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Abstract Weather and climate information is essential to the energy sector. The
power sector in particular has been using both observations and forecasts of many
meteorological and hydrological parameters for several decades. In the last
10 years, a clear upward trend has been observed in the number, complexity, and
value of data provided by National Meteorological and Hydrological Services
(NMHSs) or produced by the energy sector itself. Much progress has been made,
especially in the medium-term and longer time ranges; the development of reliable
probabilistic forecasting systems has allowed many improvements in demand and
production forecasts, although there is still a lot to do because of the difficulty in
integrating probabilistic weather forecasts in management tools. In addition, the
rise of renewable energy (RE) production systems, in particular wind and solar
energy, has emphasized new needs for more accurate and reliable short-term
forecasts, from real-time to a few days ahead. Rapid fluctuations in wind and solar
radiation at local scale certainly raise a serious problem for the management of
power grids. Significant and swift improvements in local forecasts, at hourly or
even sub-hourly time step, become increasingly important and will be among the
drivers for the large-scale development of RE systems. In this paper, we present
some important results concerning monthly ensemble forecasts of temperature and
river streamflows in France. We then point to the principal needs in weather
forecasting associated with the development of RE. We also discuss the impor-
tance of collaboration and relationships between providers and users of weather,
water, and climate information.
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1 Introduction: The Power Sector is Increasingly Weather
Dependent

The power sector is constantly evolving and this has, in particular, been the case in
the last 15 years in France, because of the liberalization of the energy market. In
addition to physical constraints on the systems, financial factors have become ever
more important, bringing even greater complexity to an already complex opti-
mization problem.

Most utility operations are influenced by climatic variables: demand of course
depends on temperature, either for heating in winter or cooling in summer; RE
production depends on the respective source (wind for wind energy, solar radiation
for solar energy, precipitation and river discharge for hydropower, etc.) (Fig. 1)

The importance of weather and climate for economic activity has been the
subject of many studies (Marteau et al. 2004; Teisberg et al. 2005; Dubus 2007;
Lazo 2007; Rogers et al. 2007; Dutton 2010; Frei 2010, etc.). French energy
companies gave figures explicitly on the climatic impact on their activity for the
first time in 2010, in their corporate results communication. Electricité De France
(EDF), the French leading power company, in particular, evaluated the impact of

Fig. 1 Aerial view of Migouélou dam and lake, � EDF, Gilles De Fayet
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weather on the variation in sales and EBITDA1 (EDF 2011). In 2010, more power
was sold, in particular due to cold conditions in winter, and this resulted as a
positive impact on both indicators (+€337 million on sales and +€215 million on
EBITDA, respectively). Both demand and production in fact depend on weather.

Power demand depends foremost on air temperature, as shown in Fig. 2 which
represents, for October 2011 to March 2012, the time evolution of the average
temperature over France and of power demand (together with the climate normal
and the anomaly with respect to this normal). There is a clear correlation between
both variables: when temperature decreases, power demand increases and vice
versa. This relationship is commonly defined as the ‘‘demand gradient’’. In France,
the winter gradient is 2,300 MW/ �C2at around 7:00 PM (the time of peak demand
in winter).This means that for an extra anomaly of -1 �C (or respectively +1 �C),
the demand (and hence, the production required to meet it) increases (respectively
decreases) by 2,300 MW, which corresponds to twice the electricity consumption
of a large city such as Marseille (*850,000 inhabitants). The value of this gradient
depends on both the time of day and the day of the year. In summer, the maximum
value is 500 MW/ �C and is reached at around 1:00 PM.

Clearly, power generation also depends on climate variables. Temperature and
river flow determine the cooling capacities of (standard and nuclear) thermal
power plants which are located along rivers. Summer heat waves and/or low river

Fig. 2 Temperature and peak demand in France. Data from Météo-France and RTE (www.
rte-france.com): normal temperature (grey dotted line), daily temperature (black dotted line),
temperature anomaly (bars), and daily maximum demand (solid black line)

1 Earnings Before Interest, Taxes, Depreciation, and Amortization.
2 The power of a production unit is expressed in megawatts (MW). A nuclear plant has a
production capacity of 900–1,600 MW, depending on the technology; the production capacity of
a typical windmill is around 1–5 MW.
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water levels, as in 2003, can reduce cooling capacity and thus entail a reduction in
production capacity (Dubus and Parey 2009).

