
Chapter 4
Modeling and Simulation

Yutaka Kaneko

This chapter is devoted to recent developments in mathematical modeling and
computer simulation of copper electrodeposition. We focus our attention on
continuum models and kinetic Monte Carlo simulations for shape evolution and
the effects of additives on copper deposition, especially the filling of small features
in microelectronics. The modeling, mathematical treatments, and simulation
results are reviewed with brief summaries of efficient numerical algorithms. Fast
computing and prospects of simulation research are also discussed.

4.1 Introduction

Copper electrodeposition has attracted a great deal of attention since IBM
announced the replacement of conventional vapor deposition of aluminum with
copper electrodeposition for the production of LSI interconnects [1]. The dual
damascene process is now a central technique for the fabrication of three-
dimensional (3D) LSI circuits. An important requirement for the success of this
process is the capacity to fill submicron features such as via holes and trenches
completely without voids or seams. This process is called ‘‘superfilling’’ or ‘‘su-
perconformal filling.’’ It has been found experimentally that superfilling is
achieved by the synergistic effects of different kinds of additives, and the optimal
deposition conditions have been explored.

Mathematical modeling and numerical simulations are indispensable means of
research to understand the underlying chemistry from a microscopic point of view
and to determine the optimal conditions for practical applications. There are two
types of modeling for copper electrodeposition. The first type is based on
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‘‘continuum models’’ in which the physical quantities are expressed in terms of
continuous variables. The basic equations are partial differential equations. The
second type is ‘‘molecular simulation’’ such as Monte Carlo (MC) and molecular
dynamics (MD) computations in which ions and molecules are treated as particles.
In this chapter, we overview the recent developments of these two types of sim-
ulation for copper electrodeposition to understand the present status of
sophistication.

This chapter is organized as follows. The next section is the brief review of the
numerical simulations based on continuum models. Section 4.2.1 is devoted to the
mathematical models for superfilling. The basic ideas and mathematical formulas
of the diffusion-consumption theory [1–5], the recent theory of curvature enhanced
accelerator coverage [6–14], and the theory based on time-dependent transport [15,
16] are described. We then review the nucleation theory in terms of the continuum
equations in Sect. 4.2.2. Diffusion-limited [17–22] and kinetically limited [23, 24]
nucleation and growth are discussed. The fluid mechanical approach to copper
electrodeposition is presented in Sect. 4.2.3 for the example of copper bump
formation in microelectronics [25–32].

Since the size of recent LSI chips is as small as nanoscale, molecular simula-
tions are important tools for microscopic analyses. The kinetic Monte Carlo
(KMC) simulation is a promising technique with a wide range of applications. We
discuss the KMC simulation and multiscale modeling in Sects. 4.3 and 4.4. The
basic concept of the KMC method, the combination of the KMC method and
continuum models, the multiscale modeling, and application to 3D device fabri-
cation are presented [33–50]. Further developments of fast computing are dis-
cussed in Sect. 4.5 [51–56]. A summary and a brief comment on MD simulation
[57, 58] are given in Sect. 4.6.

Since the purpose of the present article is to describe the mathematical
frameworks and numerical methods, the parameter-setting in individual models is
not stated although it is an important step in performing the simulations. We refer
to the literature for setting parameters. Some details of the numerical algorithms
which are important for simulation are summarized in Appendices.

Since this chapter is a review of more than 50 articles, some of the nomen-
clatures of variables and formulas are different from those in the original articles.

4.2 Mathematical Models for Copper Electrodeposition

The conventional mathematical models of electrodeposition are essentially
boundary problems of the Laplace equation for current distribution and the dif-
fusion equation for mass transport in solution. The deposition reactions and
additive effects are incorporated in the boundary conditions. Since the electrode
surface moves toward the solution as a result of electrodeposition, the technique to
track the moving boundary is required for numerical calculations. In this section,
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we overview the mathematical models for copper electrodeposition based on
continuum models.

4.2.1 Mathematical Models for Superfilling

The success of the damascene process has accelerated the theoretical approach to
copper electrodeposition. It has been shown experimentally that void-free filling of
high-aspect ratio via holes and trenches can be obtained by the combination of
suppressors (polyethylene glycol, PEG), halide ions (Cl�), accelerators (bis
3-sulfopropyl disulfide, SPS), and levelers (Janus Green B, etc.). This section is
concerned with an overview of recent theories to explain the additive effects,
which are essential for superfilling within the framework of continuum models.

4.2.1.1 Diffusion-Consumption Model

The diffusion-consumption model is a traditional theory for leveling by suppres-
sors [2, 3]. In this theory, the distribution of suppressors is assumed to be transport-
limited, adsorbed on the surface where it inhibits metal deposition, and then
consumed (annihilated from the surface). Figure 4.1a shows a schematic picture of
the theory. Since the flux of suppressor comes from the solution far from the
electrode, more suppressors are deposited around the opening of the hole than at
the bottom. As a result, the metal deposition rate becomes higher at the bottom
than at the top, resulting in bottom-up filling. Superfilling in the damascene pro-
cess was first explained by this type of model [1, 4, 5]. The mathematical formulas
used in the original paper of Andricacos et al. [1] are as follows:

The mass transport of metal ions and additives (suppressors) in the concen-
tration boundary layer is assumed to occur only by diffusion. Assuming a sta-
tionary state, the concentrations of metal ions C; additives Cad and the potential U
obey the Laplace equations,

r2C ¼ 0;r2Cad ¼ 0;r2U ¼ 0; ð4:1Þ

C, Cad and U are assumed to be independent in solution and are coupled only at
the electrode surface. The boundary conditions at the electrode surface are

2FDrC � n ¼ jcrU � n; ð4:2Þ

Cad ¼ 0; ð4:3Þ

where F is Faraday’s constant and jC is the electrical conductivity. n is the unit
vector normal to the surface. Equation (4.2) arises from the balance of the current
density and the flux of metal ions on the surface, where D is the diffusion constant
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of metal ions. The condition (4.3) represents consumption of the additives on the
surface. The current density at the electrode surface is given by the Tafel equation

i ¼ i10 w
C

C1

� �cþa=n

eaFU=RT : ð4:4Þ

Here i10 is the exchange current density of the additive-free bulk solution, w
includes the suppressing effect of additives depending upon the spatial distribution
of additive flux. a is a transfer coefficient and c, n are constants. At the upper
boundary in solution (the edge of the boundary layer), C and Cad take the constant
bulk values, C1, C1ad , andrU is calculated from the bulk current density. Equation
(4.1) with the conditions Eqs.(4.2)–(4.4) has been solved using the moving
boundary method [2]. The numerical simulations of this type of model showed that
the diffusion-consumption theory can realize the bottom-up filling [1, 4, 5].

4.2.1.2 Curvature Enhanced Accelerator Coverage

The important characteristics of superfilling are (1) incubation period (conformal
filling in the early stage), (2) bottom-up, and (3) overfilling and bump formation in
the late stage. The diffusion-consumption theory can realize (2) bottom-up filling.
However, it cannot explain the conditions (1) and (3). Also, in most of the
experiments on superfilling, multiple additives (suppressor, accelerator, leveler)
are required, while the diffusion-consumption model considers only suppressors.
This means that an additional mechanism must be identified to explain the overall
feature of superfilling.

