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Chapter 2
Flow and Functional Models for Rheological 
Properties of Fluid Foods
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A flow model may be considered to be a mathematical equation that can describe 
rheological data, such as shear rate versus shear stress, in a basic shear diagram, and 
that provides a convenient and concise manner of describing the data. Occasionally, 
such as for the viscosity versus temperature data during starch gelatinization, more 
than one equation may be necessary to describe the rheological data. In addition to 
mathematical convenience, it is important to quantify how magnitudes of model 
parameters are affected by state variables, such as temperature, and the effect of 
structure/composition (e.g., concentration of solids) of foods and establish widely 
applicable relationships that may be called functional models.

Rheological models may be grouped under the categories: (1) empirical, (2) the-
oretical, and (3) structural. Obviously, an empirical model, such as the power law 
(Eq. 2.3), is deduced from examination of experimental data. A theoretical model 
is derived from fundamental concepts and it provides valuable guidelines on un-
derstanding the role of structure. It indicates the factors that influence a rheological 
parameter. The Krieger–Dougherty model (Krieger 1985) (Eq.  2.26) for relative 
viscosity is one such model. Another theoretical model is that of Shih et al. (1990) 
that relates the modulus to the fractal dimension of a gel.

A structural model is derived from considerations of the structure and often ki-
netics of changes in it. It may be used, together with experimental data, to esti-
mate values of parameters that help characterize the rheological behavior of a food 
sample. One such model is that of Casson (Eq. 2.6) that has been used extensively 
to characterize the characteristics of foods that exhibit yield stress. Another struc-
tural model is that of Cross (1965) (Eq. 2.14) that has been used to characterize 
flow behavior of polymer dispersions and other shear-thinning fluids. While ap-
plication of structure-based models to rheological data provides useful information, 
structure-based analysis can provide valuable insight in to the role of the structure 
of a dispersed system. For example, as discussed in Chap. 5, it allows for estimat-
ing the contributions of interparticle bonding and network of particles of dispersed 
systems.

Flow models have been used also to derive expressions for velocity profiles and 
volumetric flow rates in tube and channel flows, and in the analysis of heat transfer 
phenomenon. Numerous flow models can be encountered in the rheology literature 
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and some from the food rheology literature are listed in Table 2.1. Also, here those 
models that have found extensive use in the analysis of the flow behavior of fluid 
foods are discussed. Models that account for yield stress are known as viscoplastic 
models (Bird et al. 1982). For convenience, the flow models can be divided in to 
those for time-independent and for time-dependent flow behavior.

Time-Independent Flow Behavior

Newtonian Model

The model for a Newtonian fluid is described by the equation:

	 .σ ηγ= � (2.1)
As per the definition of a Newtonian fluid, the shear stress, σ, and the shear rate, γ̇ , 
are proportional to each other, and a single parameter, η, the viscosity, characterizes 
the data. For a Bingham plastic fluid that exhibits a yield stress, σ0, the model is:

0
.σ σ η γ− = ′� (2.2)

Table 2.1   Some two- and three-parameter flow models for describing shear rate (γ� ) versus shear 
stress ( σ) data
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where, η′ is called the Bingham plastic viscosity.
As shown in Fig. 2.1, the Newtonian model and the Bingham plastic model can 

be described by straight lines in terms of shear rate and shear stress, and the former 
can be described by one parameter η and the latter by two parameters: η′ and σ0, 
respectively. However, the shear rate–shear stress data of shear-thinning and shear-
thickening fluids are curves that require more than one parameter to describe their 
data. Given that the equation of a straight line is simple, it is easy to understand 
attempts to transform shear rate–shear stress data in to such lines. An additional 
advantage of a straight line is that it can be described by just two parameters: the 
slope and the intercept.

Power Law Model

Shear stress–shear rate plots of many fluids become linear when plotted on double 
logarithmic coordinates and the power law model describes the data of shear-thin-
ning and shear thickening fluids:

	 nKσ γ= � � (2.3)
where, K the consistency coefficient with the units: Pa sn is the shear stress at a shear 
rate of 1.0 s−1 and the exponent n, the flow behavior index, is dimensionless that re-
flects the closeness to Newtonian flow. The parameter K is sometimes referred to as 
consistency index. For the special case of a Newtonian fluid ( n = 1), the consistency 
index K is identically equal to the viscosity of the fluid, η. When the magnitude of 
n < 1 the fluid is shear-thinning and when n > 1 the fluid is shear-thickening in na-
ture. Taking logarithms of both sides of Eq. 2.3:

log log logK nσ γ= + �� (2.4)

Fig. 2.1   Plot of log shear 
rate (γ̇ ) versus log shear 
stress ( σ) for a 2.6 % Tapioca 
starch dispersion heated at 
67 °C for 5 min (Tattiyakul 
1997) to illustrate applicabil-
ity of the power law model
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The parameters K and n are determined from a plot of log σ versus log .γ , and the 
resulting straight line’s intercept is log K and the slope is n. If a large number of σ 
versus .γ  data points, for example, > 15 (it is easy to obtain large number of points 
with automated viscometers) are available, linear regression of log .γ  versus log σ 
will provide statistically best values of K and n. Nevertheless, a plot of experimental 
and predicted values of log .γ  and log σ is useful for observing trends in data and 
ability of the model to follow the data. Figure 2.1 illustrates applicability of the 
power law model to a 2.6 % tapioca starch dispersion heated at 67 °C for 5 min. 
Linear regression techniques also can be used for determination of the parameters 
of the Herschel–Bulkley (when the magnitude of the yield stress is known) and the 
Casson models discussed later in this chapter.

Because it contains only two parameters ( K and n) that can describe shear rate–
shear stress data, the power law model has been used extensively to characterize 
fluid foods. It is also the most used model in studies on handling of foods and 
heating/cooling of foods. Extensive compilations of the magnitudes of power law 
parameters can be found in Holdsworth (1971, 1993). Because it is convenient to 
group foods in to commodities, a compilation of magnitudes of power law param-
eters of several food commodities are given in Chap. 5. In addition, the influence of 
temperature in quantitative terms of activation energies, and the effect of concentra-
tion of soluble and insoluble solids on the consistency index are given.

Although the power law model is popular and useful, its empirical nature should 
be noted. One reason for its popularity appears to be due to its applicability over the 
shear rate range: 101 – 104 s−1 that can be obtained with many commercial viscom-
eters. Often, the magnitudes of the consistency and the flow behavior indexes of a 
food sample depend on the specific shear rate range being used so that when com-
paring the properties of different samples an attempt should be made to determine 
them over a specific range of shear rates. One drawback of the power law model is 
that it does not describe the low-shear and high-shear rate constant-viscosity data 
of shear-thinning foods.

Herschel–Bulkley Model

When yield stress of a food is measurable, it can be included in the power law model 
and the model is known as the Herschel–Bulkley model:

	 H0H H nK γσ σ− = � � (2.5)

where, .γ  is shear rate (s−1), σ is shear stress (Pa), nH is the flow behavior index, KH 
is the consistency index, and σ0H is yield stress. It is noted here that the concept of 
yield stress has been challenged (Barnes and Walters 1989) because a fluid may 
deform minutely at stress values lower than the yield stress. Nevertheless, yield 
stress may be considered to be an engineering reality and plays an important role in 
many food products.

If the yield stress of a sample is known from an independent experiment, KH 
and nH can be determined from linear regression of log σ—σ0H versus log( .γ ) as 
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the intercept and slope, respectively. Alternatively, nonlinear regression technique 
was used to estimate σ0H, KH, and nH (Rao and Cooley 1983). However, estimated 
values of yield stress and other rheological parameters should be used only when 
experimentally determined values are not available. In addition, unless values of the 
parameters are constrained a priori, nonlinear regression provides values that are the 
best in a least squares sense and may not reflect the true nature of the test sample.