The influence of weather parameters is also crucial for RE sources (hydro,
wind, and solar). Figure 3 shows the hydropower generation potential for four
different years. In addition to a strong seasonal cycle, the production capacity is
also marked by a strong interannual variability: in the last 25 years, the difference
between highest and lowest annual generation potential was 23 TWh, for a the-
oretical maximum generation of 44.4 TWh.3 In 1994, for instance, the autumn was
characterized by many perturbations affecting most watersheds, and then strong
precipitations that explain the high level of production capacity for this particular
year (redline on Fig. 3).

In order to meet both the major challenges facing the power sector (IEA 2011)
and political objectives, it is necessary to vastly develop wind and solar power
production over the next 30 years. Due to their fluctuating nature, however, wind
and solar energy cannot be scheduled in the same way as conventional power
plants. This can lead to security problems for the networks and hence to power
disruption for customers. Improving the quality of production forecasts is therefore
crucial, to enable the development of solar and wind energy suited to the chal-
lenges of climate, energy demand and fossil fuel prices in the decades ahead (see
also the chapters by George and Hindsberger, Love et al., Renne, Gryning and
Haupt in this book).

Demand and production forecasts are thus crucial to the management of power
systems, at all timescales. The new market organization over the last 15 years has
even emphasized the need for longer term forecasts, in order to optimize the use of
the different production means, in particular hydropower reservoirs. This paper is
organized as follows: parts 2 and 3 respectively present some recent results from
monthly forecasts of temperature and river streamflows in France and show their

Fig. 3 From EDF’s
Financial communication,
2011/02/15. Monthly
evolution of hydropower
generation potential (TWh),
for five different years

3 1 TWh (Terawatt. hours) = 1012 W-h, is a measure of energy, the product of power capacity
and the time during which it runs (maximum 8,760 h per year).
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improvement in quality, with respect to current reference forecasts. Part 4 discusses
some important challenges in the coming years, to improve the use of probabilistic
forecasts and the quality of short-term forecasts for RE. The conclusion summarizes
the results and gives some important points about collaboration and partnerships
between providers and users of weather and climate information.

2 Probabilistic Temperature Forecasts of a Few Days
to One Month

As seen above, power demand in France depends on air temperature, the winter
peak time gradient being on average 2,300 MW/ �C, and around 500 MW/ �C in
summer. Temperature forecasts are therefore crucial to the supply/demand balance
optimization problem. Deterministic forecasts from Météo-France and the Euro-
pean Center for Medium-range Weather Forecasts (ECMWF) are used routinely
for short-term forecasts (Dubus 2010). For more than 10 years now, EDF has been
using ECMWF EPS 14-days temperature forecasts and it seemed natural to test the
benefits of using longer lead-time forecasts. Figure 4 illustrates the advantages of
probabilistic versus deterministic forecasts. The plots represent two different
forecasts, up to 14 days, of temperature averaged over France. The color corre-
sponds to the density of the 51 runs of the ensemble predicting the corresponding
temperature. For March 5th 2010 (left panel), the forecast dispersion is small,
indicating a rather predictable situation, and the ensemble mean (red line) is very
close to the a posteriori observed temperature (green line; the blue dotted line is
the climate normal for that period): the difference between observation and fore-
cast, up to day 9, is less than 1 �C. In this case, using the ensemble mean as a
single deterministic forecast seems quite reasonable and would not lead to large
errors, at least up to day 10. On the other hand, the forecast made on February 3rd

Fig. 4 14-day probabilistic forecasts of temperature over France, from ECMWF VarEPS system
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2010 (right panel) shows a marked bimodal distribution: most of the ensemble
members being around the normal (blue dotted line), with a few indicating much
lower temperatures (8 �C lower than the climate normal on February 11th). As
shown by the observed values (green curve), the ensemble mean in red is, in this
case, far from the observation: on the 12th, the error made using this crude
deterministic forecast is 7.1 �C, equivalent to some 16,300 MW at demand peak
time or 16.5 % of France’s total installed capacity. Taking into account the whole
probability distribution would therefore lead decision makers to act differently in
the management of the system, with an evident reduction in risk. This clearly
illustrates the superiority of probabilistic forecasts, even if the information is much
more difficult to deal with and to integrate in existing power system management
tools (see also the chapters by Mailier and Dutton in this book).

