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Computational Aspects of Maximum

Likelihood DOA Estimation of Two Targets

with Applications to Automotive Radar

Philipp Heidenreich and Abdelhak M. Zoubir

Abstract Direction-of-arrival (DOA) estimation of two targets with a single

snapshot plays an important role in many practically relevant scenarios in automo-

tive radar for driver assistance systems. Conventional Fourier-based methods

cannot resolve closely spaced targets, and high-resolution methods are required.

Thus, we consider the maximum likelihood DOA estimator, which is applicable

with a single snapshot. To reduce the computational burden, we propose a grid

search procedure with a simplified objective function. The required projection

operators are pre-calculated off-line and stored. To save storage space, we further

propose a rotational shift of the field of view such that the relevant angular sector,

which has to be evaluated, is centered with respect to the broadside. The final

estimates are obtained using a quadratic interpolation. An example is presented to

demonstrate the proposed method. Also, results obtained with experimental data

from a typical application in automotive radar are shown.
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1.1 Introduction

Ever-increasing amount of advanced signal processing algorithms is used in various

automotive applications [1, 2], e.g., advanced driver assistance systems [3]. These

utilize from various sensors to determine the environment of a vehicle. From an

identified traffic situation, the driver assistance system regulates the behavior of the

vehicle, instructs the driver, or warns the driver in dangerous situations. Often radar

sensors are employed, which work reliably even in bad weather conditions, and can

provide accurate measurements of the range and relative velocity of multiple

targets. To also measure the lateral position of a target, an array of antennas in

horizontal direction with digital beamforming can be applied. For typical

applications such as collision avoidance or adaptive cruise control (ACC), it is

essential to accurately estimate the lateral position and to be able to resolve multiple

closely spaced targets. For the array system with limited aperture, this can be

achieved with high-resolution processing, which is considered computationally

intensive and numerically complex, so that real-time implementation becomes a

challenging task.

A pulsed radar system with an array of receive antennas can be effectively used

for target localization in terms of range, relative velocity, and direction of arrival

(DOA) [4, 5]. After radar preprocessing, which consists of a pulse compression and

a Fourier transform over the pulses, the received sensor data is divided into

processing cells according to the range and relative velocity, each represented by

a single snapshot. For more details, an exemplary radar system is described in [6].

In most practical situations of automotive radar, multiple targets can be

distinguished by their range and/or relative velocity so that each processing cell

contains at most one target. In the single-target case, the optimal DOA estimates

can be found using the Beamformer (BF) spectrum, which is computationally

simple [7]. However, there are situations in which multiple targets have similar

range and relative velocity so that they are superposed in a processing cell. We

consider the situation with two targets per processing cell as practically relevant.

In the ACC application, this is motivated by experimental data and may occur when

there is an horizontal multipath with a close guardrail, as depicted in Fig. 1.1. If the

two propagation paths fall into the same processing cell and cannot be resolved, this

generally results in a false localization of the observed car, which seems to be

pulled towards the guardrail. To correctly localize the observed car and a ghost

target, high-resolution DOA estimation is required. Note that the multipath situa-

tion can be correctly identified using the guardrail location, which can be estimated

from stationary target detections.

A number of high-resolution DOA estimators are available in the literature, see,

e.g., [7–9]. Among the subspace methods, there is the popular MUSIC algorithm

[10], which requires an eigendecomposition of the spatial covariance matrix, and a

one-dimensional search on a fine grid to obtain the DOA estimates. For particular

array geometries, there are also analytic solutions, e.g., unitary ESPRIT [11].

Implementing an eigendecomposition on a practical system with real-time

constraints can be numerically complex. Eigendecomposition is iterative in nature

4 P. Heidenreich and A.M. Zoubir



and therefore hard to parallelize [12]. Moreover, when only a single snapshot is

available, decorrelation techniques are required so that the signal subspace is fully

represented. This can be achieved using the forward/backward (FB) averaging

and/or spatial smoothing [13], which is suboptimal in general and can result in a

reduction of the array aperture. The described drawbacks can limit the practical

usage of subspace methods.

