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Foreword

Part A: Interesting Facts About the Automobile

and Its History

The adventure of the automobile and its place in our lives exhibit a long and

fascinating history. Until the introduction of intelligence and information

processing, milestones have included the invention of engines using different

power sources: steam, electricity, and gasoline. Its roots, however, can be traced

back to the end of the fifteenth century. At that time Leonardo Da Vinci was

drawing a three-wheel vehicle. It was not really a motor-car because it was powered

by strings. They had to be stretched by operators. The vehicle did not have seats and

it is not entirely clear what application Da Vinci really had in mind [1].

The first car that did not need muscular strength was built in 1769 by a

Frenchman named Joseph Cugnot. He took advantage of the invention of the

steam engine and its further enhancements. His vehicle was bulky and consequently

was very difficult to control. In fact, a “chauffeur”—the French word for fireman—

was needed to heat the boiler [2]. Steam driven cars were still in use in the twenties

of the last century.

January 29, 1886 is considered as the real birth day of the automobile as we

know it today. On this date Carl Benz received the patent for a “car with a

combustion engine”. The vehicle had three wheels. The engine was placed under

and behind the seats [2].

A dictionary printed in 1897 reports on the efficiency of gasoline engines in

those days: One liter of gasoline was sufficient to transport two passengers over a

distance of 16 km [3]. However, 1 h was needed to cover this distance. So,

neglecting the low speed and the lack of comfort of the passengers, our “automo-

bile-grandfathers” already developed 6 1/4-L-cars.

Electricity was used for powering automobiles even before the utilization of

gasoline. Like the current plug-in electric vehicles, their cruising range was limited

by the low capacity of available batteries [4]. Nevertheless, they gained popularity

in cases, where only short distances had to be covered and where frequent stops
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were needed as in the distribution of cargo in large metropolitan areas. The German

postal service used some battery-powered trucks up to the sixties of the last

century [5].

Approximately 1900, engineers accepted the challenge to combine the advan-

tages of gasoline- and battery-powered engines. Ferdinand Porsche, at that time a

young engineer at the Lohner-Factory in Vienna, has exhibited a gasoline-electric-

powered car, (i.e. the first hybrid vehicle [6]) at the 1900 Exposition Universelle in

Paris. During driving, two single-cylinder gasoline engines charged a battery. The

car was then driven by electric motors tied to the front wheels. Because of its

unreliability, heavy weight, and high cost the car was not a commercial success.

The automobile industry has experienced a remarkable growth during the past

century interrupted only by two world wars. Cars with combustion engines became

easier to operate and more comfortable for the passengers as well. The introduction

of sensors and digital processors in cars offered mechanisms to further enhance

their performance: engines have become more reliable, produced less exhaust, and

consumed less gasoline—just to mention a few. In many countries the use of

passenger cars outnumbered the use of railways. This continued even in times

where gasoline becomes more and more expensive. One reason may be that people

“feel at home” in their cars, and driver warning and assistance systems and car

infotainment units help to create this feeling. The first group helps the driver to be

more prudent and safe for all the persons in the vehicle. Whereas, the second

provides valuable information concerning road, traffic, and weather conditions,

keeping the driver in touch with the world as well as helping to turn the car into a

virtual concert hall in the middle of heavy traffic during commuting hours.

As with the widespread deployment of driver warning and assistance systems

becoming the norm, passive and active control systems are emerging and finding

their way in a number of applications. One example is the driver-free auto parking,

available now in many mid-level to high-end cars. Along with these, the first long

distance competition of driverless cars sponsored by DARPA in the US took place

in 2004 [7]. Recently, Google intelligent vehicles have traveled both in metropol-

itan areas and long-haul trips without a single accident. In a number of states in the

US and in Europe, cars without drivers are legalized and already permitted to be on

the road. Many US states are moving forward with specialized laws to governing

who is responsible for safety and operation of “driverless” vehicles.

The real enthusiasts of cars, however, fear that electronically loaded cars will

disappear from the streets when they reach the age of old-timers because electronic

components to repair them will not be available. They are also concerned that too

many tools and schemes for their assistance may take away their “fahrvergnügen”

(fun of driving) [8].

In addition to the electronics that go into cars, “how” we drive says a lot about

who we are, and how our society incorporates personal transportation within the

economic infrastructure, as well as issues of both personal and public safety. The

recent best seller by Vanderbilt: “TRAFFIC: Why we drive the way we do, and

what is says about us” is an interesting view of our society and the automobile.

In particular, emerging countries such as India and China, in comparison to
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countries in Europe and North America, have fundamentally different views of

personal transportation and changing views of what is acceptable in terms of safety

and convenience. In spite of this, in-vehicle technology continues to progress

forward with new advances appearing in high-end vehicles, as well as down to

the most affordable entry level vehicles in many of these countries.

Part B: Things We Do When We Drive a Car Today

As people spend more time in their vehicles, and commuting time to and from work

continues to increase as urban populations grow in this age of high-tech, drivers are

attempting to perform many more tasks than simply driving their vehicle from point

A to point B, which was the case in the twentieth century. The introduction of

wireless technology, digital audio/music players, mobile Internet access, advanced

entertainment/multimedia systems, and smart navigation technologies into the car

has placed increased cognitive demands on drivers. Yet, the typical driving test all

over the world continues to focus exclusively on the logistics of operating the

vehicle itself and does not include the management of these outside technologies as

part of the driver assessment for issuing a license.

Many countries including the US have therefore instituted laws that restrict the

use of cell phones and text messaging while operating a vehicle. For instance, large,

bright, and illuminated road signs saying “Click it & Ticket it,” are posted along

the highways in California. USA State Legislative groups and Governors have

come together to bring better consistency within the US for laws addressing cell

phone use and texting while driving [11, 12]. Restrictions on the use of cell phones

while driving have reached worldwide acceptance at various levels (see [13] for a

summary). Again, the recent book by Vanderbilt “Traffic: Why We Drive the Way

We Do” offers a number of perspectives on society, culture, and government

engagement on driving and drivers [10].

Driver distractions in the car are many and have been documented by countless

research studies. On the average, drivers attempt to adjust their radio 7.4 times per

hour of driving, turn their attention to infants 8.1 times/hour, and are generally

searching for something (e.g., sunglasses, coins, etc.) 10.8 times/hour. It is further

observed that the average driver looks away from the road 0.06 s every 3.4 s, i.e.,

64 s/h. Mobile devices with “intense displays” such as the iPod, other smart phones,

and tablets require more mental concentration to perform secondary tasks like

searching for songs, pausing, or skipping a song.

While there are some differences of opinion, researchers have noted that any task

that requires a driver to divert his/her attention (typically visual) away from the road

for more than 1.5 s is viewed as a distraction. However, some scholars believe that

this threshold is around 3.0 s. Irrespective of the exact time figure, such a guideline

is important as a general rule. But it should be clear that not all drivers are equally

skilled, and even advanced/experienced drivers go through periods of fatigue,
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or they can be unfamiliar with the vehicle they are operating at the time.

As a consequence, even for brief periods of time, these could alter their driving

abilities and could result incostly and fatal accidents.

Part C: Workshops on Signal Processing in Present

and Future Cars

In 2011, the 5th Biennial Workshop for In-Vehicle Systems took place in Kiel,

Germany. This meeting served to bring together researchers from diverse research

areas to consider advance-

ments in digital signal pro-

cessing within vehicles to

improve safety, comfort, and

potentially contribute to reduce

driver distraction. A total of

27 peer-reviewed conference

papers were presented with

researchers from academia,

automotive and technology

companies, as well as govern-

ment research laboratories. The

workshop included two tuto-

rials, held by highly recognized

and experienced speakers from

both industry and academia:

First tutorial on Kalman filtering with applications to automotive speech enhance-

ment was presented by Prof. Dr.-Ing. Eberhard Hänsler from Technische

Universität Darmstadt, Germany, and Dr.-Ing. Gerald Enzner, Ruhr-Universität

Bochum, Germany.

The second tutorial on car hands-free testing and optimization was presented by

Dr.-Ing. Hans-Wilhelm Gierlich, head of the Telecom Division of HEAD acoustics,

Germany.

Highlights of the workshop have been the four keynote addresses, two of which

coming from industry, the other two from academia:

The first keynote was delivered by Dr.-Ing. Luis Arévalo, Vice President, Division

of Car Multimedia, Automotive Navigation and Infotainment Systems at Robert

Bosch GmbH, Germany. The title of his speech was “Navigation Systems

Interacting with Other Vehicle Electronic Control Units.”

Professor John H.L. Hansen, from the University of Texas at Dallas, USA, gave the

second high-class keynote about “UTDrive: Advances in Human-Machine Systems

to Reduce Driver Distraction for In-Vehicle Environments.”

Silvia Schuchardt and Anne Theiß at the registration

desk of the workshop
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Third keynote address with the title “Intelligence in Vehicles,” which was presented

by Dr. Arne Bartels from the Volkswagen Group Research in Wolfsburg, Germany.

Professor Tim Fingscheidt from Technische Universität Braunschweig, Germany,

gave the last keynote on “"Speech Enhancement in Car Applications—Any

Specifics?”

In addition to these keynotes and

27 excellent oral presentations, which had

been the basis for this book, two panel ses-

sions were organized on “Multi-Sensor and

Data Fusion” and “Driver Distraction.” Sev-

eral highly respected panelists from industry

and academia have participated and guided

the panels. Along with these panels, talks,

and keynotes the workshop participants

were able to have a look at the latest publi-

cations from Springer, the publisher of this

book and its four predecessors, at their

exhibit booth.

Following the kick-off of the workshop

with tutorials on the first day, the partici-

pants were invited to a welcome reception in the “Landeshaus” of Kiel—the Parlia-

ment House of the State of Schleswig-Holstein. The welcome addresses were given

by Dr. Cordelia Andreßen, Undersecretary, Ministry of Science, Economics, and

Transport and by Dr. Hans-Wilhelm Gierlich, Head of the Telecom Division, HEAD

acoustics, Germany, the main sponsor of this workshop. After these talks, attendees

were given a tour the all parliament building of the State of Schleswig-Holstein.

The participants in the plenary hall of the parliament of Schleswig-Holstein

Dr. Baumann at the Springer booth
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After the sessions on the second day there was an organized visit to the Leibniz

Institute of Marine Sciences (IFM-GEOMAR). The tour was followed by a dinner

on the boat “Stadt Kiel” cruising on the Baltic Sea. The captain has organized a

tour of the boat including the engine room. As it can be seen from the photo below

on the right, Professor John Hansen, in particular, has really enjoyed this and had a

long chat with the crew. Fortunately for the sake of other guests and the crew,

John did not attempt to steer the ship. The dinner was served on the two decks

and the guests had discussions on automotive topics and, of course, about matters

beyond that.

Motorship “Stadt Kiel” cruising on the Baltic Sea and her engine room

Best student paper award

At the end of the workshop the best student paper—based on its originality,

professional merit, contribution, and presentation quality—was awarded to Philipp

Heidenreich and his coauthor Professor Abdelhak Zoubir for their contribution

“Computational Aspects of Maximum Likelihood Direction-of-Arrival Estimation

of Two Targets with Applications to Automotive Radar.” An extended version of
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this contribution can be found in Chap. 1 of this book. On the right you see Philipp

Heidenreich (right) together with Dr. Bernd Iser (left) from SVOX who sponsored

the award.

October 2012 Eberhard Hänsler and Gerhard Schmidt
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Preface

The Fifth Biennial Workshop on Digital Signal Processing (DSP) for In-Vehicle
Systems took place in Kiel, Germany, on September 4–7, 2011. The workshop was

organized by the Digital Signal Processing and System Theory research group at

Kiel University, Germany. As mentioned above, this biennial is the fifth in a series.

It was organized first in 2003 in Nagoya (Japan), followed by events in Sesimbra

(Portugal) in 2005, in Istanbul (Turkey) in 2007 and in Dallas (Texas, USA) in

2009. World-class experts from a wide spectrum of research fields have participated

and shared cutting-edge studies on driver behavior and in-vehicle technologies just

as they did in earlier workshops.

The workshop at Kiel University formed a communication platform among

researchers, automotive manufacturers, government foundations, and legislators

for road safety and on future in-vehicle technologies as well as focusing on driver

behavior. Contributions came from signal processing, control engineering, multi-

modal audio–video processing, biomechanics, human factors, and transportation

engineering, which opened doors for fruitful discussions and information exchange

in an exciting interdisciplinary area. The main focus areas were as follows:

• DSP technologies in automobiles,

• speech dialog, hands-free, and in-car communication systems (algorithms and

evaluation),

• driver-status monitoring and distraction/stress detection,

• in-vehicle dialog systems and human–machine interfaces,

• challenges in video and audio processing for in-vehicle products,

• multisensor fusion for driver identification and robust driver monitoring,

• vehicle-to-vehicle and vehicle-to-infrastructure wireless technologies

• human factors and cognitive science in enhancing safety, and

• transportation engineering.

From this workshop, 15 papers and one additional contribution stemming from a

tutorial, which was held at the start of the workshop, were selected and expanded

with even newer material. These 16 chapters make up this book. Chapters are
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grouped into five parts, each addressing key areas within in-vehicle digital signal

processing arena:

Part I: Sensor and Data Fusion,

Part II: Speech and Audio Processing,

Part III: Driver Distraction,

Part IV: Driving Behavior and User Profiling,

Part V: Driving Scene Analysis.

First, Part I consists of four chapters that cover the fusion of sensor signals or data in

general. The first chapter considers the estimation of the direction of arrival in

automotive RADAR. Special emphasis is put here on computational aspects. The

second chapter investigates stereo camera systems for estimating three-dimensional

motion fields in real time for applications such as automotive driver assistance

systems, robotics, or surveillance. It is followed by an overview on vehicle-assistance

systems that acquire, process, and evaluate environmental data. Several state-of-

the-art systems are described here. Chapter 4 addresses the design, the perception,

and decision algorithms of the so-called unmanned ground vehicles. Special focus

is put on the Otonobil, the first autonomously driven vehicle of Turkey.

The next five chapters make up Part II of the textbook which focuses on speech and

audio processing for in-vehicle systems. Chapter 5 presents an overview about

testing and optimization of hands-free equipment in cars and Chap. 6 focuses on

combined fast-converging echo cancellation and residual echo and noise suppres-

sion schemes for wideband automotive hands-free systems. Chapter 7 deals with

the systems that improve the (speech) communication within the passenger com-

partment. Next, Chap. 8 discusses the acoustic concept of a room in a room, which
allows for recording and playback of sound fields with a multitude of microphones

and loudspeakers. The last chapter in this second part of the book is about a novel

post-processing scheme that can be applied after a conventional filterbank. It refines
the original short-term spectra and allows for improved pitch estimation or

improved convergence speed or complexity reduction of echo cancellation filters.

Part III is on driver distraction with two chapters. Chapter 10 focuses on under-

standing how drivers react to various secondary tasks such as phone calls, and

creating text messages. The CAN bus is used then for analyzing the distraction

effect of such actions. The second chapter provides the definition of reference labels

for perceptual evaluations from external evaluators, and the consistency and effec-

tiveness of using a visual-cognitive space for subjective evaluations are

investigated.

The next two chapters form Part IV concentrating on driver behavior and user

profiling. Chapter 12 is about evaluation methods of save driving skills. The second

chapter of this part is on the impact of emotions on driving behavior with special

emphasis on pre- and post-accident situations.

The last portion of the book is Part V which addresses driving scene analysis.

In Chap. 14 two driving scene analysis systems are proposed: The first system
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measures the similarities between driving behavior signals in driving scenes involv-

ing stops, starts, and right and left turns. The second system measures the similar-

ities between environmental driving signals, focusing on surrounding vehicles and

driving road configuration. In Chap. 15 studies are presented on algorithms that use

front cameras or, in particular, motion vectors of standard video encoding algo-

rithms to detect various driving events. The detection results can be used to gain

understanding of the driving dynamics, and eventually to support driver decisions

and improve driving safety. In the last chapter of the book, in Chap. 16, automotive

radar systems for estimation of target shapes are described. Special focus is put on a

two-stage approach for combining high-resolution techniques with conventional

Fourier-based methods.

We hope that this book provides an up-to-date perspective on automotive signal

processing, with novel ideas for researchers, engineers, and scientists in the field.

We wish to thank all those who participated in the 2011 workshop. We wish to

express our continued appreciation of Springer Publishing for a smooth and effi-

cient publication process for this book. Specifically, we would like to thank Alex

Greene and Ms. Ania Levinson of Springer Publishing for their extensive efforts to

enhance the structure and content of this book, as well as providing our community

a high-quality and scholarly platform to stimulate public awareness, scientific

research, and technology development in this field.

Kiel, Germany Gerhard Schmidt

San Diego, CA, USA Huseyin Abut

Nagoya, Japan Kazuya Takeda

Dallas, TX, USA John H.L. Hansen
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Hüseyin Abut San Diego State University, San Diego, CA, USA
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Çagri Dikilitaş Istanbul Technical University, Istanbul, Turkey

Florian Engels A.D.C. Automotive Distance Control Systems GmbH, Lindau,

Germany

Ziya Ercan Istanbul Technical University, Istanbul, Turkey

Tim Fingscheidt Technische Universität Braunschweig, Braunschweig, Germany

Uwe Franke Daimler AG, Sindelfingen, Germany

Hans-Wilhelm Gierlich HEAD acoustics GmbH, Herzogenrath, Germany
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Christian Lüke Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Enrico Masala Politecnico di Torino, Torino, Italy

Chiyomi Miyajima Nagoya University, Nagoya, Japan

Ryo Nakagawa Nagoya University, Nagoya, Japan

Masaru Noda Nara Institute of Science and Technology, Nara, Japan

Haruo Noma Advanced Telecommunications Research Institute International,

Kyoto, Japan

Norzaliza M. Nor International Islamic University, Kuala Lumpur, Malaysia
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Chapter 1

Computational Aspects of Maximum

Likelihood DOA Estimation of Two Targets

with Applications to Automotive Radar

Philipp Heidenreich and Abdelhak M. Zoubir

Abstract Direction-of-arrival (DOA) estimation of two targets with a single

snapshot plays an important role in many practically relevant scenarios in automo-

tive radar for driver assistance systems. Conventional Fourier-based methods

cannot resolve closely spaced targets, and high-resolution methods are required.

Thus, we consider the maximum likelihood DOA estimator, which is applicable

with a single snapshot. To reduce the computational burden, we propose a grid

search procedure with a simplified objective function. The required projection

operators are pre-calculated off-line and stored. To save storage space, we further

propose a rotational shift of the field of view such that the relevant angular sector,

which has to be evaluated, is centered with respect to the broadside. The final

estimates are obtained using a quadratic interpolation. An example is presented to

demonstrate the proposed method. Also, results obtained with experimental data

from a typical application in automotive radar are shown.

Keywords Automotive radar • Direction of arrival (DOA) • Driver assistance
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1.1 Introduction

Ever-increasing amount of advanced signal processing algorithms is used in various

automotive applications [1, 2], e.g., advanced driver assistance systems [3]. These

utilize from various sensors to determine the environment of a vehicle. From an

identified traffic situation, the driver assistance system regulates the behavior of the

vehicle, instructs the driver, or warns the driver in dangerous situations. Often radar

sensors are employed, which work reliably even in bad weather conditions, and can

provide accurate measurements of the range and relative velocity of multiple

targets. To also measure the lateral position of a target, an array of antennas in

horizontal direction with digital beamforming can be applied. For typical

applications such as collision avoidance or adaptive cruise control (ACC), it is

essential to accurately estimate the lateral position and to be able to resolve multiple

closely spaced targets. For the array system with limited aperture, this can be

achieved with high-resolution processing, which is considered computationally

intensive and numerically complex, so that real-time implementation becomes a

challenging task.

A pulsed radar system with an array of receive antennas can be effectively used

for target localization in terms of range, relative velocity, and direction of arrival

(DOA) [4, 5]. After radar preprocessing, which consists of a pulse compression and

a Fourier transform over the pulses, the received sensor data is divided into

processing cells according to the range and relative velocity, each represented by

a single snapshot. For more details, an exemplary radar system is described in [6].

In most practical situations of automotive radar, multiple targets can be

distinguished by their range and/or relative velocity so that each processing cell

contains at most one target. In the single-target case, the optimal DOA estimates

can be found using the Beamformer (BF) spectrum, which is computationally

simple [7]. However, there are situations in which multiple targets have similar

range and relative velocity so that they are superposed in a processing cell. We

consider the situation with two targets per processing cell as practically relevant.

In the ACC application, this is motivated by experimental data and may occur when

there is an horizontal multipath with a close guardrail, as depicted in Fig. 1.1. If the

two propagation paths fall into the same processing cell and cannot be resolved, this

generally results in a false localization of the observed car, which seems to be

pulled towards the guardrail. To correctly localize the observed car and a ghost

target, high-resolution DOA estimation is required. Note that the multipath situa-

tion can be correctly identified using the guardrail location, which can be estimated

from stationary target detections.

A number of high-resolution DOA estimators are available in the literature, see,

e.g., [7–9]. Among the subspace methods, there is the popular MUSIC algorithm

[10], which requires an eigendecomposition of the spatial covariance matrix, and a

one-dimensional search on a fine grid to obtain the DOA estimates. For particular

array geometries, there are also analytic solutions, e.g., unitary ESPRIT [11].

Implementing an eigendecomposition on a practical system with real-time

constraints can be numerically complex. Eigendecomposition is iterative in nature
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and therefore hard to parallelize [12]. Moreover, when only a single snapshot is

available, decorrelation techniques are required so that the signal subspace is fully

represented. This can be achieved using the forward/backward (FB) averaging

and/or spatial smoothing [13], which is suboptimal in general and can result in a

reduction of the array aperture. The described drawbacks can limit the practical

usage of subspace methods.

In contrast, the maximum likelihood (ML) DOA estimator of multiple targets

can be directly applied with a single snapshot. It is asymptotically efficient [14] and

possesses an improved threshold performance when compared to subspace methods

[15]. Further, it allows resolving correlated targets [8]. Despite its good properties,

the ML estimator has not enjoyed much practical application due to its high

computational cost. It requires the optimization of a multidimensional objective

function with a complicated multi-model shape. Computationally efficient but

iterative implementations are the method of alternating projections [16] or the

relaxation algorithm (RELAX) in [17].

Here, for the two-target case, we consider a global search of the two-dimensional

ML objective function as practically feasible. We propose to use a simplified

calculation of the objective function and a delimited search range. The required

projection operators are data independent and can be pre-calculated off-line,

which enables a trade-off between the computational complexity and the required

storage space.

1.2 Signal Model

Let x denote theM-element array vector, or snapshot, from a pre-detected processing

cell according to the range and relative velocity, whose power is significantly above

the noise level. The problem formulation is posed as follows: decide between the

single-target model and the two-target model

Fig. 1.1 Automotive radar

situation with horizontal

multipath with a close

guardrail
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D ¼ 1 : x ¼ s0a ψ0ð Þ þ n
D ¼ 2 : x ¼ s1a ψ1ð Þ þ s2a ψ2ð Þ þ n

(1.1)

and estimate the respective parameters. s0 and ψ0 are the target response

parameter and DOA parameter in the single-target model, respectively. Likewise,

s1, s2, ψ1, and ψ2 are the corresponding parameters in the two-target model.

a ψð Þ ¼ 1ffiffiffiffiffi
M

p 1; ejψ ; . . . ; ej M�1ð Þψ
h iT

(1.2)

but the steering vector of the considered uniform linear array (ULA) with electrical

angle ψ ¼ 2π
λ d sinϕ, where λ is the wavelength, d is the array element spacing, and

ϕ is the spatial azimuth angle. The measurement noise vector n is assumed to be

spatially white, circular complex Gaussian with zero mean and variance σ2.

1.3 Optimal Processing

The optimal processing is described in the following. It consists of the ML DOA

estimation for the single-target model and the two-target model and a generalized

likelihood ratio test (GLRT).

1.3.1 Maximum Likelihood for One Target

The ML estimator for ψ0 in model (1.1) forD ¼ 1 corresponds to the location of the

global maximum of the BF spectrum:

P ψð Þ ¼ a ψð ÞHx�� ��2:

The inner vector product corresponds to a spatial Fourier transform at

frequency ψ . Hence, P(ψ) can be evaluated efficiently using a Fast Fourier trans-

form (FFT) with zero-padding.

Let the step size of the evaluation grid be Δψ , and let the location of the global

maximum on the evaluation grid be ψn. A refined DOA estimate can be obtained

using a quadratic interpolation in the neighborhood of ψn as

ψ̂ 0 ¼ ψn þ 0:5Δψ
P ψn�1ð Þ � P ψnþ1

� �

P ψn�1ð Þ � 2P ψnð Þ þ P ψnþ1

� �

6 P. Heidenreich and A.M. Zoubir



1.3.2 Maximum Likelihood for Two Targets

The ML estimators for ψ1 and ψ2 in model (1.1) for D ¼ 2 correspond to the

location of the global maximum of the two-dimensional ML objective function:

c ψ1;ψ2ð Þ ¼ xHPA ψ1;ψ2ð Þx (1.3)

where

PA ψ1;ψ2ð Þ ¼ A AHA
� ��1

AH, A ¼ a ψ1ð Þ, a ψ2ð Þ½ �

is the projection matrix onto the column span of steering matrix A. An intuitive

interpretation is that we seek for parameters ψ1 and ψ2 which maximize the

projection of x onto the plane spanned by the columns of A.
The optimization of c(ψ1,ψ2) needs to be numerical and is generally computa-

tionally intensive. Below, we describe the direct calculation of the objective

function and a global search procedure.

1.3.2.1 Direct Objective Function Evaluation

To determine projection matrix PA(ψ1,ψ2), the matrix inverse of AHA is required.

Using the inversion formula for a matrix of dimension two, and notation a1 ¼ a(ψ1)

and a2 ¼ a(ψ2) for convenience, we have

PA ψ1;ψ2ð Þ ¼ 1

1� βj j2 a1a
H
2 � βa1a

H
2 � β�a2aH1 þ a2a

H
2

� �

where β ¼ aH1 a2, and we have used a(ψ)Ha(ψ) ¼ 1. This allow us to calculate

directly (1.3) using

c ψ1;ψ2ð Þ ¼ 1

1� βj j2 y1j j2 � 2Re βy�1y2
� �þ y2j j2

� 	
(1.4)

where y1 ¼ aH1 x and y2 ¼ aH2 x. Provided all steering vectors are available on a

discrete grid of the field of view, a significant part of the computational cost,

required to evaluate a single point of (1.4), constitutes the calculation of y1, y2,
and β, which corresponds to 12M real-valued multiply–add operations.

1.3.2.2 Global Search

Due to the complicated multimodal shape of the objective function c(ψ1,ψ2), a

numerical search procedure, e.g., using a damped Newton method, critically
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depends on the initialization [18]. A fairly reliable initialization without

eigendecomposition appears difficult to find, especially when the targets are not

resolved in the BF spectrum. Here, we consider a global evaluation of the

two-dimensional objective function on a selected grid for ψ1 and ψ2. Unlike

numerical search procedures, this allows a non-iterative implementation.

Let ψ1,m and ψ2,n be the location of the global maximum on the evaluation grid

with step size Δψ ; refined DOA estimates can be obtained using a quadratic

interpolation in the neighborhood of the global maximum, as

ψ̂ 1 ¼ ψ1,m þ 0:5Δψ
c ψ1,m�1;ψ2,n

� �� c ψ1,mþ1;ψ2,n

� �

c ψ1,m�1;ψ2,n

� �� 2c ψ1,m;ψ2,n

� �þ c ψ1,mþ1;ψ2,n

� �

ψ̂ 2 ¼ ψ2,n þ 0:5Δψ
c ψ1,m;ψ2,n�1

� �� c ψ1,m;ψ2,nþ1

� �

c ψ1,m;ψ2,n�1

� �� 2c ψ1,m;ψ2,n

� �þ c ψ1,m;ψ2,nþ1

� �

Regarding computational cost, the global evaluation of the objective function is

required only for ψ1 < ψ2. Note that the resulting triangular search range is shown

in Fig. 1.2 (top right). The corresponding computational cost is

C ¼ C1N2, N2 ¼
Nψ Nψ � 1

� �
2

where C1 represents the computational cost, required to evaluate a single point of

the objective function; N2 is the number of points in the two-dimensional search

range; and Nψ is the number of grid points in the field of view, ψ ∈ [�π, π).

1.3.3 Generalized Likelihood Ratio Test

According to the model (1.1) for D ¼ 1 and D ¼ 2, let the unknown parameters be

collected in vectors Θ1 and Θ2, respectively, and let p1(x|Θ1) and p2(x|Θ2) be the

corresponding likelihood functions, i.e., the conditional probability density func-

tion of the snapshot given the unknown parameter. A GLRT for deciding between

the single-target model and the two-target model is

T ¼ maxΘ2
p2 x

��Θ2

� �

maxΘ1
p1 x

��Θ1

� � > γ

which involves the determination of the corresponding ML estimates. For the signal

model in Sect. 1.2, and taking the logarithm, the GLRT can be simplified to [19]

logT ¼ Mlogσ̂ 2
1 �Mlogσ̂ 2

2 > logγ

8 P. Heidenreich and A.M. Zoubir



where

σ̂ 2
1 ¼

1

M
x� a ψ̂ 0ð Þa ψ̂ 0ð ÞHx

 

2, σ̂ 2

2 ¼
1

M
x� PA ψ̂ 1; ψ̂ 2ð Þxk k2

A suitable threshold value log γ can be determined numerically, according to the

Neyman–Pearson principle.

1.4 Proposed Approach

If multiple snapshots of the same processing cell, say at different cycles n, are
considered, model (1.1) extends to x[n], n ¼ 1, . . ., N, where N is the number of

available snapshots. In this case, the ML objective function in (1.3) extends to
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Fig. 1.2 Example withM ¼ 8, two targets separated by ψ2 � ψ1 ¼ 0.5BW, noise-free and single

snapshot: BF spectrum to identify relevant angular sector (top left), ML objective function for full

search range with Δψ ¼ π/32 (top right), shifted BF spectrum (bottom left), and ML objective

function for shifted delimited search range (bottom right)
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c ψ1;ψ2ð Þ ¼ 1

N

XN
n¼1

x n½ �HPA ψ1;ψ2ð Þx n½ � ¼ Tr PA ψ1;ψ2ð ÞR̂
n o

(1.5)

where

R̂ ¼ 1

N

XN
n¼1

x n½ �x n½ �H

is the sample covariance matrix. We remark that the single-snapshot case is of

primary importance for the considered application. However, to enhance the DOA

estimation accuracy, it may be desirable to combine multiple snapshots, which have

been associated on a tracking procedure. Therefore, we consider the general case

with N snapshots and comment on the special case with N ¼ 1.

Note that in the case of multiple snapshots, one has to trade off between the

evaluation of the quadratic term and the trace notation in (1.5).

1.4.1 Simplified Objective Function Calculation

The projection operator PA(ψ1, ψ2) is data independent; therefore, it can be

pre-calculated off-line and stored. In this case, the calculation of the trace notation

in (1.5) requires C1 ¼ 4M2 real-valued multiply–add operations (note that only the

diagonal entries of the matrix product have to be evaluated). Moreover, this can be

simplified since PA(ψ1, ψ2) has a great deal of structure to exploit. In particular, it is

centro-Hermitian, i.e., we have

JMPA ψ1;ψ2ð Þ�JM ¼ PA ψ1;ψ2ð Þ

where JM is the exchange matrix of sizeM, with ones on the anti-diagonal and zeros

elsewhere. This property can be easily shown [19] and directly follows from the fact

that the steering vector, defined in (1.2), is Hermitian symmetric up to a complex

scaling.

As a consequence, the ML objective function remains unchanged when snapshot

x is replaced by JMx*, since

JMx
�ð ÞHPA ψ1;ψ2ð ÞJMx� ¼ xHJMPA ψ1;ψ2ð Þ�JMx

� �� ¼ xHPA ψ1;ψ2ð Þx

where we have used the fact that c(ψ1, ψ2) is real-valued by definition. Likewise, it

remains unchanged when R̂ is replaced by the forward/backward (FB) averaged

sample covariance matrix

10 P. Heidenreich and A.M. Zoubir



R̂ FB ¼ 1

2
R̂ þ JMR̂

�
JM

� 	

which is centro-Hermitian by definition.

1.4.1.1 Unitary Transformation

Let QM be a column conjugate symmetric matrix, satisfying JMQ
�
M ¼ QM. A sparse

choice for a unitary column conjugate symmetric matrix is

Q2mþ1 ¼
1ffiffiffi
2

p
Im 0 jIm
0T

ffiffiffi
2

p
0T

Jm 0 �jJm

2
4

3
5

where Im is the identity matrix of size m. An equivalent unitary column conjugate

symmetric matrix of dimension 2m can be obtained by deleting the center row and

center column of Q2m + 1. The main result of [20] is that any square centro-

Hermitian matrix is equivalently expressed by a real-valued matrix of the same

dimension so that

V ψ1;ψ2ð Þ ¼ QH
MPA ψ1;ψ2ð ÞQM (1.6)

and

Ĉ ¼ QH
MR̂ FBQM (1.7)

are the real-valued projection operator and the sample covariance. The similarity

transformation with unitary matrix QM is referred to as unitary transformation.

We note that this approach has been used in [11] and [21], respectively, to derive

the unitary ESPRIT and unitary root-MUSIC algorithm, where computational cost

is reduced by replacing a complex-valued eigendecomposition by a real-valued

one. Since we got QMQ
H
M ¼ IM, the objective function in (1.5) can be rewritten as

c ψ1;ψ2ð Þ ¼ Tr PA ψ1;ψ2ð ÞR̂
n o

¼ Tr PA ψ1;ψ2ð ÞQMQ
H
MR̂ FBQMQ

H
M

n o

¼ Tr QH
MPA ψ1;ψ2ð ÞQMQ

H
MR̂ FBQM

n o

¼ Tr V ψ1;ψ2ð ÞĈ
n o

:

(1.8)

To further reduce computational cost, we exploit that V(ψ1,ψ2) and Ĉ are

symmetric and remove redundant matrix entries [19]. In this case, and provided
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all projection operators are available on a discrete grid of the two-dimensional

search range, the calculation of (1.8) requires C1 ¼ (M + 1)M/2 real-valued

multiply–add operations.

1.4.1.2 Single-Snapshot Alternative

In the single-snapshot case, an alternative is to employ an eigendecomposition of

the real-valued projection operator in (1.6),

V ψ1;ψ2ð Þ ¼ v1v
T
1 þ v2v

T
2

where eigenvectors v1, v2∈M�1 are both functions of ψ1 and ψ2. Again, the

projection operator eigenvectors can be pre-calculated off-line and stored. Using

y ¼ QH
Mx∈M�1, the objective function in (1.3) can be rewritten as

c ψ1;ψ2ð Þ ¼ yHV ψ1;ψ2ð Þy ¼ yH v1v
T
1 þ v2v

T
2

� �
y ¼ z1j j2 þ z2j j2 (1.9)

where z1 ¼ vT1y and z2 ¼ vT2y. Provided all projection operator eigenvectors are

available on a discrete grid of the two-dimensional search range, a significant part

of (1.9) constitutes the calculation of z1 and z2, which corresponds to C1 � 4M
real-valued multiply–add operations.

1.4.1.3 Comparison

The overall cost of a global search has been described in Sect. 1.3.2.2. A trade-off

between the computations, required for evaluating a single point of the objective

function C1 (in real-valued multiply–add operations), and the required storage

space (in real-valued numbers) is given in Table 1.1 for the single-snapshot case.

Note that the calculation of the real-valued projection operators, or respective

eigenvectors, is done off-line and does not contribute to the overall cost. Also,

the preprocessing, such as the formation of the covariance matrix, has no significant

effect, as it is performed only once.

For an eight-element ULA and for the single-snapshot case, the simplified

objective function in (1.9) is the cheapest option, both in terms of required

Table 1.1 Computations required for evaluating a single point of the objective function, C1, and

storage space, in the single-snapshot case, using N2 ¼ Nψ(Nψ � 1)/2

C1 Storage space

Direct (1.4) � 12M Nψ2M

Simplified (1.8) (M + 1)M/2 N2(M + 1)M/2

Simplified (1.9) � 4M N22M

12 P. Heidenreich and A.M. Zoubir



computations and the storage space. However, when multiple snapshots are

available, we prefer the simplified objective function in (1.8), because the covari-

ance matrix is employed and no extensions are necessary.

Regarding the storage, the simplified calculation requires the real-valued

projection operators, or respective eigenvectors, on a two-dimensional search

range with N2 points, whereas the direct calculation only requires the steering

vectors on a one-dimensional grid of the field of view.

1.4.2 Delimited Search Range

So far, we have reduced the computational cost by simplifying the calculation of

the ML objective function. Next, we consider a delimited search range so that the

number of points to evaluate on a two-dimensional search range and the storage

space is reduced.

We only consider the more difficult case of closely spaced targets, which cannot

be reliably resolved in the BF spectrum, i.e., ψ2 � ψ1 < BW, where BW ¼ 2π/M
is the Rayleigh beamwidth. We remark that when the targets are widely separated

so that they are reliably resolved in the BF spectrum, there exist computationally

simple methods to reduce the estimation bias due to the leakage effect [22].

Let ψ̂ 0∈ ψ1;ψ2½ � be the peak location of the unresolved targets in the BF

spectrum. Consider the shifted array output model, which is obtained by a rotational

shift of the field of view:

x
0 ¼

ffiffiffiffiffi
M

p
a �ψ̂ 0ð Þ � x ¼ s1a ψ

0
1

� 	
þ s2a ψ

0
2

� 	
þ n

0
(1.10)

where ψ
0
1 ¼ ψ1 � ψ̂ 0 and ψ

0
2 ¼ ψ2 � ψ̂ 0 are the shifted DOA parameters and � is

the element-wise Hadamard product. The random characteristics of the rotationally

shifted noise vector n0 remain unchanged. The rotational shift allows to evaluate c

(ψ
0
1,ψ

0
2) on a delimited search range, e.g., ψ 0 ∈ [�1.5BW, 1.5BW], which very

likely contains the centered DOA parameters ψ
0
1 and ψ

0
2. As a result, the number of

points in the two-dimensional search range, N2, and therewith the storage space of

the projection operators have been reduced significantly. For the given example, the

reduction corresponds roughly to (3BW/2π)2 ¼ (3/M )2.

1.4.3 Example

We present an example to demonstrate the principle of the delimited search range

and the rotational shift. A ULA with M ¼ 8 elements, spaced by d ¼ λ/2, is used.
A noise-free single snapshot is simulated according to model (1.1) for D ¼ 2, with

1 Computational Aspects of Maximum Likelihood DOA Estimation. . . 13



target response parameters s1 ¼
ffiffiffi
2

p
e�jπ=4s2 ¼ 1 , and an angular separation of

ψ2 � ψ1 ¼ 0.5BW. Figure 1.2 shows the results.

The upper and lower left plots show the BF spectra of the original snapshot and

the shifted snapshot, respectively. Since the targets are not resolved in the BF

spectrum, the unresolved peak ψ0 can be used to identify the relevant sector for the

delimited search range, which is indicated by the dotted lines. The upper and lower

right plots show the ML objective function with step size Δψ ¼ π/32 for the full

search range and the shifted delimited search range, respectively, which correspond

to ψ ∈ [�π, π) and ψ 0 ∈ [�1.5BW, 1.5BW].

1.5 Experimental Data Analysis

We present results obtained with experimental data from a typical application in

automotive radar. The scenario with horizontal multipath and a close guardrail, as

shown in Fig. 1.1, is considered again. The two propagation paths, corresponding to

the observed car and the ghost target, fall into the same processing cell if r2 � r1
< Δr, where Δr is the size of a range cell. The range and DOA parameters are

related by

r1 sin ϕ1ð Þ ¼ d2 � d1
r2 sin ϕ2ð Þ ¼ d2 þ d1

where d1 and d2 are the normal distances from the guardrail.

The employed radar system operates at carrier frequency 24 GHz and has a range

resolution of 1.8 m. For DOA estimation, an array of microstrip patch antennas in

the form of a ULA withM ¼ 7 elements, spaced by d ¼ λ/2, is used. In the selected
recording, the car with the radar system is following another car on the left lane of

the motorway. In roughly 300 cycles, the distance of the observed car increases

from 25 to 50 m.

For extracting relevant processing cells an initial DOA is determined by the peak

of the BF spectrum. Relevant processing cells are extracted as follows:

• Detection, to select only cells with significant energy

• Clustering of cells with neighboring range, similar relative velocity, and initial

DOA

• Gating, to consider only cells of interest for a certain application, whose relative

velocity and initial DOA fall into a desired gate

The proposed ML estimator for two targets from Sect. 1.4 and the GLRT from

Sect. 1.3.3 are applied to all relevant processing cells. For two selected cycles,

Fig. 1.3 shows the camera recording of the scene and the result of the radar target

localization as a function of x- and y-position.
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Gray dots correspond to stationary targets, while black dots correspond tomoving

targets in the relevant gate, both for single-target DOA estimates. The result of the

proposed ML estimator for two targets is indicated with a circle and cross,

corresponding to the observed car and ghost target, respectively. On average, the

measured power of the ghost target is roughly 6 dB smaller than the power of the

observed car. Themarker size of all displayed targets is proportional to the measured

SNR. Note that the indicated stationary target detections can be used to localize the

guardrail, which is required to identify the multipath situation.

Figure 1.4 shows the DOA estimation results of all cycles versus range. Note that

the two selected cycles from Fig. 1.3 are indicated. In the upper plot, we show the

conventional results with single-target DOA estimation using the BF. In the lower

plot, however, we display improved results from two-target ML DOA estimation.

It can be observed from Fig. 1.4 that for the selected situation the conventional

single-target DOA estimates tend to erroneously localize the observed car closer to

the guardrail. When the multipath propagation is identified correctly, it is possible

to apply the proposed ML estimator for two targets and adequately localize the

observed car and a ghost target.

Fig. 1.3 Experimental data analysis. Scenario and all detected and clustered targets in bird’s eye

view for two selected cycles
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1.6 Conclusions

We have considered the practically relevant problem of high-resolution DOA

estimation and detection of up to two targets. We have proposed a fast implemen-

tation of a grid search ML estimator, in which the ML objective function has been

simplified and the required projection operators are pre-calculated off-line and

stored. For saving storage space and computations, we have proposed a rotational

Fig. 1.4 Experimental data analysis. DOA estimates versus range: conventional results with

single-target DOA estimation using the BF (top), improved results with two-target ML DOA

estimation (bottom)
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shift of the field of view such that the relevant angular sector, which has to be

evaluated, is delimited and centered with respect to the broadside. The proposed

method allows a computationally simple and straightforward implementation. The

principle of the proposed method has been demonstrated using an example with

simulated data. Finally, we have presented results obtained with experimental data

from a typical application in automotive radar, in which high-resolution DOA

estimation results in enhanced target localization.
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Chapter 2

Dense 3D Motion Field Estimation

from a Moving Observer in Real Time

Clemens Rabe, Uwe Franke, and Reinhard Koch

Abstract In this chapter an approach for estimating the three-dimensional motion

fields of real-world scenes is proposed. This approach combines state-of-the-art

dense optical flow estimation, including spatial regularization, and dense stereo

information using Kalman filters to achieve temporal smoothness and robustness.

The result is a dense and accurate reconstruction of the three-dimensional motion

field of the observed scene. An efficient parallel implementation using a GPU and

an automotive compliant FPGA yields a real-time vision system which is directly

applicable in real-world scenarios including driver assistance systems, robotics, and

surveillance.

Keywords Computer vision • Driver assistance • Motion estimation

2.1 Introduction

Future driver assistance systems are expected to support the driver in complex

driving situations. This requires a thorough understanding of the car’s environment,

which includes not only the perception of the infrastructure but also the precise

detection and tracking of moving traffic participants.

The 3D structure of the scene can easily be obtained through a stereo camera

system. To detect obstacles, this information is commonly accumulated in an

evidence grid-like structure [13]. We refer to it as the bird’s view map. Since stereo

C. Rabe (*) • U. Franke

Research and Technology/Machine Perception, Daimler AG, Hanns-Klemm-Str. 45,

71059 Sindelfingen, Germany

e-mail: clemens.rabe@daimler.com; uwe.franke@daimler.com

R. Koch

Multimedia Information Processing, Christian-Albrechts-Universität zu Kiel,

Hermann-Rodewald-Str. 3, 24098 Kiel, Germany

e-mail: rk@mip.informatik.uni-kiel.de

G. Schmidt et al. (eds.), Smart Mobile In-Vehicle Systems:
Next Generation Advancements, DOI 10.1007/978-1-4614-9120-0_2,
© Springer Science+Business Media New York 2014

19

mailto:clemens.rabe@daimler.com
mailto:uwe.franke@daimler.com
mailto:rk@mip.informatik.uni-kiel.de


does not reveal any motion information, usually this map is segmented and detected

objects are tracked over time in order to obtain their motion state. The major

disadvantage of this standard approach is that the performance of the detection

depends highly on the correctness of the segmentation. In particular, moving

objects in front of stationary ones, as illustrated in Fig. 2.1, are often bundled and

therefore not detected. This causes erroneous misinterpretations and requires more

powerful solutions.

In literature there are many examples using the optical flow, i.e., the apparent

image motion, to detect moving objects. Argyros et al. describe a method to detect

moving objects using stereo vision [1]. Comparing the normal flow of the right

camera image with the normal flow between the left and the right images of the

stereo cameras they detect image regions with independent object motion as

inconsistencies in the flow data. Other approaches like Kellman and Kaiser [12],

Mills [14], and Heinrich [8] use the geometric constraints stemming from the stereo

configuration to detect independent motion. However, these approaches lack a

precise measurement of the detected movements.

One of the first attempts to fuse stereo and optical flow information was studied

by Waxman and Duncan [20]. They have analyzed the relationship between the

optical flow fields of each camera and defined the so-called relative flow. Using this

information the relative longitudinal velocity between the observer and the object is

directly determined. Other approaches known as scene flow algorithms estimate the

3D motion field directly from two consecutive image pairs. The term scene flow

was introduced by Vedula et al. in [19] and was defined as the three-dimensional

motion of points in the world. In practice, scene flow algorithms estimate the optical

flow and disparity change, optionally also the disparity map, in a combined

approach. From this information, the 3D motion field is then reconstructed.

Although computationally expensive, dense scene flow algorithms running in real

time are available, as shown by Rannacher in [18].

Fig. 2.1 Left: Typical traffic scene. The car is stationary, whereas the pedestrian runs towards the
intersection. Right: Bird’s eye view of the reconstructed 3D structure of the scene. The color

encodes the height above ground (from black (0 m) to white (1.0 m)) of the observed points
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Although scene flow analysis provides fast detection results, it is limited with

respect to robustness and accuracy due to the immanent measurement noise caused

by its differential character. To get more reliable results, an integration of the

observations over time is necessary. This was done in the 6D-Vision system that

was first presented in [5]. The basic idea is to track points with depth known from

stereo vision over two and more consecutive frames and then to fuse the spatial and

temporal information using Kalman filters [11]. The result is an improved accuracy

of the 3D position and an estimation of the 3Dmotion of the point under study at the

same time. Since we get a rich 6D-state vector for each point this method is referred

as 6D-Vision. Taking into account the motion information, the detection of moving

objects can be carried out significantly easier and more robust than using bird view

maps. In addition, using the 3D motion information a prediction of the object

movement is possible. This allows a driver assistance system to warn and react to

potential collisions in time.