Although monthly weather forecasting was being studied as early as 1980 (Nap
et al. 1981), numerical weather predictions with this lead time only improved
significantly about 10 years ago. Since the early 2000s, ECMWF has been
developing a monthly forecasting system which is now fully integrated in the
VarEPS-Monthly system. It consists of a twice-weekly extension to 32 days of
the EPS runs, an ensemble of 51 members at the global scale. The horizontal
resolution is around 30 km up to day 10 and from then around 50 km up to day 32
(Vitart 2004; Vitart et al. 2008). In 2004/2005, a subjective evaluation of the
forecasts was conducted on the basis of the graphical charts displayed on the
ECMWF website, involving end users in the system optimization branch of EDF.
Positive feedbacks allowed to study more deeply the potential benefits of such
forecasts and to make a quantitative evaluation. A rather extensive study was
undertaken, of which only the key results are given here. The evaluation was
carried out on forecasts from October 2004, date of the operational release of the
monthly forecasting system, up to April 2012 (395 forecasts). The variable of
interest is air temperature, averaged over France (the figure is a weighted average
of 26 stations in France, with the different weights corresponding to the proportion
of total energy demand allocated to the 26 areas). Deterministic and probabilistic
scores were calculated and compared to those of 2 reference forecasts: (1) from a
historical dataset of 120 years of observed daily data, taken as a reference
climatology (this 120-member ensemble always gives the same forecast for a
given period) and (2) from a *15,000-year time series dataset, obtained with a
statistical model, which has the same statistical characteristics as the 120-year
dataset.4 These references will henceforth be called REF1 and REF2.

Classical deterministic and probabilistic scores and skill scores (Jolliffe and
Stephenson 20115) have been calculated: bias, MAE, RMSE, ACC, rank diagrams,
ROC scores, Brier Scores, and reliability diagrams. For the probabilistic scores,

4 This 15,000-scenario dataset was established to deal with probability distribution tails (e.g.,
1 % quantile), which cannot be estimated accurately with only 120 years of data.
5 See also the web site maintained by Beth Ebert at http://www.cawcr.gov.au/projects/
verification.

384 L. Dubus

http://www.cawcr.gov.au/projects/verification
http://www.cawcr.gov.au/projects/verification


different events were considered (Temperature anomaly \-4 �C,
\-2 �C, \0 �C, [+2 �C, and [+4 �C; Temperature anomaly \20 % percentile
of the climatological distribution and [80 % percentile of the climatological
distribution). The verification of each set of forecasts is made against a posteriori
observation of temperature, weight-averaged over the 26 reference stations
according to the aforementioned procedure.

Figure 5 shows the yearly evolution of two deterministic scores (Root Mean
Squared Error and Anomaly Correlation Coefficient) for weeks 1–4 of the fore-
casts, together with those of the forecasts REF1 and REF2. Monthly forecasts
display better scores up to week 2 than REF1 and REF2, throughout the year. The
scores continue to be better in weeks 3 and 4 during winter (Dec–Jan–Feb). The
Mean Error (not shown here) is of the same order of magnitude for the forecasts
and REFs, with a yearly average value approaching 0. Evidently, these forecasts
should, due to their nature, be evaluated instead in terms of probabilistic scores,
which is presented below.

Only ROC skill scores for temperature forecasts falling below the 20th per-
centile or above the 80th percentile of the observed distribution are shown here.
Figure 6 shows the time evolution of these scores depending on lead time
(1–32 days), averaged over all forecasts.

The ROC skill scores (ROCSS) are always positive for both events, hence the
forecasts are better than the climatology throughout the period. When compared to
forecasts REF1 and REF2, the monthly system is better up to day 20 for both
events and for the other thresholds considered (not shown here), although, the
higher the amplitude of the anomaly considered (either positive or negative), the
better the monthly forecasts.