Casson Model

The Casson model (Eq. 2.6) is a structure-based model (Casson 1959) that, although 
was developed for characterizing printing inks originally, has been used to charac-
terize a number of food dispersions:

	 0.5 0.5
0c c ( )K Kσ γ= + � � (2.6)

For a food whose flow behavior follows the Casson model, a straight line results 
when the square root of shear rate, ( .γ )0.5, is plotted against the square root of shear 
stress, ( σ)0 5, with slope Kc and intercept K0c (Fig. 2.2). The Casson yield stress is 
calculated as the square of the intercept, σ0c = (K0c)

2 and the Casson plastic viscosity 
as the square of the slope, ηca = ( Kc)

2. The data in Fig. 2.2 are of Steiner (1958) on a 
chocolate sample. The International Office of Cocoa and Chocolate has adopted the 
Casson model as the official method for interpretation of flow data on chocolates. 
However, it was suggested that the vane yield stress would be a more reliable mea-
sure of the yield stress of chocolate and cocoa products (Servais et al. 2004).

Fig. 2.2   Plot of ( .γ )0.5 versus 
( σ)0 5 for a food that follows 
the Casson model. The square 
of the intercept is the yield 
stress and that of slope is the 
Casson plastic viscosity
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The Casson plastic viscosity can be used as the infinite shear viscosity, η∞, (Metz 
et al. 1979) of dispersions by considering the limiting viscosity at infinite shear rate:

	
d( )d d

d d d( )γ γ

σσ σ
γ γ σ
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=
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Using the Casson equation the two terms in the right-hand side bracket can be 
written as:
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Combining the above two equations,

	 η∞ = ηCa = (KC)2� (2.10)

Quemada Model
Quemada et al. (1985) proposed a viscosity equation for dispersed systems based 
on zero-shear, η0, and infinite-shear, η∞, viscosities, and a structural parameter, λ, 
dependent on the shear rate, that may be written as:
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The time constant tc is related to the rate of aggregation of particles due to Brown-
ian motion. For highly concentrated dispersed systems, η∞ will be much lower than 
η0, so that ( η∞/η0) << l and the dispersion may have a yield stress, and Eq. (2.11) 
reduces to the Casson model (Eq. 2.6) (Tiu et al. 1992) with the Casson yield stress, 
σ0c = ( η∞/tc). Thus the Casson–Quemada models can be used to examine dispersions 
whose rheological behaviors range from only shear-thinning to shear thinning with 
yield stress. The Casson–Quemada models were used to study the role of cocoa sol-
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ids and cocoa butter on cocoa dispersions (Fang et al. 1996, 1997) to be discussed 
in Chap. 5.

A general model for shear rate–shear stress data that under specific assumptions 
reduces to the Herschel–Bulkley, the Casson, and other models was presented by 
Ofoli et al. (1987):

	 1 1 2
0

.( )n n nσ σ η γ∞= + � � (2.13)

where, n1 and n2 are constants, and η∞ is the infinite shear viscosity. It is important 
to note that one model may be applicable at low-shear rates and another at high-
shear rates (Dervisoglu and Kokini 1986). While applicability of the flow models 
themselves may be interesting, it is much more important to study the role of food 
composition on a model’s parameters and apply the model to better understand the 
nature of foods.

Apparent Viscosity—Shear Rate Relationships 
of Shear-Thinning Foods

At sufficiently high polymer concentrations, most shear-thinning biopolymer (also 
called a gum or a hydrocolloid) dispersions exhibit similar three-stage viscous re-
sponse when sheared over a wide shear rate range (Fig. 2.3): (1) at low-shear rates, 
they show Newtonian properties with a constant zero-shear viscosity ( η0) over a 
limited shear range that is followed by, (2) a shear-thinning range where solution 
viscosity decreases in accordance with the power law relationship; the reciprocal 
of the shear rate at which the transition from Newtonian to pseudoplastic behavior 
occurs is the characteristic time or the time constant, and (3) attains a limiting and 
constant infinite-shear-viscosity ( η∞). The three regions may be thought of being 

Fig. 2.3   Plot of shear rate 
versus apparent viscosity for 
shear thinning foods identify-
ing three separate regions: a 
zero-shear viscosity at low 
shear rates, a power law 
region at intermediate shear 
rates, and an infinite-shear 
viscosity at high-shear rates. 
Often, only data in the power 
law region are obtained
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due rearrangement in the conformation of the biopolymer molecules in the dis-
persion due to shearing. In stage 1 when the magnitude of γ�  is low, there is little 
rearrangement of the polymer chains, while in stage 2 the chains undergo gradual 
rearrangement with γ�  resulting in a power law behavior. In stage 3, the shear rate 
is sufficiently high that the polymer chains do not undergo much rearrangement.

Cross and Carreau Models

The apparent viscosity ( ηa) of the solution can be correlated with shear rate (γ� ) us-
ing the Cross (Eq. 2.14) or the Carreau (Eq. 2.15) equations, respectively.

0
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+
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� (2.15)

where, αc and λc are time constants related to the relaxation times of the polymer in 
solution and m and N are dimensionless exponents. Because magnitudes of η∞ of 
food polymer dispersions with concentrations of practical interest are usually very 
low in magnitude, they are difficult to determine experimentally. Therefore, to avoid 
consequent errors in estimation of the other rheological parameters in Eqs. 2.14 and 
2.15, often η∞ has been neglected (Abdel-Khalik et al. 1974; Lopes da Silva et al. 
1992). The Cross and Carreau models described well the shear dependence of aque-
ous dispersions of high methoxyl pectins and locust bean gum (Lopes da Silva et al. 
1992), konjac flour gum (Jacon et al. 1993), and mesquite gum solution (Yoo et al. 
1995), and other gums (Launay et al. 1986). In general, the model of Cross has been 
used in studies in Europe and that of Carreau in North America. In Chap. 4, the ap-
plicability of the Cross and Carreau models to locust bean gum dispersions will be 
discussed in more detail.

For small values of η∞, the Cross exponent m tends to a value (1 – n), where n is 
the power law flow behavior index (Launay et al. 1986; Giboreau et al. 1994). For 
the shear rate, cγ�  where ηap = ( η0 + η∞)/2, the Cross time constant αc = 1/ cγ� . Gener-
ally, cγ�  gives an order of magnitude of the critical shear rate marking the end of 
the zero shear rate Newtonian plateau or the onset of the shear-thinning region. It 
is therefore important to recognize the shear rate dependence of the rheological be-
havior of polysaccharide polymers in solution and the difficulty involved in obtain-
ing experimental data over the applicable shear rate range of 10−6 – 104 s−1 (Barnes 
et al. 1989). The low-shear rate region of about 10−3 – 100 is often used for the char-
acterization and differentiation of structures in polysaccharide systems through the 
use of stress controlled creep and non destructive oscillatory tests. The shear rate 
range of about 101 – 104 s−1 falls within the operational domain of most commercial 

0
a 2

c[1 ( ) ]N
η ηη η

λ γ
∞

∞
−

= +
+ �



35Models for Time-Dependent Flow Behavior �

rheometers, so that the range of 10−3 – 104 s−1 can sometimes be effectively covered 
by a combination of measuring procedures and instruments.

