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Abstract With the increasing presence of drive recorders and advances in their

technology, a large variety of driving data, including video images and sensor

signals such as vehicle velocity and acceleration, can be continuously recorded

and stored. Although these advances may contribute to traffic safety, the increasing

amount of driving data complicates retrieval of desired information from large

databases. One of our previous research projects focused on a browsing and

retrieval system for driving scenes using driving behavior signals. In order to

further its development, in this chapter we propose two driving scene retrieval

systems. The first system also measures similarities between driving behavior

signals. Experimental results show that a retrieval accuracy of more than 95 % is

achieved for driving scenes involving stops, starts, and right and left turns. How-

ever, the accuracy is relatively lower for driving scenes of right and left lane

changes and going up and down hills. The second system measures similarities

between environmental driving signals, focusing on surrounding vehicles and

driving road configuration. A subjective score from 1 to 5 is used to indicate

retrieval performance, where a score of 1 means that the retrieved scene is

completely dissimilar from the query scene and a score of 5 means that they are

exactly the same. In a driving scene retrieval experiment, an average score of more

than 3.21 is achieved for queries of driving scenes categorized as straight, curve,

lane change, and traffic jam, when data from both road configuration and surround-

ings are employed.
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14.1 Introduction

Drive recorders are used to investigate the causes of traffic accidents and to improve

drivers’ safety awareness. With the increasing presence of more advanced drive

recorders, a large variety of driving data, including video images and sensor signals

such as vehicle velocity and acceleration, can be continuously recorded and stored.

Although these advances may contribute to traffic safety, the increasing amount of

driving data complicates retrieval of desired information from large databases.

Some researchers have studied methods for recognizing driving events, such as

lane changing and passing, using HMM-based dynamic models [1–3]. In our

previous work, a similarity-based retrieval system for finding driving data was

proposed [4]. However, since our method used differences in histograms of driving

behavior signals as the similarity measurement, it did not efficiently use dynamic

information from driving scenes for retrieval. In this chapter, we study two driving

scene retrieval systems that utilize dynamic information from driving scenes.

In the first study, we focus on driving behavior signals. The first retrieval system

captures dynamic information from driving scenes by directly using sequences

of driving behavior signals and utilizes changes in these signals over time. Six

kinds of driving behavior signals (velocity, longitudinal and lateral acceleration,

gas and brake pedal pressures, and steering angle) are used for calculating similarity

between driving scenes. We compared the use of both early and late integration to

integrate these signals.

In the second study, we focus on environmental driving data that is collected from

the road and surrounding vehicles. The second retrieval system uses a similarity

measure to compare the road configuration and motion of surrounding vehicles.

Positions of surrounding vehicles and roadside barriers are detected with laser

scannersmounted on the front and back of an instrumented vehicle, and the velocities

of surrounding vehicles are estimated from their relative positions to the vehicle.

Each scanned frame of a driving scene is categorized based on three general features,

i.e., road type, congestion level, and the positions of surrounding objects. Also, the

motion of each surrounding vehicle is tracked to obtain its motion features, so we

can measure the similarity between vehicles. Categorization results and detected

vehicle path are integrated to measure similarity between driving scenes.

14.2 Data Collection

The driving data used in our study was collected on real roads and was recorded

using the instrumented vehicle shown in Fig. 14.1. The collected signals included

velocity [km/h], longitudinal and lateral acceleration [G], gas and brake pedal

pressures [N], and steering wheel angle [deg]. Two laser scanners were mounted

on the front and back of the vehicle to detect surrounding objects. The laser

scanners covered 80� arcs at both the front and back of the vehicle, to an effective
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range of about 100 m to the front and 55 m to the rear. A Kalman filter was

employed to predict the motions of objects in blind areas. In order to assist in the

subjective confirmation of retrieved scenes, synchronously recorded front and

driver’s feet scenes, as well as a 360� panoramic scene of the surroundings from

an omnidirectional camera, were also available for every retrieved scene.