Figure 7 shows the evolution of the same ROCSS throughout the year, for each
week of the forecast. The plots show, first, that there is strong variability, denoted
by the high-frequency oscillations, even if the scores were calculated using a

Fig. 5 RMSE (left) and ACC (right) of monthly temperature forecasts over France. Weeks 1–4
of the forecasts are in brown, red, orange, and yellow, respectively. Green and blue lines are
reference forecasts (see text for details)
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smoothing procedure. Monthly forecasts are better than the reference forecasts for
weeks 1 and 2, throughout the year and for both events. Secondly, the skill of the
forecasts varies through the year, with a maximum ROCSS during winter months
(from November to March). In weeks 3 and 4 the conclusions must be moderated,
but there is accuracy up to week 3 and even week 4 in December, January, and
February, as well as in summer. This is, however, less evident in the intermediate
seasons (spring and fall). With the exceptions of June, July, and August for week 4
and June–July for week 3, the ROCSS of the monthly forecasts is always positive
and, for the majority of the time, higher than those of the reference forecasts.

The different plots and computed scores all confirm that monthly forecasts pro-
vide better information, at least up to week 3 in winter and week 2 (corresponding to
days 11–18, that is to say 4 days more than the EPS) over most of the year.

Fig. 6 ROC skill scores of monthly temperature forecasts over France (blue line), for the events:
temperature anomaly within the \20 % ([80 %) percentile of the observations. The red and
green lines are the ROCSS of the two reference datasets

Fig. 7 ROC skill scores for each individual week and REF1 and REF2 forecasts (same colors as
Fig. 4 and events as Fig. 5)

386 L. Dubus



The recent implementation of a second run of the system on Mondays has
reinforced the value of these forecasts, which have now been used in operations for
more than 3 years. The limiting factor to their use, at present, lies in the lack of
integration between the forecasts and the existing tools: the forecasts are not used
formally within the operational tools, but instead used as extra information which
aids managers in taking their decisions on the management of the power system. A
quantitative estimation of the economic benefit of such forecasts is rather difficult
to produce, because they are not yet explicitly taken into account in optimization
models. However, it is clear that these forecasts can be very useful to decision
makers, in particular to anticipate cold spells in winter and heat waves in summer.
Certain limitations have been identified and ways to progress will be discussed in
Part 4 of this chapter.

3 Improvement in Monthly River Flow Forecasts

Hydropower represents 20.6 % of EDF’s installed capacity in France, EDF being
ranked number 5 in Europe for total installed renewable capacity, at 25 GW in late
2010 (EDF 2012). Hydropower production is very important in the French power
system, as it provides a relatively partitionable energy stock, due to the presence of
high capacity reservoirs. It therefore provides very attractive flexibility during peaks
in demand. The difficulty, however, is that it is essential to manage the storage
capacities and therefore to accurately forecast the annual water cycle inflow. At a
given time, managers of the system are faced with making the optimal choice between
using the water to produce energy in response to a peak in demand, or choosing
alternative solutions as e.g. buying energy on the European market and keeping the
water available in the reservoirs, should some forecasts show that the water will have a
greater value in the days/weeks/months ahead. The problem is not only a question of
financial optimization, but perhaps more importantly a physical problem, because
rivers have to be managed in coordination with other users (agriculture, tourism, etc.)

Operational forecasts of river flow and water stocks are therefore crucial for the
managers of the system. At present, they are generated everyday for the next
7 days, using deterministic and probabilistic forecasts from Météo-France and
ECMWF, through an analog method (Zorita and von Storch 1999; Obled et al.
2002; Paquet 2004; Andréassian et al. 2006). Following from the studies made on
temperature and reported in part 2, it was decided to evaluate the usefulness of
ECMWF monthly forecasts for river flows. These were generated using the same
analog method. For each of the 32 days and 50 members of a forecast, the method
uses the geopotential fields forecasts at 700 and 1,000 hPa (Z700 and Z1000
respectively) over North Atlantic/Europe and search for analogs in the NCEP
reanalysis. Fifty analog dates are kept for each member, so that it produces 2,500
analog weather patterns to the current forecast. The assumption, then, is to
consider that for a given large-scale circulation pattern, the local precipitation
and temperature at the given site will be the same. Then, referring to EDF’s
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high-quality precipitation and temperature database from 1953 to 2010, one
obtains 2,500 precipitation and temperature forecasts for each time step and each
station point considered. The study presented here focused on 43 basins, presented
in Fig. 8, and forecasts from October 2004 to April 2010 (291 forecast dates).