A new theory has been proposed in terms of accelerators, which is known as the
curvature enhanced accelerator coverage (CEAC) mechanism [6–8]. The key
factor of this theory is the coverage of the accelerators on the electrode and the
change in the surface area during the deposition process. Figure 4.1b is a

Fig. 4.1 a Image of the diffusion-consumption model. Suppressors (solid circles) diffuse from
bulk solution to the electrode and annihilated. The concentration of suppressors is higher around
the via top than at the bottom. b Image of the area change. Accelerators (open circles) are
condensed as the bottom area is reduced

66 Y. Kaneko



schematic picture of the idea of the CEAC mechanism. Assume that the accel-
erators are uniformly distributed on the feature surface. When the surface grows as
a result of copper deposition, the surface of the bottom moves upward and the area
becomes smaller. If the consumption of the accelerators is negligible, the surface
coverage (concentration per unit area) of accelerators at the bottom increases. As a
result, the deposition rate at the bottom becomes larger than that around the
opening of the hole, which leads to bottom-up filling. A lot of papers have been
published about the mathematical modeling and numerical simulations of the
CEAC model. In the following, the basic formulas of the CEAC are summarized
following the papers of Moffat et al. [6, 7, 9–14].

The system considered is copper electrodeposition with suppressors and
accelerators. Assume that suppressors are quickly adsorbed on the surface and are
soon replaced by the accelerators. Therefore, only the effect of accelerators is
considered on the feature surface. The current density is assumed to be a function
of the coverage hA of the accelerators and the overpotential g;

i ¼ i hA; gð Þ: ð4:5Þ

Adsorbed accelerators float upon the growing metal surface, and their rate of
consumption is assumed to be small. The time evolution of the coverage hA is
represented by:

ohA

ot
¼ vjhA þ R hAð Þ þ kAhq

A: ð4:6Þ

The local surface velocity v is given by v ¼ iX=zF, where X is the atomic
volume and z is the valence of copper ions (z ¼ 2 for Cu2þ). The reaction term
R hAð Þ corresponds to the production rate of accelerants on the surface. The first
term on the right-hand side of Eq. (4.6) represents the influence of the area change,
where j is the local curvature of the surface. This term means that the coverage hA

depends on the sign of j, i.e., hA will increase for the concave surface and decrease
for the convex surface. Therefore, the growth rate of a concave surface becomes
larger than that of flat or convex surfaces. The last term on the right-hand side of
Eq. (4.6) shows the power law consumption of accelerants due to the incorpora-
tion. Equation (4.6) is solved with the equations representing the shape evolution
of the electrode surface.

In the early works of Josell et al. [6], kA ¼ 0 and the following expressions were
assumed,

i hA;gð Þ ¼ i0 hAð Þ 1� i

iL

� �
exp � a hAð ÞF

RT
g

� �
; ð4:7Þ

R hAð Þ ¼ k�Ci
A 1� hAð Þ; ð4:8Þ

where iL is the transport-limited current density, Ci
A is the concentration of

accelerators at the interface and k� is the reaction rate. The exchange current
density i0 hAð Þ and the transfer coefficient a hAð Þ are obtained from independent
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experiments on copper electrodeposition on a flat surface as a function of the
accelerator coveragehA. The depletion of copper ions in solution was accounted for
by the diffusion equation for copper ion density. The moving boundary has been
treated by the level set method (LSM) [9].1 Numerical calculations showed that the
initial conformal deposition and bottom-up fill can be realized by this model
depending upon the parameters. If the accelerators remain until the end of the
filling, the accelerator concentration is large around the middle of the via, which
leads to bump formation after filling is completed. Therefore, the CEAC is a model
which reproduces the superfilling conditions.

The CEAC mechanism is regarded as a leveling theory in terms of the accel-
erators to control the roughness evolution of the surface [10]. The model has been
modified to include the mass transport of accelerators in solution [9] and the
surface diffusion of adsorbed accelerators [11]. It has also been extended to the
multiple-additive system; PEG-SPS [12], PEG-SPS-Leveler [13, 14] to include the
deactivation of accelerators by levelers. A summary of these works is found in
Refs. [12, 14]. The idea of area change is quite general and has been incorporated
in other mathematical forms as described in the following sections.

4.2.1.3 Time-dependent transport kinetics of additives

In the diffusion–consumption models in Refs. [1–5], a stationary state is assumed
for the diffusion of suppressors. In the CEAC models cited in this section, time-
dependent mass transport is taken into account for copper ions and accelerators,
but not for suppressors. Akolkar and Landau pointed out that different mechanisms
appear in the early stage and the late stage of the filling process due to the time-
dependent transport and interactions between additives [15, 16]. They observed in
their experiments [15] that PEG adsorbs on the copper surface almost instanta-
neously, while the diffusion of the PEG in solution is slow. SPS, on the other hand,
diffuses rapidly in solution and adsorbs on copper surface moderately fast. The
replacement of the adsorbed PEG by SPS is rather slow compared to the
adsorption of PEG and SPS on the additive-free surface.

Taking into account these differences in the time scales, Akolkar and Landau
developed a one-dimensional transport–adsorption model [16]. For a high-aspect
ratio via (the radius RV and the depth LV ), the radial variation of concentration is
negligible and the time and space variation of the PEG concentration CI in the
axial direction (z-direction) parallel to the via sidewall is considered. The mass
balance in the via hole leads to the following diffusion–reaction equation for CI .

oCI

ot
¼ DI

o2CI

oz2
� 2

RV
kICI 1� hI � hAð Þ � kCb

AhA

� �
ð4:9Þ

1 LSM is a feasible method to track the moving boundary. The formulas are given in Appendix A.
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The first term on the right-hand side is the diffusion term, where DI is the PEG
diffusion constant. The second term represents the reactions on the surface, where
kI is the adsorption rate constant, and hI and hA are the surface coverages of PEG
and SPS, respectively. The second term in the square brackets represents the
displacement of PEG by SPS, where k is the reaction rate. The concentration of
SPS in the via is assumed to be the same as the bulk value Cb

A due to the rapid
diffusion.

The time variations of the coverages hI and hA are represented by the balance of
the reactions as

ohI

ot
¼ 1

CI
kICI 1� hI � hAð Þ � kCb

AhA

� �
ð4:10Þ

ohA

ot
¼ 1

CA
kCb

A 1� hI � hAð Þ þ 1
CI

kCb
AhI ð4:11Þ

The difference in the molecular size of PEG and SPS is taken into account by CI

and CA, where CA/CI ffi 13:33. Equation (4.10) indicates that the coverage of PEG
increases rapidly (first term) and is slowly replaced by SPS (second term). At the
via bottom, however, PEG deposition is hindered by slow diffusion. The first and
second terms on the right-hand side of Eq. (4.11) show the rapid adsorption of
PEG on additive-free surface and the slow displacement of PEG, respectively. The
total current density arises from the sum of the current densities of PEG-covered
area, SPS-covered area, and additive-free copper surface, which are represented by

itot ¼ i0;IhI exp
aIFg
RT

� �
þ i0;AhA exp

aAFg
RT

� �

þi0;Cu 1� hI � hAð Þ exp
aFg
RT

� �
;

ð4:12Þ

where i0;I ; i0;A; i0;Cu are exchange current densities and aI ; aA; a are transfer coef-
ficients corresponding to the three areas mentioned above. Equations (4.9–4.12)
constitute the coupled equations for the transport–deposition process of PEG-SPS
system.