Both the Carreau and the Cross models can be modified to include a term due to 
yield stress. For example, the Carreau model with a yield term given in Eq. (2.16) 
was employed in the study of the rheological behavior of glass-filled polymers 
(Poslinski et al. 1988):

1 2pa 0 p 1 ( )
Nη σ γ η λ γ −−  

  = + +� �� (2.16)

where, σ0 is the yield stress, ηp is the plateau viscosity, and λp and N are constants 
to be determined from experimental data. Rayment et  al. (1998) interpreted the 
rheological behavior of guar gum dispersions containing raw rice starch in terms 
of the Cross model with yield stress (Eq. 2.17). We note that, when yield stress is 
exhibited, the term plateau viscosity is used instead of zero-shear viscosity:

1
a 0 cP 1 ( )

m
η σ γ η α γ

−−  
  = + +� �� (2.17)

Models for Time-Dependent Flow Behavior

Considerable care should be exercised in determining reliable time-dependent rheo-
logical data because of the often unavoidable modification in structure due to sam-
ple handling and during loading the sample in a viscometer or rheometer measuring 
geometry. Nevertheless, with careful attention to details, such as allowing a sample 
to relax in the rheometer measuring geometry, rheological data can be obtained to 
characterize time-dependent rheological behavior.

Weltman Model

The Weltman (1943) model has been used to characterize thixotropic (Paredes et al. 
1988) behavior and of antithixotropic behavior (da Silva et al. 1997) of foods:

	 logA B tσ = − � (2.18)

where, σ is shear stress (Pa), t is time (s), and A (value of stress at t = 1 s) and B are 
constants. A plot of σ versus log time should result in a straight line. In thixotropic 
behavior B takes negative values and in antithixotropic behavior it takes positive 
values. Table  2.2 shows typical magnitudes of the constants A and B for cross-
linked waxy maize starch dispersions.
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Tiu–Boger Model

A model to study thixotropic behavior of foods exhibiting yield stress was devised 
by Tiu and Boger (1974) who studied the time-dependent rheological behavior of 
mayonnaise by means of a modified Herschel–Bulkley model:

( ) H
0H H

nKσ λ σ γ + 
�=� (2.19)

where, σ is the shear stress (Pa), .γ  is the shear rate (s−1), λ is a time-dependent 
structural parameter that ranges from an initial value of unity to an equilibrium 
value λe, σ0H is the yield stress (Pa), KH is the consistency index (Pa sn), and nH is the 
flow behavior index. The decay of the structural parameter with time was assumed 
to obey a second-order equation:

2
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d

k
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λ λ λ= − −� (2.20)

where, the constant k1 is a function of shear rate to be determined experimentally. 
While the determination of σ0H, and nH is straight forward, estimation of k1 and λe 
requires the use of values of apparent viscosities ( ηa) (Tiu and Boger 1974):
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Table 2.2   Weltman Equation parameters for cross-linked waxy maize gelatinized starch disper-
sions. (Da Silva et al. 1997)

Shear rate (s−1)
Weltman 
Parameter

Conc. (%) 50 100 200 300

A 3 6.97 × 10−2 5.76 × 10−2 4.22 × 10−2

4 2.97 × 10−1 2.08 × 10−1 1.72 × 10−1 9.54 × 10−2

5 5.39 × 10−1 3.88 × 10−1 3.55 × 10−1

B 3 1.58 × 10−3 5.71 × 10−4 1.66 × 10−5

4 3.15 × 10−3 2.07 × 10−3 5.29 × 10−3 7.83 × 10−3

5 8.30 × 10−5 1.06 × 10−2 8.79 × 10−3

Correlation 
coef.

3 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00
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where,

1
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It can be shown (Tiu and Boger 1974), that a plot of 1/( ηa—ηe) versus time will 
yield a straight line of slope a1 and repeating the procedure at other shear rates will 
establish the relationship between a1 and γ̇ , and hence k1 and γ̇  from Eq. 2.20. For a 
commercial mayonnaise sample, values of the different parameters were: λe = 0.63, 
σ0H = 7.0 Pa, KH = 28.5 Pa sn, nH = 0.32, and k1 was a weak function of shear rate; 
specifically, k1 = 0.012 γ� 0.13  (Tiu and Boger 1974).

Role of Solids Fraction in Rheology of Dispersions

Following Einstein’s work (Einstein 1906, 1911) (Eq. 2.24) on dilute rigid sphere 
dispersions, models for estimating viscosity of concentrated nonfood dispersions of 
solids are based on volume fraction ( ϕ) of the suspended granules and the relative 
viscosity of the dispersion, ηr = ( η/ηs), where η is the viscosity of the dispersion ηs is 
the viscosity of the continuous phase (Jinescu 1974; Metzner 1985).

ηr = 1 + 2.5 φ� (2.24)

Metzner (1985) pointed out that at high solids concentration levels, the theoretical 
equation (Eq. 2.25) of Frankel and Acrivos appears to do a good job of portraying 
experimental data of rigid solids dispersed in polymer melts.

� (2.25)

Wildemuth and Williams (1984) modeled the ηr of rigid sphere suspensions with a 
shear-dependent maximum volume fraction ( ϕm). The applicability of a shear de-
pendent ϕm (Wildemuth and Williams 1984) to food dispersions has not been tested.

The Krieger–Dougherty (1959) relationship (Eq. 2.26) is based on the assump-
tion that an equilibrium exists between individual spherical particles and dumbbells 
that continuously form and dissociate:

[ ] m

r 1
m

η f
fη

f

−
 

= −  � (2.26)

where, [η] and ϕm are the intrinsic viscosity and maximum packing fraction of sol-
ids. Theoretically, [η] should be 2.5 for rigid spheres and ϕm should be about 0.62 
if the spheres are of uniform diameter (Krieger 1985), but Choi and Krieger (1986) 
found it necessary to use values of [η] of 2.65–3.19 to fit Eq. 2.25 to viscosity-
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volume fraction data on sterically stabilized poly methylmethacrylate spheres. For 
calculating values of % according to the Krieger–Dougherty equation, a value of 
ϕm = 0.62 was assumed (Choi and Krieger 1986). Both Eqs. 2.24 and 2.25 contain 
the ratio of volume fraction of solids in a dispersion to the maximum volume frac-
tion and the values of ηr predicted (Fig. 2.4) are close to each other. In Fig. 2.4 
for the Krieger–Dougherty model, ϕm was taken to be 0.62 and [η] to be 2.5. It is 
emphasized that the above equations were derived for rigid solids; because of the 
polydisperse and deformable nature of gelatinized starch dispersions, it is not sur-
prising that attempts to predict their viscosity with Eq. 2.25 (Noel et al. 1993; Ellis 
et al. 1989) were not successful.

Most food particles are not spherical in shape so that the empirical equation 
(Eq. 2.25) that described well (Kitano et al. 1981; Metzner 1985) the relative vis-
cosity versus concentration behavior of suspensions of spheres and fibers with as-
pect ( L/D) ratios ≤ 30 in polymer melts is of interest:

	 ηr = [1 – (φ/A)]–2� (2.27)

Equation 2.27 is an empirical equation that is a simple modification of the Maron–
Pierce equation for dispersions of spherical rigid solids:

	 ηr = [1 – (φ/φm)]–2� (2.28)

For fluids that obey the power law model (Eq. 2.3), Metzner (1985) suggested that 
the viscosities of the suspension and of the continuous phase be evaluated at the 
same shearing stress. For rigid particles, the value of A decreases as aspect ratio 
of suspended particles increases; for example, when the aspect ratio is 1.0 (smooth 
sphere) the magnitude of A is 0.68, and when the aspect ratio is 6–8 (rough crystal) 

Fig. 2.4   Relative viscosity 
versus volume fraction ratio 
( Ø/Øm) predicted by models 
of Frankel–Acrivos and 
Krieger–Dougherty Øm = 0.62 
and [η] = 2.5
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A is 0.44 (Metzner 1985). The shape of many food particles is not spherical and may 
be considered to be closer to a rough crystal. Figure 2.5 illustrates predictions of ηr 
by Eq. 2.25 for dispersions of spherical and rough crystal-like rigid particles. For 
the dispersion of rough crystal-like rigid particles, high values of ηr are attained at 
solids loading much lower than for rigid spherical particles (Fig. 2.5).