In contrast, the maximum likelihood (ML) DOA estimator of multiple targets

can be directly applied with a single snapshot. It is asymptotically efficient [14] and

possesses an improved threshold performance when compared to subspace methods

[15]. Further, it allows resolving correlated targets [8]. Despite its good properties,

the ML estimator has not enjoyed much practical application due to its high

computational cost. It requires the optimization of a multidimensional objective

function with a complicated multi-model shape. Computationally efficient but

iterative implementations are the method of alternating projections [16] or the

relaxation algorithm (RELAX) in [17].

Here, for the two-target case, we consider a global search of the two-dimensional

ML objective function as practically feasible. We propose to use a simplified

calculation of the objective function and a delimited search range. The required

projection operators are data independent and can be pre-calculated off-line,

which enables a trade-off between the computational complexity and the required

storage space.

1.2 Signal Model

Let x denote theM-element array vector, or snapshot, from a pre-detected processing

cell according to the range and relative velocity, whose power is significantly above

the noise level. The problem formulation is posed as follows: decide between the

single-target model and the two-target model

Fig. 1.1 Automotive radar

situation with horizontal

multipath with a close

guardrail
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D ¼ 1 : x ¼ s0a ψ0ð Þ þ n
D ¼ 2 : x ¼ s1a ψ1ð Þ þ s2a ψ2ð Þ þ n

(1.1)

and estimate the respective parameters. s0 and ψ0 are the target response

parameter and DOA parameter in the single-target model, respectively. Likewise,

s1, s2, ψ1, and ψ2 are the corresponding parameters in the two-target model.

a ψð Þ ¼ 1ffiffiffiffiffi
M

p 1; ejψ ; . . . ; ej M�1ð Þψ
h iT

(1.2)

but the steering vector of the considered uniform linear array (ULA) with electrical

angle ψ ¼ 2π
λ d sinϕ, where λ is the wavelength, d is the array element spacing, and

ϕ is the spatial azimuth angle. The measurement noise vector n is assumed to be

spatially white, circular complex Gaussian with zero mean and variance σ2.

1.3 Optimal Processing

The optimal processing is described in the following. It consists of the ML DOA

estimation for the single-target model and the two-target model and a generalized

likelihood ratio test (GLRT).

1.3.1 Maximum Likelihood for One Target

The ML estimator for ψ0 in model (1.1) forD ¼ 1 corresponds to the location of the

global maximum of the BF spectrum:

P ψð Þ ¼ a ψð ÞHx�� ��2:

The inner vector product corresponds to a spatial Fourier transform at

frequency ψ . Hence, P(ψ) can be evaluated efficiently using a Fast Fourier trans-

form (FFT) with zero-padding.

Let the step size of the evaluation grid be Δψ , and let the location of the global

maximum on the evaluation grid be ψn. A refined DOA estimate can be obtained

using a quadratic interpolation in the neighborhood of ψn as

ψ̂ 0 ¼ ψn þ 0:5Δψ
P ψn�1ð Þ � P ψnþ1

� �

P ψn�1ð Þ � 2P ψnð Þ þ P ψnþ1

� �
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1.3.2 Maximum Likelihood for Two Targets

The ML estimators for ψ1 and ψ2 in model (1.1) for D ¼ 2 correspond to the

location of the global maximum of the two-dimensional ML objective function:

c ψ1;ψ2ð Þ ¼ xHPA ψ1;ψ2ð Þx (1.3)

where

PA ψ1;ψ2ð Þ ¼ A AHA
� ��1

AH, A ¼ a ψ1ð Þ, a ψ2ð Þ½ �

is the projection matrix onto the column span of steering matrix A. An intuitive

interpretation is that we seek for parameters ψ1 and ψ2 which maximize the

projection of x onto the plane spanned by the columns of A.
The optimization of c(ψ1,ψ2) needs to be numerical and is generally computa-

tionally intensive. Below, we describe the direct calculation of the objective

function and a global search procedure.

1.3.2.1 Direct Objective Function Evaluation

To determine projection matrix PA(ψ1,ψ2), the matrix inverse of AHA is required.

Using the inversion formula for a matrix of dimension two, and notation a1 ¼ a(ψ1)

and a2 ¼ a(ψ2) for convenience, we have

PA ψ1;ψ2ð Þ ¼ 1

1� βj j2 a1a
H
2 � βa1a

H
2 � β�a2aH1 þ a2a

H
2

� �

where β ¼ aH1 a2, and we have used a(ψ)Ha(ψ) ¼ 1. This allow us to calculate

directly (1.3) using

c ψ1;ψ2ð Þ ¼ 1

1� βj j2 y1j j2 � 2Re βy�1y2
� �þ y2j j2

� 	
(1.4)

where y1 ¼ aH1 x and y2 ¼ aH2 x. Provided all steering vectors are available on a

discrete grid of the field of view, a significant part of the computational cost,

required to evaluate a single point of (1.4), constitutes the calculation of y1, y2,
and β, which corresponds to 12M real-valued multiply–add operations.

