizer follows [66]. Due
to black-box data types and user functions, logical rewrites cannot be applied.
PACT’s optimization process resembles physical optimization in parallel RDBMSs.
However, PACT optimizes data flows with arbitrary user code instead of algebraic
queries.

2 Optimization of Massively Parallel Data Flows 67

In order to improve PACT’s optimization capabilities, it is planed to semantically
enrich the programming model. Promising approaches are a generalized tuple data
model, similar to Hyracks’ data model, and additional user code annotations that
allow to structurally modify PACT programs.

2.6 Comparing State-of-the-Art Systems

Query optimizers aim to derive the most efficient execution plan for a given
query, based on the query semantics, available execution strategies, and additional
information such as data statistics and system state. The systems presented in
this chapter differ in their prerequisites for optimization. Figure 2.7 shows the
architectural stacks of all presented systems and highlights their optimizers. In this
section, we compare the presented approaches and discuss how design decisions
affect their optimization capabilities.

2.6.1 Programming Interface

Traditional query optimization relies on full or partial knowledge about the seman-
tics of the query to be optimized. Declarative languages, such as SQL, provide that
information by specifying the result rather than giving instructions to follow.6

Higher-level languages, such as Pig, Hive, SCOPE and AQL, follow a similar
approach. Although some feature a rather imperative style, all exhibit declarative
elements, such as join operators. In order to support extensibility and improve
applicability, all presented languages feature the definition and integration of custom
operators, user-defined functions or hand-written MapReduce jobs. Jaql differs from
all languages due to its physical transparency feature that allows users to specify
tasks on varying levels of abstraction, i.e., using high-level declarative operators
and low-level physical operators within the same script.

In contrast to higher-level languages, DryadLINQ does not feature an own
language. Instead, it is tightly integrated into hosting languages. This approach is
very appealing due to its ease of use. The DryadLINQ provider parses the relevant
code fragments and derives the semantic information required for optimization.

Other programming abstractions are parallel programming models, such as
MapReduce and PACT. Manimal and Starfish use completely different techniques
to optimize the execution of MapReduce programs. While Manimal employs
static code analysis to derive certain semantic aspects of a job, such as selection
or projection, Starfish does not use semantic information. Instead, Starfish pro-
files the runtime behavior of the job to generate optimized parameter settings.

6User-defined functions (UDFs) incorporate semantics a query optimizer cannot reason about.

68 F. Hueske and V. Markl

La
ng

ua
ge

A
lg

eb
ra

P
ar

al
le

l
P

ro
gr

am
m

in
g

M
od

el

E
xe

cu
tio

n
E

ng
in

e
H

ad
oo

p
(E

xe
cu

tio
n

E
ng

in
e)

N
ep

he
le

H
yr

ac
ks

D
ry

ad

H
ad

oo
p

(P
ro

gr
am

m
in

g
M

od
el

)

A
Q

L
P

ig

O
pt

im
iz

er

H
iv

e

O
pt

im
iz

er

Ja
ql

O
pt

im
iz

er

D
ry

ad
-

LI
N

Q

O
pt

im
iz

er

S
C

O
P

E

O
pt

im
iz

er

A
lg

eb
rix

O
pt

im
iz

er

P
A

C
T

O
pt

im
iz

er

S
ta

rf
is

h

O
pt

im
iz

er

M
an

im
al

O
pt

im
iz

er

F
ig

.2
.7

C
om

pa
ri

ng
m

as
si

ve
ly

pa
ra

lle
ld

at
a

flo
w

sy
st

em
st

ac
ks

2 Optimization of Massively Parallel Data Flows 69

PACT is a generalization and extension of the MapReduce programming model.
Input Contracts declaratively specify the parallelization of user-defined functions.
Optional semantic user-code annotations provide additional information used for
optimization.

While approaches based on parallel programming models must cope with
arbitrary user-code, higher-level languages exhibit detailed information about the
semantics of an analysis task. However, extensive usage of the extensibility features
of higher-level languages can diminish that advantage.

2.6.2 Execution Platform

We presented four execution platforms for parallel data analysis tasks. The most
prominent is Hadoop which implements the MapReduce execution model. As dis-
cussed in Sect. 2.2.2, the structure of the MapReduce execution model is static.
Hadoop provides a number of configuration parameters [13] and interfaces for user-
defined code [28] that can control the execution to a certain degree. For example,
hash-partitioning can be altered to range-partitioning. However, the partitioning step
cannot be omitted. Due to its conservative approach to ensure fault-tolerance, the
MapReduce programming model does not feature pipelined execution. In order to
process complex tasks, multiple MapReduce jobs can be chained by writing and
reading temporary files from a distributed file system. These limitations lead to
fewer degrees of freedom when choosing efficient physical execution plans.

Dryad, Hyracks and Nephele execute arbitrary acyclic data flows. In contrast
to the MapReduce execution model, these systems provide a much more flexible
and lower-level interface to specify parallel data flows. Due to their flexibility,
these frameworks can be used to implement many data processing techniques
known from parallel relational database systems. Although they offer very similar
programming interfaces, Dryad, Hyracks and Nephele differ in some details. Dryad
offers hooks to change execution plans at runtime, which can be used for continuous
optimization. Hyracks features deferred stage-wise scheduling to take the latest
available information on the system into account. Nephele was specifically designed
for cloud environments and is able to start and stop compute nodes during execution.

2.6.3 Optimization

Recent trends in information management, such as MapReduce and the NoSQL
movement, avoid the requirements for schema information and time-consuming data
imports. Instead, these systems aim to provide ad-hoc data processing of varying
data sets. Most of the presented systems support the processing of semi-structured
data models or arbitrary data types. However, schema information and data statistics
are crucial for certain optimizations. Table 2.1 lists and categorizes the systems that
were discussed in this chapter.

70 F. Hueske and V. Markl

Table 2.1 A comparison of the discussed approaches for optimization of massively parallel data
flows

System Programming interface Data model Optimization Catalog

Higher-level languages for MapReduce

Pig Higher-level language Semi-structured, nested Rule-based No
Hive Higher-level language Semi-Structured, nested Rule-based Yes
Jaql Higher-level language with

physical transparency
Semi-structured, nested,

partial
Rule-based No

General MR optimization

Starfish MapReduce PM Key/value pairs Cost-based No
Manimal MapReduce PM Key/value pairs Rule-based Yes

Parallel data flow systems

DryadLINQ Higher-level language .NET objects Rule-based Yes
SCOPE Higher-level language Tuples Rule- & cost-based No
Asterix Higher-level language Semi-structured, nested,

open
Rule-based Yes

Stratosphere PACT PM Key/value pairs Cost-based No

Some presented systems, such as Pig, Hive, Jaql and DryadLINQ, perform rule-
based optimization by applying logical transformations. Many rewrite rules, such
as selection and projection push-down, which are known from relational database
optimizers. Subsequent to logical optimization, the query is compiled into a physical
execution plan. The physical optimization of Hive, Jaql and Pig is also based
on heuristics. Due to the lack of data statistics, most systems are not able to
perform cost-based optimizations. To overcome this limitation, Pig, Jaql and Hive
feature compiler hints and let the users to decide the physical strategies to execute
join operations. Jaql’s physical transparency allows users to directly use physical
operators.

SCOPE, PACT and Starfish feature cost-based optimizers. Starfish does not
optimize the MapReduce program itself. Instead it optimizes the execution of the
program by choosing well-performing parameter settings. SCOPE’s optimizer is
very close to traditional database optimizers. Due to the higher-level language
interface, the semantics of a query are well-understood by the optimizer. The
optimization process starts by applying logical rewrite rules. In addition, metadata,
such as schema, partitioning and statistics, can be taken into account for cost-based
optimization. In contrast, PACT does not perform logical information due to lack
of task semantics, which are hidden within black-box user-code. However, cost-
based optimization is performed to derive an efficient physical execution data flow.
In order to acquire information about the input data, PACT’s optimizer draws small
samples from the input files. Additional statistical hints, such as selectivity and
record width annotated by the programmer, improve the optimizer’s estimates.

Hive, Manimal, Asterix and DryadLINQ feature catalogs to store metadata.
Hive’s Metastore provides schema and partitioning information to the optimizer.
In the case of selections on partitioned attributes, the optimizer restricts scans to

2 Optimization of Massively Parallel Data Flows 71

necessary partitions. Manimal and Asterix use their catalogs to store information
on available indexes, which can be used to significantly improve query runtimes.
In addition, Asterix’s catalog includes schema and partitioning information similar
to Hive. DryadLINQ and Asterix feature partitioned storage, such that initial
partitioning steps can be omitted.

2.7 Future Research and Conclusion

The preceding sections presented the state of the art in optimization of parallel data
flows. This section concludes the chapter and proposes future areas of research.

Massively parallel data analytics is an ongoing research topic, with many
research projects and researchers working in this domain. The size of data sets
and the complexity of data analysis tasks will continue to grow at high rates.
Optimization is crucial to achieve high performance, when performing sophisticated
analysis on huge amounts of data. In this chapter, we presented and compared
different approaches to optimize parallel data flows.

All presented approaches are limited by missing information on the semantics
of tasks, the data to process, and the available resources. Some systems statically
choose physical execution plans or delegate important decisions to the user. Others
perform cost-based optimization with limited statistical information that causes
estimation errors. Both approaches often lead to wrong decisions, which can have
significant impact on the performance of a task.

Robust optimization has been researched in the context of relational database
systems and aims to reduce the impact of cardinality estimation errors [1, 12, 14].
Instead of choosing the most promising execution plan with minimal estimated
costs, the optimizer decides to choose a possibly more expensive plan that exhibits
a more robust behavior with respect to estimation errors. Robust behavior in this
context means that an execution strategy does not cause significantly higher runtime
costs if the assumptions of the optimizer do not hold. A robust optimizer must
be able to reason about the quality of its estimates, in order to pick the best
performing strategy in the presence of reliable estimates and a robust strategy in
case of uncertain information. Robust optimization is a promising technique to cope
with the lack of information about the input data, in the context of massively parallel
analytics.

Further approaches with good prospects are re-optimization at runtime and
adaptive execution frameworks. Some work on re-optimization of query execution
plans and adaptive algorithms in relational database systems has been performed
[37, 49]. However, adapting and modifying execution plans is much more difficult
in parallel setups than in centralized environments, since global changes must be
synchronized. Systems that incorporate such approaches can react on estimation
errors and unforeseeable changes in the execution environment. These are desirable
features, especially for long running tasks. DryadLINQ’s and SCOPE’s runtime
adaptions, and Hyracks’ stage-wise query execution are only first steps in this
direction.

72 F. Hueske and V. Markl

References

1. Abhirama, M., Bhaumik, S., Dey, A., Shrimal, H., Haritsa, J.R.: On the stability of plan costs
and the costs of plan stability. PVLDB 3(1), 1137–1148 (2010)

2. Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In: EDBT, Lau-
sanne, pp. 99–110 (2010)

3. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection of materialized views and
indexes in SQL databases. In: VLDB, Cairo, pp. 496–505 (2000)

4. Agrawal, P., Kifer, D., Olston, C.: Scheduling shared scans of large data files. PVLDB 1(1),
958–969 (2008)

5. Alexandrov, A., Battré, D., Ewen, S., Heimel, M., Hueske, F., Kao, O., Markl, V., Nijkamp, E.,
Warneke, D.: Massively parallel data analysis with pacts on nephele. PVLDB 3(2), 1625–1628
(2010)

6. Alexandrov, A., Ewen, S., Heimel, M., Hueske, F., Kao, O., Markl, V., Nijkamp, E.,
Warneke, D.: Mapreduce and pact – comparing data parallel programming models. In: BTW,
Kaiserslautern, pp. 25–44 (2011)

7. Apache Hadoop: http://hadoop.apache.org
8. Apache Hive: http://hive.apache.org
9. Apache Mahout: http://mahout.apache.org

10. Apache PIG: http://pig.apache.org
11. Asterix: A highly scalable parallel platform for semi-structured data management and analysis.

http://asterix.ics.uci.edu
12. Babcock, B., Chaudhuri, S.: Towards a robust query optimizer: a principled and practical

approach. In: SIGMOD conference, Baltimore, pp. 119–130 (2005)
13. Babu, S.: Towards automatic optimization of mapreduce programs. In: SoCC, Indianapolis,

pp. 137–142 (2010)
14. Babu, S., Bizarro, P., DeWitt, D.J.: Proactive re-optimization with rio. In: SIGMOD confer-

ence, Baltimore, pp. 936–938 (2005)
15. Battré, D., Ewen, S., Hueske, F., Kao, O., Markl, V., Warneke, D.: Nephele/PACTs: a pro-

gramming model and execution framework for web-scale analytical processing. In: SoCC’10:
Proceedings of the ACM Symposium on Cloud Computing, Indianapolis, pp. 119–130. ACM,
New York (2010)

16. Behm, A., Borkar, V.R., Carey, M.J., Grover, R., Li, C., Onose, N., Vernica, R., Deutsch, A.,
Papakonstantinou, Y., Tsotras, V.J.: Asterix: towards a scalable, semistructured data platform
for evolving-world models. Distrib. Parallel Databases 29(3), 185–216 (2011)

17. Bernstein, P.A., Goodman, N., Wong, E., Reeve, C.L., Jr., J.B.R.: Query processing in a system
for distributed databases (SDD-1). ACM Trans. Database Syst. 6(4), 602–625 (1981)

18. Beyer, K., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M., Kanne, C.C., Ozcan, F.,
Shekita, E.J.: Jaql: a scripting language for large scale semistructured data analysis. PVLDB 4,
1272–1283 (2011)

19. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A comparison of
join algorithms for log processing in mapreduce. In: SIGMOD conference, Indianapolis,
pp. 975–986 (2010)

20. Borkar, V.R., Carey, M.J., Grover, R., Onose, N., Vernica, R.: Hyracks: a flexible and extensible
foundation for data-intensive computing. In: ICDE, Hannover, pp. 1151–1162 (2011)

21. Bryant, R.E.: Data-intensive supercomputing: the case for disc. Tech. Rep. CMU-CS-07-128,
School of Computer Science, Carnegie Mellon University (2007)

22. Cafarella, M.J., Ré, C.: Manimal: relational optimization for data-intensive programs. In:
WebDB, Indianapolis (2010)

23. Cascading: http://www.cascading.org/
24. Chaiken, R., Jenkins, B., Larson, P.Å., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.: SCOPE:

easy and efficient parallel processing of massive data sets. PVLDB 1(2), 1265–1276 (2008)

http://hadoop.apache.org
http://hive.apache.org
http://mahout.apache.org
http://pig.apache.org
http://asterix.ics.uci.edu
http://www.cascading.org/

2 Optimization of Massively Parallel Data Flows 73

25. Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., Welton, C.: Mad skills: new analysis
practices for big data. PVLDB 2(2), 1481–1492 (2009)

26. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: OSDI,
San Francisco, pp. 137–150 (2004)

27. DeWitt, D.J., Gray, J.: Parallel database systems: the future of high performance database
systems. Commun. ACM 35(6), 85–98 (1992)

28. Dittrich, J., Quiané-Ruiz, J.A., Jindal, A., Kargin, Y., Setty, V., Schad, J.: Hadoop++: making
a yellow elephant run like a cheetah (without it even noticing). PVLDB 3(1), 518–529 (2010)

29. Dryad – Microsoft Research: http://research.microsoft.com/projects/Dryad
30. DryadLINQ – Microsoft Research: http://research.microsoft.com/projects/DryadLINQ
31. Eltabakh, M.Y., Tian, Y., Özcan, F., Gemulla, R., Krettek, A., McPherson, J.: Cohadoop:

flexible data placement and its exploitation in hadoop. PVLDB 4(9), 575–585 (2011)
32. Fender, P., Moerkotte, G.: A new, highly efficient, and easy to implement top-down join

enumeration algorithm. In: ICDE, Hannover, pp. 864–875 (2011)
33. Floratou, A., Patel, J.M., Shekita, E.J., Tata, S.: Column-oriented storage techniques for

mapreduce. PVLDB 4(7), 419–429 (2011)
34. Gates, A., Natkovich, O., Chopra, S., Kamath, P., Narayanam, S., Olston, C., Reed, B.,

Srinivasan, S., Srivastava, U.: Building a highlevel dataflow system on top of mapreduce: the
pig experience. PVLDB 2(2), 1414–1425 (2009)

35. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: SOSP, Bolton Landing
New York, pp. 29–43 (2003)

36. Graefe, G.: The cascades framework for query optimization. IEEE Data Eng. Bull. 18(3),
19–29 (1995)

37. Graefe, G.: A generalized join algorithm. In: BTW, Kaiserslautern, pp. 267–286 (2011)
38. Graefe, G., Ward, K.: Dynamic query evaluation plans. In: Proceedings of the 1989 ACM

SIGMOD International conference on Management of Data, SIGMOD ’89, Portland, pp. 358–
366. ACM, New York (1989).

39. Gupta, A., Sudarshan, S., Viswanathan, S.: Query scheduling in multi query optimization. In:
IDEAS, Grenoble, pp. 11–19 (2001)

40. Haas, L.M., Freytag, J.C., Lohman, G.M., Pirahesh, H.: Extensible query processing in
starburst. In: SIGMOD conference, Portland, pp. 377–388 (1989)

41. Herodotou, H.: Hadoop performance models. Tech. rep., Duke Computer Science (2010).
http://www.cs.duke.edu/~hero/files/hadoop-models.pdf

42. Herodotou, H., Babu, S.: Profiling, what-if analysis, and cost-based optimization of mapreduce
programs. PVLDB 4, 1111–1122 (2011)

43. Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F.B., Babu, S.: Starfish: a self-
tuning system for big data analytics. In: CIDR, Asilomar, pp. 261–272 (2011)

44. Isard, M., Yu, Y.: Distributed data-parallel computing using a high-level programming
language. In: SIGMOD conference, Providence, pp. 987–994 (2009)

45. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel programs
from sequential building blocks. In: EuroSys, Lisbon, pp. 59–72 (2007)

46. Jahani, E., Cafarella, M.J., Ré, C.: Automatic optimization for mapreduce programs. PVLDB
4(6), 385–396 (2011)

47. Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. 32(4),
422–469 (2000)

48. Lin, Y., Agrawal, D., Chen, C., Ooi, B.C., Wu, S.: Llama: leveraging columnar storage
for scalable join processing in the mapreduce framework. In: SIGMOD conference, Athens,
pp. 961–972 (2011)

49. Markl, V., Raman, V., Simmen, D.E., Lohman, G.M., Pirahesh, H.: Robust query processing
through progressive optimization. In: SIGMOD conference, Paris, pp. 659–670 (2004)

50. Mehta, M., DeWitt, D.J.: Data placement in shared-nothing parallel database systems. VLDB
J. 6(1), 53–72 (1997)

51. Moerkotte, G., Neumann, T.: Dynamic programming strikes back. In: SIGMOD conference,
Vancouver, pp. 539–552 (2008)

http://research.microsoft.com/projects/Dryad
http://research.microsoft.com/projects/DryadLINQ
http://www.cs.duke.edu/~hero/files/hadoop-models.pdf

74 F. Hueske and V. Markl

52. Nippl, C., Mitschang, B.: Topaz: a cost-based, rule-driven, multi-phase parallelizer. In: VLDB,
New York City, pp. 251–262 (1998)

53. Nykiel, T., Potamias, M., Mishra, C., Kollios, G., Koudas, N.: Mrshare: sharing across multiple
queries in mapreduce. PVLDB 3(1), 494–505 (2010)

54. Olston, C., Reed, B., Silberstein, A., Srivastava, U.: Automatic optimization of parallel
dataflow programs. In: USENIX Annual Technical Conference, Boston, pp. 267–273 (2008)

55. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: a not-so-foreign
language for data processing. In: SIGMOD conference, Vancouver pp. 1099–1110 (2008)

56. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stonebraker, M.: A
comparison of approaches to large-scale data analysis. In: SIGMOD conference, Providence,
pp. 165–178 (2009)

57. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the data: parallel analysis with
sawzall. Sci. Program. 13(4), 277–298 (2005)

58. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path
selection in a relational database management system. In: SIGMOD conference, Boston,
pp. 23–34 (1979)

59. Sellis, T.K.: Multiple-query optimization. ACM Trans. Database Syst. 13(1), 23–52 (1988)
60. Szalay, A., Gray, J.: Science in an exponential world. Nature 440(23), 413–414 (2006)
61. The Stratosphere Project: http://stratosphere.eu
62. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P.,

Murthy, R.: Hive – a warehousing solution over a map-reduce framework. PVLDB 2(2), 1626–
1629 (2009)

63. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., 0002, N.Z., Anthony, S., Liu, H.,
Murthy, R.: Hive – a petabyte scale data warehouse using hadoop. In: ICDE, Long Beach,
pp. 996–1005 (2010)

64. Warneke, D., Kao, O.: Nephele: efficient parallel data processing in the cloud. In: SC-MTAGS,
Portland (2009)

65. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, Ú., Gunda, P.K., Currey, J.: DryadLINQ:
a system for general-purpose distributed data-parallel computing using a high-level language.
In: OSDI, San Diego, pp. 1–14 (2008)

66. Zhou, J., Larson, P.Å., Chaiken, R.: Incorporating partitioning and parallel plans into the scope
optimizer. In: ICDE, Long Beach, pp. 1060–1071 (2010)

http://stratosphere.eu

Chapter 3
Mining Tera-Scale Graphs with “Pegasus”:
Algorithms and Discoveries

U Kang and Christos Faloutsos

Abstract How do we find patterns and anomalies, on graphs with billions of nodes
and edges, which do not fit in memory? How to use parallelism for such Tera- or
Peta-scale graphs? We propose a carefully selected set of fundamental operations,
that help answer those questions, including diameter estimation, connected com-
ponents, and eigenvalues. We package all these operations in PEGASUS, which, to
the best of our knowledge, is the first such library, implemented on the top of the
Hadoop platform, the open source version of MapReduce.

One of the key observations in this work is that many graph mining operations
are essentially repeated matrix-vector multiplications. We describe a very important
primitive for PEGASUS, called GIM-V (Generalized Iterative Matrix-Vector multi-
plication). GIM-V is highly optimized, achieving (a) good scale-up on the number
of available machines, (b) linear running time on the number of edges, and (c) more
than nine times faster performance over the non-optimized version of GIM-V.

Finally, we run experiments on real graphs. Our experiments run on M45, one of
the largest Hadoop clusters available to academia. We report our findings on several
real graphs, including one of the largest publicly available Web graphs with 6,7
billion edges. Some of our most impressive findings are (a) the discovery of adult
advertisers in the who-follows-whom on Twitter, and (b) the 7-degrees of separation
in the Web graph.

U Kang (�)
Department of Computer Science, KAIST University, 291 Daehak-ro, Yuseong-gu,
Daejeon 305-701, Republic of Korea
e-mail: ukang@cs.kaist.ac.kr

C. Faloutsos
School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh,
PA 15213, USA
e-mail: christos@cs.cmu.edu

A. Gkoulalas-Divanis and A. Labbi (eds.), Large-Scale Data Analytics,
DOI 10.1007/978-1-4614-9242-9__3, © Springer Science+Business Media New York 2014

75

mailto:ukang@cs.kaist.ac.kr
mailto:christos@cs.cmu.edu

76 U Kang and C. Faloutsos

3.1 Introduction

Graphs are ubiquitous: computer networks, social networks, mobile call networks,
and the World Wide Web, to name a few. Spurred by the lower cost of storage,
the success of social networking websites and Web 2.0 applications, and the high
availability of data sources, graph data are being generated at unprecedented size.
They are now measured in terabytes or even petabytes, with billions of nodes and
edges. Historically, however, most graph mining algorithms were designed under
the assumption that the graphs would fit in the main memory of a workstation, or
a single disk at its largest. The above-mentioned graphs violate these assumptions.
They require us to confront our long-held assumption, and to redesign the algorithms
so they can work with these new breed of massive graphs. We surveyed promising
frameworks that supported parallel computation, on which we could develop such
massively-scalable algorithms. We selected Hadoop, an open-source implementa-
tion of MapReduce[8], due to its extreme scalability. On the top of Hadoop, we
developed the PEGASUS package [16, 30], available at http://www.cs.cmu.edu/~
pegasus, an open source library for mining very large graphs.

In this chapter, we first address the research question: what patterns and
anomalies can we discover in huge, real-world graphs with billions of nodes and
edges? Huge graphs have interesting patterns or regularities, such as those in their
connected components, radii, triangles, etc. Discovering these patterns helps us to
spot anomalies, a capability that is useful in a wide spectrum of applications, such as
cyber-security (computer networks), phone companies (fraud detection) and social
networks (spammer detection).

The second question we investigate is how to design efficient algorithms for
PEGASUS to handle such massive graphs. There are several challenges. First,
can we formulate graph mining algorithms using simple operations that can be
efficiently implemented on MapReduce? Second, how to store the graphs efficiently
to minimize storage space and to enable fast graph queries? Finally, how to exploit
the data distribution (e.g., skewness) for designing faster MapReduce algorithms?

The rest of this chapter is organized as follows. Section 3.2 presents the related
work. In Sect. 3.3, we present the discoveries in real world, large scale graphs.
Section 3.4 describes the algorithms for large graph mining, which enabled the
discoveries in Sect. 3.3. We conclude this chapter in Sect. 3.5.

3.2 Related Work

In this section, we review related work on MapReduce, Hadoop and large scale
graph mining with Hadoop.

MapReduce is a programming framework [1, 8] for processing huge amounts
of unstructured data in a massively parallel way. MapReduce has two major
advantages: (a) the programmer is oblivious of the details of the data distribution,

http://www.cs.cmu.edu/~pegasus
http://www.cs.cmu.edu/~pegasus

3 Mining Tera-Scale Graphs with “Pegasus”: Algorithms and Discoveries 77

replication, load balancing etc., and (b) the programming concept is familiar, i.e.,
the concept of functional programming. Briefly, the programmer needs to provide
only two functions, a Map and a Reduce. The typical framework is as follows [24]:
(a) the map stage sequentially passes over the input file and outputs (key, value)
pairs; (b) the shuffling stage groups of all values by key, and (c) the reduce stage
processes the values with the same key and outputs the final result. Hadoop provides
the Distributed File System (HDFS) and PIG, a high level language for data
analysis [34].

Large scale graph mining has attracted significant interest both from academia
and industry: there have been works based on shared memory system [29], and Bulk
Synchronous Parallel model [30]. Large graph mining on Hadoop [16, 30] has been
used for various large scale graph mining applications due to its power, simplicity,
fault tolerance and low maintenance costs.

3.3 Discoveries

In this section, we present the discoveries on large, real world graphs. The discov-
eries include the patterns and anomalies in radius plots, connected components and
triangles. Table 3.1 lists the graphs that were used. The experiments were performed
in Yahoo!’s M45 Hadoop cluster, one of the largest Hadoop clusters available to
academia with 480 machines, 1:5 petabyte storage and 3:5 TB memory in total.

3.3.1 Radius Plots

What are the central nodes and outliers in graphs? How close are nodes in graphs?
These questions are answered by a radius plot, which is the distribution of the radius
of nodes. The radius r.v/ of node v is the distance between v and a reachable node
farthest away from v. The diameter of a graph is the maximum radius over all nodes.
The effective radius and the effective diameter are defined as the 90 % percentile of
the radius and the diameter, respectively [17,19]. We analyze the diameter and radii

Table 3.1 Graphs used (M: million. K: thousand)

Name Nodes Edges Description

YahooWeb 1,413M 6,636M Web links in 2002
Twitter 63M 1,838M Who follows whom in Nov. 2009
LinkedIn 7.5M 58M Person-person in 2006
U.S. Patent 6M 16M Patent citations
Wikipedia 3.5M 42M Document citations
Random 177K 1,977M Synthetic Erdős-Rényi graphs

78 U Kang and C. Faloutsos

Fig. 3.1 Radius plot of the YahooWeb graph. Notice the effective diameter is surprisingly small.
Also notice the multi-modality, which is possibly due to a mixture of relatively smaller subgraphs

of real world graphs using our HADI algorithm, which will be described at the next
section, and show the results in Figs. 3.1� 3.5. We have the following observations.

Diameter. What is the diameter of the Web? Albert et al. [2] computed the diameter
on a directed Web graph with �0.3 million nodes, and conjectured that it is around
19 for the 1:4 billion-node Web graph. Broder et al. [6] used sampling from a
� 200 million-nodes Web graph and reported 16.15 and 6.83 as the diameter for
the directed and the undirected cases, respectively. What should be the effective
diameter, for a significantly larger crawl of the Web, with billions of nodes?
Figure 3.1 gives the surprising answer:

Observation 1 (Small Web). The effective diameter of the YahooWeb graph (year:
2002) is surprisingly small (� 7 � 8).

The previous results from Albert et al. and Broder et al. are based on the average
diameter. For this reason, we also computed the average diameter and show the
comparison of diameters of different graphs in Fig. 3.2. We first observe that the
average diameters of all graphs are relatively small (<20) for both the directed
and the undirected cases. We also observe that the Albert et al.’s conjecture of the
diameter of the directed graph is over-pessimistic: both the sampling and HADI

reported smaller values for the diameter of the directed graph. For the diameter of
the undirected graph, we observe the constant or shrinking diameter pattern [27].

Static Radius Plot. How are the radii distributed in real networks? Is it Poisson?
Lognormal? Figure 3.1 gives the surprising answer: multimodal! In other relatively

3 Mining Tera-Scale Graphs with “Pegasus”: Algorithms and Discoveries 79

Fig. 3.2 Average diameter vs. number of nodes in lin-log scale for the three different Web graphs,
where M and B represent millions and billions, respectively. (0.3M): Web pages inside nd.edu at
1999, from Albert et al.’s work [2]. (203M): Web pages crawled by Altavista at 1999, from Broder
et al.’s work [6]. (1.4B): Web pages crawled by Yahoo at 2002 (YahooWeb in Table 3.1). The
annotations (Albert et al., Sampling, HADI) near the points represent the algorithms for computing
the diameter. The Albert et al.’s algorithm seems to be an exact breadth first search, although not
clearly specified in their paper. Notice the relatively small diameters for both the directed and the
undirected cases. Also notice that the diameters of the undirected Web graphs remain near-constant

small networks, however, we observe bi-modal structures. As shown in the Radius
plot of U.S. Patent in Fig. 3.3a, they have a peak at zero, a dip at a small radius value
(9) and another peak very close to the dip. Given the prevalence of the bi-modal
shape, our conjecture is that the multi-modal shape of YahooWeb is possibly due to
a mixture of relatively smaller sub-graphs, which got loosely connected recently.

Observation 2 (Multi-modal and Bi-modal). The Radius distribution of the Web
graph has a multi-modal structure. Many smaller networks have the bi-modal
structure.

About the bi-modal structure, a natural question to ask is what are the common
properties of the nodes that belong to the first peak; similarly, for the nodes in
the first dip, and the same for the nodes of the second peak. After investigation,
the former are nodes that belong to the disconnected components (DCs); nodes in
the dip are usually core nodes in the giant connected component (GCC), and the
nodes at the second peak are the vast majority of well connected nodes in the GCC.
Figure 3.3b exactly shows the radii distribution for the nodes of the GCC and the
nodes of the few largest remaining components.

80 U Kang and C. Faloutsos

Fig. 3.3 (a) Static radius plot (count versus radius) of U.S. Patent graph. Notice the bi-modal
structure with ‘outsiders’ (nodes in the disconnected components), ‘core’ (central nodes in the giant
connected component), and ‘whiskers’ (nodes connected to the giant connected component with
long paths). (b) The decomposition of the radius plot using the connected components information.
Biggest curve with radius ranging from 11 to 35 the distribution for the giant connected component;
small curves on the bottom, left several disconnected components

Fig. 3.4 Evolution of the effective diameter of real graphs. The diameter increases until a ‘gelling’
point, and starts to shrink after the point. (a) Patent. (b) LinkedIn

Now we can explain the three important areas of Fig. 3.3a: ‘outsiders’ are the
nodes in the disconnected components, and responsible for the first peak and the
negative slope to the dip. ‘Core’ are the central nodes with the smallest radii from
the giant connected component. ‘Whiskers’ [28] are the nodes connected to the GCC
with long paths, and are the reasons of the second negative slope.

Dynamic Radius Plot. We study how the radius distribution changes over time.
We know that the diameter of a graph typically grows with time, spikes at the
‘gelling point’, and then shrinks [27,31]. Indeed, this holds for our dataset, as shown
in Fig. 3.4.

The question is, how does the radius distribution change over time? Does it still
have the bi-modal pattern? Do the peaks and slopes change over time? We show the
answer in Fig. 3.5. Notice that while the radius plot maintains its bi-modal shape,

3 Mining Tera-Scale Graphs with “Pegasus”: Algorithms and Discoveries 81

Fig. 3.5 Radius distribution over time. “Expansion”: the radius distribution moves to the
right until the gelling point. “Contraction”: the radius distribution moves to the left after the
gelling point. (a) Patent-expansion. (b) Patent-contraction. (c) LinkedIn-expansion. (d) LinkedIn-
contraction

its width changes over time: it expands to the right until the ‘gelling point’, and
it contracts after the gelling point. This clearly shows the correlation between the
evolution of the diameter and the radius plot.

Observation 3 (Expansion-Contraction). The radius distribution expands to the
right until it reaches the gelling point. Then, it contracts to the left.

3.3.2 Connected Components

A connected component of an undirected graph is a subgraph in which any
two vertices are connected to each other by paths, and which is connected to
no additional vertices. What are the patterns and anomalies in the connected
components of real world graphs? With PEGASUS, we analyze the connected
components of real world graphs, including the LinkedIn social network, Wikipedia
page-linking-to-page network and the YahooWeb graph. Figure 3.6 shows the
evolution of connected components of LinkedIn and Wikipedia graphs. Figure 3.7

82 U Kang and C. Faloutsos

Fig. 3.6 The evolution of connected components. (a) The giant connected component grows for
each year. However, the second largest connected component do not grow above Dunbar’s number
(�150) and the slope of the size distribution remains constant after the gelling point at year 2003.
(b) As in LinkedIn, notice the growth of giant connected component, the size of the second largest
connected component bounded above, and the constant slope of the size distribution

Fig. 3.7 Connected components size distribution of YahooWeb. Notice the two anomalous spikes
which deviate significantly from its neighbors

shows the distribution of connected components in the YahooWeb graph. We have
the following observations.

3 Mining Tera-Scale Graphs with “Pegasus”: Algorithms and Discoveries 83

Power Laws in Connected Components Distributions. We observe the power
law relation of count and size of small connected components in Figs. 3.6 and 3.7.
This reflects that the connected components in real networks are formed by
processes similar to Chinese Restaurant Process and Yule distribution [32].

Stable Connected Components After Gelling Point. In Fig. 3.6a, the distribu-
tions of connected components remain stable after a ‘gelling’ point [31] at 2003:
the slopes of the size distributions do not change after the point. We observe the
same phenomenon in Wikipedia graph in Fig. 3.6b. The graph shows stable slopes
from the beginning, since the network were already mature in year 2005.

Absorbed Connected Components and Dunbar’s Number. In Fig. 3.6a, we find
two large connected components in year 2003. However it became merged in
year 2004. The giant connected component keeps growing over time, while the
second and the third largest connected components do not grow beyond size 100
until they are absorbed to the giant connected component. This agrees with the
observation [31] that the sizes of the second/third connected components remain
constant or oscillate, and the Dunbar’s number [11], which says that the maximum
community size in social networks is roughly 150. The connected components
of Wikipedia in Fig. 3.6b also show that the sizes of the second/third connected
components remain constant or oscillate.

Anomalous Connected Components. Figure 3.7 shows two outstanding spikes
which deviate from the ‘power-law’ like size distributions of small disconnected
components. In the first spike at size 300, more than half of the components have
exactly the same structure and they were made from a domain selling company
where each component represents a domain to be sold. The spike happened because
the company replicated sites using the same template, and injected the disconnected
components into the Web. In the second spike at size 1101, more than 80% of
the components are adult sites disconnected from the giant connected component.
Again, the adult sites are generated from a template. In sum, the distribution plot
of connected components reveals interesting communities with special purposes,
which are disconnected from the rest of the Internet.

3.3.3 Triangle Counting

Triangle in a graph is defined to be three nodes which are connected to each other.
What are the patterns and anomalies in the triangle counts, and the degrees in
social network graphs? Figure 3.8 shows the degree and the number of participating
triangles in the Twitter ‘who follows whom’ graph at year 2009 [18]. We have the
following observation which can be used to spot and eliminate harmful accounts,
such as those of adult advertisers and spammers.

84 U Kang and C. Faloutsos

Fig. 3.8 The degree vs. participating triangles of some ‘celebrities’ in Twitter accounts. Also
shown are accounts of adult sites advertisers which have smaller degree, but belong to an
abnormally large number of triangles. The reason of the large number of triangles is that adult
accounts are often created from the same provider, and they follow each other to form a clique, to
possibly boost their rankings or popularity

Anomalous Triangles vs. Degree Ratio. In Fig. 3.8, celebrities have high degree
and mildly connected followers, while adult sites advertisers have many fewer, but
extremely well connected, followers, thereby creating a lot of triangles. The reason
of the large number of triangles is that adult accounts are often created from the same
provider, and they follow each other to possibly boost their rankings or popularity.

3.4 Algorithms

In this section, we describe the algorithms in the PEGASUS package, which enabled
the discoveries in the previous section. First, we introduce GIM-V (Generalized
Iterative Matrix-Vector multiplication), a general primitive including the diameter
estimation and the connected component computation as special cases. Next, we
describe the algorithm for large scale eigensolver.

3.4.1 Generalized Iterative Matrix Vector Multiplication

How can we find connected components, diameter, PageRank and node proximities
of very large graphs quickly? How can we design a general primitive, which can
be applied to many different algorithms? We show that, even though they seem
unrelated, eventually we can unify them using the GIM-V primitive, standing for
Generalized Iterative Matrix-Vector multiplication, which we describe in the next.

3 Mining Tera-Scale Graphs with “Pegasus”: Algorithms and Discoveries 85

3.4.1.1 Main Idea

GIM-V is a generalization of normal matrix-vector multiplication. Suppose we have
a n by n matrix M and a vector v of size n. Let mi;j denote the (i; j)-th element of
M . Then the usual matrix-vector multiplication is

M � v D v0, where v0i D
nX

jD1

mi;j vj

There are three operations in the previous formula, which, if generalized
appropriately, provide a surprising number of useful graph mining algorithms:

1. combine2: multiply mi;j and vj .
2. combineAll: sum n multiplication results for node i .
3. assign: overwrite the previous value of vi with the new result to make v0i .

GIM-V generalize the definition of the matrix-vector multiplication operator �
to �G where the three operations can be defined arbitrarily. Formally, we have:

v0 DM �G v, where

v0

iD assign .vi ; combineAlli .fxj j jD1::n, and xjD combine2 .mi;j ; vj /g//

The functions combine2(), combineAll() and assign() have the following
signatures (generalizing the product, sum and assignment, respectively, that the
traditional matrix-vector multiplication requires):

1. combine2.mi;j ; vj / : combine mi;j and vj .
2. combineAlli .x1; : : : ; xn/ : combine all results from combine2() for node i .
3. assign.vi ; vnew/ : decide how to update vi with vnew.

The ‘Iterative’ in the name of GIM-V denotes that the �G operation is applied
until an algorithm-specific convergence criterion is met. As we will see in a moment,
by redefining these operations, we obtain different, useful algorithms including
PageRank, Random Walk with Restart, connected components and diameter estima-
tion. But first we want to highlight the strong connection of GIM-Vwith SQL. When
combineAlli () and assign() can be implemented by user defined functions,
the operator �G can be expressed concisely in terms of SQL. This viewpoint is
important when we implement GIM-V in large scale parallel processing platforms,
including Hadoop, if they can be customized to support several SQL primitives
including JOIN and GROUP BY. Suppose that we have an edge table E(sid,
did, val) and a vector table V(id, val), corresponding to a matrix and
a vector, respectively. Then, �G corresponds to the SQL statement in Table 3.2.
We assume that we have (built-in or user-defined) functions, combineAlli () and

86 U Kang and C. Faloutsos

Table 3.2 GIM-V in terms of SQL

SELECT E.sid, combineAllE:sid (combine2(E.val,V.val))
FROM E, V
WHERE E.did=V.id
GROUP BY E.sid

combine2(), and we also assume that the resulting table/vector will be fed into the
assign() function (omitted, for clarity).

In the following, we show how to customize GIM-V, to handle important
graph mining operations including PageRank, Random Walk with Restart, diameter
estimation and connected components.

3.4.1.2 GIM-V and PageRank

Our first application of GIM-V is PageRank, a famous algorithm used by Google
to calculate relative importance of the Web pages [5]. The PageRank vector p of n

Web pages satisfies the following eigenvector equation:

p D .cET C .1 � c/U /p;

where c is a damping factor (usually set to 0.85), E is the row-normalized adjacency
matrix, and U is a matrix with all elements set to 1=n.

To calculate the eigenvector p we can use the power method, which multiplies
an initial vector with the matrix, several times. We initialize the current PageRank
vector pcur and set all its elements to 1=n. Then the next PageRank pnext is
calculated by pnext D .cET C .1� c/U /pcur . We continue to do the multiplication
until p converges.

PageRank is a direct application of GIM-V. In this view, we first construct a
matrix M by column-normalize ET so that every column of M sums to 1. Then the
next PageRank is calculated by pnext DM �G pcur , where the three operations are
defined as follows:

1. combine2.mi;j ; vj / = c �mi;j � vj

2. combineAlli .x1; : : : ; xn/ = .1�c/

n
CPn

jD1 xj

3. assign.vi ; vnew/ = vnew

3.4.1.3 GIM-V and Random Walk with Restart

Random Walk with Restart (RWR) is an algorithm to measure the proximity of nodes
in a graph [35]. In RWR, the proximity vector rk from node k satisfies the equation:

rk D cMrk C .1 � c/ek;

3 Mining Tera-Scale Graphs with “Pegasus”: Algorithms and Discoveries 87

where ek is a n-vector whose kth element is 1, and every other elements are 0. c is
a restart probability parameter which is typically set to 0.85 [35]. M is the column-
normalized and transposed adjacency matrix, as in Sect. 3.4.1.2. In GIM-V, RWR is
formulated by rnext

k DM �G rcur
k where the three operations are defined as follows

(ıik is the Kronecker delta which is 1 if i D k, and 0 otherwise):

1. combine2.mi;j ; vj / = c �mi;j � vj

2. combineAlli .x1; : : : ; xn/ = .1 � c/ıik CPn
jD1 xj

3. assign.vi ; vnew/ = vnew

3.4.1.4 GIM-V and Diameter/Radius Estimation

HADI[17, 19] is an algorithm to estimate the diameter and radius of large graphs.
As described in Sect. 3.3.1, the diameter of a graph is the maximum of the length
of the shortest paths between every pair of nodes, and the radius of a node vi is
the number of hops needed to reach the farthest-away node from vi . The main idea
of HADI is as follows. For each node vi in the graph, we maintain the number of
neighbors reachable from vi within h hops. As h increases, the number of neighbors
increases, until h reaches its maximum value. The diameter is h, when the number
of neighbors within hC 1 hops does not increase for every node. For further details
and optimizations, see [17, 19].

The main operation of HADI is updating the number of neighbors as h increases.
Specifically, the number of neighbors of node vi reachable within h hops is encoded
in a probabilistic bitstring bh

i which is updated as follows:

bhC1
i D bh

i BITWISE-OR fbh
k j .i; k/ 2 Eg

In GIM-V, the bitstring update of HADI is expressed by

bhC1 DM �G bh;

where M is the adjacency matrix, bhC1 is a vector of length n which is
updated by bhC1

i Dassign.bh
i ;combineAlli .fxj j j D 1::n, and

xj Dcombine2.mi;j ; bh
j /g//, and the three operations are defined as follows:

1. combine2.mi;j ; vj / = mi;j � vj .
2. combineAlli .x1; : : : ; xn/ = BITWISE-ORfxj j j D 1::ng
3. assign.vi ; vnew/ = BITWISE-OR.vi ; vnew/.

The �G operation is run iteratively until the bitstrings for all the nodes converge.

3.4.1.5 GIM-V and Connected Components

GIM-V can compute connected components in large graphs. The main idea is as
follows. For every node vi in the graph, we maintain a component id ch

i which is
the minimum node id reachable from vi within h hops. Initially, ch

i of vi is set to its

88 U Kang and C. Faloutsos

own node id: that is, c0
i D i . For each iteration, each node sends its current ch

i to
its neighbors. Then chC1

i , component id of vi at the next step, is set to the minimum
value among its current component id and the received component ids from its
neighbors. The crucial observation is that this communication between neighbors
can be formulated in GIM-V as follows:

chC1 DM �G ch;

where M is the adjacency matrix, chC1 is a vector of length n which is
updated by chC1

i Dassign.ch
i ;combineAlli .fxj j j D 1::n, and

xj Dcombine2.mi;j ; ch
j /g//, and the three operations are defined as follows:

1. combine2.mi;j ; vj / = mi;j � vj .
2. combineAlli .x1; : : : ; xn/ = MINfxj j j D 1::ng.
3. assign.vi ; vnew/ = MIN.vi ; vnew/.

By repeating this process, component ids of nodes in a component are set
to the minimum node id of the component. We iteratively do the multiplication,
until component ids converge. The upper bound of the number of iterations are
determined by the following theorem.

Theorem 3.1 (Upper bound of iterations in GIM-V for Connected Compo-
nents). GIM-V for connected components requires maximum d iterations, where
d is the diameter of the graph.

Proof. The minimum node id is propagated to its neighbors at most d times.

Since the diameter of real graphs are relatively small, GIM-V for connected
components completes after small number of iterations.

3.4.1.6 Fast Algorithms for GIM-V

Having defined GIM-V, the next challenge is to design efficient algorithms for
computing it in MapReduce. We have the following three main ideas. First, we
put together several nonzero elements into square blocks, and perform the block-
wise matrix-vector multiplication instead of element-wise multiplication. Second,
we cluster the graph so that nonzero elements in the adjacency matrix are closely
located. Finally, we compress the nonzero bit strings of each block by standard
compression algorithms like Gzip or Elias-� [13]. This compression greatly saves
space, which leads to faster running time of block-wise matrix-vector multiplication.

In the following, we describe our main ideas in detail by first describing the naive
algorithm, and improving it by applying our main ideas one at a time.

GIM-V RAW: Naive Algorithm. In the naive algorithm for GIM-V, the inputs
are an edge file and a vector file. Each line of the edge file contains one
.idsrc; iddst ; mval/, which corresponds to a non-zero cell in the adjacency matrix

3 Mining Tera-Scale Graphs with “Pegasus”: Algorithms and Discoveries 89

Fig. 3.9 GIM-V NNB. The matrix elements are grouped into 2 � 2 blocks denoted by Bi;j . The
vector elements are grouped into length 2 blocks denoted by Vi . The matrix and vector are joined
block-wise, not element-wise

M . Similarly, each line of the vector file contains one .id; vval/, which corresponds
to an element in the vector V . The matrix-vector multiplication using these files is
essentially a database-join: we group the elements that we want go together. For
more details, please see [16, 20].

GIM-V NNB: Block Multiplication. GIM-V NNB adds block multiplication
functionality to GIM-V RAW. The main idea is to group elements of the input
matrix into blocks or submatrices of size b by b. Also we group elements of
input vectors into blocks of length b. Here the grouping means we put all the
elements in a group into one line of the input file. Each block contains only
non-zero elements of the matrix or the vector. The format of a matrix block
with k nonzero elements is (rowblock; colblock; rowelem1 ; colelem1 ; mvalelem1 ; : : : ;

rowelemk
; colelemk

; mvalelemk
). Similarly, the format of a vector block with k

nonzero elements is (idblock , idelem1 , vvalelem1 , : : :, idelemk
, vvalelemk

). Only
blocks with at least one nonzero elements are stored in disk. This block encoding
forces nearby edges in the adjacency matrix to be closely located in disc; it is
different from Hadoop’s default behavior which do not guarantee co-locating them.
After grouping, GIM-V is performed on blocks, not on individual elements. GIM-V
NNB is illustrated in Fig. 3.9. This block encoding decreases the data size, and it
leads to faster running time as shown in Fig. 3.13.

GIM-V NCB: Compression. GIM-V NCB further decreases the storage and the
running time from GIM-V NNB by compressing the nonzero elements inside each
block by standard compression algorithms like Gzip or Elias-� .

GIM-V CCB: Clustering. GIM-V CCB even further increases performance of
GIM-V NCB by clustering the nonzero elements of the adjacency matrix before the
compression. In Fig. 3.10, the left and the right matrices come from two isomorphic
graphs. However, the right matrix contains smaller number of denser blocks than

90 U Kang and C. Faloutsos

Fig. 3.10 Non-clustered vs. clustered adjacency matrices for two isomorphic graphs. Each node
has a self loop which is omitted in the figure for clarity. The edges are grouped into 2 by 2 blocks.
The right matrix uses only three blocks while the left matrix uses nine blocks. GIM-V CCB uses
the clustered matrix

the left matrix, therefore can benefit more from compression algorithms. Clustering
for large graphs form an active research area, and there are several existing works
including Disco [36], Shingle ordering [7], and SlashBurn [15].

3.4.1.7 Performance

In this section, we provide the performance results, which show the effectiveness of
our fast algorithms for GIM-V.