Because of the compressible nature of food dispersions, the direct determination 
of the magnitude of ϕ is not easy as it depends on the centrifugal force employed in 
the separation of the phases. Therefore, rheological properties of plant food disper-
sions, such tomato concentrate and concentrated orange juice, are based on the mass 
of pulp. In starch dispersions, they are based on the mass fraction of starch granules, 
denoted as cQ, as described in Chap. 4.

Applicability of Eq  (2.27) for suspensions of tomato pulp of narrow size dis-
tribution was shown by Yoo and Rao (1994). Tomato pulp particles with average 
particle diameters 0.71 and 0.34 mm retained on the two sieves (sieve no. 40 and 60, 
respectively) were produced (Fig. 2.6). The apparent average diameters were calcu-
lated as in Kimball and Kertesz (1952). Because the Casson viscosity was shown to 
be equal to infinite shear viscosity (Metz et al. 1979), it is less arbitrary and has a 
theoretical foundation. Considering the values of the single parameter A of tomato 
puree samples (Fig. 2.7), the particle shape appears to be close to rough or irregular 
spherical shape (Yoo and Rao 1994). Also, the magnitude of A of the TP6 sample 
was higher than that of the TP4 sample because of its lower aspect ratio.

Quemada et al. (1985) proposed a model similar to that given by Eq. 2.27, but 
with A = 0.5 and the structural parameter k = 1.80:

� (2.29)

Fig. 2.5   Relative viscosity, 
ηr, versus volume fraction 
of solids predicted by model 
of Kitano et al. (1981) for 
rigid spheres ( A = 0.68) and 
crystal-like solids ( A = 0.44)
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They reported values of k in the range 2.50–3.82 for dispersions of rigid solids, and 
1.70–1.85 for red blood suspensions. For gelatinized 2.6 % tapioca STDs, the rela-
tive viscosity was calculated using Eq. 2.30:

r s
ηη η

∞=∞� (2.30)

Fig. 2.7   Applicability of the 
model of Kitano et al. (1981) 
(Fig. 2.5) to tomato particles. 
(Yoo and Rao 1994)

 

Fig. 2.6   Procedure for pro-
ducing tomato pulp particles 
of narrow particle size distri-
bution. (Yoo and Rao 1994)
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where, ηr∞ is the relative viscosity based on the Casson viscosity, η∞ (mPa  s) at 
20 °C, and ηs 178 is the viscosity (mPa s) of the supernatant determined at 20 °C.

The model of Quemada et al. (1985) with the structural parameter k = 1.80 gave 
a satisfactory fit (Fig. 2.8). Because heated tapioca starch granules are deformable, 
the value k = 1.80 of red blood cells was selected for the data on tapioca STDs. 
Given that the Krieger–Dougherty (1959) model predictions were substantially dif-
ferent than experimental ηr values of starch dispersions (Ellis et al. 1989; Noel et al. 
1993; Tattiyakul 1997), the reasonable applicability of Eq. 2.29 (Quemada et  al. 
1985) to tapioca STDs is noteworthy. However, the model of Quemada et al. (1985) 
is a phenomenological model, while that of Krieger–Dougherty (1959) is based on 
intrinsic viscosity of a single sphere. Saunders (1961) and Parkinson et al. (1970) 
found that the viscosity of a suspension increased with decrease in the average 
particle size. The particle size dependence can be explained by recognizing that 
as the particle size decreases, the number of particles in a given volume increases, 
resulting in a decrease in the mean distance between the particles. Another result of 
decreasing the particle size is to increase the potential for particle–particle interac-
tion (Agarwala et al. 1992).

The important role of volume fraction on the structure of rigid sphere dispersions 
has been uncovered recently; as the volume fraction of hard spheres is increased, 
the equilibrium phase changes from a disordered fluid to coexistence with a crystal-
line phase (0.494 < ϕ < 0.545), then to fully crystalline ( ϕ = 0.545), and finally to a 
glass ( ϕ = 0.58) (Pham et al. 2002).

Colloidal Glass

Studies using colloidal hard spheres (HS) have led to valuable insights in to their 
phase and rheological behavior: first, a disordered fluid to crystal transition at 
ϕ = 0.494 and coexistence of crystal and liquid domains for 0.494 ≤  ϕ  ≤ 0.545. Fur-

Fig. 2.8   The relative viscos-
ity ( ηr) values of tapioca 
starch dispersions strongly 
depended on their volume 
fraction. The line in the figure 
represents values predicted 
by the model of Quemada 
et al. (1985) with the 
structural parameter k = 1.8. 
(Tattiyakul et al. 2009)
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ther, as the volume fraction of HS is increased, transition to fully crystalline state, 
and finally to a colloidal glassy state. (Pusey and van Megen 1986; Phan et  al. 
1996). The expression “colloidal glass” is used to differentiate it from the well- and 
long-known temperature-driven glassy state (Loveday et al. 2007).

The phase behavior of colloidal HS dispersions is summarized in Fig. 2.9 and 
it is discussed next. As the solids concentration is increased gradually, at a solids 
concentration, ϕ = 0.494, crystals (clusters of particles) appear that coexist with the 
liquid. Thus, the coexistence of colloidal fluid and crystal phases is analogous to 
that of a simple liquid and solid at a first-order phase transition. Further, in the co-
existence region: 0.494 ≤ ϕ ≤ 0.545, we find a linear dependence with ϕ which, when 
extrapolated to 0 and 100 %, provides the “freezing” and “melting” concentrations. 
The liquid to crystal transition at ϕ = 0.494 is referred to as the beginning of freez-
ing. These observations have been verified by others whose investigations were 
based on computer simulation, theory, and three-dimensional microscopy (e.g., 
Phan et al. 1996; Weeks et al. 2004).

As the volume fraction of solids, ϕ, is increased beyond ϕ = 0.545, the particles 
are increasingly caged by others, and at a critical value, ϕG, the caging stops all long-
range particle motion, and the system is considered to be glassy (Pham et al. 2002). 
Pusey and van Megen (1986) observed that the highly concentrated ( ϕ > 0.58), vis-
cous, samples exhibited only partial heterogeneous crystallization even when left 
undisturbed for several months. The concentration of particles was sufficiently high 
that particle diffusion was hindered to the point where crystals did not form on that 
time scale and the suspensions remained in the metastable amorphous phase created 
by the earlier sample tumbling. Thus, for ϕ ≈ 0.58 hard-sphere colloidal dispersions 
form glasses and the glassy state is present over a range of solids concentration. 
The effective volume fraction of the most concentrated glassy sample was close to 
ϕ = 0.637 expected for the random close-packed HS (so called Bernal) glass. The 
discovery of a glass composed of equal-sized spheres is especially interesting since, 
although there has been considerable theoretical work and computer simulations on 
such model glasses earlier, real glasses composed of spherical units were not identi-
fied experimentally.