The improved system presented in [16] is able to track up to 10,000 points in real

time on modern hardware devices. However, in safety relevant applications,

robustness, density, and volume of information are of utmost importance. Inspired

by the recent progress of dense optical flow algorithms, Rabe et al. applied the

6D-Vision principle to dense optical flow and dense stereo data [17]. Implemented

on the Graphics Processing Unit (GPU), this system is able to analyze 640 � 480

pixels at a frame rate of 20 Hz. A typical result for a traffic scene is shown in

Fig. 2.2. Since the 3D motion information is estimated for nearly every pixel of the

image, this system is called Dense6D.

In this contribution, the Dense6D system is described in more detail, focusing on

the implementation aspects for a real-time system. The chapter is organized as

follows: Section 2.2 describes the core elements of the system, namely, the dense

stereo and dense optical flow algorithms, as well as the Kalman filter-based fusion

to obtain the 3D motion estimates. In Sect. 2.3, the quantitative evaluation results

on synthetic ground-truth image sequences and qualitative results on real-world

sequences are presented, followed by the conclusion in Sect. 2.4.

Fig. 2.2 Left: Typical traffic scene. Right: Motion field, estimated by the Dense6D algorithm

proposed in this chapter. The color encodes the velocity of the observed points
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2.2 Estimation of the 3D Motion Field

The Dense6D algorithm estimates a 3D motion field based on a dense disparity map

and a dense optical flow field that can be computed by any stereo and optical flow

algorithms, respectively. However, automotive applications demand robust and

real-time capable algorithms. Therefore, we use two state-of-the-art algorithms

meeting these requirements: the Semi-Global-Matching (SGM) stereo algorithm

and the TV-L1 optical flow algorithm. In the following, both algorithms are

presented, followed by a detailed description of the Dense6D algorithm.

Throughout this chapter, we assume that the camera system is calibrated, and the

captured images are preprocessed by a rectification module that performs a lens-

correction and establishes a standard stereo configuration.

2.2.1 Dense Stereo

In [9] Hirschmüller presented an algorithm to obtain dense disparity maps by using

mutual information as a cost function and minimizing the energy functional

E ¼
X
x∈Ω

C x; dxð Þ

þ
X
x∈Ω

X
y∈Nx

p1T dy � dx
�� �� ¼ 1
� �

þ
X
x∈Ω

X
y∈Nx

p2T dy � dx
�� �� > 1
� �

(2.1)

with C(x,dx) being the matching cost function of the disparity dx at the image

position x of the image domainΩ ¼ xf g � 2, Nx the neighborhood of x, p1 and p2
the smoothness penalties, and T[�] a function returning 1 if the inner expression is

true and 0 otherwise. The first term simply sums all matching costs and can be

interpreted as the data term. The second and third terms act as smoothness terms:

Small deviations of neighboring disparities are penalized by a penalty p1, and large
deviations are penalized by the (constant) penalty p2. Since the penalty p1 is smaller

than the penalty p2, slanted or curved surfaces are preferred over disparity

discontinuities.

Since a global solution to the energy minimization problem is computationally

expensive, Hirschmüller proposed to resolve it approximately using dynamic pro-

gramming, thus giving it the name SGM. The recursive scheme for the costs of the

applied dynamic programming is defined as
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Lr x; dð Þ ¼ C x; dð Þ þ min

Lr x� r, dð Þ
Lr x� r, d � 1ð Þ þ p1
Lr x� r, d þ 1ð Þ þ p1

Lr x� r, ið Þ þ p2 i < d � 1

Lr x� r, ið Þ þ p2 i > d þ 1

�min
k

Lr x� r, kð Þ

8>>>><
>>>>:

(2.2)

along a path defined by the step vector r. The costs over multiple paths of different

directions (horizontal, vertical, and diagonal) are accumulated, and the resulting

disparity is then found as the one with the minimum accumulated cost. Since paths

of different directions are used, the typical streaking effects known from stereo

algorithms evaluating only one path can be removed almost completely.

The resulting disparity map is only pixel-discrete, because the costs are calcu-

lated for discrete disparity values only. To obtain sub-pixel accuracy, the costs near

the obtained minimal disparity are taken and the refined disparity is then found at

the minimum of the parabola passing through these points.

Although the original algorithm used mutual information to determine the costs

of a disparity match, the above energy minimization scheme can be used with

almost any matching score. In practice, the zero-mean sum of absolute differences

(ZSAD) and the Census operator [23] proved to be most robust even in situations of

large illumination changes and are also less computationally expensive compared to

the mutual information measure.

Solution of the minimization problem still remains computationally heavy, and a

straightforward implementation takes about 2 s to compute a VGA disparity map on

a state-of-the-art computer. Since the calculation of the cost cube requires access to

the predecessors, each path must be computed sequentially, rendering it unsuitable

for massively parallel machines like GPUs. However, Gehrig el al. proposed an

implementation on an FPGA, which is able to calculate the disparity map in about

30 ms [6]. The massive speedup was achieved by calculating the disparity map on a

sub-sampled image of half the resolution (overview image) and then combining it

with the disparity map calculated for a portion of the image computer at the full

resolution (fine image). This strategy assumes that distant objects of interest mainly

occur in the center of the image, which is typical for traffic scenes. The

implemented engine allows the computation of 64 disparity steps at each level,

which leads to a total disparity range of 128 pixels. The implementation supports

the ZSAD and Census matching costs, and the sub-pixel refinement is performed

using an equi-angular fit. The sub-pixel accuracy of the engine is 1/16 pixel due to

the use of fixed-point arithmetic. To remove mismatches, especially for partially

occluded pixels, a right–left verification step is performed additionally. Using a

CPU implementation with similar optimizations, the algorithm runs at 14 Hz [7].

The results for a typical traffic scene are displayed in Fig. 2.3.
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2.2.2 Dense Optical Flow

Dense optical flow algorithms calculate an optical flow vector for every pixel in the

reference image by introducing a regularization term and formulating the problem

as an energy minimization problem. Inspired by the seminal work of Horn and

Schunck [10], a diverse range of such techniques has been developed. For a detailed

review, the reader is referred to the surveys [2, 4, 22].

The method presented by Horn and Schunck solves the aperture problem

by introducing a smoothness constraint, with the assumption that nearby optical

flow vectors are similar in direction and magnitude. The optical flow field u ¼
ux; uy
� �T

: Ω ! 2 is found by minimizing the energy function

E ¼
Z

Ω

λ ρ x,u xð Þð Þj jn þ
X
i¼x, y

∇ui xð Þj jn
( )

dx (2.3)

with n ¼ 2. The parameter λ defines the weight of the data term with respect to the

regularization term. The data term ρ(x,u) is the constant brightness assumption,

which is defined as

ρ x; uð Þ ¼ I1 xþ uð Þ � I0 xð Þ (2.4)

with I 0;1f g : Ω ! 2 as the intensity function of the previous and current images,

respectively.

The resulting optical flow field yields very encouraging results in regions of

constant optical flow. However, due to the quadratic penalization in the smoothness

term, the algorithm tends to over-smooth the optical flow field at flow boundaries

and also over-weights the outliers. Therefore, Zach et al. presented in [24] a

computational method to solve the energy function for the case n ¼ 1, with

Fig. 2.3 Left: Traffic scene. Right: Three-dimensional visualization of the corresponding scene
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significantly improved results. However, in automotive scenarios the constant

brightness assumption is often violated, e.g., shadow casts or changes of the

exposure time, that results in incorrect optical flow estimates (Fig. 2.4b). Wedel

et al. has proposed a structure–texture decomposition of the input images to

overcome this problem [21]. Excellent results were obtained for image pairs

containing only small displacements. However, this decomposition removes vital

image information essential in estimating large displacements correctly (Fig. 2.4c).

Instead of a computationally expensive preprocessing step, we use a modification

proposed by Müller et al. in [15]. The key idea here is to replace the original data

term based on the constant brightness assumption with a robust data term ρr(x,u)
based on the Census operator:

ρr x; uð Þ ¼ h c1 xþ uð Þ, c0 xð Þð Þ (2.5)

Here, c{0,1}(x) gives the Census signature around the center pixel x in the previous

and current images, respectively. h(c1,c0) denotes the Hamming distance of the two

signatures. To solve the energy minimization problem, a variation of the framework

of Zach et al. is utilized.

Implemented on the GPU, this version runs in real time (25 Hz) with a Census

window of 3 � 3 pixels. Due to the reduced entropy caused by the Census operator,

the subpixel accuracy is slightly worse compared to the original version on ideal

images, but the increased robustness against illumination changes outweighs this

fact easily (Fig. 2.4d).

In practice, the algorithm is implemented using an image resolution pyramid of

five levels to estimate large displacement vectors, and 25 iterations are performed

on each pyramid level. In each iteration step, the data term is firstly minimized

using a first-order Taylor approximation, followed by a median filter and the

smoothing step.

2.2.3 Temporal Integration of the Motion Field

Having established a correspondence over time for an observed image point by an

optical flow or feature tracking algorithm, the 3D motion can be calculated directly

from the reconstructed 3D points and the known time interval. However, such

techniques suffer heavily from the immanent measurement noise, and the results are

not robust. Therefore, we use a Kalman filter to estimate the 3D position and 3D

motion of a point [5, 16, 17]. Due to the recursive nature of Kalman filters, the

estimation keeps improving continuously with each measurement and by updating

the state vector and its associated covariance matrix. This eliminates the need to

save a history of measurements and is computationally very efficient. Additionally,

Kalman filters take advantage of measurement uncertainties which can be consid-

ered when the flow field is evaluated for subsequent applications.

2 Dense 3D Motion Field Estimation from a Moving Observer in Real Time 25



Fig. 2.4 Estimated optical flow fields under strong illumination changes. (a) Original image. (b)

Without compensation. (c) With structure–texture decomposition. (d) Modified data term based on

the Census operator
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Using a stereo camera system, the 3D structure of the observed scene is readily

reconstructed by the stereo algorithm. Here, the left image point x ¼ (x,y)T is the

projection of a world point X ¼ (X,Y,Z)T. Expressed in homogeneous coordinates,

this relation is given by

x
y
d
1

0
BB@

1
CCA ’ Π � eX (2.6)

with the positive disparity d � d(x), related to the left image. The extended

projection matrix Π is written as

Π ¼
f x 0 cx 0

0 f y cy 0

0 0 0 b � f x
0 0 1 0

0
BB@

1
CCA � Rc tc

0 1

� �
(2.7)

with fx and fy as the focal lengths in pixel, (cx,cy)
Τ as the principal point in pixels,

and b as the base width of the stereo camera system. The rotation matrix Rc and

the translation vector tc describe the extrinsic orientation of the camera system to

the world and to the car coordinate system, respectively. To determine the 3D

position for an observed image point x with known disparity d, (2.6) has to be

inverted.

The state vector of the Kalman filter is defined as ξ ¼ X; Y; Z; _X; _Y ; _Z
� �

, the

combination of the 3D position and the 3D velocity vector. The system model

describes the propagation of the state vector ξ at the previous time step t � 1 to the

current time t, assuming a linear motion, which is described by the linear equation

ξt ¼ Re Δt � Re

0 Re

� �
ξt�1 þ te

0

� �
(2.8)

with Re and te denoting the rotation and the translation component of the inverse

motion of the observer, also called the ego-motion. Δt is the time between any two

time steps.

The measurement model of the Kalman filter describes the relation between the

measurement vector z ¼ (x,y,d)Τ, consisting of the current image position and

the disparity of the analyzed world point, and the state vector ξ. Here, only the

position components of the state vector are directly measured, and the relation

between the measured projection and the reconstructed 3D point is given by (2.6).

Since the measurement model must be formulated in Euclidean space rather than in

projective space, the measurement model is nonlinear:
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ez ¼ w

x
y
d
1

0
BB@

1
CCA ¼ Π �

X
Y
Z
1

0
BB@

1
CCA (2.9)

z ¼ 1

w

1 0 0 0

0 1 0 0

0 0 1 0

0
@

1
A � ez (2.10)

The current measurement vector zt is given as

zt ¼ xt; dtð ÞT, xt ¼ xt�1 þ ut (2.11)

with ut denoting the optical flow related to the previous position xt � 1 of the image

point and the corresponding disparity dt at the new image position xt. It is worth

noting that xt � 1 in (2.11) depicts the old measured image position at the previous

frame, not the projection of the filtered state ξt � 1. That means the image position

of the features is only determined by the optical flow algorithm, while the filtering

only influences the velocity and the disparity estimation. This way, undesired

low-pass filtering effects of the Kalman filter are avoided.

To estimate the 3D motion field for all pixels, we associate every pixel x̂ on the

discrete pixel grid with one Kalman filter K xtð Þ. In addition to the internal state of

the Kalman filter, the image position x is stored with subpixel accuracy in the same

data structure. At each time step, the prediction step of all Kalman filters is

performed first. Here, we use the inertial sensors of the vehicle—the speed and

yaw rate information—to calculate the ego-motion required for the state transition.

For the optical flow field ut, the Kalman filter fieldKt�1 x̂ t�1ð Þ is warped to the filter
field Kt�1 x̂ tð Þ, with x̂ t as the new pixel discrete image position, which is derived

from xt, i.e., calculated according to (2.11). After this resampling step, the Kalman

filters are updated according to the given measurement model, resulting in the

updated Kalman filter field Kt xtð Þ.
During the resampling step it is possible that not every pixel xt of the current

image is referred by a flow vector ut. In this case, a new filter has to be created with

initial values and connected to the empty pixel. An initialization based on the states

and the covariances of the surrounding pixels is beneficial.

If one pixel xt of the current image is referred by more than one flow vector set

ut, one either has to decide which one of the filters to use with the corresponding

pixel on the next frame or has to combine them into a new one. In this case, the

covariances of the concurring filters can be used as weights to generate the new

filter state. It is also reasonable to use the depth information so that the nearest filter

survives, while the others are reset. In our implementation, the filter which is

assigned as the last one remains alive. A more complex solution decreases the

real-time capability significantly and thus outweighs the benefit in practice.

To achieve maximum performance, this Dense6D system is implemented on a

GPU. The Kalman filter code is based on an implementation according to Bierman

[3] and was automatically generated by a code generator that exploits the sparse
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structure of our matrices. The overall system achieves real time (20 Hz) on VGA

images and consists of the following phases: image acquisition, rectification, stereo

computation on an FPGA, optical flow calculation and Kalman filter calculation on

the GPU, and visualization using a 3D viewer.

2.3 Evaluation

2.3.1 Evaluation on Ground Truth Sequences

In the first experimental phase, we study our vision system on a synthetic stereo

image sequence of 250 frames rendered with the ray tracing software Povray. The

images have a resolution of 640 � 480 pixels with an intensity resolution of 12 bits.

In our test sequence (Fig. 2.5), the camera moves through an artificial traffic scene

containing crossing and turning vehicles.

Figure 2.6a shows the ground truth motion field for a single image of this

sequence. The vectors point from the current position of the world point to the

position in 0.250 s. The velocity is in gray scale: white corresponding to 0.0 m/s,

whereas black encodes a velocity of 8.0 m/s. Figure 2.6b shows the result of a direct

combination of the stereo information and the optical flow. It is obvious that this

naive approach performs very poorly due to the temporal noise of the depth

estimation. Also, it should be noted that the prediction horizon had to be reduced

to 0.050 s since the calculated motion vectors are extremely noisy.

The result from the proposed Dense6D approach is shown in Fig. 2.6c. Here, the

prediction horizon is again 0.250 s. As it can be seen, the static points on the street

are correctly estimated, and the moving vehicles are clearly visible. The estimation

of the motion fields of the preceding and the crossing car is quite accurate. Only the

motion of the turning vehicle on the right seems to be underestimated. This is

primarily caused by the violation of the linear motion model and the integrated

Fig. 2.5 Stereo image pair of the ground truth stereo sequence used in this evaluation
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outlier detection method (3σ-test). All estimates violating the motion model are

rejected, which results in constantly re-initialized filters for the turning car. Hence,

the visible motion vectors of the turning car correspond mainly to filters that have

not yet reached their steady states.

The three-dimensional ground truth position and the motion field are used for the

calculation of the error distributions ρ[χ] with χ ¼ Z, _X, _Y , _Z as the quantities to

analyze and χ* as the corresponding ground truth. The error distributions, accumu-

lated over the whole image Ω and the whole sequence [0,T], are shown in Fig. 2.7.

Again, the superiority of the Dense6D system compared to the direct approach is

clearly visible.

In addition, the median of the error distribution of χ (ME) and the root mean

squared error (RMS).

Fig. 2.6 Estimated motion field of the described methods. (a) Ground truth. (b) Direct combina-

tion of optical flow and stereo. (c) Dense6D. The vectors point to the predicted 3D position in

0.250 s (a) and (c) respectively 0.050 s (b)
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are computed and given for the individual components in Table 2.1.

2.3.2 Real-World Results

The Dense6D system is deployed in our instrumented research car to evaluate its

performance in real-world scenarios. Figure 2.8 shows the estimated motion field

for a turning vehicle at a distance of about 30 m. Here, the observer was moving at a

speed of about 3 m/s. Besides the turning car, a pedestrian and the shopping cart of

the pedestrian behind are visible. In Fig. 2.9 multiple moving pedestrians are

visible. The observer was again moving at a speed of about 3 m/s while performing

Fig. 2.7 Error distributions of the Z-position and the velocity components calculated from the

direct combination of optical flow and stereo (solid) and the Dense6D method (dashed). (a)
Position component Z. (b) Velocity component Z. (c) Position component γ. (d) Velocity compo-

nent Z
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a strong turning maneuver. Since the Kalman filters estimate the motion with

respect to the fixed world coordinate system, the motion induced by the moving

observer is completely compensated.

Obviously, the proposed Dense6D method is directly applicable in real-world

scenarios and the excellent results on synthetic sequences shown in the previous

section are validated.

Table 2.1 Median error (ME) and root mean square error (RMS) of the Z-position and the

velocity components calculated by a direct combination of the optical flow and the stereo

information (direct) and the proposed Dense6D algorithm

Z (m) _X (m/s) _Y (m/s) _Z (m/s)

ME RMS ME RMS ME RMS ME RMS

Direct 0.0010 2.749 0.0462 42.0093 0.0004 15.370 0.4374 141.442

Dense6D 0.0104 1.068 �0.0065 0.3623 �0.0044 0.339 0.0107 2.538

Fig. 2.8 Left: Typical traffic scene. Right: Corresponding 3D motion field, estimated by the

Dense6D algorithm proposed in this chapter

Fig. 2.9 Left: Typical traffic scene. Right: Corresponding 3D motion field, estimated by the

Dense6D algorithm proposed in this chapter
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Future work will include a multi-filter implementation and an image-based

ego-motion estimation on the GPU as already known from [16]. In addition,

methods to estimate the uncertainties of the stereo and optical flow information

are currently under investigation.

2.4 Conclusions

In this chapter, we have presented the Dense6D system for dense, robust, accurate

motion field estimation operating in real time. We have combined the state-of-the-

art dense stereo and variational optical flow estimation techniques with Kalman

filters under a linear motion model assumption. Evaluation of the relevant error

quantities compared to simulated ground truth data shows that this approach shows

far better results in real time compared to what is known in the literature so far.

In real-world scenarios the technique shows its potential rather well. The Dense6D

system is currently implemented in an instrumented research vehicle and is

anticipated to become a key feature in emerging driver assistance systems.

Future work will include a multi-filter implementation and an image-based

ego-motion estimation on the GPU as already known from [16]. In addition,

methods to estimate the uncertainties of the stereo and optical flow information

are currently under investigation.
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Chapter 3

Intelligence in the Automobile of the Future

Arne Bartels, Thomas Ruchatz, and Stefan Brosig

Abstract One trend that has been apparent in the automobile market over recent

years is that more and more new vehicles from an ever-increasing number of

manufacturers have been available with driver assistance systems. Most of these

driver assistance systems relieve the driver of simple measuring and control tasks.

Intelligence in the vehicle, however, means more than just measuring and

controlling. The vehicle has got to acquire information, arrive at an interpretation

and establish contextual interconnections. To do this, it needs contextual informa-

tion and action options. This chapter presents an architecture for vehicle assistance

systems in order to acquire, process, and evaluate environmental data, thereby

bringing the objective within reach. Also, it presents certain selected projects by

Volkswagen Group Research in the area of automated driving which are based on

this architecture for environment perception.

Keywords Intelligent automobile • Driver assistance systems • Environment

perception • Sensor data fusion • Situation interpretation • Automated driving

• DARPA urban challenge

3.1 Definition of “Intelligence”

First of all, it is helpful to briefly address the concept of intelligence, because it is

through intelligent actions that future driver assistance systems will differentiate

themselves from current ones:
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Definition from a psychological perspective:

. . . an ability which makes it possible to deal with novel situations. It is expressed in the

acquisition, implementation, interpretation and establishment of relationships and contex-

tual interconnections. . .

(Bertelsmann Lexicon)

. . . a collective term for the cognitive capacity of human beings, i.e. ability to understand,

abstract, solve problems, apply knowledge and use language.

(wikipedia.de)

Definition from an information technology perspective:

. . . artificial intelligence (AI) refers to the emulation of human intelligence within informa-

tion technology.

Artificial intelligence is being increasingly used in engineering sciences and medical

technology. Possible application scenarios are: dealing with natural signals (understanding

images and detecting patterns).

(wikipedia.de)

The definition from a psychological perspective indicates that an intelligent

driver is essential in order for a vehicle to be guided on the public road. Even

simple driving maneuvers such as adjusting the vehicle’s speed to a speed limit as

well as complex maneuvers such as turning off at a busy inner city intersection

demand the acquisition, interpretation, and establishment of relationships and

contextual interconnections between the subject vehicle, other road users, and the

transport infrastructure (lane, traffic lights, road signs, etc.).

3.2 Perception Instead of Measurement

What significance do these definitions have for application in the automobile of the

future? First of all, the terms “acquisition” and “interpretation” in the definition

indicate the topic of “perception.”

3.2.1 Status of Current Driver Assistance Systems

The vehicles illustrated in Fig. 3.1 feature some of the highly developed driver

assistance systems that are currently available on the market. What all functions

have in common is that they have environment sensors which perform measure-

ments outside the vehicle.
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3.2.2 Environment Perception

3.2.2.1 Environment Sensors

In most cases, one environment sensor or environment sensor type is used for each

function and delivers a small number of measurements. Figure 3.2 shows some

examples of this.

• Radar sensors measure the positions (distance, angle) and speeds of objects

relative to the subject vehicle. For instance, these objects are represented by a

point model.

Fig. 3.1 Status of current driver assistance systems

Source:

Bosch

Source:

Bosch

Source:

Bosch

Sensor type Radar Camera Ultrasound

Opening angle
Range

20-70°
50-250 m

50-70°
50-100 m

30-50°
2-5 m

Measuring
parameters

Distance, angle,
relative speed

Contour, road
markings

Distance

Peripheral field
model

Fig. 3.2 Environment sensors in current driver assistance systems
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• Cameras measure the extent (contour) of objects and the lateral position of road

markings relative to the subject vehicle. Objects are represented by a rectangle,

for example, and the lane by two side lines.

• Ultrasound sensors measure the radial distance to the next object in each case.

The measuring parameters generated in this way, together with set point

specifications from the functions, are sufficient for carrying out simple distance

control or warning functions. In these particular situations, we can assume that the

systems are measuring and controlling rather than persevering and acting

intelligently.

3.2.2.2 Environment Modeling

In the near future, several environment sensors will be deployed in the vehicle and

their measurements can be bundled together (fused) to give more complex knowl-

edge on environment. In particular, the different aspects of the environment are

acquired in a suitable way by measurements and are represented in environment

models. An example of this is shown in Fig. 3.3: in the upper layer, environment

sensors including camera, radar, and ultrasonic sensors acquire features from the

environment. This information is supplemented by a digital road map.

In the subsequent layer, i.e., “environment model,” this information is fused to

represent certain features of the environment in this model:

• An occupancy array represents stationary objects, such as a parked car, the face of

a house, or a traffic island. The great diversity of geometries of stationary objects

means that an occupancy array is much better suited to this than, for example,

representing objects using rectangles. The features of a cell in this occupancy

array are, in the most simple case, “occupied” or “unoccupied.” This input data is

provided by camera, radar, and ultrasound sensors and supplemented by a digital

road map.

• Information about moving objects, such as vehicles or pedestrians, is merged

in an object fusion process. Representative features of an object include its

distance, speed, movement direction, size, and others.

Object fusion
(Obstacles)

Grid fusion
(Free areas)

Lane fusion
(Path)

77 GHz radar Ultrasonic sensors MapCamera
Environment

sensors

Environment
model

Source:
Bosch

Source:
Bosch

Source:
Bosch

Fig. 3.3 Environment model with sensor data fusions
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• Information about the current lane is merged in a lane fusion process.

Representative features of the lane include the number and width of lanes, the

type of marking lines, and the presence of marginal structures such as crash

barriers. This input data is provided by camera and radar sensors, supplemented

by a digital road map.

This fusion of unstructured features with objects and infrastructure data results

in an environment model to represent the vehicle’s environment very effectively.

3.2.2.3 Situation Interpretation

By using this environment model, it is now possible to establish contextual

interconnections among the individual features of the environment. In accordance

with Sect. 3.2, this is a definition of intelligence.

Now, actions can be derived on the basis of this understanding of the situation.

In principle, this can be done based on rules or knowledge. Rules can be derived

from the dynamics of the vehicle or accepted regulations of conduct such as the

road traffic regulations. Knowledge can be represented using learned data and

Bayesian networks, neural networks (NN), or support vector machines (SVM).

Three examples for intelligent, rule-based actions by driver assistance systems:

• The vehicle’s speed is reduced before a tight bend: the course of the road is known

from the lane fusion. Prior to the entry to the bend, this enables the vehicle’s

speed to be reduced so that the lateral acceleration in the bend does not exceed a

maximum value.

• The prohibition on overtaking on the right is observed (in countries where driving

is on the right). The object and lane fusion means that the road type (in this case,

motorway) and the locations and positions of other vehicles in the lane to the left

are known. It is possible to decelerate in good time when approaching these

vehicles in order to avoid overtaking on the right.

• Responding in good time to vehicles cutting in: the object and lane fusion means

that it is known that the vehicle on the right in front of the subject vehicle is

located on the acceleration strip of a motorway entry ramp. As a result, a change

of lane is about to take place. A safe distance can be set.

Figure 3.4 shows the architecture for environment perception that has been

expanded with the “situation interpretation” block.

3.2.3 Driver Modeling

3.2.3.1 Motivation

A driver model can sensibly supplement the aforementioned architecture for envi-

ronment perception. Three examples of this are:
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• Advance LDW control via distraction recognition: if the driver is distracted, a

warning sound comes on prior to lane departure.

• Advance ACC control by means of intention recognition of overtaking: if the

driver intends to overtake the vehicle in front, ACC brakes later when

approaching this vehicle.

• Lane assist function deactivation with hands off: the system switches to passive

mode if the driver takes his/her hands off the steering wheel during active lane

assist.

3.2.3.2 Sensors and Driver Model

Based on the representation of the environment model, Fig. 3.5 shows the draft for a

driver model. The sensors used are, for example:

• Driver monitoring camera for detecting eyelid movements, pulse, and head

position

• Biometric sensors for detecting pulse (electrocardiography, ballistocar-

diography, photoplethysmography, radar sensors, etc.) and hand position (capac-

itive, pressure sensors, etc.)

• Vehicle sensors (speed, steering angle, yaw rate, brake pedal, accelerator pedal,

radio navigation system, hands-free system, etc.) for detecting the hand posi-

tion, operating actions including ancillary activities and driving behavior

• Environment sensors (see Sect. 3.2) for detecting the driving behavior and

driving context

The data from these sensors is either used directly or after preprocessing for

determining driver state including fatigue, distraction, and driving ability as well as

for deciding on the driver’s intentions concerning maneuvers (lane change, turning

off, stopping, etc.) and route selection.

Object fusion
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Grid fusion
(Free areas)

Lane fusion
(Path)

77 GHz radar Ultrasonic sensors Map

Cut-in
prediction

Camera
Environment

sensors
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model

Situation 
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Source:
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Source:
Bosch

Source:
Bosch

Fig. 3.4 Situation interpretation
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3.3 The Intelligent Automobile

3.3.1 Trajectory Planning and Following

However, it is not sufficient simply to represent a situation interpretation and action

options in the vehicle in a suitable way. In order to allow an action to be performed

automatically, it is also necessary to plan an action, e.g., in the form of trajectory

planning. In the following section, the procedural principles for this are presented

taking the example of the “Golf GTI 53 + 1” research project. This is composed of

three phases (see Fig. 3.6): (a) environment detection, (b) trajectory planning, and

(c) automated driving along/following the planned trajectory.

(a) Phase 1: Environment detection

During an initial drive at a slow speed, the named vehicle measures a course

laid out by traffic cones with the help of a laser scanner. The course in this case

can be laid out however required/desired and also rapidly modified.

(b) Phase 2: Trajectory planning

Next, an ideal trajectory (in terms of completing the lap in optimum time) is

calculated for the course measured based on the physical driving properties of

the vehicle. The lateral planning function calculates the ideal line with regard to

the edges of the course. The longitudinal planning function calculates the

optimum cornering speeds and braking points.

Biometric sensors

Driving
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Driver status Driver intention
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Head
position

Pulse

Vehicle sensors
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context

Sensors

Driver 
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source
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news.de

source
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Fig. 3.5 Driver model with sensors
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(c) Phase 3: Automated driving

Finally, the course is driven in a reproducible manner within the limit area of

driving dynamics—the planned trajectory is provided as a set point specifica-

tion for lateral and longitudinal control. Firstly, this makes it possible to

reproduce the driving behavior of a professional driver; secondly, reproducibil-

ity of the driven trajectory means that it is possible to conduct an objective

vehicle evaluation on handling tracks with regard to the lateral dynamics.

3.3.2 Maneuver Prediction

The scenario represented above seems to function very well as long as nothing

unforeseen takes place, such as another vehicle cuts in suddenly to the subject

vehicle’s own lane. Therefore, intelligent driving also requires predicting the behav-

ior of other users on the road. In order to deal with the situation shown in Fig. 3.7

independently, it is necessary for the subject vehicle to consider at least four things:

Fig. 3.6 Trajectory planning and following taking the example of the “Golf GTI 53+1”

Fig. 3.7 Maneuver prediction
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(a) Vehicle status: The physical properties of other road users are shown here, e.g.,

in terms of longitudinal and lateral acceleration when changing lanes.

(b) Lane assignment: This shows the positioning of other road users in the

adjacent lane.

(c) Traffic rules and compulsory requirements: These show traffic regulations on

the road which other users must adhere to.

(d) Lane change intention: This shows the prediction and recognition of an immi-

nent lane change by other road users.

If these are taken into account, lane changes by other road users can be predicted

in principle and a special action kept in readiness.

3.4 Intelligent Vehicle Functions

As an example of intelligent vehicle functions, the following section presents a

number of research projects undertaken by the Volkswagen Group in the area of

automated driving. This is initiated with a brief motivation for functions which

support the automated driving.

3.4.1 Motivation for Automated Driving

Depending on the level of difficulty of the driving task, people today are more or

less capable of controlling a vehicle effectively (see Fig. 3.8). If the driving task

becomes very complex—e.g., when filtering into flowing traffic at motorway on

Difficulty level of driving task

Driver performance:
How good / accurate

is the driver

+

_

highlow

Driver Underload
Simple, monotonous driving task
e.g. long-distance driving, driving in nose-
to-tail traffic

Driver Overload
e.g. entering flowing traffic at a 
motorway on ramp, turning off 
at junctions, etc.

Optimum

Driving fun

Automated driving functions New driver assistance systems

Fig. 3.8 Applications for automated driving functions and driver assistance systems
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ramps, or turning off at junctions—then the support of new, intelligent driver

assistance systems can be helpful to the driver by providing targeted information,

assistance, or protection mechanisms. At the other end of the scale, there is the issue

of a driver underload when very simple driving tasks are involved—such as driving

in nose-to-tail traffic or on long haul. Here, research community believes that

support from automated driving functions can be sensible.

Another argument in favor of automated driving functions concerns the increas-

ing density of traffic on German and European motorways. The ACATECH study

shown in Fig. 3.9 shows that passenger traffic on German motorways is expected to

increase by 30 % and goods traffic by 45 %. Indeed, traffic volume on the German

motorways A2 or A6 will more than double or even almost triple. This means the

frequency of monotonous driving situations will increase in the future.

3.4.2 Examples of Automated, Intelligent Driving Functions

In 2005, “Stanley,” a driverless Touareg fitted out jointly with Stanford University,

won a race for robot vehicles in the Mojave Desert (NV, USA) which involved

driving over a previously unknown route of more than 200 km [1] (Fig. 3.10).

In 2007, “Junior” finished second in the DARPAUrban Challenge, a competition

for robot vehicles in an urban environment. The vehicles had to observe traffic rules

on unknown routes, park themselves, and drive out of the parking space; join into the

lanes with moving traffic; and overtake other robot vehicles autonomously [2].

Also, the Intelligent Car was presented to the press at a VW test facility close to

Wolfsburg in 2007. The iCar is capable of driving automatically on the motorway in

both smoothly flowing and stop-and-go traffic. It stays in its lane and can

Fig. 3.9 Trend in road transport 2002–2020
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autonomously perform lane changes, including overtaking maneuvers that have

been authorized by the driver. The iCar is based on a set of environment sensors

which are relatively simple in comparison to Stanley and Junior [3].

In June 2011, the Temporary Auto Pilot (TAP) was presented to the press at

Hällered in Sweden. Its environment sensors have been further simplified and the

environment model has been refined. The TAP can drive automatically on

motorways both in traffic jams and in flowing traffic at up to 130 km/h. Furthermore,

it adapts the vehicle’s curve speed prior to the curve entry; it complies with the

prohibition on overtaking on the right and keeps to the speed limits; and it monitors

the driver’s staten (fatigue, distraction) and performs an automated emergency stop

if the driver does not respond adequately to an overtake request of the system [4–6].

Research plans are underway to offer vehicles to the customers in the near future

that can drive automatically on selected routes, and thereby, they are expected to

improve safety on these roads.

3.5 Conclusions

Intelligence in the vehicle means more than just measuring and controlling.

The automobile of the future has got to acquire a number of pieces of informa-

tion, arrive at an interpretation, and establish the necessary contextual intercon-

nections. It needs contextual information and action options. A foundation is laid

Fig. 3.10 Examples of automated, intelligent driving functions
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for this by the usage of several environment sensors and key infrastructure knowl-

edge, as well as by the enforcement of rules. If a goal is formulated, then planning

can take place—generally with the help of a trajectory. As the last step, namely,

acting, nominal parameters are provided to one or more controllers. This process is

run through permanently and is adapted by updating the environment model as well

as predicting the behavior of other road users.

All the elements depicted have already been implemented successfully in differ-

ent embodiments of semiautomated driving. Automated driving could become a

reality for the end user with the availability and economy of several environment

sensors of different types to future vehicles.
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Chapter 4

Unmanned Ground Vehicle Otonobil:
Design, Perception, and Decision Algorithms

Volkan Sezer, Pınar Boyraz, Ziya Ercan, Çagri Dikilitaş, Hasan Heceoğlu,

Alper Öner, Gülay Öke, and Metin Gökaşan

Abstract Unmanned ground vehicles (UGV) have been the subject of research in

recent years due to their future prospective of solving the traffic congestion and

improving the safety on roads while having a more energy-efficient profile. In this

chapter, the first UGV of Turkey, Otonobil, will be introduced detailing especially

on its hardware and software design architecture, the perception capabilities and

decision algorithms used in obstacle avoidance, and autonomous goal-oriented

docking. UGV Otonobil features a novel heuristic algorithm to avoid dynamic

obstacles, and the vehicle is an open test-rig for studying several intelligent-vehicle

technologies such as steer-by-wire, intelligent traction control, and further artificial

intelligence algorithms for acting in real-traffic conditions.

Keywords Autonomous car • Dynamic obstacle avoidance • Sensor fusion

• Unmanned ground vehicle

4.1 Introduction

The unmanned ground vehicle (UGV) Otonobil1 (Fig. 4.1) is essentially an urban

concept small electric vehicle (EV) which is mechanically converted to modify the

driver–vehicle interfaces for autonomous operation. Hardware conversion process
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is divided into two main parts as mechanical and electrical modifications. Interface

circuit, interface software, additional power system, selection of the sensors, and

computer hardware are given in electrical modifications part. The multisensory

perception capabilities of the UGV are given in Sect. 4.2, and the decision

algorithms representing the artificial intelligence of the car is mentioned in Sect. 4.3.

The mechanical modifications on the vehicle are mainly performed on the brake

and steering wheel for autonomous operation. Two separate external servo motors

with a gear box are used to activate the steering wheel column and brake pedal, each

according to the commands sent by the main computer onboard. The modified

steering system can be seen in Fig. 4.2.

Additional mechanical modifications are in the form of extra components such

as the top unit for carrying the GPS, IMU, and RF unit and the cage design in front

of the car for supporting the LIDAR units.

Fig. 4.1 Unmanned ground vehicle Otonobil at Istanbul Technical University, TR [1]

Fig. 4.2 Automatic steering system for Otonobil [2]
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4.2 Multisensor Data Acquisition, Processing,

and Sensor Fusion

In this section, the multisensor platform in the UGV is examined together with data

processing and sensor fusion strategies and algorithms. The system architecture is

especially an important design consideration since the real-time performance of the

applications depends heavily on the communication and general architecture such

as distributed versus central structure and the communication protocols used.

Another aspect of multisensor platform on the vehicle is that the platform can be

used in both data acquisition/logging mode and real-time processing mode.

4.2.1 System Architecture

The sensors used in Otonobil are mainly for localization and state estimation

purposes. The list of the sensors is given in Table 4.1.

The full system with their connection schematics and communication paths is

given in Fig. 4.3. The computational components are mainly NI-PXI box used for

localization, mapping, and path planning; DSpace MicroAutoBox used for local

trajectory planning and tracking including low-level control of steering, braking,

and wireless communication; and IBEO ECU used for object and raw data of the

obstacles in front of the car. The related processing hardware and software structure

is given in Fig. 4.4. Using this structure, several software pieces work in their

own cycle time and the computation results are sent finally to local controller for

the operation of the vehicle. These pieces are mainly image processing, LIDAR

processing, vehicle state estimation, local mapping, motion planner, local trajectory

planner, trajectory tracking, and wireless communication.

For digital signal processing applications used in UGVOtonobil, it is essential to
have accurate, synchronized, and real-time logged dataset. This dataset can give

the opportunity to perform the implemented algorithms in simulations to observe

the performance and errors in the algorithm. First, we need the dataset in order to

be able to simulate the motion. Without obtaining the data first, it would not be

Table 4.1 Sensor list of Otonobil for state estimation and mapping

Sensor type Quantity Brand/model

Mapping sensors Laser scanner 2 IBEO-LUX

Laser scanner 1 SICK LMS 151

Camera 1 SONY-XCI-SXI100

Ultrasonic sensor 6 Banner-QT50ULB

State estimation sensors Differential GPS 1 Trimble SPS851 & SPS551H

Digital compass 1 KVH Azimuth 1000

IMU 1 Crossbow VG700AB-201

Optic speed sensor 1 Corrsys–Datron LF IIP
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Fig. 4.3 Sensor connection and communication schematic view

Fig. 4.4 Processing hardware and software structure of Otonobil [2]



possible to simulate the vehicle dynamics and kinematics with precision. The

acquisition, processing, and logging of the sensors are performed in real-time

module of LabVIEW since these applications require deterministic real-time per-

formance that general purpose operating systems cannot guarantee. After acquisi-

tion and processing are performed, the data should be transferred via global

variables since the data logging and the data acquisition processes are performed

in different loops so that data wiring is impossible. However, this may cause race

conditions because global variables could violate the strict data flow structure of

LabVIEW. To overcome such a condition like this, functional global variable

(FGV) or semaphores could be used. After the data is acquired and processed, it

is transferred via an FGV to the data-logging loop which runs parallel to the

acquisition and processing loop [3].

4.2.2 Sensor Fusion and Mapping

The sensor fusion and mapping algorithms are crucial in designing of a UGV

because all the perception and decision making depends on the results from such

calculations. For example, for path planning, an obvious map must be constructed.

In context of intelligent vehicles, on board obstacle detection is an essential part.

Obstacles must be detected in a correct and fast manner because the obstacles might

be dynamic quickly changing their location and velocities with respect to UGV.

Here, a sample algorithm for obstacle detection using laser scanner, camera, GPS,

gyro, and compass is detailed. First, the vehicle is modeled as a platform with

multiple sensors, and it is embedded in a simulation program (Webots) for

simulating real driving scenarios as seen in Fig. 4.5.

Since the UGV has multiple sensors and none of these sensors are adequate for a

precise measurement of the obstacle locations, a Bayesian inference method is used

for detecting and tracking the obstacles. Some simulation results are given in

Fig. 4.6 showing the obstacle map learning using different number of sensors.

Fig. 4.5 The simulation environment in Webots and UGV with virtual sensors
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4.2.3 Localization and Navigation

A fundamental capability of a UGV is navigation. Using the information from

various sensors, a UGV should be capable of determining vehicle’s kinematic

states, path planning, and calculating the necessary maneuvers to move between

desired locations. To reach this objective with desired reliability, multisensor data

fusion of various sensors is essential. For this objective, Otonobil is equipped with

sensors like IMU, GPS, motor encoder, digital compass, and optic speed sensor.

All the information from these sensors is fused using EKF algorithm given in

Fig. 4.7. Also a stand-alone orientation estimation algorithm is proposed in order

to have an accurate transformation of the information measured in vehicle’s body

frame into navigation frame. Full details of the work can be referred to for further

information [4].

4.3 Dynamic Obstacle Avoidance

In UGV Otonobil project, a novel obstacle avoidance method called “follow the

gap” is designed and it has been tested in the real scenarios. The method is easy to

tune and considers the practical constraints in real vehicle such as limited field of

Fig. 4.6 Bayesian learning results using one, three, and four laser sensors
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view for sensors and nonholonomic motion constraints. A brief explanation and

experimental results of the developed method is detailed here; however, the full

details of the work can be referred to for further information [5].

4.3.1 “Follow the Gap” Method

The method assumes that both the UGV and the obstacles are circular objects with

minimum diameter covering all the physical extensions of the real objects. “Follow

the gap” method depends on the construction of a gap array around the vehicle

and calculation of the best heading angle for heading the robot into the center of

the maximum gap around, while at the same time considering the goal point. The

algorithm can be divided into three main parts as illustrated in Fig. 4.8.

Maximum gap, the gap center angle, and the goal angle can be understood in

Fig. 4.9.

Fig. 4.7 Multisensor data fusion algorithm used in Otonobil

Fig. 4.8 Steps of the “follow the gap” method
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Gap center angle is calculated in terms of the measurable parameters using the

trigonometric relations as illustrated in (4.1)

ϕgap c ¼ arccos
d1 þ d2 cos ϕ1 þ ϕ2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d12 þ d22 þ 2d1d2 cos ϕ1 þ ϕ2ð Þp
 !

� ϕ1 (4.1)

In this function, the variables are defined as follows: ϕgap _ c is the gap center

angle, and d1, d2 are the distances to obstacles of maximum gap. ϕ1, ϕ2 are the

angles of obstacles of the maximum gap.

The final heading angle of the vehicle is computed using both center angle and

goal angle. A fusion function for the final angle calculation is given in (4.2):

ϕfinal ¼
α

dmin
ϕgap c þ βϕgoal

α
dmin

þ β
where dmin ¼ mini¼1:n dnð Þ (4.2)

In this function, the variables are defined as follows: ϕgoal, goal angle; α, weight
coefficient for gap; β, weight coefficient for goal; n, number of obstacles; dn,
distance to n-th obstacle; and dmi n, minimum of dn distance values.

The α value defines how much the vehicle is goal oriented or gap oriented.

Fig. 4.9 Maximum gap, gap center angle, and goal angle together with obstacles
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4.3.2 Experimental Results

Obstacle avoidance algorithm based on “follow the gap method” is coded using C

programming language. The real-time code runs in MicroAutoBox hardware.

The only tuning parameter, alpha, is selected as 20 in experimental tests as in the

simulations. The field of view of the LIDAR is 150� and its measurement range is

restricted with 10 m. The first test configuration is composed of seven static

obstacles with a goal point. In the second test scenario, “follow the gap” method

is tested using dynamic obstacles. The results of the dynamic obstacle tests are

given in Fig. 4.10 with a 3D graph showing the time-dependent locations of the

obstacles and their perceived trajectories by the vehicle.

4.4 Conclusions

An UGV named Otonobil is introduced in this chapter detailing on its mechatronics

design, perception, and decision algorithms. First the modifications on an urban

EV are mentioned briefly to convert the vehicle for autonomous operation. Then

the multisensory structure with several processing units is given to emphasize the

importance of data acquisition and real-time processing needs of such applications.

Finally a novel dynamic obstacle avoidance algorithm developed for Otonobil is

explained briefly. The vehicle will be used in similar research projects in the field of

active vehicle safety and intelligent vehicles in future work.

Fig. 4.10 Results of dynamic obstacle avoidance experiment. (a) Vehicle trajectory with obstacle

measurement. (b) Steering wheel reference and real angle
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Part II

Speech and Audio Processing



Chapter 5

Car Hands-Free Testing and Optimization:

An Overview

Hans-Wilhelm Gierlich

Abstract Testing of car hands-free systems needs to take into account the specific

environment in the car. This chapter describes a variety of test methods and

requirements applicable to car hands-free systems. The test scenarios describe the

test setup in the car and the different considerations for microphone and loud-

speaker placement. The performance parameters and test methods to achieve a

good conversational speech quality are introduced and described. Parameters

relevant in the single-talk situation, which mainly influence the speech quality in

the listening situation, are discussed. Special consideration is given to the back-

ground noise presence where additional perception-based methods are described.

Furthermore, tests and test conditions targeting the echo canceller performance in

different conversational situations are presented. Besides the narrowband case, a

special focus is given on wideband. The users’ expectations with regard to wide-

band are high, and the requirements for wideband car hands-free systems are high

as well. The differences from the narrowband implementations are discussed.

Finally, a method is given which allows a summary overview of a variety of results

in one view, helping to better visualize a variety of test results and giving an easy-

to-interpret overview of systems.

Keywords Car hands-free systems • Performance parameter • Noise cancellation

• Echo cancellation • Testing and optimization procedures • Speech quality

H.-W. Gierlich (*)

HEAD acoustics GmbH, Ebertstr. 30a, Herzogenrath D-52034, Germany

e-mail: h.w.gierlich@head-acoustics.de

G. Schmidt et al. (eds.), Smart Mobile In-Vehicle Systems:
Next Generation Advancements, DOI 10.1007/978-1-4614-9120-0_5,
© Springer Science+Business Media New York 2014

59

mailto:h.w.gierlich@head-acoustics.de


5.1 Introduction

Car hands-free systems were the first systems where advanced signal processing,

such as adapted echo cancellation, noise cancellation,, and similar other speech

enhancement techniques based on DSP implementations, was feasible due to the

willingness of customers to bear the cost of such systems and due to the fact that

space and power consumption for such implementations were not an issue. Conse-

quently, the need of qualifying these nonlinear and time-variant implementations

came up soon. Based on previously available analysis techniques [1–3], the first

advanced test specification—the so-called VDA Specification for car hands-free

[4]—was already created in 2001. Advanced tests using speech-like and speech

signals were used to evaluate the quality parameters of car hands-free systems.

Since that time new testing technologies—adapted to the more advanced signal

processing techniques—have been created and included in the standards step by

step. In 2008 this topic was also taken up by ITU-T. Besides the creation of an own

question within the Study Group 12 [5], a new focus group [6] was established

especially dealing with testing of speech technologies, mainly hands-free, in cars.