The area reduction in the late stage, especially at the via bottom, is incorporated
in the model in the form

hnew
A tð Þ ¼ Ainit

A tð Þ

� �
hTA

A tð Þ; ð4:13Þ

where hTA
A tð Þ is the time and area dependent surface coverage of SPS, and Ainit and

A tð Þ are the initial area and the area at time t, respectively. The above equations
are solved numerically using the moving boundary method.

Figures 4.2 and 4.3 show the time variations of surface coverage hI and hA at
the via bottom (z ¼ LV ) and via top (z ¼ 0) produced by the simulation of the
filling process (LV /RV = 5). Two distinct time regions are clearly observed.
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At t ¼ 0� 5 [s] the transport of additives is important, i.e., PEG adsorbs around
the via top rapidly, while the via bottom is not covered with PEG due to the slow
diffusion. The via bottom is covered with SPS which is expected to initiate the
initial bottom-up fill. At tJ5 [s], the interaction between additives becomes
dominant and SPS displaces the PEG on the sidewall. The growth of the via
bottom is even more accelerated by the effect of area reduction Eq. (4.13), which
results in the bottom-up filling as shown in Fig. 4.4. The details of the simulation
are described in Ref. [16].

Fig. 4.2 The time-dependent
PEG surface coverage at the
via top and at the via bottom.
The cross-hatched region
(t\5 [s]) is the transport-
adsorption regime and
unmarked (t [ 5 [s]) is the
interaction regime. The upper
line shows the via top and the
lower line via bottom. The
kinetics parameters are listed
in Table 4.1 in Ref. [16].
(Reproduced from Fig. 4.5 of
Ref. [16] by the permission of
The Electrochemical Society)

Fig. 4.3 The time-dependent
SPS surface coverage at the
via top and at the via bottom.
The cross-hatched region
(t\5 [s]) is the transport-
adsorption regime and
unmarked (t [ 5 [s]) is the
interaction regime. The upper
line shows the via bottom and
the lower line via top. The
kinetics parameters are listed
in Table 4.1 in Ref. [16].
(Reproduced from Fig. 4.6 of
Ref. [16] by the permission of
The Electrochemical Society)
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4.2.2 Continuum Models for Nucleation and Growth

Continuum models have been applied not only to macroscopic shape evolution but
also to microscopic nucleation process. In dual damascene technology, direct
electrodeposition of copper on barrier layers other than copper (e.g., ruthenium or
titanium) has attracted attention to circumvent the limitations of plating copper
seed layer on submicron vias and trenches. The key issue is to control the
nucleation density in the early stage of electrodeposition to plate a continuous
copper film which will lead to void-free filling. There has been a lot of work on
nucleation and growth in copper electrodeposition on foreign substrates. Following
is an overview of two models for nucleation and growth in different regimes.

4.2.2.1 Diffusion-Limited Growth

A simulation model for nucleation and growth under diffusion control has been
developed by West et al. [17–19]. They considered the growth of hemispherical
nuclei on a foreign substrate. The main focus is on mass transport in solution. The
time dependence of the number of nuclei on the surface, N tð Þ, is

dN

dt
¼ kn

C

C1

� �n

N0 � Nð Þ ð4:14Þ

where kn is the nucleation rate constant, C and C1 are the concentration of metal
ions and that of the bulk, respectively. For instantaneous nucleation N tð Þ is equal
to the number of nucleation sites N0. Once the number of nuclei is determined,
nuclei are added to the surface stochastically by the MC method.

Fig. 4.4 Deposit growth
simulation during bottom-up
fill in a via with R ¼ 0:1 lm½ �
and L ¼ 1 lm½ � at an
overpotential of 120 [mV] in
the presence of 20 [ppm] SPS
and 100 [ppm] PEG. The
kinetics parameters are listed
in Table 4.1 in Ref. [16].
(Reproduced from Fig. 4.8 of
Ref. [16] by the permission of
The Electrochemical Society)
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Nucleation is followed by the growth of nuclei. The concentration is governed
by the diffusion equation

oC

ot
¼ Dr2C ð4:15Þ

with the initial and boundary conditions

C ¼ C1 at t ¼ 0 ð4:16Þ

C ¼ C1 far from the electrode ð4:17Þ

On the electrode surface, copper deposition occurs on the surface of the copper
nuclei, but not on the foreign substrate. The flux normal to the surface is:

f ¼ �D
dC

dn
¼ 0 at non-nucleated site ð4:18Þ

f ¼ �D
dC

dn
¼ kGC; r ¼ rm tð Þ at a nucleus ð4:19Þ

where kG is the deposition rate constant. The growth is diffusion-limited when
C ! 0 and kG !1. rm tð Þ is the radius of the nucleated hemispherical particle
evaluated from the mass balance equation

drm

dt
¼ VMf ð4:20Þ

VM is the molar volume of deposited species. These equations are coupled with
the current density

i tð Þ ¼ nFN tð Þ f tð Þ2pr2 tð Þ
� �

avg
ð4:21Þ

½ �avg is the average over the existing nuclei. West et al. studied diffusion-limited
growth (kG ¼ 0) [17], deviation from the diffusion control due to kG [ 0 [18] and
the dependence of N tð Þ on the concentration C [19]. Emekli and West [20–22]
extended the theory to include additives and studied the influence of suppressors
on nucleation using the same model.

4.2.2.2 Kinetically Limited Growth

Under the condition where the concentration of copper ions near the electrode can
be assumed to be constant C ¼ C1ð Þ, nucleation and growth become kinetically
limited. In this regime, the basic processes are the reduction of copper ions, surface
diffusion of adatoms, and crystallization (nucleation and incorporation of adatoms
into nuclei). The crucial point in the modeling is the accurate treatment of surface
diffusion, which is much faster than the other surface processes. Stephens and
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Alkire applied the ‘‘island dynamics’’ method to study the nucleation of copper
with additives onto foreign substrates [23, 24].

The key variable in the theory is the adatom density cad x; yð Þ on the electrode
surface ( x; yð Þ-plane). The nucleation rate is given by the average adatom density

dN

dt
¼ Dsr cad x; yð Þh i; ð4:22Þ

where Ds is the surface diffusion constant of adatoms and r is the reaction rate
constant. The growth of the nuclei occurs when adatoms are incorporated into the
island edge after surface diffusion. The edge velocity of a nucleus is evaluated by:

v x; yð Þ ¼ Ds x; yð ÞAm n � rcad x; yð Þjinside � n � rcad x; yð Þjoutside½ � ð4:23Þ

In Eq. (4.23), ‘‘inside’’ refers to the attachment of an adatom to the edge
boundary from the top of the island (i.e., incorporation of an adatom deposited on
the island) and ‘‘outside’’ refers to the attachment of an adatom from the lateral
plane outside the island. The velocity v x; yð Þ is used to track the moving boundary
of the island by the LSM ((A.1) in Appendix A). When additives are deposited on
the surface, they block the surface diffusion and the available area for adatom
diffusion is less than the total area of the electrode surface. This is taken into
account by defining the effective surface diffusion constant which is proportional
to the fraction of available sites havailable site as

Deffective x; yð Þ ¼ havailablesiteDs x; yð Þ ð4:24Þ

Using this approximation, the concentration field of adatoms cad x; yð Þ is sim-
ulated by the extended diffusion equation

ocad x; yð Þ
ot

� Deffective x; yð Þr2cad x; yð Þ ¼ F ð4:25Þ

where F is the flux of adatoms onto the surface. Stephens et al. [23, 24] studied the
influence of multiple additives (PEG, SPS) on the nucleation and growth process
of copper on Cu and Au using the reaction models, which are the same as those
used in the KMC simulations [38–40].

