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    Abstract     Leishmaniasis is one of the most assorted and intricate of all vector borne 
diseases caused by the genus  Leishmania . Survival of  Leishmania  parasites inside 
the mammalian host needs a set of virulence factors, among them,  Leishmania  pro-
teases have paramount importance. Several of these proteases have been identifi ed 
as potential virulence factors for their crucial roles in the invasion of the host via 
parasite migration through tissue barriers, degradation of host proteins for nutrition 
purpose, immune evasion and activation of infl ammation. Hence, the investigation 
on proteases in  Leishmania  is proposed as a valuable approach to enhance our 
knowledge on host-parasite interaction. Through various studies, a number of 
metalloproteases and cysteine proteases have been implicated as major components 
in host invasion by modulating host cell signaling for the establishment and con-
tinuation of infection by  Leishmania . But, the roles of serine proteases in leishmani-
asis have not been investigated adequately. In this review, we will discuss the 
signifi cance of  Leishmania  proteases in parasite lifecycle and their possible account-
ability as a new drug target with special emphasis on  Leishmania  serine proteases.  
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1         Introduction 

 Leishmaniasis is caused by an obligate intracellular protozoan parasite of the genus 
 Leishmania . The disease is manifested in different clinical forms: visceral leish-
maniasis (VL), cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL) 
of which VL is the most severe form of leishmaniasis. According to World Health 
Organization (WHO), 350 million people are at risk of contracting one of the forms 
of the disease, 12 million cases in 88 endemic countries worldwide and also with an 
annual-incidence of 1.5 million new cases [ 1 ]. Currently, leishmaniasis is spreading 
due to co-infection with human immunodefi ciency virus (HIV) [ 2 ]. 

 All types of leishmaniasis are transmitted by the female phlebotomine sand fl ies. 
 Leishmania  parasites alternate between two distinct developmental stages. The 
motile fl agellated promastigote forms multiply and develop extracellularly in the 
alimentary tract of the blood sucking female sand fl y vectors and are transmitted dur-
ing the blood meal into mammalian host. Inside the mammalian hosts promastigotes 
infect macrophages of the reticuloendothelial tissue and differentiate into nonmotile 
amastigotes forms which multiply as such in the phagolysosomal vacuoles. 

 Like other intracellular protozoan parasites,  Leishmania  survive inside the host 
macrophages (Mφs) by implying various mechanisms [ 3 ,  4 ] and allow them to 
evade and suppress the host immune system, thereby granting their survival in the 
host body. In order to establish themselves in the host,  Leishmania  promastigotes 
have to escape Mφ microbicidal action and amastigotes have to repress Mø killing 
abilities to re-invade new Mφs for persistent  Leishmania  infection [ 5 ,  6 ]. Following 
phagocytosis,  Leishmania  persuade the harsh environment through the inhibition of 
hydrolytic enzymes, toxic metabolic products, cell signaling, cytokine production 
and other events [ 7 ]. These tactics permit  Leishmania  to successfully undermine the 
host innate and acquired immune responses to promote their survival. The effective 
elimination of parasites by macrophages depends on the activation of appropriate 
immune responses [ 8 ,  9 ]. So,  Leishmania  have developed mechanisms to subvert 
the microbicidal activity of Mφs [ 10 ] where the host Mφs produce nitric oxide (NO) 
through the induction of iNOS, in response to extracellular signals, including IFN-γ 
and LPS [ 11 ] and this NO generation by activated Mφs is the prerequisite for intra-
cellular killing of amastigotes.  Leishmania  enter into the host Mφs by receptor 
mediated endocytosis and avoid complement mediated lysis by cleaving C 3b  to C 3bi  
[ 7 ]. Inside the phagolysosomes of the host Mφs,  Leishmania  promastigotes can also 
hinder phagosome–endosome fusion and protect themselves from toxic oxygen 
metabolites generated during the macrophage oxidative burst by scavenging 
hydroxyl radicals and superoxide anions [ 12 ].  Leishmania  also escape microbicidal 
action of host Mφs by modulating host cell cytokines production, where induction 
of a Th1 type immune response is associated with clearance of  Leishmania  infec-
tion and a Th2 type immune response leads to persistence of infection. In  Leishmania  
infection TGFβ, IL-10 and PGE2 have been implicated as important immunosup-
pressive signaling molecules and also inhibit the production of the Th1 response-
promoting cytokines IL-1, IL-12 and TNF-α [ 13 ,  14 ]. 
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 Both promastigotes and amastigotes alter the signaling pathways of Mφs in 
order to block their killing functions [ 14 – 17 ]. PKC signaling is known to play a key 
role in the regulation of Mφ functions activating Th1 response leading to NO pro-
duction and oxidative burst [ 14 ] but, restraining of PKC activation by  Leishmania  
parasites impair subsequent signaling phenomena [ 14 ,  15 ]. 

  Leishmania  modify host signaling through the disruption of cellular phosphory-
lation [ 18 ] by expressing endogenous phosphatases that cause a decrease of macro-
phage PKC activity and inhibition of MKP1 (p38) and MMKP3/PP2 (ERK1/2) 
activation leading to the up regulation of IL-10 and down regulation of NO and 
TNF-α production [ 14 ]. Consequently,  Leishmania  mediated IFN-γ inducible tyro-
sine phosphorylation and activation of JAK1, JAK2, and STAT1 pathway [ 19 ] has 
been shown to involve the activation of the cellular protein tyrosine phosphatase 
SHP-1, responsible for dephosphorylating MAP kinases 1 and 2 [ 14 ,  15 ]. The 
 Leishmania  parasites can also decline the nuclear translocation of NF-κB in mono-
cytes with an outcome of a decrease in IL-12 production [ 20 ]. 

 Various virulence factors enable  Leishmania  to invade and establish infection 
inside the mammalian host [ 7 ,  14 ,  21 – 25 ], these factors include major surface prote-
ase (GP63), cysteine proteases (CPs), serine proteases (SPs), lipophosphoglycan 
(LPG), A2 protein family, glycosylinositol phospholipids (GIPLs), secreted acid 
phosphatases (SAPs) and kinetoplastid membrane protein 11 (KMP-11) etc. However, 
the specifi c roles of these molecular determinants are still under debate [ 26 ,  27 ]. 
Therefore, the elucidation of the mode of action of these virulence factors toward the 
host cell is of utmost importance to accomplish a more comprehensive view of the 
host-parasite interactions as well as immune modulation and thus also focus a new 
insight of target molecules for therapeutic intervention of leishmaniasis.  