Car hands-free testing has to respect the user’s perception of speech in the

conversational situation as well as the complexity of the in-car environment. This

includes the car acoustics as well as the different systems in the car used in a car

hands-free setup. In modern cars, the different systems can be regarded as

subsystems and are typically distributed in various units within the car.

5.2 Car Hands-Free Systems

Modern car hands-free systems can range from a simple “one box” design to a

complex distributed system including microphone array techniques, distributed

signal processing, and multi loudspeaker setup integrated in cars. Furthermore, an

additional level of complexity is added by the fact that for the built-in car hands-

free systems different components are combined in the same car depending on the

car configuration ordered by the customer. The need to ensure compatibility and

quality of all the different configurations increases the test time as well as the test

complexity. From the customer perspective, built-in car hands-free systems are part

of the car and the same quality is expected just like other components in the car.

Moreover, it is expected that car hands-free systems work seamlessly with every

mobile phone used by the customers. This requires universal interfaces which

decouple the long product cycles in the car industry (typically 6–8 years) from

the very short and dynamic product innovation cycles in the mobile terminal

industry (typically less than half a year).

Figure 5.1 shows a block diagram of a typical car hands-free configuration as

found in vehicles. A microphone or a microphone subsystem is the first block. The

microphones may either be connected directly to the signal processing (hands-free
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telephone system) or via the bus systems to the audio bus (e.g., MOST-BUS) in the

car. On the receiver side, the car audio system is utilized. Car audio systems range

from simple amplified speaker systems to multichannel multi-speaker playback

systems. More advanced playback systems furthermore integrate sophisticated

signal processing for audio playback of music and other content. The audio

playback system may be connected either analog, digital, or by the car built-in

bus system to the hands-free telephone system which includes the hands-free signal

processing capability.

The connection to the radio network is typically made by the customer’s mobile

phone. The most common connection here is wireless (e.g., Bluetooth®). Other

possibilities are built-in radio units combined with the access of the user data by

special profiles (e.g., SIM-access profile with Bluetooth). The decoupling of the

radio network connection from the car hands-free system by means of a mobile

phone generally allows the highest flexibility in order to adapt to the fast develop-

ment cycles of mobile phones. However, due to the lack of sufficient specification

of performance parameters for audio characteristics on the wireless link between

hands-free system and the mobile phone, numerous problems may arise from

exchanging the mobile phone by the car user. The mobile phone connected to the

car hands-free system may impair all quality parameters as perceived by the user in

a conversational setting.

When assessing and optimizing car hands-free systems with regard to the speech

quality, various system configurations have to be taken into account. The VDA

Specification [4] and the ITU-T Recommendations P.1100 [7] describe in their
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main sections the complete measurement of the hands-free system from microphone

to the network termination point (NTP) and from the NTP to the loudspeaker.

However, in case of subsystems, it is often not sufficient to determine the quality

over the complete system. Often, it is useful to determine the speech quality perfor-

mance of the subsystems present in the car. Any subsystem may degrade the speech

quality if not properly implemented and not properly adapted to the associated

subsystems. Therefore, special sections for the measurements of microphones and

for the determination of the speech-related properties of the transmission between

the mobile phone and the car hands-free system are found already in [7] and [8].

Since this problem seems to be more complex, a more fundamental approach on the

definition of subsystems and their influence on the different speech quality aspects

are needed. A new specification dealing with car hands-free subsystems is currently

under development in the ITU-T Focus Group CarCom [6]. The system configuration

as considered by this group is shown in Fig. 5.2.

The subsystem approach can be used in order to diagnose different components

of a car hands-free system and to check the individual performance parameters of

the individual subsystems contributing to the overall quality of the car hands-free

system.

5.3 Speech Quality from the User’s Point of View

In general, the user’s perception of speech quality is independent of the communi-

cation device used. Whether the communication is made from the car, from mobile

to mobile, or from an office-type environment—the user perception generally does

not change. However, it should be noted that some degradations may be accepted

by the user in case he/she receives other benefits, such as mobility or having the

possibility of making phone calls legally in a car. Being able to communicate while

driving is certainly a clear benefit from the user’s point of view—if the communi-

cation is possible easily and without impairments. Nevertheless, the main task of

the user in the car is driving the car. Any distraction from his driving task, i.e.,

secondary cognitive loads, must be avoided. Initiatives to reduce the driver

Network Transport
Subsystem

Signal 
Enhancement

Subsystem

Ac. Environment Microphone Subsystem

Audio Subsystem

Transport Transport

Transport

Transport

Transport

TransportSignal  En-
hancement

Signal  En-
hancement

Short
Range

Wireless

Long
Range

Wireless

Signal En-
hancement

Echo

Fig. 5.2 Subsystems in car hands-free according to [6]

62 H.-W. Gierlich



distraction can be found in various entities. The ITU-T Focus Group “Driver

Distraction” [9] is dealing specifically with this topic. It can be stated that a

well-designed car hands-free system which allows a relaxed communication with

low listening and low talking effort certainly contributes to less driver distraction.

From the user’s point of view, the main quality parameters can be considered

as follows:

• Delay
Delay or latency is a very critical parameter in human communication.

As already described in ITU-T Recommendation G.114 [10], the conversational

quality degrades in case the mouth-to-ear delay is higher than 150 ms. Higher

delays result in increased conversational effort, increased unintended double

talk, and increased echo perceptibility.

• Speech Sound Quality
Speech sound quality has a variety of aspects and can be attributed to both the

send side and the receive side of the car hands-free system. While it is very

difficult to achieve a high speech quality in sending (due to the adverse car

environment, background noise, vehicular echo, and other impairing factors),

the user of the car hands-free system does not benefit from any improvements

achieved in sending directly. The user of the car hands-free system would only

profit indirectly by high speech quality in sending due to the increased conver-

sational quality and less complaints of the far-end partner. The speech sound

quality in receiving is mainly determined by the quality of the acoustical/audio

components in the car as well as by speech coding and signal processing

attributed to the receiving side.

• Loudness
Loudness of the perceived speech is predominantly contributing to customer’s

satisfaction. As speech sound quality, loudness is influenced by the complete

transmission chain between the sending and receiving processes. The part contri-

buted by the terminal is to be divided into the sending and the receiving loudness.

The telephone network is calibrated and adjusted to the nominal loudness based

on the ITU-T loudness ratings [11]. Therefore, it is essential that under nominal

conditions the Sending Loudness Rating SLR of the car hands-free terminal is

conforming to the nominal requirements cited in [4, 7, 8]. The loudness of the

received sound must be adjustable in such a way that a sufficient loudness level is

guaranteed under all driving conditions, it is not exceeding limits impairing the

user’s ear and in such a way that always a sufficient quality of the transmitted

speech is achieved. Different techniques to enhance speech loudness in receiving

such as AGC (automatic gain control), noise dependent equalization, and several

other techniques may be applied in order to achieve user satisfaction.

• Intelligibility
Sufficient speech intelligibility is the key factor of all speech communication.

All elements in a transmission chain may contribute to the degradation of speech

intelligibility: on the sending side, insufficient noise cancellation, other signal

processing, and speech coding; on the receiving side, speech coding and all types
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of speech enhancement algorithms. Furthermore, the quality of the acoustic

components (microphones, microphone arrays, and loudspeakers) may contrib-

ute significantly to the speech intelligibility issues. Although speech intelligibil-

ity is the basic requirement of the speech communication systems, no adequate

testing methodology exists up to now which may predict the speech intelligibil-

ity of modern communication systems in a proper and reliable way.

• Echo Performance
The echo performance of car hands-free systems in all driving situations is very

critical. Any impairment due to the vehicular and the far-end echo in a car hands-

free system will always be perceived by the user. Different from the other

impairments mentioned above, echo is a talking-related impairment. Further-

more, echo perception depends highly on the latency or the delay of the

connection (typically unknown since network delays of an individual connection

are unknown). Therefore, echo performance parameters always has to be

targeted to the worst case situation (high delay in the connection). Due to the

complex acoustic environment in the car, the driving noise, the wind noise, and

the large distance between the talker (driver or passenger) and the microphone,

vehicular echo cancellation still remains a major challenge.

• Double-Talk Behavior and Switching
Any switching (the remote communication partner stops speaking and the local

one starts, or vice versa) in the car hands-free terminal may result in reduced

speech quality and intelligibility as well as in a reduced conversation quality.

Switching may result in the suppression of syllables or even words and may

occur in sending or in the receiving direction. Switching may also occur in

double-talk situations where sending and receiving is present simultaneously.

Again, the impairments range from front end clipping of syllables—mostly

unnoticeable—to the suppression of complete words—objectionable to incom-

prehensible. Furthermore, especially in double-talk, additional echo may occur

which is not observed in single-talk instances. However, in double-talk, listeners

are found to be less sensitive towards echo [3, 12]. Echo produced in double-talk

situations often can be attributed to speech echo cancellers which may provide

insufficient echo loss in such situations.

5.4 Test Setup

The general test setup for car hands-free systems has been known for a long time

and did not change substantially over the years. It is shown in Fig. 5.3.

Whenever possible, the setup is made in the target car, i.e., the car where finally

the hands-free system will be installed. All components of the car hands-free

system remain intact. The driver is substituted by an artificial head according to

the ITU-T Recommendation P.58 [13]. The test is conducted in a lab-type quiet

environment. In order to simulate driving conditions, background noise is simulated

by a simulation block (Fig. 5.3). This background noise is prerecorded by driving

the car in different conditions. Typical driving conditions can be found in [7]. Often
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constant speed driving conditions are simulated at a minimum of 130 km/h but also

at different driving speeds. The background noise is captured from the car hands-

free microphone. It is recognized that this background noise simulation technique

may be limited to single microphone scenarios. When microphone arrays are used,

the simulation may be not of sufficient accuracy. In such an event, it is possible to

disconnect the microphone array, record the background noise picked up by the

individual microphones of the microphone array at their outputs, and fuse them

later electrically with calibrated levels into the microphone inputs jointly with the

test signals picked up by the microphone.

In order to simulate the radio network, a simulator—system simulator—is used

which connects the mobile phone or the RF unit of the hands-free system. The test

signals are inserted at the radio network simulators side—network termination

point (NTP)—as well as by the artificial mouth of the artificial head. In receiving,

the signal is picked up by one or both artificial ears of the artificial head placed at

the driver’s position. In sending, the signal is picked up at the network simulator

(at the NTP).

The test signals used for conducting the tests are as speech-like as possible. New

developments in ITU-T [14] define the acceptable speech signals for the measure-

ment of such devices. In addition, speech-like signals such as artificial voice [15],

Composite Source Signals (CSS), and others are used [14]. When applying these

test signals, it is always the goal to use a test signal which is as similar as possible to

the signal under real-world conditions but allows repeatable and reproducible

Subwoofer

HFT
(HF)

Background
Noise

Simulation

Radio-Network
Simulation

Test-
System

NTP

Fig. 5.3 Test setup for

car hands-free systems
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measurement as well. The basic analysis techniques used in conjunction with these

test signals are defined in [16].

5.5 Microphone and Loudspeaker Positioning

The positioning of loudspeaker(s) and microphones in the car is an essential

prerequisite to achieve a good overall quality. The placement should be considered

already in the planning phase of new cars because it is extremely difficult to change

the position of microphones or loudspeakers at a later stage. When positioning

microphones and loudspeakers, the following rules should be followed:

• The microphone should be as close as possible to the driver taking into account

the different driver positions.

• The microphone should be placed in such a way that a minimum of background

noise is picked up by the microphone.

• The positioning of loudspeaker relative to the microphone should be made in

such a way that the highest possible acoustical decoupling between the loud-

speaker and the microphone in the car in question is achieved.

• Loudspeakers should be placed in such a way that a high speech level is received

by the driver (and codrivers if required) but less energy is transmitted by the

microphone.

For all parameters, it should be considered that the effects mentioned above are

frequency dependent and should be validated across the complete frequency range.

The individual performance characteristics of the signal processing (echo cancella-

tion, noise cancellation) depending on frequency should be taken into account when

optimizing the loudspeaker and microphone positions. An example for the evalua-

tion of microphone in terms of the spectral content of the signal picked up at

different microphone positions is shown in Fig. 5.4. Based on spectral level

constraints for a given hands-free implementation, an optimum microphone posi-

tion can be found using such types of analysis.

5.6 Test Procedures for Assessing Speech Quality

All test procedures used for car hands-free testing have to consider various

conversational scenarios and the user’s perception of speech quality as described

beforehand. An overview about testing procedures used can be found in [2, 17] and

[18]. The relevant specific standards which form the basis of all car hands-free

testing procedures are as follows:

• VDA Specification [4]

• ITU-T P.1100 for narrowband car hands-free systems [7]

• ITU-T P.1110 for wideband car hands-free systems [8]
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All tests need to take into account the different conversational situations. For each

conversational scenario, a set of tests and the corresponding requirement set

are defined which are needed to cover the important aspects of speech quality

instrumentally. All tests should take into account the impact of signal processing

expected in car hands-free systems and the environmental conditions where the

system is typically used. Based on these facts, the typical tests can be grouped as

tabulated in Table 5.1.

Fig. 5.4 Spectral content of the microphone signal picked up at different microphone positions

Table 5.1 Tests as defined in the VDA car hands-free specification [4] and in ITU-T

Recommendations P.1100 [7] and P.1110 [8]

One-way tests

One-way tests with

background noise

Echo canceller (EC)

and double-talk (DT) tests

Delay

Loudness ratings

Variation of loudness rating

Sensitivity frequency responses

Speech quality during

single-talk

Listening speech quality

stability

Idle channel noise

Out-of-band signals

Distortion

Switching characteristics

Background noise

transmission after

the call setup

Speech quality in the

presence of background

noise

Quality of background

noise transmission

(with far-end speech)

“Comfort noise” injection

Echo performance with

and without background

noise

Initial convergence with

and without background

noise

Echo performance with

time-variant echo path

Switching characteristics

Double-talk performance
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5.6.1 One-Way Tests

The basis for a setup of a car hands-free system is the adjustment of the correct

loudness in sending and receiving direction. The loudness setting is based on the

widely used “loudness ratings” concept which is defined in ITU-T Recommenda-

tion P.79 [11]. In contrast to simple loudness measurements, loudness ratings define

a deviation from the loudness with respect to a reference connection. As for other

hands-free systems, the Sending Loudness Rating SLR for car hands-free systems

is higher (corresponding to lower sensitivity) than for handset terminals because it

is anticipated that the user will raise his/her speech level during a hands-free

conversation. The required SLR typically is 13 dB.

In receiving, the loudness rating RLR is defined as the nominal value in quiet

condition. When taking into account the correction factors in the calculation, the

required loudness rating in receiving is also higher (lower sensitivity) compared to a

handset telephone. The reasons for this higher requirement are the loudness

increase due to binaural listening as well as diffraction effects from the human

body which contributes to higher loudness in the receiving direction. In order to

compensate high driving noise, the loudness range variation is higher than for

conventional terminals. Typically, it is required to provide a volume control with

a loudness increase of at least 15 dB referred to the nominal value of RLR.

In general, the control range of the volume control should allow higher than 6 dB

signal-to-noise ratio for all signal and noise conditions.

A minimum prerequisite for achieving a sufficient speech sound quality is the

definition of sending and receiving frequency responses allowing a sufficient

margin for different implementations on the one side but providing the basis for

a good sound quality perception on the other side. The objective here is to have a

mostly flat response characteristic in sending, which allows for some high-pass

characteristics to reduce the ever present low-frequency background noise. Simi-

larly, in the receiving direction, the goal is a mostly flat frequency response

typically averaged over the left and right ear signal of the artificial head. The

artificial head in general is free-field equalized; however, more recent develop-

ments take into account a more diffuse character of the sound field in the car when

multiple loudspeakers are used. In such an event, the equalization of the artificial

head should be diffuse-field.

To cover artifacts from advanced signal processing techniques, such as speech

coding and adaptive signal enhancing processing techniques, the perception-based

speech quality measurements should be applied. Different methodologies and

models are available to determine the speech sound quality based on hearingmodels.

The most widely known method is PESQ, standardized in ITU-T Recommendation

P.862 [19], which is widely used in networks for speech quality monitoring.

However, PESQ does not consider the frequency response effects and their impact
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on the sound quality which may be significant. As a consequence, this measurement

cannot be used for acoustical systems including car hands-free systems. For car

hands-free systems, mostly TOSQA [20] is employed which is suitable for different

types of acoustical interfaces. More recent developments in ITU-T led to a new

standard for speech quality evaluation and it is described in ITU-TRecommendation

P.863 [21]: POLQA. POLQA, in general, should be applicable to acoustical

interfaces. However, in the characterization phase of this methodology, it was

found that the prediction accuracy of this model is too limited for hands-free

systems, and the current version is not recommended for use in car hands-free

systems (see [22]).

Besides the test of speech quality and loudness, the measurement of delay is one

of the most important tests. Delay is introduced by various components of the car

hands-free system, mainly by the radio transmission, the Bluetooth® transmission,

and the delay introduced by the car hands-free signal processing itself. As described

above, one-way delay should be less than 150 ms for a good conversational quality

communication in the car. This figure should cover all delay components measured

in the car hands-free system as well as the delay introduced by the connection and

the delay introduced by the far-end terminal. Since any of those components will

introduce delay impairing the conversational quality, low-delay implementation

should be preferred in each stage. For car hands-free systems, the delay recently

was defined as the round trip delay including the sending and receiving delays but

excluding the delay introduced by the radio network transmission. ITU-T

Recommendations P.1100 and P.1110 require a round trip delay TRTD of less

than 70 ms.

If any type of wireless connection between the mobile phone and the hands-free

system is used, a round trip delay of less than 120 ms is required taking into account

wireless transmission delay and including both the delay introduced by the car

hands-free system and the delay introduced wireless transmission.

The distribution of the delay is up to the manufacturer. Perceptually, it does not

matter whether the delay is introduced in the send or receive segment of the car

hands-free system. Therefore, depending on the type of signal processing used,

e.g., more delay can be spent on noise and echo cancellation in sending compared to

the signal processing in the receiving side. The delay measurement is carried out

separately in sending and receiving direction. The measurement is based on the

cross correlation between the input signal and the measured signal at the NTP (for

sending direction) or the artificial ear of the artificial head (in receiving direction).

Test signals used are typically Composite Source Signals as defined in ITU-T

Recommendation P.501 [14].

Often the signal processing inside the car hands-free systems is faced with

switching. This may be due to speech detection algorithms or artifacts of noise

cancellation. It is usually the effect of the non-linear processor of the echo cancel-

ler. From the user’s point of view, it is important that also low-level speech signals

are transmitted completely; in particular, initial syllables should not be suppressed.

Therefore, the measurement of switching characteristics is required which is

typically performed by using a sequence of Composite Source Signals slowly

5 Car Hands-Free Testing and Optimization: An Overview 69



increasing in level. A minimum threshold is defined at which the signal should be

transmitted completely. This threshold is 20 dBPa measured at the Mouth Reference

Point. Although less critical, the same type of switching behavior can be measured

in receiving.

5.6.2 Talking Related Impairments: Echo Canceller Tests

Echo is the main talking-related impairment found in hands-free systems. The

perception of echo depends on the delay inserted in the overall connection. The

higher the delay, the more sensitive human ear becomes against the echo. ITU-T

Recommendation G.131 [23] describes this relationship. From those experiments, it

can be seen that for delays higher than about 250 ms, a Talker Echo Loudness

Rating (TELR) of more than 55 dB is required. The measurement of echo loss in car

hands-free systems is based—as for any other terminal—on TCLw (Terminal

Coupling Loss weighted) according to ITU-T Recommendation P.79 [11]. The

measurement is performed by inserting a test signal into the receive channel at

the NTP of the test setup and measuring the echo at the send output (at the NTP).

The test signal used is typically artificial voice [15] followed by a highly com-

pressed speech and noise signal which allows to convey a sufficient amount of

energy into the system under test in order to measure reliably a TCLw of more than

55 dB. It is known that this type of test signal is not speech-like. Therefore,

new developments in ITU-T Recommendation P.501 introduce a test signal

which is a compressed real-speech signal [14]. Therefore, this test signal is used

for the determination of TCLw in newer standards.

The determination of the steady-state echo loss TCLw achieved by the echo

canceller is certainly not sufficient to characterize the echo cancellation perfor-

mance and to guarantee a sufficient echo performance in different situations. A very

important test to evaluate the adaptive performance of echo cancellers is the test of

the initial convergence. Ideally, no echo should be perceived during the complete

initial convergence phase of an echo canceller. Requirements as defined in ITU-T

P.1100 and P.1110 specify an echo loss of minimum 6 dB during the first 200 ms

and an echo return loss (ERL) of at least 40 dB which has to be achieved after 1.2 s

as depicted in Fig. 5.5.

Another important echo canceller evaluation test is performed with background

noise. Background noise—as the near end speech signal—impairs significantly

the performance of echo cancellers. Since in almost all cases, noise is present,

it is important to verify the initial convergence of the echo canceller with back-

ground noise especially at the beginning of a call. ITU-T P.1100 and P.1110 require

that the echo signal level shall not exceed the background noise level by more than

10 dB within the first 200 ms of the initial convergence. After 1.5 s any echo signal

has to be below the background noise level as shown in Fig. 5.6.
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The echo performance with a time-variant echo path is another important

parameter to be investigated. A time-variant echo path can be simulated in different

ways. The simplest test here is to just quietly open a door during the measurement

and observe the echo loss as a function of time during this period. Another more

precisely defined echo path variant can be found in [7] and [8]. Here, the

time-variant echo path is realized by rotating a reflecting surface positioned on

the codriver’s seat. Regardless of what type of time-variant echo path simulation is

used, it is advisable that the measured echo attenuation should not decrease by more

than 6 dB.
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Besides the methods described above, also a perception-based model for

predicting the annoyance of echo impairments is available. The details of the

method named EQUEST are given in [24] and [25]. The model takes into account

the masking effects by speakers’ voice and it detects echo structures in time and/or

in frequency which contribute to echo annoyance. As for other perceptual models,

the procedure determines an E-MOS score where E-MOS ¼ 5 represents no echo

impairment and E-MOS ¼ 1 represents a highly annoying echo.

5.6.3 One-Way Tests with Background Noise

Besides good echo canceller performance, one of the biggest challenges in car

hands-free systems is the handling of background noise. Even with optimum

microphone positioning, the distance between the user’s mouth and the microphone

is significantly higher than for mobile phone applications. As a consequence,

the SNR may be quite poor and some signal-enhancement technologies need to

be applied to reduce the background noise on the one hand and to enhance the

speech quality and preferably also the speech intelligibility on the other. It is well

known that for all signal-enhancement techniques there exists a trade-off between

reducing the amount of background noise and preserving or even better enhancing

the speech sound quality. Therefore, the preferred way of testing and optimizing

such techniques is perception-based models which separately determine the speech

quality and the quality of the transmitted background noise. Up to now the only

validated model for this purpose can be found in ETSI [26, 28]. The ETSI model

(also named 3QUEST) is perception-based and determines separately the speech

quality (S-MOS), the intrusiveness of the transmitted noise (N-MOS), and the

overall quality (G-MOS). The prediction performance of this model for hands-

free and car hands-free systems is described in [18] and [17]. The test setup for

determining those parameters is shown in Fig. 5.7.

Besides the undistorted speech signal, the speech plus noise signal, as picked up

by the car hands-free microphone, is required. Therefore, either a measurement

microphone is positioned close to the car hands-free microphone or alternatively an

equivalent electrical signal is used for processing. In order to achieve a sufficient

speech sound quality, S-, N-, and G-MOS should be as high as possible. A balanced

implementation leading to high values for all three parameters under different types

of background noise situations is preferred. It should be avoided from increasing

just the amount of noise reduction to such an extent that the speech sound quality is

degraded. ITU-T Recommendation P.1100 and P.1110 require an S-, N-, G-MOS

value of more than 3.0 for driving speeds under 80 km/h. For background noises

produced at driving speeds between 80 km/h and 130 km/h, the requirement is

relaxed to MOS � 2.5.
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5.6.4 Double-Talk Performance

Double-talk may occur in any conversational situation, especially during times

where exciting or controversial information is exchanged. The amount of double

talk in a conversation certainly depends on the emotional status and the temperament

of the users. Furthermore, the amount of double-talk increases if the end-to-end

delay is increased. High delay in conversation results in unintended double talk.

Since in modern communication scenarios, the delay is often unpredictable and/or

unknown, double-talk performance of car hands-free systems should be as good

as possible. The double-talk characterization framework can be found in ITU-T

Recommendation P.340 [12] and it is categorized into five different classes:

• 1—Full duplex

• 2a—partially duplex

• 2b—partially duplex

• 2c—partially duplex

• 3—non duplex

The double-talk behavior according to [3] is determined primarily by three

parameters:

• Attenuation range during double-talk in sending

• Attenuation range during double-talk in receiving

• Echo during double-talk

To determine the attenuation range during the double-talk, a sequence of

overlapping Composite Source Signals (CSS) inserted simultaneously in sending
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Fig. 5.7 Test setup for determining the speech quality in background noise using 3QUEST
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and receiving directions of the car hands-free systems under study. The test is

configured to focus on the transmission of the complete signal in sending while a

signal is present at the receive direction—attenuation range in sending—and the

opposite in receiving direction. More information on this can be found in [16].

A typical test signal for this test is illustrated in Fig. 5.8. As shown there, the

attenuation range can be determined by a level versus time analysis of the transmit-

ted CSS component which is referred as the CSS component inserted to the hands-

free system under test.

The determination of echo components during the double-talk requires the

insertion of test signals in sending and receiving simultaneously. Again, the basic

principle can be found in [16]. The employed test signals are voice-like signals, i.e.,

any voiced sound which has a comb-filter type spectrum. The signals inserted

simultaneously in sending and receiving sides are constructed in such a way that

they do not overlap spectrally. Thus, it is possible to separate echo components

from the near-end signal in the double-talk situation e.g., by applying a comb filter.

The principle of the test procedure is shown in Fig. 5.9.

The general characterization of the double-talk performance is defined in [12]

and is based on subjective evaluation of different types of attenuation range and

echo during double-talk instances. In Table 5.2 the requirements to be met are given

in order to claim the type of double-talk behavior achieved.

5.7 Wideband: Special Requirements

In wideband, the transmission bandwidth is increased to 8 kHz to cover almost

the complete frequency range of human voice. In general, a car is a great place for

the deployment of wideband systems because the user (receiving side) may benefit
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send output after 
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levelvs. time analysis
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attenuation range send
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Fig. 5.8 Test signal to evaluate of the attenuation range in sending direction during double-talk
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from the high-quality audio playback systems available in most modern cars.

In wideband, the speech quality is increased significantly but also the intelligibility

is enhanced up to 15% compared to narrowband platforms. The most important

fact, however, is the reduced listening effort of users when using the wideband

transmission in the presence of background noise in particular. In order to achieve a

sufficient quality in wideband, all relevant speech quality parameters have to be

reconsidered [29].
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Fig. 5.9 Principle of echo evaluation during double-talk

Table 5.2 Hands-free

terminal behavior as

described in ITU-T

recommendation P.340

Type 1

Type 2

Type 3Type 2a Type 2b Type 2c

TELRDT [dB] �37 �33 �27 �21 <21

AHsdt [dB] �3 �6 �9 �12 >12

AHrdt [dB] �3 �5 �8 �10 >10
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The minimum requirement to achieve a good speech sound quality in wideband

is the extension of the frequency response requirements. The testing methodologies

are exactly the same as in narrowband. However, frequency tolerance masks are

extended up to 7.6 kHz and down to 100 Hz (at least) in sending as well as in

receiving to guarantee a wideband user experience. Minimum requirements can be

found in [8].

In order to cover processing and codec-related impairments, it is advisable to

investigate also the speech sound quality by an adequate perception-based model

(also known as perceptually weighted model in some circles). As in narrowband,

TOSQA [20] is used up to now for this purpose. However, the new ITU-T method-

ology POLQA [21] could be applied in the near future. However, the same

constraints apply as described in the narrowband section. So currently this is not

yet the method of choice.

Due to the fact that a favorable user experience requires an extension of the

frequency range not only in the upper-frequency region (8 kHz) but also in

the low-frequency range (minimum 100 Hz). Hence, the impact of background

noise becomes more severe. While in narrowband a high-pass filter in the transmit-

ting side already helps to reduce the impact of the background noise significantly,

however, these technologies cannot be applied in wideband. Aggressive high-pass

filtering would critically impact the speech quality perceived by the user [17].

Therefore, advanced microphone and noise canceling techniques are required in

order to achieve a good speech sound quality and to reduce simultaneously the

background noise in wideband. For testing, the above mentioned S-, N-, G-MOS

tests are available in ETSI EG 202 396-3 (3QUEST) [26]. This perception-based

model allows the measurement of speech, noise, and the overall quality in the

same way as it is done in narrowband systems but taking into account the special

requirements in wideband.

The performance of echo cancellation in wideband also deserves special

considerations. The extension of the frequency range up to 8 kHz includes a

frequency range where the human ear is most sensitive. The hearing threshold

shown in Fig. 5.10 has a maximum sensitivity in the frequency range around

3–5 kHz. As a consequence, any high-frequency echo contributes to echo perception

in a significantly stronger way than the low-frequency echoes. Subjective investi-

gations reported in [17] show that in this frequency range an echo loss of at least

46 dB is required to ensure a good echo performance with transmission delays up to

300 ms. The required echo loss versus frequency is shown in Fig. 5.11.

Further investigations are needed in order to define new wideband-related testing

technologies for echo versus time, initial convergence, and convergence in the

presence of background noise. Currently, the same testing techniques are applied as

in narrowband but with extended analysis frequency range.
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The same observation is true for testing of the double-talk performance in

wideband systems. Due to the lack of new subjective experiments, testing at present

is based on narrowband technologies with extended frequency range.
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5.8 Overall Quality Representation:

“One View Visualization”

In the testing and qualification phase of car hands-free systems, a variety of

parameters need to be optimized and checked. Only experts in the field are in a

position to fully understand and interpret the obtained results. Although often

required, due to the complexity of the problem, it is impossible to qualify a car

hands-free system by a single number. A compromise which allows an overview

quality representation also for non-experts and an easy-to-perform comparison of

different implementations is the “one view visualization” as standardized in ITU-T

Recommendation P. 505 [27]—sometimes also called “quality pie.” In this Recom-

mendation a general principle is defined on how to arrange and display the results of

various speech qualitymeasurements. This principle can be applied to car hands-free

systems as well and is also standardized in [4]. Figure 5.12 shows an example of a

representation taken from [4].

On the right hand-side of the diagram in Fig. 5.12, the most relevant quality

parameters for sending and receiving in single-talk are displayed. Basic information

on echo loss (TCLw) can be found in the lower left part of the diagram followed by

Fig. 5.12 One-view visualization of the important car hands-free parameters (from [4])
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the type of double-talk performance. In the upper left part of the diagram, however,

information about the car hands-free performance with background noise is shown.

Often these diagrams are complemented by the 3QUEST test results under different

driving conditions.

It is clear that such representation does not catch each and every quality aspect of

car hands-free implementations. However, if needed additional diagrams can be

created focusing on different quality aspects. It is also possible to condense

different measurement parameters in one diagram slice if a method for perceptually

correct combination can be found. As an example, this is done for double talk.

5.9 Conclusions

Car hands-free testing and optimization remain a challenging topic. Achieving the

best possible speech quality is only possible if all components of a given car are

optimized to the specifics of the car under consideration and the different conditions

of use. Algorithms have to be highly flexible and adaptive and the amount of testing

and optimization work remains high despite the availability of sophisticated testing

and optimization procedures.

Additional challenges arise if wideband systems are to be deployed. Mainly for

noise and echo cancellation, the requirements to achieve a good user experience are

quite demanding and careful testing and optimization are required to achieve a

noticeably better quality compared to narrowband.
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Chapter 6

A Wideband Automotive Hands-Free System

for Mobile HD Voice Services

Marc-André Jung and Tim Fingscheidt

Abstract Wideband mobile telephony supporting a speech bandwidth from 50 to

7,000 Hz gets more and more employed. These so-called mobile HD Voice services

consequently find their way into automobile applications. In this chapter we

present a wideband hands-free system for automotive telephony applications with

a synchronously adapted acoustic echo canceller and postfilter. It is based on a

frequency domain adaptive filter approach and Kalman filter theory and makes use

of a generalized Wiener postfilter for residual echo suppression and noise reduction

in a consistent way. To provide a high convergence rate in case of time-variant echo

paths, the echo canceller with very robust double-talk performance is supported by

a fast converging shadow filter, which allows for a good tracking performance.

A decimation approach is used to decrease algorithmic delay and computational

complexity without loss of quality. Experimental results with car cabin impulse

responses show good echo cancellation capabilities with fast convergence times

along with extraordinary full-duplex performance while still keeping an almost

untouched speech component in the converged state.

Keywords AEC • FDAF • Hands-free system • HD voice • Shadow filter

• Wideband

6.1 Introduction

Mobile HDVoice services supporting wideband speech (50–7,000 Hz) as opposed to

narrowband speech (300–3,400 Hz) allow for a high-quality and high-intelligibility

telephony experience. Syllable articulation (i.e., human syllable recognition rate)

increases from 90 % to about 98 %, making the use of spelling alphabets for
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proper names widely obsolete. Apart from proper names, in narrowband speech

transmission listeners typically are able to employ their language model in order to

reconstruct missing syllables in an interpolative fashion. This, however, does not

work sufficiently well in the case of foreign-language conversations. Also in

situations with a high level of background noise—as it is typical formobile telephony

in general and automotive telephony in particular—the further drop in syllable

articulation cannot be compensated sufficiently for. All these aspects were driving

forces for the worldwide deployment of mobile wideband speech services in the past

years, commonly being known as mobile HD Voice services.

High-quality hands-free capabilities are a greatly demanded feature of telecom-

munication systems in office, home, or car environments and—referring to the

latter—are even mandatory in many countries. Several state-of-the-art algorithms

have been developed to fulfill technical requirements, such as full-duplex speech

transmission capability, sufficient acoustic echo cancellation even for highly

time-variant echo paths, and minimal speech distortion (e.g., [1–6]). Nevertheless,

those requirements often collide with practical restrictions such as low complexity

and algorithmic delay [7–9].

Hands-free systems are usually designed to cope with signal degradations

stemming from the acoustic environment. These degradations are typically caused

by acoustic echo and additive noise, leading to reduced intelligibility and speech

quality. This is specifically the case for long round-trip delays or high noise

immissions, as can be often found in automotive mobile phone usage. As a

countermeasure, acoustic echo cancellers (AECs) [1, 6, 10, 11] and postfilters

(PFs) for residual echo suppression (RES) [12, 13] and noise reduction

(NR) approaches [14–16] have been proposed, typically working at a sampling

rate of fs ¼ 8 kHz (narrowband speech).

With upcoming mobile wideband speech transmission (HD Voice services) at a

sampling rate of fs ¼ 16 kHz, there are a couple of obstacles to be solved when

designing a hands-free system. The doubled sampling rate causes a non-negligible

increase of algorithmic complexity and can also lead to other unwanted effects

when porting an algorithm from narrowband to wideband [9].

Typical hands-free system representatives in the time domain are based on the

normalized least mean square (NLMS) [17], affine projection (AP) [17–19],

recursive least squares (RLS) [20], or Kalman algorithm [6, 21]. These approaches

usually feature a simple algorithmic structure with the ability to work on a

per-sample base. On the one hand, this usually leads to zero or low delay; on the

other hand, modeling of longer impulse responses (IRs) can lead to exceedingly high

computational complexity if the filter is adapted in every single sample. This

problem can be addressed by block processing, where the filter is only adapted

once per block of samples. Albeit computationally efficient, this block processing

leads to algorithmic delay and a slower convergence rate. Due to the fact that most of

these algorithms make the assumption of a spectrally white echo signal but speech

signals usually still have some inherent correlation, adaptation can only take place in

the limited direction of the error signal vector. This decreased convergence rate can

partly be avoided by using some kind of decorrelation technique for the excitation
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signal [6].Whereas convergence speed can be increased especially with the RLS and

Kalman algorithms, tracking performance often still suffers since adaptation of a

well-converged system model to IR changes only takes place in little steps

[7]. Another well-known problem of time domain AEC approaches is the poor

double-talk performance. Presence of near-end speech or noise leads to undesired

adaptation and therefore misestimation of the true impulse response. To avoid this,

a—more or less—robust double-talk detection (DTD) scheme is often applied [7],

which triggers an adaptation speed reduction during double-talk.

Adaptation in a transform domain like subband or frequency domain may

circumvent some of the abovementioned deficiencies. However, it should be

mentioned that transformation domain processing may introduce other, possibly

more perturbing, problems. Having said this, these algorithms may be a very good

choice if applied appropriately. Filter adaptation in the subband domain, for

example, can lead to a significantly reduced computational complexity if long

impulse responses have to be modeled. This is made possible by splitting the

fullband signal into several subbands by means of a filter bank. Due to this, each

of the subband signals is analyzed separately, whereas subsampling can be applied,

and individual filter lengths for each subband can be chosen. Furthermore, conver-

gence speed is highly improved since each subband signal can be esteemed as

spectrally white. It should be considered, however, that algorithmic delay increases.

Note that also low-delay filter-bank approaches exist, e.g., [4, 22]. However, the

problem of poor double-talk performance with the need of DTD often remains.

Furthermore, the design of a filter-bank analysis and synthesis structure is typically

realized with prototype filters [23], which might be tedious to some extent.

As an alternative to these subband algorithms, the so-called frequency domain

adaptive filter (FDAF) algorithms can be used [24]. Adaptation of the impulse

response model and estimation of the echo signal is performed in the frequency

domain. This allows to compute frequency-dependent parameters like optimal

stepsize vectors. In our case, the inversely transformed estimated echo signal is

then used to filter the microphone signal in the time domain [3, 25]. Due to the

inherent block processing of the fast convolution in the frequency domain, in many

cases complexity can be drastically decreased. A further significant advantage is the

extraordinary double-talk performance of some FDAF algorithms, which makes

DTD obsolete [3, 25, 26]. Furthermore, they are able to preserve a very good quality

of the speech component in the uplink (send) path. Unfortunately, having to buffer a

block of samples for the discrete Fourier transform (DFT) introduces delay in the

uplink signal path. As another drawback, large DFTs, as they are needed to

sufficiently cover long impulse responses, also lead to comparably slow conver-

gence times.

Since AEC filters typically achieve a yet insufficient amount of echo suppression,

a subsequent postfilter is needed. This also covers nonlinear echo components and

can additionally serve as NR filter [12]. Whereas time domain AEC algorithms are

frequently complemented with time domain gain loss control (GLC) postfilters

[5, 7, 27], transform domain AEC filters often make use of postfilters within

the same domain [13, 22, 26, 28, 29]. Here, the group of GLC postfilters could be
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shortly described as computationally efficient with the drawback of poor double-talk

performance, while the group of frequency domain or subband postfilters often show

better performance—especially during double-talk—with the drawback of addi-

tional signal delay.

The focus of our work lies in a wideband hands-free system for automotive

applications with relatively short impulse responses. In contrast to the mobile use

case, here the demand of very low complexity is of subordinate importance. A well-

balanced double-talk performance, on the contrary, is a crucial point to keep the

mental distraction of the driver at a low level. Additionally, algorithmic delay

should be kept low to avoid a large contribution to the round-trip delay. Due to

its excellent double-talk performance with still tolerable algorithmic delay, an

FDAF-based Kalman filter algorithm [3, 25] is chosen for the following investi-

gations and implemented for wideband speech. The algorithm is supplemented with

a shadow filter (SF), which leads to a drastic reduction of convergence time.

Furthermore, a modified postfilter setup is suggested, which is able to significantly

reduce algorithmic delay at a given echo suppression by means of decimation in the

DFT domain.

In Sect. 6.2 the FDAF hands-free algorithm based on [3, 25] is presented but

already adopted to wideband speech. Section 6.3 presents the latency reduction by

decimation in the DFT domain as well as the shadow-filter-enhanced FDAF

algorithm. In Sect. 6.4 experimental results of single- and double-talk simulations

are given. Echo suppression, convergence behavior, algorithmic delay, and quality

of the speech component are discussed.

6.2 State-of-the-Art FDAF

We have motivated before that hands-free systems with adaptation of the filter

coefficients in the frequency domain are generally a good choice if low computa-

tional complexity for long impulse responses, good double-talk performance, and

little degradation of the near-end speech signal component are desired. The adaptive

filter is placed in parallel to the electroacoustic echo path or loudspeaker-enclosure-

microphone (LEM) system, trying to estimate a replica echo signal. In case of the

FDAF algorithm, the adaptation of the filter coefficients and the computation of

the estimated echo signal are performed in the frequency domain.

As depicted in Fig. 6.1, in a digital model of the LEM system, the echo signal

d(n) with sample index n is the result of the convolution of the far-end signal

x(n) with the LEM impulse response. The microphone signal is then given by

y ¼ [y(n � R + 1), . . ., y(n)]T, with R being the frame shift, also called block

length, [�]T being the transpose, and y(n) ¼ s(n) + n(n) + d(n), whereas s(n) is the
near-end speech signal and n(n) is the noise component.
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Then the loudspeaker signal x(n) is transformed into the DFT domain by

Xl ¼ X l; 0ð Þ, . . .X l; kð Þ, . . .X l,K � 1ð Þ½ �T
¼ DFT x n� K þ 1ð Þ, . . . ,x n� Rð Þ,x n� Rþ 1ð Þ, . . . ,x nð Þ½ �T

n o
,

with frame index l and frequency bin index k. By making use of the FDAF approach

based on Kalman filter theory, the DFT domain adaptive filter coefficients Ŵ 1 l; kð Þ
are estimated [26, 28]. An estimate of the frequency domain replica echo signal is

then computed by

D̂ l; kð Þ ¼ Ŵ 1 l; kð Þ � X� l; kð Þ (6.1)

for k ¼ 0, . . ., K � 1, with (�)* being the conjugate complex operator. Its inverse

DFT (IDFT) delivers . . . ; d̂Tl

h iT
¼ IDFT D̂ l

� �
, with D̂ l ¼ D̂ l; 0ð Þ, . . . , D̂ l,K � 1ð Þ� �T

and d̂ l ¼ d̂ n� Rþ 1ð Þ, . . . , d̂ nð Þ� �T
, which is then used to compute R samples of

an error signal

e nð Þ ¼ y nð Þ � d̂ nð Þ: (6.2)

The residual echo r nð Þ ¼ d nð Þ � d̂ nð Þ is contained in the error signal as e(n) ¼
r(n) + s(n) + n(n). The DFT error signal

LEM 

Coefficient 
Adaption 

Postfilter 

AEC
From far end

To far end 
D

F
T B

uf
fe

r 
0…

0 

O
L

A
 

ID
F

T
 

Buffer
DFT

Linear.
IDFT

0…0
DFT

E
ch

o 
P
at

h 

B
uf

fe
r

∗

∗

∗

Time domain 
Frequency domain 

Sample index 
Frame index 
Frequency bin 

IDFT

Fig. 6.1 State-of-the-art FDAF-based hands-free system

6 A Wideband Automotive Hands-Free System for Mobile HD Voice Services 85



El ¼ DFT 0TK�R�O; e�l�1

� �T
; eTl

h iT� 	
(6.3)

with 0K � R � O being a (K-R-O)-dimensional zero vector, e�l�1 ¼ [e(n � R �
O + 1), . . ., e(n � R)]T, and el ¼ [e(n � R + 1), . . . e(n)]T is made available for

the filter coefficient adaption and for postprocessing, andO being the overlap length.

Being subject to the postfilter, the inherent residual echo R(l,k) and noise signal

N(l,k) are suppressed by means of a Wiener postfilter in the frequency domain

according to

Ŝ l; kð Þ ¼ Ŵ c
2 l; kð Þ � E� l; kð Þ, (6.4)

with the constrained postfilter coefficients Ŵ c
2 l; kð Þ [1]. Based on the unconstrained

coefficientsŴ 2, l ¼ Ŵ 2 l; 0ð Þ, . . . ,Ŵ 2 l; kð Þ, . . . ,Ŵ 2 l,K � 1ð Þ� �T
, a linear constraint is

obtained using ŵ 2, l ¼ IDFT Ŵ 2, l

� �
to assemble

ŵ c
2, l ¼ ½ŵ 2, l n ¼ K � Np=2

� �
, . . . , ŵ 2, l n ¼ K � 1ð Þ,

ŵ 2, l n ¼ 0ð Þ, . . . , ŵ 2, l n ¼ Np=2� 1
� �

, 0TK�Np
�T , (6.5)

which contains the linear phase postfilter impulse response of length Np � K � R
� O. The constrained K-point DFT domain postfilter coefficients are then

computed by Ŵ c
2, l ¼ DFT ŵ c

2, l

� �
.

As shown in the coefficient adaption block in Fig. 6.1, the spectral filter

coefficients for the echo canceller and Wiener postfilter, Ŵ 1 l; kð Þ and Ŵ 2 l; kð Þ ,
are synchronously estimated. This is done by introducing a Markov assumption for

the time-varying echo path and exploiting Kalman filter theory [3, 26].

After postfiltering, inverse DFT, and subsequent overlap-add (OLA), the

enhanced speech signal ŝ nð Þ is transmitted to the far-end communication partner.

In this setup, an algorithmic delay of Np/2 � (R + O) + R ¼ Np/2 � O samples

is introduced with Np/2 accounting for the linear phase constrained postfilter,

(R + O) being the number of nonzero samples in IDFT{El} and R being the

frame buffer for block processing.

6.3 New Latency-Reduced FDAF with Shadow Filter

6.3.1 Latency Reduction by Postfilter Decimation

Apart from the previously mentioned frame buffering, the linearly constrained

postfilter is the only contributor to algorithmic delay. As it can be seen by compar-

ing Figs. 6.1 and 6.2, we now introduce decimation in the DFT domain to reduce the
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number of DFT bins, which in turn reduces algorithmic delay and computational

complexity. In our case, decimation is performed according to

êW 2, l
ek


 �
¼

Ŵ 2, l k ¼ 0ð Þ, for ek ¼ 0,

W 2, l
ek


 �
, for 1 � ek � eK=2� 1,

Ŵ 2, l k ¼ K=2ð Þ, for ek ¼ eK=2,

8><
>:

(6.6)

with W 2, l
ek


 �
¼ 1

3
Ŵ 2, l k ¼ 2ek � 1


 �
þ 1

3
Ŵ 2, l k ¼ 2ek


 �
þ 1

3
Ŵ 2, l k ¼ 2ek þ 1


 �
,

and êW 2, l
ek


 �
for ek > eK=2 being defined via the conjugate complex property.

Additionally, the decimated DFT error signal eE l;ek

 �

is computed in analogy to

êW 2, l
ek


 �
. This decimation in the DFT domain therefore leads to a reduced algo-

rithmic delay contribution of the constrained postfilter of eNp=2� Rþ Oð Þ with eNp

� eK � R� O at even lower computational complexity. Furthermore, due to the

inherent spectral smoothing of the postfilter coefficients f̂W c

2, l, speech quality can be

improved by reducing spectral artifacts.

6.3.2 Shadow-Filter Approach

The FDAF algorithm shows an excellent double-talk performance even in noisy

conditions, without the requirement of an explicit DTD. As a drawback, however, at
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a sampling rate of 16 kHz, it sometimes cannot achieve a sufficient convergence

speed, especially in the case of long filter lengths or highly time-variant echo paths.