1.3.2.2 Global Search

Due to the complicated multimodal shape of the objective function c(ψ1,ψ2), a

numerical search procedure, e.g., using a damped Newton method, critically
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depends on the initialization [18]. A fairly reliable initialization without

eigendecomposition appears difficult to find, especially when the targets are not

resolved in the BF spectrum. Here, we consider a global evaluation of the

two-dimensional objective function on a selected grid for ψ1 and ψ2. Unlike

numerical search procedures, this allows a non-iterative implementation.

Let ψ1,m and ψ2,n be the location of the global maximum on the evaluation grid

with step size Δψ ; refined DOA estimates can be obtained using a quadratic

interpolation in the neighborhood of the global maximum, as

ψ̂ 1 ¼ ψ1,m þ 0:5Δψ
c ψ1,m�1;ψ2,n

� �� c ψ1,mþ1;ψ2,n

� �

c ψ1,m�1;ψ2,n

� �� 2c ψ1,m;ψ2,n

� �þ c ψ1,mþ1;ψ2,n

� �

ψ̂ 2 ¼ ψ2,n þ 0:5Δψ
c ψ1,m;ψ2,n�1

� �� c ψ1,m;ψ2,nþ1

� �

c ψ1,m;ψ2,n�1

� �� 2c ψ1,m;ψ2,n

� �þ c ψ1,m;ψ2,nþ1

� �

Regarding computational cost, the global evaluation of the objective function is

required only for ψ1 < ψ2. Note that the resulting triangular search range is shown

in Fig. 1.2 (top right). The corresponding computational cost is

C ¼ C1N2, N2 ¼
Nψ Nψ � 1

� �
2

where C1 represents the computational cost, required to evaluate a single point of

the objective function; N2 is the number of points in the two-dimensional search

range; and Nψ is the number of grid points in the field of view, ψ ∈ [�π, π).

1.3.3 Generalized Likelihood Ratio Test

According to the model (1.1) for D ¼ 1 and D ¼ 2, let the unknown parameters be

collected in vectors Θ1 and Θ2, respectively, and let p1(x|Θ1) and p2(x|Θ2) be the

corresponding likelihood functions, i.e., the conditional probability density func-

tion of the snapshot given the unknown parameter. A GLRT for deciding between

the single-target model and the two-target model is

T ¼ maxΘ2
p2 x

��Θ2

� �

maxΘ1
p1 x

��Θ1

� � > γ

which involves the determination of the corresponding ML estimates. For the signal

model in Sect. 1.2, and taking the logarithm, the GLRT can be simplified to [19]

logT ¼ Mlogσ̂ 2
1 �Mlogσ̂ 2

2 > logγ
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where

σ̂ 2
1 ¼

1

M
x� a ψ̂ 0ð Þa ψ̂ 0ð ÞHx

 

2, σ̂ 2

2 ¼
1

M
x� PA ψ̂ 1; ψ̂ 2ð Þxk k2

A suitable threshold value log γ can be determined numerically, according to the

Neyman–Pearson principle.

1.4 Proposed Approach

If multiple snapshots of the same processing cell, say at different cycles n, are
considered, model (1.1) extends to x[n], n ¼ 1, . . ., N, where N is the number of

available snapshots. In this case, the ML objective function in (1.3) extends to
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Fig. 1.2 Example withM ¼ 8, two targets separated by ψ2 � ψ1 ¼ 0.5BW, noise-free and single

snapshot: BF spectrum to identify relevant angular sector (top left), ML objective function for full

search range with Δψ ¼ π/32 (top right), shifted BF spectrum (bottom left), and ML objective

function for shifted delimited search range (bottom right)
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c ψ1;ψ2ð Þ ¼ 1

N

XN
n¼1

x n½ �HPA ψ1;ψ2ð Þx n½ � ¼ Tr PA ψ1;ψ2ð ÞR̂
n o

(1.5)

where

R̂ ¼ 1

N

XN
n¼1

x n½ �x n½ �H

is the sample covariance matrix. We remark that the single-snapshot case is of

primary importance for the considered application. However, to enhance the DOA

estimation accuracy, it may be desirable to combine multiple snapshots, which have

been associated on a tracking procedure. Therefore, we consider the general case

with N snapshots and comment on the special case with N ¼ 1.