A preliminary comparison of direct ECMWF model precipitation forecasts and
analog forecasts showed that the analog method improves the local forecasts of
precipitation on average over all basins, and over the course of the year. Similar
results are observed for 2 m temperature (not shown here). Figure 9 shows the
relative gain in ROC skill score taking analog forecasts of precipitation, with
respect to the nearest ECMWF grid point forecast, for different events, averaged
over each week (1–4) of the 291 forecast start dates. The improvement varies
between 2 % for the central tercile in week 4 and about 18–20 % for week 1 and

Fig. 8 Locations of the 43 basins considered for the monthly forecasts of precipitation and
stream flows

Fig. 9 Improvement in
precipitation forecast ROCSS
for analog versus ECMWF
raw forecasts
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for more extreme events (in the lowest 10 % and highest 90 % of the climato-
logical distribution). Naturally, some local and seasonal discrepancies exist, but
the improvements with the analog method are obvious.

The precipitation and temperature forecasts thus obtained are then used in the
MORDOR hydrological model (Paquet 2004), to forecast river flows. The model is
initialized with observed conditions (water stocks, observed inflows, snow stocks,
etc.); the acquaintance with these initial conditions allows the model to make
rather good forecasts in mountainous areas in spring, where flow is determined by
the melting of the winter snow stock when temperature begins to rise. Of course,
the quality of the model is not as good in plains and during the other seasons,
because the flow is then less determined by initial conditions, but rather by direct
precipitation. During the integration, the hydrological model requires temperature
and precipitation forecasts. The current method, for lead times longer than 7 days,
consists in using historical time series (1953–2010) in an ensemble climatological
approach. It will henceforth be referred to as REF. The alternative method, tested
here, is to use the monthly forecasts obtained using the analog method with
ECMWF forecasts (referred to as ANA below). A third method can be used, which
consists simply in using the streamflow climatology as a forecast (this CLIM is
obtained from the 1953–2010 streamflow database).

Figure 10 shows forecasts of the monthly cumulated streamflow obtained with
the three methods (CLIM, REF, and ANA) described above, and the observed
values (in green) for the river Durance at Serre-Ponçon (French Alps), for the 291
start dates. This plot is a typical one, and summarizes the overall results: first, both
REF and ANA methods give better results than the CLIM method, because they
are based on the hydrological model, which takes advantage of the acquaintance
with initial conditions and the physics of the water cycle. Considering only these
two versions of the MORDOR model, monthly forecasts coupled with the analog
method allow a better simulation of the inflows: in particular, they provide a
narrower dispersion of the forecasts with respect to the observed time series (REF

Fig. 10 Monthly cumulated inflow forecasts for CLIM (grey), REF (orange) and ANA (blue)
methods, for the river Durance at Serre-Ponçon. Observed values are in green dots
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method). This dispersion is nonetheless sometimes too narrow and there are some
outliers, but these generally correspond to extremely high inflows due to specific
floods, which are very difficult to forecast more than a few days in advance. In the
autumn of 2008, for example, the observed inflows were outside of the climato-
logical distribution. There are some examples in which, even if ANA does not
forecast high enough inflows, larger values are given than with the REF method.
Overall, the most noteworthy point is that the ANA method was much more
accurate during the last five autumns, which were characterized by very low water
levels: the REF method considers the last 58 years of temperature and precipita-
tion, whereas the ANA method only incorporates the most similar examples with
respect to the current large-scale atmospheric pattern, thus excluding not relevant
situations from the past.

This study shows, therefore, that even if the raw precipitation forecasts from
ECMWF are not very accurate beyond days 10–15, post-processing, via an analog
method applied to geopotential fields, can significantly increase the skill of pre-
cipitation forecasts and subsequently of water level forecasts. Another important
consideration is that better results are obtained when forecasting monthly cumu-
lated inflows, rather than daily time series, in accordance with the general result
that long lead-time forecasts have better scores when one looks at integrated
measures (Troccoli 2010).

The method used here has already been extensively tested in its 7-day opera-
tional configuration, with different predictors, distance criteria (to define analogs),
and other key parameters. Although further refinements could be possible, it
already gives positive results and has now been released operational. In addition to
the better management of hydropower on a monthly timescale, the forecasts can
also be used to schedule maintenance operations on dams and production units. An
economic assessment of the benefits of such a revised model is planned, even if a
difficult exercise.

