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Using Perceptual Evaluation to Quantify
Cognitive and Visual Driver Distractions

Nanxiang Li and Carlos Busso

Abstract Developing feedback systems that can detect the attention level of the

driver can play a key role in preventing accidents by alerting the driver about

possible hazardous situations. Monitoring drivers’ distraction is an important

research problem, especially with new forms of technology that are made available

to drivers. An important question is how to define reference labels that can be used

as ground truth to train machine-learning algorithms to detect distracted drivers.

The answer to this question is not simple since drivers are affected by visual,

cognitive, auditory, psychological, and physical distractions. This chapter proposes

to define reference labels with perceptual evaluations from external evaluators.

We describe the consistency and effectiveness of using a visual-cognitive space for

subjective evaluations. The analysis shows that this approach captures the multidi-

mensional nature of distractions. The representation also defines natural modes to

characterize driving behaviors.

Keywords Driver distraction • Active safety • Driver perception • Subjective

evaluation • Driving performance

11.1 Introduction

The development of new in-vehicle technology for communication, navigation, and

infotainment has significantly changed the drivers’ experience. However, these new

systems can negatively affect the drivers’ attention, exposing them to hazardous

situations leading to motor-vehicle accidents [17]. According to the study reported

by The National Highway Traffic Safety Administration (NHTSA), over 25 % of

police-reported crashes involved inattentive drivers [28]. This finding is not
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surprising since it is estimated that about 30 % of the time that drivers are in a

moving vehicle, they are engaged in secondary tasks [27]. Therefore, it is important

to develop active safety systems able to detect distracted drivers. A key step in this

research direction is the definition of reference metrics or criteria to assess the

attention level of the drivers. These reference labels can be used as ground truth to

train machine-learning algorithms to detect distracted drivers.

A challenge in defining driver distraction measure methods is the multidimen-

sional nature of the distractions caused by different tasks. Performing secondary

tasks while driving affects the primary driving task by inducing visual, cognitive,

auditory, psychological, and physical distractions. Each of these distractions has

distinct effects on the primary driving performance [9]. During visual distractions,

the drivers have their eyes off the road, compromising their situation awareness.

During cognitive distractions, the drivers have their mind off the road, impairing

their decision making process and their peripheral vision [27] (looking but not
seeing [32]). A driver distraction measure should capture these facets to reflect the

potential risks induced by new in-vehicle systems.

Some studies have used direct measurements derived from the driving activity.

These measures include lateral control measures (e.g., lane-related measures),

longitudinal control measures (e.g., accelerator-related measures, brake, and

deceleration-related measures), obstacle and event detection (e.g., probability of

detection measures), driver response measures (e.g., stimulus-response measures),

vision-related measures (e.g., visual allocation to roadway), and manual-related

measures (e.g., hands-on-wheel frequency) [4, 19, 36–38]. Other studies have used

measurements from the drivers including electroencephalography (EEG), size of

eye pupils and eye movement [4, 22, 23, 26]. Unfortunately, not all these metrics

can be directly used to define labels to train machine-learning algorithms to predict

distracted drivers. Some of these metrics can only be estimated in simulated

conditions (e.g., event detection tasks) while others require intrusive sensors to

reliably estimate their values (e.g., bio-signals).

The study addresses the problem of describing driver distraction through

perceptual assessments. While common subjective evaluations such as the NASA
task load index (NASA-TLX), driving activity load index (DALI), subjective work-
load assessment technique (SWAT), andmodified Cooper Harper (MCH) scale rely

on self-evaluations [39], we propose the use of external observers to separately

evaluate the perceived visual and cognitive distractions—a two-dimensional space

to characterize distractions. Subjects, who were not involved in the driving

experiments, are invited to observe randomly selected video segments showing

both the driver and the road. After watching the videos, they rate the distraction

level based on their judgment. Notice that the external observers are required to

have driving experience such that they can properly relate to the drivers’ actions.

The study uses a database recorded in real driving conditions collected with the

UTDrive platform—a car equipped with multiple nonintrusive sensors [2]. The

recordings include drivers conducting common secondary tasks such as interacting

with another passenger, operating a phone, GPS, or radio [6, 15, 16].
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Building upon our previous work [16], the chapter analyzes the consistency and

effectiveness of using the proposed visual-cognitive space in subjective evaluations

to characterize driver distraction. First, the scores are analyzed in terms of the

secondary tasks considered in the recordings. The analysis shows high consistency

with previous findings describing the detrimental effect of certain secondary tasks.

The visual-cognitive space captures the multidimensional nature of driver distrac-

tions. Then, the scores provided by different external observers are compared. The

inter-evaluator agreement shows very strong correlation for both visual and cogni-

tive distraction scores. The evaluations from external observers are also compared

with self-evaluations provided by the drivers. The comparison reveals that both

subjective assessments provide consistent descriptions of the distractions induced

by secondary tasks. Likewise, the scores from the subjective evaluation are

compared with eye glance metrics. The recordings in which the drivers have their

eye off the road are consistently perceived with higher visual and cognitive

distraction levels. Finally, we highlight the benefits of using the visual-cognitive

space for subjective evaluations. This approach defines natural distraction modes to

characterize driving behaviors.