Luckily, echo path variations in the car cabin are typically not as dynamic as, e.g.,

in a mobile phone application. Nevertheless, possible solutions for a required faster

convergence are the reduction of the filter length (which leads to additional residual

echo if the LEM impulse response is not completely covered by the filter) or a faster

adaptation rate (which may decrease the double-talk performance). As an alterna-

tive, we propose here a shadow-filter approach to overcome this drawback of the

FDAF approach [7].

As depicted in Fig. 6.3, we enhance a slowly but accurately converging reference

filter (RF) in the foreground with a rapidly converging shadow filter (SF) in the

background. The faster convergence of the shadow filter can be achieved by using a

shorter filter length and/or different parameters, e.g., for the Markov model of the

time-varying echo path [3]. The thereby accelerated shadow filter is better able to

follow faster changes of the impulse response and thus leading to a lower error

signal energy during highly time-variant time periods. However, care has to be

taken to assure robustness against near-end disturbances, since double-talk may

be erroneously taken for an IR change.

Changes of the echo path are detected as follows: If the error signal energy of the

reference filter eTl � el is α-times bigger than that of the shadow filter for 1 + L�

consecutive frames, a change of the echo path is assumed, and the switching logic,

shown in the center of Fig. 6.3, triggers an exchange of filter coefficients in the

reference filter (symbolized by the dotted arrow pointing to the switch). In this case,
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the shadow-filter coefficients Ŵ 0
1 l; kð Þ are expected to better represent the LEM

IR. On the other hand, in a time-invariant/slowly changing echo path case, the error

signal energy of the reference filter will likely be smaller than that of the shadow

filter, and the native reference filter coefficients are used:

Ŵ 1, l ¼
DFT IDFT

0
Ŵ 0T

1, l

n o
,0T

K�K
0

h in oT
, if eTλ � eλ > α e

0T
λ � e

0
λ

8λ ¼ l, l� 1, . . . , l� L�;
Ŵ 1, l, else;

8><
>:

(6.7)

with IDFT 0{�} having a reduced length K 0 < K which stems from the shadow filter.

Please note that the error signal e 0(n) of the shadow filter is only deployed to

detect changes of the echo path and to adapt the shadow-filter coefficients. In the

end, only the error signal of the reference filter e(n), which is either using its native
coefficients or a transformed version of the shadow-filter coefficients, is passed

over to the postfilter for later transmission.

In so doing, an immediate improvement of the model mismatch can be achieved,

leading to a faster convergence. Since the number ofDFTcoefficients for the reference

and shadow filter differs (in our case K 0 ¼ K/2), a transformation of the coefficients

has to be performed (shown as “coefficient transformation” block in Fig. 6.3).

6.3.3 Combined Postfilter Decimation and Shadow Filter

In combining both the postfilter decimation of Sect. 6.3.1 and the shadow filter of

Sect. 6.3.2 in a new joint approach, advantages of both strategies can be exploited.

As proposed before, different parameters were used for the reference filter and

the shadow filter to assure good convergence behavior and tracking speed. The

whole parameter setting for this joint approach is shown in Table 6.1. This includes

the forgetting factor A of the first-order Markov model [3, 6], the AEC filter length

Nw ¼ K � R [3, Eq. (20)], the impulse response length of the decimated postfilter

that can be chosen to some eNp � Np � eK , and the error power spectral density

(PSD) smoothing factor λϕee. Additionally, a decimation factor of K=eK ¼ 2 is

chosen. Section 6.4 presents the simulation results of this joint approach.

6.4 Simulations

Our proposed approach has been evaluated by simulation of an LEM system in a car

cabin (Volkswagen Touran). Two impulse responses have been measured,

originating from both front-door loudspeakers to the car’s hands-free microphone
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in the ceiling above the central console. Both measurements were performed in the

quiet car with reverberation times of t60 ¼ 35 ms each. Whereas the front left and

the rear right seats were occupied by a quiet passenger during both measurements,

the front passenger switched position a bit for the second measurement, but keeping

a typical driving position in both cases.

These two impulse responses were used to compute the echo signal d(n) of the
far-end speaker, shown as waveform in the upper part of Figs. 6.4 and 6.5, by

convolution with the far-end signal x(n). The used impulse response was switched

from the first measurement to the second after 25 s.

The near-end speech signal s(n) waveform in double-talk is shown in front of the

echo signal waveform in Fig. 6.5. Speech signals are concatenated samples of

the NTT wideband speech database. Whereas the male far-end speaker is continu-

ously active during both the single- and double-talk scenarios (Figs. 6.4 and 6.5),

the female near-end speaker is only intermittently active during the double-talk

scenario (Sect. 6.5). All simulations are performed at an input signal-to-echo ratio

of SER ¼ 0 dB.

For evaluation of the performance of the underlying hands-free system, different

instrumental measures have been used. For assessment of the system’s ability

to suppress the echo signal, echo return loss enhancement (ERLE) plots for

the single- and double-talk scenario are given in Figs. 6.4 and 6.5 as lines above

the waveforms. ERLE is defined and recursively estimated as follows:

ERLE nð Þ ¼ E d2 nð Þ� �

E d nð Þ � d̂ nð Þ� �2n o

� 1� βð Þd2 nð Þ þ βd2 n� 1ð Þ
1� βð Þ d nð Þ � d̂ nð Þ� �2 þ β d n� 1ð Þ � d̂ n� 1ð Þ� �2

with smoothing factor β ¼ 0.9996.

Table 6.1 Parameter settings for the new FDAF approach with decimation, reference filter (RF),

and shadow filter (SF)

Description Value RF Value SF Description Value RF Value SF

DFT length K ¼ 2048 K0 ¼ 1024 PF length Np ¼ 1824 n/a

Dec. DFT length K
� ¼ 1024 n/a Dec. PF length Np

� ¼ 800 n/a

Frameshift R ¼ 160 R0 ¼ 160 SF loopback n/a L� ¼ 6

OLA length O ¼ 64 O0 ¼ 64 SF overestimation n/a α ¼ 3

Forgetting

factor

A ¼ 0.9995 A0 ¼ 0.99 Error PSD smoothing λϕee ¼ 0.8 λ0ϕee ¼ 0.999

AEC filter

length

Nw ¼ 1888 N0
w ¼ 864

90 M.-A. Jung and T. Fingscheidt



To evaluate the convergence and tracking performance in single- and double-

talk, also the normalized system distance is shown in Figs. 6.4 and 6.5, defined as

hΔ
2

�� ���� ��
hi2j jj j ¼ hi � ŵ 1, l

2
�� ���� ��

hi2j jj j (6.8)

with hi, i ¼ 1, 2, being one of the two measured impulse responses, and ŵ 1, l ¼
IDFT Ŵ 1, l

� �
.

For both the ERLE and system distance plots, solid lines correspond to the

reference setup and dashed lines correspond to the enhanced system, making

use of shadow filtering and decimation. In the lower part of Figs. 6.4 and 6.5,

the enhanced signals ŝ nð Þ are shown.
For evaluation of the degradation of the wideband (uplink) speech component, the

perceptual evaluation of speech (PESQ) measure according to ITU-T recommenda-

tion P.862.2 [30] is used, yielding objective listening-quality mean opinion scores

(MOSLQO). The so-called MOSPFLQO score is used here to evaluate only the quality

degradation of the speech component by postfiltering, marked by the superscript “PF”.

6.4.1 Far-End Single-Talk Scenario

As it can be easily seen in the upper part of Fig. 6.4, the continuous far-end speech

input leads to a final normalized system distance of�19 dB and�16 dB for the two
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measured IRs, respectively. Due to the quite long adaptive filter length of Nw ¼ K
� R ¼ 2048 � 160 ¼ 1888 taps, adaptation of the reference filter (shown as solid

lines in Fig. 6.4) is quite slow. A system distance of �10 dB is reached 8.5 s after

initialization and 3 s after the IR switch. Since this convergence and tracking time is

simply not sufficient, shadow filtering has been used to achieve faster filter adapta-

tion. In addition, decimation is used for the postfilter. The ERLE and system

distance plots of this enhanced setup are shown as dashed lines in the upper part

of Fig. 6.4. These measures lead to significantly reduced convergence times after

initialization and for tracking of abrupt IR changes. In both cases, convergence time

is reduced to less than 1 s to reach �10 dB system distance.

Table 6.2 shows the mean ERLE, mean system distance, and algorithmic delay

for four different approaches. The mean values have been computed for the signals

as they are shown in Fig. 6.4. However, simulations based on different NTT

datasets show comparative results. The reference algorithm, as described in

Sect. 6.2, is shown in the first row. Due to the quite long convergence time of this

approach, the mean ERLE and system distance values in the evaluated period of

time significantly differ from the mean values of the fully converged filter. The

algorithmic delay of (Np/2 � (R + O) + R) � 1/16 kHz ¼ 53 ms of this approach is

mainly accounted to the delay introduced by the Wiener postfilter (6.4) which

amounts to (Np/2 � (R + O)) � 1/16 kHz ¼ 43 ms. The remaining R � 1/16 kHz

¼ 10 ms delay is caused by the buffering, which is necessary for the block

processing in the frequency domain (see Fig. 6.1).
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The introduction of shadow filtering, as it is depicted in Fig. 6.3, leads to better

convergence behavior. This can also be seen by looking at the improved mean

values for ERLE and system distance in the second row of Table 6.2. In this special

case the mean ERLE could be increased by around 2 dB, and the normalized system

distance could be decreased by nearly �3 dB. The algorithmic delay remains

unchanged.

Further improvements can be achieved by decimation of the DFT coefficients for

the spectral gain and input signal of the postfilter, as it is shown in Fig. 6.2. In so

doing, three improvements can be achieved simultaneously: First, due to the halved

DFT and IDFT lengths in the postfilter, the computational complexity is somewhat

reduced; the decimation in the frequency domain acts as smoothing of the postfilter

weights and the input speech vector; this is leading to a better residual echo

suppression; and as third factor, quality degradation of the speech component can

be reduced, as will be shown in Sect. 6.4.2. However, decimation should only be

introduced carefully. The effect of this decimation together with a shadow filter can

be seen by looking at the results in the fourth row of Table 6.2. ERLE, and system

distance can be further improved by 0.2 dB and �0.2 dB, compared to the shadow-

filter-only approach, shown in the second row of Table 6.2. Whereas these

improvements are rather small, the important effect of a much smaller algorithmic

delay of 21 ms compared to the former 53 ms is achieved by the considerably

smaller length of the postfilter. By only applying postfilter decimation, as shown in

the third row, algorithmic delay remains low at 21 ms, with ERLE and system

distance values being comparable to the reference.

6.4.2 Double-Talk Scenario

Some effects become even more clear when regarding a double-talk scenario, as it

is shown in Fig. 6.5. The presence of near-end speech or noise is posing an

interference to the adaptive filter, hence leading to slower convergence or

misadaptation to the interfering signal. However, looking at Fig. 6.5, the double-

talk performance of the FDAF algorithm can still be considered as excellent. The

ERLE values drop by around �8 dB during double-talk but still keep a minimum

value of around 20 dB in the converged state. Furthermore, due to this high

robustness, convergence times more or less stay the same as it can be seen by

looking at the system distance plot of the reference filter in Fig. 6.5.

Table 6.2 Performance

evaluation in single-talk
ERLE SYSDIS Delay MOSPFLQO

Reference 23.6 dB �13.7 dB 53 ms n/a

Ref. + SF. 25.5 dB �16.6 dB 53 ms n/a

Ref. + Dec. 23.7 dB �13.7 dB 21 ms n/a

Ref. + Dec. + SF. 25.7 dB �16.8 dB 21 ms n/a
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Looking at the upper part of Fig. 6.5 (ERLE), it can be seen that the shadow-

filter-enhanced approach is still performing well in a double-talk scenario. In this

case, convergence time to reach a system distance of �10 dB could be reduced to

about 2 s. For both scenarios, this convergence time is of course dependent on the

speech signals as well as on proper tuning of the shadow-filter parameters.

Comparing the mean ERLE and system distance values from the single-talk

scenario (Table 6.2) to the double-talk scenario (Table 6.3), an expected, yet

moderate, performance degradation is observed. For the reference approach,

shown in the first row, the mean ERLE value drops to 20.1 dB, and the system

distance slightly increases to�13.0 dB. Of course, algorithmic delay stays at 53 ms.

As introduced before, perceptual quality degradation by the postfilter is evaluated by

the MOSPFLQO. In this case, a fair to good score of 3.3 is achieved.

By making use of the shadow filter, both the mean ERLE and mean system

distance values could be improved. ERLE increases to 20.9 dB, whereas SYSDIS

improves to �15.0 dB. Algorithmic delay as well as MOSPFLQO remains constant

when shadow filtering is applied.

Additional application of the decimation approach is again able to further

improve the performance, as the results in the fourth row show. Here, ERLE

increases to 21.3 dB, whereas SYSDIS slightly improves to �15.3 dB. This

approach additionally offers two further advantages: As already shown in Table 6.2,

algorithmic delay is reduced to 21 ms, and it also leads to an improvement of the

perceptual quality of the speech component. This can be seen from the surprising

fact that the MOSPFLQO score improves from 3.3 (without decimation) to 3.6 (with

decimation). Again, postfilter decimation alone, as shown in the third row, does not

show different ERLE or system distance results compared to the reference, whereas

algorithmic delay and the MOSPFLQO score are improved.

6.5 Conclusions

We have presented a wideband automotive hands-free system for mobile HD Voice

services. It is based on a shadow-filter approach for an FDAF-based acoustic echo

canceller, which is significantly improving the convergence speed and tracking

performance. Our approach excels in double-talk performance, revealing a high

quality of the speech component in uplink direction. By decimation of the

Table 6.3 Performance

evaluation in double-talk
ERLE SYSDIS Delay MOSPFLQO

Reference 20.1 dB �13.0 dB 53 ms 3.3

Ref. + SF. 20.9 dB �15.0 dB 53 ms 3.3

Ref. + Dec. 20.1 dB �13.0 dB 21 ms 3.6

Ref. + Dec. + SF. 21.3 dB �15.3 dB 21 ms 3.6
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frequency domain postfilter coefficients, the computational complexity, algorith-

mic delay, and perceptual speech quality could be improved. Experimental results

show a good performance in a simulated car environment.
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Chapter 7

In-Car Communication

Christian Lüke, Gerhard Schmidt, Anne Theiß, and Jochen Withopf

Abstract Communicating inside a car can be difficult because there is usually a

high level of background noise and also the talking and the listening passengers do

not necessarily face each other as they would do in a natural conversation. In-car

communication (ICC) systems are a solution to this problem. They record the

talkers’ speech signal by means of microphones and reproduce it over loudspeakers

that are located close to the listening passengers. However, such systems operate in

a closed electroacoustic loop which significantly limits the gain that can be

introduced by the system. In order to improve this gain margin and to achieve

additional signal enhancement, several signal processing techniques are applied in

ICC systems. Special care has to be taken about the signal delay: If it is too large,

the reverberation inside the car is increased considerably and the speech reproduced

over the loudspeakers might be perceived as an echo by the speaking passengers.

In this chapter, an overview of the signal processing components of an ICC system

is given. The necessary signal processing steps are explained and approaches to

implement them are shown, especially with a focus on low processing delays.

Keywords Echo cancellation • Feedback • In-car communication (ICC)

• Low-delay filter banks • Noise reduction • Speech intelligibility

7.1 Introduction

The communication in cars often lacks of quality in the sense of intelligibility.

Especially at higher speed, the conversation comfort is reduced due to the high

background noise (engine, wind, tire noise, etc.). Also the sound absorbing

materials in the car which reduce the noise inside the passenger compartment
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degrade the speech intelligibility. This results from the fact that early reflections of

the speech components are attenuated. These reflections usually contribute in a

positive sense to the speech intelligibility [1]. In large vehicles, for instance

minivans and buses, there is also a considerable attenuation of the acoustic signals

due to the distance between the talking and the listening passenger. The usual

reaction is that the rear passengers speak louder and lean forward to the front

passengers. The problem of reduced intelligibility increases further in the commu-

nication from a front passenger to a rear passenger as the front passenger talks

towards the windshield (see Fig. 7.1). The front passenger usually turns over

which is uncomfortable for a longer time and, in addition, a security risk if the

driver does so.

To overcome these problems, in-car communication (ICC) systems record the

talking passengers and distribute the seat-dedicated microphone signals to

the loudspeakers located close to the listening passengers [2, 3]. However, this

technical support of the conversation contains some challenges due to the

interfering signals (noise, music, etc.) and the closed-loop operation. Various signal

processing techniques are required to reduce feedback, echo, and noise as well as to

prevent system instability.

If the system delay exceeds 10–15 ms, passengers start to perceive the additional

playback as a separate source [4, 5]. The system delay consists of the delay caused

by the analog-to-digital and digital-to-analog converters, amplifiers, block-based

signal transport on the car’s signal processing hardware, acoustical paths, and also

the signal processing. Subsequently, all algorithms should be designed to cause as

little delay as possible. However, selected loudspeaker signals might also be

delayed on purpose in order to overcome a localization mismatch between the

acoustically perceived talker location and the actual one. Another aspect in rating

on the quality of an ICC system is how much the talker is disturbed by hearing the

own voice played back over the loudspeakers. Subjective tests with the presented

ICC system showed that the talker tolerates a higher system gain for a system delay

Fig. 7.1 Principle of an ICC system: the front passenger’s voice is recorded by one or more

microphones and played back over loudspeakers close to the listening passengers on the rear seat
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between 12 and 15 ms. Thus, the boundary conditions set by the perception of

separate sources and self-masking are close together.

The ICC system that is presented in this chapter has been implemented in

the Kiel Real-Time Audio Toolkit (KiRAT) in the programming language C.

For testing the algorithms in a car, the software runs on a PC platform with audio

connections over low-delay ASIO soundcards. The delay (without that originating

from signal processing) of this configuration is approximately 5.7 ms. Microphones

placed at different positions are connected to the system as it can be seen in Fig. 7.2

where the microphones are highlighted by ellipses.

Section 7.2 gives an overview of the ICC system and briefly explains the

contained components and how they interact. More details about the algorithms

employed in certain modules are given in Sects. 7.3–7.8. Examples are shown after

the algorithms are introduced in order to demonstrate the performance. Finally,

conclusions are drawn in Sect. 7.9.

7.2 Overview

Figure 7.3 shows an overview of the signal processing in an ICC system containing

the essential components. First, preprocessing is applied to each microphone signal.

This contains a signal analysis, where, e.g., clipping or complete blackout of a

microphone is detected. In automotive environments, usually the background noise

is dominating the speech components at low frequencies. For this reason, there is a

high-pass filter to remove these frequencies of bad signal quality. The high-pass

Fig. 7.2 Test car equipped with the presented ICC system
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filter that is used in the presented system has Butterworth characteristic and is of

second order (two poles and two zeros). The 3 dB cut-off frequency is set to 200 Hz,

but this value depends on the user preferences as well as on the properties of the

vehicle. Most of the remaining signal processing takes place in the frequency

domain which allows for reduced computational complexity. The next block is

therefore an analysis filter bank (see Sect. 7.3 for details) that computes a subband-

signal representation.

All signal spectra of microphones that are assigned to talking passengers are then

enhanced in terms of their signal quality. This mainly consists of noise- and

feedback reduction by a Wiener-type filter as explained in Sect. 7.6. For this filter,

noise and feedback estimates have to be computed as presented in Sects. 7.4 and

7.5, respectively.

The remaining part of the signal processing is concerned with the distribution of

signals from the input microphones to the output loudspeakers and adjusting the

signals for good playback quality. If multiple microphones are available for one

talking passenger, first one signal per talker has to be extracted. This can be done by

combining the signals, e.g., by beamforming where knowledge about the position of

the talkers can be exploited. Another method is to detect which microphone offers

the best signal quality in terms of SNR. Any method used here should work

adaptively because the noise level might change, e.g., when a window is opened

or the ventilation is turned on. Based on the output signal of this signal-combination

module, a voice activity detection (VAD) as described in Sect. 7.7 is necessary to

determine the active talking passenger for correctly managing the subsequent steps

of the signal distribution.

With the information of the VAD, the signals of nonactive talkers are attenuated

by a unit called loss control. Then, the talker signals are mapped to the listening

Fig. 7.3 Overview of the ICC system
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passengers and further mapped to the loudspeakers that are available for a specific

listener. In this last mapping, the gain of each signal is adjusted according to the

background noise level. While no support of the system is usually needed during

standstill, more gain is required with increasing speed. Because the noise might

vary considerably between the seats of a car, each listener can be assigned one or

more microphones that are used to estimate the noise level at his position. This

noise estimate is then converted into a gain factor by the noise-dependent gain

control (NDGC, see Sect. 7.8). This gain factor is computed individually for each

loudspeaker of a listener because, due to their position, some loudspeakers are more

critical in terms of feedback. The principle of the two-stage signal mapping is

shown in Fig. 7.4.

The loudspeaker-dedicated signals can be enhanced by different processing units

before playback. Two different equalizers are implemented to improve the sound

impression, but also to optimize the feedback properties of the system by attenuating

those frequencies that exhibit the largest coupling to the microphones. The first one

operates in the frequency domain and provides zero-phase equalization with low

computational complexity.1 After this frequency-domain equalizer, the signals are

transformed back to the time-domain by a synthesis filter bank. A so-called peak-

filter equalizer [6] can be used to realize narrow band corrections of the frequency

response. Setting such narrow notches or peaks would not be possible with the

frequency-domain equalizer. Other components contained in the post-processing are

a gain- and delay-element that can be used to adjust the spatial hearing impression

and a limiter to prevent clipping of the digital/analog converters. Because the

estimation of the feedback component needs information about the loudspeaker

signals and operates in the subband-domain, another analysis filter bank that also

contains the preprocessing which is applied to the input microphones is computed.

Fig. 7.4 The two-stage mapping of talker dedicated signals to the available loudspeakers

1 If the delay and the computational load of the analysis and synthesis filter banks are neglected.

7 In-Car Communication 101



7.3 Analysis and Synthesis Filter Bank

Filter banks provide a conversion between time and frequency domain. Both parts,

the analysis and the synthesis filter bank, need to be matched for proper operation.

Their performance can be improved by applying pre- and de-emphasis filters before

the analysis and after the synthesis stage.

7.3.1 Complex Modulated Filter Banks

Most often, filter banks are viewed as a set of N parallel bandpass filters. After the

input signal x(n) has been passed through these filters, downsampling by factor

R � N can be applied to the band limited signals to obtain the subband signals2

X(μ,k) for frequency bin μ and frame k ¼ n/R. If the bandpass filters vμ(n) are

derived from prototype lowpass filters v(n) by complex modulation

vμ nð Þ ¼ v nð Þ e�j2πNμn, (7.1)

this structure can be implemented efficiently as a discrete Fourier transform (DFT)

filter bank by using the fast Fourier transform (FFT) when N is chosen as a power of

two. This implementation can also be seen as an STFT with a sliding window that is

evaluated every R samples:

X μ; kð Þ ¼ DFTN v lð Þ x kRþ lð Þf g

¼
XN�1

l¼0

v lð Þ x kRþ lð Þ e
�j
2π

N
μl

:
(7.2)

Here, l ¼ 0, . . ., N � 1 is the local time index within the analyzed signal part.

Only the first N/2 + 1 frequency bins have to be stored and processed for real-

valued input signals, while the remaining ones are the complex conjugate and can

be recreated before the synthesis operation.

Signal synthesis is done in a straightforward manner by first computing the

inverse DFT of each processed spectrum Y(μ,k) and overlapping the time-domain

signals after weighting with the synthesis window w(n). This window w(n) corres-
ponds to an anti-imaging filter that has to be applied after upsampling the subband

signals in the concept of parallel bandpass filters in order to suppress repetitions of

the signal spectrum. From a time-domain point of view, it interpolates between the

samples after filling the downsampled signals with zeros. The effective window

2The subbands can also be seen as time-aligned spectra if all filter bank channels are considered at

a certain time instance.
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length isM, meaning that w(n) ¼ 0, 8 n =2 {0, . . ., M � 1}. For producing a single

output sample, this overlap-add (OLA) procedure can be expressed by

y kRþ rð Þ ¼
XK�1

κ

w κRþ rð Þ N IDFT
kRþrð Þ
N Y μ, k þ K � κð Þf g

¼
XK�1

κ

w κRþ rð Þ
XN�1

μ¼0

Y μ, k þ K � κð Þ e
j
2π

N
κR þ rð Þ

,

(7.3)

where K ¼ M/R. The local time index r ¼ 0, . . ., R � 1 describes the position of

the output sample within the current output frame. The notation IDFT
ðkRþrÞ
N {Y(μ,k)}

denotes taking sample kR + r of the inverse discrete Fourier Transform (IDFT) of

order N.

7.3.1.1 Delay Considerations

Since most automotive sound processing hardware processes input samples

blockwise, output samples will be aggregated until r ¼ R � 1 before writing

them to the output buffer. This means that a delay of K frames is introduced by

the synthesis through (7.3). The delay for collecting R input samples in the analysis

(7.2) is then included. Note that (7.2) covers only the case where the window length

is equal to the DFT order N. For polyphase implementations where the window

length is a multiple of the DFT order, additional delay could be introduced

depending on the shape of v(n).
For DFT filter banks, most often the synthesis window length is chosen as the

DFT order M for obtaining good anti-imaging properties by having a large filter

order. However, this causes a large delay according to (7.3). An overlap-save
(OLS) filter bank results from setting M ¼ R. In order to avoid drawbacks from

the OLS approach (e.g., the need for projection filters) and still reducing the delay,

we propose a filter length of R < M < N resulting in somewhat degraded anti-

imaging properties.

7.3.2 Approaches to Filter Design

A standard approach in the design of prototype lowpass filters is to use raised-

cosine (e.g., Hann or Hamming) windows. For downsampling ratios N/R ¼ 2β,

β ∈ , and M ¼ N they fulfill the condition

XK�1

k¼0

v nþ kRð Þ w nþ kRð Þ ¼ g (7.4)
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for perfect reconstruction, meaning that the filter bank without processing of the

subband signals introduces only a delay and a gain g. Several methods have been

proposed for iteratively optimizing these filters. A mathematical formulation of the

so-called in-band aliasing and the total aliasing is given in [7].Minimization of these

error criteria is done subject to the constraint of near-perfect reconstruction, meaning

that amplitude distortions are allowed to a certain extend. Similar approaches are

reported in [8] and [9] which mainly differ in details about the error function for

optimization. Different filter lengths M 6¼ N are generally allowed, but only taken

into account when the filter group delay is included in the error function. This is not

the case in the approach described in [10], which has an emphasis on designing pairs

of analysis/synthesis windows that can be switched to trade-off time and frequency

resolution depending on the input signal. Once again, different criteria related to

the filter stopband attenuation are optimized in an iterative way, limiting the usage of

this method to offline filter design. A different approach for M ¼ N is followed in

[11] where a raised-cosine sequence serves as a prototype.

7.3.3 Non-iterative Filter Design

Given an analysis window v(n), a matching synthesis window ensuring perfect

reconstruction for arbitrary values of N and R can be obtained by the transformation

w ¼ W vf g ¼ VTV
� ��1

VT c: (7.5)

The N � 1 vectors v ¼ [v(0), v(1), . . ., v(N � 1)]T and w contain the filter

coefficients, c is a vector of R ones, and the matrix V ¼ [V0, V1, . . ., VK] contains

the matrices

Vk ¼
v kRð Þ 0

0 v kRþ 1ð Þ
� � � 0

� � � 0
⋮ ⋮
0 0

⋱ ⋮
� � � v kRþ R� 1ð Þ

2
64

3
75 (7.6)

with coefficients v(n) on the diagonals [12]. This solution with the pseudo-inverse

matrix yields the matching coefficients with minimum norm but, however, there are

other solutions to this problem. If the method according to (7.5) is applied for

shortened windows withM < N an additional smoothing window h ¼ [h(0), . . ., h
(N � 1)]T should be introduced to avoid discontinuous results:

w nð Þ ¼
h nð Þ W hf g½ � nð Þ

max v nð Þ, εf g , for n ¼ 0, . . . ,M � 1,

0 , else:

8><
>:

(7.7)
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The notation [W{h}](n) denotes taking the nth element of the transformed vector.

The maximum operation with the variable ε avoids divisions by zero or very small

values which can occur at the edges of v(n). Note that for values ε < 0 condition

(7.4) is violated. However, near-perfect reconstruction can be achieved which is

sufficient in many applications [10].

The remaining free parameters in this design scheme of (7.7) are the analysis

window v(n) and the intermediate smoothing window h(n). Both have been derived
by setting different parameters in the prototype window

g nð Þ ¼
cos 2

πn

2N1

þ π

2

0
@

1
A

2
4

3
5
α1

, for 0 � n < N1,

cos 2
π n� N1 þ N2ð Þ

2N2

þ π

2

0
@

1
A

2
4

3
5
α2

, for N1 � n < N:

8>>>>>><
>>>>>>:

(7.8)

that consists of two raised-cosine parts. The length N1 ¼ N � N2 can be set to

produce asymmetric windows, the powers α1 and α2 allow stronger tapering towards

the left and right end. For a design withM ¼ N we propose to set N1 ¼ (N � M )/2,

α1 ¼ 1, and α2 ¼ 2 for the analysis window. For the smoothing window h(n) we
propose N1 ¼ N2 ¼ M/2, α1 ¼ 1, and α2 ¼ K/10.

7.3.3.1 Design Example

Figure 7.5 shows a window pair that has been designed for a low-delay speech

enhancement system with the parameters N ¼ 256, M ¼ N/2, and R ¼ 32. The

sampling rate is fs ¼ 22050 Hz, so the resulting filter bank delay is M/fs ¼ 5.8 ms.
Tests with a subband echo cancellation it within this systems showed echo reduction

of about 35 dB and thus sufficient suppression of aliasing distortions. Compared to a

filter bank with Hann windows of these lengths, perfect reconstruction is achieved

and the echo cancellation could be improved only by approximately 5 dB.

Fig. 7.5 Analysis and synthesis windows
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7.3.4 Pre- and De-emphasis Filters

Due to the limited amount of subbands, the resolution of a filter bank is limited.

Even with a proper design of the analysis window, aliasing in the frequency domain

cannot be avoided totally. Therefore, a pre-emphasis filter is used to whiten the

signal and thus achieve an approximately constant power of the aliasing distortion

over the subbands.

Since speech signals cannot be assumed to be stationary, the desired

de-correlation of the time-domain signals cannot be achieved exactly with a fixed

pre-emphasis filter. However, it can be used to remove the high-frequency roll-off

that is common to all speech signals. This means that low filter orders are sufficient.

After the synthesis filter bank, a de-emphasis filter has to be applied in order to

revert the filtering introduced in the pre-emphasis stage. One method is to design a

prediction error filter for the pre-emphasis, as these filters are always minimum

phase and thus straightforward to invert [13]. An example for pre- and de-emphasis

filters designed with this method is shown in Fig. 7.6.

7.4 Feedback Estimation

In order to obtain sufficient system gain, it is necessary to investigate the electro-

acoustic feedback loop. One possibility to attack the feedback problem is to

estimate the feedback component for every microphone and suppress it with a

frequency-dependent attenuation factor as described in Sect. 7.6.

The model for estimating the power spectral density (PSD) of the feedback

from microphone m to loudspeaker l in frame k and subband μ can be described as

[14, 15]

Ŝ
lmð Þ
ff μ; kð Þ ¼ αlm μð Þ Ŝ lmð Þ

ff μ, k � 1ð Þ þ βlm μð Þ Ŝ lð Þ
yy μ, k � dlmð Þ, (7.9)

Fig. 7.6 Pre- and de-emphasis filters of second order designed as prediction error filters
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where the quantities are as follows:

Ŝ
lmð Þ
ff μ; kð Þ Estimated feedback PSD

Ŝ
lð Þ
yy μ; kð Þ PSD of loudspeaker l

βlm(μ) Room coupling factor

αlm(μ) Attenuation factor

dlm Signal delay in frames

The loudspeaker PSD Ŝ
lð Þ
yy μ; kð Þ can be estimated from the loudspeaker signal by

computing the squared magnitude

Ŝ
lð Þ
yy μ; kð Þ ¼ Y lð Þ μ; kð Þ�� ��2: (7.10)

According to this first-order infinite impulse response (IIR) model, the feedback

component is comprised of the previous estimate, weighted by the attenuation

constant αlm(μ) which describes how fast the feedback decays in subband μ. This
system is driven by the loudspeaker output signal, delayed by the length of the

acoustic path dlm between loudspeaker l and microphone m and weighted by

the coupling factor βlm(μ).

The complete feedback PSD Ŝ
lmð Þ
ff μ; kð Þ at microphone m can be estimated by

summing over all contributions of the Nlsp loudspeakers:

Ŝ
mð Þ
ff μ; kð Þ ¼

XNlsp�1

l¼0

Ŝ
lmð Þ
ff μ; kð Þ: (7.11)

All model parameters of (7.9) can be estimated from the impulse responses

which describe the feedback paths [16]. The attenuation factor αlm(μ) can also be

converted to the more familiar reverberation time T60 in seconds by

T60 ¼ � 60

20 log10 αlm μð Þð Þ f s
R

: (7.12)

The reverberation time is the time it takes an impulse response to decay by 60 dB.

For cars, T60 is usually around 50 ms and the coupling βlm(μ) for typical loudspeaker
and microphone positions between 0 and �60 dB. Especially the coupling depends

heavily on the frequency and is usually larger for low frequencies. Figure 7.7 shows

values for the reverberation time T60 and the coupling βlm(μ) that have been

measured inside a car for one feedback path. These parameters could also be updated

and adapted to changing environments during operation by estimating the impulse

responses online. This is of particular interest if the ICC system is also equippedwith

echo cancellation where the needed measurements are already available.
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7.5 Noise Estimation

It cannot be avoided that, besides the desired speech signal, the microphones also

pick up background noise. If this background noise would be played back over the

loudspeakers, the overall noise level in the car would increase which is of course

undesirable. The noise reduction algorithm described in Sect. 7.6 needs an estimate

of the background noise PSD Ŝ bb μ; kð Þwhich can be obtained for (nearly) stationary
noise processes in various ways. Here, we propose a rather simple scheme. First, the

squared magnitude of the input spectrum X(μ,k) is smoothed over time with a first-

order IIR filter:

X μ; kð Þ�� ��2 ¼ βsm X μ; kð Þj j2 þ 1� βsmð Þ X μ,k � 1ð Þ�� ��2: (7.13)

The smoothing time constant βsm describes how fast the smoothed squared

magnitude X μ; kð Þ�� ��2 may vary over time. Since its value depends on the sampling

rate fs and the frameshift R, it is convenient to define it in the physical unit of dB/s

by the conversion3

eβsm ¼ 20 log10 1� βsmð Þ f s
R
: (7.14)

A time constant of, e.g., eβsm ¼ 300dB=s helps to remove so-called outliers

efficiently.

Fig. 7.7 Reverberation time T60 and the coupling βlm(μ)

3 From now on, the tilde is used to annotate these “user-friendly” variables.
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The smoothed short-term power estimate X μ; kð Þ�� ��2 is then compared to the

previous estimate of the noise PSD Ŝ bb μ; kð Þ to update the estimated value:

Ŝ bb μ; kð Þ ¼ γinc Ŝ bb μ, k � 1ð Þ, if X μ; kð Þ�� ��2 > Ŝ bb μ, k � 1ð Þ,
γdec Ŝ bb μ, k � 1ð Þ, else:

(
(7.15)

The increment and decrement time constants could be chosen, e.g., like4 eγ inc ¼
3 dB=s and eγdec ¼ �10 dB=s. If γinc is chosen much higher, the noise estimate will

increase too fast during speech periods, if it is set too small, the noise estimator

cannot follow changes in the noise power fast enough. Usually, the decrement is set

to a “faster” value than the increment. The noise estimator is initialized to a rather

high value because the estimate drops faster and thus reaches the correct value

earlier after the estimation procedure is started.

7.5.1 Improved Performance in Nonstationary Noise

The computationally “cheap” noise estimation scheme described in Sect. 7.5 yields

reliable and robust results for stationary or slowly varying background noise.

However, it fails in the estimation of nonstationary noise components which can

originate, e.g., from open windows, fans, or air conditions blowing on the sensors,

or when passengers touch a microphone.5 In these cases, the signal is typically

misinterpreted as speech by algorithms that rely on proper estimates such as a noise

reduction or VAD. One solution to this problem is to employ more sophisticated

noise estimation algorithms, e.g., extended minimum statistics [17].

Another option is to detect the presence of nonstationary noise for each micro-

phone. Different single channel approaches have been reported for this [18–20], but

the performance of these algorithms can be improved considerably if multiple

microphones are available and thus the spatial characteristics of desired and

undesired signal components can be exploited [21, 22]. The method that we suggest

assumes that not all microphones are disturbed by nonstationary noise at the same

time. This is usually fulfilled for typical use cases when the microphones are

touched by the passengers. Wind buffets will reach the microphones delayed

individually because their propagation velocity is low compared to the speed of

sound. Based on this assumption, a reference spectrum for the undisturbed signal is

derived and the presence of nonstationary noise can be detected. In this case, the

subsequent ICC algorithms that assume stationary signals or linear systems might

be paused or modified. Details can be found in [23].

4 The user-friendly variables are obtained by the conversion similar to (7.12).
5 This is likely to happen if microphones are integrated into the seat belts.
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7.6 Noise and Feedback Reduction

For suppression of the undesired background noise and feedback components, the

microphone spectrum X(μ,k) is multiplied with a frequency-dependent attenuation

factor G(μ,k) to form the enhanced spectrum

Xenh μ; kð Þ ¼ X μ; kð Þ G μ; kð Þ: (7.16)

The attenuation coefficients are found by a modified Wiener characteristic

G μ; kð Þ ¼ max Gmin, 1�
βb Ŝ bb μ; kð Þ þ βf Ŝ ff μ; kð Þ

Ŝ xx μ; kð Þ

( )
: (7.17)

where Ŝ bb μ; kð Þ and Ŝ ff μ; kð Þ are estimates for the background noise and feedback

PSDs, respectively. Ŝ xx μ; kð Þ is the microphone signal PSD of the current frame

k and can be estimated as squaredmagnitude X μ; kð Þ�� ��2 of the microphone spectrum:

Ŝ xx μ; kð Þ ¼ X μ; kð Þj j2: (7.18)

The overestimation factors βb and βf are used to correct or to intentionally

introduce a bias in the estimates. Values greater than one make the filter more

“aggressive,” i.e., the filter attenuates more often. Subsequently, a compromise

between suppression of unwanted signal components and speech distortion

introduced by extensive filtering has to be found. An overview over the noise and

feedback reduction for a single microphone channel including the estimators is

shown in Fig. 7.8.

When the filter randomly attenuates for a short time and only at some subbands,

this can be heard as so-called musical tones. They can be avoided (or masked) if

some residual noise is allowed by introducing the maximum attenuationGmin which

is typically set to values � 15 dB < Gmin < � 9 dB.

Fig. 7.8 Structure of noise and feedback reduction with the necessary estimation schemes for a

single microphone channel
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Figure 7.9 shows an example for noise reduction only (i.e., βf ¼ 0): The upper

plot shows the spectrogram of a signal recorded in a car moving at a speed of

100 km/h after the noise reduction coefficients, that are shown in the plot below,

have been applied according to (7.14). The plot of the attenuation coefficients

clearly shows where the speech components are located.

An example for feedback reduction only (βfb ¼ 0) is shown in Fig. 7.10. The

ICC system was operating at a maximum gain and the feedback reduction is turned

off around 3 and around 6.5 s. The upper plot shows the output signal of a

loudspeaker in the time domain. It can clearly be seen that the signal energy

increases considerably in these time intervals. The spectrogram below reveals

that the system starts oscillating at a frequency of approximately 500 Hz. In the

lower plot, the attenuation coefficients are depicted. Again, the two periods when

the feedback attenuation is switched off can be readily identified. The howling stops

almost immediately after the feedback reduction is switched on again.

7.7 Voice Activity Detection

In the following, a voice activity detection (VAD) scheme that takes the difficulties

of an automotive environment into account is presented. For this VAD, a noise

estimation has to be computed for the talkers’ signals. This is done in NVAD

frequency bands whose lower and upper cut-off frequencies can be set arbitrarily.

Fig. 7.9 Example for the noise reduction: Noise reduced signal (upper plot) and noise reduction

coefficients (lower plot)
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It is also possible to exclude certain frequency ranges, e.g., if they are known to be

heavily corrupted by noise.

For the decision of voice activity, two conditions are tested for each noise

estimation band:

• Does a talker achieve a minimum SNR?

• Does the large SNR originate from a neighboring talker?

If a condition is met for talker p, this is rewarded by the increase of a counter by

c pð Þ kð Þ ¼ min 1, c pð Þ k � 1ð Þ þ Δinc

n o
: (7.19)

If a condition is missed, it is penalized in a similar manner:

c pð Þ kð Þ ¼ max 0, c pð Þ k � 1ð Þ � Δdec

n o
: (7.20)

Due to the maximum and minimum operations, the counter is limited to the

interval c( p)(k) ∈ [0,1]. The counter changes should be normalized to the number

of noise estimation bands, e.g., Δinc ¼ 1/NVAD.

Fig. 7.10 Example for the feedback reduction: Loudspeaker output signal (upper and middle plot)
and feedback reduction coefficients (lower plot). The feedback reduction is switched off between

2.5 and 3.5 and between 6 and 7 s
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Equation (7.19) is used if at least a minimum SNR is achieved, i.e., if

Ŝ
pð Þ
xx i; kð Þ > Ŝ

pð Þ
bb i; kð Þ SNRmin: (7.21)

If this is true for the noise estimation band i, the counter c( p)(k) is increased

according to (7.19) and the second condition—if the high SNR for talker p actually
originates from talker q ’ s speech—is tested. A good estimator for the signal PSD

needed in (7.21) is the short-term power X
pð Þ

i; kð Þ
���

���
2

, which is available as a

byproduct of the noise estimation procedure of Sect. 7.5.

Before comparing the signal PSDs Ŝ
pð Þ
xx i; kð Þ of all talking passengers, they are

normalized to the background noise level in order to remove differences in the

signal power that stem from inaccuracies in the hardware, e.g., different gain

settings in the microphone preamplifiers. Therefore, first the mean noise level

over all Ntalk talking passengers is calculated in all noise estimation bands i:

S bb i; kð Þ ¼ 1

Ntalk

XNtalk

p¼0

Ŝ
pð Þ
bb i; kð Þ: (7.22)

This mean noise level is then used to find the normalization factor

α pð Þ
norm i; kð Þ ¼ max Nmin, min Nmax;

Sbb i; kð Þ
Ŝ

pð Þ
bb i; kð Þ

( )( )
, (7.23)

where Nmin and Nmax are the lower and upper boundaries of α
ðpÞ
norm(i,k), respectively.

The second condition tests if the signal to interference ratio (SIR) between talker

p and talker q (considered to be an interferer) is greater than a threshold:

α pð Þ
norm i; kð Þ Ŝ pð Þ

bb i; kð Þ > α qð Þ
norm i; kð Þ Ŝ qð Þ

bb i; kð Þ SIRmin: (7.24)

If the inequality (7.24) does not hold, this is penalized by decreasing the counter

of talker p by applying (7.20).

After all noise estimation bands have been evaluated for updating the counters of

all talkers, the score is compared to a threshold VADmin to decide whether talker p is
active or not

VAD pð Þ kð Þ ¼ 1, if c pð Þ kð Þ < VADmin,

0, else,

�
(7.25)

where VAD( p)(k) ¼ 1 denotes speech activity. By deciding in this fashion, it is

possible to classify multiple talkers as active.
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7.8 Noise-Dependent Gain Control (NDGC)

The NDGC adjusts the playback volume to the noise level inside the vehicle. This is

done for each listener and loudspeaker individually in order to exploit the gain-

before-feedback margin as much as possible.

7.8.1 Basic Principle

The basic principle of the NDGC is depicted in Fig. 7.11: the noise estimate N̂ kð Þ is

mapped onto an instantaneous gain factor �g kð Þ using a piecewise linear characteris-
tic made up of Nmap pieces. In order to avoid abrupt changes in the gain factor, the

actual gain

g kð Þ ¼ ηinc kð Þ g�k � 1
�
, if �g kð Þ > g

�
k � 1

�
,

ηdec kð Þ g�k � 1
�
, else,

�
(7.26)

is computed by incrementing or decrementing the previous value. The

corresponding time constants ηinc(k) and ηdec(k) can be defined in dependence on

the current gain value g(k). This is useful, e.g., when the microphones should be

muted during standstill. A faster increase for the low-gain case would then allow

reaching an appropriate system gain within a reasonable time when the noise level

increases.

7.8.2 Loudspeaker- and Frequency-Dependent NDGC

The NDGC concept explained so far can be extended to a loudspeaker- and

frequency-dependent design which allows better adaption to the conditions of a

Fig. 7.11 Mapping of noise

estimates to gain values
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given vehicle. Figure 7.12 shows how the gain vector g(μ,k) for a certain loud-

speaker of a listener is computed. Several noise estimates N̂ i kð Þ can be obtained in

Nacc noise estimation bands. In the example of Fig. 7.12, Nacc ¼ 3 noise estimation

bands are used. These can be specified by their lower and upper cut-off frequencies

fi,l and fi,u might be overlapping or with gaps in between to exclude certain

frequency bands totally.

Each of the noise estimates is input to a set of Nmel mapping characteristics

of the type of Fig. 7.11 to obtain preliminary gain values g ’ i(m,k), where

i ∈ [0, . . ., Nacc � 1] and i ∈ [0, . . ., Nmel � 1]. In Fig. 7.12, Nmel ¼ 5 melbands

Fig. 7.12 Combination of several NDGC characteristics
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have been chosen.6 To obtain one gain factor for each melband, the preliminary

gains of the same melbands are added:

g0 m; kð Þ ¼
XNacc�1

i¼0

g0i m; kð Þ: (7.27)

These factors g0 (m,k) are assigned to the subbands by

g μ; kð Þ ¼
XNmel�1

i¼0

αmμ g
0 m; kð Þ, (7.28)

where αmμ are overlapping triangular weighting functions for the extrapolation

from melbands to subbands as schematically sketched in Fig. 7.12. The widths of

the triangles are chosen according to the mel scale, i.e., they are increasing towards

higher frequencies.

This scheme has been successfully used in practice with Nacc ¼ 1 and Nmel ¼ 2.

Since the maximum possible gain in the test car was about 4 dB higher at low

frequencies, some extra boosting could have been applied there when very high

system gain was required. Further degrees of freedom could be added to fine-tune

the system.

7.9 Conclusions

In this chapter we presented an ICC system for increasing the quality of a conver-

sation inside a car. The individual algorithmic components have been presented in

an overview followed by a more detailed description of most of the signal

processing modules. Examples for suitable parameterizations of these algorithms

have been given and also some processed data has been presented to demonstrate

the functioning of the algorithms. All results have been obtained from an imple-

mentation of the ICC system within the KiRAT framework.

For testing, a car has been equipped with our ICC system consisting of

low-latency audio equipment, a powerful automotive signal processing hardware

(both PC- and DSP based) for signal processing based on the presented algorithms

and amplifiers for driving the loudspeakers. The signal processing hardware is

placed in the trunk of the car as it can be seen in Fig. 7.13.

Informal tests showed that the ICC system increases speech intelligibility and

communication comfort at medium and high driving speed. The feedback reduction

helps to improve the gain-before-feedback margin significantly. When the system

operates at maximum gain and the feedback reduction is switched off, howling

6 The concept of mel-filtering is, e.g., commonly used in the feature extraction for speaker and

speech recognition, see [24].
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occurs almost instantly. But even before the system starts oscillating, the signal

quality is degraded due to an increase of reverberation caused by the feedback.