2     Proteases as Virulence Factors in  Leishmania  

 Among the numerous parasitic virulence factors, parasite-derived proteases receive 
supreme importance due to their vital roles in the parasite life cycle and pathogene-
sis. Parasites produce a wide array of proteases which are essential for degradation of 
the tissue barriers for migration of parasites to specifi c sites, cleavage of host proteins 
for their essential nutrients, activation of infl ammation that assure their survival and 
proliferation to sustain the infection [ 28 – 33 ]. A variety of  Leishmania  derived prote-
ases have been shown clinically important for diagnosis and vaccine development. 
Several studies have illustrated metalloproteases, cysteine proteases, aspartic and 
recently serine proteases to be essential for  Leishmania  infection (Table  1 ).

   The  Leishmania  genomes encode a large number of proteases [ 34 ].  L .  mojor  is 
expected to contain at least 154 peptidases (including aspartic-, cysteine-, metallo-, 
serine- and threonine-peptidases as well as one protease of unknown catalytic type) 
that represent around 1.8 % of the genome (Fig.  1 ) [ 34 ]. Comparative genomic 
analysis with the different species of the genus  Leishmania  have shown that the 
numbers of proteinase genes remain fi xed among the various species (  http://merops.
sanger.ac.uk/    ).
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   Table 1    Biological roles proteases in leishmaniasis   

 Classes of 
proteases  Biological name 

  Leishmania  
species  Immunological functions 

 Metallo- 
proteases  

 GP63   L .  donovani   Inactivates IgG by hydrolysis, evade comple-
ment-mediated lysis by cleaving of C3b into 
C3bi, degrades NF-κB and inhibit IL-12 and NO 
expression, protects against antimicrobial 
peptides, affects the natural killer (NK) cell 
functions, alters signaling by SHP-1 activation 
leading to inhibition of JAK2/STAT1α pathway, 
IRK1 kinases and MAPK, degrades JNK, 
hydrolyses MARCKS/MRP, cleaves mTOR, 
inactivates transcription factors by cleaving c-Jun 
and AP-1 [ 7 ,  14 ,  15 ,  18 ,  21 ,  22 ,  25 ,  37 – 40 ]. 

  L .  amazonensis  
  L .  mexicana  
  L .  major  

 Intracellular 
metalloprotease 
(MP-Ld) 

  L .  donovani   MP-Ld located extensively near the fl agellar 
pocket region, appears to play important roles in 
parasitic development [ 65 ] 

 Cysteine 
proteinases 

 CPA   L .  infantum   Plays a role in infection of mammalian host cells [ 77 ] 
 CPB   L .  mexicana   Induces Th2-associated immune response, 

induces lesions; inhibits of IL-12 production by 
degrading NF-κB, inhibits of NO generation by 
cleaving STAT-1 and AP-1 transcription factors, 
degrades of IκB-α, IκB-β transcription factors, 
prevents antigen presentation by degrading MHC 
class-II molecules, inhibits NK cells proliferation 
and cleaves CD4 glycoprotein of human T cells 
[ 36 ,  62 ,  67 – 69 ,  88 ,  95 ] 

  L .  major  
  L .  amazonensis  
  L .  chagasi  
  L .  pfanoi  

 CPC   L .  mexicana   Subverts microbicidal effects of macrophages 
and contributes to resistance, induces TGF-β 
expression in human cell culture [ 36 ,  75 ,  90 ,  91 ] 

  L .  chagasi  

 Serine 
proteinases 

 Oligopeptidase B   L .  donovani   Help to differentiate from promastigote to 
amastigote. Regulate levels of enolase on the 
parasite cell surface and facilitate parasite entry 
into macrophages. Contributes to retain 
macrophages infection [ 111 ,  121 ,  193 ]     

  L .  mexicana  
  L .  major  

 Subtilisin type seine 
protease 

  L .  donovani   Plays essential role in promastigotes to 
amastigotes differentiation, detoxifi es reactive 
oxygen intermediates and maintains redox 
homeostasis, and is essential for  Leishmania  
virulence [ 136 ] 

 Serine protease   L .  amazonensis   Enhances the  Leishmania  infection by promoting 
Th2-type of immune responses and is essential 
for parasite survival [ 138 ,  190 ] 

 115 kDa Serine 
protease (pSP) 

  L .  donovani   Associated with metacyclic promastigotes, located 
mainly at fl agellar pocket region, confers 
signifi cant protection via IFN-γ induced down-
regulation of TNF-α mediated MMP-9 activity in 
experimental visceral leishmaniasis [ 140 ] 

 Intracellular serine 
protease (SP-Ld) 

  L .  donovani   Localized in the fl agellar pocket as well as at the 
surface of the parasite, it down regulates the 
phagocytic activity of macrophages [ 65 ] 

 Aspartic 
proteases 

 Presenilin 1 
(PS1) type 

  L .  major   Cleaves type I membrane proteins and effectively 
involved in autophagy [ 66 ] 

 Signal peptide 
peptidase (SPP) 
type 

 Cleaves the transmembrane domains of signal 
peptidases [ 66 ] 

 Ddi1-like protein   L .  major   Essential for  Leishmania  growth and macro-
phages infection [ 142 ,  146 ,  147 ]   L .  mexicana  
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  Fig. 1       Clans and families of  L .  major  peptidases. Nomenclature is done on the basis of the 
MEROPS database (  http://merops.sanger.ac.uk/    ). The estimated number of peptidases in each 
family is represented by  numbers  within  brackets  [ 34 ]       
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   Many proteases are reported in both forms of  Leishmania  and their roles in the 
parasite physiology and immunoinvasion have been elucidated. A number of metal-
loproteases and cysteine proteases have been suggested to be virulence attributes 
that contribute to  Leishmania  pathogenesis by modulating the host cell signaling 
[ 25 ,  31 – 39 ]. Although, serine proteases have been extensively studied because of 
their imperative roles in parasite survival and pathogenicity [ 25 ,  39 – 44 ], roles of 
serine proteases in leishmaniasis have not been investigated adequately. In this con-
text, the present review deals with the leishmanial proteases with special reference 
to the serine proteases, their possible involvement in  Leishmania  pathogenesis and 
to consider them as promising drug target for the prevention of the disease. 