4.2.3 Fluid Mechanical Approach

In damascene electroplating and the nucleation problem presented in the previous
sections, the effect of convection is not included in the modeling. The main driving
force for mass transport is diffusion. When the feature size becomes 10 � 100lm
or larger, on the other hand, the fluid mechanical flow and vortex formation will
play an important role in the electrodeposition process. The flow patterns around
the electrode with cavities have been widely studied by numerical simulations. The
role of mass transport in etching of rectangular cavities has been studied by many
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authors using the numerical fluid dynamics computations. Alkire et al. developed
two-dimensional numerical fluid dynamics computation to study the etching of
copper [25–27]. Shin and Economou studied electrolytic etching at a moving
boundary for forced and natural convection [28].

The influence of fluid mechanical flow on the shape evolution of electrode-
posited copper bumps has been studied by Kondo et al. using numerical fluid
dynamics computation [29–32]. Electrodeposited bumps are important micro-
connectors for high density interconnection between microprocessors, random
access memories, the connection between liquid crystal display and driver chips,
and so on. The bumps are electrodeposited on a dot-shaped cathode 10� 200lm in
diameter. Kondo et al. showed that the influence of macroscopic flow and vortex
formation is important for the control of electrodeposited bump shape and uni-
formity in height [29, 30].

The key parameter in the theory is the Peclet number Pe which represents the
ratio of the flow speed to that of diffusion. Figure 4.5 illustrates the model system
of two-dimensional cross section of photoresist and cathode with the boundary
conditions. The Peclet number for this system is

Pe ¼
huy¼2h

D
; ð4:26Þ

where h is the height of the resist, u is the flow velocity and D is the diffusion
constant. The basic equations are the equation of continuity, Navier–Stokes
equations and mass transfer equation

ou

ox
þ ou

oy
¼ 0 ð4:27Þ

q u
ou

ox
þ v

ou

oy

� �
¼ � oP

ox
þ l

o2u

ox2
þ o2u

oy2

� �
ð4:28Þ

q u
ov

ox
þ v

ov

oy

� �
¼ � oP

ox
þ l

o2v

ox2
þ o2v

oy2

� �
ð4:29Þ

Fig. 4.5 Illustration of two-
dimensional cross section of
photoresist and cathode.
(Width : L, height : h)
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u
oC

ox
þ v

oC

oy
¼ D

o2C

ox2
þ o2C

oy2

� �
ð4:30Þ

where q, P, l and C are the density, static pressure, viscosity, and the concen-
tration, respectively.

Figure 4.6 shows examples of the normalized stream functions and isocon-
centration contours for Pe ¼ 1:31ða,cÞ and 41.6 (b,d). The solution flow is from
left to right and the streamline labeled 6 is the penetration flow. Vortices are
observed at the corners both at up and downstream sides. In the isoconcentration
contours the difference in the thickness of the concentration boundary layers is
observed for Pe ¼ 1:31 and 41.6. The local copper deposition rate on the cathode
depends on the dimensionless Sherwood number,

Sh ¼ L

DC

dC

dy

� �
y¼0

ð4:31Þ

which shows the ionic transport due to the concentration gradient.(Fig. 4.7) Sh
shows the maximum at x ¼ 0lm for Pe ¼ 1:3, gradually decreases toward the
downstream side and slightly increases at xJ90lm. The maximum height at
around x ¼ 0lm is due to the vortex which captures copper ions and enhances the
local mass transport to the cathode. The vortex at the downstream side also
enhances the local mass transport of copper to the cathode, which leads to a slight
increase in Sh. For Pe ¼ 41:6, on the other hand, mass transport is mainly con-
trolled by convection due to the penetrating flow and vortex rather than diffusion.
The vortex on the upstream side does not provide ions to the cathode and local

Fig. 4.6 Effects of Peclet numbers on streamlines and isoconcentration contours. The cavity
width is100 lm½ �. Streamlines for Pe ¼ 1:31 (a) and 41.6 (c). Isoconcentration contours for Pe ¼
1:31 (b) and 41.6 (d). (Reproduced from Fig. 4.4 of Ref. [29] by the permission of The
Electrochemical Society)
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resistance arises. This leads to a slight shift of the maximum flux to x ffi 10lm.
These flux profiles coincide with the bump shape observed in experiments as
shown in Ref. [29]. Kondo et al. also studied the flow patterns for higher Peclet
numbers [31] and the current distribution on copper bumps with photoresist
sidewall angle by numerical simulation and experiments [32]. These works show
that the interplay between the convection and diffusion is the key factor for control
of bump formation.

4.3 Kinetic Monte Carlo Simulation and Multiscale
Modeling

In the previous section, the recent theories based on continuum models have been
presented. This and the following sections are devoted to molecular simulations of
copper electrodeposition, in which ions and additive molecules are treated as
particles. The KMC simulation is a stochastic method to simulate the time evo-
lution of many-particle systems using rate constants and random numbers [33].
Since the KMC method is based on statistical mechanics and the mathematical
theory of stochastic process, it has a wide range of application. In electrochem-
istry, the KMC method has been used as a feasible tool for simulations taking into
account the microscopic process of nucleation and growth.

One of the characteristics of electrodeposition which makes the molecular
simulation approach difficult is the multiscale aspect in time and space. For
example, the microscopic surface reactions (of the order of nanometer and
nanosecond) are dependent upon the concentrations of ions which are controlled
by the macroscopic mass transport in the diffusion layer (micrometer and milli-
second or larger scales). Since the KMC method is essentially an atomic-scale
method, it has been extended to combination with some tools which deal with
large-scale and long-time quantities in the application to electrochemical systems.
Therefore, a hybridized method of KMC and continuum models have been
developed for the unified simulation from micro to macro scales. In this section,
we first describe the basic concept and modeling of the KMC simulation for crystal

Fig. 4.7 Effects on Peclet
numbers on flux (normalized
Sherwood number). Pe ¼
1:31 (a) and 41.6 (b).
(Reproduced from Fig. 4.5 of
Ref. [29] by the permission of
The Electrochemical Society)
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growth, and then the recent sophistications of the multiscale KMC-continuum
simulation for copper electrodeposition are reviewed referring to the works of
Alkire et al. [34–40].

4.3.1 Solid-on-Solid Model

Solid-on-Solid (SOS) model is a basic model for crystal growth, which is widely
used in theoretical and numerical studies [41, 42]. The system is a square (2D) or a
cubic (3D) lattice as shown in Fig. 4.8. Each lattice site represents a solid atom, a
liquid atom, or a vacancy. (In a coarse-grained system a site represents a group of
atoms.) We first consider the additive-free case and assume three events such as
adsorption, desorption, and surface diffusion to change the state of the sites. The
rate constants are defined for these three events such as adsorption rate kþn ,
desorption rate kn and surface diffusion rate knm. The suffix n represents the
characteristics of the site on which the event occurs. (e.g., the number of nearest
neighbor atoms) In knm, n and m represent the information before and after the
movement, respectively. These rates are the functions of the binding energy,
activation energy for surface diffusion, ionic concentration, and so on. The defi-
nitions of these rate constants characterize the model.