14.3 Driving Scene Retrieval Using Driving

Behavior Signals

In this section, we describe the first similarity-based driving scene retrieval system,

which uses similarity of driving behavior signals. Six driving signals (velocity,

longitudinal and lateral acceleration, gas and brake pedal pressures, and steering

angle) were used for calculating similarity between driving scenes. We compared

the use of early and late integration to integrate these signals.

14.3.1 Integration Methods for Driving Behavior Signals

14.3.1.1 Method 1: Early Integration

We retrieved similar driving scenes using two methods, early and late integration.

Figure 14.2 shows the procedure for early integration. The six kinds of signals

mentioned above were extracted from the scene to be retrieved, and each signal

Fig. 14.1 Instrumented vehicle used for driving data collection [8]
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was normalized by mean and variance using all the data for all the drivers.

The normalized signals of the query scene were represented as a vector, and the

Euclidean distance between the vectors of the query scene and every scene in the

database was measured. The database for the search consisted of about 200,000

vectors, one for each recorded scene. A fast retrieval technique was used to reduce

retrieval time. The top five scenes with the smallest distances were chosen as

similar scenes.

14.3.1.2 Method 2: Late Integration

The other retrieval method used was late integration, shown in Fig. 14.3. Each of

the six kinds of signals of a scene was represented as a vector, and the Euclidean

distance between the vectors of the query scene and those of all the other scenes was

calculated for each signal. The sum of the ranks of the six signals was calculated,

and the five scenes that had the lowest summation were retrieved as similar scenes.

14.3.2 Retrieval Performance Evaluation

To evaluate these methods, we conducted a driving scene retrieval experiment

using driving data collected on city roads from 74 drivers (35 males and 39 females).

There was about 45 min of recorded driving data per driver, for a total of about 54 h

of driving data. The sampling rate of the driving signals was 10 Hz.
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Fig. 14.2 Driving scene retrieval using driving behavior signals (early integration)

246 Y. Li et al.



14.3.2.1 Experimental Condition

Eight kinds of driving events (stops, starts, right and left turns, right and left lane

changes, and going up and down hills) were selected as query scenes, and similar

scenes were retrieved using the two techniques described in Sect. 14.3.1. Scenes

occurring less than 2 s before or after the query scene, and scenes which had already

been retrieved, were excluded from being candidates for retrieval. We chose a total

of 80 query scenes, which included about 10 scenes for each type of event.

Retrieval performance was evaluated in terms of retrieval accuracy, i.e., the

percentage of correctly retrieved scenes in proportion to the total number of

retrieved scenes. Whether or not a scene was correctly retrieved was determined

subjectively by human validation.

14.3.2.2 Results

Experimental results are shown in Fig. 14.4. Retrieval accuracy averaging more

than 95 % was achieved for driving scenes of stops, starts, and right and left turns,

while accuracy was relatively lower for scenes of right and left lane changes, and

going up and down hills. Retrieval accuracy of situations involving right turns was

higher using the early integration method, but for scenes going down hills, the late

integration method was more accurate. On average, the early integration method

gave slightly better performance.
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Fig. 14.3 Driving scene retrieval using driving behavior signals (late integration)
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14.4 Driving Scene Retrieval Using Environmental

Driving Signals

In contrast to the first study, which employed in-vehicle driving signals, in this

section we measured the similarity between scenes by comparing driving

environments as detected by laser scanners.

14.4.1 Laser Data Preprocessing

14.4.1.1 Clustering of Laser Data and Tracking of Vehicles

The first step towards automatic scene retrieval was the clustering of discrete laser

dots obtained with laser scanners from surrounding driving environments. Each

cluster was a set of distance measurements in a plane, grouped closely to each other,

and thus probably belonging to a single object. While many approaches have been

used to calculate such physical distances [5], we simply used Euclidean distance

here. Due to laser dot detection errors, not every cluster actually represented a

separate object, i.e., sometimes more than one cluster could belong to a single

object. Since all of the laser data were recorded on expressways in this study, in

most cases a laser dot must belong to either a vehicle or a roadside barrier, so it was

not difficult to integrate some clusters with our prior knowledge of the shapes of

these objects [6]. Then, each surrounding vehicle was modeled as a rigid box,

characterized by its orientation, position, and velocity. By tracking the vehicles

with a Kalman filter, we estimated their dynamic features, even if they were outside

the range of the laser scanners.
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14.4.1.2 Frame Categorization

A frame categorization method was used to categorize laser-acquired driving frames

based on three general features, in order to reduce the number of candidates and

facilitate fast retrieval. The scenes were categorized based on road type, congestion

level, and the relative positions of surroundings objects. The three features were

defined as follows:

• Road type was divided into three classes: left curve, straight line, and right

curve. Since two laser scanners were used, one on the front of the vehicle and

one on the back bumper, they collected information about road types separately.