The concept of the frequency- and loudspeaker-dependent NDGC helps to adapt the

system to a given vehicle and to exploit the gain resources as well as possible.

At very high noise levels, even more gain than the system can currently provide

might be desired. One way to improve the gain margin is to apply a feedback

cancellation which works similar to the echo cancellation algorithms known from

hands-free telephony. However, in the ICC scenario difficulties arise in continu-

ously estimating the required impulse responses.
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118 C. Lüke et al.



Chapter 8

Room in a Room: A Neglected Concept

for Auralization

Markus Christoph

Abstract The term Room in a Room describes an old technique which can be

utilized for auralization purposes. Thereby the auralization procedure can

be divided into an analysis- and a synthesis task, usually dependent of each other.

The analysis recordings in the source room have to be made exactly at those

directions where loudspeakers are physically placed in the target room. In doing

so, the spatial separation, respectively, filtering will be realized by beamforming.

The outputs of the different, fixed beamformers provide the signals for the

loudspeakers in the target room, representing the synthesis of this auralization

technique. Different methods of how such a beamformer can robustly be designed

will be presented in this chapter.

Keywords Auralization • Beamforming • 3D-beamformer • Modal beamforming

8.1 Introduction

Auralization techniques have been an object of interest since a long time. They can

be used to create an illusion of being acoustically in a desired room, whilst, in

reality, sitting in a completely different one. If this illusion becomes authentic, such

techniques can be utilized, for example, for acoustical documentation or virtual

tuning purposes. Especially in automotive acoustics, such a tool is highly desired,

since up to now the majority of prototype cars are still individually tuned by an

acoustician, mostly by hand, which is very time consuming. At the same time,

automotive companies constantly cut time frames for such tasks, since working

time on the prototypes is expensive, as many people from different disciplines have

to work on them. By using auralization techniques one could measure the car once
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and work, from this moment on, solely on this data, to get the car tuned. In doing

so, valuable working time on a prototype can be reduced to a minimum, whilst

at the same time; tuning time can be increased, eventually leading to a better

acoustical result.

8.1.1 Background

There is a whole number of possibilities how auralization can be achieved, which

can roughly be divided into two categories: headphone- and loudspeaker-based

solutions. As representatives of the headphone solutions, a pure binaural recording

and reproduction solution, as is more deeply described in [1], can be mentioned.

Thereby the idea of the system, presented in [1], is to duplicate the binaural signal,

as recorded directly at the eardrums within the source room by a headphone

reproduction system. Thereby the headphones have to be adequately compensated,

ideally with the inverse of the headphone transfer function, which can only be

realized approximately, since this transfer function is usually not minimum phase.

Despite its simplicity, this method is able to deliver a very authentic room impres-

sion. The BRS (Binaural Room Scanning) principle [2] is also based on binaural

recordings, which are, in contrast to the before mentioned principle, not

individualized. Due to the fact that BRS utilizes general HRTFs (Head Related

Transfer Function) data, a head tracking system has to be applied in order to

externalize the acoustic expression, or in other words to avoid in-the-head locali-

zations. Thereby, the head tracker is able to measure the current head rotation. This

information is then used to pick the most adequate, i.e., the two, in 2D applications,

neighboring HRTFs out of a library, interpolate in between them and insert the

result into a convolution machine. As a consequence an impression can be achieved

that the stage does not move with the head during head rotations.

The topic of this chapter belongs to the category of loudspeaker-based

auralization methods. There exist a number of different methods, from which

only a few, which are considered to be the most promising ones, will briefly be

mentioned in the following. In [3] the author utilized the inverse filter theory as

three dimensional (¼3D) sound reproduction technique. The aim of this technique

is to compensate for any disturbing effects of the target room, by utilizing matrix

inversion to calculate the necessary inverse filter matrix such, that in connection

with the target room, a Dirac impulse, at the desired location within the target room,

will ideally result. As soon as this task is successfully accomplished, it is easy to

create any desired room impression by additionally inserting the room transfer

matrix of the desired room into the system, which could, above all, be efficiently

integrated into the already inevitable, inverse filter matrix. Despite its mathematical

correctness, this principle suffers from diverse practical problems, such that the

results are only valid at the location in the target room where the measurement had

been applied but not at its close proximity. Furthermore, the acoustics are adversely

affected by the inverse filter, as they usually show a great deal of pre-ringing.
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The term Ambisonics, as described, e.g., in [4], stands for an analysis and synthesis
method able to measure and reproduce spherical harmonics of a sound field.

Thereby, the main task consists of creating a gain or filter matrix, jointly maximizing

the energy as well as the particle velocity vector. Since Ambisonic is based on

free-field conditions, it can only auralize the desired wave field as expected, if the

target room is free of reverberation and/or early reflections, which is the case if

the target room is an anechoic chamber. This problem is tackled by the DirAC
(Directional Audio Coding) system, as introduced in [5], which can be looked upon

as an extension of the previously mentioned Ambisonic system. Here, in addition to

the extraction of the azimuth and elevation information from the B-Format signal,

which act as input, as is the case in the Ambisonic system, spatial parameters, like

the diffuseness are extracted during analysis and used in synthesis, with the objective

of creating a realistic spatial impression. This of course can only approximate spatial

impressions. If one wants to replicate the “real” sound field by loudspeakers,

probably the most accurate way is to utilize Wave Field Synthesis (WFS), as

disclosed, e.g., in [6], or High Order Ambisonics (HOA) as introduced, e.g., in [7],

despite the fact that here one has to deal with still unsolved problems too, such as

spatial aliasing effects. Another negative aspect in this concern is the enormous

effort necessary to successfully run a WFS or HOA system, since a great number of

(closely spaced) loudspeakers and the accompanying signal processing are neces-

sary to create the desired effect.

The aim of the Room in a Roommethod, as introduced in this chapter, is to create

a realistic sound field in the target room, in an easy and efficient way, thereby

circumventing diverse problems inherent in some of the above-mentioned

principles.

This chapter is structured as follows. In Sect. 8.2 the principles of the Room in a

Room method is presented. Then, in Sect. 8.3 the first utilized beamforming

technique is reviewed. Thereby, the underlying 3D microphone array is presented,

as well as a new concept of how superdirective beamformers can effectively be

combined by utilization of the presented 3D microphone array, which forms the

“heart” of the whole method. Section 8.4 presents simulations of the novel

beamforming technique and reconsiders its outputs. In Sect. 8.5 measurements of

the novel beamformer are discussed. Finally, Sect. 8.6 summarizes this chapter.

8.2 Room in a Room

As one can perceive in Fig. 8.1, a microphone array is placed in the source room at a

desired position, which acoustic should eventually be reproduced at a certain

position within the target room. Thereby two types of recordings are feasible.

Firstly it is always possible to directly record the desired sound, picked up by all

microphones, which we will subsequently refer to as signal-dependent recording.
This is necessary if one wants to “document” the acoustics, e.g., of an opus at a

specific location within an opera. Secondly, if the sound which should be
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reproduced stems from a sound system with a defined number and location of

loudspeakers, as is the case in an automobile, it is reasonable to pick up the room

impulse responses (RIR) from all S speakers to all M microphones of the micro-

phone array in order to eventually create a signal-independent auralization system,

which we will subsequently call room-dependent recording.
Independent of the type of recording, successively, based on the recorded data,

beamforming filter will be applied, such that L beams, pointing exactly to the

positions of the L loudspeakers, as located in the target room, will be created.

Regarding a signal-dependent recording, further processing for the synthesis is not

necessary. Figure 8.2 depicts all steps of the synthesis procedure, necessary for

the room-dependent recording. In this process, based on the N input signals x, the
driving signals for the S speakers (located in the target room) have to be calculated,

by replication of the whole signal processing chain of the sound system, utilized in

the target room. This may simply consist of a pure passive upmixing matrix MN�S

ejωð Þ , broadcasting parts, combinations or originals of the N input signals to the

S speakers. Afterwards, the influence of the transfer functions of the target room,

stored in the RIR matrix HS�M ejωð Þ, will be considered during the course to create

theM virtual microphone signals, as would be picked up by the microphone array if

one were to play the desired input signal in the target room, utilizing its sound

system and directly record these signals at a desired location by theMmicrophones

of the microphone array. Finally, on grounds of these “virtual” microphone signals,

L beams, pointing to the L loudspeakers, as located in the target room will be

designed, whose output signals form their driving signals, the same as in the signal-

dependent recording.

Fig. 8.1 Principle of the Room in a Room auralization method
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8.3 Beamforming

A microphone array consisting at least of two microphones, from which, at least

one signal is filtered, with a successive filter, calculated such that a desired spatial

filtering will eventually arise by combination of the processed microphone signals,

is called a beamformer.
In the coordinate system, utilized for the design of a beamformer, as shown in

Fig. 8.3, it is expected that all microphones are aligned along the x-axis. Further-
more, to design a beamformer with a beam pointing to a desired direction, e.g., as

depicted by the vector u in Fig. 8.3, the direction of the beam will be assigned by its

corresponding horizontal- (azimuth Θ) and vertical angle (elevation φ).
As revealed by Fig. 8.4, showing a beamformer, implemented in the spectral

domain, the required signal processing can be divided into two parts, that is to say

the so-called beamsteering on the one hand, which stands for a time delay compen-

sation, necessary to ensure coherent, i.e., phase aligned addition of the microphone

signals by ejωτi , and the filtering on the other hand by A(ω), which performs the

intrinsic spatial filtering. It should be noted that in Fig. 8.4, it is expected that

free-field conditions be met, i.e., signals picked up by the microphones differ in

their phasing but not in their amplitude.

Fig. 8.2 Synthesis of room-dependent recordings
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8.3.1 Design of Optimal Beamforming Filter

Optimal beamforming filter A(ω) can generally be calculated as follow:

A ωð Þ ¼
φ�1

NN
ωð Þd ωð Þ

dH ωð Þφ�1
NN

ωð Þd ωð Þ (8.1)

where

A(ω)¼Vector holding the beamforming filter

A(ω) ¼ [A1(ω), . . ., AM(ω)]
T, where XT denotes the transpose of X,

φ
NN

ωð Þ¼Power spectral density (PSD) matrix of the background noise N,

XH¼Hermitian (conjugate transpose) of X,

Fig. 8.3 Coordinate system utilized for the design of a beamformer

Fig. 8.4 Signal flow diagram of a beamformer, realized in the spectral domain
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ω¼Angular frequency in 1
s

� �
(ω ¼ 2π f),

d(ω)¼Steering vector d(ω) ¼ [d1(ω), . . ., dM(ω)]
T,

with

φ
NN

ωð Þ ¼
φN1N1

ωð Þ φN1N2
ωð Þ � � � φN1NM

ωð Þ
φN2N1

ωð Þ φN2N2
ωð Þ � � � φN2NM

ωð Þ
⋮ ⋮ ⋱ ⋮

φNMN1
ωð Þ φNMN2

ωð Þ � � � φNMNM
ωð Þ

0
BB@

1
CCA (8.2)

where

M¼Number of microphones,

and

d ωð Þ ¼ e�j
ω Mþ1

2
�nð Þ d cos Θ0ð Þ

c (8.3)

where

n ∈ [1, . . .,M],

c¼Speed of sound in m
s

� �
c ¼ 343 m

s

� �
@ϑ ¼ 20�C

� �
,

Θ0¼Main receive direction, respectively direction, where the beam points in [rad].

In case, the sound source resides in the near field, the beam steering vector d(ω)
calculates to:

d ωð Þ ¼ a0e
�j 2π f τ0ð Þ, a1e�j 2π f τ1ð Þ, . . . , aM�1e

�j 2π f τM�1ð Þ
h i

(8.4)

where

a0¼Amplitude compensation value of the nth microphone signal,

τn¼Time compensation value of the nth microphone signal,

with

an ¼
q� pref

�� ��
q� pnk k ,

where

kq � prefk¼Distance between the sound source q and the reference microphone

pref in [m],

kq � pnk¼Distance between the sound source q and nth microphone pn in [m].

Regarding a rule of thumb, one talk about far-field conditions if the sound source

is located at a distance from the microphone array, exceeding twice its dimension,

which is usually always the case, hence, (8.4) usually does not apply in practical

applications.
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8.3.2 Practical Modifications

According to Fig. 8.4 one usually excludes the beam steering vector d(ω) from the

design of the beamforming filter A(ω). The beam steering is usually applied

upstream the actual beamforming filter, i.e., first one calculates the delays and

phase shifts, necessary for all microphones of the array, combined in the beam

steering vector d(ω), in order to let the resulting beam point to the desired direction,

before the beamforming filter A(ω) takes place. Thus the steering vector d(ω)
within (8.1) reduces to d(ω) ¼ 1 ¼ [1,1, . . .,1]T.

In a further step, the cross-correlation matrix of the background noise φ
NN

ωð Þ,
which usually has to be measured continuously, or at least in situ, will be replaced

by the complex coherence matrix of a diffuse noise field Γ ωð Þ, for which a closed

solution exists. This modification can be conducted, since measurements showed,

that spatially homogeneous noise fields, as approximately apparent in automobiles,

closely resemble a diffuse noise field.

Taking all these modifications into account, the design of the beamforming filter

converts to:

A ωð Þ ¼ Γ�1 ωð Þ1
1HΓ�1

ωð Þ1
(8.5)

where

Γ ωð Þ¼Complex coherence of a diffuse noise field,

1¼Residual, respectively neutral steering vector 1 ¼ M 1; 1; . . . ; 1½ �T M.

After the beam steering has been carried out, the complex coherence matrix of

the diffuse noise field Γ ωð Þ calculates to:

Γ ωð Þ ¼
1 ΓX1X2

ωð Þ � � � ΓX1XM
ωð Þ

ΓX2X1
ωð Þ 1 � � � ΓX2XM

ωð Þ
⋮ ⋮ ⋱ ⋮
ΓXMX1

ωð Þ ΓXMX2
ωð Þ � � � 1

0
BB@

1
CCA (8.6)

with

ΓXiXj
ωð Þ ¼ sinc

ωdij

c

� �
e�j

ω dij cos Θ0ð Þ
c (8.7)

where

i, j ∈ [1, . . .,M],

sinc(x)¼Sinc function
sin xð Þ
x

	 

,

dij¼Element located at the ith row and jth column of the distance matrix d,
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and

d ¼
0 d � � � M � 1ð Þd
�d 0 � � � M � 2ð Þd
⋮ ⋮ ⋱ ⋮

� M � 1ð Þd � M � 2ð Þd � � � 0

0
BB@

1
CCA (8.8)

where

d¼Inter-microphone distance in [m] of the equidistant microphone array.

8.3.3 Constrained Design

Both design rules, shown in (8.1) and (8.5) deliver the same, optimal beamforming

filter A(ω), in a diffuse noise field. Unfortunately neither the one nor the other can

be applied without any further modifications, considering inevitable, practical

limits, such as manufacturing tolerances, or variations in the placement of the

microphones. These incertitudes have been considered in [8] by the addition of a

small scalar μ to the elements at the main diagonal of the cross-correlation matrix

φ
NN

ωð Þ, or as proposed in [9] to the coherence matrix of a diffuse noise field Γ ωð Þ.
Another version, disclosed in [10], directly considers the inaccuracies in the design

of the beamforming filter, leading to a constrained filter design as follows:

A ωð Þ ¼ Γ ωð Þ þ μ ωð ÞI� ��1
d ωð Þ

d ωð ÞH Γ ωð Þ þ μ ωð ÞI� ��1
d ωð Þ

(8.9)

where

d(ω)¼Steering vector (¼1, if previously applied),

I¼Identity matrix in the size of Γ ωð Þ,
μ(ω)¼Regularization parameter.

The value of the regularization parameter μ(ω), which is now frequency depen-

dent, and not a scalar as, e.g., in [8], depends on the MSE1 of the imprecision of the

placement of the microphones (¼δ(ω)2) within the array, but mainly on the MSE of

the inter-microphone tolerances (¼ε(ω,Θ)2). The higher the quality of the micro-

phone array, i.e., the lower the complete MSE (¼Δ(ω,Θ)2), the smaller the value for

the regularization parameter μ(ω) can be. Practical values reside within a range of:

μ(ω) ¼ [�40, . . ., 40] [dB].

1MSE ¼ Mean Squared Error.
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The susceptibility K(ω) of a beamformer, given as:

K ωð Þ ¼ A ωð ÞHA ωð Þ
A ωð ÞHd ωð Þ�� �� , (8.10)

describes the sensitivity of a beamformer regarding tolerances of the corresponding

microphone array. Aim of the constraint algorithm is to design a robust beamformer

by limiting the susceptibility to a maximal value KMax(ω). After [10], this upper
limit KMax(ω) directly results from the total MSE of the microphone array Δ(ω,Θ)2

and the maximum tolerable deviations of the directional diagram ΔΨ(ω,Θ), with
the directional diagram Ψ(ω,Θ) given as:

Ψ ω;Θð Þ ¼ φy,y ω;Θð Þ
φxref ,xref ω;Θð Þ ¼

XM
n¼1

A ωð Þ ej
ω d

Mþ1ð Þ
2

�nð Þ cos Θ0ð Þ� cos Θð Þð Þ
c

�����

�����
2

(8.11)

where

φy,y(ω,Θ)¼Auto power spectral density of the beamformer output signal y,
φxref ,xref ω;Θð Þ¼Auto power spectral density of the reference microphone signal xref.

For the total MSE of the microphone array holds:

Δ ω;Θð Þ2 ¼ ε ω;Θð Þ2 þ δ ωð Þ2 (8.12)

with

ε ω;Θð Þ2 ¼ E
ΔHM

n ω;Θð Þ�� ��2

HM
0 ω;Θð Þ�� ��2

( )
(8.13)

where

jHM
0 (ω,Θ)j2¼Nominal, respectively mean transfer function of all microphones,

jΔHM
n (ω,Θ)j2¼Deviation of the transfer function of the nth microphone from the

nominal transfer function,

E{.}¼Expectation operator,

and

δ ωð Þ2 ¼ ω

c

	 
2 σ2

3
(8.14)

where

σ¼Variance of the zero-mean, normally distributed positioning error of the

microphone, equal for each dimension, hence the scaling by 1
3
.
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Tolerances in the microphone array can be considered in the directional diagram

Ψ(ω,Θ) by addition of an error term, represented by ΔΨ(ω,Θ) to it, resulting in:

E eΨ ω;Θð Þ
n o

¼ Ψ ω;Θð Þ þ ΔΨ ω;Θð Þ (8.15)

with

ΔΨ ω;Θð Þ ¼ Δ ω;Θð Þ2K ωð Þ � ΔΨMax ω;Θð Þ, (8.16)

which must not exceed a certain threshold, provided by ΔΨMax(ω,Θ).
By inserting (8.12) and (8.14) in (8.16), it follows a maximally tolerable

susceptibility KMax(ω,Θ) of:

KMax ω;Θð Þ ¼ ΔΨMax ω;Θð Þ
ε ω;Θð Þ2 þ ω

c

� �2 σ2
3

(8.17)

The following practical simplifications can be applied to (8.17):

• Due to the fact that ε(ω,Θ)2 hardly varies with Θ it suffices to determine ε(ω,Θ)2

at a certain receive direction. Thereby the main receive direction Θ0 is usually

selected, which is Θ0 ¼ 90� in broadside and Θ0 ¼ 0� in endfire alignment of

the beamformer.

• Inaccuracies in microphone placements, represented by δ(ω)2, are much less

probable then variations in the transfer functions of the array microphones,

provided by ε(ω,Θ)2. As such it suffices to consider mechanical deviations by

a general value of, e.g., δ(ω)2 ¼ 1%.

• A dependency on Θ of ΔΨMax(ω,Θ) only makes sense, if one is interested in an

exact reconstruction of the whole directional pattern, i.e., also of all side lobes,

which is usually not the case. By taking a maximal, Θ-independent value

ΔΨMax(ω), an almost perfect replication of the directional pattern in the main

direction can still be obtained. Thereby, ΔΨMax(ω) can be determined by taking

the maximum side lobe value of the ideal directional pattern. Furthermore,

dependent on the use case, ΔΨMax(ω) could also be utilized as a frequency-

independent threshold, e.g., ΔΨMax ¼ 15[dB].

Taking all above-mentioned items into consideration, (8.17) simplifies to:

KMax ωð Þ ¼ ΔΨMax ωð Þ
ε ωð Þ2 þ 1%

(8.18)

with

ε ωð Þ2 � 1% (8.19)
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Based on the previous findings, the following, iterative, constrained algorithm

for the design of the beamforming filter A(ω), eventually leading to a robust,

superdirective beamformer can be derived:

1. Preliminaries:

(a) Determine ΔΨMax(ω), based on the maximum values of the side lobes of the

desired, ideal beamformer, over frequency (for M ¼ 3: ΔΨMax(ω) 	 � 9.5

[dB]).

(b) Measure all transfer functions of the microphones HM
n (ω) at the desired main

direction Θ0. Afterwards, use (8.13) to calculate ε(ω)
2, thereby taking (8.19)

into account.

2. Calculation of the maximum allowable susceptibility KMax(ω), utilizing (8.18).

3. As initialization for the iteration, use μ(ω) ¼ 1.

4. Calculation of the beamforming filter A(ω), utilizing (8.9).

5. Based on the beamforming filter A(ω), calculated in step 4, calculate the current
susceptibility K(ω), utilizing (8.10).

6. Increase the regularization parameter μ(ω), if K(ω) > KMax(ω), otherwise

decrease μ(ω), e.g., by Δμ ¼ 10� 5.

7. Repeat steps 4–6 until K(ω) approaches KMax(ω) as close as possible or if μ(ω)
drops below a certain lower threshold, given, e.g., by μMin ¼ 10� 8, which is

usually the case at higher frequencies f � c
2 d.

8.4 Microphone Array

The susceptibility K(ω) of a beamformer mainly depends on the deviations of the

inter-microphone transfer functions ε(ω)2, as discussed in Sect. 8.3.3. To enhance

the quality of the beamformer, these differences have to be kept as small as possible.

Therefore, so called matched or paired microphones have been used during the

construction of the microphone array, which frame, by the way, is shown in Fig. 8.1.

For this purpose the transfer functions of 100 microphone capsules (Panasonic

WM-62a) have been measured at Θ0 ¼ 0� in an anechoic chamber, from which

the 7, best matching capsules have been chosen, as shown in Fig. 8.5.

Since the sensitivity of a beamformer against tolerances decreases with increas-

ing frequency, a frequency-dependent weighting function, provided by a nonlinear

smoothing filter (e.g., 1
3
octave filter) has been applied during the selection process,

prior to the calculation of the difference matrices.

An analysis of the inter-microphone differences revealed, that due to the selec-

tion process, the deviation could be decreased from primarily
 3 [dB], as provided

by the data sheet of the manufacturer, to 
 0.5 [dB], as shown in Fig. 8.6,

corresponding to an value of ε(ω)2 < 0.7%, which is already below the lower

limit as noted in (8.19).
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Fig. 8.5 Bode diagram of the 7 best matching microphone capsules

102 103 104
0

0.01

0.02

0.03

0.04

0.05

Frequency in [Hz]

M
ag

ni
tu

de
 (
lin

.)

46
69
3
62
63
44
79

102 103 104
0

0.01

0.02

0.03

0.04

0.05
Quadratic error of all microphone transfer functions ε(ω)

2
Quadratic error of the matched microphone transfer functions ε(ω)

2

Frequency in [Hz]

M
ag

ni
tu

de
 (
lin

.)

Fig. 8.6 Quadratic error ε(ω)2 of all microphones (left figure) and of the 7 best matching

microphones (right figure)
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Due to the fact, that the beamformer ought be used in an auralization method, it

should ideally be able to work throughout the whole audio frequency range:

f 	 [20, . . .,20000] [Hz]. With only one compact microphone array, this task

cannot be accomplished. The best probable compromise for this purpose, had

been found by utilizing a superdirective beamformer, ideally showing a

frequency-independent directivity pattern up to the spatial aliasing frequency,
which calculates to:

f � c

2d
(8.20)

As can be seen in (8.20), the spatial aliasing frequency solely depends on the

inter-microphone spacing d, thus the dimension of the microphone array should be

kept small to enlarge the frequency range of operation. Since the utilized capsules

already have a diameter of Ø ¼ 6[mm] and the fact that the frame cannot be made

too small, to ensure a minimum of mechanical robustness, a inter-microphone

distance of d ¼ 1.25[cm] has been applied for the microphone array, leading to a

spatial aliasing frequency of f ¼ 13600[Hz] for an array in endfire orientation,

which can be considered as sufficient for our purpose. In order to let the beam point

in any room direction, a 3D2 arrangement of the microphones was mandatory. For

that reason, three linear microphone arrays, each consisting of three microphones,

were arranged along the X, Y, and Z axes, each sharing the center microphone,

resulting in an array with 7 microphones. Depending on the direction where the

beam shall point at, a beamformer for each of the three linear arrays will be

calculated, either in endfire or broadside orientation, resulting in the desired

beamformer by combination of the three individual beamformers. Hence, consid-

ering (8.3) and (8.5), the final superdirective beamformer calculates to:

AOut ωð Þ ¼ 1

3
AT

x ωð Þdiag dx ωð Þf g þ AT
y ωð Þdiag dy ωð Þ� 
þ AT

z ωð Þdiag dz ωð Þf g
	 


(8.21)

where

diag{X}¼Diagonal matrix of vector X.

Because all beams of the three linear arrays, point as close as possible, to the

desired direction, the resulting beam will completely point to this location, as

depicted in Fig. 8.7.

Each of the three beamformers exhibit a different aliasing pattern, which, as a

matter of fact will also be combined, resulting in the positive effect, that the

combined beamformer shows much less disturbing aliasing effects compared to

each of the three individual beamformer, on which it is based on, as can be seen in

Fig. 8.8.

2 3D ¼ Three dimensional.
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Thereby the top plots of Fig. 8.8 affirm a spatial aliasing frequency of f ¼ 13600

[Hz] on the one hand and reveal that only at those regions in the spatial–spectral

domain where the aliasing products of the individual beamformers overlap, the

resulting beamformer shows aliasing too, which as a matter of fact appears

enhanced. All other regions in the spatial–spectral domain have been suppressed

during the overlapping process of the individual beamformer, as indicated by (8.20),

leading to a final beamformer, exhibiting a higher spatial aliasing frequency, smaller

aliasing regions within the spatial–spectral domain as well as a narrower beam

width, as any of the underlying beamformers. With a mean squared error of the

microphone transfer functions of ε(ω)2 ¼ 1%, which could, as previously shown,

be achieved by sorting of the microphone capsules, a fix mean squared error of the

microphone placement of δ(ω)2 ¼ 1% and a maximum deviation of the directivity

pattern of ΔΨMax(ω) 	 � 9.5[dB], for M ¼ 3, a maximum susceptibility of

KMax(ω) 	 16.75 results, leading to a frequency from which on the beamformer

can be considered as superdirective, of f 	 150[Hz], which is regarded as accept-

able, since small rooms, such as the interiors of automobiles, behave more like a

pressure chamber, leading to a distinct modal acoustical behavior up to a certain

frequency. This transition frequency, known as Schröder frequency, given as:

f t ¼ 2000

ffiffiffiffi
T

V

r
(8.22)

Fig. 8.7 Polar diagram

along the X/Y-plane of the
three linear microphone

arrays as well as of the

resulting beamformer at

f ¼ 1[kHz], steered to

φ ¼ 0� and Θ ¼ 45�
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with

ft¼Schröder, or transition frequency in [Hz],

T¼Reverberation time [s] (usually T ¼ T60),
V¼Volume in the enclosure in [m3],

calculates for a typical medium-class car environment, with V 	 3.5[m3] and

T60 	 0.08[s] to:

f t ¼ 300 Hz½ � (8.23)

which is about twice the number of the previously determined, lower frequency

bound of our final beamformer for superdirectivity. Hence it can be concluded that

the novel, 3D microphone array, presents an adequate measuring device for broad-

band acoustical recordings.

Fig. 8.8 Top view of the X-, Y-, and Z- as well as of the resulting, superdirective beamformer at

φ ¼ 0� and Θ ¼ 45�
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8.5 Measurements

Measurements conducted in an anechoic chamber where used to verify the theory as

described in the preceding chapters. Thereby, impulse responses from a broadband

speaker with a membrane diameter of Ø ¼ 10[cm], located 1[m] away from

the center of the microphone array, to all 7 microphones had been gathered in the

horizontal plane (φ ¼ 0�) in 90� steps, i.e., for Θ ¼ [0�, 90�, 180�, 270�], utilizing
the exponential sine sweep technique as disclosed in [11].

In the first row of Fig. 8.9 one can see the behavior of the X beamformer, i.e., of a

superdirective Beamformer in endfire direction, measured in four different

orientations. At Θ ¼ 0� its response should ideally follow the response of an

omnidirectional microphone, represented by the reference microphone, located in

the center of the microphone array, denoted as “RefMic” in Fig. 8.9, whereas at

Θ ¼ 180� the least amount of signal energy will be picked up. The second row

shows the results of the Y beamformer, which forms a superdirective beamformer

in broadside direction, measured at the same four orientations. Here one would

expect equal responses with a maximum gain at Θ ¼ [0�, 180�] and a minimum

gain at Θ ¼ [90�, 270�], with a gap, slowly increasing with frequency, which, in

reality, is indeed the case.

The Z beamformer also shows this characteristics but along the vertical axis.

Along the horizontal axis, ideally no deviation should occur, which again holds

true, as the measurements show. In the last row the behavior of the novel

beamformer, resulting out of the overlap of the X, Y, and Z beamformer is

shown. In principle it exhibits a similar behavior to the X beamformer, but with

much less directivity in the low- and mid-frequency region, relativizing the practi-

cability of the new beamforming technique.

8.6 Conclusions

With the novel beamforming structure a beam, pointing at any desired position in a

room, can easily be formed. This can solely be accomplished via software, i.e., by

utilization of different beamforming filter. Following the preluding example,

Fig. 8.10 shows the result of the novel beamforming technique.

Unfortunately the final beam shows a directivity factor, which is, compared to a

superdirectional beamformer, directly pointing to a desired direction, inferior,

which is true, especially at low and mid-frequencies. Doubtless, there will be

applications for the novel beamforming structure, but for auralization purposes it

appears logical to use robustly designed superdirectional beamformer for each

speaker, as located in the target room, instead. In our example with 8 speakers,
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regularly arranged in the target room, this would mean to measure the horizontal

plane in the source room twice—one time with the X beam pointing at Θ ¼ 0� and
the other time oriented at Θ ¼ 45�. Applicability of this method, especially regard-

ing the introduced “Room in a Room” concept, remains a task for the future.
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Chapter 9

Refinement and Temporal Interpolation

of Short-Term Spectra: Theory

and Applications

Mohamed Krini and Gerhard Schmidt

Abstract In this contribution, methods for spectral refinement (SR) and spectral

interpolation (SI) are presented. These methods can be implemented as a post-

processing stage after conventional frequency analyses such as overlap add-based

decomposition schemes. The principle idea of SR is to individually refine each

subband signal after frequency decomposition and to compute additional frequency-

supporting points in between using a linear combination of a few neighboring

(in terms of time and frequency) subband signals. For efficient implementation, a

simplification of the SR method has been derived—it has been shown that the

refinement can easily be implemented using short FIR filters in each subband,

resulting in a very low computational complexity. The SI method exploits the

redundancy of succeeding short-term spectra for computing interpolated temporal

supporting points in between the originally generated frames. This is achieved by

efficient approximations, and the whole method can be realized on weighted sums of

subband signals. The new interpolation method can be applied in adaptive system

identification schemes (e.g., echo cancellation or channel estimation), allowing

for a significant increase of the frameshift (subsampling rate). This leads to a

reduction of the computational complexity while keeping the convergence speed

and the steady-state performance constant. Alternatively, the frameshift can be kept

the same. In this case an improved steady-state convergence can be achieved. The

proposed method for SR has been applied as a preprocessing stage for fundamental

frequency (pitch frequency) estimation, and the SI method has been utilized for

subband echo cancellation. Evaluations have shown that pitch frequency estimation
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can be improved significantly for all considered signal-to-noise ratios when

employing the SR method. Real-time measurements performed on systems for

acoustic echo cancellation have demonstrated that significant improvements in

terms of echo reduction can be achieved while only marginally increasing the

amount of required memory.

Keywords Echo cancellation • Filterbank • Pitch frequency • Spectral refinement

• Speech enhancement

9.1 Introduction

In different applications such as automotive hands-free telephony or speech

dialogue systems, the desired speech signal is disturbed by background noise

(engine, wind noise, etc.) and by echoes (due to multipath propagation from a

loudspeaker to a microphone). In order to reduce the disturbing components while

keeping the speech signal as natural as possible speech enhancement algorithms are

utilized. Most often enhancement algorithms like noise reduction or echo cancella-

tion are applied in the subband domain to reduce computational complexity and to

achieve a higher convergence for adaptive filtering [1, 2].

An echo cancellation unit within a speech processing system tries to estimate

the impulse response of a loudspeaker-enclosure-microphone (LEM) system.

For estimating the echo components in the subband domain, the microphone signal

as well as the reference signal are usually first segmented into overlapping blocks of

appropriate size (segments of 20–30 ms are often overlapped by 50–75 %) and

subsequently weighted with a window function. Each block is transformed into the

short-term frequency (subband) domain. The resulting reference subband signals

are convolved with adaptively estimated LEM subband impulse response to obtain

the subband echo signals [14]. These estimated signals are subtracted from the

microphone subband signal to determine the error signals for the filter update.

Afterwards, a Wiener-type filter can be utilized to reduce remaining echo

components (e.g., if the estimated LEM impulse response has estimation errors) as

well as stationary background noise [1, 5]. After several subsequent signal-processing

stages (e.g., feature extraction schemes such as pitch frequency for voice classifica-

tion) the enhanced short-term spectrum (STS) is converted back to the time domain by

an inverse DFT and appropriate windowing. The resulting overlapped signal blocks

are added together to obtain the broadband output signal. Further details about

subband signal processing can be found, e.g., in [9]. This type of overlap-add-based

scheme is also well known as a DFT-modulated subsampled filterbank.

For windowing often Hann sequences are applied. They achieve perfect recon-

struction for appropriate subsampling factors. In addition they show good aliasing

properties which are important for adaptive subband filtering such as echo cancella-

tion. However, the windowing of successive signal blocks has most often the

negative effect that a significant frequency overlap of adjacent DFT subbands arises.

Thus, adjacent fundamental frequency trajectories are sometimes hard to separate
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which is important for speech enhancement schemes that involve fundamental

frequency estimation. In addition, due to the non-ideal filters large subsampling

factors aliasing components within subbands can remarkably degrade the conver-

gence behavior of the echo cancellation [7].

When increasing the DFT order to reduce the spectral overlap and aliasing

effects one should consider that for hands-free telephone systems several

restrictions have to be fulfilled. For example the front-end delay of a hands-free

system connected to a public telephone network should not exceed 39 ms [6]. How-

ever, increasing, e.g., the DFT order from 1 N ¼ 256 to N ¼ 512 at a sampling

frequency of fs ¼ 11,025 Hz results in a delay of approximately 46 ms in the signal

path, which does not fulfill the ITU and the ETSI specifications any more. To

overcome this, the herein proposed method for SR can be utilized. It is applied as a

linear combination of a few weighted subband signal vectors at the output of a DFT.

Figure 9.1 shows, for illustration purposes, the estimated short-term power

spectrum of two sine signals added with white noise, using a Hann window and a

Fig. 9.1 Short-term power spectra of two sine signals added with white noise. The frequency

distance between the two sine signals was set to 120 Hz
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DFT of order 256. The distance between the two combined sine signals has been set

to 120 Hz, corresponding to the average fundamental frequency of a male speaker.

The upper graph illustrates the analysis without spectral refinement. However, the

two sine signals cannot be separated in an effective manner; only a low attenuation

between adjacent peak frequencies is achieved. The curve in the lower part of

Fig. 9.1 depicts the short-term power with spectral refinement as a post-processing

scheme after a conventional analysis filterbank/DFT. As a result a high attenuation

between adjacent peak frequencies by about 45 dB is achieved. The derivation of

the SR method is presented in Sect. 9.4.

For adaptive system identification in the subband domain—as it is used for echo

cancellation—the analysis filterbanks are required to generate a very low amount

of aliasing. Increasing the subsampling rate (i.e., frameshift) leads to reduced

computational complexity. However in this case also the aliasing components

within subband signals are increased—leading to low echo reduction. For practical

purposes a compromise between performance and computational complexity has to

be found. Figure 9.2 demonstrates the normalized power of the microphone signal

and its corresponding error signal (the outcome after echo cancellation) for differ-

ent block-overlap values within a range of 50–75 % (frameshift ¼ 25–50 % of FFT

order). As a test signal white noise was utilized and no local disturbances were

considered for this experiment. However, for larger subsampling rates the required

amount of echo attenuation (about 30 dB [12]) cannot be achieved anymore.

Fig. 9.2 Performance of echo attenuation for N ¼ 256 and different subsampling rates

(frameshifts) of 64, 82, 96, and 128
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Therefore, a new temporal interpolation method is proposed in the following

sections which are able to enhance significantly the convergence behavior for larger

subsampling rates.

The rest of the chapter is organized as follows: First a brief overview about

conventional methods will be given. After that the novel generalized method for SR

and its simplifications will be presented. A first application example—showing how

SR can be utilized to enhance fundamental frequency estimation schemes—will be

described next. In the subsequent sections the spectral-temporal interpolation

method and its simplified solution will be derived and applied to subband echo

cancellation (a second application example). The chapter ends with some simula-

tion results and a conclusion.

9.2 Different Types of Filterbanks

A DFT-modulated filterbank can be extended to a so-called non-critically

subsampled polyphase filterbank to enhance the frequency selectivity of the analysis

and to reduce aliasing effects [4]. In this case the length of the analysis and synthesis

window function is allowed to be larger than the number of used subbands (deter-

mined by the DFT order N ). A polyphase filterbank introduces much lower aliasing

components, and the computational complexity is only increased marginally. How-

ever, depending on the used length of the prototype filters a frameshift close to the

DFT order can be selected. In the literature (e.g., [22]) design procedures that

achieve a frameshift of about 3/4N using filter orders of about 6. . .8N are described.

While a polyphase filterbank reduces the computational complexity for large

frameshifts it has to be noted that a significant delay is introduced. Such a high

delay is not tolerable in several applications such as hands-free telephony.

In [7] critically subsampled systems have been considered. It has been suggested

to use adaptive cross filters in order to explicitly filter out the aliasing components.

The use of such cross filters results in a significant increase of computational

complexity and degrades the speed of convergence.

In [18] a delayless structure has been proposed where adaptive filter weights are

computed in the subband domain and then transformed to an equivalent time-domain

filter.With this structure the actual filtering is performed in the time domain, leading to

an increase of computational complexity.A similar techniquewas developed in [3] and

[21] for an acoustic echo canceller, whereas the adaptive processing part takes place in

the frequency domain. However, as already mentioned before, all time-domain-based

filtering approaches have the consequences of higher computation complexity.

The contribution [19] has addressed the issues of computational complexity and

delay of subband adaptive filtering for applications of acoustic echo control. It has

been suggested to use filterbanks based on all-pass polyphase IIR structures as an

alternative to the FIR-based filterbanks. The use of all-pass polyphase IIR

filterbanks achieves very high side-lobe attenuation, and it has been shown to be

computational efficient while keeping the aliasing components low. However, it has
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to be noted that with this approach nonlinear-phase distortions and large aliasing

terms appear at the filter boundaries.

In [8] an efficient prototype filter design method for an oversampled DFT

filterbank has been proposed where the aliasing components are minimized while

the total filterbank group delay is pre-specified. It has been shown that the estima-

tion accuracy for non-critical decimated filterbanks is close to the fullband solution

and significantly better than that of critically decimated cases. More recently,

a method to improve the steady-state convergence has been reported in [10, 11].

The idea behind this method is to compute the FFT of the reference signal more

often compared to all other FFTs/IFFTs used within a hands-free system.

In contrast to the state-of-the-art approaches, the herein proposed method for SR

is employed as a postprocessor for analysis filterbanks. The enhanced frequency

selectivity of the analysis is achieved either by reducing the spectral overlap of

adjacent subbands or by computing additional subbands. The refinement procedure

can easily be implemented using short FIR filters in each subband channel—

resulting in a very low computational complexity and an insignificant additional

delay in the signal path. In addition, a time-frequency interpolation method as a

post-processing stage after a conventional frequency analysis is proposed. Using

time-frequency interpolation a significant reduction of the aliasing terms can be

achieved without inserting any additional delay in the signal path with only few

operations by means of multiplications and additions.

9.3 Refinement and Interpolation of Short-Term Spectra

For the derivation of the spectral refinement and the temporal interpolation of STS,

first the input signal is segmented into overlapping blocks of length N according to

y nRð Þ ¼ y nRð Þ, . . . ,y nR� N þ 1ð Þ½ �T, (9.1)

where the parameter R corresponds to the used subsampling rate and the element

n denotes the frame index. The subsampled input vector is windowed with a

window function (e.g., Hann window), hk ∈  with k ∈ {0, . . ., N � 1}, and

transformed into the frequency or subband domain using a DFT or a filterbank:

Y ejΩ; n
� � ¼

XN�1

k¼0

y nR� kð Þhke�jΩμk: (9.2)

Note that (9.2) can also be interpreted as subsampled output signals of an

analysis filterbank. The used frequency supporting points Ωμ are equidistantly

distributed over the normalized frequency range:

Ωμ ¼ 2π

N
μ, with μ ∈ 0, . . . ,N � 1f g: (9.3)
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For the sake of simplicity, the vector containing all subband signals are rewritten in

a matrix-vector notation as

Y ejΩ; n
� � ¼ DHy nRð Þ, (9.4)

where the quantity D specifies a DFT matrix of order N and H characterizes a

diagonal matrix consisting of the window sequence coefficients:

H ¼ diag hf g ¼
h0 0 0

0 ⋱ 0

0 0 hN�1

2
4

3
5: (9.5)

The principle idea of spectral refinement and temporal interpolation is to

exploit the correlation of successive input signal blocks for refining originally

generated signal frames and interpolating additional frames in between. The pro-

posed method is performed in the frequency or the subband domain. Here the

refined and interpolated subband signals are computed by weighted addition of

the current and a number of previous input short-term spectra of lower order

N according to

eY0 ejΩ; nð Þ
⋮

eYM�1 ejΩ; nð Þ

2
4

3
5 ¼ S

Y0 ejΩ; nð Þ
⋮

YM�1 ejΩ; nð Þ

2
4

3
5, (9.6)

with S describing a refinement and interpolation matrix andM being the amount of

used short-term input spectra.

For the sake of simplicity the STS eYm ejΩ; nð Þ with m∈ 0, . . . , eM � 1
n o

are

gathered in a vector as follows:

eYBlock ¼ eYT
0 ejΩ; n
� �

, eYT
1 ejΩ; n
� �

, . . . , eYTeM�1
ejΩ; n
� �h iT

, (9.7)

where eY0 ejΩeμ ; n
� �

with Ωeμ ¼ 2πeμ=eN and eμ∈ 0, . . . , eN � 1
n o

denotes a refined

version of the originally computed STS Y ejΩμ ; nð Þ. The remaining elements eY1

ejΩeμ ; n
� �

, . . . , eYeM�1
ejΩeμ ; n

� �
characterize interpolated spectra in between of the

original input frames y((n � 1)R) and y(nr). Thus, the refined subband signals as

shown in (9.5) are computed without the need for an additional DFT of higher order
eN . Note that the interpolated subband signals correspond exactly to that signal

blocks which would be computed with an analysis filterbank at a reduced rateR= eM.

All quantities in this contribution which characterize a high order will be designated

with a tilde symbol.
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The refinement and interpolation matrix S introduced in (9.6) will be divided

into two sub-matrices Sref and Sint according to

S ¼ Sref

Sint

� �
: (9.8)

Sref of size eN �MN consists of coefficients for the refinement of the original STS,

whereas Sint of size eN eM � 1
� �

�MN comprises weights for computing interpolated

temporal supporting points in between of the original STS.

In the following sections we will try to find appropriate solutions for the unknown

matrices Sref and Sint. Before doing this, we will first introduce the computation of

the refined and interpolated STS based on higher order DFTs.

Alternatively to (9.6) the desired STS can also be computed using a higher order

DFT of windowed and shifted input signal frames. By doing so, first a high-order

input block is specified according to

ey nRð Þ ¼ y nRð Þ, . . . ,y nR� eN �M
0 þ 1

� �h iT
: (9.9)

The extended input ey nRð Þ consists of the last eN þM
0
samples of the input signal

with eN > N and M0 ¼ (M � 1)R. The higher order STS eY0 ejΩeμ ; n
� �

can be

formulated in a matrix vector notation as follows:

eY0 ejΩeμ ; n
� �

¼ eD eH0ey nRð Þ, (9.10)

where eD denotes a DFT matrix of higher order eN . Furthermore, eH0 specifies an

extended matrix of the filter coefficients:

eH0 ¼ eH 0
eN�M

0� �� �
¼

eh0 � � � 0 0 � � � 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 � � � eheN�1

0 � � � 0

2
64

3
75: (9.11)

The aim of eH0 is to add eN �M
0
zeros after the extended diagonal window matrix

eH ¼ diag eh
n o

, with hk ∈  and ∈ 0, . . . , eN � 1
n i

.

The interpolated STS can be computed in a matrix-vector notation as follows:

eY1 ejΩ; nð Þ
⋮

eYeM�1
ejΩ; nð Þ

2
64

3
75 ¼ eDblock

eHblockey nRð Þ: (9.12)
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eDblock describes an extended transformation matrix (block-diagonal DFT matrix of

size eN eM � 1
� �

� eN eM � 1
� �

) defined by

eDblock ¼
eD � � � 0

⋮ ⋱ ⋮
0 � � � eD

2
4

3
5, (9.13)

where eD denotes a DFT matrix of higher order eN . The extended matrix eHblock

consisting of filter coefficients with a dimension of eN eM � 1
� �

� eN þM
0
is defined

according to

eHblock ¼ eHT
1 ;

eHT
2 ; . . . ;

eHTeM�1

h iT
:

(9.14)

The first element matrix eH1 adds eN � R= eM
� �

zeros before the extended diagonal

windowmatrix and eN � M
0 � R= eM

� �
after, whereas the remaining matrices eH2, eH3,

etc. represent cyclic shifts of eH1. This means that equal row indices of adjacent

sub-matrices are rotated byR= eM elements. Thus, the first and the last elementmatrices

are defined according to

eH1 ¼ 0
eN�R=eM� �

eH 0
eN�M

0�R=eM� �� �
(9.15)

and

eHeM�1
¼ 0

eN�R eM�1
� �

=eM� �
eH 0

eN�M
0�R eM�1

� �
=eM� �� �

: (9.16)

Once the principle idea of the spectral refinement and temporal interpolation is

introduced we will continue in the next chapter in finding appropriate solutions for

the refinement and interpolation matrices Sref and Sint.

9.4 Spectral Refinement Method and Its Application

In this section we concentrate on finding a solution for the unknown matrix Sref
from (9.6) and (9.8). Since we will only focus on the refinement of the original STS

in this section, the interpolation of STS is disregarded for simplicity. The number of

processed STS is therefore set to eM � 1. For spectral refinement it is assumed that

the lower order STS are already available. They might be used, e.g., to estimate the
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noise power for speech enhancement within a hands-free system. However, in some

situations it is desired to determine an improved STS in order to enhance feature

extraction schemes such as pitch frequency for increasing the performance of a

speech recognizer. For that purpose we suggest to apply a linear combination of the

lower order STS as stated in (9.6). The derivation of the SR matrix Sref as well as its
simplified version will be explained in the following.