In the SOS model, adsorption occurs only ‘‘on’’ the surface sites, i.e., at the
nearest neighbor vacant sites in the y-direction (Fig. 4.8). As a result, vacancy
formation is inhibited in the SOS model. Also, overhang and shadowing are not
allowed to occur during the growth. Therefore, the SOS model is appropriate for
describing layer-by-layer growth, but is not suitable for rough surface and
dendrites.

Fig. 4.8 Left Schematic picture of the SOS model. Squares denote solid atoms and gray squares
are adatoms. Right Two types of additive modeling. a Multiple-site model and b Action range
model. (R: action range)
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Additives are incorporated in the SOS model as follows. Additives occupy
lattice sites in the same way as metal atoms, and the adsorption and desorption
rates of additives are given as input parameters. The adsorbed additives have
suppressing or accelerating effects on metal deposition at the surrounding sites. In
the case of polymer suppressors (such as PEG in copper electrodeposition), the
molecular volume is much larger than that of metal atoms. There are two methods
to take into account the size difference. One way is to assume that an additive
occupies more than one lattice site and deposition of metal atoms on the sites
covered by the additive is inhibited (multisite model) as illustrated in Fig. 4.8a
[38]. An alternative method is shown in Fig. 4.8b. The additive occupies one
lattice site and an action range R is defined around it. Metal deposition on the sites
within the action range is inhibited. The range R is chosen to reflect the effective
size of the polymer (e.g., Flory radius of a polymer chain). The latter model can be
applied to the accelerators, i.e., the deposition rate of copper within the action
range is assumed to be larger than that on the sites outside the action range.

In the KMC simulation, the state of each site is changed sequentially by using
random numbers. There are two types of algorithm for KMC simulations. The
simple algorithm is the rejection method. The procedure is to choose a site and an
event randomly and decide if the event is realized or not by using random num-
bers. Although the coding of the rejection method is simple, it is not efficient in a
situation where a lot of rejections are selected. The second type of algorithm is a
rejection-free algorithm which was proposed for the simulation of Ising spin
systems by Boltz et al. (BKL method) [43]. The general form for this type of
algorithm is given by Gillespie [44]. The procedure is to tabulate the candidate
atoms (or sites) and the reaction rates, decide the events using the rates and the
random numbers, and renew the table after the event.2 This method is efficient
because rejection does not occur in the sequence. The point for the efficiency of the
rejection method is how to reduce the number of rejections. The efficiency of
the rejection-free method depends on the algorithm used to search and revise the
tables. A comparison of the efficiencies of these methods is given in Ref. [33].

4.3.2 KMC-Continuum Combination

The rate constants kþn , kn and knm depend not only on the physical quantities which
can be assumed to be constant (such as the binding energy) but also on the quan-
tities which change during the deposition (such as the ionic concentration in
solution). Therefore, in most applications, the SOS model is combined with
the continuum models which represent the time dependence of the quantities in the
solution. The program consists of the KMC code and the continuum code [34]. The
continuum code calculates the quantities in solution (concentration, potential, etc.)

2 The BKL algorithm for crystal growth is given in Appendix B.
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by solving the partial differential equations. It gives the information necessary for
determining the rate constants for the KMC code. The KMC code simulates the
crystal growth using the rate constants and gives the renewed surface information
(the change in the concentration and the surface structure) back to the continuum
code. The continuum code simulates the solution quantities using the renewed
information as the boundary conditions. Since the surface moves into the solution
as a result of crystal growth, the numerical treatment of moving boundaries is
required.

The combination of the KMC method and continuum models is a general
framework of the microscopic simulation of electrodeposition. Pricer et al. com-
bined the (2 ? 1)D SOS model with 1D diffusion equation for copper ions to
simulate the surface morphology in copper electrodeposition [35]. Here (2 ? 1)D
means the two-dimensional substrate surface (2) and one layer of deposited atoms
(+1). Drews et al. studied the effect of additives (PEG, Cl�, MPSA) on the surface
morphology [36]. Drews et al. extended the SOS model to represent the fcc (111)
surface and studied the nucleation process by using the KMC simulation [37].

4.3.3 Multiscale KMC-Continuum Hybrid Simulation
for Trench Filling

An extensive multiscale KMC-continuum simulation of trench filling by copper
electrodeposition has been developed by Alkire et al. [38–40]. In their model, four
kinds of additives (PEG, SPS, Cl�, 1-2-hydroxyethyl-2-imidazolidinethione
(HIT)), 14 surface reactions, and three homogeneous reactions in solution are
taken into account. The system consists of three parts; (1) mass transport and
reactions in solution, (2) surface shape evolution, and (3) crystal growth on the
surface. Mass transport in solution is represented by the mass balance equation

oCi

ot
¼ Dir2Ci þ ziFuir � CirUð Þ þ Ai; ð4:32Þ

where Di, Ci, zi and ui are the diffusion constant, the concentration, the valence,
and the mobility of species i, respectively. U is the potential and Ai is the pro-
duction rate of species i due to the homogeneous reaction in solution. Equation
(4.32) represents the overall material conservation in solution. The flux of species i
is given by

Ni ¼ DirCi þ ziFuiCirU: ð4:33Þ

The boundary conditions on the top bulk boundary are the bulk values

Ci ¼ C1i ;U ¼ U1: ð4:34Þ

The boundary conditions on the nonactive boundary and the active boundary
(electrode surface) are:
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Ni � n ¼ 0; ð4:35Þ

Ni � n ¼ Ji; ð4:36Þ

respectively, where Ji is the flux of species i computed by the KMC code. These
equations are solved by the finite volume (FV) method using the data from the
KMC code as the boundary conditions.

The shape evolution of the growing trench surface as a result of the deposition
reactions is tracked by LSM (Appendix A). The FV code and the LSM code are
coupled to form the moving boundary which is also coupled with the KMC code.
The relation between the KMC code and the moving boundary is illustrated in
Fig. 4.9. There are 10 KMC simulation domains along the surface. In these
domains, the crystal growth is simulated by the KMC code of the SOS model. The
result of the KMC simulation in each domain is passed to the computation of the
moving boundary. The results of the LSM code and the FV code are reflected in
turn in the KMC code.

The reactions included in the model are summarized in Table 4.1. The copper
ions are reduced in two steps, Cu2þ þ e� ! Cuþ, Cuþ þ e� ! Cu. Four kinds of
additives are included; PEG, SPS, Cl�, and HIT. Chloride ions are combined with
Cu+ to produce CuCl on the surface (reaction 5). PEG is adsorbed on the surface as

Fig. 4.9 The relation
between the KMC code and
the continuum code. Right
Ten individual KMC domains
along the wall of a trench.
Left The enlarged image is
one of the KMC domains.
(Reproduced from Fig. 4.3 of
Ref. [38] by the permission of
The Electrochemical Society)
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CuClPEG (reaction 8). The suppressing effect of CuClPEG is expressed by the
multiple-site model (Fig. 4.8a). SPS produces two MPS molecules which create
Cu(I)thiolate (reactions 10, 11, and 16). Cu(I)thiolate has a catalytic effect on the
reduction of Cu+ to Cu (reaction 13). The leveler HIT deactivates the Cu(I)thiolate
(reaction 14) and lowers the copper deposition rate.