Their combined data was used to define the road type for each frame of a driving

scene, for example, “left curve, straight.”

• Road congestion level was divided into two classes: “free flow” and “traffic jam.”

AGreenshields model [7] was employed to estimate the congestion level for each

lane. The road congestion level of a driving frame was designated “traffic jam” if

any lane in the frame was estimated as “traffic jam”; otherwise, the frame was

designated “free flow.”

• Relative positions of surrounding vehicles were classified into 450 situations

based on whether there was another vehicle in each of eight surrounding

directions and whether there was a roadside barrier on the left or right of the

driver’s vehicle.

For example, a frame could be represented as “(left curve, straight),” “traffic

jam,” and “21.”

14.4.2 Similarity Measure for Surrounding Environment

Here, we measured the similarity between driving scenes based on the surrounding

environment, using three procedures: first, their frame categories (given in

Sect. 14.4.1.2) were compared; second, the relative positions of the surrounding

vehicles were calculated; and finally, their motion features were compared.

14.4.2.1 Comparison of Frame Categories

In this study, each driving scene consisted of 100 frames (10 s), so each scene could

be represented as a vector with 400 dimensions. We then calculated the difference

between scenes using Hamming distance to measure how similar the frame cate-

gories of two scenes were. Hamming distance between two elements of the vectors

took 0 only when the compared features were exactly the same. If the two features
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were different, the value was 1. So, if the total Hamming distance was 0, two

scenes were identical, and if the total value was 400, they were completely

dissimilar. The scenes with a Hamming distance below a threshold of 150 were

extracted as candidates for further processing.

14.4.2.2 Comparison of Surrounding Vehicle Positions

The second step was to compare the positions of vehicles in key frames of two

scenes. We assumed here that the first frames of scenes were key frames because

people generally focus on the first frames of scenes. As shown in Fig. 14.5, a key

frame was divided into a grid, and the frame was represented as a matrix G.
Each cell of the matrix shows the number of vehicles in the corresponding cell of

the grid.

Assume that frames F1 and F2 are represented by symbolized matrices G1 and

G2. To compute the similarity of the two matrices, we first matched all cells in the

two frames:

ΔG F1;F2ð Þ ¼
X
i

X
j

g
1ð Þ
i, j � g

2ð Þ
i, j

��� ���, (14.1)

where g
ð1Þ
i;j and g

ð2Þ
i;j denote the number of vehicles in cell (i,j) in G1 and G2,

respectively, and the value of ΔG represents the distance between them. For

instance, we can say frames F1 and F2 match perfectly if and only if the value of

ΔG equals zero. However, this rarely happens because even if two frames are
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Fig. 14.5 Example of a frame and its matrix. Left: Each cell of the grid is composed of 25 � 25

pixels. The grid is centered on the host vehicle. Right: The value of each element of matrix

represents the number of vehicles in the corresponding cell
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almost identical, this symbolization method sometimes puts vehicles with the

similar positions into different cells. To decrease errors caused by such problems,

we also allowed soft matching. We assumed vehicles in two frames matched if there

were the same numbers of vehicles in the cells at the same position in two matrices.

In addition, we also considered vehicles to match if there were an equal number of

vehicles in nearby cells, using a cost function. Thus, the final distance between

frames F1 and F2 is defined as

d F1;F2ð Þ ¼ ΔG
0
F1;F2ð Þ þ k

K
, (14.2)

where ΔG0 is the value ofΔG after soft matching; k is the number of soft matches in

ΔG0, and K is an empirically defined normalization factor for the penalty of soft

matching.