Machine Scalability. Figure 3.11 shows the scalability of GIM-V CCB method
with regard to the number of machines. The Y-axis shows the ‘scale up’, that is,
the ratio of the running time TM with M machines, and T25. We see that for all the
graphs, the running time scales up near-linearly with the number of machines.

Edge Scalability. Figure 3.12 shows the scalability of CCB method with regard
to the number of edges. We used the synthetic Kronecker graphs [26] for the
experiments since graphs with any size can be easily generated. Note that for all
the settings (10, 25, and 40 machines), the running time scales up near-linearly with
the number of edges.

Effect of Optimization. Figure 3.13 shows the disk space and the running time
comparisons of GIM-V variants. Note that the ‘Proposed’ CCB method, which
combines the clustering and compression, provides up to 43� smaller storage and
9.2� faster running time compared to the naive NNB method.

3 Mining Tera-Scale Graphs with “Pegasus”: Algorithms and Discoveries 91

1

1.5

2

2.5

3

3.5

25 50 75 100

’’S
ca

le
 u

p’
’:

 1
/T

M

Number of Machines

YahooWeb
Twitter
Random

Fig. 3.11 Machine scalability of our proposed CCB method. The Y-axis shows the ratio of the
running time TM with M machines, and T25, for PageRank queries. Note the running time scales
up near-linearly with the number of machines

80

100

120

140

160

180

200

282M 1146M 1977M

R
un

ni
ng

 T
im

e
in

 S
ec

on
ds

Number of Edges

10 machines
25 machines
40 machines

Fig. 3.12 Edge scalability of our proposed CCB method. The Y-axis shows the running time in
seconds, for PageRank queries on Kronecker graphs. Note the running time scales up near-linearly
with the number of edges for all the settings (10, 25, and 40 machines)

3.4.2 Eigensolver

Given a large graph, how can we find near-cliques (a set of tightly connected
nodes) [38], the count of triangles [42], and related graph properties? They can be
computed quickly provided we have the first several eigenvalues and eigenvectors
of the adjacency matrix of the graph. In general, spectral analysis is a fundamental
tool not only for graph mining, but also for other areas of data mining. Eigenvalues

92 U Kang and C. Faloutsos

Fig. 3.13 Effectiveness of our proposed CCB method compared to the naive NNB method. (a) File
size comparison after clustering and compression. The Y-axis is in log scale. Note our proposed
method reduces the data size up to 43� smaller than the naive method. The ‘Random’ graph has
better performance gain than real-world graphs since the density is much higher. (b) Running time
comparison of PageRank queries. Our proposed method outperforms the naive method by 9.2�

and eigenvectors are at the heart of numerous algorithms, such as singular value
decomposition (SVD) [4, 14], spectral clustering [33, 39], Principal Component
Analysis (PCA) [37], Multi Dimensional Scaling (MDS) [3, 23], Latent Semantic
Indexing (LSI) [9], and tensor analysis [12, 21, 22, 40]. Despite their importance,
existing eigensolvers do not scale well: the maximum order and size of input
matrices feasible for these solvers are million-scales.

To address this problem, we describe HEIGEN [18], a scalable algorithm for
computing the top k eigenvalues and eigenvectors of matrices in MapReduce.
HEIGEN can handle graphs with billions of nodes and edges easily. In designing
HEIGEN, the major challenges are to carefully design algorithms that work well on
distributed systems, and to exploit the inherent structure of data (e.g., skewness) in
order to be efficient. We summarize the main ideas here and describe each in detail.

1. Careful Algorithm Choice. We carefully choose a sequential eigensolver algo-
rithm that is efficient for MapReduce and gives accurate results.

2. Selective Parallelization. We group operations into expensive and inexpensive
ones based on input sizes, and selectively parallelize them.

3. Blocking. We reduce the running time by decreasing the input data size and the
amount of network traffic among machines using block encoding.

4. Exploiting Skewness. We decrease the running time by exploiting the skewness
of data.

3.4.2.1 Careful Algorithm Choice

There are several sequential eigensolver algorithms. Which one should we choose
for developing a scalable parallel eigensolver to compute top k eigenvalues and

3 Mining Tera-Scale Graphs with “Pegasus”: Algorithms and Discoveries 93

eigenvectors? We list the alternatives for computing the eigenvalues of a matrix and
the reasoning behind our choice.

• Power method: the simplest and the most famous method for computing the
topmost eigenvalue. However, it can not find the top k eigenvalues.

• Simultaneous iteration (or QR): an extension of the Power method to find
the top k eigenvalues. It requires large matrix-matrix multiplications that are
prohibitively expensive for billion-scale graphs.

• Lanczos-NO (No Orthogonalization): the basic Lanczos algorithm [25] which
approximates the top k eigenvalues in the subspace composed of intermediate
vectors from the Power method. The problem is that the computed eigenvalues
can ‘jump’ up to larger eigenvalues: thus, the outputted eigenvalues might not be
correct.

• Lanczos-SO (Selective Orthogonalization): the problem of Lanczos-NO can
be resolved by reorthogonalizing the current vector against all the previous
intermediate vectors. However, this method requires many reorthogonalization.
Lanczos-SO addresses this issue by selectively re-orthogonalizing vectors only
when required, which we describe below in detail.

The Lanczos-SO has all the properties we need: it finds the top k largest
eigenvalues and eigenvectors, it produces no spurious eigenvalues, and its most
expensive operation, a matrix-vector multiplication, is tractable in MapReduce.
Therefore, we select Lanczos-SO as our choice of the sequential algorithm for
parallelization.

The main idea of Lanczos-SO is as follows: we start with a random initial basis
vector b, which comprises a rank-1 subspace. For each iteration, a new basis vector
is computed by multiplying the input matrix with the previous basis vector. The new
basis vector is then orthogonalized against the last two basis vectors and is added to
the previous rank-.l�1/ subspace, forming a rank-l subspace, where l is the number
of the current iteration. Let Ql be the n�l matrix whose i -th column is the i -th basis
vector, and A be the matrix whose eigenvalues we seek to compute. We also define
a l � l matrix Tl D Q�l AQl . Then, the eigenvalues of Tm are good approximations
of the eigenvalues of A. Furthermore, multiplying Ql by the eigenvectors of Tl

provides a good approximation of the eigenvectors of A. We refer the interested
reader to [41] for further details.

If we used the exact arithmetic, the newly computed basis vector would be
orthogonal to all previous basis vectors. However, rounding errors from floating-
point calculations compound and result in the loss of orthogonality. This is the cause
of the spurious eigenvalues in Lanczos-NO. Orthogonality can be recovered once
the new basis vector is fully re-orthogonalized to all previous vectors. However, this
operation is quite expensive as it requires O.l2/ re-orthogonalizations, where l is the

94 U Kang and C. Faloutsos

Algorithm 1: Lanczos-SO (selective orthogonalization)
Input: Matrix An�n, random n-vector b, maximum number of steps l , error threshold �,

number of eigenvalues k

Output: Top k eigenvalues �1::k , eigenvectors U n�k

1: ˇ0 0, v0 0, v1 b=jjbjj;
2: for i D 1::l do
3: v Avi ; // Find a new basis vector
4: ˛i vT

i v;
5: v v � ˇi�1vi�1 � ˛i vi ; // Orthogonalize against two previous basis vectors
6: ˇi jjvjj;
7: Ti (build tri-diagonal matrix from ˛ and ˇ);
8: QDQT EIG.Ti /; // Eigen decomposition of Ti

9: for j D 1::i do
10: if ˇi jQŒi; j �j � p�jjTi jj then
11: r Vi QŒW; j �;
12: v v � .rT v/r ; // Selectively orthogonalize
13: if (v was selectively orthogonalized) then
14: ˇi jjvjj; // Recompute normalization constant ˇi

15: if ˇi D 0 then
16: break for loop;
17: viC1 v=ˇi ;
18: T (build tri-diagonal matrix from ˛ and ˇ);
19: QDQT EIG.T /; // Eigen decomposition of T

20: �1::k top k diagonal elements of D; // Compute eigenvalues
21: U Vl Qk ;//Compute eigenvectors. Qk is the set of columns of Q corresponding to �1::k

number of iterations. A faster approach uses a quick test (line 10 of Algorithm 1) to
selectively choose vectors that need to be re-orthogonalized to the new basis [10].
This selective-reorthogonalization idea is shown in Algorithm 1.

3.4.2.2 Selective Parallelization

Among many sub-operations in Algorithm 1, which operations should we par-
allelize? A naive approach is to parallelize all the operations; however, some
operations run more quickly on a single machine rather than on multiple machines
in parallel. The reason is that the overhead incurred by using MapReduce exceeds
gains made by parallelizing the task; simple tasks where the input data is very
small are carried out faster on a single machine. Thus, we divide the sub-operations
into two groups: those to be parallelized and those to be run in a single machine.
Table 3.3 summarizes our choice for each sub-operation. Note that the last two
operations in Table 3.3 can be done with a single-machine standard eigensolver
since the input matrices are tiny; they have l rows and columns, where l is the
number of iterations.

3 Mining Tera-Scale Graphs with “Pegasus”: Algorithms and Discoveries 95

Table 3.3 Parallelization choices. The last column of the table indicates whether the operation is
parallelized in HEIGEN. Some operations are better to be run in parallel, since the input size is very
large, while others are better in a single machine, since the input size is small and the overhead of
parallel execution overshadows its decreased running time

Operation Description Input (P?)

y y C ax Vector update Large Yes
� xT x Vector dot product Large Yes
y ˛y Vector scale Large Yes
jjyjj Vector L2 norm Large Yes
y M n�nx Large matrix-large, dense vector multiplication Large Yes
y M n�l

s xs Large matrix-small vector multiplication (n� l) Large Yes
As M n�l

s N l�k
s Large matrix-small matrix multiplication (n� l > k) Large Yes

jjT jj Matrix L2 norm which is the largest singular value of the matrix Tiny No
EIG.T / Symmetric eigen decomposition to output QDQT Tiny No

3.4.2.3 Blocking

Minimizing the volume of information exchanged between nodes is important to
designing efficient distributed algorithms. In HEIGEN, we decrease the amount
of network traffic by using the block-based operations which is introduced in
Sect. 3.4.1.6. Normally, one would put each edge “(source, destination)” in one
line; Hadoop treats each line as a data element for its mapper functions. Instead,
we propose to divide the adjacency matrix into blocks (and, of course, the
corresponding vectors also into blocks), and put the edges of each block on a single
line, and compress the source- and destination-ids. This makes the mapper functions
a bit more complicated to process blocks, but it saves significant transfer time
of data over the network. We use these edge-blocks and the vector-blocks for
many parallel operations in Table 3.3, including matrix-vector multiplication, vector
update, vector dot product, vector scale, and vector L2 norm. Performing operations
on blocks is faster than on individual elements, since both the input size and the key
space decrease. This reduces the network traffic and sorting time in the MapReduce
shuffle stage.

3.4.2.4 Exploiting Skewness: Matrix-Vector Multiplication

In this section, we describe how HEIGEN implements matrix-vector multiplication
algorithms by exploiting the skewness pattern of the data. There are two matrix-
vector multiplication operations in Algorithm 1: the one with a large vector (line 3)
and the other with a small vector (line 11).

The first matrix-vector operation multiplies a large matrix with a large and dense
vector, and thus it requires a two-stage standard MapReduce algorithm by Kang
et al. [16, 20]. In the first stage, matrix elements and vector elements are joined and
multiplied to produce partial results. The partial results are added together to get the
final result vector in the second stage.

96 U Kang and C. Faloutsos

Algorithm 2: CBMV (cache-based matrix-vector multiplication) for HEIGEN

Input: Matrix M D f.idsrc ; .iddst ; mval//g, Vector x D f.id; vval/g
Output: Result vector y

1: Stage1-Map(key k, value v, Vector x) // Multiply matrix elements and the vector x

2: idsrc k;
3: .iddst ; mval/ v;
4: Output(idsrc ; .mval � xŒiddst �/); // Multiply and output partial results
5:
6: Stage1-Reduce(key k, values V []) // Sum up partial results
7: sum 0;
8: for v 2 V do
9: sum sumC v;

10: Output(k; sum);

The other matrix-vector operation, however, multiplies a large matrix with a
small vector. HEIGEN uses the fact that the small vector can fit in a machine’s
main memory, and distributes the small vector to all the mappers using the
distributed cache functionality of Hadoop. The advantage of the small vector being
available in mappers is that joining edge elements and vector elements can be
done inside the mapper, and thus the first stage of the standard two-stage matrix-
vector multiplication algorithm can be omitted. In this one-stage algorithm the
mapper joins matrix elements and vector elements to make partial results, and the
reducer adds up the partial results.

The pseudo code of this algorithm, which we call CBMV (Cache-Based Matrix-
Vector multiplication), is shown in Algorithm 2. We want to emphasize that this
operation cannot be performed when the vector is large, as is the case of the first
matrix-vector multiplication (line 3 of Algorithm 1). The CBMV is much faster
than the standard method, as we will see in Sect. 3.4.2.6.

3.4.2.5 Exploiting Skewness: Matrix-Matrix Multiplication

Skewness can also be exploited to efficiently perform matrix-matrix multiplication
(line 26 of Algorithm 1). In general, matrix-matrix multiplication is very expensive.
A standard, yet naive, way of multiplying two matrices A and B in MapReduce
is to join AŒi; W� and BŒW; j � for all pairs of .i; j / using a two-stage MapReduce
algorithm. This algorithm, which we call MM (direct Matrix-Matrix multiplication),
is very inefficient since it generates a huge intermediate data in the shuffle stage of
MapReduce. Fortunately, when one of the matrices is very small, we can exploit the
skewness to come up with an efficient MapReduce algorithm. This is exactly the
case in HEIGEN; the first matrix is very large, and the second is very small.

The main idea is to distribute the second matrix using the distributed cache
functionality in Hadoop, and multiply each element of the first matrix with the
corresponding row of the second matrix. We call the resulting algorithm Cache-
Based Matrix-Matrix multiplication, or CBMM.

3 Mining Tera-Scale Graphs with “Pegasus”: Algorithms and Discoveries 97

Fig. 3.14 Comparison of
running time between
different skewed
matrix-matrix multiplication
methods in MapReduce. Our
proposed CBMM
outperforms naive methods
by at least 76�. The slowest
matrix-matrix multiplication
algorithm (MM) even didn’t
finish and the job failed due to
the excessive amount of data

There are other alternatives to matrix-matrix multiplication: one can decompose
the second matrix into column vectors and iteratively multiply the first matrix
with each of these vectors. We call the algorithms, introduced in Sect. 3.4.2.4, as
Iterative matrix-vector multiplications (IMV) and Cache-based iterative matrix-
vector multiplications (CBMV). The difference between CBMV and IMV is that
CBMV uses cache-based operations, while IMV does not. As we will see in
Sect. 3.4.2.6, the best method (CBMM) is faster than naive methods.

3.4.2.6 Performance

We show the performance result showing the effectiveness of our fast algorithms
for HEIGEN. Figure 3.14 shows the running time comparison of different skewed
matrix-matrix multiplication methods in MapReduce. Note that cache-based meth-
ods (CBMM and CBMV) outperform other methods by at least 57�. The best
method CBMM outperforms naive methods by at least 76�. The slowest matrix-
matrix multiplication algorithm (MM) even didn’t finish and the job failed because
of the excessive amount of data.

3.5 Conclusion

In this chapter we presented PEGASUS, a graph mining library for finding patterns
and anomalies in massive, real-world graphs. Our major contributions include:

• Scalable algorithms for mining billion-scale graphs.
• Performance analysis of our proposed method, which achieves up to 43� smaller

storage and 9.2� faster running time.

98 U Kang and C. Faloutsos

• Discovery of patterns and anomalies of in huge, real-world graphs. Some of our
most impressive findings are (a) the discovery of adult advertisers in the who-
follows-whom on Twitter and (b) the 7-degrees of separation in the Web graph.

There are many real world graphs which have been kept intact. We expect to
analyze them using PEGASUS, thereby transforming the massive raw data into
valuable knowledge.

References

1. Aggarwal, G., Data, M., Rajagopalan, S., Ruhl, M.: On the streaming model augmented with
a sorting primitive. In: Proceedings of FOCS, Rome (2004)

2. Albert, R., Jeong, H., Barabasi, A.L.: Diameter of the World Wide Web. Nature 401, 130–131
(1999)

3. Bartell, B.T., Cottrell, G.W., Belew, R.K.: Latent semantic indexing is an optimal special case
of multidimensional scaling. In: SIGIR, Copenhagen (1992)

4. Berry, M.W.: Large scale singular value computations. Int. J. Supercomput. Appl. 6, 13–49
(1992)

5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual (Web) search engine. In: WWW,
Brisbane (1998)

6. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A.,
Wiener, J.: Graph structure in the Web. Comput. Netw. 33, 309–320 (2000)

7. Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A., Raghavan, P.: On
compressing social networks. In: KDD, Paris (2009)

8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: OSDI,
San Francisco (2004)

9. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent
semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

10. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)
11. Dunbar, R.: Grooming, Gossip, and the Evolution of Language. Harvard University Press,

Cambridge (1998)
12. Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor

factorizations. TKDD 5(2), Article 10 (2011)
13. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory

21(2), 194–203 (1975)
14. Kamel, M.: Computing the singular value decomposition in image processing. In: Proceedings

of Conference on Information Systems, Tucson (1984)
15. Kang, U., Faloutsos, C.: Beyond ‘caveman communities’: hubs and spokes for graph compres-

sion and mining. In: ICDM, Vancouver (2011)
16. Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: a peta-scale graph mining system –

implementation and observations. In: IEEE International Conference on Data Mining, Miami
(2009)

17. Kang, U., Tsourakakis, C.E., Appel, A., Faloutsos, C., Leskovec, J.: Radius plots for mining
tera-byte scale graphs: algorithms, patterns, and observations. In: SDM, Columbus (2010)

18. Kang, U., Meeder, B., Faloutsos, C.: Spectral analysis for billion-scale graphs: discoveries and
implementation. In: PAKDD, Shenzhen (2011)

19. Kang, U., Tsourakakis, C.E., Appel, A., Faloutsos, C., Lekovec, J.: HADI: mining radii of large
graphs. ACM Trans. Knowl. Disc. Data 5, 8:1–8:24 (2011)

20. Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: mining peta-scale graphs. Knowl. Inf.
Syst. 27(2), 303–325 (2011)

3 Mining Tera-Scale Graphs with “Pegasus”: Algorithms and Discoveries 99

21. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500
(2009)

22. Kolda, T.G., Sun, J.: Scalable tensor decompsitions for multi-aspect data mining. In: ICDM,
Pisa (2008)

23. Kruskal, J.B., Wish, M.: Multidimensional Scaling. SAGE, Newbury Park (1978)
24. Lämmel, R.: Google’s MapReduce programming model – revisited. Sci. Comput. Program. 70,

1–30 (2008)
25. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear

differential and integral operators. J. Res. Nat. Bur. Stand. 45, 255 (1950)
26. Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C.: Realistic, mathematically

tractable graph generation and evolution, using kronecker multiplication. In: PKDD, Porto
(2005)

27. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking
diameters and possible explanations. In: SIGKDD, Chicago (2005)

28. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of community
structure in large social and information networks. In: WWW, Beijing (2008)

29. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: GraphLab: a
new framework for parallel machine learning. In: UAI, Catalina Island (2010)

30. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski,
G.: Pregel: a system for large-scale graph processing. In: SIGMOD Conference, Indianapolis
(2010)

31. Mcglohon, M., Akoglu, L., Faloutsos, C.: Weighted graphs and disconnected components:
patterns and a generator. In: KDD, Las Vegas (2008)

32. Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351
(2005)

33. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: IPS,
Vancouver (2002)

34. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign
language for data processing. In: SIGMOD, Vancouver (2008)

35. Pan, J., Yang, H., Faloutsos, C., Duygulu, P.: Automatic multimedia cross-modal correlation
discovery. In: KDD, Seattle (2004)

36. Papadimitriou, S., Sun, J.: DisCo: distributed co-clustering with Map-Reduce. In: IEEE
International Conference on Data Mining, Pisa (2008)

37. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6),
559–572 (1901)

38. Prakash, B.A., Seshadri, M., Sridharan, A., Machiraju, S., Faloutsos, C.: EigenSpokes:
surprising patterns and community structure in large graphs. In: PAKDD, Hyderabad (2010)

39. Shi, J., Malik, J.: Normalized cuts and image segmentation. In: CVPR, San Juan (1997)
40. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis. In: KDD,

Philadelphia (2006)
41. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)
42. Tsourakakis, C.E.: Fast counting of triangles in large real networks without counting:

algorithms and laws. In: ICDM, Pisa (2008)

Chapter 4
Customer Analyst for the Telecom Industry

David Konopnicki and Michal Shmueli-Scheuer

Abstract The telecommunications industry is particularly rich in customer data,
and telecom companies want to use this data to prevent customer churn, and
improve the revenue per user through personalization and customer acquisition.
Massive-scale analytics tools provide an opportunity to achieve this in is a flexible
and scalable way. In this context, we have developed IBM Customer Analyst, a
components library to analyze customer behavioral data and enable new insights
and business scenarios based on the analysis of the relationship between users
and the content they create and consume. Due to the massive amount of data and
large number of users, this technology is built on IBM Infosphere BigInsights
and Apache Hadoop. In this work, we first describe an efficient user profiling
framework, with high user profiling quality guarantees, based on mobile web
browsing log analysis. We describe the use of the Open Directory Project categories
to generate user profiles. We then describe an end-to-end analysis flow and discuss
its challenges. Last, we validate our methods through extensive experiments based
on real data sets.

4.1 Introduction

The Telecommunications industry (telecom) seems to be one of the best fitted
candidates to adopt Massive-Scale Analytics (MSA) technologies. In order to
understand why it is so, we first must have a brief look at the history of what is
now called MSA technologies and their development and how, in this historical
perspective, the world of telecom was meant to be deeply affected.

D. Konopnicki (�) • M. Shmueli-Scheuer
IBM Haifa Research Lab, Haifa, Israel
e-mail: davidko@il.ibm.com; shmueli@il.ibm.com

A. Gkoulalas-Divanis and A. Labbi (eds.), Large-Scale Data Analytics,
DOI 10.1007/978-1-4614-9242-9__4, © Springer Science+Business Media New York 2014

101

mailto:davidko@il.ibm.com
mailto:shmueli@il.ibm.com

102 D. Konopnicki and M. Shmueli-Scheuer

4.1.1 How It All Began

Clearly, the problem of managing and computing over very large datasets exists
for a very long time. In some sense, the Online Transaction Processing Systems,
Grid Computing systems or, even supercomputers, all being developed for decades,
can be considered as precursors of the modern MSA systems. However, if we
need to define a historical starting point to the MSA phenomena, the publication
by Google’s researcher’s seminal articles on the Map-Reduce paradigm and the
Google File System should certainly be it [7, 9]. These articles suggested that huge
computing tasks, like those involved in the refresh of the Google Search Index, can
be realized, in a reliable fashion, on a very large infrastructure of relatively cheap
computers: the infrastructure was to liberate programmers from two underlying very
complex issues, namely the complexity of writing parallel processing code and the
inherent unreliability of hardware.

Even if the originality of the approach is still being discussed, one cannot ignore
the impact this approach had. At a time when the computer industry was fascinated
by Google’s technical prowess, in addition to its financial results, it seemed suddenly
that its technology was no magic and that, on the contrary, any company could
quickly benefit from the same tools. In fact, it did not take a long time for the
open-source community, aided by some of Google’s competitors, to develop the
Apache Hadoop software framework (Hadoop) and the Hadoop File System (HFS),
mimicking Google’s infrastructure.

Massive-scale analytic technologies have historically stemmed from the Internet
dominating companies, like Google and Facebook. Providing free or cheap services
to the masses, those companies’ business model is usually based on the analysis of
the behavior of their users in order to provide personalized advertisement, content
recommendations and other personalized services. Thus, the first use-cases for the
MSA technologies and, still, some of the more convincing, have been related to the
analysis of customers’ data and personalization of services, and continue to be so.

Beside the centrality of customer data analysis scenarios, an important technical
feature of MSA should be noted for the implications it has on the technology
applicability. As it has been built initially to deal with managing search indexes,
MSA technology has the particularity of being schema-less or, at least, schema-
light. The meaning of this property is that MSA technologies are particularly
appropriate for dealing with data whose format changes quickly, for dealing with
data integration from different sources and, for dealing with non-traditional data
types, like text and graphs. This is in contrast to relational database technologies,
for which the problems of schema definition, evolution and data integration, have
always been acute.

It is important to notice that this technical particularity makes MSA technology
particularly relevant to customer data analysis. The reason is that there are multiple
interaction points between a company and its customers. For example, customers
interact with a company IT systems through different stores, different customer
management systems (online and offline) and more. Those IT systems are usually

4 Customer Analyst for the Telecom Industry 103

organized in silos and some involve structured data, like transactions lists, while
others involve textual data (e.g., letters, conversations). Thus, as surprising as it
may sound, it has always been a challenge for companies to monitor and manage
a consistent and encompassing view of their customer base and all interaction
channels. This is where the MSA technology comes into play; by allowing to
integrate, in a flexible way, different data sets and enabling to cope with both
structured and unstructured data, MSA technologies bring the promise of enabling
the long expected 360ı view of the customers.

4.1.2 The Telecom Role and Problem

MSA technologies have nothing that is specifically designed for telecom applica-
tions. Indeed, MSA is appropriate for all industries that can benefit from the analysis
of the behavior of individual customers; the retail industry, the banking and finance
industry, the media industry, are not less relevant. It is some other elements that
make MSA fit with telecom particularly well.

The telecom industry has always been rich in customer information: the customer
base of its biggest companies span the population of entire countries, while
billing purposes require companies to monitor the activity of its customers. From
the 1990s and on, the development of the cellular phones technology and its
very large adoption, expanded the range of customer information available to
telecom companies to new types of data (e.g., location information). Moreover, the
development of the mobile internet access, paved the way for telecom companies to
become also content providers and Internet Service Providers, hence, giving them
access to even more customer data.

On the other hand, following years of surge and profits, the telecom companies
have been more and more pressured by the markets. Due to fierce competition, the
saturation of their customer market and legislation enforcement, they have seen their
revenue and competitivity decrease. Paradoxically, the age of ubiquity of the cellular
phones and their raising importance in almost all human interactions, is also the age
of doubt and uncertainty for telecom companies.

One particular reason to the decline of telecom companies brings us back to the
intersection of business and technology, and back to MSA. Paradoxically, while
70% and more of the earth population is in possession of a cellular phone and,
hence, customers of telecom companies, the business model of these companies
is undermined by the giant computer and internet companies, like Apple, Google,
Amazon and Facebook. Through cellular phones, Apple, Google, Amazon and
Facebook control more and more devices, operating systems and applications
and, thus, user time. Hence, they are more and more in control of the customer
interactions and opportunity for monetization of those interactions through adver-
tisement, merchandising and more. Apple, Google, Amazon and Facebook do this
by mastering the MSA technologies providing an unprecendented personalized
experience to their customers.

104 D. Konopnicki and M. Shmueli-Scheuer

As a result, telecom companies want and need to compete with those computing
giants by excelling in the domain of customer data analysis, through the use of MSA
technologies.

4.1.3 Possible Telecom Data Sets

After having explained why the MSA technologies are particularly important to the
telecom world, we present an overview of the large datasets managed by telecom
companies that can be used as a base for customer data analysis. As we mentioned
earlier, telecom companies are particularly rich in data about their customers.

4.1.3.1 Identifying Users

Every Telecom company makes a fundamental distinction between two types of
customers: pre-paid and post-paid customers. Post-paid customers are customers
who are, typically, contractually linked to a particular Telecom company. They are
able to consume voice calls and data with their devices and pay a phone bill at the
end of each month. Pre-paid customers are customers who pay in advance for credits
to a company of their choice and then can use those credits by use of phone services.

This fundamental economic distinction has a data aspect: since post-paid cus-
tomers must be identified and located for the Telecom company to be confident
that they will pay their bills, the registration of a post-paid Telecom customer
involves the registration of the user identity, address and other, identifying or not,
demographic attributes of the user in a database. Post-paid customers are usually
linked to a particular Telecom company for several years. This allows the companies
to gather huge behavioral data sets about those customers.

On the other hand, being a pre-paid customer does not require any kind of
registration.1 The user is free to buy credit from any Telecom company at any time.
This type of customers is much more difficult to track. They move from company
to company very frequently, depending on which one gives the best economical
conditions at any given time.

4.1.3.2 Call/Events Data Records

The most fundamental pieces of information managed by Telecom companies are
Call Data Records (CDRs). CDRs are emitted by telephony equipment in order
to digitally record the details of a phone call passed through the device. CDRs

1Some countries in fact require some kind of registration to take place but it is not a technological
or business requirement.

4 Customer Analyst for the Telecom Industry 105

typically identify the caller and the receiver of a call, time and duration, together
with various other parameters describing, for example, whether any fault condition
has been encountered. It is important to note that, since the CDR data contain the
identification of the base station from which a call has occurred, it is possible to
process these records in order to localize cellular phone users.

During what one may consider as one “phone conversation”, several such CDRs
may be emitted by several different pieces of equipment and need to be retrieved
and reconciled through a complex process, called Mediation. The reconciled
CDRs, resulting from the mediation process, are subsequently used by billing
systems to produce phone bills. In big telecom companies billions of CDRs are
produced, treated and analyzed every day making CDRs the first source of data that
necessitates MSA technologies.

Event Data/Detail Records (EDRs) are an extension of CDRs for systems that
deal with more than voice calls. They are used to measure any type of events
occurring in a telecom network: the sending of a message, web browsing activities,
the download of a movie: : : In this chapter, we will present a detailed example of
analyzing EDRs using MSA technologies.

4.1.3.3 The Apps World

One of the recent revolutions in the world of telecommunications is the emergence
of the Mobile Applications (Apps) mobile apps as the main interaction channel
between end-users and services. For several years, the Telecom world have struggled
to find the right way to port the web experience to mobile devices. Several data
formats have been proposed (e.g., HDML, WML, cHTML) together with technical
solutions. However, usage has always been plagued by several limitations (small
screen sizes, limited flexibility of navigation and more). The success of Apple’s
Iphone led to the emergence of the Apps, which are dedicated applications for each
provider, as the preferred channel to content consumption (and more) on Mobile
Devices (as opposed to the multiple purpose browser used for web browsing).

Telecom companies that wish to understand what end-users do with their phones,
need to monitor apps usage. However, this is a daunting task: usually the apps
are not distributed by the providers themselves and, while most Apps use a
client-server architecture, their backend server do not make use of the telecom
companies infrastructure. Thus, the only way to monitor apps usage is to study the
communication between an app and its server when transmitted over the network.

This is a challenging task as every application uses a different communication
protocol with its server. On the other hand, from a technical point of view, it still
goes to analyzing EDRs.

106 D. Konopnicki and M. Shmueli-Scheuer

4.1.3.4 Other Customer Data Sources

Other sources of data are available to telecom providers, some telecom specific,
some general. Users interactions with the network are monitored by several systems:
for example, the location of every end-user is monitored every few seconds so it is
connected with the tower with the strongest signal.

Other sources of customer data include traditional Customer Relationship Man-
agement systems, web analytics tools (for monitoring the Telcom company’s web
site visitors) and more.

4.1.4 Some Applications

So far we have provided a high-level view of the data sources that are available for
MSA analysis. In what follows, we discuss possible business uses of this data.

4.1.4.1 Churn Prevention

In a saturated mobile phone market, preventing customer churn is important to
telecom companies. This need is exacerbated by the fact that, in lots of cases,
telecom companies are actually sponsoring newly acquired users (e.g., by giving
them free devices and rebates for calls), the meaning being that they begin to see a
profit from user activities only after a few years! In addition, preventing the churn
of an existing customer is much cheaper and has a higher return on investment than
acquiring a new one.

Thus, churn prevention is a primary domain of focus for analytics in telecom
companies: CDR data is analyzed in order to track potential indicators of churn.
Those indicators might be related to a decrease in call frequency, a higher rate of
network problem encountered by a particular users, or can even exploit the social
network, as expressed by the CDR data [23]. In general, churn prevention models
are built using Machine Learning techniques applied to the customer characteristics
in order to understand which features can be used as early predictors of churn.

In this chapter, we present in detail how MSA analytics is applied to EDR data
that can be analyzed, such that new users characteristics corresponding to personal
interests can be computed. Clearly, these new characteristics can be included into
churn models in order to discover customer churn induced by personal interest; for
example, users churning to a competitor due to a sports fan targeted offering.

4.1.4.2 User Segmentation and Personalized Marketing

Marketing activities are often organized by companies according to some seg-
mentation of their customer base. The meaning is that marketeers try to look at

4 Customer Analyst for the Telecom Industry 107

their customers as belonging to several groups having uniform characteristics. For
example, students, aging urbans, etc. Then, by defining to which groups they want
to market (e.g., prevent churn, sell new services), the segment being addressed helps
defining the marketing message, the media used to reach customers and more. Many
times, segments are built based on marketeers intuition or customer surveys.

One of the goals of customer data analysis is to find new segments of customers
that should be targeted on marketing activities. Clearly, the analysis of EDR data
that we present in this chapter can be used for such a task, as it allows to track users
interests.

Furthermore, the customer experience on the web is getting more and more
personalized as the Internet giants use MSA techniques to mine the personal data
they have gathered about their customers (e.g., Amazon product recommendations).
Hence, mining customer data can be realized by telecom companies in a similar
way, in order to provide the same kind of experience and economical benefits.

Other applications to customer data analysis by telecom companies are possible:
this includes the optimization of tiered pricing plans, personalized advertisement
models and network optimizations. We cannot enter into all the details of those
applications. It is sufficient to note that the more is known on customers and their
behavior, the more it is possible to customize offers to them, hence potentially
increasing acquisition, preventing churn and increasing the value of every customer.

4.1.5 Privacy Issues

Clearly, the analysis of customer data raises concerns about users’ privacy. Such
concerns are not the focus of this chapter. We refer the interested readers to [11]
for an extensive review of social and technological aspects of privacy. It is also
interesting to note the difference between the European view of privacy, as a domain
of mainly government regulation and protection of personal data, as opposed to the
more flexible American view of personal data, as owned by the individuals which
are free to make commercial use of it. It is also useful to point the reader to the recent
guidelines published by the Electronic Frontier Foundation on this subject [12].

4.1.6 Customer Analyst

In order to address the scenarios we described, we created Customer Analyst, a
library of algorithms implemented as a set of components. In order to cope with
massive-scale scenarios these components run on top of Apache Hadoop using
the MapReduce paradigm. These components can be connected into analytics
workflows in order to implement various scenarios.

In general, Customer Analyst deals with the relationships between end-users and
content. Content can be text being consumed, e.g., web pages browsed, or it can

108 D. Konopnicki and M. Shmueli-Scheuer

content being produced, e.g., tweets or blog entries written by the end-user. The
idea is that through the analysis of content associated with users, it is possible to
model the users varying interests, including spatio-temporal correlations, and this
can be used for micro-segmentation, marketing, advertising and more.

4.1.7 Chapter Organization

In the remainder of this chapter, we first describe an efficient user profiling
framework with high quality guarantees. We describe the use of the ODP (Open
Directory Project) categories to generate user profile. We then describe an end-to-
end analysis flow and discuss its challenges. Last, we validate our methods through
extensive experiments based on real data sets.

4.2 Related Work

In this chapter, we present our work on generating user profiles based on the
ODP taxonomy for the telecom industry. Generating user profiles for the telecom
industry has been intensively studied with respect to different scenarios. Customer
churn, as discussed in Sect. 4.1.4.1, is one of the biggest challenges of the Telecom
companies. In Richter et al. [23] the authors exploit the user social network based
on the CDRs to detect users with high churn propensity. Hung et al. [13] predict
the propensity to churn using decision trees and neural network models based on
customer demographics, billing information, contract status, call detail records and
service change logs.

Another important scenario is the so-called location aware services. Location
aware services use the location of the mobile user to adapt services, including
shopping, entertainment, traveling and more. Kaasinen [15] studied location-aware
mobile services from the users’ point of view, focusing on information needs while
the user is on a move, delivery methods (push vs. pull) and more. De Reuver and
Haaker [8] studied mobile business model concepts for the domain of context-aware
services to increase the adoption of location-based services, where an important
aspect is the management of user profiles that contains user interests, preferences
and behavior. Van Setten et al. [27] suggested a context-aware mobile tourist
application that adapts its services to the users’ needs based on both the users’
interests and their current context.

Some papers have utilized the ODP for different uses. The main focus has been
on personalized search applications. Chirita et al. [4] focused on exploiting the
ODP to achieve high quality personalized web search based on the distance of
the categories of the returned URL to the user profile categories. The distance is
measured by hierarchical semantics and the ODP tree structure. In [26] the authors
apply the ODP to enhance the HITS algorithm [16] using dynamic user profiles.

4 Customer Analyst for the Telecom Industry 109

Oishi et al. [20] created user profiles expressed as a category vector of the top
most categories of the ODP. The authors then showed how to rerank web search
results by using the ODP based the user profile. Other works exploit the ODP for
labeling tasks, as described in [6, 19]. Davidov et al. [6] used the ODP in order
to label datasets for text categorization by measuring conceptual distance between
categories, where larger distance means easier dataset. In [19] the authors utilized
the ODP for partitional hierarchical clustering algorithm. Specifically, the authors
converted one branch of the ODP into relational database tables for efficient use in
their clustering algorithm. Finally, there are some works about spam filtering using
the ODP taxonomy [10, 28].

Recently, with the growth in the amount of online generated data and users,
several works have focused on developing frameworks and algorithms for targeting
users in large scale systems [1, 3, 24, 29]. Shmueli-Scheuer et al. [24] suggested a
large scale user profiling framework using Hadoop MapReduce. Their focus was
on generating profiles based on the content of web pages and representing the
user profiles as the set of terms that most differentiate the user from the rest of
the population. Chen et al. [3] developed a behavioral targeting system over the
Hadoop MapReduce framework to select the ads that are most relevant to users.
Zhou et al. [29] proposed large scale collaborative filtering techniques for movies
recommendation. Finally, Cetintemel et al. [1] suggested an incremental algorithm
for constructing user profiles based on monitoring and explicit user feedback. Their
approach allows to trade between the profile complexity and its quality. In the
context of these works, in this paper we describe how a very large number of
content-based profiles can be extracted and maintained using the Apache Hadoop
MapReduce framework.

4.3 Customer Modeling Framework

In what follows, we describe the details of a large-scale telecom user profiling
framework. We begin by describing the general setting, followed by the two-phases
of user profile modeling, namely, categorization and aggregation. We conclude this
section with a description of the implementation on the modeling algorithm using
the MapReduce paradigm.

4.3.1 Setting

In this section, we describe the inputs to our analysis flow. As described in the
introduction, telecom companies monitor the data traffic that traverses their systems.
In particular, they log each HTTP request in a system log, containing all users’
interactions with web pages (documents). This log also contains Mobile Apps
interactions, whose importance we have stressed earlier. However, for the sake of

110 D. Konopnicki and M. Shmueli-Scheuer

simplicity, we will focus now on the interactions with web pages, while it should
be easy to the reader to understand how this work can be extended to Mobile Apps.
An additional constraint that must be taken into account is that we do not have
access to the full URLs of the documents but only the domain of the URLs due to
privacy reasons.

Consequently, each record in the input log is a tuple hu; d; contexti and captures
a single user-document association, where u represents the user, d represents
the domain-level URL (formally defined below Sect. 4.3.2.1) of the document
associated with that user, and context is any additional available metadata extracted
from the context of the user-document association (e.g., time, date, geographic
location of the user, user agent, content type, etc.). A user profiling module
consumes the system log data at scheduled time periods (e.g., once a day) and is
responsible to maintain user profiles. Both the system log and user profiles are stored
in Apache Hadoop’s distributed file system (HDFS).

4.3.2 The User Profile Model

4.3.2.1 Basic Notations

In the World Wide Web, every web page is identified by a unique URL, which
usually consists of a schema, domain name, port number and the path to be
fetched, with the syntax scheme://domain:port/path. The scheme name defines
the namespace, the domain name gives the destination location for the URL, the
optional port number completes the destination address for a communications
session, and finally, the path is used to specify the local resource requested. For
simplicity, let us assume that the port number is always defaulted. Let us define

Telecom companies manage user profiles that are based on structured data, such as
user demographics, analysis of voice CDRs, network data metrics and more. Cus-
tomer Analyst aims at enriching those existing user profiles based on unstructured
information by analyzing web browsing activities.

For example, a user that accesses nba.com very often, is likely to be a basketball
fan. In order to generate the user profile based on web browsing, a systematic
approach is needed. Specifically, an approach that (a) categorizes the different pages
effectively transforming opaque URLs into meaningful data, and (b) aggregates
them wisely into a comprehensive user profile.

As explained above, those user profiles can then be used by telecom companies
for targeted services to users (e.g., advertisements, recommendations) or to generate
new micro-segments based on their web behavior, improve churn prediction models
and more. In the following sections, we will describe the two phases of generation
of user profiles.

www.nba.com

4 Customer Analyst for the Telecom Industry 111

domain-level URL to be a URL that is of the form scheme://domain, denoted as d ,
and URL-level URL to be scheme://domain/path, denoted as u. Equipped with this
terminology we define the first phase, the categorization.

4.3.2.2 Categorization

There are different ways to model web pages data; common approaches (e.g., [5,
22]) work by extracting the content of the web pages, together with some other
optional metadata, such as title, hyperlinks, layout, etc., and then categorize those
pages based on this information. A different approach is to use pre-categorized data,
e.g., the DMOZ Open Directory Project (ODP).2 This is the approach that is used
by our user profiling algorithms.

Domain Distance

Given two domain-level URLs di and dj , ddomain.di ; dj / returns the length of
the longest common suffix between di and dj . For example, the distance between
di D a.b.c and dj D d.b.c is 2. We further normalize the distance by di size, that
is defined as the number of (“.” C 1) in di . Hence, in this example, the normalized

distance 7ddomain.di ; dj / D 2=3.
Let us assume that di is a URL that corresponds to some domain browsed by

some user u and dj is a domain-level URL that appears in some ODP category C .

2http://www.dmoz.org/.

The ODP is one of the largest collaborative sources that contains manually
annotated web pages. This effort resulted in the categorization of more than four
million web pages into more than 590,000 categories (such as Arts, Business,
Computers, Games, Health, News, etc.), expressed as a tree structure of categories.
In this tree, sub-categories represent more specific categories than their parents.
For example, the branch “Top/Arts/Television/Networks” is split into two sub
categories: “Top/Arts/Television/Networks/Cable” and “Top/Arts/Television/Net-
works/Satellite”. “Cable” is further divided into two sub categories: “HD” and
“Movies”. Each category contains links to web sites in the form of URL entries.
Specifically, the ODP entries are either in the domain-level URL form or in the
URL-level URL form and each is associated with some category C . For example,
money.cnn.com is in the domain-level URL form and cnn.com/CNN/Programs is
in the URL-level URL form, and are both associated with category “Arts/Televi-
sion/Networks/Cable/CNN”.

It is important to note, that while the ODP entries are either at the domain-level
URL or at a more detailed form (URL-level URL), the input that we expect is only
at the domain-level URL form. Thus, we define two distance functions, as follows.

www.cnn.com/CNN/Programs
www.cnn.com/CNN/Programs
http://www.dmoz.org/

112 D. Konopnicki and M. Shmueli-Scheuer

Obviously, the largest 7ddomain.di ; dj / is, the highest the chance that this category
C is relevant to u. Specifically, the normalized distance 1 is optimal and happens
when there is an exact match between the input URL to some domain-level URL
that appears in an ODP category.

For example, assume an input di = a.b.c, and the ODP includes URLs a.b.c, d.

b.c, e.b.c and x.c. Then, the normalized distances 7ddomain.di ; dj / are 1, 2=3, 2=3,
and 1=3, respectively. When there is an exact match between di and dj , and dj

belongs to category C , we simply associate C with di . On the other hand, when

there is no exact match between di and dj (i.e., 7ddomain.di ; dj / < 1) we still
want to associate some category with di . Thus, we define that, if the majority of
the relevant domain-level URLs that exist in the ODP belong to some category C ,
this category C will be associated with di . In order to do so, we apply a weighted
voting approach [14, 17] to each of the relevant domain level URLs dj , such that
its distance, d D ddomain.di ; dj / > 1 votes proportionally to d . If the (weighted)
majority agree on a category C (i.e., more than 50% of the total votes), C will be
reported as the matching category to the input domain-level URL, di . Formally,

if

P
8dj2Ck;8ddomain.di ;dj />1

7ddomain.di ; dj /P
8dj ;8ddomain.di ;dj />1

7ddomain.di ; dj /
� 0:5, then f associate Ck with dig

For example, assume that di = a.b.c, and the ODP includes entries d.b.c, e.b.c,
f.b.c and x.y.c with the corresponding categories: C1, C1, C2 and C2. The normalized

distances 7ddomain.di ; dj / are 2=3, 2=3, 2=3, and 1=3, respectively. Thus, for

category C1 the total weighted votes are
2
3C 2

3
2
3C 2

3C 2
3

D 2
3
. Category C2 has total votes

of
2
3

2
3C 2

3C 2
3

D 1
3
. Consequently, we assign category C1 to input di .

Path Distance

Given a domain-level URL di and a URL-level URL uj , such that the domain in uj is
di , we define dpath.di ; uj / to be the length of the URL path in uj . For example, the
distance dpath.di ; uj / between di = a.b.c and ODP URL level entry uj = a.b.c/d is 1.
Here, the smaller the distance is, the better is the match. For example, assume the
input is di = a.b.c, and the ODP includes entries a.b.c/d, a.b.c/e, a.b.c/f and a.b.c/g/h.
The first three entries have the same distance dpath.di ; uj / D 1, while the last ODP
entry (a.b.c/g/h) has a distance of 2. In such a case, there is no exact match between
the inputs, still, we want to associate some category with di . Again, we apply the
weighted voting approach where each of the ODP entries uj with dpath.di ; uj / � 1

votes inverse proportionally to their distance value. If the (weighted) majority agree
on a category, this will be reported as the matching category to the input domain-
level URL. Formally,

4 Customer Analyst for the Telecom Industry 113

if

P
8uj2Ck;8dpath.di ;uj /�1

1
dpath.di ;uj /P

8uj ;8dpath.di ;uj /�1
1

dpath.di ;uj /

� 0:5, then fdi category is Ckg

For example, assume the input di = a.b.c and the ODP includes entries a.b.c/d,
a.b.c/e/i, a.b.c/f/j and a.b.c/g/h, with the corresponding categories: C1, C2, C2

and C2. The first entry’s distance is 1, whereas, the rest 3 entries have distance
dpath.di ; uj / D 2. Thus, for category C1 the total weighted votes are 1

1C 1
2C 1

2C 1
2

D
2
5
. Category C2 has total votes of

1
2C 1

2C 1
2

1C 1
2C 1

2C 1
2

D 3
5
. Thus, we assign category C2 to

input di .
The categorization process first tries to associate a category to input URLs, using

the Domain distance. However, if no category is associated at this point (i.e., there
was no agreement between the ODP entries about the category) it continues to the
Path distance calculation. It is worth noting that more complex approaches that
combine the different levels, as well as approaches that consider partial ODP paths
are possible. We leave this as future work.

In addition, we added some rule-based categorization for those inputs URLs that
did not match with any category. We defined 10 very simple rules, such as: if input
contains hotel or travel then categorize it as “Top/Recreation/Travel”.

4.3.2.3 Aggregation

Each user is associated with many URLs in the web logs. As a result, reporting each
individual’s corresponding ODP categories without applying any summarization
technique, will make it very difficult, or even impossible, to derive the user behavior
and patterns. Thus, the model should support aggregation of the individual entries
into some meaningful profile.

Aggregation is inspired by the GROUP BY operator in database systems that
projects rows having common values into groups. To do so, one needs to define the
attributes that will be part of the aggregation, termed as aggregation level, followed
by the aggregation function that evaluates one or more functions on the objects
of groups. Typical examples are sum or average of an attribute in a group. The
attributes that are processed by the aggregation function are defined by aggregation
selection.

For example, assume that we want to aggregate for each user, the different
categories per day and according to different agent types. We then want to present
the duration that the user spent in each of the groups, given an EDR schema,
EDR(user_id, url, duration, date, agent_type, . . .), an aggregation level={user_id,
category, date, agent_type}, an aggregation function = {sum}, and an aggregation
selection = {duration}.

114 D. Konopnicki and M. Shmueli-Scheuer

4.3.2.4 MapReduce Implementation

MapReduce is a framework for processing large scale data in a distributed fashion.
As discussed earlier, due to the massive amount of data that telecom companies
have, this computation paradigm is unavoidable. In what follows, we describe the
map and reduce functions of the user profile model. Given an EDR record schema,
as described in Sect. 4.1.3.2, an aggregation level, an aggregation function and an
aggregation selection, we define the mapper and reducer to be:

function map(key, EDRrec) {
category =extractODPCategory(EDRrec.url)
aggregation_level = aggregation_level

S
category

emit(aggregation_level, aggregation_selection);}

function reduce(aggregation_level, aggregation_selection) {
s = 0
foreach rec

s += aggregation_function(aggregation_selection)
emit(aggregation_level, [s]);},

where the extractODPCategory(EDRrec.url) method implements an access to
Apache Lucene Index3 that contains the ODP entries and their associated categories.
Thus, fetching the most relevant ODP category for the given EDRrec.url.