The chapter is organized as follows. Section 11.2 summarizes previous work

describing metrics to characterize distracted drivers. Section 11.3 describes the

experiment framework used to record the audiovisual database and the protocol to

obtain the subjective evaluations. Section 11.4 analyzes the subjective evaluation in

terms of secondary tasks, and the consistency in the evaluations between external

raters. The section also compares the subjective evaluations of external observers

with the ones collected from the drivers (e.g., self-evaluations). Section 11.5 studies

the deviations observed in eye glance metrics when the driver is engaged in

secondary tasks. The section discusses the consistency between perceptual evalua-

tions and eye glance features. Section 11.6 highlights the benefits of using the

proposed visual-cognitive space for subjective evaluations to characterize distrac-

tion modes. Section 11.7 concludes the chapter with discussion, future directions,

and final remarks.

11.2 Related Work

Several studies have proposed and evaluated measurements to characterize driver

distractions. This section summarizes some of the proposed metrics.

11.2.1 Secondary Task Performance

A common distraction metric is to measure secondary task performance [4].

In some studies, the recordings in which the driver was performing secondary

tasks are directly labeled as distracted while the controlled recordings are labeled
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as normal [3, 20, 40]. In other studies, the drivers are asked to complete artificial

detection tasks not related to the primary driving task, such as identifying objects or

events, and solving mathematical problems. The performance is measured as the

effectiveness (accuracy) and efficiency (required time) to complete the task. There

are various approaches that fall under this category. Examples include peripheral
detecting task (PDT), visual detection task (VDT), tactile detection task (TDT), and
signal detection task (SDT) [9, 23, 26, 36]. Most of the studies are conducted using

car simulators, in which the stimulus can be controlled.

11.2.2 Surrogate Distraction Measurements

Studies have proposed surrogate schemes to evaluate the distraction level when the

driver operates an in-vehicle technology. These methods are particularly suitable

for early stages in the product design cycle of a device that is intended to be used

inside the car. The lane change test (LCT) is one example [21]. Using a car

simulator, the driver is asked to change lanes according to signals on the road

while operating a particular device. The distraction level is measured by analyzing

the driving performance. Another example is the visual occlusion approach, which

has been used by automotive human factor experts as a measure of the visual

demand of a particular task [11]. In this approach, the field of view is temporally

occluded mimicking the eye off the road patterns for visual or visual-manual tasks.

During the occlusion interval (usually set equal to 1.5 s), the subject can manipulate

the controls of the device, but cannot see the interface or the control values. The

time to complete the task provides an estimation of the required visual demand.

However, these metrics are not suitable for our goal of defining ground truth labels

to describe the distraction level of recordings collected in real traffic conditions.

11.2.3 Direct Driving Performance

Another type of attention measurement corresponds to primary task performance

metrics [10, 14, 20, 22, 23, 33, 35]. They determine the attention level of the driver

by directly measuring the car response [4]. These measures include lateral control
such as lane excursions, and steering wheel pattern, longitudinal control, such as

speed maintenance and brake pedal pattern, and car following performance, such
as the distance to the leading car. Notice that these measurements may only capture

distractions produced by visual intense tasks, since studies have shown that metrics

such as lane keeping performance are not affected by cognitive load [9]. Lee

et al. [19] suggested that it is important to study the entire brake response process.

In this direction, they considered the accelerator release time (i.e., the time between

the leading car brakes and the accelerator is released), the accelerator to brake
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(i.e., the movement time from accelerator release to initial brake depress), and the

brake to maximum brake (i.e., the time from the initial brake depress to maximum

deceleration). From thesemeasurements, they found that the accelerator release time

was the most sensitive metric of braking performance.

11.2.4 Eye Glance Behavior

Movement of the eyes usually indicates where the attention is allocated [36].

Therefore, studies have proposed eye glance behavior to characterize inattentive

drivers [4, 22]. This is an important aspect since tasks with visual demand require

foveal vision, which forces the driver to take the eyes off the road [36]. The proposed

metrics range from detailed eye-control metrics, such as within-fixation metrics,

saccade profiles, pupil control, and eye closure pattern, to coarse visual behavior

metrics, such as head movement [36]. The total eye off the road to complete a task is

accepted as a measure of visual demand associated to secondary tasks. It is

correlated with the number of lane excursions committed during the task [38].

The farther away from the road that a driver fixes his/her eyes, the higher the

detrimental effect on his/her driver performance [36]. Also, longer glances have

higher repercussions than few short glances [38]. In fact, when the eye off the road

duration is greater than 2 s, the chances of accidents increases [4, 17]. Another

interesting metric is the percent road center (PRC), which is defined as the percent-
age of time within 1 min that the gaze falls in the 8� radius circle centered at the

center of the road.While visual distraction is the prominent factor that forces drivers

to take their eye off the road, cognitive distractions can also have an impact on eye

glance behavior. As the cognitive load increases, drivers tend to fix their eye on the

road center, decreasing their peripheral visual awareness [27, 29, 30]. Therefore,

lack of eye glances may also signal driver distractions.