4 Some Challenging Problems

NWP models have significantly improved in the last 10–15 years, in particular at
lead times between 10 days and 1 month. In parallel, many efforts were made to
better assess the quality and benefits of weather and climate forecasts in conjunction
with the sector’s economic needs (Dutton 2010; Lemaître 2010; Buontempo et al.
2010). If National Meteorological and Hydrological Services(NMHSs) are pursu-
ing the development of forecasting systems, their customers play (or should play) an
important role in defining the priorities to be addressed, in order for their needs to be
answered. The paragraphs that follow emphasize some key considerations for the
energy sector.
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4.1 Further Use of Probabilistic Information

Ensemble forecasting is now routinely processed in several NWP centers and used
in many sectors: energy, insurance, tourism, etc. (Dutton, in this book). Associated
with increasing computational power, it has allowed the limit of predictability to
be pushed beyond the 2 weeks suggested by Lorentz in 1963 (Buontempo et al.
2010), as was demonstrated for example in parts 2 and 3 of this chapter. However,
one has to deal with several problems when using ensemble forecasts in opera-
tional applications.

First, existing tools are often complex systems, with a long history of devel-
opment and evolution, as is the case with supply/demand optimization models in
the energy sector (Dereu and Grellier 2009; Hechme-Doukopoulos et al. 2010;
Charousset-Brignol et al. 2011). The integration of weather ensemble forecasts, for
example those from the ECMWF VarEPS-Monthly system, is a difficult task
because users’ systems were not initially built to use such information. In addition,
probabilistic information from ensemble forecasting systems is not simple to
understand and manipulate for end users, who often have to deal with much
information, from many different sources, in real-time decision-making processes.

A second limitation in the use of ensemble forecasts comes from the restricted
number of members (typically, 51 at ECMWF). Although this is considered to be
sufficient from a meteorological point of view, probabilistic forecasts are notably
used to assess extremes, but calculating for instance the 1 % percentile of tem-
perature distribution from 51 members is not straightforward. Current methods
generally make the assumption that the temperature is normally distributed and use
the mean and standard deviation of the 51 members to then estimate the necessary
quantiles. This method gives accurate results as long as the temperature anomaly is
not too significant, but can lead to suboptimal decisions when the deviation from
normal is significant or when the forecast distribution is bimodal and hence very
different from a Gaussian distribution, as is the case in Fig. 4. An internal study
has shown that extreme quantiles of temperature distributions can be better esti-
mated using a kernel density estimation and bootstrap resampling from ECMWF
EPS ensembles. Further work and research is therefore needed to improve the
estimation of forecast distributions from a finite number of members, in particular
for distribution tails. As this will have to deal with extreme forecasts and risk
optimization, it is a sensitive point which may bring extra value to probabilistic
weather forecasts. In addition, ‘‘jumpiness’’ in successive forecasts is very often
equated with ‘‘bad’’ forecasting by end users. As stated in Persson and Riddaway
(2011), this is a natural characteristic of NWP models, but ways should be found to
avoid conveying it to end users, in order to prevent confusion and misunder-
standing. A third important point is linked to the fact that optimization models in
the power sector generally need the same type of information, whatever the lead
time; in particular, temperature information is used at a 3 h time step, for lead
times of 1 day to 1 year. If weather forecasts are used up to days 12–14, historical
time series (observations) are used in annual optimization models. In the same vein
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as the seamless forecasting concept developed in NWP (Vitart 2004; Rodwell and
Doblas-Reyes 2006; Buontempo et al. 2010), research is under way to find solu-
tions to achieve consistency between medium-range and annual forecasts. The
initial idea, unsurprisingly, is to use medium-term forecasts at the beginning of
the annual ones, rather than running independent simulations, but this raises the
question of how to combine 14 days of 51 members’ forecasts with (e.g.,)
100-year-long daily (observed) time series.

Long-term investment strategy and planning are important for the energy
sector, with the scope between 10 and 50–60 years ahead. For the longest ranges,
climate projections are used. For instance, EDF uses IPCC and CMIP scenarios
and complex statistical methods to estimate future extreme temperatures in France
and in the UK, in the context of climate change (Parey et al. 2007). Projections are
also very important to aid decision-making processes for the next 10–30 years.
Renewable energies investment or the adaptation/reinforcement of current facili-
ties and networks require information about the probable climate for the next
couple of decades. Decadal predictions for the next 10 years have been used by the
UK Met Office to help the energy sector in the UK (Buontempo et al. 2010).
Météo-France has developed a method which consists in extrapolating observed
trends of the last 30 years to the next decade and then creating a new climatology,
centered on the extrapolated mean with the past variability. The homoscedasticity
assumption seems fair for extrapolation one decade ahead, but it would need
deeper investigation for longer term projections. This method has the advantage of
not using decadal climate predictions, which are not yet mature and about which
many questions still remain. However, this emerging field of research seems
promising and many efforts are currently under way to develop climate services
applicable to economic activity, such as the EU FP7 EUPORIAS6 project for
instance.