For the derivation of the spectral refinement method (first published in [17]), we

assume that the increased DFT of order eN is a function of the basic DFT of order

N according to

eN ¼ N þ k0R with k0∈ 1; 2; 3; . . .f g, (9.17)

where R corresponds to the used subsampling factor. Before calculating the SR

matrix Sref a constraint for the higher order window function eh is introduced as

A h; h; . . . ; h½ �T ¼ eh: (9.18)

The matrix A of size eN �MN consists of appropriate weights a
ðmÞ
k for each m-th

window h with k ∈ {0, . . ., N � 1} and m ∈ {0, . . ., M � 1}. The design of such

a matrix is defined by

A ¼ eA0; eA1; . . . ; eAM�1

h i
: (9.19)

The first element matrix eA0 consists of diagonal weight coefficients followed by

(M � 1)R � N zero values. To be precise, the matrix eA0 is composed as follows:

eA0 ¼ A0

0 M�1ð ÞR�Nð Þ

� �
¼

a
0ð Þ
0 � � � 0

⋮ ⋱ ⋮
0 � � � a

0ð Þ
N�1

0 � � � 0

⋮ ⋱ ⋮
0 � � � 0

2
6666664

3
7777775
: (9.20)

The remaining submatrices eA1, eA2, etc. with individual weight coefficients have

the same structure as eA0 except that the equal column indices of adjacent

submatrices are rotated by R, etc. elements. Thus, the element matrices eA1, eA2,

etc. are defined according to

eA1 ¼
0 R�Nð Þ

A1

⋮
0 R�Nð Þ

2
664

3
775, . . . , eAM�1 ¼

0 R�Nð Þ

0 R�Nð Þ

⋮
AM�1

2
664

3
775: (9.21)
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The main task of A is to weight M window sequences of lower order N and

shift subsequently adjacent window sequences by the chosen subsampling factor R.
The modified window sequences are summed up to obtain a desired higher order

windowsequence.Consequently, thewindowsequenceehconsists of aweighted sumof

shifted vectors h. The coefficients a
ðmÞ
k can be designed in such a way that an arbitrary

window sequence of lower order is transformed into a desired window sequence of

higher order. The resulting order of the window sequence eh from (9.18) is given by

eN ¼ N þ M � 1ð ÞR: (9.22)

In the upper part of Fig. 9.2 an example of weighted and shifted Hann windows

each of lower order (dashed lines with N ¼ 256, M ¼ 5, R ¼ 64) as well as the

resulting window function of higher order (solid line with eN ¼ 512) is shown. The

coefficients used for weighting the window functions have been chosen as follows:

a
0ð Þ
k ¼ a

M�1ð Þ
k ¼ 0:3K0, for all k,

a
1ð Þ
k ¼ a

M�2ð Þ
k ¼ 0:7K0, for all k,

and a
M�1ð Þ=2ð Þ

k ¼ K0, for all k:

(9.23)

As normalization constant K0 ¼ 3 has been applied. In the lower part of Fig. 9.3

the corresponding analyses of the STS are depicted. Comparing the results one can

see that the main-lobe width as well as the side-lobe amplitudes are reduced when

using the weighted sum of shifted window sequences h.
Once the constraint for the window sequences is defined the next step is to solve

for the SR matrix Sref. By doing so, first (9.6) for eM ¼ 1 is rewritten as follows:

eY0 ejΩ; n
� � ¼ Sref

D � � � 0

⋮ ⋱ ⋮
0 � � � D

2
4

3
5

H � � � 0

⋮ ⋱ ⋮
0 � � � H

2
4

3
5

y nRð Þ
⋮

y n�M þ 1ð ÞRð Þ

2
4

3
5: (9.24)

Using the abovementioned constraint (9.18) the improved STS from (9.10) can

be expressed as

eY0 ejΩ; n
� � ¼ eD A

H � � � 0

⋮ ⋱ ⋮
0 � � � H

2
4

3
5

y nRð Þ
⋮

y n�M þ 1ð ÞRð Þ

2
4

3
5: (9.25)

Inserting the expression from (9.25) in (9.24) results in several solutions for

the matrix Sref that in general depends on the input signal vectors y((n � m)R).
A solution that is independent of the input signal can be obtained by

Sref ¼ eD A
D�1 � � � 0

⋮ ⋱ ⋮
0 � � � D�1

2
4

3
5 : (9.26)
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After inserting the definitions of the matrices in (9.24) the SR matrix Sref can
finally be rewritten in the following way:

Sref, i,mNþl ¼ 1

N
e�j2πN imR

XN�1

k¼0

a
mð Þ
k e�j2π i

N� l
Nð Þk: (9.27)

The parameter i in (9.27) specifies the row index and the quantity nN + l the
column index of the SR matrix.

9.4.1 Simplified Spectral Refinement

Once the general solution for the spectral refinement matrix Sref is formulated we

can try to simplify and approximate the matrix. This can be done mainly due to

sparseness of the refinement matrix that appears if certain conditions—as described

Fig. 9.3 Upper plot shows the weighted and shifted Hann windows and the resulting window

sequence, lower plot depicts the corresponding short-term spectra
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in the following—are introduced. First it is assumed that the weighting coefficients

for each m-th window function are identical, meaning that a
ðmÞ
k ¼ a(m). In order to

analyze the SR matrix quantitatively, (9.27) is rewritten as follows:

Sref, i,mNþl ¼ a mð Þ

N
e�j2πN imR

XN�1

k¼0

e�j2π i
N� l

Nð Þk: (9.28)

Further, the geometric series on the right-hand side of (9.28) can be simplified in

the following way:

Sref, i,mNþl ¼ a mð Þ

N

sin π iN�lN
N

� �
e�jπiN�lN

N

sin π iN�lN
NN

� �
e�jπiN�lN

NN

e�j2πN imR: (9.29)

If the condition holds, that the higher filter order is a multiple of the lower filter

order

eN ¼ k0N with k0∈ 2, 3, . . . :f g, (9.30)

then specific rows and columns of the SR matrix can be further simplified to

Sref, i,mNþl ¼

0, if
i

k0
∈

0
@

1
AV

l 6¼ i

k0

0
@

1
A,

a mð Þe
�j
2π

N
imR

, if
i

k0
∈

0
@

1
AV

l ¼ i

k0

0
@

1
A,

Si,mNþl, else:

8>>>>>>>>><
>>>>>>>>>:

(9.31)

The symbol denotes the set of integers. Thus, each k0-th row of Sref is sparsely
populated, i.e., the elements of each k0-th row are zero except for the column

indices that are multiples of N. Furthermore, if the filter order N is chosen to be a

multiple of the used frameshift, e.g., 2R or 4R, then those elements of the sparsely

populated rows of the SR matrix are either real or imaginary.

For illustration purposes a simple example of the SR matrix is shown in Fig. 9.4

with M ¼ 3, R ¼ 2 and N ¼ 4. As a result, each second row (even indices of the

SR matrix) is sparsely populated. The elements in white color indicate values equal

zero, whereas the ones in black values unequal zero. However, these rows are

related to that frequency-supporting points, which would be computed with a basic

DFT/FFT of order N as well as with a higher DFT/FFT of order eN .
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9.4.2 Realization Aspects of the Spectral Refinement

The proposed method for spectral refinement can either be applied to refine only the

original frequency resolution of the input signal or to compute additional

frequency-supporting points in between.

9.4.2.1 Refinement While Keeping the Original Frequency Resolution

If it is desired to calculate a spectral refinement only for the original frequency

resolution—i.e., each k0-th frequency-supporting point of the vector eY e jΩeμ ; n
� �

is

refined—the realization of the spectral refinement can be performed in an efficient

and robust manner. Due to the sparse population of the matrix Sref the refinement

can be realized by short FIR filters applied in each subband after the frequency

decomposition of the input signal y(n). The FIR filter coefficients

gi, i�k0 ¼ gi, i�k0, 0; gi, i�k0, 1; . . . ; gi, i�k0,M�1

� 	T
(9.32)

are extracted from the sparsely populated refinement matrix by

gi, i�k0,m ¼ Sref, i�k0, iþmN: (9.33)

The refined spectrum of the i-th subband is determined by

eY0 ejΩi�k0 ; n
� � ¼ gi, i�k0, 0Y0 ejΩi ; nð Þ þ . . .

þ gi, i�k0,M�1Y0 ejΩi , n� M � 1ð Þð Þ: (9.34)

Often analysis-synthesis schemes use a frameshift which is a fraction (e.g., half

or quarter) of the DFT order. For such cases the filter coefficients gi, i�k0,m are either

Fig. 9.4 SR matrix: White
color indicates values equal
zero and black element

values unequal zero
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real or imaginary which in turn results in a further reduction of the computational

complexity.

Figure 9.5 shows a realization of an analysis filterbank with spectral refinement

as a postprocessor by means of FIR filters for k0 ¼ 2. The so-called auto FIR filters

gi, i�k0 are applied to refine the original frequency-supporting points (solid black

frames).

9.4.2.2 Computing Additional Frequency-Supporting Points

Besides refinement of the original frequency resolution it is also possible to

calculate frequency points in between of the original spectrum. At a first glance,

however, it is computationally intensive due to the non-sparseness of the remaining

rows of the Sref matrix. In order to reduce the computational complexity, one can

approximate the non-sparse rows of the Sref matrix by the M largest coefficient

pairs. The largest coefficient pairs correspond exactly to those weighting values

around the desired frequency-supporting points of the STS. Analyses have

confirmed that the resulting spectrum shows low errors even if only M ¼ 3 . . . 5
filter coefficients are used. The complete system of spectral refinement for k0 ¼ 2

is depicted in Fig. 9.5.

The refinement of the original frequency resolution is accomplished using

auto FIR filters (solid black frames), and the computation of the additional

Fig. 9.5 Analysis filterbank with spectral refinement as a postprocessor by means of FIR filters for

k0 ¼ 2
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frequency-supporting points is performed using cross FIR filters (dashed gray

frames). The cross as well as the auto filters can be calculated as

gi, l,m ¼ Sref, l, iþmN , (9.35)

and the refined STS eY0 ejΩl ; nð Þ is finally determined by

eY0 ejΩl ; n
� � ¼

XM�1

m¼0

gl=k0, l,mY ejΩl=k0 , n� m
� �

, if
l

k0
∈,

XM�1

m¼0

g l=k0b c, l,mY ejΩl=k0 , n� m
� �

þ
XM�1

m¼0

g l=k0d e, l,mY ejΩl=k0 , n� m
� �

,

else,

8>>>>>>>>><
>>>>>>>>>:

(9.36)

where b . . . c and d . . . e denote rounding to the next smaller and larger integer,

respectively.

9.4.3 Computational Complexity of the Spectral Refinement

After the simplified version of SR and its efficient realization were described, as a

next stage we analyze its overall complexity. Hence, the computational complexity

of a 256-FFT order with additional refinement is compared with a 512-FFT order by

means of complex multiplications and additions as shown in Table 9.1.

It should be noted that only few operations for refining the original frequency-

supporting points are required. Using SR as a post-processing stage of a basic

256-FFT only about 2,688 complex multiplications and additions are required while

doubling the basic 256-FFT order to 512-FFT about 4,608 operations are needed.

It has to be mentioned that in many applications a basic FFT is already available,

needed for the estimation of several parameters, like pitch frequency which can be

used for speech recognition. In such situations, however, only minor additional

Table 9.1 Computational complexity of a higher order FFT and of a basic FFT with additional

spectral refinement

Complex multiplications and additions (N ¼ 512, N ¼ 256, M ¼ 3 . . . 5)

eN -order FFT eN ld eN
� �

¼ 4, 608 100 %

N-order FFT with spectral refinement N ld(N ) + MN/2 ¼ 2, 432 . . . 2, 688 53–58 %

N-order FFT with spectral refinement

and additional frequencies

N ld(N ) + MN/2 + MN ¼ 3, 200 . . . 3, 968 69–86 %
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operations are required for performing SR. If it is desired to calculate also

additional frequency-supporting points as presented in Sect. 9.4.2.2 only few

complex multiplications and additions have to be added to the refinement system

as seen in Table 9.1.

9.4.4 Spectral Refinement for Pitch Frequency Estimation

The refinement method can be utilized in a variety of speech, audio, and other

signal processing applications. In this section the principle idea of using spectral

refinement as a pre-processing stage for enhanced fundamental frequency estima-

tion is presented.

A broad variety of different algorithms for estimating the fundamental frequency

of speech signals exist: e.g., methods based on the harmonic product-spectrum [20]

or on short-term autocorrelation [2]. For the following evaluations a method based

on the latter approach has been employed. In a first stage the corrupted speech signal

y(n) is divided into overlapping blocks and subsequently windowed. Once the FFT

as well as the spectral refinement method are applied to the input signal block

according to Fig. 9.5, the short-term power spectral density (PSD) is estimated.

Applying the IFFT to a normalized version of the PSD results in the autocorrelation

function (ACF). By performing a maximum search of the ACF in a selected range of

indices, the normalized pitch period is estimated by using the argument of the

maximum. Finally, the pitch frequency is obtained using the inverse of the pitch

period. Further details can be found in [15].

To show the performance and the accuracy of the proposed method, the

estimated fundamental frequencies without and with spectral refinement at different

signal-to-noise ratio (SNR) conditions have been compared with a clean speech

laryngograph database. The reference database consists of a multitude of pitch

frequencies. Figure 9.6 shows the histogram of the used reference pitch frequencies

out of the interval fp(n) ∈ [60 Hz, 350 Hz]. About 7 � 105 reference pitch

frequencies have been used for the experiments extracted from 38 different

speakers (18 female and 20 male).

In addition to the reference pitch frequencies extracted from the laryngograph

signals the corresponding Lombard [13] speech utterances measured at different

noise conditions in an anechoic room have been stored within the reference

database. To generate a noisy speech signal, the Lombard speech signals were

convolved with different impulse responses (mouth-to-microphone) and added with

stationary background noise. The impulse responses as well as the background

noises were measured in advance in a multitude of cars. Furthermore the Lombard

speech signals have been adjusted in power to achieve the desired SNR.

For evaluation the correctness and false detections have been considered. To

analyze the correctness of the estimated pitch frequencies three ranges of values
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have been defined: the estimated error lies within a tolerance range of�3,�10, and

�20%. False detection means that the algorithm under test detects a pitch frequency

where no reference pitch is available.

Table 9.2 summarizes the correctness of the pitch estimation method without

and with spectral refinement for high SNR (20–25 dB), medium SNR (9–15 dB),

and low SNR (0–6 dB).

Pitch frequency was only detected if the normalized ACF at maximum lag

exceeds a predefined threshold of p0 ¼ 0.25. Note that the refinement was only

performed at lower frequencies up to 1 and 3 kHz, respectively.

Fig. 9.6 Histogram of reference pitch frequencies out of the interval 60–350 Hz (visualized in

1 Hz steps)

Table 9.2 Correctness of estimated fundamental frequencies without and with spectral refine-

ment for different SNR and tolerance ranges

Correctness (%)

Accepted tolerance High SNR Medium SNR Low SNR

Standard method <3 % 62.1 70.1 47.2

<10 % 65.1 70.9 48.4

<20 % 65.5 71.4 49.3

Method with SR up to 1 kHz <3 % 82.1 80.3 55.9

<10 % 88.1 85.3 58.2

<20 % 88.8 86.2 58.7

Method with SR up to 3 kHz <3 % 83.2 80.1 53.4

<10 % 89.8 85.3 56.9

<20 % 90.6 86.3 57.5
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The results show that by applying spectral refinement an increase of correctness

by about 20–25 % (abs.) at high SNR is achieved, approx. 10–15 % (abs.) at

medium SNR, and about 8–10 % (abs.) at low SNR. Moreover, it can be observed

that nearly the same performance is achieved when using SR up to 1 and 3 kHz.

Hence, for pitch estimation it is sufficient to refine the input spectrum only at lower

frequencies up to 1 kHz which in turn results in a significant reduction of the

computational complexity. The measured results for false detections are listed in

Table 9.3. From the evaluations one can see that the false detection rates can be kept

nearly constant for all SNR levels considered while the correctness rates are

increased at the same time.

9.5 Temporal Interpolation of Short-Term Spectra

and Its Application

The principle idea of the interpolation method which was first published in [16] is to

exploit the correlation of successive input signal blocks for computing interpolated

temporal supporting points in between of the originally generated frames. For

the derivation it is assumed that the chosen subsampling rate R is even-valued.

For simplicity reasons, the following condition is defined: eN ¼ N. Meaning that the

interpolated STS have the same order as the original input; to be more precise, no

spectral refinement is performed for the interpolated STS.

Reformulating (9.6) by using the interpolation matrix Sint and the extended input
vector ey nRð Þ, the following expression is obtained:

eY1 ejΩ; nð Þ
⋮

eYeM�1
ejΩ; nð Þ

2
64

3
75 ¼ SintDblockHblockey nRð Þ: (9.37)

Dblock describes a block-diagonal matrix of size MN � MN consisting of DFT

matrices of order N (analogue to (9.10)) and Hblock denotes an extended window

matrix with a dimension of MN � (N + M0):

Hblock ¼ HT
0 ;H

T
1 ; . . . ;H

T
M�1

� 	T
: (9.38)

Table 9.3 False detection of pitch frequency without and with spectral refinement up to 1 and

3 kHz for different SNR ranges

False detection (%)

High SNR Medium SNR Low SNR

Standard method 18.1 11.4 8.6

Method with SR up to 1 kHz 18.2 11.3 8.2

Method with SR up to 3 kHz 17.2 11.4 8.1
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The first element matrix H0 adds N � M0 zero values after the diagonal window
matrixH, whereas the remaining matricesH1, H2, etc. represent cyclic shifts ofH0.

This means that equal row indices of adjacent submatrices are rotated by

R elements. Thus, the first and the last element matrices are defined according to

H0 ¼ H 0 N�M
0ð Þh i

and HM�1 ¼ 0 N�M
0ð Þ H

h i
: (9.39)

The definitions (9.12) and (9.37) result in several solutions for the interpolation

matrix Sint. The solutions depend in general on the input signal vector. A solution

that is independent of the input signal can be obtained as follows:

Sint ¼ eDblock
eHblockH

Ξ
blockD

�1
block, (9.40)

where D�1
block describes the inverse of the block-diagonal DFT matrix and HΞ

block

characterize the Moore–Penrose inverse which is defined for real matrices as

HΞ
block ¼ HT

block Bblock

� 	�1
HT

block: (9.41)

9.5.1 Approximated Interpolation

Once the general solution for the interpolation matrix Sint is formulated, we can try

to simplify and approximate the matrix. In Fig. 9.7 the log-magnitudes of the

elements of the interpolation matrix are shown for M ¼ 2 and N ¼ 256. From

this result, one can observe that the matrix Sint contains only few coefficients

being significantly different from zero. This results from the diagonal structure

Fig. 9.7 Magnitude of the elements of the interpolation matrix Sint in dB with eN ¼ N ¼ 256 and
eM ¼ M ¼ 2
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of the matrix H, the sparseness of the extended window matrix Hblock, and

the orthogonal eigen functions included in the transformation matrices. Thus, the

computation of the temporally interpolated spectra can be approximated very

efficiently as described below.

Since Sint is a sparse matrix, the interpolation can be realized as a post-

processing stage after an analysis filterbank using a weighted sum of subband

signals. The weighting coefficients for the i-th subband can be easily extracted

from the interpolation matrix according to

g i;l;mð Þ
p ¼ S

int, iþ l�1ð ÞeN ,Li�mNþp
: (9.42)

The parameter iþ l� 1ð ÞeN in (9.42) specifies the row index and the quantity

Li � nM + p the column index of the interpolation matrix entries, with m ∈ {0,

. . ., M � 1}, p ∈ {0, . . ., Ki � Li}, and l ∈ 0, . . . , eM � 1
n o

. The interpolated

STS for the i-th subband are then determined by

eYl e
jΩi ; n

� � ¼
XM�1

m¼0

XKi

k¼Li

g
i;l;mð Þ
k�Li

Y ejΩk , n� m
� �

: (9.43)

Experiments have shown that it is sufficient to use only five to ten complex

multiplications and additions for computing one interpolated subband signal. The

filter order of g(i,k,m) for the i-th subband is defined by the difference Ki � Li with

Li ¼ max 0, i� P

2


 �� 

(9.44)

and

Ki ¼ min iþ P

2

� �
,N � 1

� 

, (9.45)

with P being the maximal filter order used for the interpolation. Figure 9.8 shows

the principle realization of an analysis filterbank with time-frequency interpolation

as a postprocessor by means of weighted sum of subband signals for eM ¼ M ¼ 2.

9.5.2 Application to Echo Cancellation

The use of echo cancellation by means of adaptive filters offers the possibility of

a full-duplex communication in hands-free telephony. Due to computational

complexity often adaptive filters in the subband domain are used to estimate a

digital replica of a LEM system [9]. However, when increasing the subsampling
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rate R, the computational load is decreased while at the same time aliasing

components within subband signals are increased. It is well known that subband

echo cancellation requires nearly aliasing free subband signals. Therefore, a com-

promise between performance and computational cost has to be found.

To overcome a low steady-state convergence of echo cancellation at large

subsampling rates, the new interpolation method can be implemented. Figure 9.9

depicts the proposed structure for subband echo cancellation with additional tem-

poral interpolation applied only in the reference channel for eM ¼ M ¼ 2.

First we suggest applying the same subsampling rate R for the reference and

the microphone path. The resulting reference subband signals Y ejΩμ ; nð Þ—after

decomposition of y(n) using an analysis filterbank (anti-aliasing filtering and

downsampling)—are subsequently fed to a time-frequency interpolation unit that

includes temporally interpolating the time series of the STS. The original reference

subband signals as well as the output of the time-frequency interpolation eY1 e jΩμ ; nð Þ
are fed to the echo cancellation for estimating the subband echo signals. The usage

of both the reference subband signals as well as its interpolated version reduces the

unwanted effects of aliasing. The subband echo signals are estimated by a convo-

lution of the input subband signals with the estimated LEM subband impulse

response according to

Fig. 9.8 Time-frequency interpolation by means of weighted sum of subband signals applied as a

postprocessor after a conventional analysis filterbank
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D̂ e jΩμ ; n
� � ¼

XV�1

i¼0

Wi,μ nð ÞY ejΩμ , n� i
� �þ

XV�1

i¼0

eWi,μ nð ÞeY1 ejΩμ , n� i
� �

: (9.46)

The quantities Wi,μ nð Þ, eWi,μ nð Þ, i∈ 0, . . . ,V � 1f g are the subband filter

coefficients for the interpolated and non-interpolated part, respectively. The param-

eter V denotes the number of filter coefficients. It has to be noticed that the

convolution is still only operating at the original subsampling rate R. The estimated

echoes are subtracted from the microphone subband signals X ejΩμ ; nð Þ to determine

the error E ejΩμ ; nð Þ for the filter update. For adaptation of the filter coefficients a

typical gradient-based optimization procedure (e.g., the NLMS algorithm) can be

utilized:

Wi,μ nþ 1ð Þ ¼ Wi,μ nð Þ þ β
Y ejΩμ , n� ið ÞE� ejΩμ , n� ið ÞXV�1

i¼0
Y ejΩμ ,n� ið Þj j2 þ

XV�1

i¼0
eY1 ejΩμ ,n� ið Þ�� ��2 (9.47)

and

eWi,μ nþ 1ð Þ ¼ eWi,μ nð Þ þ β
eY 1 ejΩμ , n� ið ÞE� ejΩμ , n� ið ÞXV�1

i¼0
Y ejΩμ ,n� ið Þj j2 þ

XV�1

i¼0
eY 1 ejΩμ ,n� ið Þ�� ��2 (9.48)

Fig. 9.9 Proposed system for subband echo cancellation with additional time-frequency interpo-

lation in the reference path
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where β characterizes the step-size and the symbol (*) denotes the conjugate

complex. The amount of samples and filter coefficients involved in the convolution

and the adaptation, however, is now larger than in a basic scheme: twice as many as

before. All other components used within a complete hands-free system like the

adaptation control of the echo canceller, residual echo suppression, and beam-

forming are still operating at the original subsampled rate R. Real-time experiments

have shown that with the new interpolation method a much higher subsampling rate

can be used, and thus a significant reduction of the computational complexity can

be achieved (even if twice as many filter coefficients are required for echo

cancellation).

9.5.3 Experimental Results

To show the performance and the accuracy of the proposed time-frequency

interpolation method two simulation examples in terms of steady-state convergence

are shown in Figs. 9.10 and 9.11. For these measurements, white noise as reference

excitation has been used. For the analysis decomposition an FFT of size 256 and a

Hann window have been utilized. Local speech and background noise are not

considered in these simulations. For the filter update the Normalized Least Mean

Square (NLMS) algorithm with a step-size of β ¼ 1.0 has been employed.

Fig. 9.10 Performance of echo cancellation without and with additional interpolation for
eM ¼ M ¼ 2, eN ¼ N ¼ 256 and P ¼ 7
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To model the entire tail of the LEM impulse response in this experiment, sufficient

echo cancellation filter orders have been applied.

First graph from the top of Fig. 9.10 shows the normalized power of the

microphone signal, whereas the second and the third curves depict the power of

the error signal (steady-state performance) without and with additional temporal

interpolation at a subsampling rate of 128 (frameshift ¼ 50 % of FFT order). As a

result, the performance of echo cancellation without additional interpolation

(second graph) is strongly degraded due to increased aliasing terms—only about

9 dB echo attenuation can be obtained. Using the proposed interpolation method

with M ¼ 2 and P ¼ 7 at the same subsampling rate of R ¼ 128 a significant

improvement of about 22 dB in terms of echo reduction is achieved (third graph).

However, the performance of a 75 % blockoverlap (frameshift ¼ 25 % of FFT

order) as it is shown in the fourth curve cannot be achieved, but it has to be noticed

that in a real application the performance is in the majority of cases limited to about

30 dB (e.g., due to the background noise).

Figure 9.11 shows the performance of echo cancellation in terms of echo attenu-

ation for different subsampling rates. Second curve (from the top) demonstrates that

at maximum a frameshift of R ¼ 82 (blockoverlap of about 68 %) can be chosen in

order to achieve a sufficient echo attenuation of about 30 dB.

As already mentioned, when the frameshift is increased, the echo attenuation

decreases. Increasing the frameshift to R ¼ 128 would cause severe problems for

the echo reduction performance. The achieved echo attenuation performance with

Fig. 9.11 Performance of echo cancellation without and with additional interpolation

eM ¼ M ¼ 2, eN ¼ N ¼ 256,P ¼ 7
� �

. Different subsampling rates (frameshifts) are used
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activated time-frequency interpolation at an increased frameshift of (R ¼ 128) is

visualized in the second graph. The visualization of the error signal without

interpolation and at a reduced subsampling rate (R ¼ 82) shows nearly the same

overall performance as with interpolation and at an increased subsampling rate

(R ¼ 128). In both cases an echo attenuation of about 30 dB is achieved (after

the echo cancellation filter has converged). Compared to a standard method without

interpolation only small performance degradation in terms of speed of convergence

is obtained. It has to be noticed that using the temporal interpolation for echo

cancellation the overall system complexity can be significantly reduced (with the

setup mentioned above by about 35 %) while the overall performance almost

remains unchanged.

9.6 Conclusions

In this contribution a spectral refinement method and a temporal interpolation

method were presented. Both methods are applied as a post-processing stage of a

conventional analysis filterbank for speech signals.

In a first stage, a general solution on how to individually refine subband signals

was derived. For its realization, a computationally efficient method was proposed

based on a linear combination of weighted subband signal vectors—the refinement

procedure can easily be implemented using short FIR filters in each subband. The

SR method is particularly suitable for speech processing systems with integrated

analysis filterbanks or DFTs—thus, by applying SR as a post-processing stage,

specific feature estimation schemes such as pitch frequency or noise power estima-

tion can be further improved. The calculation of SR introduces an additional delay

in the signal path, which can be kept low using short FIR filters for the refinement.

In this contribution, the SR method has been applied for fundamental frequency

estimation. Evaluations demonstrated that pitch frequency estimation was

improved considerably for all considered SNR levels. For pitch estimation, only a

refinement of the input signal at lower frequencies (up to 1 kHz) is needed. This

results in a very low computational complexity.

In a second step, a post-processing scheme for analysis filterbanks applied in the

reference path of an adaptive system identification scheme has been presented. It is

well known that by increasing the frameshift, the computational complexity is

reduced while the overall performance achieved is decreased. Speech enhancement

algorithms such as noise suppression or residual echo suppression still operate well

with higher frameshifts. The most critical component within a hands-free system is

the subband echo cancellation due to increased aliasing distortions. The proposed

time-frequency interpolation method is able to significantly reduce aliasing terms

caused by a subsampling unit within an analysis filterbank. It has been shown that

the post-processing scheme can be realized in an effective and efficient way based

on a weighted sum of subband signals and without inserting any additional delay in

the signal path. The new time-frequency interpolation method has been applied for
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subband echo cancellation in the reference path. Experimental results have shown

that the post-processing stage allows for an improved steady-state convergence if

the subsampling is kept unchanged. Alternatively, the frameshift can be increased

significantly with the proposed interpolation method, leading to a reduction of the

computational complexity while keeping the overall performance in terms of

convergence speed and steady-state performance constant.
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Part III

Driver Distraction



Chapter 10

Effects of Multitasking on Drivability

Through CAN-Bus Analysis

Amardeep Sathyanarayana, Pinar Boyraz, and John H.L. Hansen

Abstract Humans try their best to maximize their abilities to handle various kinds

of tasks, be it physical, auditory, visual, or cognitive. The same is true when a

person is driving a vehicle—while driving is the primary task of a driver, he/she

will attempt to accomplish secondary tasks such as speaking over a cell phone,

checking and creating text messages, and selecting music or viewing/accessing

news. Though the driver’s primary intention is a safe drive, as previous studies have

shown (Wilde, Target risk: dealing with the danger of death, disease and damage in

everyday decisions, 1994), drivers elevate their risk-taking ability to an optimal

level. While performing various tasks this balance between drivability and risk

taking can vary, leading to driver distraction and possible accidents. The automo-

tive industry has taken special care to reduce the complexity of operating in-vehicle

infotainment systems. Better ergonomics and haptic (tactile) systems have helped

achieve comfortable usability. Advances in driver assistance systems have also

resulted in increased use of audio-based feedback (Forlines et al. Comparison

between spoken queries and menu-based interfaces for in-car digital music

selection, 2005) from navigation and other systems. It is very important to

understand how these secondary tasks and feedback systems affect the driver and

his/her drivability. This chapter focuses on understanding how drivers react to

various secondary tasks. An analysis on driving performance using vehicle

dynamics and sensor information via CAN-bus shows interesting results on

how performing secondary tasks affect some drivers. Previous studies
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(Sathyanarayana et al. Driver behavior analysis and route recognition by hidden

Markov models, 2008 I.E.E.E International Conference on Vehicular Electronics

and Safety, 2008) have shown how maneuvers can be segmented into preparatory,

maneuver, and recovery phases. Initial results presented in this chapter show a

similar trend in how drivers handle secondary tasks. Even if secondary tasks do

not distract the driver, results show driver variations in anticipation or preparation

for the task, performing the task itself, and post completion (recovery) of the task.

Keywords Active safety • CAN-bus • Distraction detection • Drivability

10.1 Introduction

Today’s fast-paced world places increased demands on sophisticated modes of

transport. The sophistication is not just in safety but also in infotainment systems.

People spend more time in their cars and therefore are trying to “do more” within

that time. An average American spends more than 300 h in a vehicle each year [1].

Business, shopping, ordering food, searching for places, exchanging emails, eating,

speaking over a cell phone, texting, and many more tasks happen on the move

while people are driving. Many engineering fields have come together to make this

possible in the car. The automotive industry also recognizes and accepts the needs

of today’s society. However, the auto industry stops short of placing restrictions on

secondary tasks performed in the car. Human error has been the cause of 57 % of

accidents, and in 95 % of the accidents, it was a contributing factor [2]. Though

the automotive industry is currently focusing on fuel efficiency and green vehicles

to protect the environment, safety of the occupants has always been an integral

part of evolution of the automobile. Though technologies such as voice interactive

systems, navigation systems, and hands-free mobile communication have proven to

achieve better and safer driving than their manual interfaces [3], it is important

to understand the impact of adding new infotainment features in the car on

the cognitive driver load. Handling more than one system at a time could

increase the physical and cognitive load-handling capacity of the driver, causing

distraction while driving. In the context of driving, distraction could be defined as

anything which diverts the attention of the driver causing any deviation from a

normal driving pattern [4]. Causes of such distractions could be broadly classified

into visual, cognitive, biomechanical/physical, and auditory. These distractions

have a varying impact on normal driving patterns and could result in slight, severe,

or fatal accidents [5].

Even with new laws prohibiting the use of infotainment systems in various

regions, the number of accidents has not shown a decline. An alternate and more

feasible option could be in the development of intelligent vehicles which help

manage the cognitive workload of the driver. Understanding and modeling driver

behavior is a major component of such systems. Though this modeling approach is

not new [6–8], researchers worldwide have begun to recognize its advantages.
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Infotainment systems are employing learning algorithms to understand the user’s

(driver’s) needs, and suggestions are prompted to the driver for easy access, hence

reducing the effect of secondary tasks while driving.

Even if these secondary tasks do not divert the driver’s attention from the road,

and might not pose as a major threat, they can still expose drivers to increased

cognitive workload. In this chapter we try to identify such risky situations when the

driver is most vulnerable and understand how drivers handle the vehicle and

perform secondary tasks.

10.2 Signal Acquisition

For the safety of both driver and vehicle, it is important to understand how drivers

perform while driving. Environmental conditions, vehicle condition, and driver

state are important factors which affect driving performance. Various sensors and

systems such as sun load sensors (to identify illumination), gyro sensors (for vehicle

and road banking), head distance sensors, and cameras are used to assess and

provide assistance for environmental variations. There are also sensors which

provide monitoring of the vehicle condition and provide control feedback to

compensate for any unnecessary vehicle variations.

A driver could be cautious in general, but due to secondary tasks, fatigue, or

urgency in reaching a destination, he/she might drive erratically. So accessing

information on how the driver controls and maneuvers the vehicle could provide

an improved understanding of driver status and long-term driving characteristics.

In an auto transmission vehicle, the driver’s primary contacts are the steering wheel,

gas, and brake pedals. He/she uses these to maneuver the vehicle in response to the

route and regulate the vehicle speed.

Over the past few decades, automobiles have transitioned from pure mechanical

systems to electromechanical systems with extensive sensors, actuators, and embed-

ded systems controlling the core vehicle functionality. Communication between

these systems mostly happens via a network called the Controller Area Network

(CAN) [9]. The CAN-bus carries vital information such as engine temperature, air

pressure, and fuel monitoring, which reflects current vehicle conditions. Along with

these, there are signals such as gas pedal pressure, brake pedal pressure, and steering

wheel angle which are the driver’s direct controls to maneuver the vehicle and

vehicle speed, which is the driver’s main feedback. Some CAN signals are made

available to the outside world through the On-Board Diagnostic (OBD) port.

Since the main focus of this study is to understand how drivers handle the

vehicle while performing secondary tasks, CAN-bus data provides a reliable and

sufficient source of information. Rather than adding extra sensors, CAN-bus data

was tapped from the OBD port and deciphered to obtain valuable vehicle dynamic

information. Figure 10.1 shows the engine rpm, brake pedal pressure, steering

wheel angle, and vehicle speed information obtained from the CAN-bus.
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10.2.1 A Brief Note on UTDrive Project

To build effective driver dependent systems, developing mathematical models

capable of explaining and predicting driver behavior is important. In order to obtain

modeling parameters to build driver models, a multimodal data acquisition platform

is used to collect data using a vehicle in real traffic conditions.

Efforts have been made to build a rich multimodal database of real-world

driving data which is demographically well balanced with a wide range of

drivers from different nationalities, age, gender, and varied levels of driving

experience. This UTDrive Project [10] is part of a 3-year NEDO-supported

international collaboration between universities in Japan, Italy, Singapore, Tur-

key, and the USA. The UTDrive Project has been collecting and researching on

multimodal data for developing a framework for driver behavior modeling and

driver–vehicle interactions for safe driving. The data was collected using a

Toyota RAV4, instrumented with various sensors (i.e., audio, video, gas/brake

pedal pressures, forward distance, GPS information, and CAN-bus signals) as

shown in Fig. 10.2.
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Fig. 10.1 Vehicle CAN-bus signals extracted from OBD port
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10.2.2 Data/Route Description

A subset of the UTDrive Project corpus is used in this study to analyze the effect of

secondary tasks on drivers. Signals from CAN-bus, such as engine rpm, brake pedal

pressure, steering wheel angle, and vehicle speed (as seen in Fig. 10.1), are used to

model driver behavior. Other sensors including camera and microphone data are

used to transcribe the CAN-bus signals. Data transcription plays a crucial part in

developing mathematical models as it labels the driver’s actions. This not only

provides the basis for further signal processing, but also serves in evaluating results

as a ground truth. Since real-world traffic scenarios and driving are highly dynamic,

transcribers process the entire route to label events which occur during driving. To

remove any ambiguity due to the subjective nature of manual transcription, tran-

scription is performed more than once by different transcribers. Feedback is also

collected from drivers after every driving session regarding their experience in

performing maneuvers and secondary tasks. Hence driver activity is labeled using

multiple sensor information; two cameras—one facing the road and another facing

the driver, microphone array—listening to in-vehicle conversations; and CAN-bus

signals—looking at the vehicle dynamics.

Fig. 10.2 Instrumented UTDrive data collection vehicle along with the sensors [10]
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A small subset of eight drivers’ data from the UTDrive corpus is used in this

study. Each driver is required to drive through the route twice which is shown in

Fig. 10.3. The route takes approximately 10 min to complete and passes through

residential areas and school zone. The drivers are made familiar with the vehicle, its

controls, and the route itself. In the first run, drivers do not perform any secondary

tasks and drive in a neutral/normal driving scenario. In the second run, they are

expected to perform secondary tasks while driving. The selected secondary tasks

are commonly performed/attempted by drivers on a regular basis (labeled in

Fig. 10.3, against each leg of the route). The four different tasks performed are

conversation with a co-passenger, random lane changing, speaking over a cell

phone to an automated dialog system, and performing some common tasks such

as tuning the radio, selecting a particular song in a music player, and adjusting the

AC/heater levels. Though lane changing is not a secondary task and a part of normal

driving maneuver, it has been included in this study to benchmark cognitive loads

for secondary tasks versus a typical driving task.

In this study the drivers are numbered from 1 to 8 (in no particular order), and the

secondary tasks performed are labeled as LC (Lane Changing), CO (Conversation

with co-passenger), MP (speaking on mobile phone), and CT (Common Tasks) [4].

10.3 Previous Work

The main focus of the UTDrive Project during the last few years has been to collect

and perform research on multimodal in-vehicle data to understand and model driver

behavior in developing intelligent vehicles. Among several areas, one key focus

Leg 1:

Lane
Changing

Leg 2:

Speaking over phone

Leg 4:

Conversation

Leg 3:

Common
Tasks

Fig. 10.3 Secondary tasks performed in different legs of the route [4]
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has been to best utilize the available CAN-bus signals. Previous work [10–13]

has shown how CAN-bus signals can be used to identify maneuvers and distraction

in those maneuvers. Two different approaches—driver independent and driver

dependent—were adopted for the analysis.

10.3.1 Driver-Independent Approach [11]

In this approach, the signal patterns are used to identify maneuvers and routes.

Driving signals and maneuvers are considered to be analogous to speech signals in

their structure. As in speech recognition, where phonemes form words which form

phrases which complete a sentence, in route recognition, sub-maneuvers (drivemes)

form maneuvers which form multi-maneuvers and finally form a route. Hidden

Markov Models (HMM) were used to model maneuvers for both neutral and

distracted versions of the maneuvers. Using this HMM framework, right turns,

left turns, and lane changes were detected with 100, 93, and 81 % accuracy [11].

However, the accuracies were not high in classifying these detected maneuvers into

neutral and distracted driving.

10.3.2 Driver-Dependent Approach [10, 13]

From the driver independent approach, it was observed that a fast and robust system

would need to remove inter-driver variations that depend on driver’s individual

traits. This is especially true in detecting driver distractions, as one person’s

distracted driving pattern could be a normal driving pattern for another. For exam-

ple, a cautious driver’s average speed could be 40 mph against a more aggressive

driver whose average speed is 50 mph. A classic three-stage strategy was adopted to

identify the driver, prune the search space to only driver-specific maneuver models,

and once maneuvers were recognized, further prune the search to driver’s comfort

levels, to identify if he/she was distracted or not. With a 100 % accuracy in

identifying the driver using audio data, and a high accuracy inmaneuver recognition,

this GMM–UBM framework was used for distraction detection. Though distraction

detection performance was 71.2 %, it was noted that the false alarm rate (distracted

driving detected as normal driving) was 28.2 %, which is not acceptable for any

active safety application [10].

Further analysis was performed based on high-frequency content, entropy, and

standard deviation of signals, and distraction detection was improved to 95 % [12].

10 Effects of Multitasking on Drivability Through CAN-Bus Analysis 175



10.4 Effect of Secondary Tasks on Drivers

From previous work, it is clear that by using GMMs or HMMs, it is possible to

identify maneuvers and also identify if these maneuvers are executed normally or if

the driver was distracted. It is also noted that some drivers are more distracted than

others. If some drivers are not distracted by performing secondary tasks, in this

study we try to understand how their driving differs from those who are distracted

while performing the same task.

As noted in Sect. 10.2.2, drivers are expected to perform secondary tasks such as

LC (Lane Changing), CO (Conversation with co-passenger), MP (speaking over

mobile phone), and CT (Common Tasks) on a particular route which would have

been driven once normally without any secondary tasks. The data is carefully

transcribed to identify instances when the drivers are performing secondary tasks

and are found distracted. Since the effect of driver variability and driving context

should be minimized to assess driver intent and identify distraction detection, a

driver-dependent GMM–UBM framework is adopted as shown in Fig. 10.4.
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Fig. 10.4 Distraction detection system based on GMM–UBM framework (1) feature extraction

(2) UBM generation (3) MAP adaptation (4) maximum log-likelihood scoring
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A detailed description of Gaussian Mixture Models (GMM) and Speaker Rec-

ognition can be found in [14]. Incorporating the same approach, eight drivers’

CAN-bus data was segmented on the basis of secondary tasks. There are four stages

in the GMM/UBM framework: (1) feature extraction, (2) universal background

model (UBM) generation (development), (3) driver-dependent model adaptation

(training), and (4) testing as shown in Fig. 10.4. Some salient features such as raw

signals of vehicle acceleration, brake pedal pressure, steering wheel angle, vehicle

speed, their derivates, and standard deviation are extracted from the CAN-bus

signals to form feature vectors. A UBM is developed using a large number of

drivers’ CAN-bus data other than the eight used here for training and test. Two sets

of driver-dependent GMMs (neutral and distracted) are obtained by MAP (Maxi-

mum A Posteriori) adapting the UBM using neutral and distracted feature vectors.

Using log-likelihood scoring, each test data is scored against both GMMs

representing neutral and distracted models for a particular driver. The results are

plotted in Figs. 10.5 and 10.6.

Similar to the study in [4], the Kullback–Leibler (KL) distance is computed

between neutral and distracted GMMs for every driver. The results are tabulated in

Table 10.1. KL distance measures the difference between a reference and another

arbitrary probability distribution [15]. In this case, if the distance is small, the

neutral and distracted GMMs do not differ in CAN-bus signal structure. However, if

the distances are large, this implies significant changes in the underlying GMM

structure for distraction.

NEUTRALNEUTRAL
DISTRACTED WITH TASK

WITHOUT
TASK

20.2%   D1
19.2%   D2
28.2%   D3
27.6%   D4
31.3%   D5
35.3%   D6
35.5%   D7
33.3%   D8

Fig. 10.5 Neutral versus distracted driving of all drivers while performing and while not

performing secondary tasks
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10.5 Results and Conclusions

The results obtained show the effect of performing secondary tasks on each driver’s

driving pattern. Adding extra features has proven useful in identifying distractions,

and KL distance still shows similar trends compared to the results obtained in [4].

When test data (at 5 s per frame) is classified into either neutral or distracted, it is

found to have some unique characteristics. The per-frame decision for all eight

Fig. 10.6 Neutral (green “\” hashed) and distracted (red “/” hashed) decision over every 5 s frame

of driving data. Black bars indicate leg boundaries. (a) Decision when no secondary tasks were

performed (b) Decision when secondary tasks were performed

Table 10.1 KL distance

between neutral and

distraction driving GMM

KL LC MP CT CO

D1 8.45 26.62 21.86 22.8

D2 12.01 27.39 17.04 13.2

D3 18.7 30.21 20.2 16.44

D4 8.93 23.02 19.61 14.03

D5 11.65 12.96 20.3 12.1

D6 16.33 24.82 19.29 20.87

D7 9.48 14.47 24.07 14.7

D8 9.2 15.1 10.8 13.94

Avg 11.84 21.82 19.14 16.01

Classify No High Medium Low
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drivers for each leg of the data is shown in Fig. 10.6. If the data frame was classified

as neutral, it is represented by a green “\” hashed region, and a distracted frame was

represented by a red “/” hashed region. Figure 10.6a was the result obtained for data

when the route was driven normally without performing any secondary tasks, and

Fig. 10.6b was obtained for data when secondary tasks were performed in each leg

of the route. The black bars in Fig. 10.6 indicate different leg boundaries.

Figure 10.5 shows a graphical representation of the percentage of time each

driver was distracted while performing a secondary task and the percentage of time

the same driver was distracted while not performing any secondary task. It can be

observed that the first three drivers (D1, D2, D3) are quite comfortable driving

the car without performing any secondary task, but get highly distracted while

performing some secondary tasks. It can also be observed that drivers D5 and D8

are generally distracted while driving. The video playback shows that these drivers

were cautious all the time while driving and did not drive in their normal driving

habit. Hence the system marked a majority of their driving as distracted.

A deeper analysis of Fig. 10.6 shows that when the KL distance between neutral

and distracted models is smaller than the average, it is difficult to distinguish

between neutral and distracted states. In such cases, the test result per frame can

be seen toggling between the two states.

Also, when the KL distance between neutral and distracted models is greater

than the average, it is easier to classify the test data as neutral or distracted. There

are fewer or no transitions between the states. It is noted that some drivers are

comfortable handling some in-vehicle controls while struggling with others. So,

even though they are performing some in-vehicle task while driving, their comfort

level in handling the tasks determines whether they are distracted or not. Conver-

sation with co-passengers is very erratic, and the authors believe that a separate

study is required to analyze whether there exists a pattern in drivers being distracted

while taking or listening or both.

A graphical representation of how neutral and distracted GMMs could be sepa-

rated is shown in Figs. 10.7 and 10.8. As can be seen from Fig. 10.8, there could be a

large overlapping region between the models, or they could be very close making

transitions between models possible. Drivers generally do not stay in one state and

often toggle between models/states. A deeper analysis on how often they toggle

would give new insight into understanding the driver and their driving traits. This

tendency is seen by observing the results from Fig. 10.6. Drivers have a tendency to

adjust to small changes over time. These corrective actions should not be wrongly

flagged as distraction. In fact, this is the driver’s effort to recover towards normal

driving. An example of such a scenario is when the driver is trying to tune the

radio to any channel and starts drifting away but stays within the lane boundaries.