For example, assume that we want to aggregate for each user the different
categories per day and according to different agent types. We then want to present
the duration that the user spent in each of the groups. Given an EDR schema,
EDR(user_id, url, duration, date, agent_type, . . .), the mapper and reducer are:

function map(key, EDRrec) {
category =extractODPCategory(EDRrec.url)
aggregation_level ={EDRrec.user_id,category,

EDRrec.date,EDRrec.agent_type}
emit(aggregation_level, EDRrec.duration);}

function reduce(aggregation_level, EDRrec.duration) {
s = 0
foreach rec

s += sum(EDRrec.duration)
emit(aggregation_level, [s]);}

3http://lucene.apache.org/.

http://lucene.apache.org/

4 Customer Analyst for the Telecom Industry 115

4.4 System Architecture

Our user profile model is implemented as part of a general analytics library, called
Customer Analyst. In this section, we describe the Customer Analyst library in
general and exemplify its use through the implementation of the user profile model
we just presented. We then describe the integration with other analysis tools.

4.4.1 The Customer Analyst Library

Customer Analyst is an analytics library that consists of different reusable compo-
nents (presented in Fig. 4.1), organized in four layers. The library provides analysts
the flexibility to implement various scenarios, by composing those components into
complete flows. We will now describe the different layers in the library, focusing on
different Telecom scenarios. Note that the library itself is industry agnostic.

At its core, the library needs to support massive-scale data scenarios, and thus,
its infrastructure is built on top of Apache Hadoop (in practice embodied into the
IBM InfoSphere BigInsights platform4). Specifically, it utilizes the Jaql Language,5

Java MapReduce and the Oozie workflow6 platform.

4.4.1.1 Utils

The JSON (JavaScript Object Notation)7 format has become one of the most popular
formats for big data: being self-describing and relatively compact, it provides a
flexible way to share information between systems. Therefore, Customer Analyst
provides methods for efficient parsing, creation and manipulation of JSON format
files. Those utilities are part of the Utils components. Another important role of the
Utils components is the Data Cleansing capability: the role of those utilities is to
standardize the input and removing noise. In the case of URL analysis, the cleansing
simply includes removing the leading “http://”, the port information, etc.

4.4.1.2 Resource Analysis Layer

This layer includes algorithms that receive the raw data (usually after cleansing)
as input, and extract different features that will be consumed later by other layers.

4http://www-01.ibm.com/software/data/infosphere/biginsights/.
5http://code.google.com/p/jaql/.
6http://rvs.github.com/oozie/index.html.
7http://www.json.org/.

http://www-01.ibm.com/software/data/infosphere/biginsights/
http://code.google.com/p/jaql/
http://rvs.github.com/oozie/index.html
http://www.json.org/

116 D. Konopnicki and M. Shmueli-Scheuer

E
va

lu
at

io
n

F
ra

m
ew

or
k

(t
es

t/
tr

ai
n,

 c
ro

ss
-v

al
id

at
io

n)

R
es

o
u

rc
es

 a
n

al
ys

is
 la

ye
r

In
fr

as
tr

u
ct

u
re

E
n

ti
ti

es
 M

o
d

el
in

g
 la

ye
r

B
ig

In
si

gh
ts

 (
S

ys
te

m
T

/J
aq

l/H
ad

oo
p)

F
ea

tu
re

 s
el

ec
tio

n

A
p

p
lic

at
io

n
s

la
ye

r
S

oc
ia

l G
ra

ph
 A

na
ly

si
s

R
ec

om
m

en
da

tio
ns

Crawlers and data converters

Output data converters

Lucene/DB

C
on

ce
pt

s
se

le
ct

io
n

C
lu

st
er

in
g

U
se

r
P

ro
fil

in
g

(u
ns

tr
uc

tu
re

d/
se

m
i-s

tr
uc

tu
re

d)

E
n

ti
ti

es
 a

n
al

ys
is

 la
ye

r

F
ea

tu
re

s
C

om
bi

na
tio

n
S

im
ila

rit
y

M
ic

ro
-s

eg
m

en
ta

tio
n

A
dv

er
tis

em
en

t

U
ti

ls D
at

a
C

le
an

si
ng

S
cr

ip
ts

Ja
ql

sc
rip

ts

S
he

ll
sc

rip
ts

Js
on

U
til

s

R
an

do
m

 w
al

k

T
ar

ge
tin

g

C
on

ce
pt

s
C

om
bi

na
tio

n

Fig. 4.1 The customer analyst library

4 Customer Analyst for the Telecom Industry 117

Specifically, the library contains three different analysis components, namely
Features Selection, Concepts Selection and Clustering.

The Features Selection component includes a set of algorithms that aim at select-
ing a subset of the features (e.g., terms) from a text and eliminating noise. In the
literature, there are many approaches to feature selection; the state-of-the-art include
Mutual Information, Chi-square [18], and Kullback-Liebler Divergence [24].

Another component in this layer is the Concepts Selection, which receives raw
textual data or features as input and associates them with concepts. This component
harnesses concepts from different taxonomies, including open source taxonomies,
such as Wikipedia,8 and the Open Directory Project (ODP). In Sect. 4.4.2 we have
described in details how this is utilized for the purpose of user profiling.

The last component in this layer is the Clustering component. It is used to
implement scenarios that include clustering of feature vectors, for example, the
clustering of different user profiles into micro-segments.

4.4.1.3 Entities Analysis Layer

This layer consumes the output of the Resource Analysis Layer and implements
algorithms, such as random walk [21] that are relevant for social graph analysis
that can be used in churn models 4.1.4.1. In addition, similarity algorithms are
a fundamental part of any models of targeted advertisement, as described in
Sect. 4.1.4.2. Finally, the combination components, namely the Features Combina-
tion and Concepts Combination components, contain implementations of different
aggregation methods, including the smoothing parameters (that need to be learned
using machine learning techniques) in case of weights sum, etc.

4.4.1.4 Entities Modeling Layer

We have described some basic features and algorithms as part of the analysis layers.
The Entities Modeling Layer handles the modeling part of the library and includes
different user profile models, for example, the user model for the telecom use case
we have defined in Sect. 4.3.2. Another supported approach for representing a user
profile, based on content consumed or produced by a user, is as a weighted vector
of terms, also known as the Bag of Words (BOW) model [2, 25]. The work in [24]
describes such a user profile model.

8http://www.wikipedia.org/.

http://www.wikipedia.org/

118 D. Konopnicki and M. Shmueli-Scheuer

4.4.1.5 Applications Layer

In this layer, are defined the specific applications of the library. For each application,
the layer contains the specification of the inputs, outputs, and an implementation of a
workflow that utilizes the different components at the lower layers. For example, in
our case, we considered inputs such as: distance functions, number of categories,
etc. The outputs are the entities from the modeling layers, and the workflow is
described below in Sect. 4.4.2.

4.4.1.6 Evaluation Framework

Customer Analyst provides a robust framework for testing and validating results:
cross-validation is used to assess the statistical results of the different analyses,
including the partitioning of a sample of data into complementary subsets, perform-
ing the analysis on one subset (training set) and validating the analysis on the other
subset (test set).

Finally, the Customer Analyst library provides an API for inputs and outputs.
The library input supports both data push and data pull models and thus integrates
the Apache Nutch crawler.9 In addition, it supports different data conventions (such
as encoding). As the Customer Analyst is not a silo, the outputs of the library are
usually consumed by other analytics tools, such as SPSS,10 and thus the output can
be saved into databases or textual indices.

4.4.2 Analysis Flow

In this section we present how the Customer Analyst library is used to generate
the user profiles. Figure 4.2a shows the schematic flow using the Customer Analyst
components, including the inputs and intermediate outputs (in dashed rectangles);
such a flow can be implemented using a Oozie workflow, as shown in the Appendix
(Listings 4.1). The reader should note the execution order, what can be done in
parallel, etc. The flow starts with the ODP data as an input, where the data is
represented in RDF format,11 and goes into the data cleansing component. At this
stage, parsing and cleansing of the data is done and the output of this step is indexed
into an Apache Lucene Index structure (the ODP index).

In the next step, the concepts selection, the inputs are triplets: the URLs
associated with the user id u and other context information, such as agent type,
content type and date, and the ODP index built at the previous step. To recall, in

9http://nutch.apache.org/.
10http://www-01.ibm.com/software/analytics/spss/.
11http://www.w3.org/RDF/.

http://nutch.apache.org/
http://www-01.ibm.com/software/analytics/spss/
http://www.w3.org/RDF/

4 Customer Analyst for the Telecom Industry 119

(<u, URL, context>)

Data cleansing
(ODP)

Concepts selection (ODP)

Concepts Combination

ODP Dump

configuration

ODP index

<u, category, context >

Raw
Data

Configuration
Settings

User Profiles
(JSON –HDFS/FS)

DB2 /SPSS:

• Clustering

• Correlation

• Propensity
 Modeling

IBM
Infosphere
BigSheets

• Aggregation

• Analysis

• Charting

• Visualization

Evaluation Framework (test/train, cross-validation)

Resources analysis layer

Infrastructure

Entities Modeling layer

BigInsights (SystemT/Jaql/Hadoop)

Feature selection

Inter-entities analytics layer

Social Graph Analysis RecommendationsC
raw

lers and data converters

O
utput data converters

Lucene/D
B

Concepts selection Clustering Caching

User Profiling (unstructured/semi-structured)

Entities analysis layer

Micro-segmentation

Targeting Advertisement

Utils
1

2

3

Data
Cleansing

Scripts

Jaql
scripts

shell
scripts

Json Utils

Features CombinationRandom walk Similarity Concepts Combination

Telco. User Profiling

a b

Fig. 4.2 (a) Telcom flow using customer analyst, and (b) end-to-end flow

Table 4.1 Example of a user profile with top-4 categories

Category Agent type Date Count

Arts/Entertainment/News_and_Media AndroidBrowser 2011-09-26 22
Arts/Radio/Internet/Directories AndroidBrowser 2011-09-27 15
Reference/Maps/Google_Maps BlackberryBrowser 2011-09-27 14
Arts/Entertainment/News_and_Media AndroidBrowser 2011-09-27 13

this step, the task at hand is to match a category from the ODP taxonomy into the
given domain URLs. Thus, the output is a set of triplets hu; d; contexti. Those
triplets are now consumed by the concepts combination component together with
some configuration parameters, such as how to aggregate the concepts, how many
categories to report per user and more. Some examples are: “aggregate by user id,
category and agent type”, “aggregate by user id, category and date”, etc. As for
aggregation selection, methods like “count” – how many times a category C appears
in the user entries’ or “duration” – how long this user was browsing web pages that
belong to category C ”, and more, can be used. The output after this combination
is the user profile. For example, Table 4.1 shows the top-4 categories for a specific
user, aggregated by category, agent type and date using count.

For this user profile, we can understand the different interests, e.g., preferring
web sites about “News and Media” (regularly visiting these sites using Android),
along with the intensity.

120 D. Konopnicki and M. Shmueli-Scheuer

4.4.3 End-to-End Flow

Figure 4.2b depicts a complete flow with some options for analysis based on the
generated user profiles. Here, the flow shows the raw data, and configuration files
that are inputs to the Customer Analyst library. Then the output, the user profiles can
be consumed by the IBM Infosphere BigSheets tool to explore and visualize data,12

or by analysis tools such as SPSS (on top of IBM DB2). For example, clustering or
propensity models are created with SPSS, whereas simple aggregation, visualization
and charting may be done with BigSheets.

4.5 Evaluation

We now provide empirical evaluation of our user profiling framework. We first
describe the dataset and experimental setting followed by quality evaluation and
scalability analysis of the proposed framework.

4.5.1 Dataset and Experimental Setup

For the experimental evaluation we used a real-world dataset containing HTTP
session logs, URL, date, time, agent type, content type, and more. The logs cover the
browsing history for 30 days and for more than eight millions telecom customers.
On average, there are around 30 million entries (browsing requests) per hour. The
total volume of data is around 5 TB.

Experiments were conducted using a 8-nodes commodity machines cluster (each
machine with 2 GB RAM, 4 cores), each node with Red Hat Linux operating system
running IBM Infopshere BigInsights, which contains Hadoop version 0:20:1.

4.5.2 Quality Analysis

We start with quality analysis of our proposed categorization approach and the user
profile model, as described in Sect. 4.3.2.

4.5.2.1 ODP Categorization

We compare the ODP-based categorization presented above with a state-of-the-art
web filtering product, include spam detection and content filtering. Specifically,

12http://www-01.ibm.com/software/ebusiness/jstart/bigsheets/.

http://www-01.ibm.com/software/ebusiness/jstart/bigsheets/

4 Customer Analyst for the Telecom Industry 121

Table 4.2 Top-10 categories
along with their ODP
precision and recall values

Category Recall Precision

Social networking 0.986 0.995
Software/hardware 0.965 1
Banner advertisements 0.731 0.963
Search engines/web catalogues/portals 0.924 0.869
General business 0.328 0.916
News/magazines 0.916 0.970
Education 0.842 1
Auctions/classified Ads 1 0.833
Cinema/television 0.888 1

this product classifies web pages based on the layout, text, hypelinks, etc., and
offers more than 14 million URLs conveniently categorized into 60 different content
groups (such as “Social Networking”, “News/Magazines” and more).

The prominent difference between this product and our approach is the granular-
ity of the categories. This is due to the different needs of the two tools. While for web
filtering applications 60 categories are enough to classify web pages, for user pro-
filing tasks this is coarse and not descriptive enough. For example, http://data.flurry.
com is categorized as “Software/Hardware” by the filtering product, whereas the
associated ODP category is “Top/Business/Telecommunications/Software”, which
is much more descriptive. This allows the analysts to gain a better insights and
understanding about the customer interests, in this example, understanding that
the customer is interested in telecommunication software and not in any general
software.

To study the quality of the ODP categories, we extracted 1,000 URLs (Uniform
at Random) from the logs. Each URL was categorized by both the filtering product
and using our approach. We define the filtering product categorization as the
“ground truth”, and manually assess each of the ODP categories with respect to
the ground truth category, measured by the precision and recall.

Table 4.2 summarizes the precision and recall values for the top-10 categories.
In general, the recall and precision of the top-10 categories are very good, the
average precision and recall values are 0:95 and 0:84, respectively. A low recall
score was obtained for category “General Business”; this was due to the fact that
many missing URLs in the ODP were classified as “General Business” in the
filtering product.

4.5.2.2 ODP Coverage

As discussed in Sect. 4.3.2.2, there is a gap between the input form (domain level)
and the ODP entries (URL and domain forms), which is solved by introducing the
different distance functions (Domain Distance and Path Distance). In total, we were
able to categorize 87% of the input (the rest 13% were “Null”).

http://data.flurry.com
http://data.flurry.com

122 D. Konopnicki and M. Shmueli-Scheuer

Exact Match
42%

Rules
8%

Domain
31%

Path
6%

Null
13%

Fig. 4.3 Percentage of the
different match levels

Figure 4.3 shows the precentage of the input that was categorized by the different
approaches. For example, 42% of the input had exact match with ODP entries,
31% of the input was categorized using the Domain Distance and only 6% was
categorized with the Path Distance approach.

4.5.3 Scalability Analysis

We now analyze the scalability of our framework with respect to several parameter
settings. The main factor that affects the performance of the flow is the data size,
i.e., the number of entries (HTTP sessions) that need to be processed.

4.5.3.1 Effect of Data Size

We first analyze the performance with respect to the data size. It is worth noting
that instead of looking on data size directly, we looked on a slightly different
parameter which is the number of processed days. The HTTP logs were partitioned
into “hourly” logs, i.e., there are 24 logs per day. Thus, is seems natural to choose
this unit (i.e., day) for performance analysis. As mentioned above, in our dataset
there are, on average, 30 million browsing requests per hour. We vary the number
of processed days from 1 to 25 days (in increments of 1, 5, 10 and 25 days) and
measure the runtime. Figure 4.4 provides the runtime for the different number of
days. We observe that the runtime increases linearly with the increment in the
number of processed days. For example, analyzing 1 day data took 17 min and
analyzing 10 days data took 157 min.

4 Customer Analyst for the Telecom Industry 123

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25

#Days

R
u

n
n

in
g

-t
im

e
[h

o
u

rs
]

Fig. 4.4 Runtime performance (in hours) with respect to increasing in number of processed days

Table 4.3 Increase in runtime with respect to different aggregation levels

Aggregation level Increase in runtime (%)

{date,content_type} 11
{date,content_type,user_agent} 24
{date,content_type,user_agent,URL} 53
{date,content_type,user_agent,URL,http_method} 58

4.5.3.2 Effect of Aggregation

Finally, we analyze the scalability of our framework with respect to the aggregation
level. Recall that the aggregation level refers to the way that the entries per users are
grouped together (see Sect. 4.3.2.3). We define the basis aggregation level to be by
the “date” attribute and then compare the different levels with respect to this basis
level.

Table 4.3 summarizes the percentage of increase in running time for the different
levels of aggregation per user. As expected, the runtime increases when we add
more levels of aggregation. This is due to the fact that more outputs need to be
written by both mappers and reducers. For instance, when we aggregate using
fdate; content_type; user_agent; URLg, the runtime is 50% more than the run-
time of the basis aggregation (“date”). It is worth noting that in our implementation
the different aggregation functions did not affect the runtime.

4.6 Conclusions

In this chapter we presented a scalable user profiling solution for the telecom
industry, implemented on top of the Apache Hadoop framework. We presented the
general architecture and a complete scenario, including the implementation details.

124 D. Konopnicki and M. Shmueli-Scheuer

Future work includes the extension of our framework with other paradigms, such
as hierarchical or semantic models. We also intend to incorporate structured data
sources into our framework.

Acknowledgements The authors would like to thank Shai Erera and Gilad Barkai for the useful
discussions about implementation issues. We also thank Haggai Roitman for sharing thoughts and
ideas. Finally, we thank Matin Jouzdani for his support to make it a successful project.

Appendix

Listing 4.1 Customer Analyst’s Oozie workflow

<workflow-app xmlns=’uri:oozie:workflow:0.1’ name=’map-reduce-wf’>
<start to=’ODPcleansingJob’/>
<action name=’ODPcleansingJob’>

<map-reduce>
<job-tracker>\${jobTracker}</job-tracker>
<name-node>\${nameNode}</name-node>
<configuration>

<property>
<name>mapred.job.name</name>
<value>ODP-cleansing-indexing</value>

</property>
<property>

<name>mapreduce.map.class</name>
<value>com.ibm.analyze.mr.ODPMapper</value>

</property>
<property>

<name>mapreduce.reduce.class</name>
<value>com.ibm.analyze.mr.ODPReducer</value>

</property>
<property>

<name>mapred.reduce.tasks</name>
<value>1</value>

</property>
<property>

<name>mapred.input.dir</name>
<value>\${inputDir}</value>

</property>
<property>

<name>mapred.output.dir</name>
<value>/usr/output/\${wf:id()}/ODPindex</value>

</property>
</configuration>

</map-reduce>
</action>
<ok to="fork"/>
<error to="kill"/>
<fork name=’fork’>

<path start=’conceptSelectionODP’ />
</fork>
<action name="conceptSelectionODP">

<map-reduce>
<job-tracker>\${jobtracker}</job-tracker>
<name-node>\${namenode}</name-node>
<configuration>

<property>
<name>mapred.job.name</name>

4 Customer Analyst for the Telecom Industry 125

<value>concept-selection-ODP</value>
</property>
<property>

<name>mapred.mapper.class</name>
<value>com.ibm.analyze.mr.ConceptSelectMapper</value>

</property>
<property>

<name>mapred.reducer.class</name>
<value>com.ibm.analyze.mr.ConceptSelectReducer</value>

</property>
<property>

<name>mapred.input.dir</name>
<value>/usr/output/\${wf:id()}/ODPindex</value>

</property>
<property>

<name>mapred.output.dir</name>
<value>/usr/output/\${wf:id()}/UserConcepts</value>

</property>
</configuration>

</map-reduce>
</action>
<ok to="join"/>
<error to="kill"/>
<action name="conceptCombinationODP">

<map-reduce>
<job-tracker>\${jobtracker}</job-tracker>
<name-node>\${namenode}</name-node>
<configuration>

<property>
<name>mapred.job.name</name>
<value>concept-combination-ODP</value>

</property>
<property>

<name>mapred.mapper.class</name>
<value>com.ibm.analyze.mr.ConceptCombineMapper</value>

</property>
<property>

<name>mapred.reducer.class</name>
<value>com.ibm.analyze.mr.ConceptCombineReducer</value>

</property>
<property>

<name>mapred.input.dir</name>
<value>/usr/output/\${wf:id()}/ODPindex,

/usr/output/\${wf:id()}/UserConcepts</value>
</property>
<property>

<name>mapred.output.dir</name>
<value>\${output}</value>

</property>
<property>

<name>schema</name>
<value>\${schema}</value>

</property>
<property>

<name>rank</name>
<value>\${rank}</value>

</property>
<property>

<name>aggregateFields</name>
<value>\${aggregateFields}</value>

</property>
</configuration>

</map-reduce>
<ok to="end"/>
<ok to="kill"/>

</action>
<kill name="kill">

126 D. Konopnicki and M. Shmueli-Scheuer

<message>[\${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name=’end’/>

</workflow-app>

References

1. Cetintemel, U., Franklin, M.J., Giles, C.L.: Self-adaptive user profiles for large-scale data
delivery. In: ICDE, San Diego, pp. 622–633 (2000)

2. Chen, L., Sycara, K.: Webmate: a personal agent for browsing and searching. In: AGENTS
’98, St. Paul. ACM, New York (1998)

3. Chen, Y., Pavlov, D., Canny, J.F.: Large-scale behavioral targeting. In: KDD ’09, Paris. ACM,
New York (2009)

4. Chirita, P.A., Nejdl, W., Paiu, R., Kohlschütter, C.: Using ODP metadata to personalize search.
In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’05, Salvador, pp. 178–185. ACM, New York
(2005)

5. Cohn, D., Hofmann, T.: The missing link – a probabilistic model of document content and
hypertext connectivity. In: Advances in Neural Information Processing Systems, Vancouver
(2001)

6. Davidov, D., Gabrilovich, E., Markovitch, S.: Parameterized generation of labeled datasets for
text categorization based on a hierarchical directory. In: SIGIR ’04, Sheffield (2004)

7. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

8. de Reuver, M., Haaker, T.: Designing viable business models for context-aware mobile
services. Telemat. Inform. 26(3), 240–248 (2009)

9. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, Bolton Landing,
pp. 29–43. ACM, New York (2003)

10. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with trustrank. In:
Proceedings of the Thirtieth International Conference on Very Large Data Bases – Volume
30, VLDB ’04, Toronto, pp. 576–587 (2004)

11. http://en.wikipedia.org/wiki/Privacy_internet
12. https://www.eff.org/deeplinks/2012/03/best-practices-respect-mobile-user-billrights
13. Hung, S.-Y., Yen, D.C., Wang, H.-Y.: Applying data mining to telecom churn management.

Expert Syst. Appl. 31, 515–524 (2006)
14. Ingrid, D.: Weighted voting systems. Voting and Social Choice (2002)
15. Kaasinen, E.: User needs for location-aware mobile services. Pers. Ubiquitous Comput.

7, 70–79 (2003)
16. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632

(1999)
17. Larry, B.: Weighted Voting Systems (2001)
18. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge

University Press, New York (2008)
19. Nunes, M., Cabral, L., Lima, R., Freitas, F., Reinaldo, G., Prudencio, R.: Docs-Clustering:

A System for Hierarchical Clustering and Document Labeling (2008)
20. Oishi, T., Kambara, Y., Mine, T., Hasegawa, R., Fujita, H., Koshimura, M.: Personalized search

using ODP-based user profiles created from user bookmark. In: PRICAI 2008: Trends in
Artificial Intelligence, Hanoi. Volume 5351 of Lecture Notes in Computer Science, pp. 839–
848 (2008)

21. Pearson, K.: The problem of the random walk. Nature 72, 294 (1905)

http://en.wikipedia.org/wiki/Privacy_internet
https://www.eff.org/deeplinks/2012/03/best-practices-respect-mobile-user-bill rights

4 Customer Analyst for the Telecom Industry 127

22. Qi, X., Davison, B.D.: Web page classification: features and algorithms. ACM Comput. Surv.
41(2), 1–31 (2009)

23. Richter, Y., Yom-Tov, E., Slonim, N.: Predicting customer churn in mobile networks through
analysis of social groups. In: SDM, Columbus (2010)

24. Shmueli-Scheuer, M., Roitman, H., Carmel, D., Mass, Y., Konopnicki, D.: Extracting user
profiles from large scale data. In: MDAC, Raleigh (2010)

25. Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive web search based on user profile
constructed without any effort from users. In: WWW, Manhattan, pp. 675–684 (2004)

26. Tanudjaja, F., Mui, L.: Persona: a contextualized and personalized web search. In: Proceedings
of the 35th Annual Hawaii International Conference on System Sciences, Big Island, p. 67
(2001)

27. van Setten, M., Pokraev, S., Koolwaaij, J.: Context-aware recommendations in the mobile
tourist application compass. In: Adaptive Hypermedia and Adaptive Web-Based Systems,
Eindhoven, vol. 3137, pp. 515–548 (2004)

28. Williamson, M.: Using DMOZ open directory project lists with novell bordermanager (2003)
29. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative filtering for

the netflix prize. In: AAIM ’08, Shanghai, pp. 337–348. Springer, Berlin/Heidelberg (2008)

Chapter 5
Machine Learning Algorithm Acceleration
Using Hybrid (CPU-MPP) MapReduce Clusters

Sergio Herrero-Lopez and John R. Williams

Abstract The uninterrupted growth of information repositories has progressively
led data-intensive applications, such as MapReduce-based systems, to the main-
stream. The MapReduce paradigm has frequently proven to be a simple yet flexible
and scalable technique to distribute algorithms across thousands of nodes and
petabytes of information. Under these circumstances, classic data mining algorithms
have been adapted to this model, in order to run in production environments. Unfor-
tunately, the high latency nature of this architecture has relegated the applicability
of these algorithms to batch-processing scenarios. In spite of this shortcoming, the
emergence of massively threaded shared-memory multiprocessors, such as Graphics
Processing Units (GPU), on the commodity computing market has enabled these
algorithms to be executed orders of magnitude faster, while keeping the same
MapReduce-based model. In this chapter, we propose the integration of massively
threaded shared-memory multiprocessors into MapReduce-based clusters, creating
a unified heterogeneous architecture that enables executing Map and Reduce
operators on thousands of threads across multiple GPU devices and nodes, while
maintaining the built-in reliability of the baseline system. For this purpose, we
created a programming model that facilitates the collaboration of multiple CPU
cores and multiple GPU devices towards the resolution of a data intensive problem.
In order to prove the potential of this hybrid system, we take a popular NP-hard
supervised learning algorithm, the Support Vector Machine (SVM), and show that a
36��192� speedup can be achieved on large datasets without changing the model
or leaving the commodity hardware paradigm.

S. Herrero-Lopez (�)
Technologies, Equities and Currency (TEC) Division, SwissQuant Group AG, Kuttelgasse 7,
8001 Zurich, Switzerland
e-mail: sergherrero@gmail.com

J.R. Williams
Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139 Cambridge, MA, USA
e-mail: jrw@mit.edu

A. Gkoulalas-Divanis and A. Labbi (eds.), Large-Scale Data Analytics,
DOI 10.1007/978-1-4614-9242-9__5, © Springer Science+Business Media New York 2014

129

mailto:sergherrero@gmail.com
mailto:jrw@mit.edu

130 S. Herrero-Lopez and J.R. Williams

5.1 Introduction

The data mining community has often assumed that performance increase on
existing techniques would be given by the continuous improvement of processor
technology. Unfortunately, due to physical and economic limitations, it is not
recommendable to rely on the exponential frequency scaling of CPUs anymore.
Furthermore, the low price and ubiquity of data generation devices not only has
led to larger datasets that need to be digested on a timely manner, but also to
the growth of dimensionality, categories and formats of the data. Simultaneously,
an increasingly heterogeneous computing ecosystem has defined three computing
families:

1. Commodity Computing: It encompasses large-scale geographically distributed
commodity machine clusters running primarily open source software. Its reliabil-
ity to host batch processing systems, such as Hadoop [12], and storage systems,
such as BigTable [5] or Cassandra [17], across tens of thousands of nodes and
petabytes of data, have made commodity computing the foundation of internet-
scale companies and the cloud.

2. High Performance Computing/Supercomputing: It refers to centralized multi-
million computer systems capable of delivering high throughput for complex
tasks that demand large computational power. Typically, these are funded and
operated by governments or large corporations, and are utilized for the resolution
of scientific problems.

3. Appliance Computing: It refers to highly specialized systems exclusively
designed to carry out one or few similar tasks with maximum performance
and reliability. These nodes combine state-of-the-art processor, storage
and interconnect technologies and cost one order of magnitude less than
supercomputers. These computing appliances have been successfully utilized
for large-scale analytics and enterprise business intelligence operations.

Under these circumstances, it is required for the research community to investi-
gate the adaptation of classic and novel data intensive algorithms to this heteroge-
neous variety of parallel computing ecosystems and the technologies that compose
them. This adaptation process can be separated into two phases: The Extraction
Phase, in which the parallelizable parts, called parallel Tasks, of the algorithm
are identified and separated; and the Integration Phase, in which these tasks are
implemented for the most suitable parallel computing platform or combination of
them.

5.1.1 Extraction Phase

The extraction of parallelism on a data intensive algorithm can be carried out at
different levels, with different impacts on performance and increased programming
complexity:

5 ML Algorithm Acceleration Using Hybrid (CPU-MPP) MapReduce Clusters 131

1. Independent Runs: This is the most common technique; it simply runs the
same algorithm with different configuration parameters on different processing
nodes. Each of the runs is independent and parallel execution does not speed up
individual runs.

2. Statistical Query & Summation: This technique decomposes the algorithm into
an adaptive sequence of statistical queries, and parallelizes these queries over
the sample [16]. This approach is satisfactory in speeding up slow algorithms, in
which little communication is needed.

3. Structural Parallelism: This technique is based on the exploitation of fine-
grained data parallelism [15]. This is achieved by handling each data point with
one or few processing threads.

These three techniques are complementary and are often combined to yield
maximum performance on a given target parallel computing platform. Successful
parallelization transforms a computationally limited problem into a bandwidth
bound problem, in which communication between processing units becomes the
bottleneck and optimizing for minimum latency gains critical importance. The
full exposure of the complexity of parallel programming will result in the largest
performance gain.

Individual parallel tasks extracted through both Statistical Queries & Summation
and/or Structural Parallelism, can be directly modeled using the MapReduce
programming paradigm [8]. The MapReduce framework is illustrated in Fig. 5.1.

The Map and Reduce operators are defined with respect to structured (key, value)
pairs. Map (M) takes one pair of data with a type in one domain, and returns a list
of pairs in a different domain:

M Œk1; v1�! Œk2; v2� (5.1)

The Map operator is applied in parallel to every item in the input dataset. This
produces a list of (k2, v2) pairs for each call. Then, the framework collects all the
pairs with the same key and groups them together. The Reduce (R) operator is then
applied to produce a v3 value.

R Œk2; fv2g�! Œv3� (5.2)

The advantage of the MapReduce model is that makes parallelism explicit, and
more importantly, language or platform agnostic, which allows executing a given
algorithm on any combination of platforms in the parallel computing ecosystem. M

or R tasks are distributed dynamically among a collection of Workers. The Workers
is an abstraction that can represent nodes, processors or Massively Parallel Processor
(MPP) devices.

Researchers have focused their effort on the decomposition of Machine Learning
algorithms as iterative flows of Map and Reduce tasks. Next, the decomposition of
three classic Machine Learning algorithms into flows of Map (M) and Reduce (R)
tasks is explained:

132 S. Herrero-Lopez and J.R. Williams

Fig. 5.1 MapReduce primitives and runtime

• K-means: The K-means clustering algorithm can be represented as an iterative
sequence of (M , R) tasks that run until the stop criteria are met. M represents the
assignation of points to clusters and R the recalculation of the cluster centroids.
K-means is illustrated in Fig. 5.2.

• Expectation Maximization: The EM algorithm for Gaussian mixtures is rep-
resented by iterations of (M , R, R, R) tasks running until convergence. M

corresponds to the E-step of the algorithm, while (R, R, R) correspond to the
M-step that calculates the mixture weights ai , means N�k and covariance matrices
˙k , respectively. EM is illustrated in Fig. 5.3.

• Support Vector Machine: The resolution of the dual SVM problem using the
Sequential Minimal Optimization (SMO) [20] is represented by iterations of
(M , M , R, M) tasks running until convergence. These tasks reproduce the
identification of the two Lagrange multipliers to be optimized in each iteration,
and their analytic calculation. The SVM is illustrated in Fig. 5.4.

5.1.2 Integration Phase

The integration of parallel MapReduce tasks into diverse computing platforms
spans a wide and heterogeneous variety of parallel system architectures. Originally,
internet-scale companies decomposed indexing and log-processing jobs into Map

5 ML Algorithm Acceleration Using Hybrid (CPU-MPP) MapReduce Clusters 133

Fig. 5.2 Decomposition of K-means into MapReduce tasks

Fig. 5.3 Decomposition of EM using Gaussian mixtures into MapReduce tasks

and Reduce tasks that were executed in batches on top of a distributed file system
hosted by hundreds or thousands of commodity nodes. Its proven reliability in
production, along with its symbiosis towards virtualized environments, led the
MapReduce model to be one of the key data processing paradigms of cloud
service infrastructures. Research initiatives have investigated the applicability of

134 S. Herrero-Lopez and J.R. Williams

Fig. 5.4 Decomposition of SVM into MapReduce tasks

this model in scientific environments and enterprise analytics, and have tested the
implementation of MapReduce tasks on alternative platforms, such as multicore or
MPPs (GPUs, Cell microprocessors or FPGAs), aiming to boost the performance of
computationally expensive jobs.

In this chapter, a hybrid solution that boosts the computational throughput of
commodity nodes is proposed, based on the integration of multiple MPPs into
the MapReduce runtime. For this purpose, a programming model to orchestrate
MPPs is developed. In order to test the computational capabilities of this solution,
a multiclass Support Vector Machine (SVM) is implemented for this hybrid system
and its performance results for large datasets reported.

The rest of this chapter is organized as follows: Sect. 5.2 reviews previous
initiatives that accelerate the execution of data intensive MapReduce jobs, either by
optimizing the cluster runtimes or exploiting the capabilities of massively parallel
platforms. Section 5.3 enumerates the research contributions presented by this work.
Our proposed unified heterogeneous architecture, is described in Sect. 5.4. The
decomposition of the SVM problem into MapReduce tasks and its integration into
the GPU cluster architecture is explained in Sect. 5.5. Section 5.6 contains details
of the performance gain provided by our massively threaded implementation. The
conclusions of this work are presented in Sect. 5.7.

5 ML Algorithm Acceleration Using Hybrid (CPU-MPP) MapReduce Clusters 135

5.2 Related Work

In general, the research efforts for the performance improvement of large-scale
Machine Learning algorithms, expressed as MapReduce jobs, can be classified into
two families, namely cluster category and multiprocessor category.

Cluster Category: These efforts focus on the adaptation of the cluster runtime
to satisfy the particular needs of Machine Learning algorithms and facilitate
their integration into clusters. These needs have been identified as: (1) support
for iterative jobs, (2) static and bariable data types, and (3) dense and sparse
BLAS operations. Ekanayake et al. [10] presented Twister, a modified runtime that
accommodates multiple Machine Learning algorithms by supporting long-running
stateful tasks. Ghoting et al. [11] designed System-ML, a declarative language to
express Machine Learning primitives and simplify direct integration into clusters.
The Apache Mahout [1] project compiled a library of the most popular MR-able
algorithms for the standard Hadoop implementation of MapReduce.

Multiprocessor Category: In this category MapReduce jobs are scattered and
gathered among multiple processing cores on a shared-memory multiprocessor
device or multiple devices hosted by interconnected nodes. Typically the processing
units in these systems are constructed to run tens of threads simultaneously reducing
the load of MapReduce tasks assigned to each thread, while increasing the degree
of parallelism. Communication between cores is carried out through the shared-
memory hierarchy. Popular systems of this category are Phoenix (multicore) [27],
Mars (GPU) [13], CellMR (Cell) [21] and GPMR [22].

The hybrid MapReduce runtime proposed in this chapter is unique in the sense
that it combines the best of both worlds to deliver an efficient framework that meets
the specific needs of Machine Learning algorithms, and produces up to two orders
of magnitude of acceleration using massively threaded hardware.

Particularly for the case of SVM implementations for shared-memory multipro-
cessors, Chu et al. [23] provide an SVM solver for multicore based on MapReduce
jobs obtained through Statistical Query & Summation. Similarly, researchers have
been focused on the GPU adaptation of dual form SVMs for binary and multiclass
classification [3, 14]. Specifically for the case of SVM implementations in clusters,
Chang et al. [6] provide the performance and scalability analysis of a deployment
of their PSVM algorithm on Google’s MapReduce infrastructure.

5.3 Research Contributions

Typically, both system categories, Cluster and Multiprocessor, have shown comple-
mentary characteristics. Batch processing systems running on commodity clusters
provide high reliability through redundancy and near-linear scalability by adding
nodes to the cluster for a low cost. Nevertheless, by nature, its intensive cross-
machine communication leads to higher latencies and increased complexity for

136 S. Herrero-Lopez and J.R. Williams

computer cluster administrators. On the contrary, shared-memory multiprocessors
do not have any built-in reliability mechanism and their scalability is limited
by the number of processing cores and the capacity of the memory hierarchy
in place. In these devices, latencies in cross-processor communication are orders
of magnitude lower, and single-node execution drastically reduces the system
administration complexity. Ideally, a unified system including the benefits of both
solutions and meeting the needs of Machine Learning algorithms is desired, in order
to execute these algorithms on large scale datasets and obtain the results on a timely
manner.

The authors of this chapter believe that both categories can be merged to create
a unified heterogeneous MapReduce framework and increase the computational
throughput of individual nodes. The contributions of this new hybrid system are
the following:

1. Runtime Adaptation: The original MapReduce runtime was not designed specif-
ically for Machine Learning algorithms. Even though libraries, such as Mahout
[1], implement a variety of classic algorithms, the framework has inherent
inefficiencies that prevent it from providing timely responses. Our proposed
hybrid design integrates a series of modifications to accommodate some of the
common needs of Machine Learning algorithms. These runtime modifications
are introduced next:

• Iterative MapReduce Jobs: Most Machine Learning algorithms are iterative.
The state of the algorithm is maintained through iterations and is reutilized
towards the resolution of the problem in each step. Like Twister [10],
our solution enables executing long-running iterative jobs that keep a state
between iterations.

• Static and Variable Data Support: Most iterative Machine Learning algo-
rithms define two types of data: static and variable. Static data is read-only
and is utilized in every iteration, while variable data can be modified and is
typically of smaller size. In order to minimize data movements and memory
transfers, our runtime allows specifying the nature of the data.

• Dense & Sparse BLAS: The execution of a task may require as input the
results of a dense or sparse BLAS operation. Our solution enables interleaving
massively threaded BLAS operations to prepare the input data of M and R

steps.

2. MPP Integration: As opposed to Mars [13], Phoenix [27] and CellMR [21],
which were constructed to run MapReduce jobs within a single isolated mul-
tiprocessor and not designed to scale out, our solution takes a different approach
based on the integration of MPPs into the existing MapReduce framework as
coprocessors. GPMR [22] follows the same direction, but keeping the same
runtime and not optimizing it for Machine Learning algorithms.

3. MPP Orchestration: A programming model to manage multiple MPPs towards
the execution of MapReduce tasks is presented. We use an abstraction, called
Asynchronous Port-based Programming, which allows creating coordination
primitives, such as Scatter-Gather.

5 ML Algorithm Acceleration Using Hybrid (CPU-MPP) MapReduce Clusters 137

4. Massively Threaded SVM: While implementations of SVM solvers for
multiprocessors and clusters provided satisfactory performance as part of isolated
experiments, to the best of our knowledge, this work pioneers the execution
of a multiclass SVM on a topology of multiple MPPs intertwining tens of
CPU threads and thousands MPP threads collaboratively towards an even faster
resolution of the SVM training problem.

5.4 A Unified Heterogeneous Architecture

In this section we provide an overview of the foundations of MapReduce-based
batch processing systems. We take the Hadoop architecture as a reference due to
its popularity and public nature. First, we explain the characteristics and principles
of operation of currently existing data processing nodes, called Data Nodes (DN).
Then, we proceed to introduce our modifications by integrating more powerful
nodes composed by multiple Massively Parallel Processor (MPP) devices; we
call these nodes MPP Nodes (MPPN). DNs and MPPNs may coexist within a
MapReduce cluster, nevertheless, they are meant to address MapReduce jobs with
different requirements: DNs should work on batch, high latency jobs, whereas
MPPNs would take responsibility of compute intensive jobs.

5.4.1 MapReduce Architecture Background

Typically, the architecture of MapReduce and MapReduce-like systems consists of
two layers: (i) a data storage layer in the form of a Distributed File System (DFS)
responsible of providing scalability to the system and reliability through replication
of the files, and (ii) a data processing layer in the form of a MapReduce Framework
(MRF) responsible of distributing and load balancing tasks across nodes. Files in
the DFS are broken into blocks of fixed size and distributed among the DNs in the
cluster. The distribution and load balancing is managed centrally in a node called
NameNode (NN). The NN does not only contain metadata about the files in the DFS,
but also manages the replication policy. The MRF follows a master-slave paradigm.
There is a single master, called JobTracker, and multiple slaves, called TaskTrackers.
The JobTracker is responsible of scheduling MapReduce jobs in the cluster, along
with maintaining information about each TaskTracker’s status and task load. Each
job is decomposed into MapReduce tasks that are assigned to different TaskTrackers
based on locality of the data and their status. In general, the output of the Map task
is materialized to the disk before proceeding to the Reduce task. The Reduce task
may get shuffled input data from different DNs. Periodically, TaskTrackers sent a
heartbeat to the JobTracker to keep it up to date. Typically, TaskTrackers are single
or dual threaded and consequently, can launch one or two Map or Reduce tasks
simultaneously. Hence, each task is single-threaded and work on a single block point
by point sequentially. The architecture is illustrated in Fig. 5.5.

138 S. Herrero-Lopez and J.R. Williams

Fig. 5.5 The MapReduce architecture

5.4.2 MPP Integration

We propose the addition of massively parallel processors in order to increase
the computational capabilities of the DNs. Currently, DNs use a single thread to
process the entire set of data points confined on a given block. This is shown in
Fig. 5.6. Parallelism is achieved through the partitioning of data into blocks and
the concurrent execution of tasks on different nodes, nevertheless, this setup does
not leverage fine-grained parallelism, which can be predominant on data mining
algorithms. Fortunately, the introduction of MPPs enables MapReduce tasks to be
carried out by hundreds or thousands of threads, giving to each thread one or few
data points to work with. This is described in Fig. 5.7. The main differences between
DNs and MPPNs are the following:

• Multithreading: In DNs the TaskTracker assigns the pair (Task, Block) to a
single core. Then, the thread running on that core executes the MapReduce
function point by point in the block sequentially. On the contrary, in MPPNs the

5 ML Algorithm Acceleration Using Hybrid (CPU-MPP) MapReduce Clusters 139

Fig. 5.6 Data node (DN)

TaskTracker assigns the pair (Task, Block) to a massively threaded multiprocessor
device. Then the device launches simultaneously hundreds or thousands of
threads that will execute the same task on multiple data points simultaneously.

• Pipelining: In DNs the intermediate result generated by the Map task is material-
ized by writing the result locally in the node. Before the execution of the Reduce
task, the intermediate result is read from the disk and possibly transmitted over
the network to a different DN as part of the shuffling process. On the contrary,
MPPNs do not materialize the intermediate result. The output of the Map task is
kept on the MPP memory and, if necessary, is forwarded to a different device as
part of the shuffling process.

140 S. Herrero-Lopez and J.R. Williams

Fig. 5.7 Massively parallel processor node (MPPN)

• Communication: In DNs the shuffling process requires slower cross-machine
communication leading to increased latency between MapReduce operators. On
the contrary, the shuffling process in MPPNs is carried out through message
passing between host CPU threads.

• Iteration: In DNs a job is terminated after the conclusion of the R step. Any
additional iteration would be executed as an independent job. MPPNs provide
support for iterative algorithms allowing repeatable tasks to be part of the same
long-running iterative job.

5 ML Algorithm Acceleration Using Hybrid (CPU-MPP) MapReduce Clusters 141

5.4.3 MPP Orchestration

In general, DNs running on commodity hardware are single or dual threaded. Each
CPU thread operates on a different data block, and since the results of each task
are materialized to the disk, synchronization between CPU threads is not necessary.
Nevertheless, the introduction of MPPs into data nodes requires the interaction of
two different threading models, the classic CPU threads and the MPP threads.

As opposed to CPU threads, which are heavy, MPP threads are lighter, they
have fewer registers at their disposal and will be slower, but can be launched
simultaneously in groups toward the execution of the same task. Furthermore, the
fact that MPP threads will run distributed across multiple devices within the same
node, raises a challenge not only on the efficient coordination of thousands of
these threads towards the collaborative execution of an algorithm, but also on the
responsiveness and error handling of the devices running these threads.

In this section, we propose an event-driven model to orchestrate both CPU and
MPP threads towards the execution of MapReduce tasks. Unlike ordinary event-
driven libraries, which usually directly build upon the asynchronous operations, the
method proposed in this chapter is based on the principles of Active Messages [25]
and the abstraction layer provided by the Concurrency and Coordination Runtime
(CCR) [7]. These abstractions are: the Port, the Arbiter and the Dispatcher Queue.

Figure 5.8 illustrates the three abstractions. The Port is an event channel in
which messages are received. Posting a message to a port is a non-blocking call
and the calling CPU thread continues to the next statement. The Arbiter decides
which registered callback method should be executed to consume the message or
messages. Once the method is selected, the arbiter creates the pair (Task, Block),
which is passed to the Dispatcher Queue associated to the port. This is an indirection
that enables the creation of high-level coordination primitives. Some of the possible
primitives are discussed later in this section. Each port is assigned a Dispatcher
Queue and multiple ports can be associated with the same Dispatcher Queue. The
Dispatcher Queue consists of a thread pool composed by one or more CPU threads.
Available threads pick (Task, Block) pairs passed by the Arbiter and proceed to the
execution of the task on the corresponding data block in the MPP. The MPP is
stageful. It keeps a state in the memory of the device (DState) across iterations to
minimize memory transfers. If necessary, it synchronizes with the state in the host
memory (HState).

Next, some of the coordination primitives that can be constructed using these
three abstractions are introduced:

• Single Item Receiver: It registers callback X to be launched when a single
message of type M is received in Port A.

• Multiple Item Receiver: Registers callback X to be launched when n messages
are received in Port A. p messages will be of type M (success) and q messages
of exception type (failures), so that p C q D n.

• Join Receiver: Registers callback X to be launched when one message of type
M is received in Port A and another in Port B .

142 S. Herrero-Lopez and J.R. Williams

Fig. 5.8 Port abstraction and
its components

• Choice: Registers callback X to be launched when one message of type M is
received in Port A and registers callback Y to be launched when one message of
type N is received in Port A.

In the context of the MapReduce framework, these abstractions are utilized to
construct a Scatter-Gather mechanism in which a master CPU thread distributes
MapReduce tasks among available MPP devices, and, upon termination, these
return the control and the results back to the master thread. Each MPP device
will have a Port instance for every type of MapReduce task, a single Arbiter
and a single Dispatcher Queue. The Arbiter will register each Port following the
Single Item Receiver primitive with the assigned callback method that represents
the MapReduce task. Requests to launch a task will contain a pointer to the data
block to be manipulated and the response port in which all the responses need to be
gathered. The callback method will contain the invocation of the computing kernel,

5 ML Algorithm Acceleration Using Hybrid (CPU-MPP) MapReduce Clusters 143

Fig. 5.9 Scatter-Gather using ports and MPPs

which spawns hundreds of MPP threads that operate the data simultaneously. The
response Port follows a Multiple Item Receiver primitive and is registered to launch
a callback method in the master thread when all the devices have answered.

This Scatter-Gather mechanism is illustrated in Fig. 5.9. One of the key benefits
of this event-driven model is that not only enables coordinating multiple MPP
devices towards the execution of MapReduce tasks, but also deals with the potential
failure of any device, which is fundamental to conserve the robustness of the
MapReduce framework.

144 S. Herrero-Lopez and J.R. Williams

5.5 Massively Multithreaded SVM

In order to investigate the performance of the architecture proposed in Sect. 5.4, in
this section we take the SVM classifier, explore its decomposition into a MapReduce
job, and launch it on a MPPN composed by multiple MPP devices. First, we provide
a brief introduction to the SVM classification problem. Second, we describe the
MapReduce job that solves the training phase on a single MPP device. Third, we
coordinate various MPP devices using the Scatter-Gather primitive to solve a larger
classification problem. Figures in this section hide the Port, Arbiter, and Dispatcher
Queue components to facilitate the understanding of MapReduce task sequences.