2.1     Metalloproteases 

 Promastigote major surface protease (MSP) leishmanolysin or GP63, the most 
abundant surface glycoprotein of  Leishmania , belongs to the clan MA, M8 family 
of endopeptidases [ 34 ]. Its abundant expression of  Leishmania  promastigotes sur-
face is well explored and its presence in amastigotes is also known [ 45 ]. It is bound 
to the surface membrane by a GPI (glycosyl phosphatidyl inositol) anchor which 
can be cleaved in vitro by phospholipase C (PLC) but its release  in vivo  depends on 
autoproteolysis [ 46 ].  L .  braziliensis  alone has at least ninety-seven metalloprotein-
ase (  http://tritrypdb.org    ,   http://blast.ncbi.nlm    . nih.gov/) and 16 families of metallo- 
peptidases were identifi ed in  L .  major  (Fig.  1 ) [ 34 ]. GP63, accounting for about 1 % 
of the total protein in promastigotes of  Leishmania , are potentially important during 
different stages of the life cycle [ 37 ]. GP63 share several characteristics with mam-
malian matrix metalloproteases (MMPs) that includes degradation of the extracel-
lular matrix, cell surface localization, activation by Zn 2+  and inhibition by several 
chelating agents and α-2-macroglobulin and like MMPs, it has also a wide range of 
substrates including casein, gelatin, albumin, haemoglobin, and fi brinogen [ 37 ,  47 ]. 

 The zinc dependent metalloprotease GP63 can act in the sandfl y midgut as well 
as macrophages parasitophorous vacuoles. In the amastigote, leishmanolysin 
(GP63) is located in the large lysosomes [ 48 ,  49 ]. At least 18 metalloproteinase 
genes were detected in  L .  chagasi  and seven metalloproteinase genes have been 
identifi ed in  L .  major  [ 46 ,  50 ]. The up-regulation of GP63 expression in invasive 
metacyclic promastigotes suggests that the protease plays an important role in the 
early stages of infection of the mammalian host [ 51 ]. Examination of  Leishmania  
strains expressing varying levels of GP63 has suggested that it participates in direct 
binding of the parasite to macrophages [ 22 ,  39 ]. Besides its presence in different 
species of  Leishmania , GP63 has also been reported in various trypanosome species 
like  Crithidia fasciculata ,  T .  brucei , and  T .  cruzi  [ 37 ]. More recently leishmanoly-
sin homologs have been found in  Trichomonas vaginalis  as well [ 52 ]. 

 GP63 plays important diverse roles in leishmanial pathogenesis. It helps 
 Leishmania  promastigotes to evade complement-mediated lysis (CML) by proteo-
lytic cleavage of C3 complement into inactive iC3b (inactive C3b) thereby helping 
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the parasite to avoid complement pathway and thus enhances phagocytosis of pro-
mastigotes by host Mø through macrophage receptors CR3 [ 53 ]. It also favors pro-
mastigote migration through the extracellular matrix (ECM) by degrading the 
extracellular matrix components such as fi bronectin and collagen IV and thereby 
further facilitates the parasite adherence to macrophages [ 54 ]. As an immunemodu-
lator, GP63 diminishes both T cell responses either by cleaving CD4 molecules 
from T h  cells or also by degrading many other intracellular peptides presented by 
major histocompatibility complex class I (MHC-I) molecule [ 55 ,  56 ]. Additionally, 
GP63 mediated enzymatic degradation of antimicrobial peptides causes resistance 
of the parasite to apoptotic killing by these peptides [ 57 ]. 

 GP63 modulates host negative regulatory mechanisms by degrading various 
kinases and transcription factors. It is responsible for the hydrolysis of the myris-
toylated alanine-rich C kinase substrate related protein (MRP), a major PKC sub-
strate in macrophages and thereby inhibits PKC activation [ 58 ]. Recently it has been 
proposed that GP63 dependent alternative mechanism could be involved in PKC 
alteration [ 22 ]. It was also reported that  Leishmania  GP63 is able to rapidly reach 
the intracellular milieu of the host macrophage through lipid raft and activate host 
protein tyrosine phosphatases (PTPs) [ 18 ,  38 ]. It induces activation of the protein 
tyrosine phosphatase (PTP) SHP-1 through a lipid raft-based mechanism causing 
inhibition of JAK/STAT pathways, IFN-γ stimulation and reducing NO production 
[ 22 ,  59 ]. Thus the progression of leishmaniasis involving PTPs activation also 
requires the proteolytic mechanisms involving GP63. 

 Furthermore, GP63-mediated SHP-1 activation involves MAPK inactivation 
where JNK kinase and its downstream signaling target namely c-Jun, is cleaved by 
GP63 thus directly affecting MAPK activation [ 60 ]. At the same time, GP63 medi-
ates cleavage of p65subunit of the NF-κB into a smaller subunit (p35) that enters the 
host cell nucleus and triggers the expression of chemokines [ 61 ]. Taken together, 
GP63 was found not only to degrade NF-κB completely but also implicated in the 
proteolysis of c-Jun, the central component of the transcriptional complex AP-1 
leading to decreased IFN-γ-induced NO production [ 60 ,  62 ]. 

 Natural killer (NK) cells play important roles in innate immunity via cytotoxic 
activity and early cytokine production against pathogens, including parasites. 
Proliferation, receptor expression and IFN-γ released by natural killer (NK) cells 
have been shown to be affected by  Leishmania  GP63 therefore inhibiting the Th1 
type immune response with parasite infection and has also been shown to cleave 
mTOR to control translational system of host cells [ 63 ,  64 ]. Destabilizing the proper 
functioning of the transcriptional machinery by  Leishmania  GP63 results in the 
enlistment of the macrophages to serve as host, thereby precluding the expression 
of host factors such as IL-12 and iNOS that threaten their survival [ 22 ,  38 ,  39 ] 

 Interestingly, another metalloprotease (MP-Ld) was also identifi ed in  L .  don-
ovani  promastigotes [ 65 ]. Both immunofl uorescence and immune-gold electron 
microscopy studies revealed that MP-Ld is located extensively near the fl agellar 
pocket region (Fig.  2 ). It seems to be of collagenase type as it degrades azocoll with 
maximum effi ciency. It was predicted that MP-Ld played major and important role 
in parasitic development rather than in the infection process.
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   Overall view of these evidences suggest that metalloproteases of  Leishmania  are 
of signifi cance that could unveil the molecular mechanisms of host-parasite interac-
tions where GP63 is a profound virulent factor of  Leishmania  and could be an effec-
tive target of novel therapeutic and prophylactic approach for prevention of 
leishmaniasis.  