Fig. 2.9.   Phase behavior of 
colloidal hard sphere disper-
sions, from Pusey and van 
Megen (1986)
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Rheology of Protein Dispersions

Many protein particles are crystal shaped (Loveday et al. 2007). For example, bo-
vine serum albumin (BSA) is a heart shaped globular protein molecule that can be 
approximated as an equilateral triangle with sides of 8 nm and a depth of 3 nm, 
and it has an equivalent hydrodynamic radius of 3.7 nm in the range of pH 4 and 8 
(Ferrer et al. 2001). The β-lactoglobulin (β-LG) dimer is not spherical, but can be 
approximated as a prolate ellipsoid with length = 6.9 nm and width = 3.6 nm. From 
literature, it is known that the value of ϕmax = ~ 0.71 – 0.74 for prolate ellipsoid par-
ticles. In addition, in the Krieger-Dougherty model, one can use a value [η] = 3.6 for 
ellipsoid particles.

In milk, the casein is aggregated with calcium phosphate as casein micelles, with 
a mean size of about 300 nm. After the calcium phosphate is removed, the result-
ing sodium caseinate exists in solution mainly as a mixture of casein monomers 
and casein nanometer-scale particles (10 – 20 nm); further, gels may be produced 
from dispersions of sodium caseinate by heating, acidification, and high-pressure 
processing (Dickinson 2006). In sodium caseinate, different caseins interact with 
each other to form associated structures, which exist as a dynamic system of casein 
monomers, casein complexes, and aggregates (Lucey et al. 2000). The average radi-
us of gyration of caseinate aggregates has been shown to be in the range 22 − 48 nm; 
the aggregates have been shown to be not spherical but highly elongated structures. 
The extent of aggregation of sodium caseinate depends on the relative proportions 
of the different monomeric caseins and also on the temperature, pH, ionic strength, 
and calcium ion concentration (Dickinson 2006).

Farrer and Lips (1999) obtained zero-shear viscosity data on dispersions of so-
dium caseinate (pH 6.8, 0.1 M NaCl) over the concentration range 3 – 28 % w/v. 
Their values of relative viscosity were calculated using solvent viscosity of 1 mPa s. 
Panouille et al. (2005) obtained zero-shear viscosity data for dispersions of phos-
phocaseinate (pH 6.0, polyphosphate 2 % w/v); the phosphocaseinate was obtained 
after the colloidal calcium phosphate had been removed from the casein micelles. 
An empirical model, based on concentration, C, (instead of volume fraction) was 
used to fit the relative viscosity data of the phosphocaseinate dispersions up to a 
concentration of about 10 % w/v:

� (2.31)

In Fig. 2.10, the relative viscosity data on sodium caseinate dispersions from dif-
ferent laboratories are shown. As expected, the viscosity increases gradually with 
concentration up to about 10 % and then more steeply at higher concentrations. 
Pitkowski et  al. (2008) noted that this behavior was also found in multiarm star 
polymers and polymeric micelles. The high-end sodium caseinate dispersions were 
of higher concentration than in previous studies (Farrer and Lips 1999; Panouille 
et al. 2005) and the viscosity data were in good agreement with the extrapolated 
data of Farrer and Lips (1999) (Loveday et al. 2010).
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 The dashed line in Fig. 2.10 represents relative viscosity values of the phospho-
caseinate dispersions predicted by the empirical model (Eq. 2–31). Also shown in 
this figure as a solid line are values of relative viscosity predicted by the Krieger-
Dougherty model (Eq. 2–26) with [η] = 2.5 and ϕmax  = 0.65. It is interesting to note 
that the values predicted by the model were lower than the experimental data up to a 
concentration of about 14 % w/w, but increased more steeply than the data at higher 
concentrations. Because of uncertainties in the determination of the sodium casein-
ate particle volume fraction, the polydispersity of the particles, and their softness, 
the Krieger-Dougherty rheological model developed for hard-sphere dispersions 
predicted the trends accurately but not the absolute values of viscosity.

Modulus of Gels of Fractal Floes

In addition to the volume fraction of solids, their fractal nature also affects rheo-
logical properties. Shih et al. (1990) developed a scaling relationship for the elastic 
properties of colloidal gels by considering the structure of the gel network to be 
a collection of close packed fractal floes of colloidal particles. They defined two 
separate rheological regimes depending on the strength of the interfloc links rela-
tive to that of the floes themselves: (1) the strong-link regime is observed at low 
particle concentrations, allowing the floes to grow to be very large, so that they can 
be considered weak springs. Therefore, the links between floes have a higher elastic 
constant than the floes themselves, and (2) the weak-link regime is observed at high 
particle concentrations, where the small floes are stronger springs, and the links be-
tween floes have a lower elastic constant than the floes themselves. The weak-link 
regime should be applicable to gels that are well above the gelation threshold (Shih 
et al. 1990) where the elastic modulus, G', is related to the particle volume fraction 
( ϕ) by the following relationship:

 Fig. 2.10   Relative viscosity vs. 
concentration of Na caseinate 
dispersions. Data of Farrer-Lips 
(1999) on dispersions of Na 
caseinate pH = 6.8, 0.1 M NaCl 
(Loveday et al. 2010). Solid 
line: values using the Krieger 
and Dougherty (1959) model for 
hard spheres with [η] = 2.5 and 
ϕmax = 0.65. Dotted line: values 
calculated using equation that fit 
data on dispersions of phospho-
caseinate (pH 6.0, polyphosphate 
2 % w/v) in water by Panouille 
et al. (2005)
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f( 2)/( )~ d d DG' f − −� (2.32)

where, Df is the fractal dimension of the colloidal floe and d is the Euclidean dimen-
sion of the network—usually three. The power relationship between the modulus 
and the volume fraction of solids implied in Eq. 2.31 is illustrated in Fig. 2.11 for 
two gelatinized starch dispersions (Genovese and Rao 2003). Such plots have been 
utilized to determine the fractal dimension of several food gels (Table  2.3) and 
values of Df between about 1.9 and 2.9 have been reported (Rao 2007). Wu and 
Morbidelli (2001) extended the above model to include gels that are intermediate 
between the strong-link and the weak-link regimes.

Fig. 2.11   Plateau modulus 
of starch dispersion plotted 
against volume fraction 
of starch granules. Fractal 
dimensions of the starch 
granules were calculated 
from the slopes of the lines

 

Table 2.3   Fractal dimension of selected foods based on rheological data. (Rao 2007)
Network of Particles Fractal Dimension, Df

Palm oil or lard fat 2.82–2.88
Cocoa butter 2.37
Salatrim® 2.90
Milk fat and/canola oil blends 1.97–1.99
Whey protein isolate + CaCI2 gels 2.30–2.60
Soy protein isolate gels, pH 3.8 and 0.2 M NaCI 2.30
Starch gels 2.79–2.81
Egg white protein gel, pH 3.7 1.90–2.10
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Effect of Soluble and Insoluble Solids Concentration 
on Apparent Viscosity of Foods

The effect of concentration on the zero-shear viscosity of biopolymer dispersions 
can be expressed in terms of the coil overlap parameter, c[η], and the zero-shear 
specific viscosity as described in Chap. 4 in connection with food gum dispersions.

Unlike biopolymer dispersions where the intrinsic viscosity is known and the 
polymer concentration can be chosen a priori, often for fluid foods the concentra-
tion of soluble (e.g., pectins in fruit juices) and insoluble solids can be determined 
only posteriori, and the determination of their zero-shear viscosities is also difficult 
due to instrument limitation and due to the existence of yield stress. However, in 
many foods, it may be possible to identify the components, called key components, 
that play an important role in the rheological properties.

The effect of concentration ( c) of soluble or insoluble solids on either apparent 
viscosity ( ηa) or the consistency index of the power law model ( K) can be described 
by either exponential or power law relationships:

ηa ∝ exp (ac)� (2.33)

ηa ∝ cb� (2.34)

K ∝ exp (a′c)� (2.35)

K ∝ cb′� (2.36)

where, a, a′, b, and b′ are constants to be determined from experimental data. Other 
models that are applicable to specific foods are discussed under the flow properties 
of specific foods in Chaps. 4 and 5.