5.5.1 Binary SVM

The binary SVM classification problem is defined as follows: Find the classification
function that, given l examples . Nx1; y1/ ; : : : ; . Nxl ; yl / with Nxi 2 Rn and yi 2
f�1; 1g 8i , predicts the label of new unseen samples Nzi 2 Rn. This is achieved
by solving the following regularized learning problem, where the regularization is
controlled via C .

min
f 2H

C

lX
iD1

.1 � yi f . Nxi //C C
1

2
kf k2k ; (5.3)

where .k/C D max .k; 0/. Then slack variables �i are introduced to overcome the
problem introduced by its non-differentiability:

min
f 2H

C

lX
iD1

�i C 1

2
kf k2k (5.4)

subject to: yi f .xi / � 1��i and �i � 0, i D 1; : : : ; l . The dual form of this problem
is given by:

max
˛2Rl

lX
iD1

˛i � 1

2
˛T K˛ (5.5)

subject to:
Pl

iD1 yi ˛i D 0 and 0 � ˛i � C , i D 1; : : : ; l , where Kij D
yi yj k

� Nxi ; Nxj

�
is a kernel function. Equation 5.5 is a quadratic programming

optimization problem and its solution defines the classification function:

f .x/ D
lX

iD1

yi ˛i k . Nx; Nxi /C b; (5.6)

where b is an unregularized bias term.

5 ML Algorithm Acceleration Using Hybrid (CPU-MPP) MapReduce Clusters 145

5.5.2 MapReduce Decomposition of the SVM

The binary SVM problem can be solved using the Sequential Minimal Optimization
(SMO) algorithm [20]. SMO converts the dual form of the SVM problem into a large
scale Quadratic Programming (QP) optimization that can be solved by choosing
the smallest optimization problem at every step, which involves only two Lagrange
multipliers .˛Ilow ; ˛Iup /. For two Lagrange multipliers the QP problem can be solved
analytically without the need of numerical QP solvers. Next, we present SMO as an
iterative sequence of MapReduce operators.

First, there are two consecutive Map operators. The first Map updates the values
of the classifier function fi based on the variation of the two Lagrange multipliers,
�˛Ilow D ˛

0

Ilow
� ˛Ilow , �˛Iup D ˛

0

Iup
� ˛Iup , their label values

�
yIup ; yIlow

�
and

their associated kernel evaluations:

f
0

i D fi C �˛Iup yIup k. NxIup ; Nxi /

C �˛IlowyIlowk. NxIlow ; Nxi / (5.7)

with i D 1 : : : l . The initialization values for the first Map of the iterative sequence
are: fi D �yi , �˛Iup D �˛Ilow D 0, ˛Ilow D ˛Iup D 0, Ilow D Iup D 0.

M Œi; fi �!
h
i; f

0

i

i
(5.8)

The second Map classifies the function values f
0

i into two groups, kup and klow,
according to these filters, in which C is the regularization parameter, ki 2 kup; klow.

I0 D fi W yi D 1; 0 < ˛i < C g [
fi W yi D �1; 0 < ˛i < C g (5.9)

I1 D fi W yi D 1; ˛i D 0g (5.10)

I2 D fi W yi D �1; ˛i D C g (5.11)

I3 D fi W yi D 1; ˛i D C g (5.12)

I4 D fi W yi D �1; ˛i D 0g (5.13)

kup D fi 2 I0 [I1 [I2g (5.14)

klow D fi 2 I0 [I3 [I4g (5.15)

M Œi; ˛i �! Œi; ki � (5.16)

146 S. Herrero-Lopez and J.R. Williams

The Reduce operator takes the list of values generated by the Maps and applies
a different reduction operator based on the group they belong to. For kup min and
arg min are used, while klow requires max and arg max.

bup D min
˚
fi W ki D kup

�
(5.17)

Iup D arg minkiDkup fi (5.18)

blow D max ffi W ki D klowg (5.19)

Ilow D arg maxkiDklow fi (5.20)

The indices
�
Iup; Ilow

�
indicate the Lagrange multipliers that will be optimized.

R Œk; ffi gkiDk�! Œb; I � (5.21)

The last Map uses these indices to calculate the new Lagrange multipliers:

˛
0

Iup
D ˛Iup �

yIup .fIlow � fIup /

	
(5.22)

˛
0

Ilow
D ˛Ilow C s.˛Iup � ˛

0

Iup
/ (5.23)

where

s D yIup yIlow (5.24)

	 D 2k. NxIlow ; NxIup / �
k. NxIlow ; NxIlow/ � k. NxIup ; NxIup / (5.25)

M Œi; ˛i �!
h
i; ˛

0

i

i
(5.26)

Convergence is achieved when blow < bupC 2
 , where
 is the stopping criteria.

5.5.3 Single-MPP Device SVM

As we advanced in Sect. 5.4.2, unlike single or dual core based MapReduce-
like systems, MPP devices can carry out multithreaded MapReduce tasks. For
the case of the single-device SVM, the data block provided by the TaskTracker
represents the entire training dataset. This data block is further split into subblocks
that are passed to the processors in the device. Typically, each processor can run
several threads simultaneously, which enables a large number of Map or Reduce
tasks being executed in parallel. Figure 5.10 schematically shows the flow of
MapReduce tasks on a MPP device. Two versions of the SVM MapReduce job were

5 ML Algorithm Acceleration Using Hybrid (CPU-MPP) MapReduce Clusters 147

Fig. 5.10 Binary SVM decomposed into MapReduce tasks

constructed, one for each data structure type: dense and sparse. In general, sparse
data structures can reduce memory utilization and data transfer times, which benefits
communication within the MapReduce framework. Nevertheless, the performance
of sparse algebraic operations in the MPP directly depends on the degree of sparsity
of the data and the effect might be adverse, since the duplication of memory accesses
caused by the additional indirection can have a negative effect on performance. The
dense and sparse matrix-vector multiplications on MPPs used in this work are based
on Bell et al. [2] and Vazquez et al. [24], respectively. Their impact on the SVM
speed is reflected in Sect. 5.6.3.

5.5.4 Multiple-MPP Device SVM

In Sect. 5.5.3 a data block representing the entire training set was forwarded
to one MPP device where MapReduce tasks would be executed iteratively until
convergence, without any interaction with other devices. In this section we enhance
the decomposition of MapReduce tasks to be able to break the SVM problem into
multiple MPP devices. Figure 5.11 describes the interactions between four MPP
devices to solve a single SVM problem. The training dataset is split into four
data blocks stored in the distributed file system. The TaskTracker, that manages
the master thread, forwards the corresponding block to each device. Each device
performs the Map operator and a local Reduce on its local data block. The results
of the reduce are gathered by the master thread, which carries out a Global Reduce

148 S. Herrero-Lopez and J.R. Williams

Fig. 5.11 Multiple-MPP device SVM

in order to find
�
bup; Iup

�
and .blow; Ilow/. Then these values are scattered to the

devices in order to update the lagrange multipliers
�
˛

0

Iup
; ˛

0

Ilow

�
. Finally, the master

thread synchronizes, checks for convergence, and if required, proceeds to scatter the
next Map task to the MPP group.

5.6 Implementation and Experimental Results

In this section we provide implementation details and performance results for the
MapReduce jobs presented in Sect. 5.5, along with the incremental performance
gain from one method to another. As a baseline for comparison, we take a
popular SVM solver, LIBSVM [4], which is a single-threaded version of the SMO
algorithm. Then, we compare LIBSVM to the SVM algorithm running on the
standard Hadoop platform. Having evaluated these two popular options, we proceed
to assess the performance boost obtained from the inclusion of GPUs in MapReduce
cluster nodes. Throughout all the experiments the same SVM kernel functions
k. Nxi ; Nxj /, regularization parameter C , and stopping criteria
 were used.

5 ML Algorithm Acceleration Using Hybrid (CPU-MPP) MapReduce Clusters 149

Table 5.1 Datasets

#
Dataset Training points Testing points (Features, classes) .C; ˇ/

WEB 49,749 14,951 (300,2) (64, 7.8125)
MNIST 60,000 10,000 (780,10) (10, 0.125)
RCV1 518,571 15,564 (47,236,53) (1, 0.1)
PROTEIN 17,766 6,621 (357,3) (10, 0.05)
SENSIT 78,823 19,705 (100,3) (1, 0.7)

5.6.1 Datasets

SVM training performance comparisons are carried out over five publicly available
datasets, WEB [20], MNIST [18], RCV1 [19], PROTEIN [26] and SENSIT [9].
These datasets were chosen based on their computational complexity since they
have hundreds of features per data sample. The sizes of these datasets and the
parameters used for training are indicated in Table 5.1. The Radial Basis kernel,

k
� Nxi ; Nxj

� D e�ˇk Nxi�Nxjk2

, was used for the training phase throughout all the
experiments, as well as
 D 0:001. Multiclass datasets, such as MNIST, RCV1,
PROTEIN and SENSIT are decomposed into binary SVM problems following the
One-vs-All (OVA) output code. Then, the resulting collection of binary SVMs is
solved in parallel as independent MapReduce jobs.

5.6.2 Implementation and Setup

The measurements collected in the next subsection (i.e. Sect. 5.6.3) were carried out
in a single machine with a dual socket Intel Xeon E5520 @ 2.26 GHz (8 cores, 16
threads) and 32 GB of RAM.

Hadoop Setup: Using this machine as a host, the SVM algorithm running on
Hadoop was executed on 4 Virtual Machines (VMs), with a single core and 4 GB of
RAM each. The host ran the Master Node, which contained the NameNode and the
JobTracker, while the four VMs ran the DataNodes with the TaskTrackers.

Multiprocessor Setup: This machine also accommodated four GPUs. The multi-
processors utilized are NVIDIA Tesla C1060 GPUs with 240 Stream Processors @
1.3 GHz. Each GPU has 4 GB of memory and a memory bandwidth of 102 GB/s.
Similar to the Hadoop case, the host machine ran the Master Node, which contained
the NameNode with the JobTracker, and a MPP Node with four GPU devices.
The computing kernels representing MapReduce tasks were implemented using
NVIDIA CUDA.

The distribution of resources across different experiments is summarized in
Table 5.2. aC b represents a master threads and b device threads. We denote SD to
the single-GPU experiment and MD to the multi-GPU experiment.

150 S. Herrero-Lopez and J.R. Williams

Table 5.2 SVM experiments

Host # Virtual # GPU # GPU Host Device
Experiment threads machines devices threads mem (GB) mem (GB)

LIBSVM 1 – – – 4 –
Hadoop 1C 4 4 – – 4� 4 –
SD 1C 1 – 1 1,024 4 4
MD 1C 4 – 4 4,096 4� 4 4� 4

Table 5.3 Performance results for SVM training

Dataset Hadoop SD SVM SD SVM MD SVM MD SVM
(Non-zero %) LIBSVM SVM (Dense) (Sparse) (Dense) (Sparse)

WEB Time (s) 2,364.2 1,698.7 154.3 107.35 73.6 57.3
Gain (x) 1 1.39 15.32 22.02 32.12 41.26

(3 %) Accuracy (%) 82.69 82.69 82.69 82.69 82.69 82.69
MNIST Time (s) 118,943.5 66,753.5 2,010.3 2,321.75 726.9 923.16

Gain (x) 1 1.78 59.16 51.23 163.63 128.84
(19 %) Accuracy(%) 95.76 95.76 95.76 95.76 95.76 95.76
RCV1 Time (s) 710,664 231,486 N/A N/A N/A 3,686

Gain (x) 1 3.07 N/A N/A N/A 192.75
(0.1 %) Accuracy(%) 94.67 94.67 N/A N/A N/A 94.67
PROTEIN Time (s) 861 717.5 32.93 39.09 16.06 20.71

Gain (x) 1 1.2 26.14 22.02 53.61 41.57
(29 %) Accuracy(%) 70.03 70.03 70.03 70.03 70.03 70.03
SENSIT Time (s) 8,162 4,295.78 134.670 539.32 58.29 273.96

Gain (x) 1 1.9 60.61 15.13 140.02 29.79
(100 %) Accuracy(%) 83.46 83.46 83.46 83.46 83.46 83.46

5.6.3 Experimental Results

In this subsection we provide the performance gain obtained by each archi-
tecture/MapReduce task flow compared to the reference implementation for all
the datasets: WEB, MNIST, RCV1, PROTEIN and SENSIT. For each of the
experiments we present its training time, the measured acceleration with respect to
the reference implementation and the accuracy obtained from testing the calculated
Support Vectors (SVs) with the test dataset. These results are collected in Table 5.3.
The acceleration of the testing phase falls out of the scope this work due to its
triviality.

The execution of the Map and Reduce operators, introduced in Sect. 5.5.3, on the
standard Hadoop infrastructure yielded a modest performance improvement in the
range of (1:20 � �3:07�) when compared to LIBSVM. Nevertheless, the results
obtained from running these same operators on a SD SVM produced an order of
magnitude of acceleration in the range of (15:13 � �60:61�), which is consistent
with the values obtained by Catanzaro et al. [3] and Herrero-Lopez et al. [14].
Scaling out the problem to four GPUs (MD SVM) and using the GPU orchestration

5 ML Algorithm Acceleration Using Hybrid (CPU-MPP) MapReduce Clusters 151

model presented in this paper outperformed all the previous solutions producing an
overall acceleration in the range of 29:79��192:75�. These results also show that
the use of sparse data structures is beneficial for cases with high degree of sparsity
(WEB and RCV1), while results adverse for the rest. The execution of the sparse
MD SVM on the WEB dataset produced a 1:28� gain compared to the dense MD
SVM on the same dataset, while the SVM for the RCV1 dataset could not be solved
on its dense SVM versions nor single device SVM form since data structures would
not fit in the GPU memory. The SVM for the RCV1 dataset was solved only for
the sparse MD SVM version, which produced the highest acceleration (192:75�)
for this set of experiments. Finally, it is necessary to point out that no accuracy loss
was observed and that the same classification results were obtained on all the testing
datasets across all the different systems.

5.7 Conclusions and Future Work

In this chapter, our goal was to accelerate the execution of Machine Learning
algorithms running on a MapReduce cluster, while maintaining the reliability and
simplicity of its infrastructure. For this purpose, we integrated massively threaded
multiprocessors into the nodes of the cluster, and proposed a concurrency model that
allows orchestrating host threads and thousands of multiprocessor threads spread
throughout different devices so as to collaboratively solve MapReduce jobs. In order
to verify the validity of this system, we decomposed the SVM algorithms into
MapReduce tasks, and created a combined solution that distills the maximum degree
of fine-grained parallelism. The execution of the SVM algorithm in our proposed
system yielded an acceleration in the range of 29:79 � �192:75�, when compared
to LIBSVM and in the range of 15:68 � �91:83�, when compared to the standard
Hadoop implementation. To the best of our knowledge this is the shortest training
time reported on these datasets for a single machine, without leaving commodity
hardware nor the MapReduce paradigm. In the future, it is planned to explore the
possibility of maximizing the utilization of the GPUs in the MPP Node through the
execution of multiple MapReduce tasks concurrently in each device.

Acknowledgements This work was supported by the Basque Government Researcher Formation
Fellowship BFI.08.80.

References

1. Apache.org: Apache mahout: scalable machine-learning and data-mining library. http://
mahout.apache.org/

2. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. NVIDIA
Technical Report NVR-2008–004, NVIDIA Corporation (2008)

http://mahout.apache.org/
http://mahout.apache.org/

152 S. Herrero-Lopez and J.R. Williams

3. Catanzaro, B., Sundaram, N., Keutzer, K.: Fast support vector machine training and classifica-
tion on graphics processors. In: ICML’08: Proceedings of the 25th International Conference
on Machine Learning, Helsinki, pp. 104–111. ACM, New York (2008). doi:http://doi.acm.org/
10.1145/1390156.1390170

4. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001). Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

5. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. In: Pro-
ceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation –
Volume 7, OSDI’06, Seattle, pp. 205–218. USENIX Association, Berkeley (2006)

6. Chang, E.Y., Zhu, K., Wang, H., Bai, H., Li, J., Qiu, Z., Cui, H.: Psvm: parallelizing support
vector machines on distributed computers. In: NIPS (2007). Software available at http://code.
google.com/p/psvm

7. Chrysanthakopoulos, G., Singh, S: An asynchronous messaging library for c#. In: Proceedings
of the Workshop on Synchronization and Concurrency in Object-Oriented Languages, OOP-
SLA 2005, San Diego (2005)

8. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008). doi:http://doi.acm.org/10.1145/1327452.1327492

9. Duarte, M.F., Hu, Y.H.: Vehicle classification in distributed sensor networks. J. Parallel Distrib.
Comput. 64, 826–838 (2004)

10. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.H., Qiu, J., Fox, G.: Twister: a
runtime for iterative mapreduce. In: Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, HPDC’10, Chicago, pp. 810–818. ACM, New
York (2010)

11. Ghoting, A., Krishnamurthy, R., Pednault, E., Reinwald, B., Sindhwani, V., Tatikonda, S., Tian,
Y., Vaithyanathan, S.: Systemml: declarative machine learning on mapreduce. In: Proceedings
of the 2011 IEEE 27th International Conference on Data Engineering, ICDE’11, Hannover,
pp. 231–242. IEEE Computer Society, Washington (2011). doi:http://dx.doi.org/10.1109/
ICDE.2011.5767930.

12. Hadoop: hadoop.apache.org/core/
13. He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a mapreduce framework on

graphics processors. In: PACT’08: Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, Toronto, pp. 260–269. ACM, New York (2008).
doi:http://doi.acm.org/10.1145/1454115.1454152

14. Herrero-Lopez, S., Williams, J.R., Sanchez, A.: Parallel multiclass classification using svms
on gpus. In: GPGPU’10: Proceedings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, Pittsburgh, pp. 2–11. ACM, New York (2010). doi:http://doi.
acm.org/10.1145/1735688.1735692

15. Hillis, W.D., Steele, G.L., Jr.: Data parallel algorithms. Commun. ACM 29(12), 1170–1183
(1986). http://doi.acm.org/10.1145/7902.7903

16. Kearns, M.: Efficient noise-tolerant learning from statistical queries. J. ACM 45(6), 983–1006
(1998). doi: http://doi.acm.org/10.1145/293347.293351

17. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS Oper.
Syst. Rev. 44, 35–40 (2010). doi:http://doi.acm.org/10.1145/1773912.1773922

18. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86, 2278–2324 (1998)

19. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: a new benchmark collection for text
categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)

20. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization,
pp. 185–208. MIT, Cambridge (1999)

21. Rafique, M.M., Rose, B., Butt, A.R., Nikolopoulos, D.S.: Cellmr: a framework for supporting
mapreduce on asymmetric cell-based clusters. In: IPDPS’09: Proceedings of the 2009
IEEE International Symposium on Parallel&Distributed Processing, Rome, pp. 1–12. IEEE
Computer Society, Washington (2009). doi:http://dx.doi.org/10.1109/IPDPS.2009.5161062

http://doi.acm.org/10.1145/1390156.1390170
http://doi.acm.org/10.1145/1390156.1390170
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://code.google.com/p/psvm
http://code.google.com/p/psvm
http://doi.acm.org/10.1145/1327452.1327492
http://dx.doi.org/10.1109/ICDE.2011.5767930
http://dx.doi.org/10.1109/ICDE.2011.5767930
hadoop.apache.org/core/
http://doi.acm.org/10.1145/1454115.1454152
http://doi.acm.org/10.1145/1735688.1735692
http://doi.acm.org/10.1145/1735688.1735692
http://doi.acm.org/10.1145/7902.7903
http://doi.acm.org/10.1145/293347.293351
http://doi.acm.org/10.1145/1773912.1773922
http://dx.doi.org/10.1109/IPDPS.2009.5161062

5 ML Algorithm Acceleration Using Hybrid (CPU-MPP) MapReduce Clusters 153

22. Stuart, J.A., Owens, J.D.: Multi-gpu mapreduce on gpu clusters. In: Proceedings of the
2011 IEEE International Parallel & Distributed Processing Symposium, IPDPS’11, Anchorage,
pp. 1068–1079. IEEE Computer Society, Washington (2011)

23. tao Chu, C., Kim, S.K., an Lin, Y., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.: Map-reduce
for machine learning on multicore. In: Proceedings of NIPS, pp. 281–288 (2007)

24. Vazquez, F., Ortega, G., Fernandez, J., Garzon, E.: Improving the performance of the
sparse matrix vector product with gpus. In: 2010 IEEE 10th International Confer-
ence on Computer and Information Technology (CIT), Bradford, pp. 1146–1151 (2010).
doi:10.1109/CIT.2010.208

25. von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active messages: a mechanism
for integrated communication and computation. SIGARCH Comput. Archit. News 20,
256–266 (1992)

26. Wang, J.Y.: Application of support vector machines in bioinformatics. Master’s thesis, National
Taiwan University, Taipei, Taiwan (2002)

27. Yoo, R.M., Romano, A., Kozyrakis, C.: Phoenix rebirth: scalable mapreduce on a large-
scale shared-memory system. In: IISWC’09: Proceedings of the 2009 IEEE International
Symposium on Workload Characterization (IISWC), Austin, pp. 198–207. IEEE Computer
Society, Washington (2009). doi:http://dx.doi.org/10.1109/IISWC.2009.5306783

http://dx.doi.org/10.1109/IISWC.2009.5306783

Chapter 6
Large-Scale Social Network Analysis

Mattia Lambertini, Matteo Magnani, Moreno Marzolla, Danilo Montesi,
and Carmine Paolino

Abstract Social Network Analysis (SNA) is an established discipline for the
study of groups of individuals with applications in several areas, like economics,
information science, organizational studies and psychology. In the last fifteen years
the exponential growth of online Social Network Sites (SNSs), like Facebook, QQ
and Twitter has provided a new challenging application context for SNA methods.
However, with respect to traditional SNA application domains these systems are
characterized by very large volumes of data, and this has recently led to the
development of parallel network analysis algorithms and libraries. In this chapter
we provide an overview of the state of the art in the field of large scale social
network analysis; in particular, we focus on parallel algorithms and libraries for
the computation of network centrality metrics.

6.1 Introduction

One of the main reasons behind the enormous popularity gained by SNSs, like
Facebook and Twitter, can be found in the natural tendency of humankind to create
social relationships, as already condensed many centuries ago by Aristotle in his
famous quote “man is by nature a political animal”. By analyzing the structure of

M. Lambertini • M. Marzolla (�) • D. Montesi
Department of Computer Science and Engineering, University of Bologna, mura A. Zamboni 7,
I-40127 Bologna, Italy
e-mail: mattia@aittam.it; moreno.marzolla@unibo.it; montesi@cs.unibo.it

M. Magnani
Department of Information Technology, Uppsala University, 751 05 Uppsala, Sweden
e-mail: matteo.magnani@it.uu.se

C. Paolino
Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands
e-mail: carmine@paolino.me

A. Gkoulalas-Divanis and A. Labbi (eds.), Large-Scale Data Analytics,
DOI 10.1007/978-1-4614-9242-9__6, © Springer Science+Business Media New York 2014

155

mailto:mattia@aittam.it
mailto:moreno.marzolla@unibo.it
mailto:montesi@cs.unibo.it
mailto:matteo.magnani@it.uu.se
mailto:carmine@paolino.me

156 M. Lambertini et al.

these networks we can acquire knowledge that is impossible to gather by focusing
only on the individuals or on the single relationships that compose them.

Since the publication of Moreno’s book on sociometry [42], several studies
have addressed the problem of analyzing complex social structures, giving birth
to the interdisciplinary research field of SNA. One of the most important results
of SNA has been the definition of a set of measures that describe the role of
single individuals with respect to their network of relationships. These, so-called
centrality, measures are of great practical relevance since, e.g., they can be used
to identify influential people with the potential of controlling the information flow
inside communication networks. Since the pioneering work by Freeman [26], who
in 1979 defined a set of geodesic centrality measures for undirected networks,
the concept of centrality has proved its empirical validity several times during the
years [53]. Further works, such as those by White et al. [53] and more recently by
Opsahl et al. [44], extended Freeman’s measures to more general network types, also
with applications to recent on-line social media [51]. The main centrality metrics,
i.e., degree, closeness, betweenness, and PageRank, are fundamental to increase
our understanding of a network. Different metrics emphasize complementary
aspects, usually related to the propagation of information [39], but also to general
applications, like information searching [23] or recommendation systems. In fact,
centrality measures are also used in the more general field of Complex Network
Analysis for applications, such as studying landscape connectivity to understand
the movement of organisms, analyzing proteins and gene networks, studying the
propagation of diseases, and planning urban streets for optimal efficiency.

The recent proliferation of online SNSs has been of major importance for SNA.
SNSs, such as blogs, multimedia hosting services and microblogging platforms,
are growing incredibly fast thanks to their ability to encourage the development of
User Generated Content through networks of users; information that is perceived
as worth sharing by their users, ranging from private life to political issues, is
posted online and shared within a list of connections with the potential of creating
discussions. From the terrorist attack in Mumbai in 2008 to the, so-called, Twitter
revolution in Iran in 2009, online SNSs have proved to be a reliable and efficient
solution to communicate and spread information, becoming an interesting case
study of social phenomena. Being able to compute centrality metrics on these large
networks is fundamental to understand the process of information diffusion and the
role of their users.

The main problem with computing centrality metrics on online social networks
is the typical size of the data. As an example, Facebook has now more than 750
million active users,1 Twitter has currently about 200 million users,2 and LinkedIn
reached more than 100 million users.3 If we consider networks of User Generated

1http://newsroom.fb.com/content/default.aspx?NewsAreaId=22.
2http://www.bbc.co.uk/news/business-12889048.
3http://blog.linkedin.com/2011/03/22/linkedin-100-million/.

http://newsroom.fb.com/content/default.aspx?NewsAreaId=22.
http://www.bbc.co.uk/news/business-12889048.
http://blog.linkedin.com/2011/03/22/linkedin-100-million/.

6 Large-Scale Social Network Analysis 157

Content, Flickr has more than five billion photos4 and in 2010 YouTube videos have
been played more than 700 billion times,5 just to list a few statistics of this kind.

The large size of current social networks (as shown in the above examples) makes
their quantitative analysis challenging. From the computational point of view, SNA
represents social networks as graphs on which the metrics of interest are computed.
Existing sequential graph algorithms can hardly be used due to space and time
constraints. These limitations motivated an increasing interest in parallel graph
algorithms for SNA [35]. Initial research focused on parallel algorithms for shared
memory multi-processor systems [4, 36], because graph algorithms exhibit poor
locality and thus run more efficiently on shared memory architectures. However,
due to the high cost of shared memory multi-processor systems, recent research is
focused on algorithms for distributed memory systems [14, 27, 30, 31, 34].

This chapter focuses on the description and analysis of parallel and distributed
computation of centrality measures on large networks. As stated above, centrality
measures play an important role in many research areas. This, combined with
the increasing size of real-world social networks and the availability of multi-
core commodity computing clusters, makes parallel graph algorithms increasingly
important. This chapter aims to (i) raise awareness on the existence of these
powerful tools within the network analysis community; (ii) provide an overview
of the most important and recent parallel graph algorithms for computation of
centrality metrics; (iii) describe the main implementations of these algorithms; (iv)
provide some experimental results concerning their scalability and efficiency. This
work includes a general introduction on centrality measures and parallel graph
algorithms, as well as up-to-date references, in order to act as a starting point for
researchers seeking information on this topic.

The chapter is organized as follows. The next two sections are brief introductions
to SNA and parallel computing architectures. These sections cover the main topics
needed to understand the rest of the chapter and make it self-contained—readers
already knowledgeable of these topics may skip them. Then we indicate the main
parallel algorithms for the computation of centrality measures on large social graphs
and review the main software libraries for the parallel computation of SNA centrality
measures based on several criteria, so that it should be possible for professionals to
match their problems with existing solutions. Finally, we present an experimental
assessment of some parallel graph algorithms aimed at evaluating the scalability
and efficiency of computationally demanding algorithms from the aforementioned
libraries. Experimental results will help the readers to understand the potentials and
limits of the current implementations, and in general will provide insights on the
issues faced when dealing with graph algorithms on parallel systems. We conclude
the chapter with some final remarks.

4http://blog.flickr.net/en/2010/09/19/5000000000/.
5http://www.youtube.com/t/press_statistics.

http://blog.flickr.net/en/2010/09/19/5000000000/.
http://www.youtube.com/t/press_statistics.

158 M. Lambertini et al.

6.2 Social Network Analysis

A social network is a set of people interconnected by social ties, e.g., friendship
or family relationships. Although recent works on on-line SNA often use more
complex models, like multi-modal or multi-layer networks, to represent multiple
kinds of interconnected entities [20, 38], for the purpose of this chapter we will
represent a social network as a set of nodes connected by edges, where nodes
represent individuals and edges indicate their relationships.

Definition 6.1 (Social Network). A Social Network is a graph .V; E/ where V is
a set of individuals and E � V � V is a set of social connections.

Depending on the specific SNS we may use specific graph types: undirected,
e.g., for Facebook, where friendship connections are reciprocal, directed, e.g., for
Twitter, where following relationships are used, and weighted, e.g., for G+, where
the strength of the connections is part of the data model. A complete treatment
of these graph types lies outside the scope of this chapter and is not necessary
to introduce centrality measures, therefore in the following we will focus only on
unweighted undirected graphs.

In this section we cover the two main aspects of social network modeling
that are needed to understand the remaining of the chapter. The first part of the
section introduces the main centrality measures: degree, closeness, betweenness
and page rank. Then, we briefly introduce the main structural models describing
the distribution of edges inside the network. This aspect is very important because
the structure of the social network may influence the efficiency of the algorithms and
real networks are not only very sparse but have also very specific internal structures.
Knowledge of these structures is thus fundamental to test the behavior of network
algorithms.

6.2.1 Centrality Measures

In this section we introduce the main centrality measures. As we have aforemen-
tioned several variations of these metrics are possible depending on the specific
kind of network. However, the objective is not to cover all possible variations but
to understand the role of the main types of centrality. At the end of the section we
provide an example with all these measures computed on a simple graph.

6.2.1.1 Degree Centrality

Degree centrality is one of the simplest centrality measures and is used to evaluate
the local importance of a vertex within the graph. This measure is defined as
the number of edges incident upon a node. Finding the individuals with high
degree centrality is important because this is a measure of their popularity inside
the network. Twitter celebrities may have hundreds of thousand followers, and

6 Large-Scale Social Network Analysis 159

in friendship-based networks like Facebook popular users may not correspond
to public figures, making degree centrality very important and yet very simple
to compute. Another relevant aspect regarding degree centrality is that in real
networks there is a very small proportion of users with many connections, with
the consequence that user filtering based on high degrees is very effective.

Definition 6.2 (Node Degree). Given an undirected graph G D .V; E/, the degree
ı.v/ of a node v 2 V is the number of edges incident upon v.

Definition 6.3 ((Normalized) Degree centrality). Given a graph G D .V; E/, the
Degree centrality DC.v/ of a node v 2 V is defined as:

DC.v/
defD ı.v/

n � 1

6.2.1.2 Closeness Centrality

Closeness centrality provides an average measure of the proximity between a node
and all other nodes in the graph. If we assume that the longest a path the lowest
the probability that an information item (meme) will be able to traverse this path, it
appears how the information produced by a node with high closeness centrality will
have a higher probability to reach the other nodes of the network in a short time.
Differently from degree centrality, the computation of closeness centrality requires
a global view of the network.

Definition 6.4 (Closeness Centrality). Given a connected graph G D .V; E/, let
d.u; v/ be the distance (length of the shortest path) between u; v 2 V . The Closeness
centrality CN.v/ of a node v 2 V is defined as:

CN.v/
defD n � 1P

u2V nv d.u; v/

6.2.1.3 Betweenness Centrality

We have already mentioned that the information produced by popular users has
a high probability of reaching many other users in the network. If these popular
users have also a high value of closeness we may also expect that the process
of information propagation will be fast. However, sometimes nodes that are not
popular according to their degree centrality may nevertheless play an important
role in propagating information: these users may act as bridges between separate
sections of the network, having the potential to block the flow of information from
one section to the other. These nodes are said to have a high value of betweenness
centrality.

The definition of betweenness centrality is based on the concept of pair-
dependency ıst .v/.

160 M. Lambertini et al.

Definition 6.5 (Pair Dependency). Given a connected graph G D .V; E/, let �st

be the number of shortest paths between s; t 2 V and let �st .v/ be the number of
shortest paths between s and t that pass through v. Pair-dependency ıst .v/ is defined
as the fraction of shortest paths between s and t that pass through v. Formally:

ıst .v/
defD �st .v/

�st

Betweenness centrality BC.v/ of a node v can be computed as the sum of the
pair dependency over all pairs of vertices s; t 2 V .

Definition 6.6 (Betweenness centrality). Given a connected graph G D .V; E/,
the betweenness centrality BC.v/ of a node v 2 V is defined as:

BC.v/
defD

X
s¤v¤t2V

ıst .v/

6.2.1.4 PageRank

A limitation of degree centrality is the fact that it considers only the direct
connections of a user. However there may be users with only a few connections
that are very popular. This situation would not be captured using degree centrality.
A possible extension to consider higher order relationships is PageRank centrality,
corresponding to the famous algorithm proposed by Larry Page, Sergey Brin, Rajeev
Motwani and Terry Winograd to rank Web pages [45]. As there is a very large body
of literature focusing on this measure we do not provide additional details here.

6.2.2 Summary of the Main Centrality Measures

In Fig. 6.1 we have indicated an example of the main centrality measures. In this
example the node d has the highest degree centrality because it is connected to
the largest number of nodes (a, c and e). At the same time it is in the middle of the
network, this corresponding to a high betweenness centrality, and it is on average
closer to all the other nodes, determining its high closeness centrality.

6.2.3 Network Models

Over the past fifty years several models have been proposed to explain the structure
of social networks. Three models, that are often used to test network algorithms, are
the Random Network model, the Small-World model and the Scale-free model.

6 Large-Scale Social Network Analysis 161

Node PageRank Degree Closeness Betweenness

a 0.105 0.2 0.45 0
b 0.282 0.6 0.71 8
c 0.198 0.4 0.56 4
d 0.109 0.2 0.38 0
e 0.198 0.4 0.56 4
f 0.109 0.2 0.38 0

Fig. 6.1 An example of the main centrality measures

The simplest model was proposed in 1959 by Erdos and Rényi, who introduced
the concept of random network [22]. Intuitively, a random network is a graph
G D .N; E/ in which pairs of nodes are connected with some fixed probability.
A trivial algorithm to generate random graphs consists in looping through the nodes
of the graph and creating an edge .v; t/ with some probability p, for each pair of
nodes v; t 2 E.

Definition 6.7 (Erdös-Rényi Random network). The Erdös-Rényi model Gn;p is
an undirected graph with n nodes, where there exists an edge with probability p

between any two distinct nodes.

Although very interesting and studied from a formal point of view, random
networks are not representative of many real social networks: empirical evidence
shows that in real networks the distance between any two nodes is lower on average
than in random networks. This is often referred to as the phenomenon of the six
degrees of separation. As a consequence, another common model used for the
generation of social network datasets is the small world model. A small world
network is a random network with the following properties:

• A short average path length.
• A high clustering coefficient.

Many real world networks expose these properties and in 1998 Watts and Strogatz
proposed an algorithm to produce this kind of network [50].

The Watts-Strogatz small world network model is the best known model to
represent the Small World phenomenon. However, in the last decade new important
properties have been discovered concerning real networks. In 1999, Barabàsi and
Albert [8] noticed that the degree distribution of many real world networks follows
a power law and introduced the scale-free model. In simple terms, they showed that
in many real-world networks there are only a few nodes with a high degree and the
number of nodes with a high degree decreases exponentially. The Barabàsi-Albert
model is based on the mechanism known as preferential attachment.6

In Fig. 6.2 we have represented the three aforementioned kinds of networks.

6Preferential attachment means that the probability that a new node A will be connected to an
already existing node B is proportional to the number of edges that B already has.

162 M. Lambertini et al.

Fig. 6.2 Three graphs with 50 nodes and different structures: from left to right, a random graph
(with wiring probability: 0.05), a Watts-Strogatz small world network and a Barabàsi-Albert free-
scale network

6.3 Parallel Computing

Thanks to the proliferation of Web 2.0 applications and SNSs, researchers have now
the opportunity to study large, real social networks. The size of those networks,
which often exceeds millions of nodes and billions of edges, requires tremendous
amounts of memory and processing power to be stored and analyzed.

Typically, computer programs are written for serial computation: algorithms are
broken into serial streams of instructions which are executed one after another by
a single processor. Parallel computing, on the other hand, uses multiple processors
simultaneously to solve a single problem. To do so, the algorithms are broken into
discrete parts to be executed concurrently, distributing the workload among all the
computing resources, therefore using less time.

Most parallel architectures are built from commodity components instead of
custom, expensive ones. In fact, the six most powerful supercomputers of the world
use mass-marketed processors.7 This makes parallel computing an efficient, cost-
effective solution to large-scale computing problems, promoting its widespread
adoption among both the consumer and the scientific computing worlds.

Unfortunately, there are many classes of algorithms for which an efficient parallel
implementation is not known. For other classes of problems, parallel algorithms do
exist but do not scale well, meaning that the algorithms are unable to make efficient
use of all the resources available. Graph algorithms, which are those used in network
analysis, are an example of problems which are hard to parallelize efficiently, as we
will see later.

7http://www.top500.org/lists/2010/11.

http://www.top500.org/lists/2010/11.

6 Large-Scale Social Network Analysis 163

a b

Fig. 6.3 Schematic of shared memory architectures. (a) UMA. (b) NUMA

In this section we give a general overview of parallel and distributed computing
architectures and programming models, highlighting their advantages and dis-
advantages. We then focus our discussion on the challenges posed by parallel
graph algorithms. Many books cover parallel programming and architectures in
detail [17, 32]; for a recent review of the parallel computing landscape see [3].

6.3.1 Shared Memory Architectures

The last forty years have seen tremendous advances in microprocessor technology.
Processor clock rates have increased from about 740 kHz (e.g., Intel 4004, circa
1971) to over 3 GHz (e.g., AMD Opteron, circa 2005). Keeping up with this
exponential growth of computing power (as predicted by Moore’s law [41])
has become extremely challenging as chip-making technologies are approaching
fundamental physical limits [12].

Microprocessors needed a major architectural overhaul in order to improve
performance. The industry found a solution to this problem in shared memory
multi-processor architectures, which recently evolved into multi-core processors.
In a shared memory multi-processor system there is a single, global memory space
which can be accessed transparently by all processing elements. Communication
and data transfer are implemented as read/write operations on the shared memory
space. Shared memory multi-processors also provide suitable synchronization
primitives (e.g., mutexes, memory barriers, atomic test-and-set instructions) to
implement consistent updates.

Shared memory systems can be categorized by memory access times in Uniform
Memory Access (UMA) and Non Uniform Memory Access (NUMA) machines.
Small multi-processor systems typically have a single connection between one of
the processors and the shared memory, resulting in fast and uniform memory access
across all processors. Such systems are called UMA machines. Figure 6.3a shows
an example of a UMA machine with four processors.

164 M. Lambertini et al.

In large shared memory multi-processor systems, those having tens or hundreds
of computing nodes, each processor has local and non-local (local to another
processor) memory. Therefore, memory access times depend on the memory which
is accessed; these systems are in fact called NUMA machines. Figure 6.3b shows an
example schematic of a NUMA machine with eight processors and four memories.

Thanks to the global memory space, shared memory machines are easier to pro-
gram than other parallel systems. Programmers do not have to worry about explicit
data sharing and distribution among processors. Also, latencies are generally lower
than in distributed memory systems (described below). However, shared memory
machines are prone to hardware scalability problems—adding more processors
leads to congestion of the internal connection network due to concurrent accesses to
shared data structures and increasing memory write contention.

The most common way to program shared memory systems is by using threads.
Threads are the smallest units of processing that can be scheduled by an operating
system. In the thread programming model, each process can split into multiple con-
current executable programs. Each thread can be executed in a different processor,
or in the same processor using time multiplexing, and typically shares memory
with the other threads originated from the same process. Threads are commonly
implemented with libraries of routines explicitly called by parallel code, such as
implementations of the POSIX Threads standard, or compiler directives embedded
in serial code, such as OpenMP.8 OpenMP is a programming API for developing
shared memory parallel code in Fortran, C, and CCC [43]; high level OpenMP
directives can be embedded in the source code (e.g., signaling that all iterations
of a “for” loop can be executed concurrently as there are no dependencies), and
the compiler will automatically generate parallel code. Direct usage of threading
libraries leads to greater flexibility, whereas semi-automatic generation of parallel
code through OpenMP is often preferred in scientific computing thanks to its greater
user-friendliness.

6.3.2 Massively Multi-threaded Computers

Massively multi-threaded computers are designed to tackle memory latency issues
and context switch delays in a very different way than other parallel systems.
Specifically, massively multi-threaded computers try to reduce the probability that
processors become idle waiting for memory data by using a very large number of
hardware threads, so that there is a chance that while some threads are blocked
waiting for data, other threads can operate. Massively multi-threaded machines
support very fast context switches (usually requiring a single clock cycle), dynamic
load balancing, and word-level synchronization primitives. The latter is particularly
important, since a large number of concurrent execution threads increases the

8http://openmp.org/.

http://openmp.org/.

6 Large-Scale Social Network Analysis 165

probability of contention on shared data structures. Word-level synchronization
allows the most fine control of contention.

An example of massively multi-threaded supercomputers are Cray’s MTA-2 [1]
and XMT [24] (also known as Eldorado). An MTA processor can hold the state
of up to 128 instruction streams (threads) in hardware, and each stream can have
up to 8 pending memory operations. Every processor executes instructions from a
different non-blocked thread at each cycle, so it is fully occupied as long as there
are sufficient active threads. Threads are not bound to any particular processor and
the system transparently moves threads around to balance the load.

When an algorithm needs to know the global state, a synchronization must
occur. On shared memory machines, synchronization is implemented in software
and therefore it is an expensive operation. MTA machines solve this problem
by implementing word-level synchronization primitives in hardware, drastically
decreasing the cost of these operations, thus improving the system scalability.

Massively multi-threaded computers work best with algorithms that exhibit fine-
grained parallelism, like most distributed graph algorithms [4]. Since the goal is to
saturate the processors, the finer the level an algorithm can be parallelized, the more
saturated the processors, the faster the program will run.

However, being made of custom processors on a custom architecture, MTA
machines are extremely expensive and relatively slow. The latest Cray XMTs9

includes 500 MHz Cray Threadstorm processors, which are several times slower
than today’s consumer multi-GHz processors. Having just 8 GB of memory per
processor, Cray XMTs are also memory-constrained.

6.3.3 Distributed Memory Architectures

In contrast with the shared memory model, in the distributed memory model
each processor has access to its own private memory only, and must explicitly
communicate to other processors when remote data is required. A distributed
memory system consists of a network of homogeneous computers, as shown in
Fig. 6.4.

In a distributed memory system a process runs in a single processor, using
local memory to store and retrieve data. Processes communicate using the message
passing paradigm, which is typically implemented by libraries of communication
routines. The de facto standard for message passing in parallel computing is
Message Passing Interface (MPI) [40]. MPI is an Application Programmer Interface
(API) and communication protocol standardized by the MPI Forum in 1994.
It supports point-to-point and collective communication and it is language and
platform-independent. Thus, many implementations of this interface exist and they
are often optimized for the hardware upon which they run.

9http://www.cray.com/Products/XMT/Product/Specifications.aspx.

http://www.cray.com/Products/XMT/Product/Specifications.aspx.

166 M. Lambertini et al.

Fig. 6.4 Schematic representation of the distributed memory architecture

MPI can be combined with the thread model of computation (see Sect. 6.3.1) to
exploit the characteristics of hybrid distributed/shared memory architectures, like
clusters of multi-core computers.

The latest version of MPI (version 2.2) supports one-sided communication,
collective extensions, dynamic process management, distributed I/O, along with
many other improvements. However, only few implementations of MPI 2 exist.

Since the state of the running application is not shared across the system and
every memory area is independent, distributed memory systems can be made
less susceptible to interconnection overhead when scaling to hundreds, or even
thousands of computing units. This is true as long as each individual node operates
mostly on local data, and communication with remote nodes is not frequent.

One advantage of distributed memory architectures is that they can be built
using commodity components like personal computers and consumer networks
(e.g., Ethernet), whereas massive shared memory multi-processors are custom
architectures. For this reason, distributed memory systems can be cost-effective
when compared to other parallel architectures.

However, distributed memory systems are significantly harder to program than
shared memory architectures because memory access times are non-uniform,
differing several orders of magnitude from fast access to local memory, to slow
network access to remote nodes. Therefore, programmers are responsible for
distributing the data among all processors in a way that remote communication is
reduced to a minimum. Unfortunately, as we will see shortly, this is not always
possible, especially when dealing with problems that exhibit a fine-grained degree
of parallelism. Graph algorithms are an example of these problems, in which most
of the time is spent in fetching data from memory rather than executing CPU-bound
computations.

6.3.4 Challenges in Parallel Graph Algorithms

Efficient parallel algorithmsparallel graph algorithms have been successfully
developed for many scientific applications, with particular emphasis on solving
large-scale numerical problems that arise in physics and engineering [49]

6 Large-Scale Social Network Analysis 167

(e.g., computational fluid dynamics, large N -body problems, computational
chemistry, and so on). As the size of real-world networks grow beyond the capability
of a single processor, a natural solution is to start looking at parallel and distributed
computing as a solution to scalability problems of large scale network analysis.

Unfortunately, the development of parallel graph algorithms—the “Swiss army
knife” for large scale networks analysis—faces challenges which are related to the
very nature of the problem. Specifically, in [35] the authors identify the following
four main challenges towards efficient parallel graph processing: (i) data-driven
computations; (ii) unstructured problems; (iii) poor locality; (iv) high data access
to computation ratio.

Most graph algorithms are data-driven, meaning that the steps performed by the
algorithm are defined by the structure of the input graph, and therefore can not be
predicted. This requires parallel algorithms to discover parallelization opportunities
at run-time, which is less efficient than hard-coding them within the code. For
example, parallel dense vector-matrix multiplication involves the same data access
pattern regardless of the specific content of the vector and matrix to be multiplied; on
the other hand, parallel graph algorithms (e.g., minimum spanning tree computation)
may behave differently according to the input data they need to operate on.

The issue above is complicated by the fact that input data for parallel graph
algorithms is usually highly unstructured, which makes it harder to extract paral-
lelism by partitioning the input data. Going back to the example of vector-matrix
multiplication, the input data is easily partitioned by distributing equal sized blocks
(or “strides”) of the input matrix to the computing nodes, such that each processor
can compute a portion of the result using local data only. Partitioning a graph across
all processors is difficult, because the optimal partitioning depends both on the type
of algorithm executed, and also on the structure of the graph.

Graph algorithms also exhibit poor locality of reference. As said above, the
computation is driven by the node and edge structure of the graph. In general,
most graph algorithms are based on visiting the nodes in some order, starting
from one or more initial locations; the neighbors of already explored nodes have
larger probability to be explored next. Unfortunately, it is generally impossible to
guarantee that the neighbors of a node are laid out in memory such that locality of
reference is preserved. The lack of locality is particularly problematic for distributed
memory architectures, where non-local data accesses are orders of magnitude
slower than local (RAM) memory access. As a simple example, let us consider
the exploration of a simple graph with nine nodes distributed across three different
hosts. We assume that the graph forms a chain, such that there is a directed edge
from node i to node i C 1. If we start the exploration from node 1, the partitioning
shown in Fig. 6.5 causes a server to pass control to other servers for six times, while
the layout shown in Fig. 6.5 causes servers to pass control two times.

Finally, graph algorithms tend to exhibit high data access to computation
ratio. This means that a small fraction of the total execution time is spent doing
computations, while most of the time is spent accessing data. Many algorithms
are based on exploration of the graph rather than numerical computations, as in
other types of scientific workloads. Therefore, parallel graph algorithms tend to

168 M. Lambertini et al.

a b

Fig. 6.5 Different partitioning strategies may lead to very different performance of the same
algorithm. Arrows denote (directed) graph edges

be communication bound, meaning that their execution time is dominated by the
cost of communication among all processors. Communication bound algorithms
are difficult to parallelize efficiently, especially in parallel systems with high
communication costs.

6.3.5 Addressing Locality Issues in Distributed Memory
Architectures

As observed above, lack of locality and high data access to computation ratio make
efficient implementation of parallel graph algorithms problematic. This problem
is particularly severe for distributed memory architectures, which unfortunately
are also the most appealing systems for parallel computing due to their low cost.
Therefore, it is useful to spend a few words on distributed data layout for graphs.

First, we consider graphs represented using adjacency lists, which means that
the graph is encoded as a set of nodes, each node having an associated set
of incident edges. Alternative representations are possible, for example using
adjacency matrices, where a n node graph is encoded as a n � n (usually sparse)
matrix whose nonzero elements denote edges.

One possibility is to store a copy of the entire graph on each processing node
(Fig. 6.6a). This has the advantage that each processor does not need to interact or
pass control to other processors to explore the graph; however, synchronization with
other processors might still be required by the specific algorithm being executed.
Replication is particularly effective for task-parallel algorithms, that are those
algorithms which can be decomposed into mostly independent tasks. For example,
the computation of betweenness centrality on an n node graph using Brande’s
algorithm [13] requires n independent visits, each one starting from a different node.
This algorithm can be efficiently implemented on distributed memory architectures
by replicating the input graph and assigning to each processor the task of visiting
the graph from a subset of the nodes.