One important aspect that needs to be defined in many of the aforementioned

driver distraction measurements is the corresponding values or thresholds that are

considered acceptable for safe driving [39]. In some cases, organizations have

defined those values. For example, the Alliance of Automobile Manufacturers
(AAM) stated that the total duration required to complete a visual-manual task

should be less than 20 s. Metrics such as total glance duration, glance frequency,

and mean single glance duration have been standardized by the International
Organization for Standardization (ISO). In other cases, a secondary task such as

manual radio tuning is used as a reference task. When a new in-vehicle task is

evaluated, the driving behaviors are compared with the ones observed when the

driver is performing the reference task. To be considered as an acceptable, safe task,

the deviation in driving performance should be lower than the one induced by the

reference task.
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11.2.5 Physiological Measurements

Physiological measurements provide useful information about the internal response

of the drivers’ body when they are conducting secondary tasks. Although the

information is collected with intrusive sensors, they provide objective, consistent,

and continuous measurements describing drivers’ attention (e.g., increased mental

workload) [9, 23, 26]. Engstrom et al. [9] used cardiac activity and skin conduc-

tance as the physiological measurements for their study on visual and cognitive

load. They showed that secondary tasks have an impact on physiological signals.

Mehler et al. [23] used physiological measurements including heart rate, skin

conductance, and respiration rate to study young adult drivers in a simulator.

They found physiological measurements are sensitive to mental workload. Putze

et al. [26] considered labeling the workload using subjective evaluation, secondary

task performance and multiple physiological measurements (skin conductance,

pulse, respiration, and EEG). The results suggested a strong correlation between

the three measurements. If these physiological metrics are used to label whether a

driver is distracted, appropriate thresholds need to be established to determine

acceptable driving behaviors. The challenge is that these thresholds may vary

across drivers.

11.2.6 Subjective Assessments

Subjective assessments have been proposed to measure driver distraction. The most

common techniques are self-evaluation scales for subjective mental workload.

Examples include the NASA task load index (NASA-TLX), driving activity load
index (DALI), subjective workload assessment technique (SWAT), Modified
Cooper Harper scale (MCH), and rating scale mental effort (RSME) [39]. For

assessment of fatigue, studies have used the Karolinska sleepiness scale (KSS) [7].
The NASA-TLX is commonly used to rate self-perceived workload [1, 14, 18, 26].

It includes rating on six different subscales: mental demand, physical demand,
temporal demand, performance, effort, and frustration. In addition to the six

NASA-TLX scales, Lee et al. [18] included a modified version of the questionnaires

to assess situation awareness and perceived distraction. These self-reported

evaluations were used to evaluate the workload introduced by a speech-based

system to read email. Some studies use a subset of these subscales. For example,

Aguilo [1] included only the mental demand, temporal demand, and frustration
scales as part of the guidelines in designing in-vehicle information systems (IVISs).
Harbluk et al. [14] combined eye glance behavior, braking performance, and

subjective evaluations (NASA-TLX scales) to study cognitive distraction. They

concluded that the drivers’ ratings were closely related to the task demands.
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Along with self-evaluations, subjective evaluations by external observers have

also been used to characterize driver distractions [25, 31]. Sathyanarayana

et al. [31] relied on perceptual evaluations to label the videos of the drivers as

either distracted or not distracted. Four raters were asked to observe video

recordings, and the consensus labels were used as labels for pattern recognition

experiments. Piechulla et al. [25] used objective and subjective methods to assess

the drivers’ distraction. Their study proposed an adaptive interface to reduce the

drivers’ workload.

This study analyzes the consistency and effectiveness of perceptual assessments

of visual and cognitive distractions provided by external evaluators. We demon-

strate that the use of subjective evaluations is a valid approach that can overcome

the limitations of other measurements to characterize driving behaviors.

11.3 Methodology

11.3.1 UTDrive Platform

To collect a corpus in real driving conditions, this study relies on the UTDrive car

(Fig. 11.1a). This is a research platform developed at The Center for Robust Speech
Systems (CRSS) at The University of Texas at Dallas (UT Dallas) [2]. Its goal is to

serve as a research platform to develop driver behavior models that can be deployed

into human-centric active safety systems. The UTDrive car has been custom fit with

data acquisition systems comprising various modalities. It has a frontal facing video

camera (PBC-700H), which is mounted on the dashboard facing the driver (see

Fig. 11.1b). The placement and small size of the camera are suitable for recording

frontal views of the driver without obstructing his/her field of vision. The resolution

of the camera is set to 320 � 240 pixels and records at 30 fps. Another camera is

Fig. 11.1 Car platform used for the recording. (a) Picture of the UTDrive car (b) Placement of the

frontal camera and the microphone array
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placed facing the road, which records at 15 fps at 320 � 240 resolution. The video

from this camera can be used for lane tracking. Likewise, the UTDrive car has a

microphone array placed on top of the windshield next to the sunlight visors (see

Fig. 11.1b). The array has five omnidirectional microphones to capture the audio

inside the car. We can also extract and record various CAN-bus signals, including

vehicle speed, steering wheel angle, brake value, and acceleration. A sensor is

separately placed on the gas pedal to record the gas pedal pressure.