We consider the viscosity data on Pera concentrated orange juice (COJ) of Vitali 
(Vitali and Rao 1984a, b) to illustrate the exponential model for the effect of soluble 
solids (°Brix) and insoluble solids (% Pulp) (Tables 2.3 and 2.4). The influence of 
soluble solids on apparent viscosity at a shear rate of 100 s−1 ( ηa, 100) and on K 
shown in Fig. 2.12 and that of insoluble solids on the same rheological parameters 
shown in Fig. 2.13 can be described by exponential relationships.

Table 2.4   Effect of °Brix on apparent viscosity and consistency index of the power law model, 
Pera orange juice, 5.7 % pulp, – 10 °C. (Vitali and Rao 1984a, b)
°Brix ( ηa, 100 Pa s ln, ηa, 100 K, Pa sn ln K

50.8 0.29 – 1.2379 0.89 – 0.1165
56.5 0.65 – 0.4308 2.18 0.7793
57.9 0.83 – 0.1863 2.56 0.9400
61.6 1.62 0.4824 5.61 1.7246
65.3 3.38 1.2179 23.58 3.1604
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Fig. 2.13   The influence of 
soluble solids on apparent 
viscosity at a shear rate of 
100 s−1 ( ηa, 100) and on the 
consistency coefficient, K, 
of Pera concentrated orange 
juice, Data of Vitali and Rao 
(1984a)

 

Fig. 2.12   The influence of 
insoluble solids on apparent 
viscosity at a shear rate of 
100 s−1( ηa, 100) and on the 
consistency coefficient, K, 
of pera concentrated orange 
juice, data of Vitali and Rao 
(1984b)

 

Effect of Soluble and Insoluble Solids Concentration on Apparent Viscosity of Foods�

The effect of concentration ( c) of soluble solids (°Brix) and insoluble solids 
(Pulp) on either apparent viscosity or the consistency index of the power law model 
of FCOJ can be described by exponential relationships (Vitali and Rao 1984a, b). 
Equations  2.36 and 2.37 are applicable to the consistency coefficient ( K) of the 
power law model. In the case of FCO J, it should be noted that insoluble solids are 
expressed in terms of pulp content determined on a 12 °Brix sample by centrifuga-
tion at 360 × g for 10 min (Table 2.5).

	 K = Kc exp(Bc
K ºBrix)	 (2.37)

	 K = Kp exp(BK
P ºBrix)	 (2.37)
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where, Kc, Kp, BK
C and BK

P are constants.

The role of insoluble solids can be also studied in terms of the relative viscos-
ity ( ηr = apparent viscosity of COJ/apparent viscosity of serum) and pulp fraction 
(Fig. 2.12) and, as expected, such a plot has the limiting value of 1.0 at zero pulp 
fraction (serum). The curve in Fig.  2.14 illustrates the strong influence of pulp 
fraction on the viscosity of COJ. The values of ηa,100 also, as expected, follow 
a profile similar to that of ηr (Fig.  2.14). The two curves are described by the 
equations:

	 ηr = exp (9.90 × pulp fraction)� (2.39)

	 ηa 100 = 1,95 × exp (9.90 × pulp fraction)� (2.40)

Peclet Number of Dispersions
Yoo and Rao (1996) studied the influence of two different sizes of tomato pulp par-
ticles (TP4 and TP6) at a pulp weight fraction of 17 % in terms of Peclet number and 

Table 2.5   Effect of Pulp content on apparent viscosity and consistency index of the power law 
model, pera orange juice, 65 °Brix − 10 °C. (Vitali and Rao 1984a, b)
Pulp % ηa, 100 Pa s ln, ηa, 100 K, Pa sn ln K

0 1.95 0.6678 3.74 1.3191
3.4 2.73 1.0043 7.11 1.9615
5.7 3.38 1.2179 8.63 2.1552
8.6 4.70 1.5476 15.77 2.7581
11.1 5.76 1.7509 23.91 3.1743

Fig. 2.14   The strong influ-
ence of pulp fraction on the 
viscosity of concentrated 
orange juice (COJ) and the 
relative viscosity ( ηr) of COJ
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relative viscosity (Krieger 1985; Tsai and Zammouri 1988). The Peclet numbers 
(Pe) were calculated using the equation:

3

O O
.

Pe
r

kT

η γ
=� (2.41)

where, η0 is the viscosity of the suspending liquid (serum), r0 is the particle ra-
dius, k is the Boltzmann constant (1.38 × 10−23 N m K−1), and T is the absolute 
temperature.

The Peclet number compares the effect of imposed shear with the effect of diffu-
sion of the particles. When Pe >> l, hydrodynamic effects dominate and a dispersion 
of spherical particles exhibits shear-thinning behavior. In contrast, when Pe << 1, 
the distribution of particles is only slightly altered by the flow (Hiemenz and Ra-
jagopalan 1997). As shown in Fig. 2.15, at equal values of pulp weight fraction, 
a TP6 sample with small diameter particles was more viscous than a TP4 sample 
with large diameter particles. A nearly linear relationship exists between the relative 
viscosity of TP sample and the Peclet number. Similar linear relationship was found 
for glass bead suspensions (Tsai and Zammouri 1988). However, the slope of the 
linear relationship of TP6 sample is slightly higher than that of TP4 sample, indicat-
ing that at high-shear rates, the TP6 aggregates with small particles are more sensi-
tive to shear than those with large particles. The different aspect ratios of the TP4 
and TP6 particles discussed above is another reason for the deviation from a single 
linear relationship. From these observations, it can be concluded that the effect of 

Fig. 2.15   Peclet number versus relative viscosity of tomato pulp particles. At equal values of pulp 
weight fraction, a TP6 sample with small diameter particles was more viscous than a TP4 sample 
with large diameter particles
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particle size on the relative viscosity of tomato puree sample can be correlated with 
the Peclet number of the particle.

Emulsions

Many foods are oil-in-water or water-in-oil emulsions (o/w), with dispersed particle 
size range of 0.01 – 10 μm. Many of the equations discussed for food suspensions 
are also applicable to emulsions. In a dilute emulsion, the particles are far apart 
and the interparticle interactions are relatively weak. Skim milk is an example of a 
dilute emulsion with the concentration of fat droplets (dispersed phase) < 1 %. How-
ever, in a concentrated emulsion, the particles are close to each other and there are 
strong interparticle interactions. Mayonnaise has a dispersed phase (oil) concentra-
tion of 70 – 80 %. As with foods containing insoluble solids, the volume fraction of 
the dispersed phase in emulsions is important.

The separation of phases in an emulsion occurs spontaneously in the direction of 
decreasing Gibbs free energy. Thus it can be said that there is more surface energy 
in an emulsion when the dispersed droplets are in a highly subdivided state than 
when they are in a coarser state of subdivision. To be stable, an o/w emulsion should 
exhibit yield stress, and the forces applied to the continuous phase by the dispersed 
phase due to the applicable forces (e.g., gravity and buoyancy) should be below the 
emulsion’s yield stress.