In the KMC code, one lattice site is assumed to represent a mesoparticle which
contains a group of particles. This is to track a larger scale shape evolution. The
area change is calculated from the local curvature by the LSM code and sent to the
KMC codes at the different trench surface location. The KMC code calculates the
changes of the surface coverage of Cu(I)thiolate at different locations. The con-
centrations of the Cu(I)thiolate are corrected by inserting additional Cu(I)thiolate
so that the total mass of the chemical species is conserved.

Figure 4.10 shows the results of the simulation corresponding to the experi-
mental condition; 0.3 M CuSO4, 125 g/L H2SO4, 0.3 g/L PEG, 50 ppm Cl� and
10 ppm SPS. The trench is 0.2 lm wide and is 1 lm high. The rate constants for
the reactions in Table 4.1 are given in Refs. [38, 39]. Figure 4.10a shows the shape
evolution pattern, b shows the time and space dependences of the surface coverage
of Cu, CuCl, CuClPEG, and Cu(I)thiolate. In each figure, the position ‘‘0’’ cor-
responds to the trench opening and ‘‘0.5’’ is the center of the trench. Figure 4.10c
shows the time and space dependencies of the reaction rates of reactions 2, 7, and
13 evaluated in the simulation. Figure 4.10a clearly shows the characteristics of
superfilling; (i) initial incubation period, (ii) bottom-up, and (iii) overfill after the

Table 4.1 Species and
chemical reactions in copper
electrodeposition used in the
simulations [38–40, 49, 50]

Reaction no. Species and reactions

Surface reactions
1 Cu2þ þ e� ! Cuþ

2 Cuþ þ e� ! Cu
3 Cu! Cuþ þ e�

4 Cu! Cuðsurface diffusionÞ
5 Cuþ þ Cl� ! CuCl
6 CuCl ! Cuþ þ Cl�

7 CuClþ e� ! Cuþ Cl�

8 CuCl þ PEG! CuClPEG
9 CuClPEG ! CuClþ PEG
10 SPSþ 2e� þ 2Hþ ! 2MPS
11 Cuþ þ MPS! Cu Ið Þthiolateþ Hþ

12 Cu Ið Þthiolateþ Hþ ! Cuþ þMPS
13 Cuþ þ Cu Ið Þthiolateþ e� ! Cu Ið Þthiolateþ Cu
14 Cu Ið Þthiolateþ HIT! Cu Ið ÞHITþMPS
15 Cu Ið ÞHITþ Hþ þ Cu Ið Þ ! HITþ Cu2

Homogeneous reactions in solution
16 MPS $ Hþ þ thiolate�

17 H2SO4 $ HSO�4 þ Hþ

18 HSO�4 $ SO2�
4 þ Hþ
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filling. Figures 4.10b, c shows that CuClPEG is distributed in the upper half of the
trench and Cu(I)thiolate in the lower half of the trench. From the spatial distri-
bution of r13 (the rate of reaction 13), the bottom-up fill is mainly due to the
accelerating effect of Cu(I)thiolate. These results show that the combination of the
KMC code, LSM code, and the FV code can perform the overall simulation of
trench filling taking into account the slow mass transport represented by the mass
balance equation (4.9) and the microscopic reactions listed in Table 4.1.

4.4 Solid-by-Solid Model and 3D Shape Evolution

The SOS model represents an ideal situation in which a new atom is deposited on a
surface solid atom only in the vertical direction, and no vacancy is formed in the
deposited films. In real deposition, lattice defects such as vacancies and

Fig. 4.10 Simulation of trench filling. a Two trench cross-sections showing the shape evolution.
Left every 5 s for 0–70 s and right every 1 s for 0–3 s. b The surface coverage versus time and
position for four surface species during the trench infill. c The time-dependent reaction rate
distribution for the three reactions associated with copper electrodeposition (reactions 2, 7, and 13).
The positions 0 and 0.5 correspond to the trench opening and the center of the trench, respectively.
(Reproduced from Fig. 4.1 of Ref. [40] by the permission of The Electrochemical Society)
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dislocations, which are created during electrodeposition, play an important role in
determining the physical properties of the film. The SOS approach has been
extended to a model, which includes void formation by Kaneko et al. [45, 46]. The
new model is called the Solid-by-Solid (SBS) model. This section is concerned
with the basic properties of the SBS model and its application to the 3D shape
evolution of via and trench fillings.

4.4.1 Solid-by-Solid Model

We consider a 2D square lattice each site of which is occupied by either a liquid
atom or a solid atom, otherwise vacant. The schematic picture of the model is
shown in Fig. 4.11. Growth is in the y-direction and a periodic boundary condition
is used in the x-direction. Surface solid atoms are denoted by bright gray squares
which are distinguished from the solid atoms embedded in the film (dark gray
squares). Empty sites surrounded by solid atoms with no contact with the liquid are
defined as vacancies. Three events are assumed to occur to change the state of each
site: adsorption, desorption, and surface diffusion. As for adsorption, the SOS
criterion is removed, that is, a new atom is deposited on any nearest neighbor sites
of the surface solid atom (as indicated by the arrows in Fig. 4.11). In order to allow
this deposition, the surface solid atoms must be defined even when the surface has
a rough structure. An accurate algorithm to search the surface solid atoms is a key
factor for extension of the SOS model to the SBS model. The searching algorithm
is given in Appendix C.

Fig. 4.11 Illustration of the
SBS model. Dark gray
squares are solid atoms and
bright gray squares are
surface solid atoms. White
squares are vacancies. The
adsorption of new atoms
occurs from any directions
indicated by arrows A, B,
C, D
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The rate constants for adsorption kþn , desorption kn and surface diffusion knm are
assumed to have the following relations; [41, 42]

kn

kþn
¼ exp nk � nð Þ u

kBT
� l

kBT

� �
; ð4:37Þ

knm ¼
knkþm
kþ1

exp
u� Ed

kBT

� �
; ð4:38Þ

where u is the binding energy between solid atoms, l is the electrochemical
potential and Ed is the activation energy for the surface diffusion. nk is the number
of bonds at a kink site. (nk ¼ 2 for 2D lattice and 3 for 3D lattice) kB is Boltzmann
constant and T is the temperature. The relation (4.37) is derived from the
microscopic detailed balance at a kink site [42]. This model is called the SBS basic
model hereafter.

The advantage of the SBS model is that one can perform the simulation of
crystal growth on complex nonflat surfaces which accompanies void formation.
The shape evolution can be simulated without using any additional algorithm to
track the moving boundary. Therefore, it is suitable for the simulation of filling
small features such as damascene electroplating. The effects of suppressors,
accelerators, and levelers have been studied by the KMC simulations of 2D SBS
model and the condition for void-free filling has been discussed. [47, 48]

It is straightforward to extend the SBS model to a 3D system. Figure 4.12
shows the simulation of dual damascene using the 3D SBS basic model without
additives. The initial surface has a trench with a cylindrical via hole at the bottom.
The aspect ratio of the trench and the via is unity. Periodic boundary conditions are
used in the lateral directions. It is observed that the via hole is first filled with
deposited atoms forming voids in the hole. Then the trench is filled forming seams
which are elongated in the growth direction in the middle of the trench. Since ionic
transport is not included in the SBS basic model, the filling is almost conformal.
The surface is clearly defined at every KMC step by the searching algorithm given
in Appendix C.