2.2     Cysteine Proteases 

  Leishmania  expresses many distinct genes (Fig.  1 ) encoding a total of 65 cysteine 
proteases and they are involved in a wide range of important biological processes 
[ 36 ].  L .  major  was found to have members of four clans of cysteine peptidases, 
consisting of enzymes of eight families of clan CA, three families of clan CD and 
one family each of clans CF and PC [ 66 ]. Cysteine proteases (CPs) have been dem-
onstrated as important virulent factor as they are essential for  Leishmania  survival, 
replication, development, metabolism, host cell infection and evasion of host 
immune response [ 36 ,  67 ]. 

  Fig. 2       Localization of  L .  donovani  intracellular metallo protease (MP-Ld) by confocal immuno-
fl uorescence and immune-gold electron microscopy. MP-Ld was envisioned by FITC-labeling ( a ), 
TRITC conjugated con A was used to label the fl agellar pocket ( red ) ( b ), Merged images showing 
co-localization of MP-Ld within the fl agellar pocket ( c ) and ( d ) is the phase contrast image of 
MP-Ld. No fl uorescence was detected in presence of corresponding pre-immune serum ( e ).  L . 
 donovani  promastigotes showing the presence of gold particles ( f ) indicate distribution of MP-Ld 
near the fl agellar pocket denoted by the  arrow  [ 65 ]       
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 The proteases of the papain family (clan CA, family C1) are the most extensively 
studied proteases of  Leishmania . The best characterized of these enzymes are the 
cathepsin L-like A (CPA) and B (CPB) families of cysteine proteases and the cathep-
sin B-like C (CPC) family of cysteine proteases, all of which are lysosomal in amas-
tigote stages [ 66 ]. Many studies have identifi ed CPs as prevalent virulence factors in 
 Leishmania  genus [ 36 ]. It has been investigated that both CPB and CPA facilitates 
effective autophagy and differentiation of the  Leishmania  [ 68 ]. The proteases have 
been demonstrated as potential drug targets and vaccine candidates [ 66 ,  69 – 71 ] as 
they are essential for the growth of  Leishmania  and for the progression of lesions. 

 Roles of these proteases in the modulation of host immune response have been 
reported. The lack of both CPA and CPB lead to increased production of Th1-type 
cytokines response, and reduced production of IL-4, a signature cytokine of the 
Th2-type immune response [ 72 – 74 ]. CPC has also been found to exacerbate the 
disease [ 75 ]. There is evidence that CPC can also play a relevant role as a key 
 Leishmania  virulence factor as it may contribute to some of the immunoregulatory 
activities of  L .  chagasi  by inducing TGF-β expression [ 36 ,  75 ,  76 ]. Based on gene 
suppression studies CPA from  L .  infantum  was found to be responsible for virulence 
of the parasite [ 77 ,  78 ]. 

 Cathepsin L-like proteases of  L .  pifanoi  and  L .  mexicana  and the cathepsin B-like 
protease of  L .  major  localized in lysosomes implicates the involvement of these 
enzymes in protein degradation [ 36 ,  70 ,  79 ]. Cathepsin-L like cysteine protease 
(CPB) promotes a Th2-type of immune response by cleaving the IL-2 receptor 
CD25 and the low-affi nity IgE receptor CD23 [ 73 ,  79 ,  80 ]. Moreover, active partici-
pation of leishmanial CPs in T-cell mediated immunity is due to the presence of 
T-cell epitope at the COOH-terminal region of the protease itself [ 81 ,  82 ]. In addi-
tion, computational analysis of  Leishmania  CPs also reveals that they contain poten-
tial epitopic regions [ 83 ]. Due to immunogenicity of CPs, they have been used as 
vaccine candidates with different degree of protection in animal model [ 84 – 87 ] 

 A high CP activity was observed in extract of  L .  amazonensis  amastigotes, but 
promastigotes from the exponential or stationary phases exhibited very low proteo-
lytic activity [ 88 – 90 ]. In several species of  Leishmania , there is an association 
between the level of CP expression and virulence [ 72 ,  91 ,  92 ]. CP is highly expressed 
in amastigotes and very low level in metacyclic promastigotes which might specify 
its central roles for intracellular survival of the parasite [ 36 ]. Correspondingly, 
 Leishmania  lacking cysteine proteases or parasites treated with specifi c cysteine 
protease inhibitors massively exhibits less infectivity [ 92 – 94 ]. 

  Leishmania  CPs have also been implicated in the inhibition of the crucial role of 
host cysteine proteases in the procession of antigen presentation by degrading MHC 
class II molecules in the parasitophorous vacuole [ 95 ] and partially inhibit host 
immune response.  Leishmania  amastigote CPs may also involve positive alteration 
of PKC mediated signaling that causes an enhanced expression of MKP3, PP2 and 
MKP1favoring intracellular survival [ 16 ,  22 ]. Another important function of CPs as 
virulent factors is the degradation of the transcription factors STAT1 and AP-1 
which subsequently hinder NO production in host macrophages [ 96 ]. Alternatively, 
 Leishmania  CPs are also capable to disrupt NF-kB signaling by drastic cleavage of 
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NF-κB family proteins with downregulation of IL-12 production and concomitant 
persistence of infection in host macrophages [ 62 ,  97 ]. 

 Collectively,  Leishmania  CPs are considered as a key factor with potential attri-
bute in disease pathogenesis and hence might be addressed for developing a suitable 
drug of leishmaniasis.  

2.3     Serine Proteases 

 Serine proteases are extensively dispensed in nature i.e. in all cellular organisms and 
more than one third of all known proteolytic enzymes are serine proteases grouped 
into 13 clans and 40 families [ 98 ]. They are a diverse group of enzymes that are 
characterized by the presence of three critical amino acids-histidine, aspartate, and 
serine-in the catalytic site [ 99 ]. These residues form together the “catalytic triad” of 
serine proteases. The family name is originated from the nucleophilic ‘Ser’ in the 
enzyme’s active site, which attacks the carbonyl moiety of the substrate peptide bond 
to form an acyl-enzyme intermediate thus to hydrolyze peptide bonds [ 100 ]. The 
“catalytic triad” is associated with many families of seine proteases including the 
trypsin, subtilisin, prolyl oligo peptidase and serine carboxypeptidase families [ 101 ]. 