After that, distance d(F1,F2) was used to calculate the similarity between F1

and F2:

s F1;F2ð Þ ¼ d F1;F2ð Þ
n1 þ n2

, (14.3)

where n1 and n2 denote the numbers of vehicles in frames F1 and F2, respectively.

Frames with a distance below 0.5 from the first frame of a query scene, as well as

between their preceding and following frames within 2 s, were selected as key

frames for the next step in processing.

14.4.2.3 Comparison of Surrounding Vehicle Motion

If surrounding vehicles have nearly the same positions in the first frames of scenes,

as well as similar trajectories and velocities, we believe there is a high probability

that these are matching scenes. Also, comparing the motion of surrounding vehicles

overcomes problems caused by grid division and achieves a faster search than with

frame-to-frame matching between scenes.

Assume that scenes S1 and S2 are represented by their vehicle sets (excluding the

host vehicle), V1 ¼ {vð1Þ1 ,v
ð1Þ
2 , . . .,v

ð1Þ
M } and V2 ¼ {vð2Þ1 ,v

ð2Þ
2 , . . .,v

ð2Þ
N }, where

M and N are total numbers of surrounding vehicles observed in S1 and S2. At

point in time, t, each surrounding vehicle, v
ð1Þ
i or v

ð2Þ
j , is represented as a sequence of

vehicle motion feature vectors, consisting of longitudinal position yi and lateral

position xi with their first-order dynamics Δyi and Δxi:

yi tð Þ,xi tð Þ,Δyi tð Þ,Δxi tð Þð ÞT: (14.4)
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Dynamic features were calculated by the following equation:

Δyi tð Þ ¼
XL

l¼�L
l � yi tþ lð ÞXL

l¼�L
l2

, (14.5)

in which yi(t) is the ith vehicle’s driving signal at point in time t, and L is window

size for linear regression. Δxi(t) was calculated in the same way. The distance

between vehicles v
ð1Þ
i and v

ð2Þ
j in two scenes S1 and S2, respectively, were calculated

as a Mahalanobis distance:

d2 v
1ð Þ
i ; v

2ð Þ
j

� �
¼ μ

v
1ð Þ
i

� μ
v

2ð Þ
j

� �T

Σ�1

v
1ð Þ
i ,v

2ð Þ
j

μ
v

1ð Þ
i

� μ
v

2ð Þ
j

� �
, (14.6)

where μv represents a four-dimensional vector (including the means of longitudinal

position, lateral position, as well as their first-order dynamics) of a vehicle v, andP
v

1ð Þ
i ,v

2ð Þ
j

is a four-by-four covariance matrix of the four features for vehicle v
ð1Þ
i and

v
ð2Þ
j . This calculates the distance between a pair of vehicles by comparing the

distribution of their four-dimensional features. Based on our preliminary experi-

ment, a pair of vehicles with a Mahalanobis distance below a threshold of 15.0 was

believed to be similar to each other.

To acquire a vehicle-to-vehicle match, we calculated d(vi,v
0
j) for all i and

j between scenes and selected them from smallest to largest. We considered scenes

to be similar to each other if there were enough similar vehicles in both scenes.

Similarity p between S1 and S2 was defined as the summation of the weights of

similar vehicles divided by the summation of the weights of all the vehicles in the

scenes:

p S1; S2ð Þ ¼

X
i∈X1

X
t∈T

1ð Þ
i

w
ið Þ
t þ

X
i∈X2

X
t∈T

2ð Þ
i

w
ið Þ
t

X
i∈Y1

X
t∈T

1ð Þ
i

w
ið Þ
t þ

X
i∈Y2

X
t∈T

2ð Þ
i

w
ið Þ
t

, (14.7)

where X1 and X2 denote the sets of similar vehicles, and Y1 and Y2 denote the sets of

all vehicles in S1 and S2, respectively. w
iÞ
t denotes the weight of vehicle vi at time t.