Note that in the case of multiple snapshots, one has to trade off between the

evaluation of the quadratic term and the trace notation in (1.5).

1.4.1 Simplified Objective Function Calculation

The projection operator PA(ψ1, ψ2) is data independent; therefore, it can be

pre-calculated off-line and stored. In this case, the calculation of the trace notation

in (1.5) requires C1 ¼ 4M2 real-valued multiply–add operations (note that only the

diagonal entries of the matrix product have to be evaluated). Moreover, this can be

simplified since PA(ψ1, ψ2) has a great deal of structure to exploit. In particular, it is

centro-Hermitian, i.e., we have

JMPA ψ1;ψ2ð Þ�JM ¼ PA ψ1;ψ2ð Þ

where JM is the exchange matrix of sizeM, with ones on the anti-diagonal and zeros

elsewhere. This property can be easily shown [19] and directly follows from the fact

that the steering vector, defined in (1.2), is Hermitian symmetric up to a complex

scaling.

As a consequence, the ML objective function remains unchanged when snapshot

x is replaced by JMx*, since

JMx
�ð ÞHPA ψ1;ψ2ð ÞJMx� ¼ xHJMPA ψ1;ψ2ð Þ�JMx

� �� ¼ xHPA ψ1;ψ2ð Þx

where we have used the fact that c(ψ1, ψ2) is real-valued by definition. Likewise, it

remains unchanged when R̂ is replaced by the forward/backward (FB) averaged

sample covariance matrix
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R̂ FB ¼ 1

2
R̂ þ JMR̂

�
JM

� 	

which is centro-Hermitian by definition.

1.4.1.1 Unitary Transformation

Let QM be a column conjugate symmetric matrix, satisfying JMQ
�
M ¼ QM. A sparse

choice for a unitary column conjugate symmetric matrix is

Q2mþ1 ¼
1ffiffiffi
2

p
Im 0 jIm
0T

ffiffiffi
2

p
0T

Jm 0 �jJm

2
4

3
5

where Im is the identity matrix of size m. An equivalent unitary column conjugate

symmetric matrix of dimension 2m can be obtained by deleting the center row and

center column of Q2m + 1. The main result of [20] is that any square centro-

Hermitian matrix is equivalently expressed by a real-valued matrix of the same

dimension so that

V ψ1;ψ2ð Þ ¼ QH
MPA ψ1;ψ2ð ÞQM (1.6)

and

Ĉ ¼ QH
MR̂ FBQM (1.7)

are the real-valued projection operator and the sample covariance. The similarity

transformation with unitary matrix QM is referred to as unitary transformation.

We note that this approach has been used in [11] and [21], respectively, to derive

the unitary ESPRIT and unitary root-MUSIC algorithm, where computational cost

is reduced by replacing a complex-valued eigendecomposition by a real-valued

one. Since we got QMQ
H
M ¼ IM, the objective function in (1.5) can be rewritten as

c ψ1;ψ2ð Þ ¼ Tr PA ψ1;ψ2ð ÞR̂
n o

¼ Tr PA ψ1;ψ2ð ÞQMQ
H
MR̂ FBQMQ

H
M

n o

¼ Tr QH
MPA ψ1;ψ2ð ÞQMQ

H
MR̂ FBQM

n o

¼ Tr V ψ1;ψ2ð ÞĈ
n o

:

(1.8)

To further reduce computational cost, we exploit that V(ψ1,ψ2) and Ĉ are

symmetric and remove redundant matrix entries [19]. In this case, and provided
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all projection operators are available on a discrete grid of the two-dimensional

search range, the calculation of (1.8) requires C1 ¼ (M + 1)M/2 real-valued

multiply–add operations.