The modalities are simultaneously recorded into a Dewetron computer, which is

placed behind the driver’s seat. A Dewesoft software is used to retrieve synchro-

nized information across modalities. Figure 11.2 shows the interface of theDewesoft

software, which displays the frontal and road videos and various CAN-bus signals.

For further details about the UTDrive car, readers are referred to [2].

11.3.2 Database and Protocol

A multimodal database was recorded for this study, using the UTDrive car. Twenty

students or employees of the university were asked to drive while performing a

number of common secondary tasks. They were required to be at least 18 years old

and have a valid driving license. The average and standard deviation of the age of

the participants are 25.4 and 7.03, respectively. The recordings were conducted

during dry days with good light condition to reduce the impact of the environment

variables. Although wet weather can lead to different challenges for the driver,

Fig. 11.2 Dewesoft software used for recording and exporting the data. The figure shows the

frontal and road videos. It also shows the instantaneous values of various CAN-bus signals
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studies have shown that crashes related to distractions are more likely to occur

during dry days with less traffic congestion [13]. By collecting the data during dry

days, we have relevant information for the study. The subjects were advised to take

their time while performing the tasks to prevent potential accidents.

We defined a 5.6 mile route in the vicinities of the university (see Fig. 11.3). The

route includes traffic signals, heavy and low traffic zones, residential areas, and a

school zone. We decided to exclude streets with high speed limit (e.g., highways or

freeways) from the analysis to minimize the risks in the recording. The participants

took between 13 and 17 min to complete the route.

Fig. 11.3 Route used for the collection of the data. The subjects drove this 5.6 miles-long route

twice. First, they were asked to perform a series of tasks starting with operating the radio and

ending with a conversation with a passenger. Then, they drove the route without any in-vehicle

distractions
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The drivers drove this route twice. During the first run, the participants were

asked to perform a number of secondary tasks while driving. Among the tasks

mentioned by Stutts et al. [34] and Glaze and Ellis [12], we selected the following

tasks: tuning the built-in car radio, operating and following a GPS, dialing and

using a cellphone, describing pictures, and interacting with a passenger. Some

dangerous tasks such as text messaging, grooming, and eating were not included

for security reasons. The details of the selected seven tasks are given below.

Radio: The driver is asked to tune the built-in car radio to some predetermined

stations. The radio is in its standard place, on the right side of the driver.

GPS—Operating: A predefined address is given to the driver who is asked to enter

the information in the GPS. The device is mounted in the middle of the windshield.

The driver is allowed to adjust it before starting the recording.

GPS—Following: After entering the address in the GPS, the driver is asked to

follow the instructions to the destination.

Phone—Operating: The driver dials the number of an airlines automatic flight

information system (toll-free). A regular cellphone is used for this task. Hands-

free cellphones are not used to include the inherent mechanical distraction.

Phone—Talking: After dialing the number, the driver has to retrieve the flight

information between two given US cities.

Pictures: The driver has to look and describe randomly selected pictures, which are

displayed by another passenger sitting in the front passenger seat. The purpose of

this task is to collect representative samples of distractions induced when the driver

is looking at billboards, sign boards, shops, or any object inside or outside the car.

Conversation: A passenger in the car asks general questions to establish a sponta-

neous conversation.

According to the driver resources-based taxonomy defined by Wierwille

et al. [37], the selected secondary tasks include visual-manual tasks (e.g., GPS—
Operating and Phone—Operating), visual-only tasks (e.g., GPS—Following and

Pictures), and manual primarily task (e.g., Radio). The set also includes tasks

characterized by cognitive demand (e.g., Phone—Talking) and auditory/verbal

demands (e.g., Conversation). Therefore, they span a wide spectrum of distractions,

meeting the requirements imposed by this study.

During the second run, the drivers were asked to drive the same route without

performing any of the aforementioned tasks. This data is collected as a normal

reference to compare the deviation observed in the driver behaviors when he/she is

engaged in secondary tasks. Since the same route is used to compare normal and

task conditions, the analysis is less dependent on the selected road. Overall, the

database for this study consists of over 12 h of real driving recordings. More details

about this corpus are provided in [6, 15].
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11.3.3 Perceived Driver Distraction Using Subjective
Evaluations

This study evaluates the use of subjective evaluations to quantify the level of

distraction perceived from the driver. The underlying assumption is that the previ-

ous driving experience of the external evaluators will allow them to accurately

identify and rank the distracting scenarios or actions, as observed in the video

recordings showing the driver and the road. One advantage of this approach is that a

number quantifying the perceived distraction level is assigned to localized

segments in the recording. Therefore, it is possible to identify various multimodal

features that correlate with this distraction metric. Using these features, regression

models can be designed to directly identify inattentive drivers [16]. Another advan-

tage is that many raters can assess the videos so the aggregated values are more

accurate (see Sect. 11.4.2).

As described in Sect. 11.3.2, the database contains over 12 h of data. However,

only a portion of the corpus was considered for the study to limit the evaluation time.