T
ð1Þ
i and T

ð2Þ
i are the sets of frame numbers where v

ð1Þ
i or v

ð2Þ
i was observed in S1 or

S2, respectively. Here, “weight” means the importance of a surrounding vehicle,

which was represented as a value of a modified Gaussian distribution as illustrated

in Fig. 14.6. The reason we used a modified Gaussian distribution which was

stretched towards the front value as a similarity metric is that, generally, a driver

is more aware of nearby leading vehicles while driving. For example, the
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surrounding vehicles in front of a driver’s vehicle are more important than those on

either side of or behind the driver’s vehicle. It can be inferred that a pair of similar

vehicles near the driver’s vehicle makes scenes more similar than pairs located

farther away.

14.4.3 Retrieval Performance Evaluation

The proposed driving scene retrieval system was evaluated using database-

containing expressway scenes from 57 drivers (28 males and 29 females) recorded

with the instrumented vehicle shown in Fig. 14.1. The database contained approxi-

mately 140,000 driving frames. All of the driving data were sampled at 10 Hz.

We compared retrieval accuracy and speed for different types of scenes under

various retrieval conditions, by using subjective scores and by measuring retrieval

speed in CPU time. Here, “retrieval conditions” mean some combinations of the

similarity measures presented in Sect. 14.4.2:

(a) Based on frame category

(b) Based on surrounding vehicle position

(c) Based on surrounding vehicle motion

The combinations are represented as a, c, a + c, b + c, and a + b + c. We did

not use b or a + b, since b only considered the first frame of a scene and would not

be accurate if used alone.

The experiment was conducted as follows:

• Five driving scenes each, for straight road, curve, traffic jam, and lane change,

were randomly selected as queries.

• For each query scene, we evaluated retrieval accuracy and retrieval speed for

each retrieval condition. For each condition, the top five similar scenes were

retrieved, and they were used for the evaluation.

Fig. 14.6 A modified two-dimensional Gaussian distribution, centered on the driver’s vehicle,

where surrounding vehicles with higher values denote greater importance
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14.4.3.1 Comparison of Retrieval Accuracy Using Subjective Scores

In this comparison, the subjective scores of five volunteers were used to judge

which retrieval condition, or combination of retrieval conditions, was able to select

scenes with the highest similarity to a query scene for a given driving situation.

Each volunteer gave scores, from 1 (lowest) to 5 (highest), to the top five retrieved

scenes for each query under each retrieval condition. Scenes with a score of 3 or

higher were considered to be similar. A score of 5 indicated perfect similarity, while

a score of 1 indicated complete dissimilarity. The retrieval accuracy of a given

scene under a given retrieval condition was estimated as the average of the scores

from the five volunteers.

The experimental results are shown in Fig. 14.7, which indicate that condition

a + b + c demonstrated much higher accuracy than the other conditions, in various

driving situations.

14.4.3.2 Comparison of Retrieval Speed Using CPU Time

In order to compare processing speed, the proposed driving scene retrieval systemwas

installed on a Core i5CPU650@3.20GHz PCusing theWindows 7 operating system.

The CPU time for each query process was recorded for each retrieval condition.
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The average retrieval time for top five driving scenes was calculated. This was

considered to represent system speed performance under a given retrieval condition

for each scene. Figure 14.8 shows the average retrieval time taken to retrieve scenes

from the 140,000-frame database. On average, retrieval condition a took the least

time, and condition a + b + c was the next fastest.

14.5 Conclusions

In this chapter, we developed two systems for retrieving recorded driving scenes

based on measuring the similarity of driving behavior and environmental driving

signals. In the first study, similar scenes were retrieved using driving behavior

signals, and they were integrated using two methods, early and late integration.

Experimental results showed that an average of more than 95 % retrieval accuracy

was achieved for driving scenes of stops, starts, and right and left turns. In most

situations, the early integration method achieved better performance than the late

integration method. In the second study, we used environmental driving signals

with the idea that similar driving scenes could be retrieved by measuring similarity

in surrounding environments. Experimental results showed that the integrated use

of information from surrounding vehicles and road conditions achieved higher

retrieval accuracy than the use of either type of information alone.

Currently, we are working to integrate these two systems, to see if retrieval

accuracy can be further improved.
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