1.4.1.2 Single-Snapshot Alternative

In the single-snapshot case, an alternative is to employ an eigendecomposition of

the real-valued projection operator in (1.6),

V ψ1;ψ2ð Þ ¼ v1v
T
1 þ v2v

T
2

where eigenvectors v1, v2∈M�1 are both functions of ψ1 and ψ2. Again, the

projection operator eigenvectors can be pre-calculated off-line and stored. Using

y ¼ QH
Mx∈M�1, the objective function in (1.3) can be rewritten as

c ψ1;ψ2ð Þ ¼ yHV ψ1;ψ2ð Þy ¼ yH v1v
T
1 þ v2v

T
2

� �
y ¼ z1j j2 þ z2j j2 (1.9)

where z1 ¼ vT1y and z2 ¼ vT2y. Provided all projection operator eigenvectors are

available on a discrete grid of the two-dimensional search range, a significant part

of (1.9) constitutes the calculation of z1 and z2, which corresponds to C1 � 4M
real-valued multiply–add operations.

1.4.1.3 Comparison

The overall cost of a global search has been described in Sect. 1.3.2.2. A trade-off

between the computations, required for evaluating a single point of the objective

function C1 (in real-valued multiply–add operations), and the required storage

space (in real-valued numbers) is given in Table 1.1 for the single-snapshot case.

Note that the calculation of the real-valued projection operators, or respective

eigenvectors, is done off-line and does not contribute to the overall cost. Also,

the preprocessing, such as the formation of the covariance matrix, has no significant

effect, as it is performed only once.

For an eight-element ULA and for the single-snapshot case, the simplified

objective function in (1.9) is the cheapest option, both in terms of required

Table 1.1 Computations required for evaluating a single point of the objective function, C1, and

storage space, in the single-snapshot case, using N2 ¼ Nψ(Nψ � 1)/2

C1 Storage space

Direct (1.4) � 12M Nψ2M

Simplified (1.8) (M + 1)M/2 N2(M + 1)M/2

Simplified (1.9) � 4M N22M

12 P. Heidenreich and A.M. Zoubir



computations and the storage space. However, when multiple snapshots are

available, we prefer the simplified objective function in (1.8), because the covari-

ance matrix is employed and no extensions are necessary.

Regarding the storage, the simplified calculation requires the real-valued

projection operators, or respective eigenvectors, on a two-dimensional search

range with N2 points, whereas the direct calculation only requires the steering

vectors on a one-dimensional grid of the field of view.

1.4.2 Delimited Search Range

So far, we have reduced the computational cost by simplifying the calculation of

the ML objective function. Next, we consider a delimited search range so that the

number of points to evaluate on a two-dimensional search range and the storage

space is reduced.

We only consider the more difficult case of closely spaced targets, which cannot

be reliably resolved in the BF spectrum, i.e., ψ2 � ψ1 < BW, where BW ¼ 2π/M
is the Rayleigh beamwidth. We remark that when the targets are widely separated

so that they are reliably resolved in the BF spectrum, there exist computationally

simple methods to reduce the estimation bias due to the leakage effect [22].

Let ψ̂ 0∈ ψ1;ψ2½ � be the peak location of the unresolved targets in the BF

spectrum. Consider the shifted array output model, which is obtained by a rotational

shift of the field of view:

x
0 ¼

ffiffiffiffiffi
M

p
a �ψ̂ 0ð Þ � x ¼ s1a ψ

0
1

� 	
þ s2a ψ

0
2

� 	
þ n

0
(1.10)

where ψ
0
1 ¼ ψ1 � ψ̂ 0 and ψ

0
2 ¼ ψ2 � ψ̂ 0 are the shifted DOA parameters and � is

the element-wise Hadamard product. The random characteristics of the rotationally

shifted noise vector n0 remain unchanged. The rotational shift allows to evaluate c

(ψ
0
1,ψ

0
2) on a delimited search range, e.g., ψ 0 ∈ [�1.5BW, 1.5BW], which very

likely contains the centered DOA parameters ψ
0
1 and ψ

0
2. As a result, the number of

points in the two-dimensional search range, N2, and therewith the storage space of

the projection operators have been reduced significantly. For the given example, the

reduction corresponds roughly to (3BW/2π)2 ¼ (3/M )2.

1.4.3 Example

We present an example to demonstrate the principle of the delimited search range

and the rotational shift. A ULA with M ¼ 8 elements, spaced by d ¼ λ/2, is used.
A noise-free single snapshot is simulated according to model (1.1) for D ¼ 2, with
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target response parameters s1 ¼
ffiffiffi
2

p
e�jπ=4s2 ¼ 1 , and an angular separation of

ψ2 � ψ1 ¼ 0.5BW. Figure 1.2 shows the results.