As soon as he switches his attention towards the road, he pulls the steering wheel to

recover the vehicle back to the center of the lane. This momentary lapse in attention

could be a stray occurrence and should not be flagged as distracted. If the driver

drifts out of the lane or for a longer time or continues to drift a few times within the

lane, then it could be that the driver is really distracted and could be helped with

some assistance.
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On careful observation of results in Fig. 10.6b, it can be seen that more than 70 %

of the drivers in this set follow a particular pattern while performing different

secondary tasks. Most of the observation frames flagged as distractions (not their

normal driving pattern) can be grouped into three sequential events. Initially during

the start of a task, most of the drivers are distracted. This is justified as they givemore

attention towards the task, gauge/assess the surroundings, and get ready to perform

the task. This phase can be termed as Anticipation or Preparatory Phase. Once the

drivers are prepared with their secondary task, 50 % of the drivers fall into a comfort

zone where they feel confident and comfortable in executing the task. Hence they

focus more on driving and return back to their normal driving pattern. This phase

Fig. 10.8 Top view of the GMM graphical representation showing the area covered and

overlapping regions

Fig. 10.7 Graphical representation of neutral and distracted GMMs
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is the actual execution of the task. Similar to the preparatory phase, several drivers

are slightly distracted at the end of the task or immediately after completion of

the secondary task. This phase is called the Recovery or Post Completion Phase.

On observing the videos it is noted that these drivers reassess their surroundings

during this phase and so deviate momentarily. The duration of each of these phases is

based on individual driver’s comfort and confidence level. It can be seen from

Fig. 10.6b that most drivers are distracted even while performing the secondary

tasks in Leg 2 and Leg 3 (speaking over mobile phone and performing in-vehicle

common tasks). This shows that these tasks are inherently distractive, and drivers are

not able to return to normal driving while performing these secondary tasks and

hence are suggested to be avoided.

The results from this study suggest a viable means of modeling and assessing

driver performance with and without the presence of distraction-based tasks. Further

research building on this study would clearly be justified to formulate real-time

in-vehicle detection/assessment methods that tune to the specific driver traits.
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Chapter 11

Using Perceptual Evaluation to Quantify

Cognitive and Visual Driver Distractions

Nanxiang Li and Carlos Busso

Abstract Developing feedback systems that can detect the attention level of the

driver can play a key role in preventing accidents by alerting the driver about

possible hazardous situations. Monitoring drivers’ distraction is an important

research problem, especially with new forms of technology that are made available

to drivers. An important question is how to define reference labels that can be used

as ground truth to train machine-learning algorithms to detect distracted drivers.

The answer to this question is not simple since drivers are affected by visual,

cognitive, auditory, psychological, and physical distractions. This chapter proposes

to define reference labels with perceptual evaluations from external evaluators.

We describe the consistency and effectiveness of using a visual-cognitive space for

subjective evaluations. The analysis shows that this approach captures the multidi-

mensional nature of distractions. The representation also defines natural modes to

characterize driving behaviors.

Keywords Driver distraction • Active safety • Driver perception • Subjective

evaluation • Driving performance

11.1 Introduction

The development of new in-vehicle technology for communication, navigation, and

infotainment has significantly changed the drivers’ experience. However, these new

systems can negatively affect the drivers’ attention, exposing them to hazardous

situations leading to motor-vehicle accidents [17]. According to the study reported

by The National Highway Traffic Safety Administration (NHTSA), over 25 % of

police-reported crashes involved inattentive drivers [28]. This finding is not
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surprising since it is estimated that about 30 % of the time that drivers are in a

moving vehicle, they are engaged in secondary tasks [27]. Therefore, it is important

to develop active safety systems able to detect distracted drivers. A key step in this

research direction is the definition of reference metrics or criteria to assess the

attention level of the drivers. These reference labels can be used as ground truth to

train machine-learning algorithms to detect distracted drivers.

A challenge in defining driver distraction measure methods is the multidimen-

sional nature of the distractions caused by different tasks. Performing secondary

tasks while driving affects the primary driving task by inducing visual, cognitive,

auditory, psychological, and physical distractions. Each of these distractions has

distinct effects on the primary driving performance [9]. During visual distractions,

the drivers have their eyes off the road, compromising their situation awareness.

During cognitive distractions, the drivers have their mind off the road, impairing

their decision making process and their peripheral vision [27] (looking but not
seeing [32]). A driver distraction measure should capture these facets to reflect the

potential risks induced by new in-vehicle systems.

Some studies have used direct measurements derived from the driving activity.

These measures include lateral control measures (e.g., lane-related measures),

longitudinal control measures (e.g., accelerator-related measures, brake, and

deceleration-related measures), obstacle and event detection (e.g., probability of

detection measures), driver response measures (e.g., stimulus-response measures),

vision-related measures (e.g., visual allocation to roadway), and manual-related

measures (e.g., hands-on-wheel frequency) [4, 19, 36–38]. Other studies have used

measurements from the drivers including electroencephalography (EEG), size of

eye pupils and eye movement [4, 22, 23, 26]. Unfortunately, not all these metrics

can be directly used to define labels to train machine-learning algorithms to predict

distracted drivers. Some of these metrics can only be estimated in simulated

conditions (e.g., event detection tasks) while others require intrusive sensors to

reliably estimate their values (e.g., bio-signals).

The study addresses the problem of describing driver distraction through

perceptual assessments. While common subjective evaluations such as the NASA
task load index (NASA-TLX), driving activity load index (DALI), subjective work-
load assessment technique (SWAT), andmodified Cooper Harper (MCH) scale rely

on self-evaluations [39], we propose the use of external observers to separately

evaluate the perceived visual and cognitive distractions—a two-dimensional space

to characterize distractions. Subjects, who were not involved in the driving

experiments, are invited to observe randomly selected video segments showing

both the driver and the road. After watching the videos, they rate the distraction

level based on their judgment. Notice that the external observers are required to

have driving experience such that they can properly relate to the drivers’ actions.

The study uses a database recorded in real driving conditions collected with the

UTDrive platform—a car equipped with multiple nonintrusive sensors [2]. The

recordings include drivers conducting common secondary tasks such as interacting

with another passenger, operating a phone, GPS, or radio [6, 15, 16].
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Building upon our previous work [16], the chapter analyzes the consistency and

effectiveness of using the proposed visual-cognitive space in subjective evaluations

to characterize driver distraction. First, the scores are analyzed in terms of the

secondary tasks considered in the recordings. The analysis shows high consistency

with previous findings describing the detrimental effect of certain secondary tasks.

The visual-cognitive space captures the multidimensional nature of driver distrac-

tions. Then, the scores provided by different external observers are compared. The

inter-evaluator agreement shows very strong correlation for both visual and cogni-

tive distraction scores. The evaluations from external observers are also compared

with self-evaluations provided by the drivers. The comparison reveals that both

subjective assessments provide consistent descriptions of the distractions induced

by secondary tasks. Likewise, the scores from the subjective evaluation are

compared with eye glance metrics. The recordings in which the drivers have their

eye off the road are consistently perceived with higher visual and cognitive

distraction levels. Finally, we highlight the benefits of using the visual-cognitive

space for subjective evaluations. This approach defines natural distraction modes to

characterize driving behaviors.

The chapter is organized as follows. Section 11.2 summarizes previous work

describing metrics to characterize distracted drivers. Section 11.3 describes the

experiment framework used to record the audiovisual database and the protocol to

obtain the subjective evaluations. Section 11.4 analyzes the subjective evaluation in

terms of secondary tasks, and the consistency in the evaluations between external

raters. The section also compares the subjective evaluations of external observers

with the ones collected from the drivers (e.g., self-evaluations). Section 11.5 studies

the deviations observed in eye glance metrics when the driver is engaged in

secondary tasks. The section discusses the consistency between perceptual evalua-

tions and eye glance features. Section 11.6 highlights the benefits of using the

proposed visual-cognitive space for subjective evaluations to characterize distrac-

tion modes. Section 11.7 concludes the chapter with discussion, future directions,

and final remarks.

11.2 Related Work

Several studies have proposed and evaluated measurements to characterize driver

distractions. This section summarizes some of the proposed metrics.

11.2.1 Secondary Task Performance

A common distraction metric is to measure secondary task performance [4].

In some studies, the recordings in which the driver was performing secondary

tasks are directly labeled as distracted while the controlled recordings are labeled
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as normal [3, 20, 40]. In other studies, the drivers are asked to complete artificial

detection tasks not related to the primary driving task, such as identifying objects or

events, and solving mathematical problems. The performance is measured as the

effectiveness (accuracy) and efficiency (required time) to complete the task. There

are various approaches that fall under this category. Examples include peripheral
detecting task (PDT), visual detection task (VDT), tactile detection task (TDT), and
signal detection task (SDT) [9, 23, 26, 36]. Most of the studies are conducted using

car simulators, in which the stimulus can be controlled.

11.2.2 Surrogate Distraction Measurements

Studies have proposed surrogate schemes to evaluate the distraction level when the

driver operates an in-vehicle technology. These methods are particularly suitable

for early stages in the product design cycle of a device that is intended to be used

inside the car. The lane change test (LCT) is one example [21]. Using a car

simulator, the driver is asked to change lanes according to signals on the road

while operating a particular device. The distraction level is measured by analyzing

the driving performance. Another example is the visual occlusion approach, which

has been used by automotive human factor experts as a measure of the visual

demand of a particular task [11]. In this approach, the field of view is temporally

occluded mimicking the eye off the road patterns for visual or visual-manual tasks.

During the occlusion interval (usually set equal to 1.5 s), the subject can manipulate

the controls of the device, but cannot see the interface or the control values. The

time to complete the task provides an estimation of the required visual demand.

However, these metrics are not suitable for our goal of defining ground truth labels

to describe the distraction level of recordings collected in real traffic conditions.

11.2.3 Direct Driving Performance

Another type of attention measurement corresponds to primary task performance

metrics [10, 14, 20, 22, 23, 33, 35]. They determine the attention level of the driver

by directly measuring the car response [4]. These measures include lateral control
such as lane excursions, and steering wheel pattern, longitudinal control, such as

speed maintenance and brake pedal pattern, and car following performance, such
as the distance to the leading car. Notice that these measurements may only capture

distractions produced by visual intense tasks, since studies have shown that metrics

such as lane keeping performance are not affected by cognitive load [9]. Lee

et al. [19] suggested that it is important to study the entire brake response process.

In this direction, they considered the accelerator release time (i.e., the time between

the leading car brakes and the accelerator is released), the accelerator to brake
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(i.e., the movement time from accelerator release to initial brake depress), and the

brake to maximum brake (i.e., the time from the initial brake depress to maximum

deceleration). From thesemeasurements, they found that the accelerator release time

was the most sensitive metric of braking performance.

11.2.4 Eye Glance Behavior

Movement of the eyes usually indicates where the attention is allocated [36].

Therefore, studies have proposed eye glance behavior to characterize inattentive

drivers [4, 22]. This is an important aspect since tasks with visual demand require

foveal vision, which forces the driver to take the eyes off the road [36]. The proposed

metrics range from detailed eye-control metrics, such as within-fixation metrics,

saccade profiles, pupil control, and eye closure pattern, to coarse visual behavior

metrics, such as head movement [36]. The total eye off the road to complete a task is

accepted as a measure of visual demand associated to secondary tasks. It is

correlated with the number of lane excursions committed during the task [38].

The farther away from the road that a driver fixes his/her eyes, the higher the

detrimental effect on his/her driver performance [36]. Also, longer glances have

higher repercussions than few short glances [38]. In fact, when the eye off the road

duration is greater than 2 s, the chances of accidents increases [4, 17]. Another

interesting metric is the percent road center (PRC), which is defined as the percent-
age of time within 1 min that the gaze falls in the 8� radius circle centered at the

center of the road.While visual distraction is the prominent factor that forces drivers

to take their eye off the road, cognitive distractions can also have an impact on eye

glance behavior. As the cognitive load increases, drivers tend to fix their eye on the

road center, decreasing their peripheral visual awareness [27, 29, 30]. Therefore,

lack of eye glances may also signal driver distractions.

One important aspect that needs to be defined in many of the aforementioned

driver distraction measurements is the corresponding values or thresholds that are

considered acceptable for safe driving [39]. In some cases, organizations have

defined those values. For example, the Alliance of Automobile Manufacturers
(AAM) stated that the total duration required to complete a visual-manual task

should be less than 20 s. Metrics such as total glance duration, glance frequency,

and mean single glance duration have been standardized by the International
Organization for Standardization (ISO). In other cases, a secondary task such as

manual radio tuning is used as a reference task. When a new in-vehicle task is

evaluated, the driving behaviors are compared with the ones observed when the

driver is performing the reference task. To be considered as an acceptable, safe task,

the deviation in driving performance should be lower than the one induced by the

reference task.
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11.2.5 Physiological Measurements

Physiological measurements provide useful information about the internal response

of the drivers’ body when they are conducting secondary tasks. Although the

information is collected with intrusive sensors, they provide objective, consistent,

and continuous measurements describing drivers’ attention (e.g., increased mental

workload) [9, 23, 26]. Engstrom et al. [9] used cardiac activity and skin conduc-

tance as the physiological measurements for their study on visual and cognitive

load. They showed that secondary tasks have an impact on physiological signals.

Mehler et al. [23] used physiological measurements including heart rate, skin

conductance, and respiration rate to study young adult drivers in a simulator.

They found physiological measurements are sensitive to mental workload. Putze

et al. [26] considered labeling the workload using subjective evaluation, secondary

task performance and multiple physiological measurements (skin conductance,

pulse, respiration, and EEG). The results suggested a strong correlation between

the three measurements. If these physiological metrics are used to label whether a

driver is distracted, appropriate thresholds need to be established to determine

acceptable driving behaviors. The challenge is that these thresholds may vary

across drivers.

11.2.6 Subjective Assessments

Subjective assessments have been proposed to measure driver distraction. The most

common techniques are self-evaluation scales for subjective mental workload.

Examples include the NASA task load index (NASA-TLX), driving activity load
index (DALI), subjective workload assessment technique (SWAT), Modified
Cooper Harper scale (MCH), and rating scale mental effort (RSME) [39]. For

assessment of fatigue, studies have used the Karolinska sleepiness scale (KSS) [7].
The NASA-TLX is commonly used to rate self-perceived workload [1, 14, 18, 26].

It includes rating on six different subscales: mental demand, physical demand,
temporal demand, performance, effort, and frustration. In addition to the six

NASA-TLX scales, Lee et al. [18] included a modified version of the questionnaires

to assess situation awareness and perceived distraction. These self-reported

evaluations were used to evaluate the workload introduced by a speech-based

system to read email. Some studies use a subset of these subscales. For example,

Aguilo [1] included only the mental demand, temporal demand, and frustration
scales as part of the guidelines in designing in-vehicle information systems (IVISs).
Harbluk et al. [14] combined eye glance behavior, braking performance, and

subjective evaluations (NASA-TLX scales) to study cognitive distraction. They

concluded that the drivers’ ratings were closely related to the task demands.
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Along with self-evaluations, subjective evaluations by external observers have

also been used to characterize driver distractions [25, 31]. Sathyanarayana

et al. [31] relied on perceptual evaluations to label the videos of the drivers as

either distracted or not distracted. Four raters were asked to observe video

recordings, and the consensus labels were used as labels for pattern recognition

experiments. Piechulla et al. [25] used objective and subjective methods to assess

the drivers’ distraction. Their study proposed an adaptive interface to reduce the

drivers’ workload.

This study analyzes the consistency and effectiveness of perceptual assessments

of visual and cognitive distractions provided by external evaluators. We demon-

strate that the use of subjective evaluations is a valid approach that can overcome

the limitations of other measurements to characterize driving behaviors.

11.3 Methodology

11.3.1 UTDrive Platform

To collect a corpus in real driving conditions, this study relies on the UTDrive car

(Fig. 11.1a). This is a research platform developed at The Center for Robust Speech
Systems (CRSS) at The University of Texas at Dallas (UT Dallas) [2]. Its goal is to

serve as a research platform to develop driver behavior models that can be deployed

into human-centric active safety systems. The UTDrive car has been custom fit with

data acquisition systems comprising various modalities. It has a frontal facing video

camera (PBC-700H), which is mounted on the dashboard facing the driver (see

Fig. 11.1b). The placement and small size of the camera are suitable for recording

frontal views of the driver without obstructing his/her field of vision. The resolution

of the camera is set to 320 � 240 pixels and records at 30 fps. Another camera is

Fig. 11.1 Car platform used for the recording. (a) Picture of the UTDrive car (b) Placement of the

frontal camera and the microphone array
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placed facing the road, which records at 15 fps at 320 � 240 resolution. The video

from this camera can be used for lane tracking. Likewise, the UTDrive car has a

microphone array placed on top of the windshield next to the sunlight visors (see

Fig. 11.1b). The array has five omnidirectional microphones to capture the audio

inside the car. We can also extract and record various CAN-bus signals, including

vehicle speed, steering wheel angle, brake value, and acceleration. A sensor is

separately placed on the gas pedal to record the gas pedal pressure.

The modalities are simultaneously recorded into a Dewetron computer, which is

placed behind the driver’s seat. A Dewesoft software is used to retrieve synchro-

nized information across modalities. Figure 11.2 shows the interface of theDewesoft

software, which displays the frontal and road videos and various CAN-bus signals.

For further details about the UTDrive car, readers are referred to [2].

11.3.2 Database and Protocol

A multimodal database was recorded for this study, using the UTDrive car. Twenty

students or employees of the university were asked to drive while performing a

number of common secondary tasks. They were required to be at least 18 years old

and have a valid driving license. The average and standard deviation of the age of

the participants are 25.4 and 7.03, respectively. The recordings were conducted

during dry days with good light condition to reduce the impact of the environment

variables. Although wet weather can lead to different challenges for the driver,

Fig. 11.2 Dewesoft software used for recording and exporting the data. The figure shows the

frontal and road videos. It also shows the instantaneous values of various CAN-bus signals
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studies have shown that crashes related to distractions are more likely to occur

during dry days with less traffic congestion [13]. By collecting the data during dry

days, we have relevant information for the study. The subjects were advised to take

their time while performing the tasks to prevent potential accidents.

We defined a 5.6 mile route in the vicinities of the university (see Fig. 11.3). The

route includes traffic signals, heavy and low traffic zones, residential areas, and a

school zone. We decided to exclude streets with high speed limit (e.g., highways or

freeways) from the analysis to minimize the risks in the recording. The participants

took between 13 and 17 min to complete the route.

Fig. 11.3 Route used for the collection of the data. The subjects drove this 5.6 miles-long route

twice. First, they were asked to perform a series of tasks starting with operating the radio and

ending with a conversation with a passenger. Then, they drove the route without any in-vehicle

distractions
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The drivers drove this route twice. During the first run, the participants were

asked to perform a number of secondary tasks while driving. Among the tasks

mentioned by Stutts et al. [34] and Glaze and Ellis [12], we selected the following

tasks: tuning the built-in car radio, operating and following a GPS, dialing and

using a cellphone, describing pictures, and interacting with a passenger. Some

dangerous tasks such as text messaging, grooming, and eating were not included

for security reasons. The details of the selected seven tasks are given below.

Radio: The driver is asked to tune the built-in car radio to some predetermined

stations. The radio is in its standard place, on the right side of the driver.

GPS—Operating: A predefined address is given to the driver who is asked to enter

the information in the GPS. The device is mounted in the middle of the windshield.

The driver is allowed to adjust it before starting the recording.

GPS—Following: After entering the address in the GPS, the driver is asked to

follow the instructions to the destination.

Phone—Operating: The driver dials the number of an airlines automatic flight

information system (toll-free). A regular cellphone is used for this task. Hands-

free cellphones are not used to include the inherent mechanical distraction.

Phone—Talking: After dialing the number, the driver has to retrieve the flight

information between two given US cities.

Pictures: The driver has to look and describe randomly selected pictures, which are

displayed by another passenger sitting in the front passenger seat. The purpose of

this task is to collect representative samples of distractions induced when the driver

is looking at billboards, sign boards, shops, or any object inside or outside the car.

Conversation: A passenger in the car asks general questions to establish a sponta-

neous conversation.

According to the driver resources-based taxonomy defined by Wierwille

et al. [37], the selected secondary tasks include visual-manual tasks (e.g., GPS—
Operating and Phone—Operating), visual-only tasks (e.g., GPS—Following and

Pictures), and manual primarily task (e.g., Radio). The set also includes tasks

characterized by cognitive demand (e.g., Phone—Talking) and auditory/verbal

demands (e.g., Conversation). Therefore, they span a wide spectrum of distractions,

meeting the requirements imposed by this study.

During the second run, the drivers were asked to drive the same route without

performing any of the aforementioned tasks. This data is collected as a normal

reference to compare the deviation observed in the driver behaviors when he/she is

engaged in secondary tasks. Since the same route is used to compare normal and

task conditions, the analysis is less dependent on the selected road. Overall, the

database for this study consists of over 12 h of real driving recordings. More details

about this corpus are provided in [6, 15].
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11.3.3 Perceived Driver Distraction Using Subjective
Evaluations

This study evaluates the use of subjective evaluations to quantify the level of

distraction perceived from the driver. The underlying assumption is that the previ-

ous driving experience of the external evaluators will allow them to accurately

identify and rank the distracting scenarios or actions, as observed in the video

recordings showing the driver and the road. One advantage of this approach is that a

number quantifying the perceived distraction level is assigned to localized

segments in the recording. Therefore, it is possible to identify various multimodal

features that correlate with this distraction metric. Using these features, regression

models can be designed to directly identify inattentive drivers [16]. Another advan-

tage is that many raters can assess the videos so the aggregated values are more

accurate (see Sect. 11.4.2).

As described in Sect. 11.3.2, the database contains over 12 h of data. However,

only a portion of the corpus was considered for the study to limit the evaluation time.

The corpus was split into 10 s, nonoverlapped recordings. Each set contains

synchronized audio and videos showing the driver and the road. For each driver,

three videos were randomly selected for each of the seven secondary tasks

(Sect. 11.3.2). Three videos from normal condition were also randomly selected.

Therefore, 24 videos per driver are considered, which give altogether 480 unique

videos (3 videos � 8 conditions � 20 drivers ¼ 480). Eighteen students at UT

Dallas with valid driver’s license were invited to participate in the subjective

assessment. None of the evaluators participated as drivers in the recording of the

corpus. A graphical user interface (GUI) was built for the subjective evaluation with
a sliding bar that takes continuous values between 0 and 1 (see Fig. 11.4). The

extreme values are defined as less distracted and more distracted. In our previous

work, we used a single, general metric to describe distraction using a similar GUI

[16]. The study concluded that using a single metric for distraction was not enough to

properly characterize tasks that increase the driver’s cognitive load (e.g., Phone—
Talking). To overcome this limitation, this study proposes a two-dimensional space to

explicitly describe visual and cognitive distractions, separately. First, the evaluators

assessed the perceived visual distraction of 80 video segments. In average, the

evaluation lasted for 15 min. After a break, they assessed the perceived cognitive

distraction of a different set of 80 video segments (nonoverlapped set of videos from

the visual distraction evaluation). The average duration of the evaluation was 25min.

The evaluators were instructed to relate themselves to the scenarios observed in

the videos before assigning the perceived metric. We carefully instructed the

evaluators with the definition of cognitive and visual distractions to unify their

understanding. We follow the description given by Ranney et al. [27]. Visual

distraction is defined as eye off the road—drivers looking away from the roadway.

The evaluators were asked to rate the visual distraction level based on the glance

behavior of the drivers. The road camera was included to help the evaluators to

assess whether the observed head motions or eye glances were related to the
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primary driving task. Cognitive distraction is defined as mind off the road—drivers

being lost/busy in thought. For cognitive distraction, the evaluators were asked to

give ratings based on his/her own judgment. However, we highlighted that facial

expressions (stress level, eye pupil size, eye movements), secondary task perfor-

mance (talking speed, phone dialing speed), and driving performance (vehicle

in-lane position, driving speed, distance to front vehicle) can all be used to assess

the cognitive distraction level. In total, each video was assessed by six independent

evaluators, three for visual distractions and three for cognitive distractions.

11.4 Reliability and Consistency of Subjective Evaluations

This section validates the use of perceptual evaluations to characterize driver

behaviors. We argue that employing the perceived visual and cognitive distraction

assessments is a valid approach to characterize distractions. This scheme is partic-

ularly useful for cognitive distractions. While internal physiological measures can

provide consistent indication of the driver’s cognitive workload [23], observable

driver’s behaviors can only provide indirect cues [40]. We expect that evaluators

can infer the expected cognitive load of the driver after observing and judging these

external behaviors. First, we analyze the results of the perceptual evaluation in

terms of secondary tasks (Sect. 11.4.1). Then, we study the consistency of the

subjective evaluations by estimating the inter-evaluator agreement (Sect. 11.4.2).

The results of the subjective evaluation are compared with self-reports from the

drivers that participated in the recording (Sect. 11.4.3).

Fig. 11.4 GUI for the subjective evaluation of cognitive and visual distractions (0—less
distracted, to 1—more distracted)
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11.4.1 Analysis of Subjective Evaluations

Figure 11.5 shows the means and standard deviations of the perceived visual (solid

line) and cognitive (dashed line) distractions across secondary tasks and normal

conditions. The result suggests that secondary tasks identified as visually intensive

activities such as GPS—Operating, Phone—Operating and Pictures received the

highest scores for visual distractions. The cognitive distraction scores for secondary

tasks that are known to increase the cognitive workload of the driver (e.g., Phone—
Talking and Conversation) are higher than the corresponding visual distraction

scores. These results are consistent with previous studies reporting that conversa-

tion is intrinsically a cognitive task [24]. The perceptual evaluations also agree with

Bach et al. [4] who suggested that the cognitive distraction induced by using a

cellphone is more detrimental than the mechanical distraction associated with

operating the device.

Although Fig. 11.5 suggests that the recordings received similar cognitive and

visual distraction scores for most of the secondary tasks, a closer look at the

evaluation reveals that the proposed two-dimensional space captures their distinc-

tion. Figure 11.6 shows a scattering plot of the subjective evaluation across tasks

and normal conditions in the visual-cognitive space. The figure shows samples

covering much of the two-dimensional space. The only empty area corresponds to

recording with low cognitive distractions but with high visual distractions. Notice

that visual demanding tasks also induce cognitive demands. Therefore, this finding

is expected. These results suggest that the subjective evaluation is effective in

capturing both visual and cognitive distractions. A further discussion about the

scattering plot defined by the visual-cognitive space is given in Sect. 11.6.

Fig. 11.5 Means and standard deviations of the perceived visual and cognitive distraction scores

across secondary tasks collected with subjective evaluations
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11.4.2 Inter-Evaluator Agreement

Since each video segment is separately assessed by three different evaluators for

cognitive and visual distractions, the agreement between raters is a useful indicator

of the reliability of these metrics. Stronger agreement suggests higher consistency

among the evaluators, which validates the proposed approach. The analysis consists

in measuring the correlation between the provided scores. For each evaluator,

we calculated the average scores provided by the remaining two raters. Then, we

estimate the Pearson correlation between his/her scores and the average scores.

We repeat this approach for each of the three evaluators. The average correlation

across evaluators is ρv ¼ 0.75 for visual distractions, and ρc ¼ 0.70 for cognitive

distractions. These correlation values represent very strong positive relationship

between the scores provided by raters. Figure 11.7 gives the correlation values for

cognitive and visual distractions for each of the 18 evaluators. The correlation values

are always above ρ ¼ 0.5. These findings reveal high consistency for both visual and

cognitive distraction evaluations. In general, visual distraction scores have higher

values than cognitive distraction scores. This result and the fact that the duration of

the cognitive distraction evaluation was in average 10 min longer than visual

distraction evaluations (Sect. 11.3.3) suggest that assessing cognitive distractions

is harder than assessing visual distractions.

Fig. 11.6 Scattering plot of the subjective evaluation across secondary tasks in the visual-

cognitive space
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11.4.3 Self-Evaluations Versus External Evaluations

The most common questionnaires used to assess mental workload are based on

self-evaluations conducted after the experiments [1, 14, 18, 26]. The underlying

assumption in self-evaluations is that drivers are aware of the distraction level felt

when they were performing secondary tasks. Therefore, they can rank the tasks that

were more distracting to them. This section compares self-evaluations with the

assessments provided by external observers.

A self-evaluation was collected from the drivers after recording the data to rate

how distracted they felt while performing each of the secondary tasks. Unfortu-

nately, the subjects participating in the driving recordings were not available to

provide detailed assessments over small video segments. Therefore, we use a

simplified methodology for this self-evaluation. First, the drivers self-evaluated

their perceived distraction, without distinguishing between cognitive and visual

distractions. Second, instead of evaluating several localized segments in the record-

ing, the drivers provided a single coarse value for each secondary task without

watching videos of the recordings. They used a Likert scale with extreme values

corresponding to 1—less distracted, and 5—more distracted. Figure 11.8 presents

the average and standard deviation values of the perceived distraction scores. The

result suggests that, on average, GPS—Operating is regarded as the most distracted

task, while Conversation is considered as the least distracted task. The fact that

Phone—Talking is perceived as more distracting than Conversation is consistent

with the conclusions by Drews et al. [8]. They claimed that the situational awareness

of being in the same vehicle makes conversation with a passenger a less distracted

task than a conversation with someone who is unaware of the surrounding traffic

(e.g., avoiding increasing the driver’s cognitive demands during decision making

times).

Although the setting for the drivers’ self-evaluation differs from the one used to

collect evaluations from external observers (Sect. 11.3.3), the global patterns can be

compared. Figures 11.5 and 11.8 show consistent patterns across secondary tasks.

Fig. 11.7 Correlation values for cognitive and visual distractions. The results are given for each

of the 18 evaluators
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The ranked order of the four tasks that are perceived as the most distracting for

self-evaluations are exactly the same as the corresponding ones in the cognitive and

visual evaluations from external observers: GPS—Operating, Phone—Operating,
Picture, and Radio. The main differences are observed in the cognitive evaluations

for the tasks Conversation and Phone—Talking, which received higher values by

external observers than by the drivers. Since we requested the external evaluators to

specifically assess the perceived cognitive load of the driver, higher values for these

tasks are expected.

The average values of self-evaluations provide coarse indicators to represent the

distraction level induced by the corresponding task. Depending on the scenario,

certain actions associated with secondary tasks can be more distracting than others

(e.g., having a conversation in a busy traffic intersection). Self-evaluations fail to

capture this inherent within-task variability. Also, drivers may fail to notice the

adjustments made to complete secondary tasks (e.g., jittery steering wheel behav-

ior, reduced speed). We believe that perceptual evaluations collected by multiple

external evaluators over small segments of driving recordings can overcome these

limitations.

11.5 Subjective Evaluations and Eye Glance Behavior

As discussed in Sect. 11.2.4, eye glance behaviors provide useful metrics to

characterize distractions [4, 22]. This approach gives unbiased metrics to describe

driver behaviors. This section compares perceptual evaluation scores provided by

external observers with eye glance behavior measurements. The analysis shows that

both approaches provide consistent patterns. First, we describe the eye glance

Fig. 11.8 Average distraction levels based on self-evaluations across the drivers. The figure

shows the mean and standard deviation of the values assigned to each task
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metrics used in the analysis, which are automatically extracted from the videos

(Sect. 11.5.1). Then, we compare the cognitive and visual distraction scores from

recordings with extreme eye glance behaviors (Sect. 11.5.2).

11.5.1 Metrics Describing Eye Glance Behavior

The drivers’ glance is a reliable indicator of attention. This study relies on two

glance metrics that have been previously used to characterize driver distraction: the

total eye off the road duration (EOR), and the longest eye off the road duration
(LEOR). These features are automatically estimated over the videos evaluated by

the external observers. Given that evaluators assessed 10 s videos, we set the

window analysis accordingly. EOR measures the total time within 10 s in which

the drivers’ glance is not on the road. As mentioned in Sect. 11.2.4, this is an

important metric that is considered to assess the visual demand of IVIS. LEOR

captures tasks that require longer glances, which are known to increase the chances

of accidents [38].

The glance metrics are automatically extracted from the frontal camera facing

the drivers using the computer expression recognition toolbox (CERT) [5]. CERT is

a robust system that extracts facial expression features and head pose. Given the

challenges in recognizing the driver’s gaze in real recordings, we approximate

glance behavior with the drivers’ head pose, parameterized with three rotation

angles (yaw, pitch, and roll). Certain videos present adverse illumination conditions

or occluded faces due to the driver’s hands. In these cases, CERT fails to recognize

the face producing empty values. If this problem was observed over half of the

duration of a video (5 s), the recording was discarded from the analysis. Otherwise,

we approximate the head pose by interpolating missing values.

Head yaw (horizontal rotation) and pitch (vertical rotation) are used for eye off

the road detection. We define thresholds on these angles to decide whether the

driver is looking at the road. Due to the differences in the drivers’ height and in their

sitting preference, the thresholds are separately calculated for each individual from

his/her normal driving recordings. The thresholds for head yaw and head pitch

are set at their mean plus/minus two times their standard deviation, defining in

average a 16�� 16� rectangular region. This approach aims to replicate the 8� radius
circle defined in the percent road center (PRC) calculation [36]. The frames

detected as eye of the road are accumulated over the video sequence to estimate

EOR. LEOR is calculated by counting the longest consecutive eye off the road

frames. Both measurements are divided by the video frame rate to convert the

metrics into seconds. Notice that this approach may detect as eye off the road action

glances associated to the primarily driving task (e.g., checking mirrors).

Figure 11.9 shows the average values for EOR and LEOR for normal and task

conditions across 20 drivers. The task condition includes the recordings from the
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seven secondary tasks considered in this study (Sect. 11.3.2). The figure reveals that

most of the drivers glance longer and more frequently when they are involved in

secondary tasks. Therefore, these glance metrics are appropriate to evaluate the

effectiveness of subjective evaluations.

11.5.2 Eye Glance Metrics and Subjective Evaluations

Given that EOR and LEOR have been used to characterize drivers’ distractions, we

expect to observe agreement between extreme values of these metrics and the

subjective evaluations. We follow the approach presented by Liang et al. [20],

which defined distracted recordings when the considered metrics have higher values

(e.g., the upper quartile of steering error values). For each glance metric, we select a

subset of the video recordings to form two extreme groups: driving recordings with

low EOR or LEOR values (e.g., “normal” class), and driving recordings with high

EOR or LEOR values (e.g., “distracted” class). Figure 11.10 shows the distributions

for EOR and LEOR values estimated from the 10 s videos used for the subjective

evaluation. The vertical lines are the thresholds defined to create the two groups,

which are set so that each group has at least 72 samples to estimate reliable

distributions (Figs. 11.11 and 11.12). For EOR, a recording is considered as

“normal” if the EOR duration is less than 1 s, and as “distracted” if its value is

more than 3 s. For LEOR, a recording is considered as “normal” if the LEOR

duration is less than 1 s. Otherwise, it is considered as “distracted.”

Fig. 11.9 Eye glance features extracted from 20 drivers for normal and task driving conditions.

(a) Total eye off-road (EOR) duration in 10 s. (b) Longest eye off-road (LEOR) duration in 10 s
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Fig. 11.10 Distributions for EOR and LEOR. The vertical lines give the thresholds defining the

classes “normal” (light gray) and “distracted” (dark gray)

Fig. 11.11 Distribution of perceptual evaluation for extreme EOR values. (a) and (b) correspond

to “distracted” class and (c) and (d) to “normal” class

Fig. 11.12 Distribution of perceptual evaluation for extreme LEOR values. (a) and (b) corre-

spond to “distracted” class and (c) and (d) to “normal” class
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The analysis aims to identity whether the subjective evaluations capture the

differences between the extreme video groups. We expect that the recordings with

high EOR or LEOR values are perceived with higher distraction levels. We address

this question by studying the distributions of visual and cognitive distraction scores

assigned to the recordings labeled as “normal” and “distracted.” Figures 11.11

and 11.12 report the results for EOR and LEOR, respectively. The vertical lines

represent the means values. The distributions for the subjective evaluation are

consistently skewed toward higher values for the “distracted” classes. For EOR,

the mean values for both cognitive (μcdistracted ¼ 0.50) and visual (μvdistracted
¼ 0.44) distractions for the “distracted” class are significantly higher than the

corresponding values for “normal” class (μcnormal ¼ 0.23, and μvnormal ¼ 0.31,

respectively). The same results are observed for LEOR values.

Figure 11.11b presents a peak at 0.1. This peak may correspond to eye off the

road actions associated to the primary driving task. While the EOR duration is

above 3 s, the external observers may recognize that these actions do not represent

distractions. Figures 11.11c and 11.12c show peaks at 0.4. These results suggest

that the evaluators assigned moderate cognitive scores to recordings in which the

drivers were looking at the road. These results may indicate that eye glance

behaviors may provide an incomplete description of driver behaviors. As men-

tioned in Sect. 11.2.4, cognitive distracted drivers may have reduced peripheral

visual awareness [27, 29, 30]. External observers may recognize the lack of eye

glance movements as a signal of distraction.

The results reveal that subjective evaluations and eye glance behavior metrics

provide consistent assessments of driver distractions (especially for visual

distractions). Notice that certain eye off the road actions do not represent distractions

(e.g., checking mirrors). External observers can distinguish between actions

associated with primary driving tasks or secondary tasks after watching multiple

cues in the road and driver videos. In these cases, the proposed two-dimensional

space for perceptual evaluations can give a better representation of driver

distractions.

11.6 Distraction Modes Defined by Subjective Evaluation

The final analysis in this chapter aims to highlight the benefits of using the

visual-cognitive space for subjective evaluations. The results in Sect. 11.4.1 show

important differences in the visual and cognitive distraction scores for certain tasks.

An active safety system focusing only on visual distraction cannot provide a

complete picture of the driver behaviors. These differences are captured by the

proposed two-dimensional evaluation space, which defines natural distraction

modes (see Fig. 11.6). The distraction modes can be automatically derived from

the data by clustering the evaluations scores. The resulting modes can give a useful

representation of driver distractions.
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The clustering analysis relies on the K-means algorithm. An important aspect of

the algorithm is the number of clusters, which is defined with the elbow criterion.

In this approach, the number of clusters is increased, recording the percentage of

variance explained by the corresponding clustering. Figure 11.13a shows that

increasing the number of cluster above four does not reduce significantly the

percentage of variance. Therefore, we set the number of clusters accordingly.

Figure 11.13b shows the resulting clustering. The locations of the centroids suggest

that drivers’ distractions can be divided into (the most representative secondary

tasks are given in brackets):

• Cluster 1—low visual and low cognitive distractions (Normal and GPS—
Following).

• Cluster 2—medium visual and medium cognitive distractions (Radio and

Picture);
• Cluster 3—low visual and medium cognitive distractions (Phone—Talking and

Conversation);
• Cluster 4—high visual and high cognitive distractions (GPS—Operating, and

Phone—Operating);

The proposed modes provide a new, useful representation space to characterize

driving behaviors. It can be argued that clusters 3 and 4 are the most dangerous

distraction modes. When a new IVIS is evaluated, multimodal features from the car

and from the driver can be estimated to determine the underlying distraction mode.

We are currently studying multiclass recognition problems (four class problem) and

binary classification problems (one cluster versus the rest). Our preliminary analy-

sis shows promising results in this area.

a b

Fig. 11.13 Distraction modes defined by subjective evaluations (a) number of cluster defined by

elbow analysis and (b) K-Means clusters in visual cognitive space

11 Using Perceptual Evaluation to Quantify Cognitive and Visual Driver Distractions 203



11.7 Discussion and Conclusions

This study explored the use of subjective evaluations from external observers to

characterize driver behaviors. The goal is to define reference labels that can be used

to train human-centric active safety systems. We conducted subjective evaluations

to assess the perceived visual and cognitive distractions in randomly selected videos

showing the driver and road. The analysis suggests that this two-dimensional space

captures the multidimensional nature of distractions. The inter-evaluator agreement

analysis shows very strong correlation for visual and cognitive assessments. The

scores from external evaluators are consistent with self-evaluations collected from

the drivers, and with eye glance metrics (videos with higher EOR and LEOR values

are perceived more distracted).

The study suggests that perceptual evaluations from external observers have

important advantages over other alternative approaches. First, multiple evaluators

can provide reliable scores over short video recordings. This approach facilitates

the study of relevant multimodal cues describing cognitive and visual distractions.

Second, external evaluators can perceive important actions or cues that may be

ignored by the drivers. For example, previous studies show the detrimental effects

of the task Phone—Talking on the primary driving task [32, 33]. Drivers using

cellphone may experience inattention blindness or selective withdrawal of atten-

tion, failing to see objects even though they are in front of them [32]. While this task

was identified as the least distracted task by the self-evaluations, the external

observers assigned higher scores. Third, external observers can capture the under-

lying driving dynamics, providing more reliable insights than metrics describing

eye glance behaviors. For example, cognitive tasks reduce the drivers’ peripheral

visual awareness [27, 29, 30]. Therefore, lack of eye glances can signal cognitive

distraction. While metrics such as eye off the road duration fail to capture these

cues, external evaluators can complement their judgment by looking the driver’s

facial expressions.

The analysis suggests natural distraction modes to describe driver behaviors.

These modes are estimated by clustering the evaluations in the visual-cognitive

space. Some of these distraction modes can have a higher detrimental effect on the

primary driving task (e.g., clusters 3 and 4). Our current research direction is to

use these labels to build machine-learning algorithms to recognize the

corresponding clusters. We are also planning to extend our database to include

other secondary tasks, providing a better coverage of common distractions observed

in real scenarios. The intended driver behavior monitoring system will provide

feedbacks to inattentive drivers, preventing accidents, and increasing the security

on the roads.
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Chapter 12

Evaluation Method for Safe Driving Skill

Based on Driving Behavior Analysis and

Situational Information at Intersections

Yosuke Yoshida, Matti Pouke, Masahiro Tada, Haruo Noma,

and Masaru Noda

Abstract The overall number of traffic accidents is on the decrease, however still at

high level. To reduce accidents, we propose an automated method for evaluating

driving skill by measuring and analyzing safe driving behavior. Earlier, we have

proposed an evaluation method HAS for safe driving skill using the sight distance

generated by geometrical features of intersections. For this study, we have performed

an experiment with 38 subjects on public road to confirm the effectiveness of

our method and compared its results with an evaluation given by a driving instructor.

As a result of experiment, correlation coefficient between the evaluation results

calculated by HAS and the ones evaluated by a driving instructor is 0.71. Therefore,

our measurement system shows effectiveness. In addition, we propose more

understandable result presentation method that employs probability theory.

Keywords Evaluation method • Safe driving skill • Situational information at

intersection • Wearable sensors

12.1 Introduction

To reduce the amount of traffic accidents, a lot of effort has been made for the

improvement of vehicle and road safety equipment. However, generally the number

of traffic accidents is still at high level. In addition to improving vehicles and
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roadside safety, driving behavior should also be considered for traffic accident

reduction. The driver can reduce traffic risks significantly with his/her own behav-

ior so we aim to promote safe driving by retraining licensed drivers. To achieve this,

we propose an automated method for evaluating driving skill by measuring safe

driving behavior using wearable sensors [1].

Many traffic accidents in intersections are caused by a combination of factors

like visibility reduced by geometrical features and the amount and speed of other

traffic, which we refer to as traffic flux. Therefore, when we evaluate safe driving

skill, we should consider not only the driver’s behavior itself but also its relation to

these other factors. Based on the idea, we have earlier proposed Highest Admitted

Speed (HAS) as an evaluation method of driving skill [2]. By using HAS, we

calculated the risk of collision with other vehicles using sight distance and found

out it can be used to display the skill of the driver objectively.

However, HAS has two major shortcomings, the first is that the effectiveness of

the evaluation by HAS has not yet been confirmed. Thus, in this paper, we

confirmed its effectiveness by comparing evaluation results by our method to

subjective evaluation results given by a driving instructor. The other shortcoming

is that the evaluation by HAS is not easy to understand. Therefore, we propose a

more understandable result presentation method based on probability theory by

considering the speed distribution of other vehicles around the intersection which

we define as traffic flux. Considering the traffic flux in relation to driving behavior

allows quantitatively evaluating the risk of collision in probability form and will

give drivers’ evaluation results in a more easy and intuitive way.

12.2 Definition of HAS

The sight distance of an intersection deeply depends on its geometrical features.

To pass through the intersection safely, the drivers should adjust their driving behavior

according to these features. Therefore,we should consider the sight distance as a factor

when evaluating driving behavior. Also the vehicle speed, scanning behavior, and

pedal operation are used to calculate HAS. The scanning behavior should be

performed early enough for the driver to be able to avoid a possible collision.

Therefore, HAS includes only the scanning behavior which is done at a distance

fromwhere the driver can still apply the brakes and stop his vehicle before entering the

intersection. Each scanning behavior is judged by stopping distance based on such as

idle running time or coefficient of friction [3]. We calculate the sight distance using

these scanning behavior positions and the geometrical features. If a driver performs

scanning behavior to the right side at the position which is shown in Fig. 12.1, the

relation between triangle A and triangle B makes equation (12.1):

D� a�W=4

bþ c
¼ a

x� c� L
(12.1)
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Therefore, the sight distance D is calculated by (12.2):

D ¼ a

x� c� L
� bþ cð Þ þ aþW

4
(12.2)

At this equation, W is the width of the vehicle. Since Japan adopted keep-left

rule, we considered the driver sits at the foremost right quarter of the vehicle. L is

the distance from the tip of the vehicle to the driver.

As discussed above, the sight distance from the driver’s viewpoint is estimated

by the detected scanning behavior and geometrical features around the intersection.

Using the sight distance, HAS is given by (12.3):

HAS ¼ D=t (12.3)

Here, t is the time required to travel from the position where scanning behavior

was performed to the collision area which could be calculated from vehicle average

speed. Therefore, HAS resulted as the critical speed of an approaching vehicle

which barely allows the driver to avoid risk of collision by slamming on the brakes.

If a driver got low HAS result, it means that the driver could have collided with

the other vehicles even under legal speed, i.e., the driver’s behavior is dangerous.

On the other hand, if a driver got high HAS result, it means that the driver could

pass the intersection safely. In this way, HAS allows us to score each driver’s safety

driving skill. Note that HAS is individually defined for each approaching vehicles

or bicycles from both direction using the same way.

Fig. 12.1 Calculation of sight distance
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In this paper, we calculate four kinds of HAS (vehicles/bicycles from right/

left side).

12.3 Validation Study of HAS

12.3.1 Experiment on Public Road

To confirm the effectiveness of HAS, we performed an experiment on public road

with 38 subjects. In this experiment, to observe the subjects’ regular driving

behavior, each subject was asked to drive a predefined 40 km course (almost 1 h

driving). To record the driving behavior, we employed three wearable sensors and

three video cameras. The wearable sensors have a sampling rate of 25 Hz. The

subjects wore a cap with one sensor to measure drivers’ head motion. Another one

was placed on the subjects’ right foot to measure pedal operation, and the other was

placed on the dashboard to measure vehicle motion. We also use video cameras to

record drivers’ head/foot motion. In addition, the position and speed data of the

vehicle was obtained by GPS with a frequency of 1 Hz. As our experimental

scenario, we focused on the scene that subjects passed through the non-priority

road of one unsignalized intersection (Fig. 12.2).

Figure 12.3 shows the geometrical features of the intersection, and Fig. 12.4

shows a relation between the position of the subject vehicle and the sight distance to

Fig. 12.2 Target intersection

214 Y. Yoshida et al.



other vehicles and bicycles. As this intersection has a low visibility, it is notorious

for its traffic accidents.