4.2 Local Short-Term Forecasts for Renewables: Wind
and Solar PV Power

Although the global use of energy is critical to contemporary human society, the
power involved is quite small compared to that in the Earth’s environment (Dutton
2010). However, extracting this ‘‘natural potential’’ energy is far from trivial due
to its unequal distribution over the Earth, technical challenges, and the charac-
teristics of the different sources. The projected growth of renewables in the
decades ahead (IEA 2011) will, moreover, make energy systems increasingly
dependent on weather and climate, which calls for a rapid improvement in pro-
duction forecasting. In particular, the most mature technologies, wind and solar

6 ‘‘European Provision of Regional Impact Assessment on a Seasonal-to-decadal timescale’’,
www.euporias.eu.
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energy, are largely dependent on weather conditions. Therefore, research and
development is essential to assist energy companies in developing these produc-
tion means, by improving the reliability of integrating these variable resources and
improving economic feasibility (Mahoney et al. 2012). Due to the characteristics
of wind and solar radiation, the problem is complex and multi-faceted: both
parameters vary quickly in time and space with non-linear impacts on the corre-
sponding power generation.7 Figure 11, for example, shows 4 typical daily profiles
of photovoltaic power production at a single site on the Réunion Island (Indian
Ocean). For reviews on wind and solar energy forecasting, one can refer to Lei
et al. (2009), Lorenz et al. (2009), Heinemann et al. (2006), and the chapters by
George and Hindsberger, Renné, Lorenz, Gryning, Haupt and Coppin in this book.

With the correct weather information, it is generally possible to make rather
good power generation forecasts, even though the weather/power relationship is
non-linear. Figure 12 shows 1 year of daily photovoltaic (PV) power production at
one site on the Réunion island, estimated with two different statistical models

0,00

0,25

0,50

0,75

1,00

0,00

0,25

0,50

0,75

1,00

0,00

0,25

0,50

0,75

1,00

0,00

0,25

0,50

0,75

1,00

Fig. 11 Typical daily profiles of PV power production at a site on the island of Réunion
(10 mins’ data)

7 Wind power, for instance, varies with the cube of wind speed.
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(a multi-linear regression model, and a Multivariate Adaptive Regression Splines
based model), and with forcing provided by observed solar radiation from the
nearest Météo-France station. Although neither model is perfect, the power pro-
duction can be modeled with good accuracy as long as the input weather variable
is ‘‘good.’’ However, when switching from observations to forecasts from NWP,
the results are different and model errors grow very markedly. Over the Réunion
island, an internal study showed that RMSE can reach 50 % of the average power
production at day +1. When considering production at a number of sites dispersed
over a large area (a country for instance), the spread allows a significant reduction
in the errors, by a factor of *3 for example over France or Germany, in com-
parison with a single site. However, in small areas like islands, this averaging
effect does not exist; hence local forecasts suffer, in particular, from the lack of
resolution in NWP models. Model deficiencies and weather characteristics com-
bine to make the forecasting problem very difficult. Evidently, predictions for
locations such as the Réunion island, which are characterized by a very sharp
orography and complex convective systems, are even more difficult to make.

However, recent studies showed that significant improvements are possible and
involve the integration of multiple technologies. Mahoney et al. (2012) in par-
ticular (see also the chapter by Haupt in this book) have developed a complex
system which takes advantage of the respective prediction capacities of its dif-
ferent components across the different forecast horizons. Such a system is not
commonly used by energy companies at present, because it requires substantial
computational resources and many sources of information (about both weather and
power production) which are not universally available.