4.4.2 Multiscale SBS Model for 3D Shape Evolution

The 3D SBS model has been extended to include the solution with diffusion layer
for the simulation of 3D device fabrications [49, 50]. Figure 4.13 illustrates the
extended system which consists of three parts. The lowest part is the electrode with
a small feature on the surface. The adsorption, desorption, surface diffusion, and
the shape evolution are simulated by the KMC method of the SBS model. The
additive reactions occur on the surface.

The solution is located above the electrode, which is also simulated by the
KMC method. The solution is divided into a Cartesian grid which is the same as
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the cubic lattice of the SBS model for the electrode. The particles representing
copper ions or additives are distributed on the grid points. The diffusion of ions
and additives in solution is simulated by the coarse-grained random walk
(CGRW). Ions and additives jump to one of the neighboring grid points with equal
probability (1/6 for cubic lattice). Since the elementary process of ionic migration
(jump diffusion) is the fastest process in the system, coarse-graining is applied, i.e.,
the jump distance per one KMC step is larger than the unit space of the grid.

The upper part of the solution is the diffusion layer which contains ions and
additives. The migration of these particles is simulated by CGRW. Figure 4.13
shows the relation between the simulation system and the corresponding real
system. The simulation system is divided into layers with the thickness d and each
layer has different units of time tj and length lj, where j denotes the layer number.
These units are scaled so that each layer corresponds to the real system which has a

Fig. 4.12 KMC simulation of dual damascene (trench and via) using the 3D SBS basic model.
Gray dots denote vacancies. The via is filled forming voids in the middle and then the trench is
filled forming seams

Fig. 4.13 The illustration of
the multiscale modeling for
electrode-solution interface.
The simulation system and
the corresponding real system
are plotted. The system
consists of the electrode,
solution, and diffusion layer
from the bottom. Multiscale
method is used to simulate
the diffusion layer
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larger volume with the same concentration. For example, layer 2 represents a
portion of the solution with thickness 2d (i.e., the volume is twice as large as that
of layer 1). The units tj and lj are scaled so that each layer has the same diffusion
constant for each species. It is also assumed that each layer in the simulation
system has M particles and a particle in the upper layer jþ 1 represents two
particles in the lower layer j. The rate constants of the random walk of these
particles at the boundary are scaled so that the microscopic detailed balance is
satisfied between the layers. The whole system is simulated by the combined
algorithm of the BKL method and CGRW.

The reactions in Table 4.1 have been incorporated in the 3D SBS model for
copper electrodeposition. The solution contains three kinds of ion (Cu2+, Cu+,
Cl�), PEG and SPS. The reduction of Cu2+ occurs in two steps (reactions 1 and 2).
The additive reactions 5–13 are assumed to occur on the electrode surface. Lev-
elers are not included. The initial concentrations of ions and additives are Cu2+;
2 M, Cl�; 1:5� 10�3 M, PEG; 8:8�5 M and SPS; 2:0�5 M. Surface sites are either
of Cu (adatom), Cu (crystal), CuCl, CuClPEG, or Cu(I)thiolate. The inhibiting
effect of PEG is simulated by the action range model in Fig. 4.8b. The catalytic
effect of Cu(I)thiolate is reaction 13, which enhances copper deposition. The rate
constants are taken from Refs. [38, 39]. In the simulation, the superparticle
assumption is used, i.e., one lattice site represents a group of 10,648 atoms, and the
rate constants are rescaled for superparticles. In this system, since the number of
particles is conserved including incorporation and desorption, the effect of area
change at the bottom of the trench is included. Therefore, no additional assumption
is made to include the effect of area reduction.

Figure 4.14 shows the shape evolution during trench filling. The width of the
trench is 132 [nm] and the aspect ratio is 2. The trench is filled from the bottom
and a typical U-shape is observed during filling. As a result, only point defects
appear in the film. Figure 4.15 shows the distribution of CuClPEG and
Cu(I)thiolate within the trench averaged over the initial 30 % of the total filling
time. z ¼ 0 is the trench bottom and z ¼ 264 [nm] is the initial trench top. It is
clearly observed that CuClPEG is distributed at the upper half of the trench,
preventing copper deposition around the opening of the trench. The accelerant
Cu(I)thiolate is mainly distributed around the trench bottom. Such a heterogenous
distribution of suppressors and accelerants initiates the U-shape of the surface,
which leads to superfilling combined with area reduction at the bottom as observed
in Fig. 4.14. These features agree with the results of the KMC-continuum simu-
lation presented in Sect. 4.3.

4.5 Further Development of Efficient Algorithms

The numerical simulations of the continuum models and the KMC method are
useful means to predict the optimal conditions in electrochemical engineering.
However, accurate computation requires long computing time (more than days),
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especially for 3D systems, which will be the bottleneck for practical applications.
Fast computing techniques have been developed for the simulations presented in
the previous sections.

In the simulation of the continuum models, the large computing cost is in
solving the mass balance equation (4.32) on irregular domains with moving
boundaries. Buoni and Petzold [51] reported an efficient method to solve
Eq. (4.32), which is an extension of the FV code. It uses FV spatial discretization
including uniform small-cell region (around the feature and the electrode

Fig. 4.14 Results of the simulation of trench filling with three additives (PEG, SPS, Cl�). The
trench is 132 [nm] wide and 264 [nm] deep. Only point defects appear in the film

Fig. 4.15 Spatial
distribution of additives
averaged over the initial
30 % of the filling time
(arbitrary unit). z = 0 is the
trench bottom and z = 264
[nm] corresponds to the
initial trench top. (solid
squares : Cu(I)thiolate, open
squares : CuClPEG)
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boundary) and nonuniform large-cell region for the solution far from the electrode.
The time integration is performed with a splitting technique. The right-hand side of
Eq. (4.32) is split into three sets of terms; reaction terms, diffusion terms (plus
boundary flux terms), and migration terms. The concentration field Ci is integrated
in turn. It has been shown that the new algorithm is stable, scalable, and easy to
parallelize. By using this method, Buoni and Petzold extended the combined
system of the mass balance equation (4.32), LSM and the reaction-advection
equation to a 3D system and performed the simulation of dual damascene with four
kinds of additives [52].

In the KMC simulations of electrodeposition, a heavy computing cost arises
when the rate of surface diffusion is much larger than the rates of other reactions.
This is because numerous hops of adatoms must be computed before nucleation
occurs in the ordinary KMC algorithm. The coarse-graining method (superparti-
cles) allows us to perform the computation on large scales with the cost of losing
the atomic-scale accuracy of the nucleation process. Several kinds of multiscale
techniques have been developed to speed up the KMC code [33, 53].