6 Large-Scale Social Network Analysis 169

a

b

Fig. 6.6 Graph replication and partitioning example. (a) Replication. (b) Partitioning

Replication has the serious disadvantage of not making optimal use of the
available memory: in fact, each computing node must have enough RAM to keep
a copy of the whole graph. This is not always possible, since large real-world
graphs are larger than the RAM available on any conceivable single computing
node. To address this issue, it is possible to partition the input graph, such that
each processing node is responsible for storing only part of the graph (Fig. 6.6).
This results in the useful side effect that it is possible to handle larger graphs by
simply adding more computing nodes. The downside is that communication costs
might limit scalability, if the partitioning is not done accurately. Some performance
results will be discussed in Sect. 6.6.

6.4 Parallel Computation of Centrality Measures

In this section we briefly describe some parallel algorithms for computation of
centrality measures in social graphs. Among the metrics mentioned in Sect. 6.2,
betweenness centrality is the most challenging to compute efficiently using parallel
algorithms [5, 21].

170 M. Lambertini et al.

Algorithm 3: Sequential Floyd-Warshall algorithm
Input: Mi j adjacency matrix for graph G D .V; E/

for i 1 to n do
for j 1 to n do

d.i; j / WDMij

for k 1 to n do
for i 1 to n do

for j 1 to n do
d.i; j / min .d.i; j /; d.i; k/C d.k; j //

Parallel computation of degree and closeness centrality is relatively easy. In fact,
computation of the degree centrality is almost an embarrassingly parallel task,
which means that the computation can be split across p processors such that each
processor can compute part of the result independently and without the need to
interact with other processors.

The degree centrality DC.v/ of a node v is simply the node degree ı.v/ divided
by n � 1, n being the number of nodes in the graph. Therefore, given a graph
G D .V; E/, it is possible to partition V into n=p disjoint subsets, and assign
each subset to one of the p processors. At this point, each processor trivially
computes the degree of every node in its partition. This algorithm does not require
any communication between processors, so it can be efficiently implemented even
on distributed memory architectures with partitioned input graph. For example, host
A in Fig. 6.6b can compute the degree centrality of nodes f1; 3; 4; 6g, while host B

can compute the degree centrality of nodes f2; 5; 7g.
Closeness centrality CN.v/ involves the computation of all pairwise distances

d.u; v/ for all nodes u; v 2 V . Most of the existing parallel all-pair shortest path
algorithms are based on either the Floyd-Warshall algorithm, or on Dijkstra’s Single
Source Shortest Path (SSSP) algorithm, which is executed n times, one for each
node u 2 V . In both cases, efficient parallel implementations are known [25,
Chapter 3.9].

We briefly describe a parallel version of the Floyd-Warshall algorithm; the
sequential version is very simple, and is described by Algorithm 3. Mij is the
adjacency matrix for graph G, such that Mij is the length of edge .i; j /, if such an
edge exists, orC1 otherwise. The sequential algorithm performs a set of relaxation
steps, updating the distance estimates d.u; v/.

A simple approach to parallelize Algorithm 3 is to partition the matrix d row
wise, and assign each block of n=p contiguous rows to each of the p processors.
In addition to this local data, each processor needs a copy of the k-th row d.	; k/

to perform its computations; at each iteration, the processor that has this row can
broadcast it to all other processors. Figure 6.7 shows an example of data partitioning
across four processors.

We now turn our attention to the computation of betweenness centrality. At the
time of writing the best known sequential algorithm is due to Brandes [13]. If we
define ıs.v/ DP

s¤v¤t2V ıst .v/, then the betweenness score of node v 2 V can be
then expressed as

6 Large-Scale Social Network Analysis 171

Fig. 6.7 Computing all-pair shortest paths on four processors; shaded areas denote the portions
of matrix d.i; j / which must be stored within processor 3

BC.v/ D
X

s¤v2V

ıs.v/

Let Ps.v/ denote the set of predecessors of a vertex v on shortest paths from s,
defined as:

Ps.v/ D fu 2 V W .u; v/ 2 E; d.s; v/ D d.s; u/C w.u; v/g

Brandes shows that the dependencies satisfy the following recursive relation, which
is the key idea of the algorithm:

ıs�.v/ D
X

w;v2Ps.w/

�sv

�sw
.1C ıs�.w//

Based on the facts above, BC.v/ can be computed in two steps: first, execute n

SSSPs, one for each source s 2 V , maintaining the predecessor sets Ps.v/; then,
compute the dependencies ıs�.v/ for all v 2 V . At the end we can compute the sum
of all dependency values to obtain the centrality measure of v.

In 2006, Bader and Madduri [5] proposed a parallel algorithm for betweenness
centrality, which exploits parallelism at two levels: the SSSP computation from each
source vertex is done concurrently, and each individual SSSP is also parallelized
(see Algorithm 4).

The algorithm assigns a fraction of the graph nodes to each processor, which
can then initiate the SSSP computation. The stack S , list of predecessors P and
the Breadth-First Search (BFS) queue Q are replicated on each computing node,

172 M. Lambertini et al.

Algorithm 4: Bader and Madduri parallel betweenness centrality
Input: G.V; E/

Output: Array BC Œ1::n�, where BC Œv� is the centrality value for vertex v

for all v 2 V in parallel do
BC Œv� 0;

for all s 2 V in parallel do
S empty stack;
P Œw� empty list, 8w 2 V ;
�Œt � 0;8t 2 V ;
�Œs� 1;
dŒt � �1;8t 2 V ;
dŒs� 0;
Q empty queue;
enqueue s to Q;
while Q not empty do

dequeue v from Q;
push v to S ;
for each neighbor w of v in parallel do

if dŒw� < 0 then
enqueue w! Q;
dŒw� dŒv�C 1;

if dŒw� D dŒv�C 1 then
�Œw� �Œw�C �Œv�;
append v! P Œw�;

ıŒv� 0;8v 2 V ;
while S not empty do

pop w S ;
for v 2 P Œw� do

ıŒv� ıŒv�C �Œv�

�Œw�
.1C ıŒw�/

if w ¤ s then
BC Œw� BC Œw�C ıŒw�

so that every processor can compute its own partial sum of the centrality value for
each vertex, and all the sums can be merged in the end using a reduction operation.
Algorithm 4 is not space efficient, as it requires storing the whole SSSP tree for each
source node.

The algorithm above requires fine-grained parallelism for update the
shared data structures, and is therefore unsuitable for a distributed memory
implementation. Edmonds, Hoefler, and Lumsdaine [21] recently proposed a
new parallel space-efficient algorithm for betweenness centrality which partially
addresses these issues: the new algorithm requires coarse-grained parallelism,
and therefore is better suited for distributed memory architectures. Furthermore,
memory requirements are somewhat reduced.

6 Large-Scale Social Network Analysis 173

6.5 Libraries

In this section we describe some of the available software libraries and tools
for graph analysis on parallel and distributed architectures—sequential network
analysis packages are not considered here. The list reported here is not meant to
be exhaustive. However, we tried to cover some of the most relevant parallel graph
analysis packages available, both for shared memory and for distributed memory
architectures. All software packages described here are distributed under free
software licenses (generally, GNU General Public License or BSD-like licenses).
Table 6.1 summarizes the main features of these packages.

6.5.1 Parallel Boost Graph Library

The Parallel Boost Graph Library (PBGL) [27] is a library for distributed graph
computation which is part of Boost [11], a collection of open source, peer-reviewed
libraries written in CCC. The PBGL is based on another Boost library, the
serial Boost Graph Library (BGL) [48], offering similar syntax, data structures, and
algorithms. Like all the Boost libraries, it is distributed under the Boost Software
License, a BSD-like permissive free software license.

The PBGL aims at being efficient and flexible at the same time by employing
the generic programming paradigm. Its generic algorithms are defined in terms
of collections of properties, called concepts. A concept defines a set of type
requirements extracted from an algorithm, in order to ensure the computational
feasibility and efficiency of that algorithm on user-provided types. An example is the
graph concept, which express the fact that a graph is a set of vertices and edges with
some additional identification information. This makes the PBGL flexible enough
to work with parametric data structures; since those abstractions are removed by the
compiler, a generic algorithm can be as fast as an hard-coded one.

In order to decouple vertex and edge properties accessors, and their representa-
tion, the PBGL implements property maps. Thanks to property maps, vertex and
edge properties can be stored either within the graph data structure itself, or as
distinct, arbitrary data structures. Property maps can be distributed in such a way
that each processor only maintains the values for a subset of nodes.

The PBGL implements some important measures for social network analysis,
like betweenness centrality, as well as several fundamental graph algorithms,
including BFS, Depth-First Search (DFS), SSSP, Minimum Spanning Tree (MST),
Connected Components (CC), and s-t connectivity, which determines whether there
is a path from vertex s to vertex t on a given graph.

174 M. Lambertini et al.
Ta

bl
e

6.
1

Su
m

m
ar

y
of

pa
ra

lle
lg

ra
ph

lib
ra

ri
es

N
am

e
L

at
es

tr
el

ea
se

L
ic

en
se

L
an

g.
Pa

ra
lle

lA
PI

Im
pl

em
en

te
d

al
go

ri
th

m
s

In
pu

tf
or

m
at

s
O

ut
pu

tf
or

m
at

s

PB
G

L
[1

1,
27

]
1.

47
.0

(J
ul

20
11

)
B

SD
- lik

e
C
CC

D
is

tr
ib

ut
ed

m
em

or
y

(M
PI

)
B

FS
,D

FS
,D

ijk
st

ra
’s

SS
SP

(+
va

ri
an

ts
),

M
ST

(+
va

ri
an

ts
),

C
C

,S
tr

on
gl

y
C

on
ne

ct
ed

C
om

po
ne

nt
s

(S
C

C
),

Pa
ge

R
an

k,
B

om
an

et
al

.g
ra

ph
co

lo
ri

ng
,F

ru
ch

te
rm

an
R

ei
ng

ol
d

fo
rc

e-
di

re
ct

ed
la

yo
ut

,s
-t

co
nn

ec
tiv

ity
,b

et
w

ee
nn

es
s

ce
nt

ra
lit

y

M
E

T
IS

,A
PI

G
ra

ph
V

iz
,A

PI

SN
A

P
[6

,3
7]

0.
4

(A
ug

20
10

)
G

PL
v2

C
Sh

ar
ed

m
em

or
y

(O
pe

nM
P)

B
FS

,D
FS

,C
C

,S
C

C
,d

ia
m

et
er

,v
er

te
x

co
ve

r,
cl

us
te

ri
ng

co
ef

fic
ie

nt
,

co
m

m
un

ity
K

ul
lb

ac
k

L
ie

bl
er

,
co

m
m

un
ity

m
od

ul
ar

ity
,

co
nd

uc
ta

nc
e,

be
tw

ee
nn

es
s

ce
nt

ra
lit

y,
m

od
ul

ar
ity

be
tw

ee
nn

es
s,

m
od

ul
ar

ity
gr

ee
dy

ag
gl

om
er

at
iv

e,
m

od
ul

ar
ity

sp
ec

tr
al

,s
ee

d
co

m
m

un
ity

de
te

ct
io

n

D
IM

A
C

S,
G

M
L

,G
ra

ph
M

L
,M

E
T

IS
,

SN
A

P,
A

PI
A

PI

M
ul

ti-
T

hr
ea

de
d

G
ra

ph
L

ib
ra

ry
(M

T
G

L
)

[9
,4

7]

1.
0

(J
un

20
11

)
B

SD
- lik

e
C
CC

Sh
ar

ed
m

em
or

y
(M

TA
ar

ch
ite

ct
ur

e
or

Q
th

re
ad

s
lib

ra
ry

)

B
FS

,P
se

ar
ch

(D
FS

va
ri

an
t)

,S
SS

P,
C

C
,

SC
C

,P
ag

eR
an

k,
su

bg
ra

ph
is

om
or

ph
is

m
,r

an
do

m
w

al
k,

s-
t

co
nn

ec
tiv

ity
,b

et
w

ee
nn

es
s

ce
nt

ra
lit

y,
co

m
m

un
ity

de
te

ct
io

n,
co

nn
ec

tio
n

su
bg

ra
ph

s,
fin

d
tr

ia
ng

le
s,

as
so

rt
at

iv
ity

,m
od

ul
ar

ity
,

M
ax

Fl
ow

B
in

ar
y,

D
IM

A
C

S,
m

at
ri

x
m

ar
ke

t,
m

em
or

y
m

ap
,A

PI
B

in
ar

y,
D

IM
A

C
S,

m
at

ri
x

m
ar

ke
t,

m
em

or
y

m
ap

,
A

PI

D
is

N
et

[1
9,

34
]

N
/A

(J
un

20
10

)
G

PL
v3

C
CC

D
is

tr
ib

ut
ed

m
em

or
y

(c
us

to
m

)
D

eg
re

e
ce

nt
ra

lit
y,

be
tw

ee
nn

es
s

ce
nt

ra
lit

y,
cl

os
en

es
s

ce
nt

ra
lit

y,
ec

ce
nt

ri
ci

ty

D
is

N
et

,a
dj

ac
en

cy
lis

t,
Pa

je
ck

(v
ar

ia
nt

),
A

PI
A

PI

H
IP

G
[2

9,
31

]
1.

5
(A

pr
20

11
)

G
PL

v3
Ja

va
D

is
tr

ib
ut

ed
m

em
or

y
(I

bi
s)

B
FS

,S
C

C
,P

ag
eR

an
k

SV
C

-I
I,

H
ip

,A
PI

SV
C

-I
I,

H
ip

,A
PI

Pe
G

aS
us

[3
0,

46
]

2.
0

(S
ep

20
10

)
B

SD
- lik

e
Ja

va
D

is
tr

ib
ut

ed
m

em
or

y
(H

ad
oo

p)
D

eg
re

e
C

en
tr

al
ity

,P
ag

eR
an

k,
R

an
do

m
w

al
k

w
ith

re
st

ar
t,

R
ad

iu
s,

C
C

Ta
b-

se
pa

ra
te

d
Pl

ot

C
om

bB
L

A
S

[1
4,

16
]

1.
1

(M
ay

20
11

)
B

SD
- lik

e
C
CC

D
is

tr
ib

ut
ed

m
em

or
y

(M
PI

-2
)

M
at

ri
x

O
pe

ra
tio

ns
,B

et
w

ee
nn

es
s

C
en

tr
al

ity
,M

C
L

gr
ap

h
cl

us
te

ri
ng

N
/A

N
/A

6 Large-Scale Social Network Analysis 175

6.5.2 Small-world Network Analysis and Partitioning (SNAP)

SNAP [6,37] is a parallel library for graph analysis and partitioning, targeting multi-
core and massively multi-threaded platforms. SNAP is implemented in C, using
POSIX threads and OpenMP primitives for parallelization. SNAP is distributed
under the GPLv2 software license.

SNAP pre-processes input data in order to choose the best available data
structure: the default is cache-friendly adjacency arrays, but switches to dynamically
resizable adjacency arrays when dynamic structural updates are required, and sorts
them by vertex or edge identifier when fast deletions are necessary.

SNAP is specifically optimized for processing small-world networks by exploit-
ing their characteristics, such as low graph diameter, sparse connectivity and skewed
degree distribution. For example, SNAP represents low-degree vertex adjacencies
in unsorted adjacency arrays, and high degree vertices in a structure similar to
a randomized binary search tree called treap [2], for which efficient parallel
algorithms for set operations exist.

On the algorithm side, SNAP fundamental graph algorithms, such as BFS, DFS,
MST and CC, are designed to exploit the fine-grained thread-level parallelism
offered by shared memory architectures. SNAP also supports other SNA metrics
that have a linear or sub-linear computational complexity, such as average vertex
degree, clustering coefficient, average shortest path length, rich-club coefficient and
assortativity. These metrics are also useful as preprocessing steps for optimizing
some analysis algorithms.

6.5.3 Multi-Threaded Graph Library (MTGL)

MTGL [9, 10, 47] is a parallel graph library designed for massively multi-threaded
computers. It is written in CCC and distributed under the MTGL License, a BSD-
like custom license. It is inspired by the generic programming approach of the
BGL and PBGL, but rather than maximizing its flexibility, it is designed to give
developers full access to the performance of MTA machines. Due to the high cost
and low availability of massively multi-threaded computers, the MTGL has been
extended [9] to support Qthreads [52], a library that emulates the MTA architecture
on standard shared memory computers. While scalability and performance degrade
when using standard shared memory architectures, Barrett et al. [9] have shown that
performance issues and benefits are similar in both cases. MTGL provides a wide
range of graph algorithms, including BFS, DFS, CC, SCC, betweenness centrality,
community detection and many others.

176 M. Lambertini et al.

6.5.4 HipG Framework

HIPG [29, 31] is a distributed framework for processing large-scale graphs. It is
implemented in Java using the Ibis message-passing communication library [7],
and it is distributed under the GPLv3 license. HIPG provides an high-level
object-oriented interface that does not expose explicit communication. Nodes are
represented by objects and can contain custom fields to represent attributes and
custom methods. However, due to Java objects memory overhead, edges are stored
in a single large integer array, distributed in chunks across all computing nodes;
access to this data structure is managed by an abstraction layer in order to be
transparent to the user. An HIPG distributed computation is defined by plain Java
methods executed on graph nodes; each call to a method of a remote node (i.e.,
a node not stored locally on the caller processor) is automatically translated in an
asynchronous message. In order to compute aggregate results, HIPG uses logical
objects called synchronizers that can apply reduction operations. Synchronizers can
also manage the computation by calling methods on nodes and setting up barriers.
Synchronizers can be hierarchically organized to support sub-computations on sub-
graphs, supporting divide-and-conquer graph algorithms.

6.5.5 DisNet Framework

DisNet [19, 34] is a distributed framework for graph analysis written in CCC and
distributed under the GPLv3 license. Instead of relying on MPI, DisNet implements
its own message passing system using standard sockets, but provides an API that
abstracts away all details of parallelism. DisNet is a master-worker framework:
the master coordinates the workers and combine results, and workers run a user-
specified routine on vertices. Workers communicate only with the master and never
between each other. DisNet does not partition the graph, so every worker has a
copy of the entire network. While this ensures an high level of efficiency, especially
on data structure that exhibits poor locality (like graphs, see Sect. 6.3.4), it can be
a problem with networks starting with millions of nodes and billions of edges.
For example, a real social network with 4,773,246 vertices and 29,393,714 edges
required 10 GB of memory [34]. Aside from those potential problems, DisNet is a
viable alternative to the other libraries and tools we discussed in this chapter.

6.5.6 PeGaSus System

PeGaSus [30,46] is an open source graph mining system implemented on the top of
Hadoop [28], an open source implementation of the MapReduce framework [18].
PeGaSus provides algorithms for typical graph mining tasks, such as computation

6 Large-Scale Social Network Analysis 177

of diameter, CC, PageRank and so on. The algorithms above are implemented
around matrix-vector multiplications; PeGaSus provides an efficient primitive for
that, called Generalized Iterated Matrix-Vector multiplication (GIM-V). The GIM-V
operation on the matrix representation of a graph with n nodes and m edges requires

time O
�

nCm
p

log nCm
p

�
using p processors.

6.5.7 Combinatorial BLAS Library

The Combinatorial BLAS [14, 16] is a high performance distributed library for
graph analysis and data mining. Like the Basic Linear Algebra Subroutines (BLAS)
library [33], it defines a simple set of primitives which can be used to implement
complex computations. However, the Combinatorial BLAS focuses on linear alge-
bra primitives targeted at graph and data mining applications on distributed memory
clusters. The Combinatorial BLAS implements efficient data structures and algo-
rithms for processing distributed sparse and dense matrices, acting as a foundation
to other data structures such as the sparse adjacency matrix representation of graphs.
The library provides a common interface and allows users to implement a new sparse
matrix storage format, without any modification to existing applications. It uses
the MPI library to handle communication between computing nodes. Currently, the
Combinatorial BLAS also includes an implementation of the betweenness centrality
algorithm for directed, unweighted graphs, and a graph clustering algorithm.

6.6 Performance Considerations

We now present some performance results for two parallel implementations of the
betweenness centrality algorithm: one for shared memory architectures and another
for distributed memory architectures. We remark that the aim of this section is not
to do an accurate performance analysis of the algorithms considered; instead, we
want to show how the issues described in Sect. 6.3.4 can influence the scalability
of parallel graph algorithms. We focus on betweenness centrality because it is a
widely used metric, it is computationally demanding, and because implementations
for distributed memory and shared memory architectures are readily available.

We consider two parallel implementations of the betweenness centrality algo-
rithm. The first one is part of the PBGL [27] (included in Boost version 1.46.0)
and is run on a distributed memory commodity cluster made of Intel PCs connected
through a 100 Mbps fast Ethernet LAN, using MPI as the communication frame-
work. The second implementation is part of SNAP [6] version 0.4, and is run
on a single node of an IBM pSeries 575 supercomputer hosted at the CINECA

178 M. Lambertini et al.

Table 6.2 Technical specifications of the machines used for the tests

Distributed memory Shared memory

Model Commodity cluster IBM pSeries 575
Nodes 61 168
CPU type Intel Core2 Duo E7 2.93 GHz IBM Power6 4.7 GHz
Cores per node 2 32
RAM per node 2 GB 128 GB
Network 100Mb fast Ethernet (half duplex) Infiniband 4� DDR
Operating system Linux 2.6.28-19 AIX 6
C/C++ compiler GCC 4.3.3 IBM XL C/C++ 11.1.0.8
Software library Boost 1.46.0 SNAP 0.4

supercomputing center.10 While the IBM 575 is actually a distributed memory
system (our installation has 158 computing nodes), a single node has 32 cores with
128 GB of shared memory, hence it can be viewed as a 32-way shared memory
system. Table 6.2 describes the details of the machines used in the tests.

We study the relative speedup Sp of both implementations as a function of the
number p of processing cores. The relative speedup is a measure of the scalability
of a parallel algorithm, and is defined as follows. Let Tp be the execution time of
a parallel program run on p processors; the relative speedup Sp is the ratio of the
execution time on 1 processor and the execution time on p processors:

Sp D T1

Tp

If the total work can be evenly partitioned across all processors and there is no
communication overhead, the execution time with p processor is approximately 1=p

times the execution time with one processor. In such (ideal) conditions, a parallel
algorithm exhibits perfect (or linear) speedup Sp � p. Unfortunately, in practice
we have Sp
 p, due to the following reasons:

• Partitioning the input data across all processors is usually a task which must be
done serially; in some cases, this task can become the bottleneck.

• If the input data is unstructured and irregular (graph data fall in this category), it
may be difficult to partition it such that the workload is evenly distributed across
all processors. In such cases, the slower processor may block the faster ones,
introducing unwanted latencies and reducing scalability.

10http://www.cineca.it/.

http://www.cineca.it/.

6 Large-Scale Social Network Analysis 179

• Communication and synchronization costs can become a major issue, especially
with a large number of processors. At some point a parallel program may
experience negative scalability, meaning that the execution time grows as more
processors are added.

In the following sections we illustrate and discuss the results we have obtained
on our test infrastructures.

6.6.1 Betweenness Centrality on Distributed Memory
Architectures

We first consider the betweenness centrality algorithm on a distributed mem-
ory cluster. We use the implementation of the centrality algorithm provided by
the PBGL (included in Boost 1.46.0), which uses MPI as the communication
layer. The program is executed on a commodity cluster made of Intel PCs running
Debian Linux, connected using Fast Ethernet. This low-end solution is poorly suited
for communication-intensive high performance computing tasks; however, similar
infrastructures are readily available at most institutions, so it is important to test
whether they can be used for large scale network analysis.

In the following tests we used a publicly available real social network dataset
with 28,250 nodes and 692,668 edges structured as a scale-free graph [15]. The
size of the graph is motivated by the need to get reasonable computation times:
computing the centrality values of all vertices on a single CPU core requires about
5 h on our infrastructure. The input graph was fully replicated on each node.

We also used an increasing number p of computing nodes, from p D 1 to p D 8.
Larger values of p do not yield any significant advantage on the graph above. We run
a single process on each machine (although all processors are dual core), since we do
not want to mix local (inter-node) communications with remote (intra-node) ones.
The execution times Tp with p processing nodes have been computed by averaging
the results obtained over multiple independent experiments. Of course, all tests have
been executed when all nodes were idle.

Figure 6.8 shows the speedup Sp and average execution times Tp with p

processors. The algorithm achieves optimal (linear) speedup with the replicated
input graph. This result is quite remarkable, considering that the test cluster has
a poor network connection. The reason is that the parallel centrality algorithm
has a low communication to computation ratio: each processor is assigned the
computation of an SSSP, which can be computed using local data only. Inter-node
communications happen only at the end of each SSSP, when each node updates the
common data structure of centrality estimates. At the end of the algorithm, this data
structure contains the exact centrality values for each node.

To achieve good scalability on the cluster, it is essential to reduce communica-
tions as much as possible. If the input graph is distributed across all processors,
the situation changes dramatically. Figure 6.9 shows the execution time of the

180 M. Lambertini et al.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
pe

ed
up

 S
p

Number of Nodes (p)

PBGL (28250 nodes, 692668 edges)

Optimal
Measured

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

a

b

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 (
T

p)

Number of Nodes (p)

PBGL (28250 nodes, 692668 edges)

Fig. 6.8 Speedup and execution time of the betweenness centrality algorithm in Boost, executed
on the Intel cluster. The input graph (28,250 nodes, 692,668 edges) is replicated across the
computing nodes. (a) Speedup. (b) Execution time

betweenness centrality algorithm on the same cluster as above, using a distributed
storage model for the input graph. This means that each host only stores a subset
of the graph; therefore, each SSSP computation must pass control to different
processors, as the graph node being visited at each step may reside on a remote
host. In this situation we observe negative scalability, since the execution time
grows as more processors are added. Code profiling confirms that the algorithm
is communication bound, which means that a significant fraction (about 90 % in our
case) of the execution time is spent waiting for data to be sent or received through
the slow network.

6 Large-Scale Social Network Analysis 181

0

5000

10000

15000

20000

25000

30000

1 2 3 4

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 (
T

p
)

Number of Nodes (p)

PBGL (28250 nodes, 692668 edges, distributed graph)

Fig. 6.9 Execution time for a Small-World graph with 28,250 nodes and 692,668 edges. The input
graph is distributed across the computing nodes

6.6.2 Betweenness Centrality on Shared Memory Architectures

We now study the scalability of a different implementation of the betweenness
centrality algorithm. Specifically, we consider the implementation provided by
SNAP version 0.4 for shared memory architectures. The algorithm has been applied
to the same graph (28,250 nodes and 692,668 edges), and has been executed on a
single node of the IBM pSeries 575 supercomputer. The node has 32 processor cores
sharing a common memory, therefore it can be seen as a shared memory system.

Figure 6.10 shows the speedup and total execution time with p processor cores,
p 2 f1; 2; 4; 8; 16g. The scalability is very limited: with p D 16 cores, the algorithm
requires about 47 % the time required with a single core. In Fig. 6.11 we show the
performance results of the betweenness centrality algorithm of SNAP on a larger
graph with 224288 nodes and 3 million edges.

While communication on a shared memory multi-processor is much more
efficient than in commodity distributed memory clusters, memory access is still a
bottleneck for data-intensive applications, since the memory bandwidth can quickly
become inadequate to feed all processors.

6.6.3 Shared Memory vs. Distributed Memory

We conclude this section by reporting the results of a direct comparison between
the PBGL and SNAP, both running on the commodity cluster, using the graph with

182 M. Lambertini et al.

2

4

6

8

10

12

14

16
a

b

2 4 6 8 10 12 14 16

S
pe

ed
up

 (
S

p)

Number of Nodes (p)

SNAP (28250 nodes, 692668 edges)

Optimal
Measured

0

500

1000

1500

2000

2500

3000

3500

2 4 6 8 10 12 14 16

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 (
T

p
)

Number of Nodes (p)

SNAP (28250 nodes, 692668 edges)

Fig. 6.10 Speedup and execution time of the betweenness centrality algorithm in SNAP on
the IBM p575, for a Small-World graph with 28,250 nodes and 692,668 edges. (a) Speedup.
(b) Execution time

28,250 nodes and 692,668 edges. The distributed memory version is executed on p

processors, from p D 1 to p D 8, using full replication of the input graph on all
hosts. SNAP has been executed on a single host of the cluster using both processor
cores, requiring about 1; 400 s to process the whole graph.

Figure 6.12 shows the execution times of the two programs. It is interesting to
observe that SNAP, using only two cores of a single CPU, is faster than PBGL
running on p D 8 nodes for this graph. Scalability is an important metric, but
should not be considered alone: a less scalable algorithm may be faster in practice
than a perfectly scalable one, as this test demonstrates.

6 Large-Scale Social Network Analysis 183

2

4

6

8

10

12

14

16
a

b

2 4 6 8 10 12 14 16

S
pe

ed
up

 (
S

p)

Number of Nodes (p)

SNAP (224288 nodes, 3 million edges)

Optimal

Measured

0

50000

100000

150000

200000

250000

2 4 6 8 10 12 14 16

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 (
T

p)

Number of Nodes (p)

SNAP (224288 nodes, 3 million edges)

Fig. 6.11 Speedup and execution time of the betweenness centrality algorithm in SNAP on the
IBM p575, for a larger Small-World graph with 224,288 nodes and 3 million edges. (a) Speedup.
(b) Execution time

6.7 Concluding Remarks

In this chapter we considered the problem of computing centrality measures in large
social networks using parallel and distributed algorithms. We first introduced the
main centrality measures used in SNA. Then, we gave an overview of the main
features and limitations of current parallel and distributed architectures, includ-
ing distributed memory, shared memory and massively multi-threaded machines.
We then briefly described some of the existing parallel algorithms for computing
useful centrality measures. After that, we presented a set of software packages that
implement such algorithms. Finally, we gave some insights on the performance
of the betweenness centrality algorithms provided by the PBGL (on distributed
memory architectures), and by SNAP (on shared memory architectures).

184 M. Lambertini et al.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

in
 s

ec
on

ds
 (

T
p
)

Number of Nodes (p)

PBGL vs SNAP (28250 nodes, 692668 edges)

PBGL

SNAP (2 cores)

Fig. 6.12 Execution time of the betweenness centrality algorithm provided by the PBGL and by
SNAP. Both algorithms have been run on the commodity cluster; SNAP has been executed on a
single server using both CPU cores

Parallel graph algorithms are a hot research topic, which is still waiting to make
a real breakthrough. Graph algorithms exhibit a number of properties which make
them very hard to parallelize efficiently on current high performance computing
architectures: the large size of social graphs makes it very difficult to store them
in RAM, and distributed storage of graph data across multiple computing nodes
raises other issues, related to the long access times to remote graph data. Graph
algorithms also exhibit a large communication to computation ratio, making them
poor candidates for parallel implementation.

Despite the issues above, more efficient parallel architectures, combined with
state-of-the-art algorithms, may open the possibility of managing large social
network graphs, enabling scientists to get a better understanding of the social
phenomena which, directly or indirectly, influence our lives.

Acknowledgements This work has been partially funded by PRIN project “Relazioni sociali e
identità in rete: vissuti e narrazioni degli italiani nei siti di social network” and by FIRB project
“Information monitoring, propagation analysis and community detection in Social Network Sites”.
This work was done while M. Magnani and C. Paolino were with the Deptartment of Computer
Science, University of Bologna.

The authors thank the CINECA supercomputing center for providing access to the IBM pSeries
575 used for part of the tests described in Sect. 6.6.

6 Large-Scale Social Network Analysis 185

References

1. Anderson, W., Briggs, P., Hellberg, C.S., Hess, D.W., Khokhlov, A., Lanzagorta, M., Rosen-
berg, R.: Early experience with scientific programs on the cray MTA-2. In: Proceedings of
2003 ACM/IEEE Conference on Supercomputing, SC’03, Phoenix, p. 46. ACM, New York,
(2003). doi:10.1145/1048935.1050196

2. Aragon, C.R., GSeidel, R.: Randomized search trees. In: Annual IEEE Symposium on
Foundations of Computer Science, Research Triangle Park. IEEE Computer Society, Los
Alamitos, pp 540–545 (1989). doi:10.1109/SFCS.1989.63531

3. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N.,
Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view of the parallel computing
landscape. Commun ACM 52, 56–67 (2009)

4. Bader, D.A., Madduri, K.: Designing multithreaded algorithms for breadth-first search and
st-connectivity on the Cray MTA-2. In: Proceedings of International Conference on Par-
allel Processing, Columbus. IEEE Computer Society, Los Alamitos, pp 523–530 (2006).
doi:10.1109/ICPP.2006.34

5. Bader, D.A., Madduri, K.: Parallel algorithms for evaluating centrality indices in real-
world networks. In: Proceedings of 2006 International Conference on Parallel Process-
ing, ICPP’06, Columbus, pp. 539–550. IEEE Computer Society, Washington, DC (2006).
doi:10.1109/ICPP.2006.57

6. Bader, D.A., Madduri, K.: SNAP, small-world network analysis and partitioning: an open-
source parallel graph framework for the exploration of large-scale networks. In: Proceedings
of International Symposium on Parallel and Distributed Processing, IPDPS, Miami, pp. 1–12
(2008). doi:10.1109/IPDPS.2008.4536261

7. Bal, H.E., Maassen, J., van Nieuwpoort, R.V., Drost, N., Kemp, R., Palmer, N., Wrzesinska, G.,
Kielmann, T., Seinstra, F., Jacobs, C.: Real-world distributed computing with Ibis. Computer
43, 54–62 (2010). doi:10.1109/MC.2010.184

8. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 11
(1999)

9. Barrett, B.W., Berry, J.W., Murphy, R.C., Wheeler, K.B.: Implementing a portable multi-
threaded graph library: the MTGL on Qthreads. In: IEEE International Symposium on Parallel
& Distributed Processing, IPDPS, Rome, pp. 1–8 (2009). doi:10.1109/IPDPS.2009.5161102

10. Berry, J.W., Hendrickson, B., Kahan, S., Konecny, P.: Graph software development and
performance on the MTA-2 and Eldorado. In: 48th Cray Users Group Meeting, Lugano (2006)

11. Boost: Boost C++ Libraries. Available at http://www.boost.org/ (2011)
12. Borkar, S.: Design challenges of technology scaling. IEEE Micro 19(4), 23–29 (1999)
13. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177 (2001)
14. Buluç, A., Gilbert, J.R.: The combinatorial BLAS: design, implementation, and applications.

Int. J. High Perform. Comput. Appl. 25, 496–509 (2011). doi:10.1177/1094342011403516
15. Celli, F., Di Lascio, F., Magnani, M., Pacelli, B., Rossi, L.: Social network data and

practices: the case of friendfeed. In: Chai, S.K., Salerno, J., Mabry, P. (eds.) Advances
in Social Computing. LNCS, vol. 6007, pp 346–353. Springer, Berlin/Heidelberg (2010).
doi:10.1007/978-3-642-12079-4_43

16. Combinatorial BLAS: Combinatorial BLAS Library (MPI reference implementation). Version
1.1, Available at http://gauss.cs.ucsb.edu/~aydin/CombBLAS/html/index.html (2011)

17. Culler, D., Singh, K.P., Gupta, A.: Parallel Computer Architecture – A Hardware/Software
Approach. Morgan Kaufmann, San Francisco (1998)

18. Dean, J., Ghemawat, S.: Mapreduce: a flexible data processing tool. Commun. ACM 53(1),
72–77 (2010). doi:10.1145/1629175.1629198

19. DisNet: DisNet, A Framework for Distributed Graph Computation. Available at http://nd.edu/~
dial/software.html (2011)

http://www.boost.org/
http://gauss.cs.ucsb.edu/~aydin/CombBLAS/html/index.html
http://nd.edu/~dial/software.html
http://nd.edu/~dial/software.html

186 M. Lambertini et al.

20. Du, N., Wang, H., Faloutsos, C.: Analysis of large multi-modal social networks: patterns
and a generator. In: Proceedings of the 2010 European conference on Machine Learning
and Knowledge Discovery in Databases: Part I, ECML PKDD’10, Barcelona, pp. 393–408.
Springer, Berlin/Heidelberg, (2010). http://portal.acm.org/citation.cfm?id=1888258.1888291

21. Edmonds, N., Hoefler, T., Lumsdaine, A.: A space-efficient parallel algorithm for comput-
ing betweenness centrality in distributed memory. In: Proceedings of International Con-
ference on High Performance Computing (HiPC), Dona Paula, pp. 1–10 (IEEE, 2010).
doi:10.1109/HIPC.2010.5713180

22. Erdős, P., Rényi, A.: On random graphs I. Publ Math Debrecen 6, 290–297, 156 (1959)
23. Evans, B.M., Chi, E.H.: Towards a model of understanding social search. In: Proceedings of

the 2008 ACM Conference on Computer Supported Cooperative Work, CSCW ’08, San Diego.
ACM, New York, pp. 485–494 (2008). doi:10.1145/1460563.1460641

24. Feo, J., Harper, D., Kahan, S., Konecny, P.: Eldorado. In: Proceedings of 2nd Conference on
Computing Frontiers, CF ’05, Ischia. ACM, New York, pp. 28–34 (2005)

25. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Parallel Software
Engineering. Addison-Wesley Longman, Boston (1995)

26. Freeman, L.C.: Centrality in social networks: a conceptual clarification. Soc. Netw. 1(3),
215–239 (1978–1979)

27. Gregor, D., Lumsdaine, A.: The Parallel BGL: A generic library for distributed graph
computations. In: Parallel Object-Oriented Scientific Computing, POOSC, Glasgow (2005)

28. Hadoop.: Apache hadoop. Available at http://hadoop.apache.org/ (2011)
29. HipG.: HipG: High-level distributed processing of large-scale graphs. Available at http://www.

cs.vu.nl/~ekr/hipg/ (2011)
30. Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: mining peta-scale graphs. Knowl. Inf.

Syst. 27(2), 303–325 (2011). doi:10.1007/s10115-010-0305-0
31. Krepska, E., Kielmann, T., Fokkink, W., Bal, H.: A high-level framework for distributed

processing of large-scale graphs. In: Proceedings of the 12th International Conference on
Distributed Computing and Networking, ICDCN’11, Bangalore, pp. 155–166. Springer,
Berlin/Heidelberg (2011)

32. Kumar, V., Gupta, A.G.A., Karpis, G.: Introduction to Parallel Computing, 2nd edn. Addison
Wesley, Harlow (2003)

33. Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Basic linear algebra subprograms for
fortran usage. ACM Trans Math Softw 5, 308–323 (1979). doi:10.1145/355841.355847

34. Lichtenwalter, R.N., Chawla, N.V.: DisNet: A framework for distributed graph computation.
In: Proceedings 2011 International Conference on Social Networks Analysis and Mining
(ASONAM), Kaohsiung (2011, to appear)

35. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.W.: Challenges in parallel graph
processing. Parallel Process. Lett. 17(1), 5–20 (2007)

36. Madduri, K., Bader, D.A.: Compact graph representations and parallel connectivity algorithms
for massive dynamic network analysis. In: Proceedings of International Parallel and Distributed
Processing Symposium, IPDPS, Rome. IEEE Computer Society, Los Alamitos, pp. 1–11
(2009)

37. Madduri, K., Bader, D.A.: Small-world Network Analysis and Partitioning–Version 0.4.
Available at http://snap-graph.sourceforge.net/ (2010)

38. Magnani, M., Rossi, L.: The ml-model for multi layer network analysis. In: IEEE International
Conference on Advances in Social Network Analysis and Mining, Kaohsiung (2011)

39. Magnani, M., Rossi, L., Montesi, D.: Information propagation analysis in a social network
site. In: 2010 International Conference on Advances in Social Networks Analysis and Mining,
Odense, pp. 296–300. IEEE Computer Society, Los Alamitos (2010)

40. Message Passing Interface Forum MPI: A Message-Passing Interface Standard–Version 2.2.
Available at http://www.mpi-forum.org/docs/ (2009)

41. Moore, G.E.: Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82
(1998). doi:10.1109/JPROC.1998.658762

http://portal.acm.org/citation.cfm?id=1888258.1888291
http://hadoop.apache.org/
http://www.cs.vu.nl/~ekr/hipg/
http://www.cs.vu.nl/~ekr/hipg/
http://snap-graph.sourceforge.net/
http://www.mpi-forum.org/docs/

6 Large-Scale Social Network Analysis 187

42. Moreno, J.L., Jennings, H.H.: Who Shall Survive? : A New Approach to the Problem of Human
Interrelations. Nervous and Mental Disease Publishing Co., Washington, D.C. (1934)

43. OpenMP Architecture Review Board: OpenMP Application Program Interface–Version 3.1.
Available at http://openmp.org/wp/ (2011)

44. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: Generalizing
degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)

45. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order
to the web. Technical report, Stanford Digital Library Technologies Project (1998)

46. Pegasus: Project Pegasus. Available at http://www.cs.cmu.edu/~pegasus/ (2011)
47. Sandia National Laboratories: Multi-Threaded Graph Library–Version 1.0. Available at https://

software.sandia.gov/trac/mtgl (2011)
48. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference

Manual. Addison-Wesley, Boston (2002)
49. Trobec, R., Vajteršic, M., Zinterhof, P. (eds.): Parallel Computing: Numerics, Applications, and

Trends. Springer, Dordrecht/New York (2009). doi:10.1007/978-1-84882-409-6_1
50. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393(6684),

440–442 (1998)
51. Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influential twitterers.

In: Proceedings of Third ACM International Conference on Web Search and Data Mining,
WSDM ’10, New York, pp. 261–270. ACM, New York (2010). doi:10.1145/1718487.1718520

52. Wheeler, K.B., Murphy, R.C., Thain, D.: Qthreads: an api for programming with millions
of lightweight threads. In: 22nd IEEE International Symposium on Parallel and Distributed
Processing, IPDPS. IEEE, Miami, pp. 1–8 (2008). doi:10.1109/IPDPS.2008.4536359

53. White, D., Borgatti, S.: Betweenness centrality measures for directed graphs. Soc. Netw. 16(4),
335–346 (1994). doi:10.1016/0378-8733(94)90015-9

http://openmp.org/wp/
http://www.cs.cmu.edu/~pegasus/
https://software.sandia.gov/trac/mtgl
https://software.sandia.gov/trac/mtgl

Chapter 7
Visual Analysis and Knowledge Discovery
for Text

Christin Seifert, Vedran Sabol, Wolfgang Kienreich, Elisabeth Lex,
and Michael Granitzer

Abstract Providing means for effectively accessing and exploring large textual
data sets is a problem attracting the attention of text mining and information
visualization experts alike. The rapid growth of the data volume and heterogeneity,
as well as the richness of metadata and the dynamic nature of text repositories, add to
the complexity of the task. This chapter provides an overview of data visualization
methods for gaining insight into large, heterogeneous, dynamic textual data sets.
We argue that visual analysis, in combination with automatic knowledge discovery
methods, provides several advantages. Besides introducing human knowledge and
visual pattern recognition into the analytical process, it provides the possibility to
improve the performance of automatic methods through user feedback.

7.1 Introduction

The already huge amount of electronically available information is growing further
at an astonishing rate: an IDC study [12] estimates that by 2006 the amount of digital
information exceeded 161 Exabyte, while an updated forecast [13] estimates that by
2012 the amount of information will double every 18 months. While retrieval tools
excel at finding a single, or a few relevant pieces of information, scalable analysis
techniques, considering large data sets in their entirety, are required when a holistic
view is needed.

Knowledge discovery (KD) is the process of automatically processing large
amounts of data to identify patterns and extract useful new knowledge [9].

C. Seifert (�) • M. Granitzer
University of Passau, 94030 Passau, Germany
e-mail: christin.seifert@uni-passau.de; michael.granitzer@uni-passau.de

V. Sabol • W. Kienreich • E. Lex
Know-Center Graz, Inffeldgasse 13/6, A-8010 Graz, Austria
e-mail: vsabol@know-center.at; wkien@know-center.at; elex@know-center.at

A. Gkoulalas-Divanis and A. Labbi (eds.), Large-Scale Data Analytics,
DOI 10.1007/978-1-4614-9242-9__7, © Springer Science+Business Media New York 2014

189

mailto:christin.seifert@uni-passau.de
mailto:michael.granitzer@uni-passau.de
mailto:vsabol@know-center.at
mailto:wkien@know-center.at
mailto:elex@know-center.at

190 C. Seifert et al.

KD was traditionally applied on structured information in databases; however,
as information is increasingly present in unstructured or weakly structured form,
such as text, adequate techniques were developed. The shift from large, static,
homogeneous data sets to huge, dynamic, heterogeneous repositories necessitates
approaches involving both automatic processing and human intervention. Automatic
methods put the burden on machines, but despite algorithmic advancements
and hardware speed-ups, for certain tasks, such as pattern recognition, human
capabilities remain unchallenged.

Information visualization techniques rely on the powerful human visual sys-
tem, which can recognize patterns, identify correlations and understand complex
relationships at once, even in large amounts of data. Visualization is an effective
enabler for exploratory analysis [52], making it a powerful tool for gaining insight
into unexplored data sets.

Visual Analytics is an interdisciplinary field based on information visualization,
knowledge discovery and cognitive and perceptual sciences, which deals with
designing and applying interactive visual user interfaces to facilitate analytical
reasoning [50]. It strives for tight integration between computers, which perform
automatic analysis, and humans, which steer the process through interaction and
feedback. Combining the advantages of visual methods with automatic processing
provides effective means for revealing patterns and trends, and unveiling hidden
knowledge present in complex data [23,48]. Analytical reasoning is supported based
on the discovered patterns, where users can pose and test a hypothesis, provide
assessments, derive conclusions and communicate the newly acquired knowledge.

Especially for large text repositories, Visual Analytics is a promising approach.
Turning textual information into visual representations allows to access large doc-
ument repositories using the human pattern recognition abilities. Providing Visual
Analytics environments for text requires text mining and text analysis algorithms in
order to extract information and metadata. Further, appropriate representations have
to be devised in order to visualize the aspects interesting to the task at hand.

In this chapter, we provide an overview on visual analysis techniques for textual
data sets, outline underlying processing elements and possible application scenarios.
First, the general processing pipeline for Visual Analytics in text repositories
is outlined in Sect. 7.2, followed by a detailed description of all the necessary
steps. Second, Sect. 7.3 describes how visual representations can be used on the
extracted information. Different visualizations are represented depending on the
data aspect to be visualized. Section 7.3.1 describes topical overviews, Sect. 7.3.2
representations for multi-dimensional data, Sect. 7.3.3 spatio-temporal visualiza-
tions, and Sect. 7.3.4 visualization of arbitrary relations. The concept of user
feedback integration, as well as examples, are covered in Sect. 7.3.5. The concept of
combining multiple visualizations into one interface, as multiple coordinated views,
is explained in Sect. 7.3.6. Third, Sect. 7.4 describes three applications: media
analysis (Sect. 7.4.1), visual access to encyclopedias (Sect. 7.4.2) and patent analysis
(Sect. 7.4.3). Finally, Sect. 7.5 concludes the chapter and provides an outlook of
future developments in the field of Visual Analytics focusing on text data.

7 Visual Analysis and Knowledge Discovery for Text 191

Acquisition
Crawling

Metadata Harmonization

Format Normalization

Semantic Enrichment
Information Extraction
Text Classification
Feature Engineering
Indexing

Semantic Integration
Schema Mapping
Instance Matching
Declarative & Deductive
Statistical & Inductive

Selection & Aggregation
Retrieval
Clustering
Summarization

Visualisation & Interaction
Ordination
Graph Layout
Interactive Visualisation

Hypothesis Formulation
& Analytics Workflow

Hypothesis Generation
Hyptohesis Validation
Task-specific Workflows

Data transformation

Feedback

Data Intensive
Tasks

User Centric
Tasks

Legend

Fig. 7.1 The processing pipeline for visual analysis of text combines data-intensive tasks (top)
and user-centric tasks (bottom). Solid black lines indicate data flows while dashed red lines indicate
user feedback to adapt automatic processes

7.2 Processing Pipeline for Visual Analysis of Text

Visual analytics combines information visualization techniques with knowledge
discovery methods in an iterative fashion. Starting from a given data set, mining
techniques identify interesting, non-trivial patterns, which may provide insights on
the data set. In a discovery task, where the aim is to identify new, potentially useful
insights, a priori assumptions underlying the mining techniques may not be fulfilled.
By visualizing the extracted patterns, humans are empowered to incorporate their
background knowledge into the automatic processes through identifying wrong
assumptions and erroneously identified patterns. Information visualization serves
as the communication channel between the user and the mining algorithm, allowing
domain experts to control the data-mining process, to rule-out wrong mining results
or to focus on particularly interesting sub-samples of the data set.

Providing Visual Analytics environments for text requires text mining and text
analysis algorithms, in order to extract meaningful patterns subject to visualization.
The data set usually consists of a set of documents and additional metadata.
Acquiring and processing these metadata is usually composed of consecutive steps
resembling the traditional knowledge discovery chain. Visual analytics aims to
provide users with intelligent interfaces controlling parts of these steps in order
to gain new insights. Understanding individual steps is necessary to derive suitable
visualizations and interactions for each step. Hence, we outline important details
on the process in the following and afterwards derive potential visualizations
and interactions for conducting visual analytics tasks in large text repositories.
Figure 7.1 depicts an overview of the outlined process.

192 C. Seifert et al.

7.2.1 Acquisition

Acquisition includes crawling and accessing repositories to collect information, and
document pre-processing, such as harmonization of metadata and conversion into
a unified format. An often underestimated effort within the acquisition step is data
cleaning and metadata harmonization. Data cleaning involves removing documents
in awkward formats (e.g., encrypted PDFs) and data that should be omitted in
further processing (e.g., binary content). Similarly, metadata harmonization ensures
the correctness of data from various sources and the availability of necessary
information for later semantic integration [2].