The corpus was split into 10 s, nonoverlapped recordings. Each set contains

synchronized audio and videos showing the driver and the road. For each driver,

three videos were randomly selected for each of the seven secondary tasks

(Sect. 11.3.2). Three videos from normal condition were also randomly selected.

Therefore, 24 videos per driver are considered, which give altogether 480 unique

videos (3 videos � 8 conditions � 20 drivers ¼ 480). Eighteen students at UT

Dallas with valid driver’s license were invited to participate in the subjective

assessment. None of the evaluators participated as drivers in the recording of the

corpus. A graphical user interface (GUI) was built for the subjective evaluation with
a sliding bar that takes continuous values between 0 and 1 (see Fig. 11.4). The

extreme values are defined as less distracted and more distracted. In our previous

work, we used a single, general metric to describe distraction using a similar GUI

[16]. The study concluded that using a single metric for distraction was not enough to

properly characterize tasks that increase the driver’s cognitive load (e.g., Phone—
Talking). To overcome this limitation, this study proposes a two-dimensional space to

explicitly describe visual and cognitive distractions, separately. First, the evaluators

assessed the perceived visual distraction of 80 video segments. In average, the

evaluation lasted for 15 min. After a break, they assessed the perceived cognitive

distraction of a different set of 80 video segments (nonoverlapped set of videos from

the visual distraction evaluation). The average duration of the evaluation was 25min.

The evaluators were instructed to relate themselves to the scenarios observed in

the videos before assigning the perceived metric. We carefully instructed the

evaluators with the definition of cognitive and visual distractions to unify their

understanding. We follow the description given by Ranney et al. [27]. Visual

distraction is defined as eye off the road—drivers looking away from the roadway.

The evaluators were asked to rate the visual distraction level based on the glance

behavior of the drivers. The road camera was included to help the evaluators to

assess whether the observed head motions or eye glances were related to the
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primary driving task. Cognitive distraction is defined as mind off the road—drivers

being lost/busy in thought. For cognitive distraction, the evaluators were asked to

give ratings based on his/her own judgment. However, we highlighted that facial

expressions (stress level, eye pupil size, eye movements), secondary task perfor-

mance (talking speed, phone dialing speed), and driving performance (vehicle

in-lane position, driving speed, distance to front vehicle) can all be used to assess

the cognitive distraction level. In total, each video was assessed by six independent

evaluators, three for visual distractions and three for cognitive distractions.

11.4 Reliability and Consistency of Subjective Evaluations

This section validates the use of perceptual evaluations to characterize driver

behaviors. We argue that employing the perceived visual and cognitive distraction

assessments is a valid approach to characterize distractions. This scheme is partic-

ularly useful for cognitive distractions. While internal physiological measures can

provide consistent indication of the driver’s cognitive workload [23], observable

driver’s behaviors can only provide indirect cues [40]. We expect that evaluators

can infer the expected cognitive load of the driver after observing and judging these

external behaviors. First, we analyze the results of the perceptual evaluation in

terms of secondary tasks (Sect. 11.4.1). Then, we study the consistency of the

subjective evaluations by estimating the inter-evaluator agreement (Sect. 11.4.2).

The results of the subjective evaluation are compared with self-reports from the

drivers that participated in the recording (Sect. 11.4.3).

Fig. 11.4 GUI for the subjective evaluation of cognitive and visual distractions (0—less
distracted, to 1—more distracted)

194 N. Li and C. Busso



11.4.1 Analysis of Subjective Evaluations

Figure 11.5 shows the means and standard deviations of the perceived visual (solid

line) and cognitive (dashed line) distractions across secondary tasks and normal

conditions. The result suggests that secondary tasks identified as visually intensive

activities such as GPS—Operating, Phone—Operating and Pictures received the

highest scores for visual distractions. The cognitive distraction scores for secondary

tasks that are known to increase the cognitive workload of the driver (e.g., Phone—
Talking and Conversation) are higher than the corresponding visual distraction

scores. These results are consistent with previous studies reporting that conversa-

tion is intrinsically a cognitive task [24]. The perceptual evaluations also agree with

Bach et al. [4] who suggested that the cognitive distraction induced by using a

cellphone is more detrimental than the mechanical distraction associated with

operating the device.

Although Fig. 11.5 suggests that the recordings received similar cognitive and

visual distraction scores for most of the secondary tasks, a closer look at the

evaluation reveals that the proposed two-dimensional space captures their distinc-

tion. Figure 11.6 shows a scattering plot of the subjective evaluation across tasks

and normal conditions in the visual-cognitive space. The figure shows samples

covering much of the two-dimensional space. The only empty area corresponds to

recording with low cognitive distractions but with high visual distractions. Notice

that visual demanding tasks also induce cognitive demands. Therefore, this finding

is expected. These results suggest that the subjective evaluation is effective in

capturing both visual and cognitive distractions. A further discussion about the

scattering plot defined by the visual-cognitive space is given in Sect. 11.6.