The words stable and unstable are often used to describe emulsions that are bet-
ter understood by examining the underlying processes. The coarsening of a thermo-
dynamically unstable emulsion is called coalescence or aggregation; coalescence 
is a process by which two or more particles fuse together to form a single larger 
particle; aggregation is a process by which small particles lump together to form 
aggregates (Hiemenz and Rajagopalan 1997). The van der Waals force between 
particles in a dispersion is usually attractive and is strong at short distances between 
particles. Therefore, the emulsion will be unstable and coagulate unless there are 
repulsive interactions between particles. Two methods are used to overcome van der 
Waals attraction: (1) electrostatic stability in which the electrostatic force resulting 
from overlapping electrical double layers of two particles, and (2) polymer-induced 
or steric stability in which a suitable polymer that is adsorbed on the particle sur-
faces may be used. In food emulsions, polymer-induced stability is encountered 
commonly.

Very often, the microstructure and the macroscopic states of dispersions are de-
termined by kinetic and thermodynamic considerations. While thermodynamics 
dictates what the equilibrium state will be, kinetics determine how fast that equilib-
rium state will be determined. While in thermodynamics the initial and final states 
must be determined, in kinetics the path and any energy barriers are important. The 
electrostatic and the electrical double-layer (the two charged portions of an interfa-
cial region) play important roles in food emulsion stability. The Derjaguin-Landau-
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Verwey-Overbeek (DLVO) theory of colloidal stability has been used to examine 
the factors affecting colloidal stability.

An emulsifier may be thought of as a single chemical component or mixture 
of components that have the capacity to promote emulsion formation and stabili-
zation by interfacial action; in contrast, a stabilizer confers long-term stability on 
an emulsion involving often adsorption or another mechanism. Polymers, such as 
gum Arabic, egg albumin, casein, and gelatin have been used for a long time to 
stabilize food emulsions. Other stabilizers include xanthan gum, guar gum, and 
whey protein isolate. Because some of these are charged polymers (polyelectro-
lytes), their stabilizing influence is due to both electrostatic and polymeric effects, 
that is, electrosteric stabilization. Lecithins (e.g., from egg yolk and soybean) are 
the most important food emulsifiers derived from natural sources without chemical 
reaction (Dickinson 1993). They consist of mixtures of many phospholipid com-
ponents with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) being 
present in large proportions.

A simplified view of some of the possible effects of polymer molecules on a dis-
persion include (Hiemenz and Rajagopal 1997): (1) at low polymer concentrations 
bridging flocculation, where a polymer chain forms bridges by adsorbing more than 
one particle, (2) at higher polymer concentrations, “brush-like” layers can form on 
the solid particles that can mask the influence of van der Waal’s attraction between 
the particles, thereby imparting stability, called steric stabilization, (3) at moderate 
to high polymer concentrations, the polymer chains may be excluded in the region 
between the particles resulting in depletion flocculation, and (4) at high polymer 
concentrations, polymer-depleted regions may be created by demixing the polymer 
resulting in depletion stabilization. Generally, polymers containing only one kind of 
repeat unit (homopolymers) are not good for steric stabilization. One requirement is 
that the polymer be adsorbed at the oil–water interface and the polymer is consid-
ered to reside partially at surface sites and partially in loops or tails in the solution. 
Under the right circumstances, an adsorbed polymer layer stabilizes a dispersion 
against aggregation. It may be said that the approaching particles in an aggregation 
step experience an increase in free energy of repulsion, ΔGR, that can be divided 
into enthalpic (ΔHR) and entropie (Δ, SR) contributions:

� (2.42)

In Eq. 2.39, the terms describe changes in enthalpy and entropy in the overlapping 
region of the adsorbed layers of two particles. Because ΔHR and ΔSR can be either 
positive or negative, it is possible for the value of ΔGR to change sign with change 
in temperature and the critical temperature for the onset of flocculation is known as 
the critical flocculation temperature (Hiemenz and Rajagopalan 1997).

Because of the many factors affecting the rheology of food emulsions, the rheolog-
ical properties cannot be predicted a priori so that experimental studies on model o/w 
and food emulsions are necessary. Whey proteins, especially β-lactoglobulin, possess 
good emulsification properties and whey protein stabilized emulsions can be convert-
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ed into emulsion gels by thermal treatment (Aguilera and Kessler 1989; Dickinson 
and Yamamoto 1996a). In general, the incorporation of protein-coated emulsion drop-
lets into a heat-set globular protein network resulted in an increase in gel strength. 
Further, a self-supporting heat-set emulsion gel can be was formed at a protein content 
much lower than that required under similar thermal processing conditions (Dickin-
son and Yamamoto 1996b). Addition of pure egg yolk L-α- phosphatidylcholine after 
emulsification caused an increase in strength of a heat-set β-lactoglobulin emulsion 
gels (Dickinson and Yamamoto 1996b). The positive influence of pure egg lecithin 
added after emulsification on the elastic modulus of the whey protein concentrate 
emulsion gel was attributed to lecithin-protein complexation. Crude egg lecithin also 
gave a broadly similar increase in gel strength. However, pure soybean lecithin was 
not as effective in reinforcing the network and crude soybean lecithin was ineffective 
(Dickinson and Yamamoto 1996a). These results support the general hypothesis that 
filler particles (e.g., globular protein-coated droplets) that interact with a gel matrix 
(a network of aggregated denatured whey protein) tend to reinforce the network and 
increase the gel strength (Dickinson and Yamamoto 1996b).

Other relevant studies on physical properties of emulsions are those of McCle-
ments et al. (1993), Dickinson and Pawlowsky (1996), Dickinson et al. (1996), and 
Demetriades et al. (1997). The application of nuclear magnetic resonance (NMR) 
technique (Simoneau et al. 1993) and ultrasonic spectroscopy (Demetriades et al. 
1996) to study the stability of emulsions were discussed. The rheological behav-
ior of salad dressings and mayonnaises that are emulsions will be discussed in 
Chap. 5.

Effect of Temperature on Viscosity

A wide range of temperatures are encountered during processing and storage of 
fluid foods, so that the effect of temperature on rheological properties needs to be 
documented. The effect of temperature on either apparent viscosity at a specified 
shear rate (Eq. 2.42) or the consistency index, K, of the power law model (Eq. 2.43) 
of a fluid can be described often by the Arrhenius relationship. The effect of tem-
perature on apparent viscosity can be described by the Arrhenius relationship:

a A aexp( / )E RTη η∞=� (2.43)

where, ηa is the apparent viscosity at a specific shear rate, η∞A is the frequency fac-
tor, Ea is the activation energy (J mol−1), R is the gas constant (J mol−1K−1), and T 
is temperature (K).

Although the name of Arrhenius is associated with Eq. 2.42, Moore (1972) cred-
ited J. de Guzman Carrancio for first pointing out this relationship in 1913. The 
quantity Ea is the energy barrier that must be overcome before the elementary flow 
process can occur. The term: exp (– Ea/RT) may be explained as a Boltzmann fac-
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tor that gives the fraction of the molecules having the requisite energy to surmount 
the barrier. Hence, Ea is the activation energy for viscous flow. From a plot of ln ηa 
(ordinate) versus ( 1/T) (abscissa), Ea equals (slope × R) and η∞A

 is exponential of 
the intercept.

The Arrhenius equation for the consistency coefficient is:

aKexp  ( / )K EK RT∞=� (2.44)

where, K∞ is the frequency factor, Eak is the activation energy (J/mol), R is the 
gas constant, and T is temperature (K). A plot of ln K (ordinate) versus ( 1/T) 
(abscissa) results in a straight line, and Eak = (slope × R), and K∞. is exponential 
of the intercept. The activation energy should be expressed in joules (J), but in 
the earlier literature it has been expressed in calories (1 calorie = 4.1868 J). The 
applicability of the Arrhenius model to the apparent viscosity versus temperature 
data on a concentrated orange juice serum sample (Vitali and Rao 1984a, b) is 
shown in Fig. 2.16.