Very short-term prediction is also of great importance, because grid operators
need to know, in real-time, how the whole power system will behave in the coming
minutes to hours: if some production from a site is to decrease (or increase), the
system manager has to adjust other production means, in order to ensure the

Fig. 12 Observation (x-axis)
versus forecasts (y-axis) of
PV power at one site on the
Réunion island. Red dots
multi-linear regression
model; blue dots Multivariate
Adaptive Regression Splines
model. Both models are
forced with observed solar
radiation data from the
nearest weather station
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equilibrium of the system. If the manager does not do so, there are risks to the
stability of the grid and a subsequent risk of black-out. For these very short lead
times, NWP is useless because models run, in general, from every 6 h (for global
models) to every hour (for high-resolution limited area models). For this reason,
other forecasting methods are generally used, based on real-time weather obser-
vations, both in situ measurements and satellite data and images (Gauchet et al.
2012; Lorenz et al. 2012) on the one hand and recent power production on the
other. The latter type of data, in particular, seems promising because it only
requires the real-time management of a utility operation’s own data. Gomez
Berdugo et al. (2012) showed that using only past production measurements allows
forecasts up to 3 h with better accuracy than, for example, persistence. This type of
method appears particularly interesting when collaboration between neighboring
sites is used in the model, which requires centralized or distributed communication
architecture. Of course, combining production data and weather data should fur-
ther increase forecast skill, and further efforts are needed to develop such methods.

Studies (e.g., Mahoney et al. 2012) have shown that improvements in power
production forecasting would provide significant financial benefits which would
facilitate the faster development of renewables. In order to accommodate a deeper
penetration of RE sources into power networks, many challenges still have to be
addressed: first, it is essential that weather forecasting centers should provide
better forecasts of wind speed at wind turbine height, and of solar radiation.
‘‘Better,’’ in this case, means of higher resolution, both in time and space. Natu-
rally, these forecasts should be delivered in a timely manner, so that the lead time
of the forecasts is sufficient for them to be taken into account by system man-
agement operators.8 A particularly important point is the prediction of ramps (very
rapid fluctuations in power production due to snap changes in wind or solar
radiation), which can have serious consequences for grid stability or even cause
physical damage in the case of wind turbines. In addition to improving wind and
solar radiation forecasts, RE development requires high-quality observations in the
dimensioning phase of the projects, in order to evaluate the potential resources.
The development of offshore wind energy, in particular, demands offshore wind
observations at 100 m height, or, even better, vertical profiles from the surface to
200 m. These are only some examples, and there is no doubt that new data and
forecast variables will become essential to the power sector in the future.

8 For example, a D ? 1 forecast at Réunion should be available for the grid operator no later
than 16:00 local time on day D, and provide information up to D ? 1 at 20:00 local time, in order
to be useful. This means that the forecast should be issued at 10:00 UTC up to H ? 30,
considering a running delivery time of 2 h and the 4-h time lag at Réunion. At the moment,
forecasts from Météo-France are issued at 00:00 UTC and 12:00 UTC, for H to H ? 30 with the
AROME model. In the first case, the forecast does not completely cover D ? 1; in the second
case, the D ? 1 forecast is complete, but arrives too late to be taken into consideration in the
planning of the operators.
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5 Conclusion: Importance of Collaboration Between Users
and Providers

The energy industry is exposed to weather and climate variability in the whole
range of its activities. The impacts concern all time and space scales. The sector is
one of the most important users of weather and climate information and forecasts,
and its rapid evolution constantly creates new needs. Long-range forecasts (sea-
sonal to annual and even decadal) become ever more important to the—physical
and financial—optimization of the systems, especially for temperature and pre-
cipitation, which drive demand and hydropower production. Notwithstanding this,
wind and solar radiation observations and short-term forecasts have also become
invaluable, and their quality will certainly be among the drivers for the develop-
ment of RE in years to come.

Scientific progress on its own is not sufficient to increase the value of weather
forecasts. There are, in fact, three ways to increase this value (Lazo 2007; Rogers
et al. 2007): by increasing forecast quality, by improving communication between
providers and users, or by improving the decision-making processes. Each of these
three components may be improved separately, but the whole process is undeni-
ably more efficient if the whole chain is improved. This can only be achieved if a
close collaboration is set up between the parties. Although state-of-the-art scien-
tific knowledge may put some limitations to possible developments, it remains that
the users’ needs should be taken into account upstream, and then considered in an
iterative process. Only this kind of collaboration can ensure an improvement of
operational decision-making processes.

Further communication, collaboration, and partnerships between NMHSs and
energy companies are then essential. These synergies will allow to develop better
answers to operational needs, but also to add extra value to services provided by
weather agencies. Finally, it will be beneficial to the entire society.
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