Fig. 11.5 Means and standard deviations of the perceived visual and cognitive distraction scores

across secondary tasks collected with subjective evaluations
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11.4.2 Inter-Evaluator Agreement

Since each video segment is separately assessed by three different evaluators for

cognitive and visual distractions, the agreement between raters is a useful indicator

of the reliability of these metrics. Stronger agreement suggests higher consistency

among the evaluators, which validates the proposed approach. The analysis consists

in measuring the correlation between the provided scores. For each evaluator,

we calculated the average scores provided by the remaining two raters. Then, we

estimate the Pearson correlation between his/her scores and the average scores.

We repeat this approach for each of the three evaluators. The average correlation

across evaluators is ρv ¼ 0.75 for visual distractions, and ρc ¼ 0.70 for cognitive

distractions. These correlation values represent very strong positive relationship

between the scores provided by raters. Figure 11.7 gives the correlation values for

cognitive and visual distractions for each of the 18 evaluators. The correlation values

are always above ρ ¼ 0.5. These findings reveal high consistency for both visual and

cognitive distraction evaluations. In general, visual distraction scores have higher

values than cognitive distraction scores. This result and the fact that the duration of

the cognitive distraction evaluation was in average 10 min longer than visual

distraction evaluations (Sect. 11.3.3) suggest that assessing cognitive distractions

is harder than assessing visual distractions.

Fig. 11.6 Scattering plot of the subjective evaluation across secondary tasks in the visual-

cognitive space
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11.4.3 Self-Evaluations Versus External Evaluations

The most common questionnaires used to assess mental workload are based on

self-evaluations conducted after the experiments [1, 14, 18, 26]. The underlying

assumption in self-evaluations is that drivers are aware of the distraction level felt

when they were performing secondary tasks. Therefore, they can rank the tasks that

were more distracting to them. This section compares self-evaluations with the

assessments provided by external observers.

A self-evaluation was collected from the drivers after recording the data to rate

how distracted they felt while performing each of the secondary tasks. Unfortu-

nately, the subjects participating in the driving recordings were not available to

provide detailed assessments over small video segments. Therefore, we use a

simplified methodology for this self-evaluation. First, the drivers self-evaluated

their perceived distraction, without distinguishing between cognitive and visual

distractions. Second, instead of evaluating several localized segments in the record-

ing, the drivers provided a single coarse value for each secondary task without

watching videos of the recordings. They used a Likert scale with extreme values

corresponding to 1—less distracted, and 5—more distracted. Figure 11.8 presents

the average and standard deviation values of the perceived distraction scores. The

result suggests that, on average, GPS—Operating is regarded as the most distracted

task, while Conversation is considered as the least distracted task. The fact that

Phone—Talking is perceived as more distracting than Conversation is consistent

with the conclusions by Drews et al. [8]. They claimed that the situational awareness

of being in the same vehicle makes conversation with a passenger a less distracted

task than a conversation with someone who is unaware of the surrounding traffic

(e.g., avoiding increasing the driver’s cognitive demands during decision making

times).

Although the setting for the drivers’ self-evaluation differs from the one used to

collect evaluations from external observers (Sect. 11.3.3), the global patterns can be

compared. Figures 11.5 and 11.8 show consistent patterns across secondary tasks.

Fig. 11.7 Correlation values for cognitive and visual distractions. The results are given for each

of the 18 evaluators
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The ranked order of the four tasks that are perceived as the most distracting for

self-evaluations are exactly the same as the corresponding ones in the cognitive and

visual evaluations from external observers: GPS—Operating, Phone—Operating,
Picture, and Radio. The main differences are observed in the cognitive evaluations

for the tasks Conversation and Phone—Talking, which received higher values by

external observers than by the drivers. Since we requested the external evaluators to

specifically assess the perceived cognitive load of the driver, higher values for these

tasks are expected.

The average values of self-evaluations provide coarse indicators to represent the

distraction level induced by the corresponding task. Depending on the scenario,

certain actions associated with secondary tasks can be more distracting than others

(e.g., having a conversation in a busy traffic intersection). Self-evaluations fail to

capture this inherent within-task variability. Also, drivers may fail to notice the

adjustments made to complete secondary tasks (e.g., jittery steering wheel behav-

ior, reduced speed). We believe that perceptual evaluations collected by multiple

external evaluators over small segments of driving recordings can overcome these

limitations.

11.5 Subjective Evaluations and Eye Glance Behavior

As discussed in Sect. 11.2.4, eye glance behaviors provide useful metrics to

characterize distractions [4, 22]. This approach gives unbiased metrics to describe

driver behaviors. This section compares perceptual evaluation scores provided by

external observers with eye glance behavior measurements. The analysis shows that

both approaches provide consistent patterns. First, we describe the eye glance

Fig. 11.8 Average distraction levels based on self-evaluations across the drivers. The figure

shows the mean and standard deviation of the values assigned to each task
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metrics used in the analysis, which are automatically extracted from the videos

(Sect. 11.5.1). Then, we compare the cognitive and visual distraction scores from

recordings with extreme eye glance behaviors (Sect. 11.5.2).