 Serine proteases can be classifi ed into three groups based mainly on their pri-
mary substrate preference: (1) trypsin-like, (2) chymotrypsin-like and (3) elastase- 
like. Trypsin family proteases represent the most abundant group in vertebrates, 
where they function in blood coagulation, the complement cascade, intestinal diges-
tion, in infl ammatory responses, reproduction and many other physiologic processes 
as in development, maintenance, and pathology of the nervous system [ 102 – 105 ]. 

 In general, serine proteases of protozoan parasites and some bacteria are of the 
subtilisin (SB) type and in many cases oligopeptidase B (OPB) type. Chymotrypsin, 
trypsin and elastase (trypsin family) share closely-similar structures containing 
active serine residue at the same position (Ser-195), while subtilisins have Ser resi-
due at 221. Subtilisin (serine endopeptidase) is a non-specifi c   protease    . 

 In the trypanosomatids, serine protease research has generally centered on the 
oligopeptidase B (OPB) and prolyl oligopeptidase (POP) [ 41 ,  106 ]. During entry 
into the host cell, it is supposed that  Trypanosoma cruzi  OPB augments host cell 
penetration by eliciting Ca 2+ -signaling mechanism [ 42 ,  107 ].  T .  cruzi  prolyl oligo-
peptidases (POP) may be important to degrade extracellular matrix proteins such as 
collagen and fi bronectin to facilitate parasite invasion process [ 108 ] as the penetra-
tion of  T .  cruzi  into host is reduced in the presence of selective exogenous OPB and 
POP inhibitors [ 32 ,  109 – 111 ]. 

 Serine proteases in apicomplexans have mainly centered on protein processing 
and other functions related to intracellular survival [ 112 ]. To date, many serine pro-
teases have been found to be essential virulence factors in protozoan parasites 
including  Plasmodium falciparum ,  Eimeria tenella ,  Toxoplasma gondii ,  Babesia 
divergens ,  Perkinsus marinus  etc. [ 44 ,  112 – 118 ].  Helminthes  and  Schistosomes  par-
asites exploit their serine proteases in anticoagulation and invasion respectively [ 32 ]. 
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 Excluding metallo and cysteine proteases,  Leishmania  also contain at least 
twenty-three serine proteinases (  http://tritrypdb.org    ,   http://blast.ncbi.nlm    . nih.gov/). 
The activity of a serine peptidase was fi rst purifi ed and characterized from soluble 
extracts of  L .  amazonensis  promastigotes [ 119 ]. This serine peptidase was charac-
terized as an oligopeptidase as it can’t hydrolyze proteins or large peptides, but it 
cleaves only small peptides substrates, at their carboxyl side.  Leishmania  OPB was 
subsequently described in  L .  major  in 1999 [ 120 ]. By means of mass spectrometry 
and gene deletion approach, the  Leishmania  oligopeptidase B (OPB; Clan SC, fam-
ily S9A), was identifi ed and characterized [ 121 ]. The OPB activity was detected in 
both promastigote and amastigote stages of  Leishmania . However, this activity was 
signifi cantly elevated in the amastigote stage for both  L .  donovani  and  L .  Mexicana . 
The  L .  amazonensis  OPB was cloned and sequenced and was found to be 90 % 
identical to  L .  major  and  L .  infantum  OPB and 84 % identical to  L .  braziliensis  
[ 122 ]. It is important to keep in mind that  Trypanosoma  species do not express 
enzymes showing serine protease activities, but only serine oligopeptidases with 
specifi c functions in many steps of mammalian cell invasion [ 123 ,  124 ]. 

 Furthermore, some serine proteases have been reported in  Leishmania  in secreted 
as well as in intracellular form [ 65 ,  125 – 131 ]. A detergent soluble 110 kDa serine 
protease [ 125 ] and a 68 kDa intracellular serine protease in aqueous extract were 
identifi ed and characterized from  L .  amazonensis  promastigotes [ 126 ,  132 ]. At the 
same time extracellular serine proteases from different species of  Leishmania  like  L . 
 amazonensis  [ 127 ],  L .  braziliensis  [ 128 ] and more currently from  L .  donovani  [ 130 ] 
have been demonstrated with similar biological properties and location near the fl a-
gellar pocket region in promastigotes and megasomes of amastigotes [ 128 ,  133 ,  134 ]. 

  L .  chagasi , the causative agent of visceral leishmaniasis in Latin America also 
shows serine protease activities [ 135 ]. Three serine proteases named as LCSI, LCSII 
and LCSIII were isolated from extract of  L .  chagasi  [ 129 ] exhibiting similar com-
partmentalization and substrate specifi cities with the serine proteases of other 
 Leishmania  species. 

 The role of serine proteases in visceral leishmaniasis caused by  L .  donovani  is 
little known. An aprotinin sensitive  L .  donovani  extracellular serine protease (pSP) 
of molecular mass 115 kDa was fi rst identifi ed [ 130 ] with their location in the fl a-
gellar pocket region in promastigotes and amastigotes    (Fig.  3 ) [ 134 ]. Flow cytom-
etry (Fig.  4 ) and confocal immunofl uorescence (Fig.  3 ) analysis also revealed that 
the expression of the protease diminishes sequentially from virulent to attenuated 
strains of this species and is also highly associated with the metacyclic stage of  L . 
 donovani  promastigotes [ 134 ]. Importantly pSP is upregulated during metacylogen-
esis and hopefully makes them important candidate as a participant in host-parasite 
interaction. Moreover, the pSP has strong proteolytic activity against extracellular 
matrix proteins, such as collagen and fi bronectin [ 130 ], which suggests that the 
protease might be a superior agent for host tissue invasion and thus the role of pSP 
in host infection appears to be signifi cant.

    Besides the expression of secreted serine protease, a novel intracellular serine pro-
tease (SP-Ld) was also identifi ed in  L .  donovani  promastigotes [ 65 ]. This intracellu-
lar SP-Ld is also concentrated in the fl agellar pocket region as well as on the surface 
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of the parasite (Fig.  5 ). The major role of SP-Ld could be predicted in invasion 
 process as it down regulates the phagocytic activity of macrophages (Fig.  6 ) [ 65 ].

    Using biochemical and molecular strategies two other serine proteases were also 
identifi ed and characterized in  L .  donovani  promastigotes which are of subtilisin 
[ 136 ] and oligopeptidase B [ 121 ] type. 