7.2.2 Semantic Enrichment

Semantic enrichment extracts domain-specific semantics from single documents
and enriches each document with external knowledge. Usually, the process starts
with annotating the document content with linguistic properties like part-of-speech
or punctuation, or external knowledge like thesauri concepts. Annotated text then
serves as basis for either extracting explicit metadata on document level, e.g.,
the author of a document, or to generate features representing the document in
subsequent analysis steps. Annotations, metadata and features may serve as input
for creating index structures to enable fast, content-based access to documents.
Figure 7.2 provides an overview on these data transformations happening during
semantic enrichment. In the following, we outline the most important techniques in
detail.

7.2.2.1 Information Extraction

Information Extraction (IE) deals with extracting structured information from
unstructured, or weakly structured, text documents using natural language process-
ing methods [20]. IE decomposes text into building blocks, generates annotations
and extracts metadata, typically employing the following methods:

(i) Tokenization, sentence extraction and part-of-speech (POS) tagging (i.e. rec-
ognizing nouns and verbs)

(ii) Named entity recognition identifies entities such as persons, organizations,
locations, numbers (e.g.,time, money amounts). Co-reference detection identi-
fies various spellings or notations of a single named entity.

(iii) Word sense disambiguation identifies the correct sense of a word depending on
its context.

(iv) Relationship discovery identifies relations, links and correlations.

7 Visual Analysis and Knowledge Discovery for Text 193

Textual
Content

AnnotationsInformation
Extraction

Features

Feature
Engineering

Metadata
Metadata

Harmonization

Index Indexing

Indexing

Indexing

Feature Engineering

Information Extraction

Feature
Engineering

Fig. 7.2 Semantic enrichment steps starting at single artifacts, e.g., documents, news articles,
patents (left), and resulting in enriched representations in an index (center)

7.2.2.2 Feature Engineering and Vectorization

Feature engineering and vectorization uses IE results and document metadata to
identify, weight (e.g., TF-IDF), transform (e.g., stemming) and select (e.g., stop-
word filtering) features describing text documents. Features are represented as
feature vectors used by algorithms to compare documents and compute document
similarities. Multiple feature spaces (also referred to as feature name spaces) group
features of similar characteristic to describe different, potentially orthogonal aspects
of a document. For example, one feature space can capture all nouns, while a
second feature space can capture all extracted and pre-defined locations and a
third all persons. By separating feature spaces, subsequent algorithms can take
care of different feature distributions and consider different importance among
feature spaces depending on the analytical task at hand, as e.g., in [32]. Besides
data integration and cleaning, good feature engineering becomes the second most
important step in every Visual Analytics workflow and hence subject for being
steered in the analytical process.

194 C. Seifert et al.

Table 7.1 Levels of and techniques used for semantic integration

Level

Schema Instance

Technique Declarative-
deductive

Shared vocabulary,
reasoning-based
integration

Shared identifiers (e.g. URIs),
rule-based transformation,
declarative languages and
identifier schemas

Statistical-
inductive

Similarity based on structure,
linguistic or data type

Similarity estimates based on entity
properties (e.g. clustering,
near-duplicate search)

7.2.2.3 Indexing

Indexing develops efficient index structures in order to search for documents
containing particular features, or sequences/annotations of features themselves.
Inverted indices, representing for each feature the list of occurrences in documents,
are among the most often used indexing structures for text. They exploit power law
distributions of features in order to allow efficient search and retrieval in text based
repositories [34].

7.2.2.4 Text Classification

Text classification employs supervised machine learning methods to organize
documents into a predefined set of potentially structured categories [40]. Classi-
fication can be seen as injecting structured knowledge via a statistical, inductive
process. Examples are assigning documents to topical categories, estimating genre
information or determining the sentiment of text passages.

7.2.3 Semantic Integration

Semantic integration aims at integrating information from different, potentially
decentralized information sources based on information provided by each source
and by previous semantic enrichment processes. With the advancement of decen-
tralized information systems, like the Web, semantic integration becomes a more
and more important topic. Semantic integration, also known as data fusion in
the database community [2], or ontology mediation in the Semantic Web com-
munity [3], takes place on two levels: the schema-level and the instance-level.
Orthogonal to the two levels, techniques used for integration can be distinguished
into declarative-deductive and statistical-inductive techniques (see Table 7.1 for an
overview).

7 Visual Analysis and Knowledge Discovery for Text 195

7.2.3.1 Schema Level

The schema level considers mappings of general concepts of objects, like for
example mapping the concept person in repository A to the concept people in
repository B. The mapping type relies on the available vocabulary and may range
from equality relations to complex part-of relations, depending on the language
used. Besides mapping schemas onto each other, schema integration targets the
creation of one general schema out of the source schemas. In any case, the result
is a shared schema across repositories.

7.2.3.2 Instance Level

The instance level considers mappings of instances of concepts or objects, like for
example identifying that person A is the same as person B. While instance-level
integration mostly focuses on de-duplication of single instances, more complex
cases, like for example determining the type of relationships between two concrete
persons, may also be estimated. In general, performance decreases with increasing
relationship complexity.

7.2.3.3 Declarative-Deductive Techniques

Declarative-deductive techniques provide mappings based on complex rule sets
which may take use of reasoning and/or shared vocabularies. For example, the
concept person in schema A is the same as people in schema B, since both are
parents to the disjunctive concepts man and women. Similarly, on the instance level,
the field name for the concepts may be the same as the joint field forename and
surname for the concept people in schema B. Hence, declarative rules allow to map
schemas and instances onto each other. However, declarative rules may not be able
to include fuzziness, like different spelling of concept names or aspects like similar
structures of concepts/instances.

7.2.3.4 Statistical-Inductive Techniques

Statistical-inductive techniques account the need for fuzzier matching criteria and
the capability to learn from example instances. For example, de-duplication of
instances – like identifying the set of unique persons from a set of persons – can be
solved by clustering instances according to some similarity measures. The identified
clusters constitute the unique persons. Similarly, near duplicate search can be used
to match a given instance to a set of unique instances, as for example in determining
identical web pages during crawling.

Along both dimensions – i.e., levels and techniques – visual analytics can support
the integration process by visualizing effects of declarative rules or by visualizing

196 C. Seifert et al.

the relation of certain instances to each other. Visual feedback methods allow to steer
the integration process. Granitzer et al. [16] present an overview on such visually
supported semantic integration processes.

7.2.4 Selection and Aggregation

Semantic enrichment and integration prepare the underlying data set for further pro-
cessing. In order to reduce the number of documents subject to visual analysis, the
next step includes selecting a proper subset and/or aggregating multiple documents
to one single object.

7.2.4.1 Retrieval

Retrieval techniques perform the step of selecting appropriate subsets of documents.
Besides the capability to search for information in text and metadata, the scalability
and performance of modern retrieval techniques [34] enables feature-based filtering,
query-by-example and facetted browsing, with the goal to cover all relevant
documents for subsequent analysis. Aggregation and visualization methods can be
applied to analyze large results sets and drill-down to task specific aspects.

7.2.4.2 Unsupervised Machine Learning

Unsupervised machine learning, in particular clustering, determines groups of sim-
ilar documents based on the assumption that documents distribute over topics [55].
Groups of documents can be represented as one single data point to reduce the
amount of data-points for subsequent processing steps or to improve navigation.
Especially for navigation, summarizing clusters in a human readable way becomes
crucial. In general, summarizations consist of extracted keywords or a brief textual
description relevant to the cluster, created via summarization methods.

7.2.4.3 Summarization

Summarization methods compute a brief descriptive summary for one more docu-
ments in the form of representative text fragments or keywords. The summaries are
used as labels to represent the essence of a document or a document set. Exploiting
integrated metadata and structure between documents becomes essential in order to
improve summarization and keyword extraction, as shown in [29]. An overview of
different summarization methods can be found in [5].

7 Visual Analysis and Knowledge Discovery for Text 197

7.2.5 Visualization and Interaction

The processing steps discussed above return a set of relevant objects, including
features, annotations and metadata. As a next step, suitable visual layouts have to be
calculated. Text data is characterized by its high-dimensional, sparse representation,
which naturally leads to the application of ordination techniques.

7.2.5.1 Ordination

Ordination is a generic term describing methods for creating layouts for high-
dimensional objects based on their relationships. It can be seen as a subset
of dimensionality reduction techniques [11]. Dimensionality reduction methods
project the high-dimensional features into a lower-dimensional visualization space,
while trying to preserve the high-dimensional relationships. High-dimensional
relationships can be usually expressed by similarity or distance measures. The
produced layout is suitable for visualization and exploratory analysis. Other layout
generation techniques, such as graph layout methods [6], are used to create a
suitable visual layout for non-vector based structures, like typed graphs, temporal
processes, etc.

7.2.5.2 Interactive Visualization

Interactive visualizations form the heart of any visual analytics application. Interac-
tive components are used to visually convey information aggregated and extracted
from text, and to provide means for exploratory analysis along the lines of the visual
analytics mantra: “analyze first – show the important – zoom, filter and analyze
further (iteratively) – details on demand” [24]. Feedback provided by users when
interacting with visual representations can be fed into the previous stages of the
process in order to improve its overall performance.

Visualizations usually depend on the visualized data (e.g., set, tree, graphs) and
the task at hand (e.g., topical similarity, temporal development). In Sect. 7.3 we
provide a detailed overview on visualizations particularly suited for text.

7.2.6 Hypothesis Formulation and Analytics Workflow

One core difference between Information Visualization and Visual Analytics lies in
the support of analytical workflows and the generation and validation of hypothesis.
Both, workflows and hypotheses formulation, require support from the underlying
analytical process and serve as end-point towards the manipulation of all preceding
steps, like acquisition, enrichment, integration, etc.

198 C. Seifert et al.

7.2.6.1 Hypothesis Generation

The visual representation of semantics in the data usually triggers new insights.
New insights result in the generation of new, potentially valid hypothesis on the
underlying data. For example, showing a distribution of topics in media over time
may trigger the hypothesis that two events are related to each other.

Usually hypothesis generation is done in the head of the analyst, rather than
making the validated hypotheses explicit. However, hypothesis generation depends
on already generated and validated hypothesis. Similar to the well known “Lost
in Hyperspace” effect, where users who browse the web via hyperlinks loose
their initial information need, implicit hypothesis generation bears the risk to
miss important, already validated facts. Hence, hypotheses and the decisions they
triggered should be made explicit within an analytical process in order to guide
the user. To the best of the authors knowledge this has not been done so far, but
well known mathematical models for decision making processes, like the Analytical
Hierarchical Process (AHP) [36], could be a first starting point therefore.

7.2.6.2 Hypothesis Validation

A generated hypothesis can be verified by the user. Depending on the required
manipulation of the underlying analytical process, validation may range from simple
interactions with the visual representation to crawling a completely new data set. For
example, to see that two events are related to each other one could simply select data
points related to both events and reveal their topical dependency. Hence, for efficient
support of analytical tasks flexible, powerful and easy to use task specific workflows
become important.

7.3 Visual Representations and Interactions on Text

Tight integration of visual methods with automatic techniques provides important
advantages. To name a few: (i) flexibility to interchangeably apply visual and
automatic techniques, as needed by the user, (ii) results of automatic text analysis,
such as extracted metadata or aggregated structures, open the way for applying
a wider variety of visualization techniques, which are not targeted exclusively to
text, and (iii) user feedback can be used to adjust and improve the models used
by automatic methods. Therefore, in this section we discuss visual representations,
which primarily target textual data, and also describe how visualizations, which do
not specifically target text, can be used when information is extracted from text
using methods described in the previous section.

7 Visual Analysis and Knowledge Discovery for Text 199

7.3.1 Topical Overview

Gaining an overview of important topics in a document set, and understanding
the relationships between these topics, is crucial when users are dealing with
large text repositories they are unfamiliar with. Tag clouds and information land-
scape are examples of visual representations which are designed to address these
requirements.

7.3.1.1 Tag Clouds

Tag clouds are a popular Web 2.0 visual representation consisting of terms or short
phrases which describe the content of a document or collection. Typically, keywords
or named entities (such as persons or organizations) are displayed, which were
extracted from document content using natural language processing methods (see
Sect. 7.2.2). Size, color and layout of the words are driven by their importance, as
well as by aesthetic and usability criteria [44].

In Fig. 7.3 a search result set is visualized by multiple tag clouds combined
into one visualization. Each tag cloud corresponds to one of the (pre-defined)
categories “sports”, “politics”, “europe”, “society”, “culture”. The central tag cloud
represents all documents of all categories. Each tag cloud shows the most important
named entities (persons, dates, locations) for the respective category, thus giving an
overview over the documents within. The polygonal boundaries for each tag cloud
are generated by applying Voronoi subdivision. The initial points for generating this
subdivision can either be set manually (as in the example figure) or can be the result
of a similarity layout of the category content (for an example, see [46]).

7.3.1.2 Information Landscapes

Information landscapes, such as In-SPIRE [27] and InfoSky [1], employ a geo-
graphic landscape metaphor for topical analysis of large document sets. Information
landscapes are primarily used for gaining an overview and for providing explorative
navigation possibilities. A user who is unfamiliar with the data set is empowered
to gain insight deep into the topical structure of the data, understand importance of
various topics, and learn about relationships between them. As opposed to searching
using queries, guided explorative navigation provides the possibility to identify
interesting information even when the user’s goals are vaguely defined.

In information landscapes documents are visualized as dots (icons), which are
laid out in such a way that similar items are positioned close together, while
dissimilar ones are placed far apart. Hills emerge where density of topically related
documents is high, indicating a topical cluster. Clusters are labeled by summaries of
the underlying documents, allowing users to identify areas of interest and eliminate
outliers. The height of a hill is an indicator for the number of documents and the

200 C. Seifert et al.

Fig. 7.3 A visualization showing a search result set as a combination of tag clouds. Each
polygonal area corresponds to a category of the documents in the search result set. Displayed
named entities are enhanced with symbols indicating their type (person, location, data)

compactness of the hill is an indicator of cluster’s topical cohesion. Topically similar
clusters can be identified as they will appear spatially close to each other, while
dissimilar clusters are separated by larger areas, visualized as sea. Aggregation
of the data set and its projection into the 2D space are computed using scalable
clustering and ordination algorithms, as for example described in [30, 38] (also
see Sects. 7.2.4 and 7.2.5). Advanced information landscape implementations can
handle data sets with far over a million documents. For such massive data sets
information retrieval techniques (see Sect. 7.2.4) can be used to provide fast filtering
and highlighting functionality.

Figure 7.4 shows navigation in an information landscape along a hierarchy of
topical clusters, which are visualized as nested polygonal areas. Cluster labels
provide a summary of the content of the underlaying documents and serve as
guidance for exploration. Following the labels on each level of the hierarchy, the
user can navigate the topical structure of the data and understand how clusters
relate in terms of topical similarity and size. On the top-left of the figure, an
overview of approximately 6,000 news articles on “computer industry” can be seen,

7 Visual Analysis and Knowledge Discovery for Text 201

Fig. 7.4 An information landscape showing approx. 6,000 news articles on “computer industry” is
used for drilling down to documents of interest: beginning with an overview (left) the user narrows
down using topical cluster labels (right)

subdivided into 7 topical clusters. Clicking on the label “intel, quarter, dell”, the
corresponding cluster is zoomed in and the sub-areas, corresponding to its sub-
clusters, are shown (top-right). Clicking on “compaq, dell, stores” (bottom-left)
and then on “dell, poweredge, server” (bottom-right) narrows further down to the
potential topic of interest. The cluster “poweredge, server, prices” (bottom-right)
contains only five document, which can be inspected manually by the user. Free
navigation by zooming (mouse-wheel) and panning (mouse-drag) is also available.
Selection of documents can be performed cluster-wise, individually or on arbitrary
subsets using a lasso tool.

202 C. Seifert et al.

Fig. 7.5 Multidimensional visualization for books. Left: Scatterplot visualizing publication year
(x-axis), page count (y-axis), file size (icon size), author (icon type); right: parallel coordinates
showing nine metadata types on parallel axes

7.3.2 Multidimensional Metadata

Visualization of multidimensional metadata enables the discovery of correlations
between document metadata. Such metadata may include document size and source,
relevance to a search query (see Sect. 7.2.4), or extracted persons and organizations
(see Sect. 7.2.2).

7.3.2.1 Scatterplot

Scatterplot is a visual representation for analysis of multidimensional metadata,
mapping up to five different metadata types (dimensions) to the x and y axes, and
to visual properties (color, size, shape) of displayed items [21]. The main drawback
of a scatterplot is that it can correlate only a limited amount of dimensions.

7.3.2.2 Parallel Coordinates

The parallel coordinates representation [19] can handle a larger amount of dimen-
sions, which are displayed as parallel vertical axes. For each document, the variables
are displayed on their corresponding axes and connected with a polygonal line, so
that patterns can be spotted easily as lines having similar shapes. In addition, a
selected discrete property (e.g., class membership) can be mapped to the line color
to allow identification of differentiating features for different values of the property.

Figure 7.5 (left) shows a scatterplot displaying book metadata (publication
year, page count, file size, author). The scatterplot component builds upon the

7 Visual Analysis and Knowledge Discovery for Text 203

Prefuse Information Visualization Toolkit1 adding the capability to handle multiple
coordinated scatterplot views (see Sect. 7.3.6 for more information on multiple
coordinated views). By visualizing the same data set in two or more coordinated
scatterplots at the same time, it becomes possible to increase the number of
visualized dimensions above the typical five. A parallel coordinates visualization
in Fig. 7.5 (right), shows nine different types of metadata for e-books, with the line
style differentiating between publishers. It can be seen that the some e-books have
high ratings and high prices (dashed-dotted lines), some others are cheaper and have
lower ratings (continuous lines), while the remaining e-books are free and achieve
highest delivery rates (dotted lines).

7.3.3 Space and Time

Visualization of geo-spatial and temporal information is very important in many
applications. In what follows, we explain different approaches for producing such
visualizations and discuss ThemeRiver [17], a well-known visualization conveying
topical changes in large text repositories.

7.3.3.1 Visualization of Geo-Spatial Information

The visualization of geo-spatial information, as for example extracted locations,
is a natural fit for the application of various geo-visualization approaches [7].
A popular application of geo-visualization is to show automatically extracted spatial
information (see Sect. 7.2.2) on geographical maps [39] in order to reveal where
something is happening. Figure 7.6 shows a geo-spatial visualization of locations
extracted from German news articles [28]. The extracted locations are depicted on
a map of Austria as cones, where the size of a cone corresponds to the number of
news articles the location occurred in. Clicking on a cone triggers a filtering of the
news article set by the selected location, and thus this visualization can be used as a
faceted search tool.

Geo-spatial visualizations are not restricted to geographic maps; they can also
be applied in e.g., virtual 3D environments. An example is the planetarium that
has been integrated into an encyclopedia application [26], providing coordination
between browsing spatial (astronomic) references in text and navigation in the
virtual environment.

1http://prefuse.org/.

http://prefuse.org/

204 C. Seifert et al.

Fig. 7.6 Geo-visualization of Austria showing geo-references in news articles (cones). The size
of the cone corresponds to the number of news articles for the particular geo-reference

7.3.3.2 Visualization of Temporal Information

The visualization of temporal information, such as document creation date or
automatically extracted time references (see Sect. 7.2.2), can be realized by a variety
of visual components. Although different in many aspects, visual representations for
temporal data usually share a common feature: they include a visual element which
symbolizes the flow of time. For example, temporal data can be visualized along a
straight line or along a spiral [54], both representing the flow of time. Although a
straight time axis is more common, a spiral time axis has the advantage of being
suitable for detecting cycles and recurring events, and it allows for displaying long
time intervals with high temporal resolution even on small screens.

7.3.3.3 ThemeRiver

ThemeRiver [17] is a well-known visualization conveying topical changes in large
text repositories. It uses a metaphor of flowing river streams to visualize trends
and changes in topical clusters, in the context of external events (see clustering
in Sect. 7.2.4). In addition to topical clusters, metadata clusters, for example
documents mentioning a specific location, can also be visualized. ThemeRiver
empowers users not only to understand trends but also to discover correlations and
causal relationships between clusters.

In Fig. 7.7 a stream visualization, which closely resembles the ThemeRiver,
shows temporal development of topical clusters for approximately 750 news
documents on “oil spill”. The x-axis symbolizes the flow of time, while the y-axis
conveys the amount of documents at a given moment in time. Each topical cluster is
represented by a stream of particular color, where the width of the stream along the
time axis correlates with the number of documents. By observing the development
of the “japan, tokyo, bay” topical cluster (second from bottom), which has two
distinctive peaks, it is obvious that temporal development of the “russia” metadata
cluster (bottom-most) correlates with the first peak, but not with the second.

7 Visual Analysis and Knowledge Discovery for Text 205

Fig. 7.7 A stream visualization of approx. 750 news documents on “oil spill”, showing temporal
development. Different gray values correspond to different topics

Naturally, a fusion of both spatial and temporal information in one visualization
also leads to interesting results. For example, the three-dimensional GeoTime [22]
visualization depicts a geographic map where the flow of time is orthogonal to
the map (i.e. on the z-axis). In this way GeoTime facilitates tracking of ground
movements over time and identification of activity hot-spots in both space and time.

7.3.4 Relationships

Relationships between concepts (e.g., keywords or named entities), identified
by methods such as co-occurrence analysis and disambiguation techniques (see
Sect. 7.2.3), are typically presented using graph visualizations [18]. For example,
PhraseNet [53] displays relationships between terms within a document, while
FacetAtlas [4] relies on faceted retrieval to visualize relationships between faceted
metadata. Relationships between aggregated structures (see Sect. 7.2.4), such as
document clusters, can be visualized by Cluster Maps [10]. It is a representation
similar to Venn and Euler diagrams, showing whether (and through which features)
different clusters overlap topically.

7.3.4.1 Graph Visualization

A graph visualization that is used to present relationships extracted from approxi-
mately 25,000 documents can be seen in Fig. 7.8. Concepts (keywords) are placed
in the 2D plane, depending on their interconnectedness, using a force-directed
placement method (see Sect. 7.2.5). An edge bundling technique [25] is applied to
reduce clutter, which would otherwise occur due to the high number of relationships.

206 C. Seifert et al.

Fig. 7.8 A graph visualization of relationships between concepts extracted from a text data set
(data courtesy of German National Library of Economics, 2011). Note that edge bundling is used
to improve clarity and reduce clutter in the edge layout

To preserve clarity even when visualizing larger graphs, a level-of-detail sensitive
algorithm decides which informations is displayed and which is hidden depending
on user focus and the current zoom level. To navigate, the user clicks on a concept
which triggers a zoom-in operation focusing that concept. Concepts close to the
chosen one are displayed in more details, revealing finer structures in the graph.

7.3.5 Visually Enhanced User Feedback

Analytical tasks require well-designed interaction mechanisms along with different
kinds of visualizations. Interactions can be grouped along three orthogonal dimen-
sions, namely (i) the kind of operation they perform, i.e., navigation, selection
and manipulation, (ii) the modality of the interaction, i.e., query, point-and-click,
language input, multi-touch, and (iii) its influence on the underlying analytical
process, i.e., the adaptation of data, parameters or the mining models themselves.
This subsection will briefly discuss (i) and (ii), and then focus on how interactions
can be used to steer the underlying analytical process.

7.3.5.1 Modalities of Interaction

Modalities of interaction depend mostly on the input devices. A search box can
be seen as “textual modality” which allows to filter relevant documents based on
keywords, provided either via keyboard or speech-to-text. Clearly, with the advance
of multi-touch devices new capabilities in expressing user needs become available.
While modalities of interaction influence the design of visualization and determine

7 Visual Analysis and Knowledge Discovery for Text 207

how interactions take place, they do not influence the possible operations on the
data and the steering capabilities on the analytics process. For a detailed overview
of different interaction modalities the reader is referred to [49].

7.3.5.2 Operations of Interactions

Operations of interactions describe the purpose of an interaction. Interactions to
navigate complex information spaces, to drill down on particular interesting patterns
and to switch between different perspectives, are the most common navigational
operations. Examples are browsing hyper-links or navigating a hierarchical structure
(see Fig. 7.4, left). Selection comprises operations that allow users to select data
points of interest and their properties. Examples include multi-selection in a list of
documents or lasso selection of data points in a similarity layout of documents (see
Fig. 7.4, top-right). Finally, manipulations form the essence of any visual analytics
application. Manipulative interactions, like removing certain data points from the
analysis or assigning a group of documents to a particular class, allow to steer the
underlying classification, clustering and retrieval processes.

7.3.5.3 Steering the Visual Analytics Process

Given interactions of different modalities and operations, the question remains how
the underlying process could be steered. In the following, we will discuss steering
on the data-point level and the model level.

Data-point level: On the data-point level, selecting a particular subset of data
points or a subset of data sources for the detailed analysis becomes the most
common form of influence. For example, Fig. 7.9 (left) shows a similarity layout
comparing search results from different search engines [51]. Sources could be
interactively added or removed in order to change the topical layout. Similarly, in
the landscape visualization shown in Fig. 7.4, a lasso selection can be used to select
a set of similar documents. This set could then be used as a positive set of examples
for training supervised classification algorithm.

Model level: On the model level, the goal is to control the underlying mining
model. The most direct form of controlling mining models is by setting parameters
directly, for example, the number of clusters or cost functions for positive or
negative classification errors. However, comprehension of resulting effects of direct
parameter manipulation becomes non-trivial especially for data-mining laymen.
Hence, we propose “direct manipulations” of mining models using visualizations.

The concept of direct manipulation greatly improved user interfaces of computers
by allowing users to directly manipulate information objects, like files and folders.

208 C. Seifert et al.

Users have been empowered to drag and drop object instead of manipulating them
via a command line. In analogy, we give two examples on direct manipulation in
visual analytics.

Example 1. As a first example, consider again the landscape visualization shown
in Fig. 7.4. High-dimensional data points have been projected onto the 2D-plane
using clustering and ordination techniques. However, the high-dimensional distance
measure, and therefore the result of the projection, may not fit to the users
expectation of “distance” between documents. Some topics may be too close and
some too far away from each other. Instead of directly changing the distance
function or parameters of the ordination technique, the user could directly drag
topically similar data points closer to each other and dissimilar data-points further
apart, yielding user-determined distances between data points. By applying metric
learning techniques [14, 47] the user-determined similarity could be transformed
into a high-dimensional distance function in some kind of inverse projection [15].
The resulting high-dimensional distance function can be used in different mining
algorithms to reflect the user’s notion of “similarity” between documents.

Example 2. A second example concerns supervised machine learning models.
Interactions on a visual layout may be used two-fold: (i) to correct classification
errors or re-force correct classifications, and (ii) to generate new training data.
A visualization supporting these tasks requires the following properties: First, the
visualization should allow to judge problematic behavior of classification models,
like biases towards particular classes. Second, fast and easy identification of false
and/or problematic examples, e.g., outliers should be supported. Third, users should
be able to rapidly select and (re-)label examples. Further, if is preferable to have the
same kind of visualization, independently of the classification task and the employed
data classification algorithm.

The visualization proposed in [42, 43] satisfies these properties and has been
shown to support users in improving classification models [41]. Here, classes
are arranged around a circle. Data-points are placed in the interior of the circle
with their distances to every class being proportional to the a-posterior probability
that a data point belongs to that class (see Fig. 7.9, right). Data points can be
inspected, selected and dragged to the correct class resulting in re-training and
improving the underlying text classifier. A combined user interface employing this
visualization and an information landscape has further been shown applicable to
generate classifier hypothesis from scratch [45].

7.3.6 Multiple Visualization Interfaces

Complex analytic scenarios involve heterogeneous data repositories consisting of
different types of information. Visual representations are designed to target specific
aspects of the data, such as metadata correlations, topical similarity, temporal

7 Visual Analysis and Knowledge Discovery for Text 209

Fig. 7.9 Examples for visually enhanced feedback. Left: Search results (circles) for comparing
the topic overlap of different search engines (colors). Results with similar content are close.
Sources can be interactively added or removed. Right: Visualizing classification decisions. Classes
are arranged in a circle, data points are placed inside the circle according to their a-posteriori
probabilities. Decisions can be corrected by drag and drop, classifier is retrained

developments, geo-locations, etc. When simultaneous analysis of different informa-
tion types is required, user interfaces consisting of multiple visual components are
necessary. One way to address visual analysis of heterogeneous data is to integrate
various visualizations within a single immersive 3D virtual environment, such as
the Starlight System [35]. A more widely used approach is Coordinated Multiple
Views (CMV) [31]. Multiple view coordination is a technique for tightly coupling
multiple visualization components into a single coherent user interface, so that
changes triggered by interactions in one component are immediately reflected in
all others components.

Figure 7.10 shows a coordinated user interface, consisting of an information
landscape, a stream visualization, as well as of several other widgets, such as trees
and tables. The interface is used for “fused” analysis of topical, temporal and
metadata aspects of large text repositories [37]. The tree component, on the left,
shows the hierarchy of topical clusters providing a virtual table of contents. An
information landscape (see Sect. 7.3.1), on the right, visualizes document frequency
and topical similarity of clusters and documents. A stream view (see Sect. 7.3.3),
on the bottom, conveys temporal development of topical (and metadata) clusters.
Two additional components are available but are hidden in the screenshot: a faceted
metadata tree showing extracted persons, organizations and locations, and a table
providing detailed information on clusters and documents.

The coordination of components includes the following: (i) navigation in the
cluster hierarchy (triggered in any of the components), (ii) document selection

210 C. Seifert et al.

Fig. 7.10 A coordinated multiple views GUI showing 6,900 news documents on “space”.
Document selection (by time: from June to August), document coloring (each topical cluster in
different color) and navigation in the hierarchy (location: Cluster 3 “shuttle, mars, columbia”) are
coordinated

(lasso-selection in the landscape, temporal selection in stream view, or cluster-wise
selection in the trees), (iii) document coloring (driven by the stream view color
assignments), and (iv) document icons (user-assignable from any component).

Coordination ensures that all views will focus on the same cluster, and that
document selection, colors and icons are consistent in all views. In this way, discov-
ery of patterns over the boundaries of individual visualizations becomes possible.
For example, topical-temporal analysis can be performed by selecting documents
belonging to two temporally separate events in the stream view, and then inspecting
in the landscape whether those documents are topically related or not. Moreover,
correlations between topical clusters and occurrences of a metadatum (e.g., persons)
can be identified by assigning different icons to documents mentioning different
persons, and then observing the distribution of these persons over topical clusters in
the landscape.

7 Visual Analysis and Knowledge Discovery for Text 211

7.4 Application Scenarios and Domains

Application scenarios for visual analysis and discovery in text repositories can be
identified in a wide range of domains. News media, encyclopedia volumes, scientific
paper repositories, patent databases or intelligence information systems, represent
an exemplary selection of domains to which the methods discussed in this chapter
have been beneficially applied. Given the diversity of application scenarios, we will
try to impose some structuring along relevant dimensions.

A first important dimension involves the target user group of a given application.
Clearly, the skill and experience level of the expected target user group should
influence the choice of visual means. Information Visualization and Visual Analytics
approaches usually focus on efficiency. This results in visual means which are
perfectly suitable for expert analysts, who have a high level of visual literacy and
domain knowledge. In contrast, Knowledge Visualization approaches [8] focus on
comprehensibility. The resulting visual means are often less efficient and flexible,
but can be utilized by a general audience.

A second dimension considers the amount of a priori information and context
available in a given application scenario. If information or context is available, for
example in the form of a formulated query or user profile information, an initial
search can limit the number of information items which have to be considered.
In this case, the visual analysis and manipulation of search results becomes the
prevalent task. In the absence of explicit information or context, explorative visual-
izations can enable the discovery of facts without having to explicate an information
need in advance. The following application scenarios provide a representative cross
section along this dimensions.

7.4.1 Media Analysis for the General Public

Media Analysis providers have traditionally shaped their services towards the
requirements of decision makers in enterprises and organizations. The advent of
the World Wide Web and the introduction of consumer-generated media has greatly
increased the amount of news sources available to a general audience. Media
consumers today find themselves assuming the role of media analysts in order to
satisfy personal information needs. News visualization has been a favored use case
for Information Visualization almost from the beginnings of this discipline [33].
However, in the spirit of the structure established above, visual support for this
application scenario should employ simple visual means and assume limited visual
literacy.

The Austrian Press Agency (APA) has provided a general audience with a number
of experimental news visualizations through its labs platform since 2008 [28].
From a technical point of view, the platform implements the pipeline architecture
outlined in this chapter. The acquisition stage relies on the PowerSearch media

212 C. Seifert et al.

Fig. 7.11 A visualization of occurrences of Austrian politicians in search results. A rendered
model of the parliament is used as visual metaphor. The figures of politicians are colored in their
party color and scaled relative to the occurrence count. Clicking on a figure narrows the search
result to articles containing the selected politician

database run by the company, which provides 180 Million news articles from
250 sources in a normalized manner. Semantic enrichment is facilitated through a
combination of rule-based and dictionary-based methods, which annotate persons,
locations and companies. Machine learning techniques are used to classify articles
into topical areas. Semantic integration is currently being addressed, for instance by
harmonizing identified persons with appropriate data sources from encyclopedias.
Retrieval is performed through a classical query-based interface, which provides
relevance-ranked search result lists.

The initial architecture has been tailored towards faceted filtering of large search
result sets. Given a query entered by a user, the system generates the result set and
displays a variety of visualizations, each of which represents a certain facet. For
instance, the occurrence of members of parliament and members of government in
a set of search results is visualized in a model of the Austrian parliament, as shown
in Fig. 7.11. Other visualizations include a geo-spatial view, a round table view of
prominent politicians and a tag cloud. All visualizations are very simple in design,
rely on metaphors to ease understanding and support a very simple interaction
scheme: Selecting a visual entity filters the result set to results containing the entity.
Experiments have shown that this kind of system is accessible to a general audience
without training.

An example visualization of more complex media analysis results is shown in
Fig. 7.12. Co-occurrence of key political figures extracted from a text corpus is
represented using a node-link-diagram in which links have been bundled to reveal
high-level patterns [25]. This kind of visualization favors an exploratory approach
which reveals general trends of the whole article set in the absence of a concrete
search query.

7 Visual Analysis and Knowledge Discovery for Text 213

Fig. 7.12 A visualization of co-occurrences of Austrian politicians in recent news media. Politi-
cians are displayed as nodes connected by links representing co-occurrence strength by line width.
Links are bundled to reveal high-level edge patterns. The strongest link visible is between the
chancellor and the vice-chancellor

7.4.2 Navigation and Exploration of Encyclopedias

Modern digital encyclopedias contain hundreds of thousands of textual articles and
multimedia elements, which constitute a knowledge space encompassing virtually
all areas of general interest. Traditional retrieval and discovery techniques in this
domain have included keyword search for articles and cross-reference based nav-
igation between articles. The German-language Brockhaus encyclopedia provides
a visualization system which enables the visual navigation of article context.
This three-dimensional Knowledge Space visualization presents topically related
articles, using figurative graphical elements as visual metaphors. The idea behind the
visualization is to support navigation between articles and to encourage exploration
of the encyclopedia in the spirit of edutainment.

The visualization shown in Fig. 7.13, displays the currently selected article at
the center of a disc divided into topical segments and arranges similar articles
around it. Relevant articles are placed close to the center and each article is
placed within the segment corresponding to its topic (chosen from a ten-item topic
scheme). Articles are represented by shapes according to type: cylinders represent

214 C. Seifert et al.

Fig. 7.13 The “Knowledge Space” visualization displaying the context of the encyclopedia entry
for the mountaineer Reinhold Messner (center). The disc is divided into segments representing
topics (e.g., “society” in the front). Related articles are represented by objects placed on the
disc; shape, size and color encode additional metadata. For example, in the leftmost segment a
geographic article (circle) and a premium content article (diamond) about the Mountain Everest is
shown

factual articles, spheres represent geographic articles, cones represent biographic
articles and diamonds represent articles featuring premium content. Article labels
are displayed above the shapes. Dragging the mouse horizontally spins the disc
around its central axis. Dragging the mouse vertically adjusts zoom factor and
vertical view angle. Clicking on an object navigates to the corresponding article.

7.4.3 Patent Analysis and Comparison

The identification of prior art, and the discovery of patterns and trends in patents
constitutes a crucial aspect of business intelligence for innovative enterprises. The
raw data for this kind of analysis is readily available in the form of various
commercial and open patent databases. However, the actual information contained
in patents is very hard to analyze and understand. This phenomenon stems, in part,
from deliberate attempts to paraphrase key issues in order to maintain a competitive
advantage. Another reason for the complexity of patent information is the huge
amount of domain knowledge required to make sense of an actual patent, covering
a narrow technical aspect.

7 Visual Analysis and Knowledge Discovery for Text 215

The Austrian company m2n has created a patent analysis system which has been
used by various large enterprises, for instance by one of the largest global steel
manufacturers. This system displays patent data sets, acquired from a number of
configurable sources, in a multiple coordinated view environment, which integrates
textual and visual representations [37]. The visualization application includes an
information landscape, a temporal visualization and a number of other coordinated
views, similar to the user interface shown in Fig. 7.10. Referring to the structure
established above, this system clearly targets expert users which accept a large
amount of training in order to harvest all the benefits.

7.5 Conclusion and Outlook

Through combining visually supported reasoning with large scale automatic pro-
cessing, visual analytics opens new possibilities for exploration and discovery
of knowledge in text repositories. Aggregation and summarization are central to
scaling visualizations to very large data sets. Retrieval techniques enable filtering,
highlighting and selection on repositories of virtually unlimited size. Information
extraction opens the way for using visual representations which are not directly
related to text, such as geo-visualization or graph visualization. Finally, visualization
not only introduces human knowledge and visual pattern recognition into the
analytical process, but also provides the possibility to improve the performance of
automatic methods through consideration of user feedback.

While it is hard to deliver predictions on future development of the field, the
following directions appear promising: Triggered by the surge in use of smart
mobile devices and multi-touch interfaces, support for collaborative scenarios using
new input devices, such as tablets and multi-touch tables, is likely to gain traction.
On the algorithm side, the peculiarities of the emerging phenomenon of social
networks and social media, such as quality and trustworthiness of information, pose
new challenges. In the quest to handle ever larger data sets the efficient exploitation
of the cloud for computation and storage holds the promise of ultimate scalability.

References

1. Andrews, K., Kienreich, W., Sabol, V., Becker, J., Droschl, G., Kappe, F., Granitzer, M.,
Auer, P., Tochtermann, K.: The infoSky visual explorer: exploiting hierarchical structure and
document similarities. Inf. Vis. 1(3–4), 166–181 (2002)

2. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41, 1:1–1:41 (2009)
3. Bruijn, J.d., Ehrig, M., Feier, C., Martìns-Recuerda, F., Scharffe, F., Weiten, M.: Ontology

Mediation, Merging, and Aligning, in Semantic Web Technologies: Trends and Research in
Ontology-based Systems (eds J. Davies, R. Studer and P. Warren), John Wiley & Sons, Ltd,
Chichester, UK. pp. 95–113. (2006). doi:10.1002/047003033X.ch6

216 C. Seifert et al.

4. Cao, N., Sun, J., Lin, Y.R., Gotz, D., Liu, S., Qu, H.: Facetatlas: multifaceted visualization for
rich text corpora. IEEE Trans. Vis. Comput. Graph. 16(6), 1172–1181 (2010)

5. Das, D., Martins, A.F.: A survey on automatic text summarization. Technical report, Carnegie
Mellon University (2007). Literature Survey for the Language and Statistics II course at CMU

6. Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34,
313–356 (2002)

7. Dykes, J., MacEachren, A.M., Kraak, M.J. (eds.): Exploring Geovisualization. Elsevier,
Amsterdam (2005)

8. Eppler, M.J., Burkhard, R.A.: Knowledge visualization. In: Schwartz, D. & D. Te’eni
(eds.) Encyclopedia of Knowledge Management, Second Edition, PA: Information Science
Reference. pp. 987–999. Hershey. doi:10.4018/978-1-59904-931-1.ch094

9. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in
databases. AI Mag. 17, 37–54 (1996)

10. Fluit, C.: Autofocus: semantic search for the desktop. Inf. Vis. Int. Conf. 0, 480–487 (2005)
11. Fodor, I.: A survey of dimension reduction techniques. Technical report UCRL-ID-148494, US

DOE Office of Scientific and Technical Information (2002)
12. Gantz, J.F., Reinsel, D., Chute, C., Schlichting, W., McArthur, J., Minton, S., Xheneti,

I., Toncheva, A., Manfrediz, A.: The expanding digital universe, a forecast of worldwide
information growth through 2010. IDC White Paper – sponsored by EMC (2007)

13. Gantz, J.F., Chute, C., Manfrediz, A., Minton, S., Reinsel, D., Schlichting, W., Toncheva, A.:
The diverse and exploding digital universe, an updated forecast of worldwide information
growth through 2011. IDC White Paper – sponsored by EMC (2008)

14. Granitzer, M.: Adaptive term weighting through stochastic optimization. In: Gelbukh, A.
(ed.) Computational Linguistics and Intelligent Text Processing. Lecture Notes in Computer
Science, vol. 6008, pp. 614–626. Springer, Berlin/Heidelberg (2010)

15. Granitzer, M., Neidhart, T., Lux, M.: Learning term spaces based on visual feedback. In:
International Workshop on Database and Expert Systems Applications (DEXA), Krakow,
pp. 176–180. IEEE Computer Society (2006)

16. Granitzer, M., Sabol, V., Onn, K.W., Lukose, D., Tochtermann, K.: Ontology alignment – a
survey with focus on visually supported semi-automatic techniques. Future Internet 2(3), 238–
258 (2010)

17. Havre, S., Hetzler, E., Whitney, P., Nowell, L.: ThemeRiver: visualizing thematic changes in
large document collections. IEEE Trans. Vis. Comput. Graph. 8(1), 9–20 (2002)

18. Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in information
visualization: A survey. IEEE Trans. Vis. Comput. Graph. 6, 24–43 (2000)

19. Inselberg, A., Dimsdale, B.: Parallel coordinates for visualizing multi-dimensional geometry.
In: CG International ’87 on Computer Graphics 1987. Springer-Verlag New York, Inc.,
Karuizawa, Japan, New York, NY, USA, pp. 25–44 (1987). http://dl.acm.org/citation.cfm?id=
30300.30303

20. Kaiser, K., Miksch, S.: Information extraction – a survey. Technical report Asgaard-TR-2005-
6, Vienna University of Technology (2005)

21. Kandlhofer, M.: Einbindung neuer Visualisierungskomponenten in ein Multiple Coordinated
Views Framework, Endbericht Master-Praktikum (2008)

22. Kapler, T., Wright, W.: Geo time information visualization. Inf. Vis. 4, 136–146 (2005)
23. Keim, D.A., Mansmann, F., Oelke, D., Ziegler, H.: Visual analytics: combining automated

discovery with interactive visualizations. In: Discovery Science, LNAI, Springer Berlin/
Heidelberg, Budapest, Hungary, pp. 2–14 (2008)

24. Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: scope
and challenges. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining,
pp. 76–90. Springer, Berlin/Heidelberg (2008)

25. Kienreich, W., Seifert, C.: An application of edge bundling techniques to the visualization
of media analysis results. In: Proceedings of the International Conference on Information
Visualization, London. IEEE Computer Society Press (2010)

http://dl.acm.org/citation.cfm?id=30300.30303
http://dl.acm.org/citation.cfm?id=30300.30303

7 Visual Analysis and Knowledge Discovery for Text 217

26. Kienreich, W., Zechner, M., Sabol, V.: Comprehensive astronomical visualization for a multi-
media encyclopedia. In: International Symposium of Knowledge and Argument Visualization;
Proceedings of the International Conference Information Visualisation, Zurich, pp. 363–368.
IEEE Computer Society (2007)

27. Krishnan, M., Bohn, S., Cowley, W., Crow, V., Nieplocha, J.: Scalable visual analytics of mas-
sive textual datasets. In: IEEE International Parallel and Distributed Processing Symposium,
2007. IPDPS 2007, Long Beach, pp. 1–10 (2007)

28. Lex, E., Seifert, C., Kienreich, W., Granitzer, M.: A generic framework for visualizing the news
article domain and its application to real-world data. J. Digit. Inf. Manag. 6, 434–441 (2008)

29. Muhr, M., Kern, R., Granitzer, M.: Analysis of structural relationships for hierarchical cluster
labeling. In: Proceedings of the International ACM Conference on Research and Development
in Information Retrieval (SIGIR), SIGIR ’10, Geneva, pp. 178–185. ACM, New York (2010)

30. Muhr, M., Sabol, V., Granitzer, M.: Scalable recursive top-down hierarchical clustering
approach with implicit model selection for textual data sets. In: IEEE International Workshop
on Text-Based Information Retrieval; Proceedings of the International Conference on Database
and Expert Systems Applications, Bilbao (2010)

31. Müller, F.: Granularity based multiple coordinated views to improve the information seeking
process. Ph.D. thesis, University of Konstanz, Germany (2005)

32. Muthukrishnan, P., Radev, D., Mei, Q.: Edge weight regularization over multiple graphs for
similarity learning. In: IEEE 10th International Conference on Data Mining (ICDM), 2010,
Sydney, pp. 374–383 (2010). doi:10.1109/ICDM.2010.156

33. Rennison, E.: Galaxy of news: an approach to visualizing and understanding expansive
news landscapes. In: Proceedings of the ACM Symposium on User Interface Software and
Technology, UIST ’94, Marina del Rey, pp. 3–12. ACM, New York (1994)

34. Ribeiro-Neto, B., Baeza-Yates, R.: Modern Information Retrieval: The Concepts and Tech-
nology Behind Search, 2nd edn. Pearson Education, Ltd., Harlow, England, Addison-Wesley
(2011). http://dblp.uni-trier.de

35. Risch, J.S., Rex, D.B., Dowson, S.T., Walters, T.B., May, R.A., Moon, B.D.: The STARLIGHT
information visualization system. Readings in Information Visualization, pp. 551–560. Morgan
Kaufmann, San Francisco (1999)

36. Saaty, T.L.: Principia Mathematica Decernendi: Mathematical Principles of Decision Making,
1st edn. RWS Publications, Pittsburgh, PA, USA (2010)

37. Sabol, V., Kienreich, W., Muhr, M., Klieber, W., Granitzer, M.: Visual knowledge discovery
in dynamic enterprise text repositories. In: Proceedings of the International Conference
Information Visualisation (IV), pp. 361–368. IEEE Computer Society, Washington, DC (2009)

38. Sabol, V., Syed, K., Scharl, A., Muhr, M., Hubmann-Haidvogel, A.: Incremental computation
of information landscapes for dynamic web interfaces. In: Proceedings of the Brazilian
Symposium on Human Factors in Computer Systems, Barcelona, Belo Horizonte, Brazil
pp. 205–208 (2010). http://dblp.uni-trier.de/db/conf/ihc/ihc2010.html#SabolSSMH10

39. Scharl, A., Tochtermann, K.: The Geospatial Web: How Geobrowsers, Social Software and the
Web 2.0 are Shaping the Network Society (Advanced Information and Knowledge Processing).
Springer, New York/Secaucus (2007)

40. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1),
1–47 (2002)

41. Seifert, C., Granitzer, M.: User-based active learning. In: Fan, W., Hsu, W., Webb, G.I., Liu,
B., Zhang, C., Gunopulos, D., Wu, X. (eds.) Proceedings of the International Conference on
Data Mining Workshops (ICDM), Sydney, pp. 418–425 (2010)

42. Seifert, C., Lex, E.: A novel visualization approach for data-mining-related classification. In:
Proceedings if the International Conference on Information Visualisation (IV), Barcelona,
pp. 490–495. Wiley (2009)

43. Seifert, C., Lex, E.: A visualization to investigate and give feedback to classifiers. In:
Proceedings of the European Conference on Visualization (EuroVis), Berlin (2009). Poster

http://dblp.uni-trier.de
http://dblp.uni-trier.de/db/conf/ihc/ihc2010.html#SabolSSMH10

218 C. Seifert et al.

44. Seifert, C., Kump, B., Kienreich, W., Granitzer, G., Granitzer, M.: On the beauty and usability
of tag clouds. In: Proceedings of the International Conference on Information Visualisation
(IV), London, pp. 17–25. IEEE Computer Society, Los Alamitos (2008)

45. Seifert, C., Sabol, V., Granitzer, M.: Classifier hypothesis generation using visual analysis
methods. In: Zavoral, F., Yaghob, J., Pichappan, P., El-Qawasmeh, E. (eds.) Networked Digital
Technologies. Communications in Computer and Information Science, vol. 87, pp. 98–111.
Springer, Berlin/Heidelberg (2010)

46. Seifert, C., Kienreich, W., Granitzer, M.: Visualizing text classification models with Voronoi
word clouds. In: Proceedings of the International Conference Information Visualisation (IV),
London (2011). Poster

47. Shalev-Shwartz, S., Singer, Y., Ng, A.Y.: Online and batch learning of pseudo-metrics. In:
International Conference on Machine learning (ICML), Banff, p. 94 (2004)

48. Shneiderman, B.: Inventing discovery tools: combining information visualization with data
mining. Inf. Vis. 1(1), 5–12 (2002)

49. Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for Effective Human-
Computer Interaction, 5th edn. Addison-Wesley Publ. Co., Reading, MA, p. 606 (2010)

50. Thomas, J.J., Cook, K.A. (eds.): Illuminating the Path: The Research and Development Agenda
for Visual Analytics. IEEE Computer Society, Los Alamitos (2005)

51. Tochtermann, K., Sabol, V., Kienreich, W., Granitzer, M., Becker, J.: Enhancing environmental
search engines with information landscapes. In: International Symposium on Environmental
Software Systems, Semmering. http://www.isess.org/ (2003)

52. Tukey, J.W.: Exploratory Data Analysis, 1st edn. Addison Wesley, Massachusetts (1977)
53. van Ham, F., Wattenberg, M., Viegas, F.B.: Mapping text with phrase nets. IEEE Trans. Vis.