11.5.1 Metrics Describing Eye Glance Behavior

The drivers’ glance is a reliable indicator of attention. This study relies on two

glance metrics that have been previously used to characterize driver distraction: the

total eye off the road duration (EOR), and the longest eye off the road duration
(LEOR). These features are automatically estimated over the videos evaluated by

the external observers. Given that evaluators assessed 10 s videos, we set the

window analysis accordingly. EOR measures the total time within 10 s in which

the drivers’ glance is not on the road. As mentioned in Sect. 11.2.4, this is an

important metric that is considered to assess the visual demand of IVIS. LEOR

captures tasks that require longer glances, which are known to increase the chances

of accidents [38].

The glance metrics are automatically extracted from the frontal camera facing

the drivers using the computer expression recognition toolbox (CERT) [5]. CERT is

a robust system that extracts facial expression features and head pose. Given the

challenges in recognizing the driver’s gaze in real recordings, we approximate

glance behavior with the drivers’ head pose, parameterized with three rotation

angles (yaw, pitch, and roll). Certain videos present adverse illumination conditions

or occluded faces due to the driver’s hands. In these cases, CERT fails to recognize

the face producing empty values. If this problem was observed over half of the

duration of a video (5 s), the recording was discarded from the analysis. Otherwise,

we approximate the head pose by interpolating missing values.

Head yaw (horizontal rotation) and pitch (vertical rotation) are used for eye off

the road detection. We define thresholds on these angles to decide whether the

driver is looking at the road. Due to the differences in the drivers’ height and in their

sitting preference, the thresholds are separately calculated for each individual from

his/her normal driving recordings. The thresholds for head yaw and head pitch

are set at their mean plus/minus two times their standard deviation, defining in

average a 16�� 16� rectangular region. This approach aims to replicate the 8� radius
circle defined in the percent road center (PRC) calculation [36]. The frames

detected as eye of the road are accumulated over the video sequence to estimate

EOR. LEOR is calculated by counting the longest consecutive eye off the road

frames. Both measurements are divided by the video frame rate to convert the

metrics into seconds. Notice that this approach may detect as eye off the road action

glances associated to the primarily driving task (e.g., checking mirrors).

Figure 11.9 shows the average values for EOR and LEOR for normal and task

conditions across 20 drivers. The task condition includes the recordings from the
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seven secondary tasks considered in this study (Sect. 11.3.2). The figure reveals that

most of the drivers glance longer and more frequently when they are involved in

secondary tasks. Therefore, these glance metrics are appropriate to evaluate the

effectiveness of subjective evaluations.

11.5.2 Eye Glance Metrics and Subjective Evaluations

Given that EOR and LEOR have been used to characterize drivers’ distractions, we

expect to observe agreement between extreme values of these metrics and the

subjective evaluations. We follow the approach presented by Liang et al. [20],

which defined distracted recordings when the considered metrics have higher values

(e.g., the upper quartile of steering error values). For each glance metric, we select a

subset of the video recordings to form two extreme groups: driving recordings with

low EOR or LEOR values (e.g., “normal” class), and driving recordings with high

EOR or LEOR values (e.g., “distracted” class). Figure 11.10 shows the distributions

for EOR and LEOR values estimated from the 10 s videos used for the subjective

evaluation. The vertical lines are the thresholds defined to create the two groups,

which are set so that each group has at least 72 samples to estimate reliable

distributions (Figs. 11.11 and 11.12). For EOR, a recording is considered as

“normal” if the EOR duration is less than 1 s, and as “distracted” if its value is

more than 3 s. For LEOR, a recording is considered as “normal” if the LEOR

duration is less than 1 s. Otherwise, it is considered as “distracted.”

Fig. 11.9 Eye glance features extracted from 20 drivers for normal and task driving conditions.

(a) Total eye off-road (EOR) duration in 10 s. (b) Longest eye off-road (LEOR) duration in 10 s
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Fig. 11.10 Distributions for EOR and LEOR. The vertical lines give the thresholds defining the

classes “normal” (light gray) and “distracted” (dark gray)

Fig. 11.11 Distribution of perceptual evaluation for extreme EOR values. (a) and (b) correspond
to “distracted” class and (c) and (d) to “normal” class

Fig. 11.12 Distribution of perceptual evaluation for extreme LEOR values. (a) and (b) corre-
spond to “distracted” class and (c) and (d) to “normal” class
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The analysis aims to identity whether the subjective evaluations capture the

differences between the extreme video groups. We expect that the recordings with

high EOR or LEOR values are perceived with higher distraction levels. We address

this question by studying the distributions of visual and cognitive distraction scores

assigned to the recordings labeled as “normal” and “distracted.” Figures 11.11

and 11.12 report the results for EOR and LEOR, respectively. The vertical lines

represent the means values. The distributions for the subjective evaluation are

consistently skewed toward higher values for the “distracted” classes. For EOR,

the mean values for both cognitive (μcdistracted ¼ 0.50) and visual (μvdistracted
¼ 0.44) distractions for the “distracted” class are significantly higher than the

corresponding values for “normal” class (μcnormal ¼ 0.23, and μvnormal ¼ 0.31,

respectively). The same results are observed for LEOR values.