 During differentiation from promastigote to amastigote, OPB is upregulated in 
 Leishmania  and regulate levels of enolase on the parasite cell surface facilitating 
parasite entry into macrophages [ 121 ]. The direct effect of OPB on the host immune 
system was shown by examining the effect of infection with an OPB mutant 
strain on the expression of host genes. Infection of macrophages with a wild type 

  Fig. 3    The immunofl uorescence images of Early-passage ( A1 – A4 ), late-passage ( B1 – B4 ), and 
UR6 ( C1 – C4 ) promastigotes of  L .  donovani . The promastigotes labeled for the pSP are shown in 
the  green  channel ( A2 ,  B2 , and  C3 ): GP63 are shown in the  red  ( A3 ,  B3  and  C3 ), Merged image in 
 yellow  channel ( A4 ,  B4 , and  C4 ). The phase-contrast image is shown on the  left  ( A1 ,  B1  and  C1 ). 
No Fluorescence was detected in similar preparations reacted with the preimmune serum ( d ,  e , and 
 f ). Intracellular localization of the pSP of  L .  donovani  by immunogold electron microscopy; the 
presence of gold particles in the fl agellar pocket regions of the parasites Promastigotes ( g ) and 
amastigotes ( h ) indicated by  arrows  [ 134 ]       

  Fig. 4    Flow cytometric analysis of expression of the pSP. ( I ) Fluorescence histograms show the 
expression levels of the pSP in 4th-P, 34th-P, and UR6 promastigotes and axenic amastigotes of  L . 
 donovani . ( II ) Expression of the pSP of 4th-P promastigotes of  L .  donovani  at different phases of 
growth. ( III ) Fluorescence histograms showing the expression levels of the pSP at procyclic and 
metacyclic stages of virulent promastigotes and at procyclic stages of attenuated UR6 promasti-
gotes at 72 and 96 h of culture [ 134 ]       
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 L .  donovani  strain alters expressions of 23 genes, but infection with a mutant strain 
in which the oligopeptidase B gene was deleted leads to changes in 495 genes. 
This proves that OPB is necessary for  Leishmania  to silently infect macrophages 
[ 121 ]. Furthermore, these OPB (−/−) parasites displayed decreased virulence toward 

  Fig. 5    Localization of  L .  donovani  intracellular serine protease (SP-Ld) by confocal immunofl uo-
rescence and immune-gold electron microscopy. SP-Ld was envisioned by FITC-labeling ( a ), 
TRITC conjugated con A was used to label the fl agellar pocket ( red ) ( b ), Merged images showing 
co-localization of SP-Ld within the fl agellar pocket ( c ) and ( d ) is the phase contrast image of 
SP-Ld. No fl uorescence was detected in presence of corresponding pre-immune serum ( e ). The 
presence of gold particles represents SP-Ld within fl agellar pocket, cytoplasmic vesicles as well as 
at the surface of the  L .  donovani  promastigotes indicated by the  arrows  (F) [ 65 ]       

  Fig. 6    Phagocytic activity of macrophages. FITC-coupled latex beads were co-incubated with mac-
rophages in absence ( a ) and in presence of anti SP-Ld ( b ) treated parasites. Scale bars, 1 μm [ 65 ]       
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mammalian host and suggested that  Leishmania  OPB itself is a prevalent virulence 
factor and also acts in conjunction with other factors [ 137 ]. 

 The subtilisin protease (SUB; Clan SB, family S8) from  Leishmania donovani  
was found to possess a unique catalytic triad and SUB-defi cient  Leishmania  dis-
played reduced ability to undergo differentiation from promastigote to amastigote 
with some deformities i.e. abnormal membrane structures, retained fl agella and 
increased binucleation [ 136 ]. On the basis of proteomic analysis, it has been reported 
that subtilisin is the maturase for tryparedoxin peroxidases to detoxify reactive oxy-
gen intermediates for the maintenance of redox homeostasis and that is essential for 
 Leishmania  virulence [ 136 ]. Moreover, the activity of this serine protease is higher 
by several folds in amastigotes compared to promastigotes, suggesting an important 
role for this enzyme in parasites inside the host cells [ 136 ]. 

 Serine proteases from  L .  amazonensis  directly activated Th2 type immune 
response, and increased susceptibility to infection but, this effect was successfully 
eliminated in presence of specifi c serine protease inhibitors but not cysteine prote-
ase inhibitors [ 138 ]. So,  L .  amazonensis  serine proteases exaggerate the infection by 
promoting Th2 type immune response. It was predicted that the  L .  amazonensis  
amastigote extract (LaE) containing serine protease is responsible for exacerbation 
of  Leishmania  infection by promoting Th2-type immune responses [ 139 ]. 

 Besides being important targets of drug development against  Leishmania , serine 
proteases are also vaccine candidates for leishmaniasis. Recently, Choudhury et al. 
[ 140 ] have shown that the  L .  donovani  extracellular serine protease (pSP) confer 
signifi cant protection in experimental visceral leishmaniasis (VL) and in this study 
the vaccine effi cacy of pSP was further investigated for its prophylactic potentiality 
by regulating host MMP-9 profi le. Hence, it can be postulated that  Leishmania  pro-
teases may participate in modifi cation of macrophages functions by modulating 
matrix metalloproteinase activity. Currently, available data suggest that serine pro-
teases and MMPs might play essential functions in development of leishmaniasis 
and help researchers to investigate the miscellaneous roles of these proteases to 
design effective therapeutic strategies against leishmaniasis.  