The Arrhenius equation did not describe very well the influence of temperature 
on viscosity data of concentrated apple and grape juices in the range 60–68 °Brix 
(Rao et al. 1984, 1986). From nonlinear regression analysis, it was determined that 
the empirical Fulcher equation (see Ferry 1980, p.  289, Soesanto and Williams 
1981) described the viscosity versus temperature data on those juice samples better 
than the Arrhenius model (Rao et al. 1986):

log 
B'

A'
T T

η = +
− ∞

� (2.45)

Fig. 2.16   Applicability 
of the Arrhenius Model 
to the apparent viscosity 
versus temperature data on 
a concentrated orange juice 
serum sample (Vitali and Rao 
1984b) is Shown

 



54 2  Flow and Functional Models for Rheological Properties of Fluid Foods

The magnitudes of the parameters of the Arrhenius and the Fulcher equations for 
the studied concentrated apple and grape juices are given in Tables 2.6 and 2.7, 
respectively. The physical interpretation of the three constants in the Fulcher equa-
tion is ambiguous, but by translating them in terms of the WLF parameters their 
significance can be clarified and it is functionally equivalent to the WLF equation 
(Ferry 1980; Soesanto and Williams 1981):

0
10

0
0 0 2

– 0log 
– 0

c T T

T T c T T
ηη

ρ ρ

 
  

 
  

 
= −   +� (2.46)

Specifically, T∞ and B′ are related to c1
0, c2

0 and a reference temperature T0, often 
called the glass transition temperature, by the following two equations:

T∞ = T0 − c0
2� (2.47)

( )
0
1

0 –

c
B'

T T
=

∞
� (2.48)

Table 2.6   Magnitudes of the parameters of the Arrhenius Equation for the effect of temperature 
on concentrated Apple and Grape juices. (Rao et al. 1986)
Sample η∞ Ea, kJ mol−1 SSQ R2

Apple 68.3 °Brix 1.366E-15 79 0.10260 1.00
Apple 64.9 °Brix 1.671E-15 76 0.02870 1.00
Apple 60.1 °Brix 2.610E-13 62 0.00110 1.00
Apple 55.0 °Brix 5.050E-11 48 0.00100 0.99
Grape 68.3 °Brix 2.150E-14 73 0.31770 1.00
Grape 64.5 °Brix 9.810E-13 63 0.03950 1.00
Grape 59.9 °Brix 2.940E-12 58 0.00620 1.00
Grape 54.0 °Brix 7.610E-11 49 0.00130 1.00

Table 2.7   Magnitudes of the parameters of the Fulcher Equation for the effect of temperature on 
concentrated Apple and Grape juices. (Rao et al. 1986)
Sample A′ B′ T∞ SSQ R2

Apple 68.3 °Brix − 7.26 1,049 132.8 0.01356 1.00
Apple 64.9 °Brix − 7.56 1,035 130.9 0.01360 1.00
Apple 60.1 °Brix − 6.87 911 124.3 0.00208 1.00
Apple 55.0 °Brix − 6.07 896 94.0 0.00048 1.00
Grape 68.3 °Brix − 6.75 1,039 125.7 0.14110 1.00
Grape 64.5 °Brix − 6.65 1,041 115.1 0.02150 1.00
Grape 59.9 °Brix − 6.81 1,048 107.0 0.00080 1.00
Grape 54.0 °Brix − 6.56 1,085 84.5 0.00080 1.00
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However, it should be pointed out that Soesanto and Williams (1981) also deter-
mined the values of the glass transition temperature of the very high concentration 
sugar solutions (91.9 – 97.6 % by weight) by regression techniques and not experi-
mentally.

The WLF equation was also used to correlate viscosity versus temperature data 
on honeys (Al-Malah et  al. 2001; Sopade et  al. 2003). Because of the empirical 
nature of the Fulcher equation and the empirical origin of the WLF equation, their 
use with viscosity data of relatively dilute fruit juices serves mainly the objective of 
obtaining a useful correlation.

Combined Effect of Concentration and Temperature

The flow behavior index ( n) is assumed to be relatively constant with temperature 
and concentration, and the combined effects of temperature and concentration on 
the power law consistency index, K, are described by:

K = Acb1 exp (Ea/RT )� (2.49)

Tomato concentrates and concentrated milk samples are examples of foods in this 
category. Alternatively, the combined effects of temperature and concentration on 
the power law consistency index, K, are described by:

K = A′ exp

(
Ea

RT
+ bc

)
� (2.50)

Mixing Rules for two Component Blends

Earlier, the role of suspended particles in fluid media in increasing the viscosity of 
a suspension and different equations relating the volume fraction of solids were dis-
cussed. For general two component or polymer composites, the Takayanagi models 
(Ross-Murphy 1984; Sperling 1986) provide means for calculating the upper (so 
called isostrain) and lower (so called isostress) limits of values for the shear modu-
lus Gc of a composite formed from components x and y with shear moduli Gx and 
Gy, respectively. In the former, the polymers are arranged in parallel with respect to 
deformation, while in the latter they are arranged in series. In the parallel arrange-
ment, the deformation of the weaker component is limited by the modulus of the 
stronger material and both components are deformed to the same extent (isostrain). 
In the series arrangement, the strength of the weaker component limits the force 
transmitted to the stronger material; therefore, both are subjected to the same stress 
(isostress).
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If ϕx and ϕy = 1– ϕx are the respective volume fractions of the two components, 
the equations for the upper and lower bound values are:

(upper bound, isostrain)cG G Gx x y yf f= +� (2.51)

( ) ( ) ( )1/ / / (lower bound, isostress)cG G Gx x y yf f= +� (2.52)

Values of Gc predicted by the above two models are shown in Fig. 2.17. Implicit in 
the above models is that the experimental value of Gc lies between those of Gx and 
Gy. For a simple phase-separated system, the lower bound form (isostress) should 
predict Gc prior to phase inversion when the supporting phase ( x) is the weaker one. 
It will then show a transition to the upper bound behavior. More complex models 
can be found in Sperling (1986).

The Takayanagi models have been used to better understand the rheological be-
havior of a starch-soyprotein system (Chap. 4), tomato paste (Chap. 5), and mixed 
gel systems (Chap. 6). However, given that most foods contain several major com-
ponents (c̃), the number and distribution of phases (P) is much more complex as 
seen from the phase rule:

P ( 2)c f= − +��� (2.53)

where, f̃ is the number of degrees of freedom.

Fig. 2.17   Modulus of the composite gel ( Gc) Plotted against volume fraction of component y 
( G = 10,000). When the weaker component ( x, G = 1,000 Pa) dominates and becomes the continu-
ous phase, Gc follows the lower bound isostress limit, with increasing fraction of y, there will be a 
phase inversion and Gc reaches the upper bound limit, path indicated by open circles
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Treatment of Rheological Data Using Models

Prior to using a model for description of rheological data, it would be desirable 
tocritically examine a number of issues, such as:

1.	 How reliable are the data? Are the data reproducible? Are the measurement tech-
niques reliable? Are the test samples reproducible, reliable, and suitable for rheo-
logical measurements?

2.	 Plot the data (σ—γ̇ )-look for trends in data and artifacts of rheometer. Some-
times, most, but not all, of the data can be used for subsequent analysis. If the 
data are not reliable, why fit models?

3.	 Rheological model: (a) Is it appropriate for the experimental data? (b) How 
reliable is the model parameter estimation software? Has the reliability of the 
software been checked? (c) What are you looking for in the data (e.g., effect of 
temp.)? (d) Compare experimental data with a model’s predictions because R2 
values often do not indicate the appropriateness of the model for the selected 
data!
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