The upper and lower left plots show the BF spectra of the original snapshot and

the shifted snapshot, respectively. Since the targets are not resolved in the BF

spectrum, the unresolved peak ψ0 can be used to identify the relevant sector for the

delimited search range, which is indicated by the dotted lines. The upper and lower

right plots show the ML objective function with step size Δψ ¼ π/32 for the full

search range and the shifted delimited search range, respectively, which correspond

to ψ ∈ [�π, π) and ψ 0 ∈ [�1.5BW, 1.5BW].

1.5 Experimental Data Analysis

We present results obtained with experimental data from a typical application in

automotive radar. The scenario with horizontal multipath and a close guardrail, as

shown in Fig. 1.1, is considered again. The two propagation paths, corresponding to

the observed car and the ghost target, fall into the same processing cell if r2 � r1
< Δr, where Δr is the size of a range cell. The range and DOA parameters are

related by

r1 sin ϕ1ð Þ ¼ d2 � d1
r2 sin ϕ2ð Þ ¼ d2 þ d1

where d1 and d2 are the normal distances from the guardrail.

The employed radar system operates at carrier frequency 24 GHz and has a range

resolution of 1.8 m. For DOA estimation, an array of microstrip patch antennas in

the form of a ULA withM ¼ 7 elements, spaced by d ¼ λ/2, is used. In the selected
recording, the car with the radar system is following another car on the left lane of

the motorway. In roughly 300 cycles, the distance of the observed car increases

from 25 to 50 m.

For extracting relevant processing cells an initial DOA is determined by the peak

of the BF spectrum. Relevant processing cells are extracted as follows:

• Detection, to select only cells with significant energy

• Clustering of cells with neighboring range, similar relative velocity, and initial

DOA

• Gating, to consider only cells of interest for a certain application, whose relative

velocity and initial DOA fall into a desired gate

The proposed ML estimator for two targets from Sect. 1.4 and the GLRT from

Sect. 1.3.3 are applied to all relevant processing cells. For two selected cycles,

Fig. 1.3 shows the camera recording of the scene and the result of the radar target

localization as a function of x- and y-position.
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Gray dots correspond to stationary targets, while black dots correspond tomoving

targets in the relevant gate, both for single-target DOA estimates. The result of the

proposed ML estimator for two targets is indicated with a circle and cross,

corresponding to the observed car and ghost target, respectively. On average, the

measured power of the ghost target is roughly 6 dB smaller than the power of the

observed car. Themarker size of all displayed targets is proportional to the measured

SNR. Note that the indicated stationary target detections can be used to localize the

guardrail, which is required to identify the multipath situation.

Figure 1.4 shows the DOA estimation results of all cycles versus range. Note that

the two selected cycles from Fig. 1.3 are indicated. In the upper plot, we show the

conventional results with single-target DOA estimation using the BF. In the lower

plot, however, we display improved results from two-target ML DOA estimation.

It can be observed from Fig. 1.4 that for the selected situation the conventional

single-target DOA estimates tend to erroneously localize the observed car closer to

the guardrail. When the multipath propagation is identified correctly, it is possible

to apply the proposed ML estimator for two targets and adequately localize the

observed car and a ghost target.

Fig. 1.3 Experimental data analysis. Scenario and all detected and clustered targets in bird’s eye

view for two selected cycles
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1.6 Conclusions

We have considered the practically relevant problem of high-resolution DOA

estimation and detection of up to two targets. We have proposed a fast implemen-

tation of a grid search ML estimator, in which the ML objective function has been

simplified and the required projection operators are pre-calculated off-line and

stored. For saving storage space and computations, we have proposed a rotational

Fig. 1.4 Experimental data analysis. DOA estimates versus range: conventional results with

single-target DOA estimation using the BF (top), improved results with two-target ML DOA

estimation (bottom)
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shift of the field of view such that the relevant angular sector, which has to be

evaluated, is delimited and centered with respect to the broadside. The proposed

method allows a computationally simple and straightforward implementation. The

principle of the proposed method has been demonstrated using an example with

simulated data. Finally, we have presented results obtained with experimental data

from a typical application in automotive radar, in which high-resolution DOA

estimation results in enhanced target localization.
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