Figure 11.11b presents a peak at 0.1. This peak may correspond to eye off the

road actions associated to the primary driving task. While the EOR duration is

above 3 s, the external observers may recognize that these actions do not represent

distractions. Figures 11.11c and 11.12c show peaks at 0.4. These results suggest

that the evaluators assigned moderate cognitive scores to recordings in which the

drivers were looking at the road. These results may indicate that eye glance

behaviors may provide an incomplete description of driver behaviors. As men-

tioned in Sect. 11.2.4, cognitive distracted drivers may have reduced peripheral

visual awareness [27, 29, 30]. External observers may recognize the lack of eye

glance movements as a signal of distraction.

The results reveal that subjective evaluations and eye glance behavior metrics

provide consistent assessments of driver distractions (especially for visual

distractions). Notice that certain eye off the road actions do not represent distractions

(e.g., checking mirrors). External observers can distinguish between actions

associated with primary driving tasks or secondary tasks after watching multiple

cues in the road and driver videos. In these cases, the proposed two-dimensional

space for perceptual evaluations can give a better representation of driver

distractions.

11.6 Distraction Modes Defined by Subjective Evaluation

The final analysis in this chapter aims to highlight the benefits of using the

visual-cognitive space for subjective evaluations. The results in Sect. 11.4.1 show

important differences in the visual and cognitive distraction scores for certain tasks.

An active safety system focusing only on visual distraction cannot provide a

complete picture of the driver behaviors. These differences are captured by the

proposed two-dimensional evaluation space, which defines natural distraction

modes (see Fig. 11.6). The distraction modes can be automatically derived from

the data by clustering the evaluations scores. The resulting modes can give a useful

representation of driver distractions.
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The clustering analysis relies on the K-means algorithm. An important aspect of

the algorithm is the number of clusters, which is defined with the elbow criterion.

In this approach, the number of clusters is increased, recording the percentage of

variance explained by the corresponding clustering. Figure 11.13a shows that

increasing the number of cluster above four does not reduce significantly the

percentage of variance. Therefore, we set the number of clusters accordingly.

Figure 11.13b shows the resulting clustering. The locations of the centroids suggest

that drivers’ distractions can be divided into (the most representative secondary

tasks are given in brackets):

• Cluster 1—low visual and low cognitive distractions (Normal and GPS—
Following).

• Cluster 2—medium visual and medium cognitive distractions (Radio and

Picture);
• Cluster 3—low visual and medium cognitive distractions (Phone—Talking and

Conversation);
• Cluster 4—high visual and high cognitive distractions (GPS—Operating, and

Phone—Operating);

The proposed modes provide a new, useful representation space to characterize

driving behaviors. It can be argued that clusters 3 and 4 are the most dangerous

distraction modes. When a new IVIS is evaluated, multimodal features from the car

and from the driver can be estimated to determine the underlying distraction mode.

We are currently studying multiclass recognition problems (four class problem) and

binary classification problems (one cluster versus the rest). Our preliminary analy-

sis shows promising results in this area.

a b

Fig. 11.13 Distraction modes defined by subjective evaluations (a) number of cluster defined by

elbow analysis and (b) K-Means clusters in visual cognitive space
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11.7 Discussion and Conclusions

This study explored the use of subjective evaluations from external observers to

characterize driver behaviors. The goal is to define reference labels that can be used

to train human-centric active safety systems. We conducted subjective evaluations

to assess the perceived visual and cognitive distractions in randomly selected videos

showing the driver and road. The analysis suggests that this two-dimensional space

captures the multidimensional nature of distractions. The inter-evaluator agreement

analysis shows very strong correlation for visual and cognitive assessments. The

scores from external evaluators are consistent with self-evaluations collected from

the drivers, and with eye glance metrics (videos with higher EOR and LEOR values

are perceived more distracted).

The study suggests that perceptual evaluations from external observers have

important advantages over other alternative approaches. First, multiple evaluators

can provide reliable scores over short video recordings. This approach facilitates

the study of relevant multimodal cues describing cognitive and visual distractions.

Second, external evaluators can perceive important actions or cues that may be

ignored by the drivers. For example, previous studies show the detrimental effects

of the task Phone—Talking on the primary driving task [32, 33]. Drivers using

cellphone may experience inattention blindness or selective withdrawal of atten-

tion, failing to see objects even though they are in front of them [32]. While this task

was identified as the least distracted task by the self-evaluations, the external

observers assigned higher scores. Third, external observers can capture the under-

lying driving dynamics, providing more reliable insights than metrics describing

eye glance behaviors. For example, cognitive tasks reduce the drivers’ peripheral

visual awareness [27, 29, 30]. Therefore, lack of eye glances can signal cognitive

distraction. While metrics such as eye off the road duration fail to capture these

cues, external evaluators can complement their judgment by looking the driver’s

facial expressions.

The analysis suggests natural distraction modes to describe driver behaviors.

These modes are estimated by clustering the evaluations in the visual-cognitive

space. Some of these distraction modes can have a higher detrimental effect on the

primary driving task (e.g., clusters 3 and 4). Our current research direction is to

use these labels to build machine-learning algorithms to recognize the

corresponding clusters. We are also planning to extend our database to include

other secondary tasks, providing a better coverage of common distractions observed

in real scenarios. The intended driver behavior monitoring system will provide

feedbacks to inattentive drivers, preventing accidents, and increasing the security

on the roads.
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