Comput. Graph. 15, 1169–1176 (2009)
54. Weber, M., Alexa, M., Muller, W.: Visualizing time-series on spirals. In: IEEE Symposium on

Information Visualization, 2001. INFOVIS 2001, San Diego, pp. 7–13 (2001)
55. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3),

645–678 (2005)

http://www.isess.org/

Chapter 8
Practical Distributed Privacy-Preserving Data
Analysis at Large Scale

Yitao Duan and John Canny

Abstract In this chapter we investigate practical technologies for security and
privacy in data analysis at large scale. We motivate our approach by discussing the
challenges and opportunities in light of current and emerging analysis paradigms
on large data sets. In particular, we present a framework for privacy-preserving
distributed data analysis that is practical for many real-world applications. The
framework is called Peers for Privacy (P4P) and features a novel heterogeneous
architecture and a number of efficient tools for performing private computation and
offering security at large scale. It maintains three key properties, which are essential
for real-world applications: (i) provably strong privacy; (ii) adequate efficiency
at reasonably large scale; and (iii) robustness against realistic adversaries. The
framework gains its practicality by decomposing data mining algorithms into a
sequence of vector addition steps, which can be privately evaluated using efficient
cryptographic tools, namely verifiable secret sharing over small field (e.g., 32
or 64 bits), which have the same cost as regular, non-private arithmetic. This
paradigm supports a large number of statistical learning algorithms, including
SVD, PCA, k-means, ID3 and machine learning algorithms based on Expectation-
Maximization, as well as all algorithms in the statistical query model (Kearns,
Efficient noise-tolerant learning from statistical queries. In: STOC’93, San Diego,
pp. 392–401, 1993). As a concrete example, we show how singular value decompo-
sition, which is an extremely useful algorithm and the core of many data mining
tasks, can be performed efficiently with privacy in P4P. Using real data, we
demonstrate that P4P is orders of magnitude faster than other solutions.

Y. Duan (�)
NetEase Youdao, Beijing, China
e-mail: duan@rd.netease.com

J. Canny
Computer Science Division, University of California, Berkeley, CA 94720, USA
e-mail: jfc@cs.berkeley.edu

A. Gkoulalas-Divanis and A. Labbi (eds.), Large-Scale Data Analytics,
DOI 10.1007/978-1-4614-9242-9__8, © Springer Science+Business Media New York 2014

219

mailto:duan@rd.netease.com
mailto:jfc@cs.berkeley.edu

220 Y. Duan and J. Canny

8.1 Introduction

Imagine the scenario where a large group of users want to mine their collective
data. This could be a community of movie fans extracting recommendations from
their ratings, or a social network voting for their favorite members. In all these
cases, the users may wish not to reveal their private data, not even to a “trusted”
service provider, but still obtain verifiably accurate results. The major issues that
make this kind of tasks challenging are the scale of the problem and the need to
deal with malicious users. Typically the quality of the result increases with the
size of the data (both the size of the user group and the dimensionality of per user
data). Nowadays, it is common for commercial service providers to run algorithms
on data sets collected from thousands or even millions of users. For example, the
well-publicized Netflix Prize data set1 consists of roughly 100 M ratings of 17,770
movies contributed by 480 K users. At such a scale, both private computation and
verifying proper user behavior become very difficult (more on this later).

In this chapter we investigate practical technologies for security and privacy
in data analysis at large scale. Our focus will be on a distributed setting, where
private data resides on each client. Compared to a centralized setting, this is a
more challenging model: due to the lack of a trusted entity, the privacy objective
mandates that data must be obscured in some way (e.g., through encryption), which
not only adds much cost but also complicates many issues, such as verification of
various security properties. However, we believe that the principles and techniques
we develop are general and can be applied to other settings as well.

Our goal is to provide a privacy solution that is practical for several real-world
applications at reasonably large scale. In particular, we present a framework for such
tasks. The framework, first introduced in [32], is called Peers for Privacy (P4P)
and features a novel heterogeneous architecture and a number of efficient tools for
performing private computation and ensuring security at large scale. It maintains
the following properties which we believe are essential for real-world applications:
(1) provably strong privacy; (2) adequate efficiency at reasonably large scale; and
(3) robustness against realistic adversaries.

The proposed framework gains its practicality by decomposing data mining
algorithms into a sequence of vector addition steps that can be privately evaluated
using efficient cryptographic tools, namely verifiable secret sharing (VSS) over
small field (e.g., 32 or 64 bits), which have the same cost as regular, non-private
arithmetic. This paradigm supports a large number of statistical learning algorithms,
including SVD, PCA, k-means, ID3, and machine learning algorithms based on
Expectation-Maximization (EM), as well as all algorithms in the statistical query
model [50]. We believe it is a promising step towards bringing practical privacy and
security to large-scale data analysis applications.

1http://www.netflixprize.com/.

http://www.netflixprize.com/

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 221

8.2 Background and Related Work

Privacy issues arise in all aspects of information utilization, from data collection and
storage, to analysis and release. To provide a holistic solution, we draw on a large
number of related works from a few areas. We survey their results in this section.

8.2.1 Cryptography

Cryptography provides powerful primitives for protecting communication and
computation against all kinds of adversarial impacts. These primitives can be used to
build systems with properties that are rigorously provable, either unconditionally or
under some reasonable assumptions. Besides encryption, modern cryptography also
provides tools, such as secure multiparty computation (MPC) and zero-knowledge
proof (ZKP), which offer mechanisms for verifying security properties without
violating data privacy. MPC allows n players to compute a function over their
collective data. It guarantees the privacy of their inputs and the correctness of the
outputs, even when some players are corrupted by the same adversary. The problem
dates back to Yao [77] and Goldreich et al. [43], and has been extensively studied
in cryptography (see e.g., [3, 7, 46]). In recent years we observe some significant
improvement in efficiency. Some protocols achieve nearly optimal asymptotic
complexity [4, 21], while some protocols work in small field [13]. We will evaluate
MPC’s actual performance in Sect. 8.4.4.

A zero-knowledge proof is a cryptographic protocol that allows one party, called
the prover, to prove to another party, called the verifier, that a statement is true,
without revealing any information other than the veracity of the statement. A ZKP
must satisfy the following properties:

• Completeness: If the statement is true, the honest verifier should be convinced
of this fact by an honest prover.

• Soundness: If, on the other hand, the statement is false, no cheating/malicious
prover can convince the honest verifier to believe that it is true (except maybe
with some small probability).

• Zero-knowledge: If the statement is true, no cheating/malicious verifier should
be able to learn anything other than this fact. This is often proven using a
simulation paradigm: for any cheating verifier, there exists some simulator that,
given only the statement, can produce a transcript that is indistinguishable from
an interaction between the honest prover and the cheating verifier.

ZKP was first conceived by Goldwasser et al. [45] in the 1980s. Since its inven-
tion, ZKP has found numerous applications in situations where honest behavior and
privacy must be enforced at the same time (e.g., MPC [43]). It is only recently that
the privacy-preserving data mining (PPDM) community, realizing the importance of
enforcing correct behavior in data analysis, started adopting ZKPs in their solutions.

222 Y. Duan and J. Canny

Noticeably, there is a line of work [11,29–32] that attempt to adapt or compose basic
ZKPs into efficient and scalable primitives that support more practical verifications,
required in large-scale analysis (e.g., a vector’s L2-norm is bounded [29–31]). They
are based on the finite field ZKPs of [19] and use random projection to reduce the
number of large field arithmetic operations so that the techniques can be used on
large-scale problems [29–32].

8.2.2 Privacy-Preserving Data Mining

The field of privacy preserving data mining deals with situations where a number
of players perform mining tasks over their joint data, while preserving the secrecy
of their data against other players. Usually the data is either partitioned across
several servers or fully distributed among clients. There are privacy solutions for
a number of data mining tasks, including classification [26], clustering [73] and
decision tree learning [55]. These schemes use either randomization [25, 37] or
cryptographic techniques [26, 55, 73, 74, 76] to protect privacy. The first approach,
besides sacrificing accuracy, has been shown to provide very little privacy in many
cases [49]. The second approach, on the other hand, enjoys provable privacy that
is guaranteed by the cryptographic primitives, in their own adversary models and
up to the information that they deem publishable. However, most methods are
not practical at large scale, nor can they deal with realistic adversary models,
where some malicious players may actively cheat to disrupt the computation.
To hide information, these methods make heavy use of public-key cryptosystems
[26, 55, 73, 74, 76]. Although the schemes may have the same asymptotic cost as
the standard algorithms, the constant factor imposed by the public key operations is
prohibitive.

8.2.3 Statistical Database Privacy

A common problem with secure multiparty computation methods is that they do not
examine the possible leakage caused by the release of the final results. For example,
a privately evaluated sum of two numbers, each held by a player, allows one player
to compute the other player’s value. Such leakage can be modeled and prevented
using results from research in statistical database privacy, which studies the problem
of releasing statistical patterns of the data, while preserving the privacy of each
individual record.

Statistical database privacy has been extensively studied since the 1970s. The
early results were mixed, mostly due to the lack of a proper notion of privacy. For
example, some methods (e.g., [14,52]) only consider full disclosure as compromise,
which is apparently too weak by today’s standard. Motivated by the notion of
semantic security in asymmetric key encryption, a newly emerging line of work

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 223

[8, 24, 34–36, 64] strive to provide a rigid privacy definition and protections, as
rigorous as those in cryptography. Current results state that query responses need to
be perturbed by random noise with sufficient variance in order to maintain privacy.
We will draw heavily on their results when we discuss the notions of privacy in
Sect. 8.3.1.

8.3 Preliminaries

We say that an adversary is passive, or semi-honest, if he tries to compute additional
information about other players’ data but still follows the protocol. An active, or
malicious adversary, on the other hand, can deviate arbitrarily from the protocol,
including inputting bogus data, producing incorrect computation, and aborting the
protocol prematurely. Our scheme is secure against a hybrid threat model that
includes both passive and active adversaries. We introduce the model in Sect. 8.5.

8.3.1 Notions of Privacy

Privacy is an elusive concept; different individuals may have very different under-
standings and expectations of privacy. For this, we must establish a rigorous
definition of privacy before we proceed to the proposed approach.

8.3.1.1 Early Notions

Over the years many privacy definitions have been proposed. The early ones are
syntactic in that they specify certain conditions that the released data must satisfy,
without considering their semantic implications. Sweeney proposed the famous
notion of k-anonymity [68, 69, 71]. Informally, k-anonymity requires that every
record in the released dataset is syntactically indistinguishable among at least k

records on the, so-called, quasi-identifying attributes, such as ZIP code, gender and
date of birth. This can be achieved by syntactic generalization and suppression of
values in these attributes. k-anonymity has been shown to be weak and vulnerable
to various attacks [41, 58, 75, 78]. Moreover, it does not hide the presence of an
individual within the database [63], nor his attributes [54, 58]. Subsequent variants,
such as l-diversity [33, 58] and t -closeness [54], suffer from similar flaws [33].

The problem with syntactic definitions is that they do not target directly at a clear
goal but focus on properties that “seem” right. These “intuitive” definitions fail to
capture the essence of privacy. This motivates a very careful and formal treatment of
semantic notion. In 1977 Dalenius offered a semantic notion of privacy breach for
statistical databases: “If the release of the statistic S makes it possible to determine
the (microdata) value more accurately than without access to S , a disclosure has

224 Y. Duan and J. Canny

taken place” [20]. However, this is impossible to prevent if a database is to provide
some degree of utility [33]. This is because Dalenius’s definition is based on a
prior/posterior approach: the difference between the adversary’s prior and posterior
views about an individual (i.e., before and after accessing the database) should be
small. This goal is in direct conflict with the purposes of using the data: after all,
one expects to learn some non-trivial facts from the data. The facts could be laws of
nature (e.g., smoking causes lung cancer) or global statistics (e.g., average height)
of a population. Both may allow an adversary to infer an individual’s information.

8.3.1.2 Differential Privacy

Dwork [33] proposed the notion of differential privacy that is an achievable semantic
notion based on participation: “we move from comparing an adversary’s prior
and posterior views of an individual, to comparing the risk to an individual when
included in, versus when not included in, the database.” Differential privacy strikes
a good balance between secrecy and utility. Formally it is defined as:

Definition 8.1 (Differential Privacy [35, 36]). 8�; ı � 0, an algorithm A gives
.�; ı/-differential privacy if for all S � Range.A /, for all data sets D; D0 such
that D and D0 differ by a single record

PrŒA .D/ 2 S� � exp.�/ PrŒA .D0/ 2 S�C ı

A f is said to be .�; ı/-private if it gives .�; ı/-differential privacy.

Differential privacy captures the intuition that the function is private if the risk to
one’s privacy does not substantially increase as a result of participating in the data
set. It has been widely adopted by many recent works, such as [9,10,61,62,64] and
has became the “gold standard” of privacy. There are several solutions achieving
differential privacy for some machine learning and data mining algorithms (e.g.,
[1, 9, 10, 35, 57, 60–62, 64]). Most works require a trusted server hosting the entire
data set and ignore the cases where the data sources may be malicious. Beimel
et al. [5] proposes a distributed and differentially private scheme for binary sum
functions, but it is also only secure in a semi-honest model.

Recently, there are some critics on differential privacy. Kifer et al. [51] point
out that “participating in the database” is not equivalent to “appearing as a
tuple in the database”. For example, a user joining a social network may cause
multiple edges to be added in the graph, thus affecting multiple tuples. Whether
differential privacy, whose definition measures the distance between two database
instances by the number of the tuples they differ (see Definition 8.1), protects
this participation statues, depends on the data generation process. Some (e.g.,
independent) assumptions are necessary in order for differential privacy to provide
adequate protection. Cormode [18] shows that a differentially private mechanism
may allow an adversary to infer information about an individual with non-trivial
accuracy. For example, we can learn a classifier (e.g., a Naive Bayes classifier) from

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 225

the differentially private database responses and use that to predict that a smoking
person, not necessarily included in the database, has a higher chance of getting lung
cancer. In other words, if the database teaches us some patterns about the population,
simply knowing that a sample is drawn from the same distribution allows one to
predict its sensitive properties.

On this we take a practical perspective: for any data analysis to be useful, certain
information must be learned from the data. It is the application’s decision whether
certain assumptions have to be made about the data generation process, as required
by Kifer and Machanavajjhala [51], or some individuals must tolerate certain degree
of privacy breach in order to obtain something of bigger value (e.g., insights about
the causes of lung cancer). In the former case, the requirements in [51] are quite
mild and fit many real-world applications. In the latter, privacy becomes more of a
social issue (it is never a purely technical one) and should be handled accordingly.
We believe that differential privacy is still a sound definition and we adopt it in this
chapter.

For further reading, we refer the readers to [33] for an excellent survey on privacy
notions and an in-depth discussion on the motivation of differential privacy.

8.4 Design Considerations

Our design was motivated by careful evaluation of goals, available resources and
alternative solutions. In what follows, we elaborate on each of these aspects.

8.4.1 Design Goals

Our goal is to provide practical privacy solutions for real-world applications. To this
end, we identify three properties that are essential to a practical privacy solution:

1. Provable Privacy: Its privacy must be rigorously proven against well formulated
privacy definitions.

2. Efficiency and Scalability: It must have adequate efficiency at reasonably
large scale, which is an absolute necessity for many of today’s data mining
applications. To support real-world applications, both the number of users and
the number of data items per user are assumed to be in millions.

3. Robustness: It must be secure against realistic adversaries. Many computations
either involve the participation of users, or collect data from them. Cheating of a
small number of users is a realistic threat that the system must handle.

In what follows, we show that trivial composition of existing solutions cannot
attain all three. Large-scale data analysis calls for a new privacy paradigm.

226 Y. Duan and J. Canny

8.4.2 Issue of Field Sizes

Throughout the rest of the chapter, we will mention the issue of “field or integer
size” several times. Unless otherwise noted, this refers to the bit length of the
integers the system manipulates. Typical public key cryptosystems work in the
“large” field (e.g., 1,000-bit for ELGamal or 160-bit for ECC) for security, while
most programming languages support built-in small or regular fields (32 or 64-
bit integers). We will show with concrete numbers that the costs for manipulating
integers in different fields differ dramatically, resulting in huge performance
improvement if the majority of the computation is done in small field.

8.4.3 Available Resources

During the past few years the landscape of large-scale distributed computing has
changed dramatically. Many new resources and paradigms are nowadays available
at very low cost and many computations that were infeasible at large scale in
the past, are now running routinely. One notable trend is the rapid growth of
“cloud computing”, which refers to the model where clients purchase computing
cycles and/or storage from a third-party provider over the Internet. Vendors are
sharing their infrastructures and allowing general users access to gigantic computing
capability. Industrial giants, such as Microsoft, Yahoo! and Google, are all key
players in the game. Some cloud services (e.g., Amazon’s Elastic Compute Cloud)
are already available to the general public at very cheap prices.

The growth of cloud computing symbolizes the increased availability of large-
scale computing power. We believe it is time to re-think the issue of privacy
preserving data mining in light of such changes. There are several significant
differences:

1. Cloud computing providers have very different incentives. Unlike traditional
e-commerce vendors, who are naturally interested in users’ data (e.g., purchases),
the cloud computing providers’s commodity (CPU cycles and disk space) is
orthogonal to users’ computation. Providers do not benefit directly from knowing
the data or computation results, other than ensuring that they are correct.

2. The traditional image of client-server paradigm has changed. In particular, the
users have much more control over the data and the computation. In fact, in many
cases the cloud servers will be running code written by the customers. This is to
be contrasted with traditional e-commerce, where there is a tremendous power
imbalance between the service provider, who possesses all the information and
controls what computation to perform, and the client users.

3. The servers are now clusters of hundreds or even thousands of machines, capable
of handling huge amounts of data. They are not bottlenecks anymore.

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 227

Discrepancy of incentives and power imbalance have been identified as two
major obstacles for the adoption of privacy technology by researchers examining
privacy issues from legal and economic perspectives [2, 38]. Interestingly, both are
greatly mitigated with the dawn of cloud computing. While traditional e-commerce
vendors are reluctant to adopt privacy technologies, which may hinder their ability
to benefit from analyzing user data and adds additional cost to their operation,
cloud providers would happily comply with customers instructions regarding what
computation to perform. And once a treasure for the traditional e-commerce
vendors, user data is now almost a burden for the cloud computing providers: storing
the data not only costs disk space, but also may entail certain liability, such as
hosting illegal information. Some cloud providers may even choose not to store
the data. For example, with Amazon’s EC2 service, user data only persists during
the computation.

We believe that cloud computing offers an extremely valuable opportunity for
developing a new paradigm of practical privacy-preserving distributed computa-
tion: the existence of highly available, highly reputable, legally bounded service
providers also provides a very important source of security. By tapping into this
resource, we can build a heterogeneous system that can have privacy, scalability and
robustness, all at once.

8.4.4 The Alternatives

In this subsection we discuss some alternative ways for building privacy-preserving
applications. They can be classified into two models: fully distributed and server-
based. The former model is represented by a large amount of work in the area
of secure multiparty computation in cryptography. The latter includes mostly
homomorphic encryption-based schemes, such as [11, 28, 76].

8.4.4.1 Generic Secure Multiparty Computation

In Sect. 8.2 we already surveyed the development in MPC and summarized their
results. From the practitioners’ perspective, these generic MPC protocols are mostly
of theoretical interest. Reducing asymptotic complexity does not automatically
make the schemes practical. These schemes tend to be complex, which imposes a
huge barrier for developers not familiar with this area. Trying to support generic
computation, most of them compile an algorithm into a (boolean or arithmetic)
circuit. Not only the depth of such a circuit can be huge for complex algo-
rithms, it is also very difficult, if not entirely impossible, to incorporate existing
infrastructures and tools (e.g., ARPACK, LAPACK, MapReduce, etc.) into such
computation. These tools are an indispensable part of our daily computing life and

228 Y. Duan and J. Canny

Table 8.1 Performance comparison of existing MPC implementations

System Adversary model Benchmark Run time (s)

Fairplay [59] Semi-honest Billionaires 1.25
FairplayMP [6] Semi-honest Binary tree circuit (512 Gates) 6.25
PSSW [67] Semi-honest AES encryption of 128-bit block 7
LPS [56] Malicious 16-bit integer comparison 135

symbolize the work of many talents over many years. Re-building production-ready
implementations is costly and error-prone, and generally not an option for most
companies in our fast-pacing modern world.

Recently, there are several systems that implemented some of the MPC protocols.
While this reflects a plausible attempt to bridge the gap between theory and practice,
unfortunately, performance-wise none of the systems came close to providing
satisfactory solutions for most large-scale real-world applications. Table 8.1 shows
some representative benchmarks obtained by these implementations. We only show
their performance in their most favorable model (i.e., semi-honest model), unless the
whole system is built for the general setting. Using FairplayMP [6] as an example,
adding two 64-bit integers is compiled into a circuit of 628 gates and 756 wires using
its SFDL compiler. According to the benchmark in [6], evaluating such a circuit
between two players takes about 7 s. With this performance, adding 106 vectors of
dimensionality 106 each, which constitutes one iteration in our framework, takes
7 � 1012 s, or about 221,969 years!

8.4.4.2 Server-Based Elliptic Curve Cryptography Scheme

It has been shown that the conventional client-server paradigm can be augmented
with homomorphic encryption to perform some computations with privacy (e.g.,
[11, 28, 76]). Still, such schemes are only marginally feasible for small to medium-
scale problems due to the need to perform at least a linear number of large-field oper-
ations, even in the purely semi-honest model, as demonstrated by our benchmark in
Sect. 8.8.2. Elliptic curve cryptography (ECC) schemes can mitigate the problem as
ECC can reduce the size of the cryptographic field (e.g., a 160-bit ECC key provides
the same level of security as a 1,024-bit RSA key). ECC cryptosystems, such as
[65], are .C;C/-homomorphic which is ideal for private computation. However,
ECC point addition requires one field inversion and several field multiplications.
The operation is still orders of magnitude slower than adding 64 or 32-bit integers
directly. According to our benchmark, inversion and multiplication in a 160-bit field
take 0.0224 and 0.001 ms, respectively. Adding one million 106-element vectors
takes about 260 days.

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 229

8.5 Principles and Architecture

In this section, we discuss the main features of our approach and elaborate on the
considered threat model. Next, we present the proposed framework, called Peers for
Privacy, in Sect. 8.6.

8.5.1 Principles

The lesson that we learn from the previous section is that, for large-scale problems,
privacy and security must be added with low cost. In particular, those steps that
dominate the computation should not be burdened with public-key cryptographic
operations (even those “efficient” ones, such as ECC), and ideally should be carried
out with the same cost as a direct, non-private implementation, simply because they
have to be performed so many times. This is the major principle that guides our
design. Specifically, our approach features the following:

• We present a general computation paradigm that decomposes an algorithm into a
series of vector addition steps. Local computation (i.e., those performed on each
client) can be arbitrary but global computation (i.e., those over all users data) is
restricted to additions.

• The main computation is performed in small (e.g., 32 or 64-bit) field using
privacy schemes, such as verifiably secret sharing (VSS).

• We use random projection and similar techniques to devise efficient ZK verifica-
tion, with O.log m/ or less cost, to enforce necessary security properties during
the computation.

A few remarks are in order. We choose addition as our basic computation
primitive for the following reasons. First, addition is a fundamental operation for
aggregating information across samples. Many important statistics (e.g., expec-
tation, moments, etc.) are global summations of local variables. Many statistical
principles, such as maximum likelihood, are also based on addition. For example,
under the i.i.d. assumption, log likelihood is the summation of local quantities across
all samples. This simple addition-only primitive is therefore a surprisingly powerful
model, supporting a large number of popular data mining and machine learning
algorithms. Examples include linear regression, Naive Bayes, PCA, k-means,
ID3 and EM, as has been demonstrated by numerous previous works, such as
[11, 12, 15, 22, 28]. Moreover, it has been shown that all algorithms in the statistical
query model [50] can be expressed in this form.

Second, private addition in the VSS paradigm does not require interaction, thus
has extremely efficient implementations. In fact it can be as efficient as the direct,
non-private computation if done over small field. In other words, privacy can be
added to addition steps with almost zero cost. Moreover, addition is extremely easy
to parallelize so aggregating a large amount of numbers is straightforward.

230 Y. Duan and J. Canny

When it comes to enforcing proper behavior and limiting malicious influence,
we notice that, since data analysis and learning algorithms learn from statistics
from a large number of samples, it is often not necessary to perform verification
on each element of user data. Rather, it suffices to bound some form of aggregates,
such as its L2-norm. This is also inline with many perturbation theory results.
In Sect. 8.6.3.2, we will use a concrete example to illustrate the effectiveness of such
an approach. These statistics, or some of their properties, can be estimated using
various probabilistic techniques, such as random projection. The benefit of such an
approach is that it greatly reduces the number of large-field cryptographic operations
and allows for practical ZK tools for verifying large-scale data. Our experiments
show that, when the number of cryptographic operations are insignificant, even
using the traditional ElGamal encryption (or commitment) with 1,024-bit key, the
performance is adequate for large-scale problems. We summarize available random
projection-based ZK tools in Sect. 8.6.3.1.

8.5.2 Architecture

Our proposed framework is called Peers for Privacy, or P4P. It was first introduced
in [32]. The name comes from the feature that, during the computation, certain
aggregate information is released. This is a very important technique that allows
the private protocol to have high efficiency. It can be shown [32] that publishing
such aggregate information does not harm privacy: individual traits are masked out
in the aggregates and releasing them is safe. In other words, peers data mutually
protects each other within the aggregates.

Let � > 1 be a small integer. We assume that there are � servers belonging
to different service providers (e.g., Amazon’s EC2 service and Microsoft’s Azure
Services Platform.2) We define a server as all the computation units under the
control of a single entity. It can be a cluster of thousands of machines so that it has
the capability to support a large number of users. From data protection perspective,
it suffices to view them as a single entity.

Threat Model Let ˛ 2 Œ0; 0:5/ be the upper bound on the fraction of the dishonest
users in the system.3 Our scheme is robust against a computationally bounded
adversary, whose capability of corrupting parties is modeled as follows:

1. The adversary may actively corrupt at most b˛nc users, where n is the number
of users.

2. In addition to 1, we also allow the same adversary to passively corrupt � � 1

servers.

2http://www.microsoft.com/azure/default.mspx.
3Most statistical algorithms need to bound the amount of noise in the data to produce meaningful
results. This means that the fraction of cheating users is usually below a much lower threshold
(e.g., ˛ < 20 %).

http://www.microsoft.com/azure/default.mspx

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 231

This model was proposed in [30] and is a special case of the general adversary
structure introduced in [40, 47, 48] in that some of the participants are actively
corrupted, while some others are passively corrupted by the same adversary at the
same time. The model does not satisfy the feasibility requirements of [40, 47, 48].
We avoid the impossibility, by considering addition only computation.

The proposed model models realistic threats in our target applications. In general,
users are not trustworthy. Some may be incentivized to bias the computation, some
may have their machines corrupted. So we model them as active adversaries and
our protocol ensures that active cheating of a small number of users will not exert
large influence on the computation. The servers, on the other hand, are selling CPU
cycles and disk space, something that is not related to user’s computation or data.
Deviating from the protocol causes them potential penalty (e.g., loss of revenue
for incorrect results) but little benefit. Their threat is therefore passive. Corrupted
servers are allowed to share data with corrupted users.

Treating “large institutional” servers as semi-honest, non-colluding players has
already been established by various previous works [55, 73, 74, 76]. The growth of
cloud computing and the availability of many vendors make this model more and
more realistic. However, in previous works, the servers are not only semi-honest,
but also “trusted”, in that some user data is exposed to at least one of the servers
(vertical or horizontal partitioned database). Our model does not have this type of
trust requirement, as each server only holds a random share of the user data. This
further reduces the server’s incentive to try to benefit from user data (e.g., reselling
it), because the information it has are just random numbers without the other shares.
A compromise requires the collusion of all servers, which is a much more difficult
endeavor. An interesting and nice consequence of this arrangement is that the service
provider is relieved of the liability of hosting and computing secret or illegal data.
This could be one of the technical solutions that some (e.g., [23]) envisions cloud
providers will have to seek.

8.6 The Peers for Privacy Framework

Let n be the number of users. Let be a small (e.g., 32 or 64-bit) prime. We write Z

for the additive group of integers modulo . Let ai be private user data for user i and
I be public information. Both can be matrices of arbitrary dimensions with elements
from arbitrary domains. Our scheme supports any iterative algorithms whose .tC1/-
th update can be expressed as

I .tC1/ D f .

nX
iD1

d
.t/
i ; I .t//;

232 Y. Duan and J. Canny

where d
.t/
i D g.ai ; I .t// 2 Z

m
 is an m-dimensional data vector for user i computed

locally. Typical values for both m and n can range from thousands to millions. Both
f and g are in general non-linear.

In the SVD example that we will present, I .t/ is the vector returned by
ARPACK, g is matrix-vector product and f is the internal computation performed
by ARPACK. As shown earlier, this simple primitive could be the basis for a large
number of practical algorithms. A secure instantiation of such primitive, provides
practical solutions for securing a large number of applications.

8.6.1 Private Computation

In the following, we only describe the protocol for one iteration, since the entire
algorithm is simply a sequential invocation of the same protocol. The superscript
is thus dropped from the notation. For simplicity, we only describe the protocol
for the case of � D 2. It is straightforward to extend it to support � > 2 servers
(by substituting the .2; 2/-threshold secret sharing scheme with a .�; �/ one). Using
more servers strengthens the privacy protection but also incurs additional cost. We
do not expect the scheme will be used with a large number of servers. Let S1

and S2 denote the two servers. Leaving out validity and consistency check, which
will be illustrated using the SVD example, the basic computation is carried out as
follows:

1. User i generates a uniformly random vector ui 2 Z
m
 and computes vi D di � ui

mod . She sends ui to S1 and vi to S2.
2. S1 computes � D Pn

iD1 ui mod and S2 computes � D Pn
iD1 vi mod .

Then, S2 sends � to S1.
3. S1 updates I with f ..�C �/ mod ; I /.

It is straightforward to verify that if both servers follow the protocol, then the
final result is indeed the sum of the user data vectors mod . This result will be
correct if every user’s vector lies in the specified bounds for L2-norm, which is
checked by the ZKP in [30].

8.6.2 Provable Privacy

Theorem 8.1. P4P’s computation protocol leaks no information beyond the inter-
mediate and final aggregates, if no more than � � 1 servers are corrupted.

The proof follows easily from the fact that both the secret sharing scheme (for
the computation) and the Pedersen commitment scheme [19, 66], used in the ZK
protocols, are information-theoretic private, as the adversary’s view of the protocol

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 233

is uniformly random and contains no information about user data. We refer the
readers to [42] for details and formal definition of information-theoretic privacy.

As for the leakage caused by the released sums, first, for SVD, and some other
algorithms, we are able to show that the sums can be approximated from the
final result so they do not leak more information (see Sect. 8.7.6). For general
computation, we draw on the works on differential privacy. Duan [27] has shown
that, by using well-established results from statistical database privacy [8, 24, 36],
under certain conditions, releasing the vector sums still maintains differential
privacy.

In some situations verifying the conditions of [27] privately is non-trivial but
this difficulty is not essential in our scheme. There are well-established results that
prove that differential privacy, as well as adequate accuracy, can be maintained as
long as the sums are perturbed by independent noise with variance calibrated to the
number of iterations and the sensitivity of the function [8, 24, 36]. In our settings, it
is trivial to introduce noise into our framework – each server, which is semi-honest,
can add the appropriate amount of noise to their partial sums after all the vectors
from users are aggregated. Calibrating noise level is also easy: all one needs are the
parameters �; ı, the total number of queries (mT in our case where T is the number
of iterations) and the sensitivity of the function f , which is summation in our case,
defined as [36]:

S.f / D max
D;D0

kf .D/ � f .D0/k1;

where D and D0 are two data sets differing by a single record and k � k1 denotes the
L1-norm of a vector. Cauchy’s Inequality states that

.

mX
iD1

xi yi /
2 � .

mX
iD1

x2
i /.

mX
iD1

y2
i /

For a user vector a D Œa1; : : : ; am�, let xi D jai j, yi D 1, we have

kak21 D .

mX
iD1

jai j/2 � .

mX
iD1

a2
i /m D kak22m

Since our framework bounds the L2-norm of a user’s vector to below L, this means
the sensitivity of the entire computation is at most

p
mTL.

Note that the perturbation does not interfere with our ZK verification protocols
in any way, as the latter is performed between each user and the servers on the
original data. Whether noise is necessary or not is dependent on the algorithm. For
simplicity, we will not describe the noise process in our protocol explicitly.

234 Y. Duan and J. Canny

8.6.3 Enforcing Correct Behavior

In this section we present zero-knowledge tools that are supported by the P4P
framework for verifying proper behavior during the computation, and summarize
their key properties. Next, we discuss issues related to restricting the influence of
malicious players from corrupting the computation.

8.6.3.1 Zero-Knowledge Tools

The VSS scheme that the P4P framework is built upon is (+, +)-homomorphic in
that if each of the secret share holders adds her shares of two secrets together, she
obtains a valid share of the sum of the two secrets [17]. The transformation does
not require any interaction between players. This property, augmented with similar
homomorphism of the commitment scheme, allows for easy construction of com-
mitments to new values. As a result, the P4P framework admits extremely efficient
zero-knowledge tools for verifying proper behavior during the computation. These
tools provide a wealth of means for various applications to enforce correctness.
In this section, we present available ZK tools. Some are standard cryptographic
primitives, while others are more complex ones. Detailed construction and proofs
can be found in [11,19,30,32,66]. We summarize only their key properties here. For
concreteness, we describe those tools that are based on the discrete log assumptions.
They can also rely on RSA.

Let p and q be two large primes (e.g., 1,024-bit), such that qjp � 1. Let Z�p
denote the multiplicative group of integers modulo the prime p. We use Gq to
denote the unique subgroup of Z

�
p of order q. Let g and h be two generators of

Gq , such that x D logg h is unknown to anyone. g and h are made public. The
discrete logarithm problem is assumed to be hard in Gq , i.e., given y D gx mod p,
it is computationally infeasible to recover x. A Pedersen commitment [66] to a
message s 2 Zq is computed as C .s; r/ D gshr mod p, where r R Zq is
randomly drawn from Zq . This commitment is information-theoretic private. One
could reveal C .s; r/ without leaking any information about s [66]. The scheme is
computationally binding in that, given s and r , a computationally bounded adversary
not knowing x D logg h cannot produce an s0 and t 0 such that gshr D gs0

hr 0

mod p, otherwise the discrete logarithm problem can be solved.

• Homomorphic commitment: A homomorphic commitment to an integer a

with randomness r is a commitment, written as C .a; r/, that satisfies the
homomorphic property: C .a; r/C .b; s/ D C .a C b; r C s/. Homomorphic
commitments allow one to construct commitments to new secrets from existing
ones, without accessing to the original values. The above-mentioned Pedersen’s
commitment [66] is such a scheme.

• ZKP of knowledge: A prover who knows a and r (i.e., who knows how to open
A D C .a; r/) can demonstrate that it has this knowledge to a verifier who knows
only the commitment A . The proof reveals nothing about a or r .

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 235

• ZKP for equivalence: Let A D C .a; r/ and B D C .a; s/ be two commitments
to the same value a. A prover who knows how to open A and B can demonstrate
to a verifier in zero knowledge that they commit to the same value.

• ZKP for product: Let A , B and C be commitments to a, b, c respectively,
where c D ab. A prover who knows how to open A , B, C can prove in zero
knowledge to a verifier who has only the commitments that the relationship c D
ab holds among the values they commit to. If, say, a is made public, this primitive
can be used to prove that C encodes a number that is multiple of a.

• ZKP for L2-norm boundedness: Let a 2 Z
m
 . A prover knowing a can produce

a ZKP that proves that kak2 < L for a public constant L. Duan and Canny [30]
provides such a protocol with O.log m/ cost. We refer to it as the L2-norm ZKP.

The ZK tools that the P4P framework supports are not restricted to the above
examples. And indeed different algorithms may have different correctness con-
ditions. We anticipate that there could be more application-dependent ZK tools
tailored to each applications specific needs. P4P’s VSS-based addition-only compu-
tation paradigm makes it easy to develop such tools. As an example, in Sect. 8.7.3
we will present a consistency ZKP, which was originally introduced in [32], that the
data users input during each iteration is consistent. Again the protocol uses random
projection and needs only constant number of large field operations.

8.6.3.2 Restricting Malicious Influence

In data analysis, it is often necessary to restrict the influence of a small number
of samples. In a privacy-preserving setting, it is also essential to prevent a few
malicious players from corrupting the computation. Interestingly, both can be
handled in a uniform way. In this section, using the L2-norm as an example, we
demonstrate how bounding some aggregate information of a player’s input, as
advocated by P4P’s principles, is effective for achieving both goals.

Bounding the L2-norm of a user’s vector has been proposed by Duan and
Canny [30] as a practical way to restrict the amount of malicious influence on the
computation a cheating user could cause. Its effectiveness can be shown from several
perspectives. Firstly, notice that the result of the computation depends on the sums
of n vectors. To drive the sums away from correct positions by a large amount,
a malicious user must input a vector with sufficient “length”, which is naturally
measured by its L2-norm. This is especially evident for algorithms whose results
are simply the vector sums (e.g., k-means). In this case even the precision of the
final result is often measured by the L2-norm of the error vector (see e.g., Blum
et al. [8]), which, by triangle inequality, is bounded by the sum of the L2-norms of
all noise vectors. Duan et al. [31] provide a detailed discussion on the effectiveness
of such verification in the computation of the k-means algorithm.

Secondly, many perturbation theories measure the perturbation to the system in
terms of various forms of (matrix and vector) norms, many of which can be easily
transformed into vector L2-norms. For example, let Q� denote the perturbed quantity

236 Y. Duan and J. Canny

and �i the i -th singular value of a matrix A. The classical Weyl and Mirsky theorems
[70] bound the perturbation to A’s singular values in terms of the spectral norm k�k2
and the Frobenius norm k � kF of E WD A � QA, respectively:

max
i
j Q�i � �i j � kEk2 and

sX
i

. Q�i � �i /2 � kEkF

The spectral norm can be bounded from above by Frobenius norm: kEk2 � kEkF .
And if each row, denoted ai , of the matrix A is held by a user, the Frobenius norm
of the matrix E can be expressed in terms of vector L2-norms:

kEkF D
vuut nX

iD1

k Qai � aik22

Clearly bounding the vector L2-norm provides an effective way to bound the
perturbation of the results. Similar techniques were also used in e.g., [28].

Finally, bounding the L2-norm can also be the basis of other, more specific
checks. For instance, in a voting application, the protocol can be used with L D 2

and some simple tricks, which were introduced in [31], in order to ensure that each
user only exercises one vote.

8.7 Private Large-Scale SVD

In the following, we use a concrete example, a private SVD scheme, to demonstrate
how the P4P framework can be used to support private computation of popular
algorithms.

8.7.1 Basics

Recall that for a matrix A 2 R
n�m, there exists a factorization of the form

A D U˙V T ; (8.1)

where U and V are n � n and m � m, respectively, and both have orthonormal
columns. ˙ is n � m with nonnegative real numbers on the diagonal sorted in
descending order and zeros off the diagonal. Such a factorization is called a singular
value decomposition of A. The diagonal entries of ˙ are called the singular values
of A. The columns of U and V are left (resp. right) singular vectors for the
corresponding singular values.

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 237

SVD is a very powerful technique that forms the core of many data mining
and machine learning algorithms. Let r D rank.A/ and ui ; vi be the column
vectors of U and V , respectively. Equation 8.1 can be rewritten as A D U˙V T DPr

iD1 �i ui v
T
i , where �i is the i th singular value of A. Let k � r be an integer

parameter. We can approximate A by Ak D Uk˙kV T
k D Pk

iD1 �i ui v
T
i . It is

known that of all rank-k approximations, Ak is optimal in the Frobenius norm sense.
The k columns of Uk (resp. Vk) give the optimal k-dimensional approximation to
the columnspace (resp. rowspace) of A. This dimensionality reduction preserves
the structure of original data, while considering only essential components of the
matrix. It usually filters out noise and improves the performance of data mining
tasks.

We use a popular eigensolver, ARPACK [53] (ARnoldi PACKage), and its
parallel version PARPACK. ARPACK consists of a collection of Fortran77 sub-
routines for solving large-scale eigenvalue problems. The package implements the
Implicitly Restarted Arnoldi Method (IRAM) and allows one to compute a few, say
k, eigenvalues/eigenvectors with user specified features, such as those of largest
magnitude. Its storage complexity is nO.k/ C O.k2/, where n is the size of
the matrix. ARPACK is a freely-available, yet powerful tool. It is best suited for
applications whose matrices are either sparse or not explicitly available: it only
requires the user code to perform some “action” on a vector, supplied by the solver,
at every IRAM iteration. This action is simply matrix-vector product in our case.
Such a reverse communication interface works seamlessly with P4P’s aggregation
protocol.

8.7.2 Private SVD Scheme

In our setting the rows of A are distributed across all users. We use Ai� 2 R
m

to denote the m-dimensional row vector owned by user i . From Eq. 8.1, and the
fact that both U and V are orthonormal, it is clear that AT A D V ˙2V T , which
implies that AT AV D V ˙2. A straightforward way is then to compute AT A DPn

iD1 AT
i�Ai� and solve for the eigenpairs of AT A. The aggregate can be computed

using our private vector addition framework. This is a distributed version of the
method proposed in [8] and does not require the consistency protocol that we will
introduce later. Unfortunately, this approach is not scalable as the cost for each user
is O.m2/.

Suppose that m D 106, and each element is a 64-bit integer. Then, AT
i�Ai� is

8 � 1012 bytes, or about 8 TB. The communication cost for each user is then 16 TB
(she must send shares to two servers). This is a huge overhead, both communication-
and computation-wise. Usually the data is very sparse and it is a common practice
to reduce cost by utilizing the sparsity. Unfortunately, sparsity does not help in a
privacy-respecting application: revealing which elements are non-zero is a huge
privacy breach and the users are forced to use the dense format.

238 Y. Duan and J. Canny

·

·
·

ARPACK

P4P

u1

v

A1
T
A1 v

A2
T
A2 v

An
T
An v

u2

un

Ai
T
Ai vΣi=1

n

Fig. 8.1 Private SVD with P4P

We propose the following scheme which reduces the cost dramatically.
We involve the users in the iteration and the total communication (and computation)
cost per iteration is only O.m/ for each user. The number of iterations required
ranges from tens to over a thousand. This translates to a maximum of a few GB
data communicated for each user for the entire protocol, which is much more
manageable.

One server, say S1, will host an ARPACK engine and interact with its reverse
communication interface. In our case, since AT A is symmetric, the server will use
dsaupd, ARPACK’s double precision routine for symmetric problems, and ask
for the k largest (in magnitude) eigenvalues. At each iteration, dsaupd returns a
vector v to the server code and asks for the matrix-vector product AT Av. Notice that
AT Av D Pn

iD1 AT
i�Ai�v, each term in the summation is computable by each user

locally in O.m/ time (by computing the inner product Ai� �v first) and the result is an
m-vector. The vector can then be provided as input to the P4P computation, which
aggregates the vectors across all users privately. The aggregate is the matrix-vector
product, which can be returned to ARPACK for another iteration. This process is
illustrated in Fig. 8.1.

The above method is known to have a sensitivity problem, i.e., a small pertur-
bation to the input could cause a large error in the output. In particular, the error is
O.kAk2=�k/ [72]. Fortunately, most applications (e.g., PCA) only need the k largest
singular values (and their singular vectors). This error is usually not a problem
for those applications, since for the principal components O.kAk2=�k/ is small. In
fact, there is no noticeable inaccuracy in our test applications (i.e., latent semantic

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 239

analysis for document retrieval). For general problems, the stable way is to compute
the eigenpairs of the matrix

H D
	

0 AT

A 0

It is straightforward to adopt our private vector addition framework to compute
matrix-vector product with H . For simplicity, we will not elaborate on this.

8.7.3 Enforcing Data Consistency

During the iteration, user i should input di D AT
i�Ai�v. However, a cheating user

could input something completely different. This threat is different from inputting
bogus data at the beginning and using it consistently throughout the iterations. The
latter only introduces noise to the computation but generally does not affect the
convergence. The L2-norm ZKP is effective in bounding the noise but does not help
in enforcing consistency. The former, on the other hand, may cause the computation
not to converge at all. This generally is a problem for iterative algorithms and is
more than simply testing the equality of vectors: the task is complicated by the local
function that each user uses to evaluate on her data, i.e., she is not simply inputting
her private data vector, but some (possibly non-linear) function of it. In the case
of SVD, the system needs to ensure that user i uses the same Ai� (to compute
di D AT

i�Ai�v) in all the iterations, not that she inputs the same vector.
Duan et al. [32] introduced a novel zero-knowledge tool that ensures that the

correct data is used. The protocol is probabilistic and relies on random projection.
That is, the user is asked to project her original vector and her result of the current
round onto some random direction. It then tests the relation of the two projections.
The protocol, which is listed below, catches cheating with high probability but only
involves very few expensive large field operations.

8.7.3.1 Consistency Check Protocol

Since the protocol is identical for all users, we drop the user subscript for the rest of
the chapter. Let a 2 Z

m
 be a user’s original vector (i.e., her row in the matrix A).

The correct user input to this round should be d D aT av. For two vectors x and y,
we use x � y to denote their inner product.

1. After the user inputs her vector d , in the form of two random vectors d .1/ and
d .2/ in Z

m
 , one to each server, such that d D d .1/ C d .2/ mod , S1 broadcasts

a random number r . Using r as the seed and a public PRG (pseudo-random
generator), all players generate a random vector c 2R Z

m
 .

240 Y. Duan and J. Canny

2. For j 2 f1; 2g, the user computes x.j / D c � a.j / mod , y.j / D a.j / � v
mod . Let x D x.1/Cx.2/, y D y.1/Cy.2/, z D xy. Let w D .c �a/.a �v/�xy.
The user commits X .j / to x.j /, Y .j / to y.j /, Z to z, and W to w. She also
constructs two ZKPs: (1) W encodes a number that is a multiple of . (2) Z
encodes a number that is the product of the two numbers encoded in X and Y ,
where X D X .1/X .2/ and Y D Y .1/Y .2/. She sends all commitments and
ZKPs to both servers.

3. The user opens X .j / and Y .j / to Sj , who verifies that both are computed
correctly. Both servers verify the ZKPs. If any of them fails, the user is marked
as FAIL and the servers terminate the protocol with her.

4. For j 2 f1; 2g, the user computes Qz.j / D c � d .j / mod , Qz D Qz.1/ C Qz.2/ and
Qw D c �d � Qz. She commits QZ .1/ to Qz.1/, QZ .2/ to Qz.2/, and QW to Qw. She constructs
the following two ZKPs: (1) QW encodes a number that is a multiple of and
(2) QZ QW and Z W encode the same value. She sends all the commitments and
ZKPs to both servers.

5. The user opens QZ .j / to Sj , who verifies that it is computed correctly. Both
servers verify the two ZKPs. They mark the user as FAIL if any of the
verifications fails and terminate the protocol with her.

6. Both servers output PASS.

8.7.3.2 Issue of Group Sizes

There are two large primes, p and q, and four groups involved in the protocol: (i) the
large, multiplicative group Z

�
p , used for commitments, (ii) the additive group of its

exponents Zq (which is also large), where the committed pre-image values and the
random numbers are in, (iii) the “small” group Z , used for additive secret-sharing,
and (iv) the group of all integers. All the commitments, such as X .j / and Y .j /, are
computed in Z

�
p , so standard cryptographic assumptions still apply. The inputs to

the commitments, which can be user’s data or some intermediate results, are either
in Z or in the integer group (without bounding their values).

Restricting commitment inputs to small group does not compromise the security
of the scheme, since the outputs are still in the large group. Using Pederson’s
commitment as an example, the hiding property is guaranteed by the random
numbers that are generated in the large group of Zq for each commitment. Breaking
the binding property is equivalent to solving the discrete logarithm problem in
Z
�
p [66].

The protocol makes it explicit which group a number is in, using the mod
operator (i.e., x D g.y/ mod restricts x to be in Z , while x D g.y/ means
x can be in the whole integer range). The protocol assumes that p; q � . This
ensures that the numbers that are in the integer group (x; y; z; w in step 2 and Qz, Qw
in step 4) are much less than p to avoid modular reduction when their commitments
are produced. This is true for most realistic deployments, since is typically 64 bits
or less, while both p and q are 1,024 bits or more.

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 241

Theorem 8.2 proves that the transition from Z to integer fields or Zq only causes
the protocol to fail with extremely low probability:

Theorem 8.2. Let O be the output of the Consistency Check protocol. Then

Pr.O D PASSjd D aT av/ D 1

and

Pr.O D PASSjd ¤ aT av/ � 1

Furthermore, the protocol is zero-knowledge.