A useful technique to overcome the problem of fast surface diffusion will be the
first-passage kinetic Monte Carlo (FPKMC) method originally proposed as an
efficient algorithm for the diffusion–reaction processes [54, 55]. Instead of simu-
lating a lot of small hops, the FPKMC algorithm propagates the diffusing particles
over a long distance sampled from the first-passage time distribution function
which is a time-dependent Green’s function of diffusion equation. The FPKMC
method is an exact and efficient algorithm to skip the sampling of small hops to
move the diffusing particles, which greatly reduces the computation time. Bezzola
et al. applied the FPKMC method to the problem of nucleation and growth on the
surface to study the presence of the exclusion zone in front of the growing step
edge as a function of the surface diffusion/deposition rate ratio [56].

4.6 Summary

In this chapter, recent developments in the mathematical modeling and computer
simulation of copper electrodeposition have been reviewed focusing attention on
continuum models and KMC.

We first overviewed the numerical simulation of continuum models. As
mathematical models for superfilling, we described the idea of the diffusion–
consumption theory and the CEAC mechanism with the mathematical formulas.
The CEAC is a model to realize superfilling and is regarded as a new type of
leveling theory in view of accelerators. The numerical simulation of nucleation
and growth and a fluid mechanical approach to copper electrodeposition are also
overviewed. We then described the KMC method and the multiscale KMC-con-
tinuum simulation. The KMC-continuum hybrid method enables us to treat elec-
trochemical phenomena ranging from microscopic surface reactions to large-scale
mass transport in the diffusion layer. The recent development of the KMC method
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is also presented from a ‘‘Solid-by-Solid’’ point of view. The extension from the
SOS model to SBS model has led to a wide range of applications, especially, to the
simulation of the 3D shape evolution for nanofabrication. Efficient algorithms for
the fast computing of the above-mentioned simulations have also been
overviewed.

Finally, let us comment on the molecular dynamics (MD) simulation which is
not covered in this article. The MD method is a powerful tool to study the
dynamical properties of condensed matter systems. The classical MD method,
however, cannot be used for the electrochemical phenomena since the latter
includes electron transfer reactions, which are essentially quantum mechanical
processes. Recently a new method of molecular simulation of electrodeposition
has been developed by combining the MD method with the KMC method [57, 58].
In the MD-KMC hybrid simulation, the whole dynamics of solution-electrode
interface are simulated by the MD method and the reactions on the electrode are
simulated by the KMC method. This method provides a direct dynamical simu-
lation accompanying chemical reactions to study the correlation between the
reaction rates and the surface morphology taking into account all the dynamics in
solution and on the electrode.

The combination of efficient algorithms on different scales is the key factor in
fast and accurate simulation. The simulations presented in this chapter and their
hybridization will be promising tools for understanding the fundamental aspects of
copper electrodeposition as well as their application to nanofabrication in elec-
trochemical engineering.

A.1 Appendix A Level Set Method

LSM is a tracking method of moving boundaries, which is commonly used in
recent numerical studies of electrodeposition. The level set function /L is a
continuous function of space and time, defined in the whole area of liquid–solid
interface. The surface is defined by /L ¼ 0, and the inner space (electrode) by
/L\0 and the outer space (solution) by /L [ 0. The time derivative of /L is

o/L

ot
¼ v � r/L; ðA:1Þ

where v is the surface front velocity. The normal vector on the surface is:

n ¼ r/L

r/Lj j ; ðA:2Þ

and the normal velocity is defined as:

v ¼ v � n: ðA:3Þ
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Using Eqs.(A.2) and (A.3), Eq.(A.1) becomes

o/L

ot
¼ v r/Lj j: ðA:4Þ

The curvature of the surface in LSM is given by j ¼ r � n. Equation (A.4) is
the basic equation of LSM which should be solved numerically. Since v is defined
not only at the interface but outside the interface, the extension velocity vext is
defined by:

rvext � r/temp ¼ 0; ðA:5Þ

where v ¼ vext at /L ¼ 0 and /temp is calculated by using the condition

r/Lj j ¼ 1: ðA:6Þ

Using vext the LSM equation is written as:

o/L

ot
¼ vext r/Lj j ðA:7Þ

which is solved with the equations representing the electrodeposition reactions on
the surface which give the boundary conditions. The equations are discretized and
the quantities are evaluated on the grid points. The method of discretization and
numerical procedures of LSM in combination with the FV code are found in the
literature [9, 22].

A.2 Appendix B Rejection-Free Algorithm for KMC Simulation

Here we describe the application of the rejection-free algorithm to the 2D SOS and
SBS models. Three events are assumed to occur on the surface. The rate constants
for adsorption kþn , desorption kn , and surface diffusion knm are dependent upon the
number of nearest neighbor solid atoms n;m at the sites, where 1	 n;m	 4. The
rates of the creation (adsorption), annihilation (desorption), and surface diffusion
are defined as

kc ¼
X3

n¼1

kþn NcðnÞ; ka ¼
X3

n¼1

knNaðnÞ; kd ¼
X3

n;m¼1

knNdðnmÞ; ðB:1Þ

respectively, where NcðnÞ, NaðnÞ, NdðnmÞ are the numbers of candidate atoms (sites)
for the events. The rate at which one of the three events occurs is given by

kt ¼ kc þ ka þ kd: ðB:2Þ
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The KMC algorithm for this model is as follows.

Search and tabulate the candidate surface atoms (sites) for the events.
Choose one of the events using a random number R on [0,1].

R\
kc

kt
: adsorption

kc

kt
	R\

kc þ ka

kt
: desorption

kc þ ka

kt
	R : surface diffusion

Choose the type of events (the number of bonds) by generating another random
number R0. In the case of adsorption,

R0\
kþ1 Ncð1Þ

kt
: n ¼ 1

kþ1 Ncð1Þ
kt

	R0\
kþ1 Nc 1ð Þ þ kþ2 Ncð2Þ

kc
: n ¼ 2

kþ1 Nc 1ð Þ þ kþ2 Ncð2Þ
kc

	R0 : n ¼ 3

Select one atom (site) from the table of the candidates for the event chosen in 2
and 3, and realize the reaction.
Renew the table and go to 2

This cycle defines one KMC step and the average time corresponding to this
cycle is 1=kt. Additives and their reactions are incorporated in this algorithm as
additional events. The numbers of the candidates for the reactions are calculated
using the concentrations, which are passed from the continuum code or the results
of CGRW in solution.

A.3 Appendix C Algorithm for Searching Surface Atoms

The crucial point in the extension of the SOS model to the SBS model is an
efficient and accurate algorithm for searching surface atoms. Figure A.1 illustrates
an example of the algorithm for a two-dimensional model. Black and white
squares denote solid and liquid sites, respectively. Vacancies are denoted by white
squares. The algorithm consists of successive numbering of the squares.

From the top of the liquid sites, put ‘‘1’’ to the white squares successively moving
down in –y direction.
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Then, put ‘‘2’’ to the white squares adjacent to the white squares numbered as
‘‘1’’.
Put ‘‘3’’ to the white squares adjacent to the white squares numbered as ‘‘2’’.
Repeat numbering the white squares adjacent to the already numbered squares.
Stop the numbering if there is no white square without numbers around the
numbered white squares.
The solid squares adjacent to the ‘‘numbered’’ white squares are surface solid
atoms. White squares adjacent to the surface solid squares are surface liquid sites.

Since the white squares surrounded by solid squares are not numbered, the
liquid sites and vacancies are distinguished. It is straightforward to extend this
method to a 3D model.
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