2.4     Aspartic Proteases 

 The presence of aspartic protease was fi rst reported in  Leishmania  in 2005 [ 129 ]. It 
was present at its highest level in promastigotes and in the early stages of differen-
tiation to amastigotes [ 135 ].  L .  major  genome contains two aspartic peptidases [ 66 ]. 
One has similar sequence with presenilin 1 (PS1), a multi-pass membrane pepti-
dase, and is able to cleave type I membrane proteins [ 34 ]. Another one has identical 
sequence with an intramembrane signal peptide peptidase (SPP) which cleaves the 
transmembrane domains of signal peptidases [ 66 ]. PS1 has been implicated to be 
involved in autophagy in  L .  major  [ 66 ]. An aspartic protease activity was also iden-
tifi ed and characterized in  L .  mexicana  promastigotes [ 141 ]. A recent study has 
reported that Ddi1-like protein is functional aspartyl proteinase in  L .  major  and it 
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can be a possible potential target for novel antiparasitic drugs [ 142 ]. The anti- 
proliferative effect of its inhibition makes this enzyme a putative new target for the 
development of leishmanicidal drugs. In this context, Savoia and co-workers in 
2005 [ 143 ] fi rst demonstrated the impressive effects of indinavir and saquinavir on 
the growth of  L .  major  and  L .  infantum . Later, it was demonstrated that HIV 
aspartyl- protease inhibitors (HIV-PIs) powerfully reduce  L .  infantum  infection in 
macrophages, either co-infected or not with HIV [ 144 ]. In addition, this activity was 
target of antiproliferative effect on  Leishmania  promastigotes and axenic amasti-
gotes by HIV-PIs, Ac-Leu-Val-Phenylalaninal, saquinavir mesylate and nelfi navir 
[ 145 ]. A direct action of these HIV-PIs on  Leishmania  parasites opens an interesting 
standpoint for new drugs research development based on this novel parasite prote-
ase for the treatment of HIV/Leishmania co-infection [ 146 ]. In addition, HIV-PIs 
also hampered  L .  amazonensis  growth and their interaction with macrophages, indi-
cating that the HIV-PIs are active against a wide range of  Leishmania  species and 
probably induce several serious ultrastructural modifi cations in  L .  amazonensis  pro-
mastigotes. This effect of HIV-PIs is terminated with parasite death, may be due to 
a disproportion between apoptosis and autophagy [ 147 ]. This dose- dependent inhi-
bition of  Leishmania  aspartyl-protease activity by these drugs certainly validates 
the possible association between aspartic protease expression and basic molecular 
processes in  Leishmania . Despite all these benefi cial effects, the HIV-PIs induced 
an increase in the expression of CPB and GP63 [ 148 ]. So, further investigations are 
essential to control HIV/ Leishmania  co-infection. However, the noticeably increas-
ing numbers of  Leishmania  and HIV co-infected patients and direct effect of the 
HIV-PIs on opportunistic pathogens support researchers to seek for direct effects of 
HIV-PIs on  Leishmania  [ 40 ,  149 ,  150 ].   

3     Proteases as Drug Targets in Leishmaniasis 

 Leishmaniasis remains a challenge for public health due to lack of effective vaccine 
and thus as of now, chemotherapy is the only alternative for controlling the disease 
[ 26 ,  27 ]. The current treatments available are greatly disappointing due to high cost, 
toxicity and widespread resistance and therefore the present situation needs world-
wide development of potential new drugs to combat leishmaniasis. One of the main 
features in the drug development is to identify a possible target of biological path-
way of parasite life cycle, in a view of that the target should be either absent in the 
host or be unique from the host homologous proteins so that it can be exploited as a 
putative drug target. It has also been described that one of the characteristic features 
in the process of drug development is to identify the putative target [ 151 ]. In this 
context, proteases would be excellent objects because of their vital roles in parasitic 
biology [ 40 ,  152 ]. Hence, investigations are currently underway to elucidate their 
possible function by means of protease inhibitors. The protease inhibitors inactivate 
or block proteolytic enzymes by binding to its active site or by other mechanisms 
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[ 153 ] hindering one or several fundamental events caused by the enzymes and thus, 
uses of protease inhibitors also enhance our knowledge about the biological func-
tion of the enzymes in the parasite physiology. Therefore, the main approach has 
been to achieve good inhibitors of the target protease, in the faith that inhibition of 
the protease activity of the pathogen will be of therapeutic value. 

 Parenthetically proteases have being authenticated as druggable targets in many 
cases [ 27 ,  154 – 156 ], and protease inhibitors are also being broadly investigated to 
develop therapeutic drugs against cancer, cardiovascular, infl ammatory, neurode-
generative, bacterial, viral and parasitic diseases due to important roles played by 
the proteases in these diseases [ 157 – 160 ]. Hence, the ongoing progress in the design 
of protease inhibitors may also present a challenge for advanced therapies of para-
sitic diseases [ 155 ,  161 – 164 ]. Protease inhibitors thus have potential utility for 
therapeutic interposition in a variety of disease states including trypanosomasis and 
leishmaniasis [ 159 ]. However, as the parasites are eukaryotes, treatments of try-
panosomatid diseases are diffi cult by means of protease inhibitors as antiparasitics 
because they may lead to the host toxicity and possible adverse side effects. But, 
current research on drug design makes it feasible for formulation of specifi c prote-
ase inhibitors with negligible cross reactivity and of great potentiality [ 40 ,  159 ]. 

 For instance, the proteasome of  Leishmania  is a potential therapeutic target as 
inhibition of proteasome blocks parasite growth [ 165 ]. Besides, several research 
groups have suggested that cysteine proteases in  Leishmania  may also be very 
promising target [ 36 ,  71 ,  166 ,  167 ].  Leishmania  treated with CP inhibitors showed 
reduced viability, growth and pathogenicity [ 70 ,  71 ]. In addition, treatment with a 
natural CP inhibitor, cystatin, promoted a protective response against  Leishmania  
infection and a switch from a predominately Th2 to a Th1-type of immune response 
[ 72 ,  92 ,  93 ]. The CP inhibitors have also been shown to prevent the activation of a 
latent form of TGF-β, a known suppressive cytokine in  Leishmania  infections [ 168 ]. 
Moreover, it has been found that both metallo and cysteine peptidase inhibitors 
could hinder the growth of  L .  braziliensis  as well as the association index with mac-
rophages [ 169 ]. Thus, presently, a lot of researches are progressing to develop 
potent cysteine protease inhibitor as an antileishmanial drug. Unlike cysteine prote-
ase, a little research has been focused on  Leishmania  GP63 to evaluate it as a drug 
target. Previously, it has been demonstrated that development of higher affi nity 
metalloproteases inhibitors may provide a novel approach for treatment of parasitic 
diseases [ 170 ].  Leishmanias  lacking GP63 are unable to activate the host PTPs for 
sabotage host cell signaling and lose their ability to sustain infection [ 59 ]. Therefore, 
it can be clearly speculated that potent and specifi c inhibitors of GP63 could be able 
to trigger the host antimicrobial functions and thus would gain the accessibility of 
future antileishmanial therapeutics [ 40 ]. Nevertheless, due to immunogenicity and 
antigenicity of  Leishmania  GP63, many studies have been performed to evaluate its 
effi cacy as vaccine against  Leishmania  [ 84 ,  171 ]. 