Proof. If computed correctly, both w and Qw are multiples of due to modular
reduction. Because of homomorphism, the equivalence ZKP that QZ QW and Z W
encode the same value is to verify that c � d D c � .aT av/.

Completeness: If the user performs the computation correctly, she should input
d D aT av into this round of computation. All the verifications should pass. The
protocol outputs PASS with probability 1.

Soundness: Suppose that d ¤ aaT v. The user is forced to compute the commit-
ments X .1/; X .2/; Y .1/; Y .2/, and QZ .1/; QZ .2/ faithfully since she has to open them
to at least one of the servers. The product ZKP at step 2 forces the number encoded
in Z to be xy, which differs from c � .aT av/ by w. Due to homomorphism, at step
4, QZ encodes a number that differs from c � d by Qw. The user could cheat by lying
about w or Qw, i.e., she could encode some other values in W and QW to adjust for
the difference between c � d and c � .aT av/, hoping to pass the equivalence ZKP.
However, assuming the soundness of the ZKPs used, the protocol forces both to
be multiple of (steps 2 and 4), so she could succeed only when the difference
between c � d , which she actually inputs to this round, and c � .aT av/, which she
should input, is some multiple of . Since c is made known to her after she inputs
d , the two numbers are totally unpredictable and random to her. The probability
that c � d � c � .aT av/ is a multiple of is only 1=, which is the probability of her
success.

Finally, the protocol consists of a sequential invocation of some well-established
zero-knowledge proofs. By the sequential composition theorem of [44], the whole
protocol is also zero-knowledge.

As a side note, all the ZKPs can be made non-interactive using the Fiat-Shamir
paradigm [39]. It is also much more light-weight than the L2-norm ZKP [30]: the
number of large field operations is constant, as opposed to O.log m/ in the L2-
norm ZKP. The private SVD computation thus involves only one L2-norm ZKP at
first round, and one light verification for each of the subsequent rounds.

242 Y. Duan and J. Canny

8.7.4 Dealing with Real Numbers

In their simplest forms, the cryptographic tools only support computation over
integers. In most domains, however, applications typically have to handle real
numbers. In the case of SVD, even if the original input matrix contains only integer
entries, it is likely that real numbers appear in the intermediate (e.g., the vectors
returned by ARPACK) and the final results. Because of the linearity of the P4P
computation, we can use a simple linear digitization scheme to convert between real
numbers in the application domain and Z , P4P’s integer field.

Let R > 0 be the bound of the maximum absolute value application data can take.
The integer field provides jj bits resolution. This means the maximum quantization
error for one variable is R= D 2jRj�jj. Summing across all n users, the worst
case absolute error is bounded by n2jRj�jj. In practice jj can be 64, and jRj can
be around e.g., 20 (this gives a range of Œ�220; 220�). With n D 106, this gives a
maximum absolute error of under 1 over a million.

8.7.5 Complete SVD Protocol

Let Q be the set of qualified users initialized to the set of all users. The entire private
SVD method is summarized as follows:

1. Input: The user first provides an L2-norm ZKP [30] on a with a bound L, i.e.,
she submits a ZKP that kak2 < L. This step also forces the user to commit to
the vector a. Specifically, at the end of this step, S1 and S2 have a.1/ 2 Z and
a.2/ 2 Z , respectively, such that a D a.1/ C a.2/ mod . Users who fail this
ZKP are excluded from subsequent computation.

2. Repeat the following steps until the ARPACK routine indicates convergence or
stops after certain number of iterations:

(a) Consistency Check: When dsaupd returns control to S1 with a vector, the
server converts the vector to v 2 Z

m
 and sends it to all users. The servers

execute the consistency check protocol for each user.
(b) Aggregate: For any users who are marked as FAIL, or fail to respond,

the servers simply ignore their data and exclude them from subsequent
computation. Q is updated accordingly. For this round, they compute s DP

i2Q di and S1 returns it as the matrix-vector product to dsaupd, which
executes another iteration.

3. Output: S1 outputs

˙k D diag.�1; �2; : : : ; �k/ 2 R
k�k

Vk D Œv1; v2; : : : ; vk� 2 R
m�k;

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 243

with �i D
p

�i , where �i is the i th eigenvalue and vi the corresponding
eigenvector computed by ARPACK, i D 1; : : : ; k, and �1 � �2 : : : � �k .

Regarding the accuracy of the result produced by this protocol in the presence of
actively cheating users, we have:

Theorem 8.3. Let nc be the number of cheating users. We use Q� to denote perturbed
quantity and �i the i -th singular value of matrix A. Assuming that honest users
vector L2-norms are uniformly random in Œ0; L/ and nc
 n, then

sP
i . Q�i � �i /2P

i �2
i

< 2

r
nc

n

Proof. The classic Weyl and Mirsky theorems [70] bound the perturbation to A’s
singular values in terms of the Frobenius norm k � kF of E WD A � QA:

sX
i

. Q�i � �i /2 � kEkF

In our case each row ai of A is held by a user, we have kEkF D
qPn

iD1 k Qai � aik22.

Since the protocol ensures that kaik2 < L for all users, we have

sX
i

. Q�i � �i /2 �
vuut nX

iD1

k Qai � aik22 <
p

ncL

Let � DpP
i . Q�i � �i /2=

qP
i �2

i , and assuming that honest users vector L2-norms
are uniformly random in Œ0; L/ and nc
 n, then

� D
pP

i . Q�i � �i /2

kAkF <

p
ncL

0:5
p

.n � nc/L
� 2

r
nc

n

The scheme is also quite robust against users’ failures. During our tests, reported
in Sect. 8.8, we simulated a fraction of random users “dropping out” of each
iteration. Even when up to 50 % of the users dropped, for all our test sets, the
computation still converged without noticeable loss of accuracy, measured by
residual error (see Sect. 8.8.1) using the final matrix with failed users data ignored.
This allows us to handle malicious users who actively try to disrupt the computation
and those who fail to response due to technical problems (e.g., network failure) in a
uniform way.

244 Y. Duan and J. Canny

8.7.6 Privacy Analysis

Note that the protocol does not compute Uk . This is intentional. Uk contains
information about user data: the i th row of Uk encodes user i ’s data in the k-
dimensional subspace and should not be revealed at all in a privacy-respecting
application. Vk , on the other hand, encodes “item” data in the k-dimensional
subspace (e.g., if A is a user-by-movie rating matrix, the items will be movies).
In most applications (e.g., [11]) the desired information can be computed from
the singular values (˙k) and the right singular vectors (V T

k). At each iteration,
the protocol reveals the matrix-vector product AT Av for some vectors v. This is
not a problem because the final results ˙k and V T

k already give an approximation
of AT A (AT A D V ˙2V T). A simulator with the final results can approximate
the intermediate sums. Therefore, the intermediate aggregates do not reveal more
information.

8.8 Implementation and Evaluation

The P4P framework, including the SVD protocol, has been implemented in Java
using JNI and a NativeBigInteger implementation from I2P.4 We run several
experiments. The server is a 2.50 GHz Xeon E5420 with 32 GB memory, the clients
are 2.00 GHz Xeon E5405 with 800 MB memory allocated to the tests. In all the
experiments, is set to be a 62-bit integer and p, q 1,024-bit.

We evaluated our implementation on three data sets: the Enron Email Data Set
[16], EachMovie (EM) and a randomly generated dense matrix (RAND). The Enron
corpus contains email data from 150 users, spanning a period of about 5 years
(January 1998–December 2002). Our test was run on the social graph defined by
the email communications. The graph is represented as a 150 � 150 matrix A, with
A.i; j / being the number of emails sent by user i to user j . EachMovie is a well-
known test data set for collaborative filtering. It comprises ratings of 1,648 movies
by 74,424 users. Each rating is a number in the range Œ0; 1�. Both the Enron and
EachMovie data sets are very sparse, with densities 0.0736 and 0.0229, respectively.
To test the performance of our protocol on dense matrices, we generated randomly
a 2;000 � 2;000 matrix with entries chosen in the range Œ�220; 220�. The properties
of the datasets are summarized in Table 8.2.

4http://www.i2p2.de/.

http://www.i2p2.de/

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 245

Table 8.2 Characteristics of the datasets

Dataset Dimensions Density Range Type

Enron 150� 150 0.0736 Œ0; 1;593� Social graph
EM 74;424� 1;648 0.0229 Œ0; 1:0� Movie ratings
RAND 2;000� 2;000 1.0 Œ�220; 220� Random

Table 8.3 Round complexity and precision

Enron k 10 20 30 40 50 60 70 80 90 100
N 67 97 122 162 109 137 172 167 171 169
�.�10�8/ 0.00049 0.0021 0.0046 0.0084 0.0158 0.0452 0.121 0.266 0.520 1.232

EM k 10 20 30 40 50 60 70 80 90 100
N 70 140 254 222 276 371 322 356 434 508
�.�10�12/ 0.470 0.902 1.160 1.272 1.526 1.649 1.687 2.027 2.124 2.254

RAND k 10 20 30 40 50 60 70 80 90 100
N 304 404 450 480 550 700 770 720 810 800
�.�10�9/ 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996 3.996

8.8.1 Precision and Round Complexity

We measured two quantities: N , the number of IRAM iterations until ARPACK
indicates convergence, and �, the relative error. N is the number of matrix-vector
computation that was required for the ARPACK to converge. It is also the number
of times P4P aggregation is invoked. The error � measures the maximum relative
residual norm among all eigenpairs computed:

� D max
iD1;:::;k

kAT Avi � �i vik2
kvik2

Table 8.3 summarizes the results. In all these tests, we used machine precision as
the tolerance input to ARPACK. The accuracy we obtained is very good: � remains
very small for all tests (10�12–10�8). In terms of round complexity, N ranges from
under 100 to a few hundreds. For comparison, we also measured the number of
iterations required by ARPACK when we perform the matrix-vector multiplication
directly without the P4P aggregation. In all experiments, we found no difference in
N between this direct method and our private implementation.

8.8.2 Performance

We measured both running time and communication cost of the scheme. We focused
on server load, since each user only needs to handle her own data so is not a
bottleneck. We present the case with � D 2 servers and measured the work on

246 Y. Duan and J. Canny

the server hosting the ARPACK engine since it shares the most load. Extending the
analysis to � > 2 servers is straightforward as the cost for the servers is linear in �

and the performance is still adequate for small �.
The implementation confirmed our observations about the difference in costs for

manipulating large and small integers. With 1,024-bit key length, one exponentia-
tion within the multiplicative group Z

�
p takes 5.86 ms. Addition and multiplication

of two numbers, also within the group, take 0.024 and 0.062 ms, respectively. In
contrast, adding two 64-bit integers, which is the basic operations P4P framework
performs, needs only 2:7 � 10�6 ms. The product ZKP takes 35.7 ms verifier time
and 24.3 ms prover time. The equivalence ZKP takes no time since it is simply
revealing the difference of the two random numbers used in the commitments [66].
For each consistency check, the user needs to compute nine commitments, three
product ZKPs, one equivalence ZKP and four large integer multiplications. The
total cost is 178.63 ms for each user. For every user, each server needs to spend
212.83 ms on verification.

For our test data sets, it takes 74.73 s of server time to validate and aggregate
all 150 Enron users data on a single machine (each user needs to spend 726 ms to
prepare the zero-knowledge proofs). This translates into a total of 5,000 s or 83 min
spent on private P4P aggregation to compute k D 10 singular-pairs. To compute
the same number of singular pairs for EachMovie, aggregating all users data takes
about 6 h (again on a single machine) and the total time for 70 rounds is 420 h.
Note that the total includes both verification and computation so it is the cost of a
complete run. The server load appears large but actually is very inexpensive. The
aggregation process is trivially parallelizable and using a cluster of, say 200 nodes,
will reduce the running time to about 2 h. This amounts to a very insignificant cost
for most service providers: Using Amazon EC2’s price as a benchmark, it costs
$0.80 per hour for 20 EC2 Compute Units (8 virtual cores with 2.5 EC2 Compute
Units each). Data transfer price is $0.100 per GB. The total cost for computing
SVD for a system with 74,424 users is merely about $15, including data transfer
and adjusted for difference in CPU performance between our experiments and EC2.

The communication overhead is also very small since the protocol passes very
few large integers. The extra communication per client for one L2-norm ZKP is
under 50 kb, and under 100 bytes for the consistency check. This is significantly
smaller than the size of an average web page. The additional workload for the server
is less than serving an extra page to each user.

To compare with alternative solutions, we implemented a method based on
homomorphic encryption which is a popular private data mining technique (see e.g.,
[11,76]). We did not try other methods, such as the “add/subtract random” approach,
with players adding their values to a running total, because they do not allow for
verification of user data thus are insecure in our model. We tested both ElGamal and
Paillier encryptions with the same security parameter as our P4P experiments (i.e.,
1,024-bit key). With the homomorphic encryption approach, it is almost impossible
to execute the ZK verification (although there is a protocol [11]) as it takes hours to
verify one user. So we only compared the time needed for computing the aggregates.
Figure 8.2 shows the ratios of running time between homomorphic encryption and

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 247

Enron EM RAND
0

1

2

3

4

5

6

7
x 109 Ratio of Running Times

ElGamal
Paillier

Fig. 8.2 Runtime ratios between homomorphic encryption based solutions and P4P

P4P for SVD on the three data sets. P4P is at least eight orders of magnitude faster
in all cases for both ElGamal and Paillier. And this translates to tens of millions of
dollars of cost for the homomorphic encryption schemes if the computation is done
using Amazon’s EC2 service not even counting data transfer expenses.

8.8.3 Scalability

We also experimented with a few very large matrices, with dimensionality ranging
from tens of thousands to over a hundred million. They are document-term or user-
query matrices that are used for latent semantic analysis. To facilitate the tests,
we did not include the data verification ZKPs, as our previous benchmarks show
they amount to an insignificant fraction of the cost. These results are meant to
demonstrate the capability of our system, which we have shown to maintain privacy
at very low cost, to handle large data sets at various configurations.

Table 8.4 summarizes some of the results. The running time measures the time
of a complete run, i.e., from the start of the job till the results are safely written to
disk. It includes both the computation time of the server (including the time spent
on invoking the ARPACK engine) and the clients (which are running in parallel),
and the communication time.

248 Y. Duan and J. Canny

Table 8.4 SVD of large matrices

n m k No. frontend processors Time (h) Iterations

100,443 176,573 200 32 1.4 1,287
12,046,488 440,208 200 128 6.0 354
149,519,201 478,967 250 128 8.3 1,579
37,389,030 366,881 300 128 9.1 1,839
1,363,716 2,611,186 200 1 14.8 1,260
33,193,487 1,949,789 200 128 28.0 1,470

In the table, frontend processors refer to the machines that interact with the
users directly. Large-scale systems usually use multiple frontend machines, each
serving a subset of the users. This is also a straightforward way to parallelize
the aggregation process, i.e., each frontend machine receives data from a subset
of users and aggregates them before forwarding to the server. On one hand, the
more frontend machines the faster the sub-aggregates can be computed. On the
other hand, the server’s communication cost is linear in the number of frontend
processors. The optimal solution must strike a balance between the two. Due to
resource limitation, we were not able to use the optimal configuration for all our
tests. The results are feasible even in these sub-optimal cases.

8.9 Conclusion and Future Trends

P4P’s source code has been made available for general public.5 The framework
demonstrated that cryptographic building blocks can work harmoniously with
existing tools, providing privacy without degrading their efficiency. As more and
more data is being collected, large-scale data analysis has become a necessity in
our daily life. It is predicted that in 2020, the sheer volume of digital information
will reach 35 trillion gigabytes.6 Be it scientific insights, or business intelligence,
we learn invaluable information from the data. The social benefit provided by
large-scale data analysis is huge, but so is the danger of privacy breach. A very
urgent mission for the privacy community is to develop practical technologies that
can keep pace with the rapidly growing need for large data. We believe P4P’s
paradigm provides an encouraging direction for this task. This belief is based on
the following:

• P4P’s pursuit for provably strong privacy guarantees adequate protection.
• P4P’s main computation is based on VSS over small field, which, we emphasize

again, has the same cost as non-private computation.

5http://bid.berkeley.edu/projects/p4p/.
6http://www.teradata.com/business-needs/Big-Data-Analytics/.

http://bid.berkeley.edu/projects/p4p/.
http://www.teradata.com/business-needs/Big-Data-Analytics/.

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 249

• P4P’s ZK verification tools only involves a small number (constant or O.log m/)
large field cryptographic operations.

In other words, P4P allows privacy to be added with negligible cost. Furthermore,
the VSS paradigm will become more realistic as more and more computing entities
(e.g., cloud computing providers) are available. We expect that more privacy-
preserving applications will be built upon this framework and principles.

While P4P provides practical tools for developers to build privacy-preserving
real-world applications, we see it only as a promising start. Some applications, such
as those that cannot be decomposed into addition steps, won’t fit in the P4P model.
Moreover, its reliance on multiple servers (for secret sharing) may also hinder its
adoption in some cases. New privacy paradigms and techniques are required to meet
the diverse needs for large-scale privacy preservation.

References

1. Alaggan, M., Gambs, S., Kermarrec, A.M.: Private similarity computation in distributed
systems: from cryptography to differential privacy. In: Principles of Distributed Systems.
Lecture Notes in Computer Science. Springer, Berlin/New York (2011)

2. Alderman, E., Kennedy, C.: The Right to Privacy. DIANE, Collingdale (1995)
3. Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: CRYPTO’89,

Santa Barbara
4. Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure mpc with linear communication complex-

ity. In: TCC 2008, New York, pp. 213–230. Springer (2008)
5. Beimel, A., Nissim1, K., Omri, E.: Distributed private data analysis: simultaneously solving

how and what. In: CRYPTO 2008, Santa Barbara (2008)
6. Ben-David, A., Nisan, N., Pinkas, B.: Fairplaymp: a system for secure multi-party computation.

In: CCS’08, Alexandria, pp. 257–266 (2008)
7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic

fault-tolerant distributed computation. In: STOC’88, Hong Kong, Chicago, IL, USA, pp. 1–10.
ACM (1988)

8. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ framework. In:
PODS’05, Baltimore, Maryland, USA, pp. 128–138. ACM (2005)

9. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy.
In: STOC 08, Victoria, British Columbia, Canada (2008)

10. Boaz Barak, E.A.: Privacy, accuracy, and consistency too: a holistic solution to contingency
table release. In: PODS’07, Beijing (2007)

11. Canny, J.: Collaborative filtering with privacy. In: IEEE Symposium on Security and Privacy,
San Francisco, Oakland, Ca, USA, pp. 45–57 (2002)

12. Canny, J.: Collaborative filtering with privacy via factor analysis. In: SIGIR’02, Tampere,
Tampere, Finland, pp. 238–245. ACM (2002)

13. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-party
computations over small fields. In: CRYPTO 2006, Santa Barbara (2006)

14. Chin, F., Ozsoyoglu, G.: Auditing for secure statistical databases. In: ACM 81: Proceedings of
the ACM’81 Conference, Seattle, ACM’ 81 is Los Angeles, Ca, USA, pp. 53–59 (1981)

15. Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.: Map-reduce for
machine learning on multicore. In: NIPS 2006, Vancouver, B.C., Canada (2006)

16. Cohen, W.W.: Enron email dataset. (2004) http://www-2.cs.cmu.edu/~enron/

http://www-2.cs.cmu.edu/~enron/

250 Y. Duan and J. Canny

17. Cohen Benaloh, J.: Secret sharing homomorphisms: keeping shares of a secret secret. In:
CRYPTO’86, Santa Barbara, pp. 251–260 (1987)

18. Cormode, G.: Personal privacy vs population privacy: learning to attack anonymization. In:
KDD’11, Chicago, pp. 1253–1261. ACM, New York (2011)

19. Cramer, R., Damgård, I.: Zero-knowledge proof for finite field arithmetic, or: can zero-
knowledge be for free? In: CRYPTO’98, San Diego. Springer (1998)

20. Dalenius, T.: Towards a methodology for statistical disclosure control. Statistik Tidskrift 15,
429–444 (1977)

21. Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable multiparty computation
with nearly optimal work and resilience. In: CRYPTO 2008, Santa Barbara, pp. 241–261
(2008)

22. Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online
collaborative filtering. In: WWW’07, Geneva, Banff, Alberta, Canada, pp. 271–280. ACM
(2007)

23. Dhanjani, N.: Amazon’s elastic compute cloud [ec2]: initial thoughts on security implications.
http://www.dhanjani.com/archives/2008/04/

24. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS’03, San
Diego, San Diego, California, pp. 202–210 (2003)

25. Du, W., Zhan, Z.: Using randomized response techniques for privacy-preserving data mining.
In: KDD’03, Washington DC, pp. 505–510. ACM, New York (2003)

26. Du, W., Han, Y., Chen, S.: Privacy-preserving multivariate statistical analysis: linear regression
and classification. In: SDM 04, Toronto, Lake Buena Vista, Florida, USA, pp. 222–233 (2004)

27. Duan, Y.: Privacy without noise. In: CIKM’09, Hong Kong. ACM, New York (2009)
28. Duan, Y., Wang, J., Kam, M., Canny, J.: A secure online algorithm for link analysis on weighted

graph. In: Proceedings of the Workshop on Link Analysis, Counterterrorism and Security,
SDM 05, Newport Beach, pp. 71–81 (2005)

29. Duan, Y., Canny, J.: Zero-knowledge test of vector equivalence and granulation of user data
with privacy. In: IEEE GrC 2006, Atlanta (2006)

30. Duan, Y., Canny, J.: Practical private computation and zero-knowledge tools for privacy-
preserving distributed data mining. In: SDM’08, Atlanta (2008)

31. Duan, Y., Canny, J.: How to deal with malicious users in privacy-preserving distributed data
mining. Stat. Anal. Data Min. 2(1), 18–33 (2009)

32. Duan, Y., Canny, J., Zhan, J.: P4P: Practical large-scale privacy-preserving distributed compu-
tation robust against malicious users. In: USENIX Security Symposium 2010, San Francisco,
Washington, D.C, pp. 609–618 (2010)

33. Dwork, C.: An ad omnia approach to defining and achieving private data analysis. In: PinKDD,
San Jose, pp. 1–13 (2007)

34. Dwork, C.: Ask a better question, get a better answer a new approach to private data analysis.
In: ICDT 2007, Barcelona, Spain, pp. 18–27. Springer (2007)

35. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy
via distributed noise generation. In: EUROCRYPT 2006, Saint Petersburg. Springer (2006)

36. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data
analysis. In: TCC 2006, New York, pp. 265–284. Springer (2006)

37. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data
mining. In: PODS’03, San Diego, pp. 211–222 (2003)

38. Feigenbaum, J., Nisan, N., Ramachandran, V., Sami, R., Shenker, S.: Agents’ privacy in
distributed algorithmic mechanisms. In: Workshop on Economics and Information Securit,
Berkeley (2002)

39. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature
problems. In: CRYPTO 86, Santa Barbara, California, USA (1987)

40. Fitzi, M., Hirt, M., Maurer, U.: General adversaries in unconditional multi-party computation.
In: ASIACRYPT’99, Singapore (1999)

41. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary information
in data privacy. In: KDD’08, Las Vegas, pp. 265–273. ACM, New York (2008)

http://www.dhanjani.com/archives/2008/04/

8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale 251

42. Goldreich, O.: Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, Cambridge (2004)

43. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC’87,
New York, pp. 218–229 (1987)

44. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems.
J. Cryptol. 7(1), 1–32 (1994)

45. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof
systems. SIAM J. Comput. 18(1), 186–208 (1989)

46. Goldwasser, S., Levin, L.: Fair computation of general functions in presence of immoral
majority. In: CRYPTO’90, Santa Barbara, pp. 77–93. Springer (1991)

47. Hirt, M., Maurer, U.: Complete characterization of adversaries tolerable in secure multi-party
computation (extended abstract). In: PODC’97, Santa Barbara (1997)

48. Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect multiparty
computation. J. Cryptol. 13(1), 31–60 (2000)

49. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving properties of
random data perturbation techniques. In: ICDM’03, Melbourne, Florida, USA, p. 99. IEEE
Computer Society, Washington (2003)

50. Kearns, M.: Efficient noise-tolerant learning from statistical queries. In: STOC’93, San Diego,
pp. 392–401 (1993)

51. Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: SIGMOD’11, Athens,
Greece, pp. 193–204. ACM, New York (2011)

52. Kleinberg, J., Papadimitriou, C., Raghavan, P.: Auditing boolean attributes. In: PODS’00,
Dallas, pp. 86–91. ACM, New York (2000). doi:http://doi.acm.org/10.1145/335168.335210

53. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK users’ guide: solution of large-scale
eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, San Francisco (1998)

54. Li, N., Li, T., Venkatasubramanian, S.: t -closeness: privacy beyond k-anonymity and l-
diversity. In: Proceedings of the IEEE 23rd International Conference on Data Engineering,
Istanbul, pp. 106–115 (2007)

55. Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptol. 15(3), 177–206 (2002)
56. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation efficiently with

security against malicious adversaries. In: SCN’08, Amalfi, Italy (2008)
57. Liu, W.M., Wang, L.: Privacy streamliner: a two-stage approach to improving algorithm

efficiency. In: CODASPY’12, San Antonio, pp. 193–204. ACM, New York (2012)
58. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: privacy

beyond k-anonymity. In: Proceedings of the IEEE 22rd International Conference on Data
Engineering, Atlanta (2006)

59. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay—a secure two-party computation system.
In: SSYM’04: Proceedings of the 13th Conference on USENIX Security Symposium, San
Diego, CA, pp. 20–20. USENIX Association, Berkeley (2004)

60. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-preserving data
analysis. Commun. ACM 53(9), 89–97 (2010)

61. McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into
the netflix prize contenders. In: KDD’09, Paris, pp. 627–636 (2009)

62. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS’07 Rhode
Island (2007)

63. Nergiz, M.E., Atzori, M., Clifton, C.: Hiding the presence of individuals from shared databases.
In: SIGMOD’07, Beijing, pp. 665–676. ACM, New York (2007)

64. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data
analysis. In: STOC’07, El Paso, Texas, USA, pp. 75–84. ACM (2007)

65. Paillier, P.: Trapdooring discrete logarithms on elliptic curves over rings. In: ASIACRYPT’00,
Kyoto (2000)

66. Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret sharing. In:
CRYPTO’91, Santa Barbara (1992)

http://doi.acm.org/10.1145/335168.335210

252 Y. Duan and J. Canny

67. Pinkas, B., Schneider, T., Smart, N., Williams, S.: Secure two-party computation is practical.
Cryptology ePrint Archive, Report 2009/314 (2009)

68. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information
(abstract). In: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of database systems, PODS’98, Seattle, p. 188. ACM, New York (1998).
doi:10.1145/275487.275508. http://doi.acm.org/10.1145/275487.275508

69. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and
its enforcement through generalization and suppression. Technical Report SRI-CSL-98-04,
SRI International (1998)

70. Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic, Boston New York (1990)
71. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-

Based Syst. 10(5), 557–570 (2002)
72. Trefethen, L.N., III, D.B.: Numerical Linear Algebra. SIAM, Philadelphia (1997)
73. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically partitioned data.

In: KDD’03, Washington DC (2003)
74. Wright, R., Yang, Z.: Privacy-preserving bayesian network structure computation on dis-

tributed heterogeneous data. In: KDD’04, New York, pp. 713–718 (2004)
75. Xiao, X., Tao, Y.: M-invariance: Towards privacy preserving re-publication of dynamic

datasets. In: SIGMOD 2007, Beijing, pp. 689–700 (2007)
76. Yang, Z., Zhong, S., Wright, R.N.: Privacy-preserving classification of customer data without

loss of accuracy. In: SDM 2005, Newport Beach (2005)
77. Yao, A.C.C.: Protocols for secure computations. In: FOCS’82, Chicago, pp. 160–164. IEEE

(1982)
78. Zhang, L., Jajodia, S., Brodsky, A.: Information disclosure under realistic assumptions: privacy

versus optimality. In: CCS’07, Alexandria, pp. 573–583 (2007)

http://doi.acm.org/10.1145/275487.275508

Index

A
adjacency list, 168
adversary, 223

active, 223
malicious, 223
passive, 223
semi-honest, 223

aggregation level, 123
Algebrix, 64
Amazon Elastic Compute Cloud, 3, 226
Amazon Elastic MapReduce, 3
analytical reasoning, 190
Apache Nutch crawler, 118
appliance computing, 130
arbiter, 141
Aristotle, 155
Aster Data, 30
Asterix, 63, 70
asymmetric key encryption, 222

B
BLAS, 135, 136, 177
blocking, 95

C
call data records, 104
CBMM algorithm, 97
CBMV algorithm, 96, 97
CellMR (cell) system, 135
centrality measures, 156, 158

betweenness centrality, 159, 179, 181
closeness centrality, 159
degree centrality, 158
parallel computation, 169
summary, 160

churn prevention, 106

classification, 222
cloud computing, 3, 226
cluster hierarchy, 209
Cluster Maps, 205
clustering, 117, 222
co-occurrence analysis, 205
commodity computing, 130
community detection, 175
complex network analysis, 156
concept, 173

graph concept, 173
concept selection, 117
concepts combination, 117
connected component, 81, 87, 173

strongly connected component, 175
consistency, see data consistency
coordinated multiple views, 209
cryptography, 221

cryptographic techniques, 222
elliptic curve cryptography, 228

D
Dalenius, 223
data consistency, 239
data definition language, 30
data manipulation language, 30
decision tree learning, 222
declarative-deductive techniques, 194, 195
diameter estimation, 87
differential privacy, 224
direct manipulation, 207
disambiguation, 205
dispatcher queue, 141
distributed frameworks

DisNet framework, 176
HipG framework, 176

A. Gkoulalas-Divanis and A. Labbi (eds.), Large-Scale Data Analytics,
DOI 10.1007/978-1-4614-9242-9, © Springer Science+Business Media New York 2014

253

254 Index

distributed join, 8
document coloring, 210
document icons, 210
document selection, 210
domain distance, 111
DState, 141

E
edge bundling techniques, 205
Eldorado, 165
Elliptic curve cryptography, 228
expectation maximization, 132, 219, 220, 229
exploratory analysis, 190

F
Facebook, 156
FacetAtlas, 205
Fairplay, 228
feature engineering, 193
feature name spaces, 193
feature selection, 117
feature vectorization, 193
features combination, 117
Flickr, 157
Floyd-Warshall algorithm, 170

G
gaussian mixture, 133
generalization, 223
geo-spatial data visualization, 203
geo-visualization

seegeo-spatial data visualization, 203
geographic maps

seegeo-spatial data visualization, 203
GIM-V, 84

CCB algorithm, 89
NCB algorithm, 89
NNB algorithm, 89
optimization effect, 90
RAW algorithm, 88
scalability, 90

GPMR system, 135
graph visualization, 205
Gray, 1
Greenplum, 30

H
Hadi algorithm, 87
Hadoop, 5
Heigen algorithm, 92

high-performance computing, 130
homomorphic commitment, 234
HState, 141
hypothesis generation, 198
hypothesis validation, 198
Hyracks, 63

I
IBM Customer Analyst, 101, 107

evaluation, 120
system architecture, 115

IBM Infosphere BigInsights, 101
IBM Infosphere BigSheets, 120
IBM SPSS, 118, 120
IDC study, 189
IMV algorithm, 97
In-SPIRE, 199
independent runs, 131
indexing, 194
information extraction, 192
information landscapes, 199
information visualization, 211
information visualization toolkit, 203
InfoSky, 199
instance-level integration, 194, 195
interactive visualization, 197

J
Javascript object notation, 26

K
k-anonymity, 223
K-means, 132, 219, 229
knowledge discovery, 189
knowledge space visualization, 213
knowledge visualization, 211
kronecker graphs, 90

L
l-diversity, 223
Lanczos-NO, 93
Lanczos-SO, 93, 94
latent semantic indexing, 92
linear regression, 229
LinkedIn, 156
locality of reference, 167, 168

M
Mahout, 33, 135
MapDupReducer, 34

Index 255

MapReduce, 2, 42, 45, 102, 129
example program, 7
AQL, 67
case studies, 33
cluster category, 135
CoHadoop, 15
cost-based optimization, 52
design principles, 4
Dryad job, 24, 60
DryadLINQ, 24, 60, 61, 70
example program, 4
execution model, 46
flow of execution, 5, 6
framework, 4
Google file system, 20, 102
Hadoop++, 14
HadoopDB, 30
HaLoop, 12
Hive, 29, 49, 67, 70
HiveQL, 30
hybrid systems, 29, 136
important lessons, 35
integration, 132
Jaql, 26, 50
job tracker, 137
jobs, 5, 46, 135
join strategies, 8
locator, 16
Manimal, 58, 70
Map-Reduce-Merge, 8
MapReduce online, 11
materialization, 11
monetization, 11
MRShare, 11
multiple files, 15
multiprocessor category, 135
node failure, 7
optimization (jobs), 55, 58
optimization (logical), 51
optimization (physical), 52
optimization (storage), 53
optimization challenges, 47
parameter configuration, 36
partition function, 21
performance factors, 35
Pig Latin, 17, 49, 67
pipelining, 11
possible improvements, 7
programming model, 45
row function, 21
Sawzall, 19
SCOPE, 21, 60, 62, 67
sharing map functions, 12
sharing map output, 12

sharing scans, 12
Skywriting, 24
SQL-like implementations, 16
SQL/MapReduce, 20
Starfish, 55, 70
SVM decomposition, 145
task tracker, 137, 138
trojan index, 14
trojan join, 15
user-defined functions, 14, 18, 20, 50, 62

Mars (GPU) system, 135
media analysis, 211
message passing interface, 166
microdata, 223
modalities of interaction, 206
MPC, see secure multiparty computation
MPP nodes, 137
MPP orchestration, 141
MSA technology, 103
multi-dimensional scaling, 92
multi-threaded computers, 164
multiple visualization interfaces, 208
multithreading, 138

N
named entity recognition, 192
negative scalability, 179
Netezza, 30
Netflix prize, 220
network models, 160

preferential attachment, 161
random network, 161
scale-free model, 161
small world model, 161

node degree, 159

O
open directory project, 108
OpenMP, 164
operations of interactions, 207
optimization (multi-result), 54
optimization plans, 44
ordination, 197

P
PACT model, 65, 70
PageRank algorithm, 12, 86, 156, 160
pair dependency, 159
ParAccel, 30
parallel coordinates, 202

256 Index

parallel graph algorithms
BLAS library, see BLAS
MTGL library, 175
parallel boost graph library, 173
SNAP library, 175

parallelism, 130
patent analysis, 214
path distance, 112
peers for privacy, 219

architecture, 230
malicious influence, 235
principles, 229
privacy framework, 231
protocol, 232
threat model, 230

Pegasus, 75, 176
personalized marketing, 106, 109
Phoenix (multicore) system, 135
physical transparency, 53
pipelining, 139
port, 141
power method, 93
PowerSearch, 211
PPDM, see privacy-preserving data mining
principal component analysis, 92, 219
privacy, 219

privacy analysis, 244
privacy breach, 223
provable privacy, 225, 232

privacy definition, 223
semantic, 223
syntactic, 223

privacy-preserving applications, 227
privacy-preserving data analysis, 219
privacy-preserving data mining, 221, 222
property map, 173
prover, see zero-knowledge proof
PSVM algorithm, 135
public-key cryptosystems, 222, 226

ECC cryptosystems, 228

Q
QR, 93
quasi-identifier, 223
query optimization, 43, 44

R
radius estimation, 87
radius plot, 77
RAID, 5
RAIN, 5

random projection, 229
random walk, 86
randomization techniques, 222
relationship discovery, 192
replication, 169
retrieval techniques, 196
Ricardo, 33

S
s-t connectivity, 173
Scatter-Gather mechanism, 142, 143
scatterplot, 202
schema-level integration, 194, 195
secure multiparty computation, 221, 222, 227
security, 219
semantic enrichment, 212
semantic security, 222
shared memory architectures, 163

non-uniform memory access, 163, 164
uniform memory access, 163, 164

shortest paths, 170
similarity algorithms, 117
singular value decomposition, 92

privacy large-scale SVD, 236
private large-scale SVD, 237, 242

SMC, see secure multiparty computation
social network, 158
social network analysis, 155, 158
social network site, 155
spectral clustering, 92
statistical database privacy, 222
statistical query, 131
statistical query model, 220
statistical query models, 229
statistical-inductive techniques, 194, 195
stemming, 193
stop-word filtering, 193
Stratosphere, 64
structural parallelism, see parallelism
summarization, 196
supercomputing, see high-performance

computing
support vector machine, 132, 144

binary SVM, 144, 147
evaluation, 148
MapReduce decomposition, 145
massively multithreaded SVM, 144
multiple-MPP device SVM, 147
single-MPP device SVM, 146

suppression, 223
Surfer, 34
System-ML, 135

Index 257

T
t-closeness, 223
tag clouds, 199
telecom data, 104
telecom industry, 103
telecom privacy, 107
temporal data visualization, 204
tensor analysis, 92
Teradata, 30
text classification, 194
tf-idf, 193
ThemeRiver, 204
tokenization, 192
Twister, 135, 136
Twitter, 156

U
unsupervised machine learning, 196
user profiling, 109, 110

aggregation, 109, 113
categorization, 109, 111

user segmentation, 106
user-generated content, 156

V
verifiable secret sharing, 220, 229

verifier, see zero-knowledge proof
Vertica, 30
visual analysis, 189, 190
visual analysis pipeline, 191

acquisition, 192
semantic enrichment, 192
semantic integration, 194

visual analytics process, 207
applications, 211
data-point level, 207
model level, 207

visually enhanced feedback, 206

W
word sense disambiguation, 192

Y
YouTube, 157

Z
zero-knowledge proof, 221

properties, 221
zero-knowledge tools, 234
ZKP, see zero-knowledge proof

	Preface
	Contents
	Contributors
	List of Figures
	List of Tables
	Acronyms
	1 The Family of Map-Reduce
	1.1 Introduction
	1.2 The MapReduce Framework: Basic Architecture
	1.3 Improvements on the MapReduce Framework
	1.3.1 Map-Reduce-Merge
	1.3.2 MapReduce Online
	1.3.3 MRShare
	1.3.4 HaLoop
	1.3.5 Hadoop++
	1.3.6 CoHadoop

	1.4 SQL-Like MapReduce Implementations
	1.4.1 Pig Latin
	1.4.2 Sawzall
	1.4.3 SQL/MapReduce
	1.4.4 SCOPE
	1.4.5 DryadLINQ
	1.4.6 Jaql

	1.5 Hybrid Systems
	1.5.1 Hive
	1.5.2 HadoopDB

	1.6 Case Studies
	1.7 Discussion and Conclusions
	References

	2 Optimization of Massively Parallel Data Flows
	2.1 Introduction
	2.2 Background
	2.2.1 Query Optimization in Parallel RDBMSs
	2.2.2 MapReduce
	2.2.2.1 MapReduce Programming Model
	2.2.2.2 MapReduce Execution Model
	2.2.2.3 MapReduce and Optimization

	2.3 Higher-Level Languages for MapReduce
	2.3.1 Overview of Higher-Level Languages
	2.3.1.1 Pig
	2.3.1.2 Hive
	2.3.1.3 Jaql

	2.3.2 Comparing Higher-Level Languages and RDBMSs
	2.3.3 Optimization of Higher-Level Languages
	2.3.3.1 Logical Optimization and Rewrite Heuristics
	2.3.3.2 Physical Optimization
	2.3.3.3 Storage Optimization
	2.3.3.4 Multi-result Optimization

	2.4 Optimization of Plain MapReduce Programs
	2.4.1 Starfish
	2.4.1.1 Profiler
	2.4.1.2 What-If Engine
	2.4.1.3 Cost-Based Optimizer

	2.4.2 Manimal
	2.4.2.1 Analyzer
	2.4.2.2 Optimizer, Catalog and Execution Fabric

	2.5 Parallel Data Flow Systems
	2.5.1 The Dryad Ecosystem
	2.5.1.1 Dryad
	2.5.1.2 DryadLINQ
	2.5.1.3 SCOPE

	2.5.2 Asterix
	2.5.2.1 Hyracks
	2.5.2.2 Asterix Data Model and Query Language
	2.5.2.3 Asterix Algebra and Optimizer

	2.5.3 Stratosphere
	2.5.3.1 PACT Programming Model
	2.5.3.2 Nephele Data Flow Engine
	2.5.3.3 PACT Optimizer

	2.6 Comparing State-of-the-Art Systems
	2.6.1 Programming Interface
	2.6.2 Execution Platform
	2.6.3 Optimization

	2.7 Future Research and Conclusion
	References

	3 Mining Tera-Scale Graphs with ``Pegasus'': Algorithms and Discoveries
	3.1 Introduction
	3.2 Related Work
	3.3 Discoveries
	3.3.1 Radius Plots
	3.3.2 Connected Components
	3.3.3 Triangle Counting

	3.4 Algorithms
	3.4.1 Generalized Iterative Matrix Vector Multiplication
	3.4.1.1 Main Idea
	3.4.1.2 GIM-V and PageRank
	3.4.1.3 GIM-V and Random Walk with Restart
	3.4.1.4 GIM-V and Diameter/Radius Estimation
	3.4.1.5 GIM-V and Connected Components
	3.4.1.6 Fast Algorithms for GIM-V
	3.4.1.7 Performance

	3.4.2 Eigensolver
	3.4.2.1 Careful Algorithm Choice
	3.4.2.2 Selective Parallelization
	3.4.2.3 Blocking
	3.4.2.4 Exploiting Skewness: Matrix-Vector Multiplication
	3.4.2.5 Exploiting Skewness: Matrix-Matrix Multiplication
	3.4.2.6 Performance

	3.5 Conclusion
	References

	4 Customer Analyst for the Telecom Industry
	4.1 Introduction
	4.1.1 How It All Began
	4.1.2 The Telecom Role and Problem
	4.1.3 Possible Telecom Data Sets
	4.1.3.1 Identifying Users
	4.1.3.2 Call/Events Data Records
	4.1.3.3 The Apps World
	4.1.3.4 Other Customer Data Sources

	4.1.4 Some Applications
	4.1.4.1 Churn Prevention
	4.1.4.2 User Segmentation and Personalized Marketing

	4.1.5 Privacy Issues
	4.1.6 Customer Analyst
	4.1.7 Chapter Organization

	4.2 Related Work
	4.3 Customer Modeling Framework
	4.3.1 Setting
	4.3.2 The User Profile Model
	4.3.2.1 Basic Notations
	4.3.2.2 Categorization
	4.3.2.3 Aggregation
	4.3.2.4 MapReduce Implementation

	4.4 System Architecture
	4.4.1 The Customer Analyst Library
	4.4.1.1 Utils
	4.4.1.2 Resource Analysis Layer
	4.4.1.3 Entities Analysis Layer
	4.4.1.4 Entities Modeling Layer
	4.4.1.5 Applications Layer
	4.4.1.6 Evaluation Framework

	4.4.2 Analysis Flow
	4.4.3 End-to-End Flow

	4.5 Evaluation
	4.5.1 Dataset and Experimental Setup
	4.5.2 Quality Analysis
	4.5.2.1 ODP Categorization
	4.5.2.2 ODP Coverage

	4.5.3 Scalability Analysis
	4.5.3.1 Effect of Data Size
	4.5.3.2 Effect of Aggregation

	4.6 Conclusions
	Appendix
	References

	5 Machine Learning Algorithm Acceleration Using Hybrid (CPU-MPP) MapReduce Clusters
	5.1 Introduction
	5.1.1 Extraction Phase
	5.1.2 Integration Phase

	5.2 Related Work
	5.3 Research Contributions
	5.4 A Unified Heterogeneous Architecture
	5.4.1 MapReduce Architecture Background
	5.4.2 MPP Integration
	5.4.3 MPP Orchestration

	5.5 Massively Multithreaded SVM
	5.5.1 Binary SVM
	5.5.2 MapReduce Decomposition of the SVM
	5.5.3 Single-MPP Device SVM
	5.5.4 Multiple-MPP Device SVM

	5.6 Implementation and Experimental Results
	5.6.1 Datasets
	5.6.2 Implementation and Setup
	5.6.3 Experimental Results

	5.7 Conclusions and Future Work
	References

	6 Large-Scale Social Network Analysis
	6.1 Introduction
	6.2 Social Network Analysis
	6.2.1 Centrality Measures
	6.2.1.1 Degree Centrality
	6.2.1.2 Closeness Centrality
	6.2.1.3 Betweenness Centrality
	6.2.1.4 PageRank

	6.2.2 Summary of the Main Centrality Measures
	6.2.3 Network Models

	6.3 Parallel Computing
	6.3.1 Shared Memory Architectures
	6.3.2 Massively Multi-threaded Computers
	6.3.3 Distributed Memory Architectures
	6.3.4 Challenges in Parallel Graph Algorithms
	6.3.5 Addressing Locality Issues in Distributed Memory Architectures

	6.4 Parallel Computation of Centrality Measures
	6.5 Libraries
	6.5.1 Parallel Boost Graph Library
	6.5.2 Small-world Network Analysis and Partitioning (SNAP)
	6.5.3 Multi-Threaded Graph Library (MTGL)
	6.5.4 HipG Framework
	6.5.5 DisNet Framework
	6.5.6 PeGaSus System
	6.5.7 Combinatorial BLAS Library

	6.6 Performance Considerations
	6.6.1 Betweenness Centrality on Distributed Memory Architectures
	6.6.2 Betweenness Centrality on Shared Memory Architectures
	6.6.3 Shared Memory vs. Distributed Memory

	6.7 Concluding Remarks
	References

	7 Visual Analysis and Knowledge Discovery for Text
	7.1 Introduction
	7.2 Processing Pipeline for Visual Analysis of Text
	7.2.1 Acquisition
	7.2.2 Semantic Enrichment
	7.2.2.1 Information Extraction
	7.2.2.2 Feature Engineering and Vectorization
	7.2.2.3 Indexing
	7.2.2.4 Text Classification

	7.2.3 Semantic Integration
	7.2.3.1 Schema Level
	7.2.3.2 Instance Level
	7.2.3.3 Declarative-Deductive Techniques
	7.2.3.4 Statistical-Inductive Techniques

	7.2.4 Selection and Aggregation
	7.2.4.1 Retrieval
	7.2.4.2 Unsupervised Machine Learning
	7.2.4.3 Summarization

	7.2.5 Visualization and Interaction
	7.2.5.1 Ordination
	7.2.5.2 Interactive Visualization

	7.2.6 Hypothesis Formulation and Analytics Workflow
	7.2.6.1 Hypothesis Generation
	7.2.6.2 Hypothesis Validation

	7.3 Visual Representations and Interactions on Text
	7.3.1 Topical Overview
	7.3.1.1 Tag Clouds
	7.3.1.2 Information Landscapes

	7.3.2 Multidimensional Metadata
	7.3.2.1 Scatterplot
	7.3.2.2 Parallel Coordinates

	7.3.3 Space and Time
	7.3.3.1 Visualization of Geo-Spatial Information
	7.3.3.2 Visualization of Temporal Information
	7.3.3.3 ThemeRiver

	7.3.4 Relationships
	7.3.4.1 Graph Visualization

	7.3.5 Visually Enhanced User Feedback
	7.3.5.1 Modalities of Interaction
	7.3.5.2 Operations of Interactions
	7.3.5.3 Steering the Visual Analytics Process

	7.3.6 Multiple Visualization Interfaces

	7.4 Application Scenarios and Domains
	7.4.1 Media Analysis for the General Public
	7.4.2 Navigation and Exploration of Encyclopedias
	7.4.3 Patent Analysis and Comparison

	7.5 Conclusion and Outlook
	References

	8 Practical Distributed Privacy-Preserving Data Analysis at Large Scale
	8.1 Introduction
	8.2 Background and Related Work
	8.2.1 Cryptography
	8.2.2 Privacy-Preserving Data Mining
	8.2.3 Statistical Database Privacy

	8.3 Preliminaries
	8.3.1 Notions of Privacy
	8.3.1.1 Early Notions
	8.3.1.2 Differential Privacy

	8.4 Design Considerations
	8.4.1 Design Goals
	8.4.2 Issue of Field Sizes
	8.4.3 Available Resources
	8.4.4 The Alternatives
	8.4.4.1 Generic Secure Multiparty Computation
	8.4.4.2 Server-Based Elliptic Curve Cryptography Scheme

	8.5 Principles and Architecture
	8.5.1 Principles
	8.5.2 Architecture

	8.6 The Peers for Privacy Framework
	8.6.1 Private Computation
	8.6.2 Provable Privacy
	8.6.3 Enforcing Correct Behavior
	8.6.3.1 Zero-Knowledge Tools
	8.6.3.2 Restricting Malicious Influence

	8.7 Private Large-Scale SVD
	8.7.1 Basics
	8.7.2 Private SVD Scheme
	8.7.3 Enforcing Data Consistency
	8.7.3.1 Consistency Check Protocol
	8.7.3.2 Issue of Group Sizes

	8.7.4 Dealing with Real Numbers
	8.7.5 Complete SVD Protocol
	8.7.6 Privacy Analysis

	8.8 Implementation and Evaluation
	8.8.1 Precision and Round Complexity
	8.8.2 Performance
	8.8.3 Scalability

	8.9 Conclusion and Future Trends
	References

	Index