 Currently, the possibility of implication of HIV protease inhibitors against 
 Leishmania  has raised interest due to increasing rate of HIV and  Leishmania  co- 
infection in certain regions of the world and protease inhibitors are being exten-
sively used to treat HIV and  Leishmania  co-infected patients [ 172 – 175 ]. Recently, 
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some compounds are now being experimentally used to treat leishmaniasis targeting 
particular protease [ 176 ,  177 ]. 

 Serine protease inhibitors have also been used by many investigators in parasitic 
diseases in searching potent drug [ 117 ,  178 ,  179 ] as serine protease activity can be 
regulated in the cells or in the organisms by employing specifi c protease inhibitors 
[ 180 ,  181 ]. These inhibitors are valuable tools for investigation of the biochemical 
properties and the biological functions of the proteases [ 182 ,  183 ]. In addition, inva-
sion blockage of many parasites, including  Plasmodium falciparum  [ 184 ,  185 ], 
 Babesia divergens  [ 117 ],  Toxoplasma gondii  [ 186 ] and  Perkinsus marinus  [ 187 ] 
have been observed by using specifi c serine protease inhibitors. Previous reports 
have shown that pentamidine and suramin, exhibit trypanocidal activity through the 
inhibition of the cytosolic serine protease oligopepetidase B, a putative virulence 
factor in trypanosome [ 188 ,  189 ]. 

 Initially, serine protease inhibitors were used to evaluate the possible functions 
of serine proteases in  Leishmania  [ 190 ]. The effect of serine peptidase inhibitors on 
the survival of  Leishmania  has shown that TPCK (N-tosyl-l-lysyl-
chloromethylketone) and benzamidine both reduces viability and induce morpho-
logical changes in the  Leishmania amazonensis  promastigotes, raising the possibility 
that serine peptidases could be useful potential drug targets [ 190 ]. Moreover, treat-
ment with different type of serine protease inhibitors, especially with aprotinin, 
which block the active site of the protease, resulted in marked reduction in cellular 
viability [ 190 ]. Specifi c doses of these compounds stimulate signifi cant morpho-
logical modifi cations in the fl agellar pocket region accompanied by forming bleb 
that coats the fl agellar pocket [ 190 ]. These effects indicate that serine protease 
inhibitors are probably introduced through this structure and inhibited the serine 
proteases in this pocket region. Moreover, these serine proteases inhibitors induce 
the formation of autophagic vacuoles and destroy  Leishmania  promastigotes. 
Although serine proteases are essential for parasite survival, their function in 
 Leishmania  physiology remains to be illuminated. However, this is the fi rst evi-
dence where  Leishmania  serine proteases have been emerged to be another promis-
ing target for the development of antileishmanial chemotherapy. Moreover, the 
treatment of  L .  amazonensis  promastigotes antigens (LaAg) with irreversible serine 
protease inhibitors reversed its disease-promoting effect [ 138 ] which is again 
another indication of exploitation of serine proteases in the development of anti- 
leishmanial drugs [ 152 ,  190 ,  191 ]. 

 Although, several  Leishmania  serine proteases have been characterized, their 
function in the parasite physiology is still under investigation. Based on studies 
from our laboratory and other groups, serine proteases seem to play essential roles 
in infection process and deactivating the macrophage during the initial interaction 
between the host and the parasite [ 65 ,  121 ,  134 ,  136 – 140 ]. Altogether, these char-
acteristics of  Leishmania  serine proteases strongly suggest that potent and specifi c 
inhibitors of serine protease could instigate the activation of host’s antimicrobial 
properties and thereby leading to destruction of parasites. Hence, the possible 
approach of using specifi c serine protease inhibitors as prophylactic drugs could be 
able to inhibit the onset of  Leishmania  infection [ 40 ]. 
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 But, uses of serine protease inhibitors in treatment of leishmaniasis need exten-
sive studies to understand the roles of serine proteases in parasite physiology and 
pathogenesis. In some reports, it has been postulated that structure based drug 
design could be achieved by means of three dimensional model e.g. in  L .  amazonen-
sis  oligopeptidase B (Fig.  7 ) [ 111 ]. It has also been proposed that prolyl oligopepti-
dase and oligopeptidase B, both members of the S9 serine protease family would be 
admirable choice for drug design against Chagas disease, leishmaniasis and African 
trypanosomiasis [ 192 ,  193 ]. In addition to the computational design, development 
and optimization of a suitable protease inhibitor, based on the 3D structure of the 
target protease will be valuable tools for investigation of the biochemical properties 
and functions of proteases as well as in the treatment of leishmaniasis. On the other 
hand, ongoing researches on  Leishmania  proteases are still expanding our knowl-
edge on parasite biology, particularly with a great concern over current concept of 
serine proteases and demonstrating them to be potential drug targets. Therefore, as 
a whole, the developments of both synthetic and natural protease inhibitors have 
relevant importance in the search of new therapeutic alternatives for leishmaniasis. 
Eventually, the development of protease inhibitors of particular parasitic proteases 
will be the best option for improved understanding of physiological signifi cance of 
the proteases in disease pathogenesis as well as to identify them as good candidates 
for antileishmanial therapy.

4        Conclusion 

  Leishmania  gets advantages from various virulent factors especially from proteases. 
leishmanial proteases help invasion and survival in intra or extracellular environ-
ments of the host. So, proteases are considered as potential drug targets in  Leishmania  

  Fig. 7    Crystal structure of OPB [PDB ID 2XE4] done by McLuskey et al. [ 111 ]: The tertiary struc-
ture of OPB with antipain bound in the active site. General loop regions are shown in  yellow . The 
hinge regions are between the two domains and the catalytic domain is represented by deep colors       
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parasite For instances,  Leishmania  GP63 and cysteine protease subvert host immune 
response throughout various mechanisms. Aspartic protease is an important virulent 
factor in case of  Leishmania -HIV co-infected patients. In this context, roles of 
 Leishmania  serine proteases need to be further defi ned because some recent reports 
suggest that this protease also perform crucial roles in parasite physiology and in the 
host-parasite interaction. For instance, Oligopeptidase B (OPB) is increasingly 
being implicated as an important virulence factor in leishmaniasis. Elucidation of 
the substrate specifi city and regulation of OPB activity paved the way to develop 
drugs that are specifi c for the parasite. It was also observed that specifi c serine pro-
tease inhibitors alters parasite morphology and reduced the viability, growth of 
 Leishmania  and also causes death of both extracellular and intracellular parasite. 
Hence, protease inhibitors must be considered to be promising candidates for drug 
development in the leishmaniasis treatment and it would be a rational approach 
toward other parasitic diseases as well.   
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