The subjects’ personal profiles are shown in Table 12.1. In this paper, we

manually extracted the drivers’ scanning behavior and pedal operation by using

Fig. 12.3 Geometrical features of target intersection

Fig. 12.4 Sight distance depends on the position of vehicle

12 Evaluation Method for Safe Driving Skill 215



video data by 0.1 s precision. Then, we calculated HAS for each approaching

vehicle/bicycle from both sides as shown in Fig. 12.5.

When focusing on the HAS results for vehicles, the results from the left side are

better than ones from the right side. We can suppose this difference is caused by

different driving lanes. Since Japan adopted keep-left rule, the driving lane of

vehicles approaching from the left side is 3 m behind of those from the right side.

Therefore, subjects had a longer time to scan traffics to the left side than to the right

side. When focusing on the HAS results for bicycles, the results for the right side are

better than those for the left side. This is supposed to happen because the subjects

can get a longer sight distance to the right side than to the left side from the same

position.

As shown in Fig. 12.6, the cross-correlation among HAS results for each

approaching vehicle/bicycle is not so strong. From the results, we can consider

that subjects who pay enough attention for one side do not always pay enough

attention for the other.

Table 12.1 Subjects’

personal profile
Range Average

Age 30–78 56.9

Driving career (year) 10–57 34.7

Driving opportunity (day/week) 2–7 5.9

Fig. 12.5 Histograms of HAS results. (a) HAS for vehicle from the right side. (b) HAS for vehicle

from the left side. (c) HAS for bicycle from the right side. (d) HAS for bicycle from the left side
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12.3.2 Evaluation Given by Driving Instructor

In this section we discuss the effectiveness of HAS in comparison with the

professional driving instructor’s judgment. We asked the driving instructor to

give subjective evaluation of our subjects’ safe driving skills. The driving instructor

scored each subjects’ driving skill with four levels: “worst,” “bad,” “good,” and

“best.” In the subjective evaluation procedure, we showed the driving instructor our

experiment video data and never showed HAS results. The video data consisted of

the front view, driver’s face, and driver’s feet as shown in Fig. 12.7.

It should be noted that the instructor gave an overall score only, i.e., he didn’t

evaluate individual parts of the driving behavior such as scanning behavior to the

left side. Instead, to clarify the instructor’s judgment aspects, we asked him to leave

comments of certain points and recorded these comments with a voice recorder.

Fig. 12.6 Cross-correlation among HAS results

Fig. 12.7 An example of recorded video data
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The driving instructor took about 5 min in average to evaluate each subject.

Table 12.2 shows subjective evaluation result. Each figure in Table 12.2 represents

the number of subjects at each level. About one-third of the subjects were judged as

bad score “worst” or “bad.”

12.3.3 Comparing HAS Results to the Driving
Instructor’s Judgment

Figure 12.8 shows histograms that itemize Fig. 12.5 according to the driving

instructor’s judgment result. When focusing on the evaluation results for vehicles

from the right side, most of the subjects who were given high evaluation results

by HAS were also evaluated as “good” or “best” by the driving instructor. The

coefficient of correlation of both evaluation results is 0.64 ( p < 0.01). However,

when focusing on the evaluation results for other approaching vehicles and

bicycles, they showed relatively weak correlations with the instructor’s judgment

results as shown in Fig. 12.6. Each coefficient of correlation between instructor’s

judgment and HAS result for vehicles from the left side, bicycles from the right

side, and bicycles from the left side is 0.36 ( p < 0.05), 0.32 ( p < 0.05), and 0.37

( p < 0.05), respectively. A reason for this is probably because of the difference in

evaluation procedure. As discussed above, since the driving instructor gave an

overall score only, he gave a bad score when a subject performs poorly with one

approaching vehicle or bicycle even if the subject behaved well with the others.

In contrast, HAS did not provide overall score but a set of scores for the individual

target (vehicles/bicycles from right/left side). Accordingly we integrated four kinds

of HAS by using (12.4).

HASs ¼ HASrv þ HASlv þ 4 HASrb þ HASlbð Þ
4

(12.4)

Table 12.2 Instructor’s judgment result

Evaluation score Number of subjects

Bad 1 1

2 10

3 15

Good 4 12
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Here, HASrv, HASlv, HASrb, HASlb are HAS for vehicles from the left side,

vehicles from the right side, bicycles from the left side, and bicycles from the right

side, respectively. Here, we set limit of HAS for vehicles and bicycles as 100 km/

h and 25 km/h, respectively. Therefore, we multiplied the HAS for bicycles by four

to calculate a normalized average. By using HASs given this way, we made a

comparison to the evaluation results given by the driving instructor again.

Figure 12.9 shows the relations between HAS results and driving instructor’s

judgment. By this integration the coefficient of correlation between HASs and the

driving instructor’s judgment became 0.71. This indicates the effectiveness of HAS

as the evaluation method for safe driving.

12.4 More Understandable Result Presentation Method

As discussed in Sect. 12.3, we confirmed that HAS results showed similar pattern to

the driving instructor’s judgment results. In this section, we discuss applying HAS

into safe driving lecture given by a driving school.

As a result of an interview for the driving instructor, we found out the fact that

one of major problems in safe driving lecture is how to quantitatively show drivers

their shortcomings in their safe driving skills in an easy understandable way.

Fig. 12.8 HAS results itemized according the instructor’s judgment. (a) HAS for vehicle from the

right side. (b) HAS for vehicle from the left side. (c) HAS for bicycle from the right side. (d) HAS

for bicycle from the left side
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From this viewpoint, HAS has some shortcomings. Firstly, HAS does not

consider the traffic flux of intersections. Let us assume that a driver’s HAS result

for vehicles is 30 km/h. If there are few vehicles driving through the intersection

over 30 km/h, the HAS result “30 km/h” means the driving behavior is a safe one.

In contrast, if there are many vehicles driving through the intersection driving over

30 km/h, the HAS result “30 km/h” means the driving behavior is a dangerous one.

In this way, without preliminary knowledge of traffic flux, it is difficult to interpret

HAS result. Secondly, since HAS does not consider the traffic flux, trainees of the

lecture might think HAS result is not realistic.

Accordingly, to resolve these problems we propose a more understandable result

presentation method for HAS which shows the risk of collision in a probability form

by considering characteristics of traffic flux. In this paper, to represent characte-

ristics of traffic flux, we use speed distribution of other vehicles at the intersection.

Figure 12.10 shows our basic idea. By overlaying HAS results on to the speed

distribution, we could quantitatively evaluate risk of collision in probability form.

Our method allows presenting evaluation results in a more intuitive way.

To estimate the speed distribution of approaching vehicles, by using a radar

speed gun, we measured the speed of the approaching vehicles at the intersection at

daytime of a working day for 2 h and obtained 121 vehicle data. Figure 12.11 shows

speed distribution of the intersection. Because of the limitation of the radar speed

gun’s function, we could not measure vehicle speed under 16 km/h. Therefore, we

gathered under 16 km/h data records into one range. By comparing the speed

distribution to the histogram of HAS results, we can show the risk of collision in

a probability form as shown in Fig. 12.11.

Fig. 12.9 Comparing HASs to instructor’s judgment
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Fig. 12.10 Basic idea of understandable result presentation method for HAS

Fig. 12.11 Understandable result presentation method for HAS
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Here, let us focus on Fig. 12.8 again. Figure 12.8 shows that almost 70 % of the

subjects who were judged as a bad driver by the driving instructor obtained HAS

result of under 20 km/h. In contrast, almost 80 % of the subjects who were judged as

a good driver obtained HAS of over 40 km/h.

Let us now return to Fig. 12.11. Speed distribution shows that 65 % of all

vehicles passing through the intersection drove over 20 km/h. This result indicates

that 70 % of “bad drivers” whose HAS results marked under 20 km/h have potential

risks to collide with 65 % of all approaching vehicles. In contrast, speed distribution

also shows that almost 7.4 % of all vehicles passing through the intersection drove

over 40 km/h, i.e., 80 % of “good drivers” whose HAS results marked over 40 km/h

have potential risks to collide with 7.4 % of all approaching vehicles. In other

words, 80 % of “good drivers” could avoid collision with 92.6 % of all approaching

vehicles.

In this way, our method allows to quantitatively show the difference between

“good drivers” and “bad drivers” as the difference of potential risks to collide with

approaching vehicle in an easy understandable probabilistic form.

12.5 Discussion

In this paper, we confirmed that the coefficient of correlation between the

evaluations computed by HAS and those given by an actual driving instructor

marked 0.71. As the evaluation given by a driving instructor is the current definite

method for evaluating one’s driving skill, the result shows the possibility that our

method could be used for evaluating the drivers’ safe driving skill.

In this paper, to integrate four kinds of HAS for vehicles/bicycles from the right/

left side, we simply averaged HAS results assuming that each HAS has the same

importance. However, intersections having different kinds of geographical features

would require drivers to pay different kinds of attention. Therefore, as a future

work, we have to estimate the priority order of each HAS using the driving

instructors’ safety driving knowledge to develop weighted average method for

HAS integration. Additionally, in calculation of HAS, approaching objects are

considered to keep the same speed, but there were many drivers who slowed

down as they approached the intersection. To develop a more realistic representa-

tion of the traffic flux by modeling these speed changes is also our future work.

From the viewpoint of educational effectiveness, the evaluation results should be

given to the subjects as quickly as possible. Currently, we manually checked the

video data to detect scanning/pedal operation behavior. However, in our other

project, we have already developed the automated method to detect driving behav-

ior from wearable sensor data. Therefore, by applying the method, we can automate

detection procedure of scanning/pedal operation behavior. This would be a great

help for quick HAS calculation.
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12.6 Conclusion

In this study, we confirmed the effectiveness of our evaluation method HAS for safe

driving skill based on sight distance. The effectiveness of HAS was validated by

comparing the evaluation results with the ones given by driving instructors.

Through experiments on public road with 38 subjects, the effectiveness of HAS

was confirmed by achieving high similarity with the driving instructor’s judgment.

In addition, to give drivers an impression of their own driving behavior, we

proposed understandable result presentation method for HAS based on probability

theory by adding information of other vehicle speed distribution. By overlaying HAS

results on to the speed distribution, our method allows to quantitatively show the

difference between “good drivers” and “bad drivers”: while 70 % of “bad drivers”

have potential risks to collide with 65 % of all approaching vehicles, 80 % of “good

drivers” could avoid collision with 92.6 % of all approaching vehicles.

As the next step, we will plan to apply our method to a driving school and to

study the educational effects at safe driving lectures initiated in October 2011.
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Chapter 13

Pre- and Postaccident Emotion Analysis

on Driving Behavior

Abdul Wahab, Norhaslinda Kamaruddin, Norzaliza M. Nor,

and Hüseyin Abut

Abstract There are many contributing factors that result in high number of traffic

accidents on the roads and highways today. Globally, the human (operator) error is

observed to be the leading cause. These errors may be transpired by the driver’s

emotional state that leads to his/her uncontrolled driving behavior. It has been

reported in a number of recent studies that emotion has direct influence on the

driver behavior. In this chapter, the pre- and postaccident emotion of the driver is

studied in order to better understand the behavior of the driver. A two-dimensional

Affective Space Model (ASM) is used to determine the correlation between the

driver behavior and the driver emotion. A 2-D ASM developed in this study

consists of the valance and arousal values extracted from electroencephalogram

(EEG) signals of ten subjects while driving a simulator under three different

conditions consisting of initialization, pre-accident, and postaccident. The

initialization condition refers to the subject’s brain signals during the initial period

where he/she is asked to open and close his/her eyes. In order to elicit appropriate

precursor emotion for the driver, the selected picture stimuli for three basic

emotions, namely, happiness, fear, and sadness are used. The brain signals of

the drivers are captured and labeled as the EEG reference signals for each driver.

The Mel frequency cepstral coefficient (MFCC) feature extraction method is then
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employed to extract relevant features to be used by the multilayer perceptron

(MLP) classifier to verify emotion. Experimental results show an acceptable

accuracy for emotion verification and subject identification. Subsequently, a

two-dimensional Affective Space Model (ASM) is employed to determine the

correlation between the emotion and the behavior of drivers. The analysis using

the 2-D ASM provides a visualization tool to facilitate better understanding of the

pre- and postaccident driver emotion.

Keywords Driver behavior • Valance • Arousal • Pre- and postaccident emotion

• Mel frequency cepstral coefficients (MFCC) • Multilayer perceptron (MLP)

13.1 Introduction

Driving requires making critical decisions in very short period of time, and often-

times, such decision is needed under extraneous circumstances. To make an

informed maneuvering decision, drivers rely on input from a number of sources

including the road condition, traffic volume, other road users, the condition of the

vehicle, duration of the trip, and the environment [1]. Drivers are observed to lack

prudent decision-making ability (a) if their secondary tasks like mobile phone usage

and texting and/or (b) if they are under the influence of alcohol, drugs, stress, fatigue,

and excessive emotion. These are known to distract drivers’ concentration and often

cause accidents [2]. Hence, the understanding of drivers’ emotion, in particular, on

the pre- and postaccident instances is important to give us cues the way emotion

impacts the driving activity. The following three conjectures are prevalent in the

research community:

1. Emotion influences driver’s behavior.

2. Individual emotional brain signal can be measured.

3. There are variations among brain signals of people for a particular emotion, and

it could even be unique for each person.

Emotion is a very important factor in human life to interact and even to control

his/her own behavior. Moreover, the uncontrolled emotion—i.e., negative

emotion—during driving is observed to result in poor judgment calls and causing

accidents with serious consequences.

It is often observed that anger impairs the driver’s decision-making ability

leading him/her to drive dangerously, taking unnecessary risks, or even force

other drives to slow down or swerve, i.e., road rage.

Fear is observed to introduce overconscious behavior that makes drivers to

hesitate or act in a non-confident way. For instance, if a driver has fear of speed

(tachophobia syndrome), he/she does not want to drive higher than the speed that

he/she is comfortable with, which poses concerns and even results in accidents at

roads with a minimum speed limit. These drivers are observed to suffer from

breathlessness, palpitations, and even full-blown anxiety attack.
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Sadness can also influence driver behavior by making him/her lose concentration

and long delays in reacting. This condition poses high risks in congested traffic and

highways.

On the other hand, positive emotion can as well distract drivers. Often, drivers

are observed to focus on his/her happiness and ignore the world around him/her.

He/she could miss critical driving cues, such as, indication of empty fuel tank,

blinking warning signs in the vehicle, and even road signs on construction and

activities on the shoulder of the highway.

In a number studies, the emotional effect has been conceptualized in terms of

emotion primitives of valance and arousal values [3, 4]. Valance (v) refers to the

impact of the emotion on oneself ranging from a positive to a negative effect, i.e.,

the extent of pleasure or sadness. It can be described as a bipolar continuum of

positive and negative value of hedonic level [5]. The arousal (A) ranges from calm

to excited. These two values can be used to generate an Affective Space Model

(ASM) to illustrate different emotion boundaries. Figure 13.1 shows the affective

space model with several labeled emotions and neutral as a black dot in the middle

of the model according to Russel [6].

13.2 Related Work

In recent years a number of research teams have focused on capturing emotions

from EEG recordings [7]. Chanel et al. have tried to recognize only the arousal

dimension of emotion from their EEG database and other physiological measures

[8]. Classification rates were around 60 % when using two emotional classes, and if

an additional class is added, that number dropped to 50 %. Most studies in the

literature are based on a two-dimensional model of emotions, valance (positive–

negative) and arousal (calm–exciting). Emotions are then thought to be a point in a

two-dimensional plane of valance vs. arousal as depicted in Fig. 13.1.

Fig. 13.1 Affective space

model with axis valance

(vertical) and arousal

(horizontal)
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In a study at Israel Institute of Technology (Technion), the driving data has been

collected by an in-vehicle data recorder (IVDR) called Drive Diagnostics. This

IVDR has been designed to monitor and analyze driver behavior not only in crash or

pre-crash events, but also in normal driving situations. It records the movement of

the vehicle and uses this information to indicate overall trip safety. Their findings

show strong correlations between the two datasets, suggesting that the driving

risk indices can be used as indicators of the risk involvement in car crashes [9].

This connection has enabled our study on the potential impact of the system on

driving behavior and on safety. Access to the feedback provided by the system has

further impact on driver performance.

13.3 Methodology

13.3.1 Electrode Positions and Preprocessing

Five EEG electrodes were pasted on the scalp of subjects (C3, C4, T3, and T4)

according to the “International 10–20” Standards and a Cz as reference. Figure 13.2

shows the block diagram of the procedure that was used to analyze the brain signals

and their spectrum from the subjects under investigation (drivers).

Brain waves obtained from each channel are then decimated in order to decrease

the sampling rate and to filter the data. As expected, the decimation process filters

the input data with a low-pass filter and then resamples the resulting smoothed signal

at a lower rate. The matlab code below reduces the sampling rate by a factor of 3:

input ¼ decimate (input, 3).

Fig. 13.2 Proposed

procedure for analysis
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13.3.2 Feature Extraction

Mel frequency cepstral coefficients (MFCC) were used as features in this study,

which is used frequently in dimension reduction applications for waveforms.

melcepst tool is utilized to calculate the cepstrum of the signal. We have used ten

MFCC coefficients for capturing the relevant feature of the EEG. The final com-

bined dataset from four channels gives a total of 40 features for classification.

enframe, rfft, melbankm, and rdct are also utilized during processing.

13.3.3 Classification

The last step in this process is the classification of the features with a meaningful

and yet computationally efficient classifier. Multilayer perceptron (MLP) method

has been chosen to classify the extracted features so that it can derive the

pre-emotion of the driver which relates to the driving behavior. Multilayer

perceptron with a feedforward artificial neural network architecture maps sets of

input data onto a set of appropriate output. Optimal model selection for the number

of layers and the neurons needed for the best MLP architecture is essential to ensure

a respectable performance. Data fed into the input layer are the 40 features obtained

from the previous MFCC stage. Each of the data is processed by the network by

multiplying it with assigned weights in the hidden layers synapses. In this research

study, the mean square error (mse) goal was set to 0.1 with a single hidden layer

consisting of ten neurons. In addition, we have used tan-sig as the activation

function for the hidden layer and purelin as the output layer with 0.01 learning rate.
In experiments, eyes open data was used for the calm emotion since the subjects

have not been burdened by any task at this stage. The data obtained from the

subjects (drivers) are tested against the emotion data of affective state of happy,
calm, fear, and sad.

In order to get reliable results with a high percentage of accuracy, we have used the

k-fold cross-validation for our global validation. K-fold cross-validation builds on

the idea of holdout testing in a clever way by rotating data through the process 0.

Data is again divided randomly into groups, but now k equal-sized groups are used.

The train-test process is repeated k times, each time leaving a different segment of

the data out as the test set. The dataset and its desired result are randomized and sliced

into fivefolds which mean that the process is repeated five times. This is required

to eliminate any biases towards the data [10]. The slicing process enables to have

different training and testing datasets. Each dataset consists of 440 instances by which

352 (80 %) instances are used for training and the remaining 88 (20 %) for testing.
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13.3.4 Smoothing

This function basically smoothens the original data that has been selected. The

process of smoothing the original dataset produces a new dataset containing

smoothed response values. The smoothed signal is displayed in Fig. 13.3.

13.4 Experiment Design and Stimuli

Subjects are briefed on the experimental procedures and were asked to sign an

informed consent form for participating in experiments. Then, subjects are seated in

a lighted, quiet, and temperature-controlled room. Before the data collection, each

subject is made familiar with the driving simulators. Next, the electrodes are placed

on the scalp of each subject. The acquisition of signals is achieved by a module

called BMC Acquisition. Initially, subjects are instructed to open their eyes for

1 min and then close for 1 min. Afterwards, the movie clips with three basic

emotions are shown to them for 1 min per movie clip. Finally, they were asked to

drive according to the three tasks given to them, and the recorded brain waves are

then saved for offline processing.

13.4.1 Stimuli

In this study, we have used the movie clips with scenarios depicting emotions to

obtain emotional responses and a driving simulator platform to simulate the driving

framework. The drivers were exposed to three basic emotions by using (1) the

International Affective Picture (IAPS), (2) Bernard Bouchard’s synthesized musi-

cal clips, and (3) movie clips of Gross and Levenson which can be used to elicit

emotional responses [8]. Then, they were asked to drive in three different types of

conditions: Task 1—easy driving, where they were subject to noisy sounds that

Fig. 13.3 Signal smoothing
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could disturb them while driving. Task 2—bulked driving, where they were

interviewed by the experimenter deliberately to see their behavior while answering

cognitive questions. Finally, Task 3—heavy driving, subjects had to deal with

traffic congestion where their driving skills were challenged at this stage.

13.5 Results and Discussions

Since the correlation between the pre-emotional state of the subject and driving

behavior is the primary interest, the accuracy of the acquired data gains importance

to demonstrate that the results will be more robust from the proposed valance

analysis (VA). To achieve that a memory test was performed for all subjects to

see the level of accuracy, either it can be accepted or rejected. Next, we have

performed a fivefold validation test to obtain the intensity of the selected emotions

for each subject.

13.5.1 Pre-emotion (Memory Test and Fivefold)

Here, the accuracy is calculated from the valance analysis instead of directly getting

the accuracy from MLP. There are two VA analyses in the identification of a

particular; first: the memory test which consists of 100 % test data (Fig. 13.4) and

second: the fivefold validation (Fig. 13.5). As it is clearly seen, four basic emotions

can be identified, and higher than 80 % of accuracy can be achieved. The best

accuracy value was at 0.1 of mean square error goal. Consequently, the emotions

data can be used as the base for the subsequent driving task analysis. Furthermore,

the highest intensity of emotion for each subject is shown in Fig. 13.5. Here the

plots are according to the average k-fold percentage for each subject.

Fig. 13.4 Accuracy of emotion based on the memory test
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It is worth noting that when the emotion that gains the highest intensity in the

k-fold yields the same result in the memory tests. In addition, there are four subjects

with happy as the highest intensity of emotions, another four subjects fall into calm,
and two subjects has fear as their pre-emotion. None of them is sad. The results

indicate that each subject has their own pre-emotion which may affect their driving

behavior.

13.5.2 Valance (V) and Arousal (A) Analysis

The results above point to four critical emotions relevant to driving, which are

happy, calm, fear, and sad. With these findings, we extend the analysis to the

valance and arousal analysis where emotions for three subjects studied in detail.

The subjects have been chosen randomly based on the memory test results, and they

show the emotion which exhibits the highest accuracy in the k-fold analysis. Here,

we would like to see the relationship between pre-emotions and the driving tasks.

Table 13.1 shows the accuracy of the memory test for subject 1, whereas Table 13.2

shows the average accuracy of emotions for the k-fold test. We observe that subject

1 has exhibited the highest accuracy for happy followed by calm, fear, and sad.
In Fig. 13.6, the emotion clusters for subject 1 have been plotted from the

memory test experiment in order to see if each emotion falls into its own quadrant

based on valance and arousal. As it is clearly seen that none of the happy emotion

clusters falls into other three quadrants, whereas the other three emotions have

reciprocally spread to each other.

Fig. 13.5 Emotion intensity based on the average accuracy of k-fold test

Table 13.1 Confusion

matrix, average emotion

accuracy (memory test),

subject 1 (happy)

Expected emotion (%)

Happy Calm Fear Sad

Output emotion (%) Happy 100 0 3.6 0

Calm 0 96.3 0 1.8

Fear 0 0 96.3 2.7

Sad 0 3.6 0 95.4
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Table 13.3 shows the emotion accuracy for subject 5 with the highest being

calm. Finally for this VA analysis, subject 9 exhibits fear as the highest intensity of
emotion as shown in Table 13.4.

For these three subjects, we can conclude that each subject has their own highest

intensity for the pre-emotion, which could be due to their different backgrounds,

cultures, or experiences of having positive or negative emotions that already exist in

each subject, i.e., preexisting conditions.

Table 13.2 Confusion

matrix, average emotion

accuracy (VA), subject

1 (happy)

Expected emotion (%)

Happy Calm Fear Sad

Output emotion (%) Happy 69.45 14.83 6.53 5.71

Calm 23.71 53.29 8.44 9.76

Fear 5.59 13.93 47.40 41.67

Sad 1.25 17.95 37.63 42.86

Fig. 13.6 Emotion clustering for subject 1

Table 13.3 Confusion

matrix, average emotion

accuracy (VA) for fivefold

test, subject 5 (calm)

Expected emotion (%)

Happy Calm Fear Sad

Output emotion (%) Happy 38.7 18.5 29.1 19.1

Calm 9.6 64.9 7.3 12.6

Fear 30.9 1.6 37.9 29.5

Sad 20.7 15.1 25.7 38.8

Table 13.4 Confusion

matrix, average emotion

accuracy (VA), subject

9 (fear)

Expected emotion (%)

Happy Calm Fear Sad

Output emotion (%) Happy 51.4 31.5 4.0 9.2

Calm 27.2 38.4 5.7 9.3

Fear 12.1 12.3 71.2 24.6

Sad 9.2 17.8 19.0 57.0
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13.5.3 Trajectory of the Driving Task

Each task that was given to the driver is expected to invoke some stress during

driving, so we can observe the driver behavior while under duress. From these

experiments, we see that each driver has a diverse driving behavior. For subject 1,

who has not been affected by an accident, the emotions remain positive beginning

with the first task until the one as they can be seen in Figs. 13.7, 13.8, and 13.9.

Besides, this particular driver (female) has changed her emotion from happy to calm
when the accident occurred during the first task. This result implies that this driver

has a very high intensity of happy emotion.

Fig. 13.7 Dynamic movement task 1, subject 1 (driving and sounds)

Fig. 13.8 Trajectory task 2, subject 1 (driving and interview)
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In contrast to subject 1, subject 5 has the same pre-emotion since the beginning,

but his emotional state has changed when the accident occurred. However, he has

managed to complete the driving task with calm emotion. Furthermore, this driver

took some time to get back to the pre-emotion that he had. As we can see from

Figs. 13.10, 13.11, and 13.12, the vertical solid black lines represent that accidents

occurred while the subject was driving the vehicle. The trajectory of task 1 and

3 (Figs. 13.10 and 13.12, respectively) is mostly from calm to sad and vice versa,

whereas for task 2 (Fig. 13.11), he was sad for the whole task. This is the indicator

of giving up, as he had sighed a lot in order to maneuver the car while answering the

question from the experimenter.

Fig. 13.9 Dynamic movement task 3, subject 1 (driving and congested traffic)

Fig. 13.10 Dynamic movement task 1, subject 5 (driving and sounds)
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Finally, we include Figs. 13.13, 13.14, and 13.15 to illustrate the trajectories for

subject 9. As we can see from Fig. 13.13, the trajectory has turned from fear to sad
for task 1, whereas for task 2, he has just stayed sad. This could be interpreted as

this subject was nervous behind the wheel at the beginning of the first task given to

him, but after several accidents, he had just given up and became sad as it is obvious
from Fig. 13.14. Finally, he has started with happy emotion for task 3 and turned to

fear when accident occurred. After the accident he became happy again. Therefore,
he demonstrated willingness to drive after a long period of driving but still manages

to come back to the pre-emotion state even if there is an accident. This could be

interpreted as the subject fears easily regardless of his pre-emotion state, i.e., before

driving tasks.

Fig. 13.11 Trajectory task 2, subject 5 (driving and interview)

Fig. 13.12 Dynamic movement task 3, subject 5 (driving and congested traffic)
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From these results, we can conclude that each subject has his/her own

pre-emotion state and a precursor emotion that impacts the driving behavior.

The pre-emotion is the emotional state that the subject was in before coming for

the experiment; while precursor is the emotion that was already in the mind of the

subject caused by previous experiences or emotions that he/she already has experi-

enced in the past. Therefore, these two emotional states have a strong relationship

between each other since they affect the subject during the driving tasks.

Fig. 13.13 Dynamic movement task 1, subject 5 (driving and sounds)

Fig. 13.14 Dynamic movement task 2, subject 5 (driving and interview)
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13.6 Conclusion and Future Work

From these findings it can be deduced that there is a strong correlation between the

pre-emotional state of drivers and their driving behavior. In addition, unstable

emotion could potentially lead to accidents, and the drivers could easily change

their positive emotion to a negative one. We also see that each driver has their own

pre-emotion that could impact their driving behavior since the beginning.

In future work, we are planning to enlarge the driver database and to explore the

behavior of a larger number of subjects from the same background and the driving

culture to better understand the driving experience under different road, traffic, and

environmental conditions. In addition, we would like to study the performance with

a number of other classifiers including Adaptive Neuro-Fuzzy Inference Systems

(ANFIS), Evolving Fuzzy Neural Networks (eFuNN), and Support Vector Machines
(SVM).
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Chapter 14

Content-Based Driving Scene Retrieval

Using Driving Behavior and Environmental

Driving Signals

Yiyang Li, Ryo Nakagawa, Chiyomi Miyajima, Norihide Kitaoka,

and Kazuya Takeda

Abstract With the increasing presence of drive recorders and advances in their

technology, a large variety of driving data, including video images and sensor

signals such as vehicle velocity and acceleration, can be continuously recorded

and stored. Although these advances may contribute to traffic safety, the increasing

amount of driving data complicates retrieval of desired information from large

databases. One of our previous research projects focused on a browsing and

retrieval system for driving scenes using driving behavior signals. In order to

further its development, in this chapter we propose two driving scene retrieval

systems. The first system also measures similarities between driving behavior

signals. Experimental results show that a retrieval accuracy of more than 95 % is

achieved for driving scenes involving stops, starts, and right and left turns. How-

ever, the accuracy is relatively lower for driving scenes of right and left lane

changes and going up and down hills. The second system measures similarities

between environmental driving signals, focusing on surrounding vehicles and

driving road configuration. A subjective score from 1 to 5 is used to indicate

retrieval performance, where a score of 1 means that the retrieved scene is

completely dissimilar from the query scene and a score of 5 means that they are

exactly the same. In a driving scene retrieval experiment, an average score of more

than 3.21 is achieved for queries of driving scenes categorized as straight, curve,

lane change, and traffic jam, when data from both road configuration and surround-

ings are employed.
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14.1 Introduction

Drive recorders are used to investigate the causes of traffic accidents and to improve

drivers’ safety awareness. With the increasing presence of more advanced drive

recorders, a large variety of driving data, including video images and sensor signals

such as vehicle velocity and acceleration, can be continuously recorded and stored.

Although these advances may contribute to traffic safety, the increasing amount of

driving data complicates retrieval of desired information from large databases.

Some researchers have studied methods for recognizing driving events, such as

lane changing and passing, using HMM-based dynamic models [1–3]. In our

previous work, a similarity-based retrieval system for finding driving data was

proposed [4]. However, since our method used differences in histograms of driving

behavior signals as the similarity measurement, it did not efficiently use dynamic

information from driving scenes for retrieval. In this chapter, we study two driving

scene retrieval systems that utilize dynamic information from driving scenes.

In the first study, we focus on driving behavior signals. The first retrieval system

captures dynamic information from driving scenes by directly using sequences

of driving behavior signals and utilizes changes in these signals over time. Six

kinds of driving behavior signals (velocity, longitudinal and lateral acceleration,

gas and brake pedal pressures, and steering angle) are used for calculating similarity

between driving scenes. We compared the use of both early and late integration to

integrate these signals.

In the second study, we focus on environmental driving data that is collected from

the road and surrounding vehicles. The second retrieval system uses a similarity

measure to compare the road configuration and motion of surrounding vehicles.

Positions of surrounding vehicles and roadside barriers are detected with laser

scannersmounted on the front and back of an instrumented vehicle, and the velocities

of surrounding vehicles are estimated from their relative positions to the vehicle.

Each scanned frame of a driving scene is categorized based on three general features,

i.e., road type, congestion level, and the positions of surrounding objects. Also, the

motion of each surrounding vehicle is tracked to obtain its motion features, so we

can measure the similarity between vehicles. Categorization results and detected

vehicle path are integrated to measure similarity between driving scenes.

14.2 Data Collection

The driving data used in our study was collected on real roads and was recorded

using the instrumented vehicle shown in Fig. 14.1. The collected signals included

velocity [km/h], longitudinal and lateral acceleration [G], gas and brake pedal

pressures [N], and steering wheel angle [deg]. Two laser scanners were mounted

on the front and back of the vehicle to detect surrounding objects. The laser

scanners covered 80� arcs at both the front and back of the vehicle, to an effective
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range of about 100 m to the front and 55 m to the rear. A Kalman filter was

employed to predict the motions of objects in blind areas. In order to assist in the

subjective confirmation of retrieved scenes, synchronously recorded front and

driver’s feet scenes, as well as a 360� panoramic scene of the surroundings from

an omnidirectional camera, were also available for every retrieved scene.

14.3 Driving Scene Retrieval Using Driving

Behavior Signals

In this section, we describe the first similarity-based driving scene retrieval system,

which uses similarity of driving behavior signals. Six driving signals (velocity,

longitudinal and lateral acceleration, gas and brake pedal pressures, and steering

angle) were used for calculating similarity between driving scenes. We compared

the use of early and late integration to integrate these signals.

14.3.1 Integration Methods for Driving Behavior Signals

14.3.1.1 Method 1: Early Integration

We retrieved similar driving scenes using two methods, early and late integration.

Figure 14.2 shows the procedure for early integration. The six kinds of signals

mentioned above were extracted from the scene to be retrieved, and each signal

Fig. 14.1 Instrumented vehicle used for driving data collection [8]
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was normalized by mean and variance using all the data for all the drivers.

The normalized signals of the query scene were represented as a vector, and the

Euclidean distance between the vectors of the query scene and every scene in the

database was measured. The database for the search consisted of about 200,000

vectors, one for each recorded scene. A fast retrieval technique was used to reduce

retrieval time. The top five scenes with the smallest distances were chosen as

similar scenes.

14.3.1.2 Method 2: Late Integration

The other retrieval method used was late integration, shown in Fig. 14.3. Each of

the six kinds of signals of a scene was represented as a vector, and the Euclidean

distance between the vectors of the query scene and those of all the other scenes was

calculated for each signal. The sum of the ranks of the six signals was calculated,

and the five scenes that had the lowest summation were retrieved as similar scenes.

14.3.2 Retrieval Performance Evaluation

To evaluate these methods, we conducted a driving scene retrieval experiment

using driving data collected on city roads from 74 drivers (35 males and 39 females).

There was about 45 min of recorded driving data per driver, for a total of about 54 h

of driving data. The sampling rate of the driving signals was 10 Hz.

Query scene

Signals are normalized 
by mean and variance

Compared by Euclidean distance 

Database

Most 
similar 
scenes

Scene 1

Scene 2

Scene N

1

2

3

4

5

Brake pedal
pressure

Lateral 
acceleration

Gas pedal
pressure

Ranks

Fig. 14.2 Driving scene retrieval using driving behavior signals (early integration)

246 Y. Li et al.



14.3.2.1 Experimental Condition

Eight kinds of driving events (stops, starts, right and left turns, right and left lane

changes, and going up and down hills) were selected as query scenes, and similar

scenes were retrieved using the two techniques described in Sect. 14.3.1. Scenes

occurring less than 2 s before or after the query scene, and scenes which had already

been retrieved, were excluded from being candidates for retrieval. We chose a total

of 80 query scenes, which included about 10 scenes for each type of event.

Retrieval performance was evaluated in terms of retrieval accuracy, i.e., the

percentage of correctly retrieved scenes in proportion to the total number of

retrieved scenes. Whether or not a scene was correctly retrieved was determined

subjectively by human validation.

14.3.2.2 Results

Experimental results are shown in Fig. 14.4. Retrieval accuracy averaging more

than 95 % was achieved for driving scenes of stops, starts, and right and left turns,

while accuracy was relatively lower for scenes of right and left lane changes, and

going up and down hills. Retrieval accuracy of situations involving right turns was

higher using the early integration method, but for scenes going down hills, the late

integration method was more accurate. On average, the early integration method

gave slightly better performance.
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Fig. 14.3 Driving scene retrieval using driving behavior signals (late integration)
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14.4 Driving Scene Retrieval Using Environmental

Driving Signals

In contrast to the first study, which employed in-vehicle driving signals, in this

section we measured the similarity between scenes by comparing driving

environments as detected by laser scanners.

14.4.1 Laser Data Preprocessing

14.4.1.1 Clustering of Laser Data and Tracking of Vehicles

The first step towards automatic scene retrieval was the clustering of discrete laser

dots obtained with laser scanners from surrounding driving environments. Each

cluster was a set of distance measurements in a plane, grouped closely to each other,

and thus probably belonging to a single object. While many approaches have been

used to calculate such physical distances [5], we simply used Euclidean distance

here. Due to laser dot detection errors, not every cluster actually represented a

separate object, i.e., sometimes more than one cluster could belong to a single

object. Since all of the laser data were recorded on expressways in this study, in

most cases a laser dot must belong to either a vehicle or a roadside barrier, so it was

not difficult to integrate some clusters with our prior knowledge of the shapes of

these objects [6]. Then, each surrounding vehicle was modeled as a rigid box,

characterized by its orientation, position, and velocity. By tracking the vehicles

with a Kalman filter, we estimated their dynamic features, even if they were outside

the range of the laser scanners.
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14.4.1.2 Frame Categorization

A frame categorization method was used to categorize laser-acquired driving frames

based on three general features, in order to reduce the number of candidates and

facilitate fast retrieval. The scenes were categorized based on road type, congestion

level, and the relative positions of surroundings objects. The three features were

defined as follows:

• Road type was divided into three classes: left curve, straight line, and right

curve. Since two laser scanners were used, one on the front of the vehicle and

one on the back bumper, they collected information about road types separately.

Their combined data was used to define the road type for each frame of a driving

scene, for example, “left curve, straight.”

• Road congestion level was divided into two classes: “free flow” and “traffic jam.”

AGreenshields model [7] was employed to estimate the congestion level for each

lane. The road congestion level of a driving frame was designated “traffic jam” if

any lane in the frame was estimated as “traffic jam”; otherwise, the frame was

designated “free flow.”

• Relative positions of surrounding vehicles were classified into 450 situations

based on whether there was another vehicle in each of eight surrounding

directions and whether there was a roadside barrier on the left or right of the

driver’s vehicle.

For example, a frame could be represented as “(left curve, straight),” “traffic

jam,” and “21.”

14.4.2 Similarity Measure for Surrounding Environment

Here, we measured the similarity between driving scenes based on the surrounding

environment, using three procedures: first, their frame categories (given in

Sect. 14.4.1.2) were compared; second, the relative positions of the surrounding

vehicles were calculated; and finally, their motion features were compared.

14.4.2.1 Comparison of Frame Categories

In this study, each driving scene consisted of 100 frames (10 s), so each scene could

be represented as a vector with 400 dimensions. We then calculated the difference

between scenes using Hamming distance to measure how similar the frame cate-

gories of two scenes were. Hamming distance between two elements of the vectors

took 0 only when the compared features were exactly the same. If the two features
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were different, the value was 1. So, if the total Hamming distance was 0, two

scenes were identical, and if the total value was 400, they were completely

dissimilar. The scenes with a Hamming distance below a threshold of 150 were

extracted as candidates for further processing.

14.4.2.2 Comparison of Surrounding Vehicle Positions

The second step was to compare the positions of vehicles in key frames of two

scenes. We assumed here that the first frames of scenes were key frames because

people generally focus on the first frames of scenes. As shown in Fig. 14.5, a key

frame was divided into a grid, and the frame was represented as a matrix G.
Each cell of the matrix shows the number of vehicles in the corresponding cell of

the grid.

Assume that frames F1 and F2 are represented by symbolized matrices G1 and

G2. To compute the similarity of the two matrices, we first matched all cells in the

two frames:

ΔG F1;F2ð Þ ¼
X
i

X
j

g
1ð Þ
i, j � g

2ð Þ
i, j

���
���, (14.1)

where g
ð1Þ
i;j and g

ð2Þ
i;j denote the number of vehicles in cell (i,j) in G1 and G2,

respectively, and the value of ΔG represents the distance between them. For

instance, we can say frames F1 and F2 match perfectly if and only if the value of

ΔG equals zero. However, this rarely happens because even if two frames are
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vehicle
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00100

02000
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G

25 pixels

25 pixels

Fig. 14.5 Example of a frame and its matrix. Left: Each cell of the grid is composed of 25 � 25

pixels. The grid is centered on the host vehicle. Right: The value of each element of matrix

represents the number of vehicles in the corresponding cell
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almost identical, this symbolization method sometimes puts vehicles with the

similar positions into different cells. To decrease errors caused by such problems,

we also allowed soft matching. We assumed vehicles in two frames matched if there

were the same numbers of vehicles in the cells at the same position in two matrices.

In addition, we also considered vehicles to match if there were an equal number of

vehicles in nearby cells, using a cost function. Thus, the final distance between

frames F1 and F2 is defined as

d F1;F2ð Þ ¼ ΔG
0
F1;F2ð Þ þ k

K
, (14.2)

where ΔG0 is the value ofΔG after soft matching; k is the number of soft matches in

ΔG0, and K is an empirically defined normalization factor for the penalty of soft

matching.

After that, distance d(F1,F2) was used to calculate the similarity between F1

and F2:

s F1;F2ð Þ ¼ d F1;F2ð Þ
n1 þ n2

, (14.3)

where n1 and n2 denote the numbers of vehicles in frames F1 and F2, respectively.

Frames with a distance below 0.5 from the first frame of a query scene, as well as

between their preceding and following frames within 2 s, were selected as key

frames for the next step in processing.

14.4.2.3 Comparison of Surrounding Vehicle Motion

If surrounding vehicles have nearly the same positions in the first frames of scenes,

as well as similar trajectories and velocities, we believe there is a high probability

that these are matching scenes. Also, comparing the motion of surrounding vehicles

overcomes problems caused by grid division and achieves a faster search than with

frame-to-frame matching between scenes.

Assume that scenes S1 and S2 are represented by their vehicle sets (excluding the

host vehicle), V1 ¼ {vð1Þ1 ,v
ð1Þ
2 , . . .,v

ð1Þ
M } and V2 ¼ {vð2Þ1 ,v

ð2Þ
2 , . . .,v

ð2Þ
N }, where

M and N are total numbers of surrounding vehicles observed in S1 and S2. At

point in time, t, each surrounding vehicle, v
ð1Þ
i or v

ð2Þ
j , is represented as a sequence of

vehicle motion feature vectors, consisting of longitudinal position yi and lateral

position xi with their first-order dynamics Δyi and Δxi:

yi tð Þ,xi tð Þ,Δyi tð Þ,Δxi tð Þð ÞT: (14.4)
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Dynamic features were calculated by the following equation:

Δyi tð Þ ¼
XL

l¼�L
l � yi tþ lð Þ

XL

l¼�L
l2

, (14.5)

in which yi(t) is the ith vehicle’s driving signal at point in time t, and L is window

size for linear regression. Δxi(t) was calculated in the same way. The distance

between vehicles v
ð1Þ
i and v

ð2Þ
j in two scenes S1 and S2, respectively, were calculated

as a Mahalanobis distance:

d2 v
1ð Þ
i ; v

2ð Þ
j

� �
¼ μ

v
1ð Þ
i

� μ
v

2ð Þ
j

� �T

Σ�1

v
1ð Þ
i ,v

2ð Þ
j

μ
v

1ð Þ
i

� μ
v

2ð Þ
j

� �
, (14.6)

where μv represents a four-dimensional vector (including the means of longitudinal

position, lateral position, as well as their first-order dynamics) of a vehicle v, andP
v

1ð Þ
i ,v

2ð Þ
j

is a four-by-four covariance matrix of the four features for vehicle v
ð1Þ
i and

v
ð2Þ
j . This calculates the distance between a pair of vehicles by comparing the

distribution of their four-dimensional features. Based on our preliminary experi-

ment, a pair of vehicles with a Mahalanobis distance below a threshold of 15.0 was

believed to be similar to each other.

To acquire a vehicle-to-vehicle match, we calculated d(vi,v
0
j) for all i and

j between scenes and selected them from smallest to largest. We considered scenes

to be similar to each other if there were enough similar vehicles in both scenes.

Similarity p between S1 and S2 was defined as the summation of the weights of

similar vehicles divided by the summation of the weights of all the vehicles in the

scenes:

p S1; S2ð Þ ¼

X
i∈X1

X

t∈T
1ð Þ
i

w
ið Þ
t þ

X
i∈X2

X

t∈T
2ð Þ
i

w
ið Þ
t

X
i∈Y1

X

t∈T
1ð Þ
i

w
ið Þ
t þ

X
i∈Y2

X

t∈T
2ð Þ
i

w
ið Þ
t

, (14.7)

where X1 and X2 denote the sets of similar vehicles, and Y1 and Y2 denote the sets of

all vehicles in S1 and S2, respectively. w
iÞ
t denotes the weight of vehicle vi at time t.

T
ð1Þ
i and T

ð2Þ
i are the sets of frame numbers where v

ð1Þ
i or v

ð2Þ
i was observed in S1 or

S2, respectively. Here, “weight” means the importance of a surrounding vehicle,

which was represented as a value of a modified Gaussian distribution as illustrated

in Fig. 14.6. The reason we used a modified Gaussian distribution which was

stretched towards the front value as a similarity metric is that, generally, a driver

is more aware of nearby leading vehicles while driving. For example, the

252 Y. Li et al.



surrounding vehicles in front of a driver’s vehicle are more important than those on

either side of or behind the driver’s vehicle. It can be inferred that a pair of similar

vehicles near the driver’s vehicle makes scenes more similar than pairs located

farther away.

14.4.3 Retrieval Performance Evaluation

The proposed driving scene retrieval system was evaluated using database-

containing expressway scenes from 57 drivers (28 males and 29 females) recorded

with the instrumented vehicle shown in Fig. 14.1. The database contained approxi-

mately 140,000 driving frames. All of the driving data were sampled at 10 Hz.

We compared retrieval accuracy and speed for different types of scenes under

various retrieval conditions, by using subjective scores and by measuring retrieval

speed in CPU time. Here, “retrieval conditions” mean some combinations of the

similarity measures presented in Sect. 14.4.2:

(a) Based on frame category

(b) Based on surrounding vehicle position

(c) Based on surrounding vehicle motion

The combinations are represented as a, c, a + c, b + c, and a + b + c. We did

not use b or a + b, since b only considered the first frame of a scene and would not

be accurate if used alone.

The experiment was conducted as follows:

• Five driving scenes each, for straight road, curve, traffic jam, and lane change,

were randomly selected as queries.

• For each query scene, we evaluated retrieval accuracy and retrieval speed for

each retrieval condition. For each condition, the top five similar scenes were

retrieved, and they were used for the evaluation.

Fig. 14.6 A modified two-dimensional Gaussian distribution, centered on the driver’s vehicle,

where surrounding vehicles with higher values denote greater importance
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14.4.3.1 Comparison of Retrieval Accuracy Using Subjective Scores

In this comparison, the subjective scores of five volunteers were used to judge

which retrieval condition, or combination of retrieval conditions, was able to select

scenes with the highest similarity to a query scene for a given driving situation.

Each volunteer gave scores, from 1 (lowest) to 5 (highest), to the top five retrieved

scenes for each query under each retrieval condition. Scenes with a score of 3 or

higher were considered to be similar. A score of 5 indicated perfect similarity, while

a score of 1 indicated complete dissimilarity. The retrieval accuracy of a given

scene under a given retrieval condition was estimated as the average of the scores

from the five volunteers.

The experimental results are shown in Fig. 14.7, which indicate that condition

a + b + c demonstrated much higher accuracy than the other conditions, in various

driving situations.

14.4.3.2 Comparison of Retrieval Speed Using CPU Time

In order to compare processing speed, the proposed driving scene retrieval systemwas

installed on a Core i5CPU650@3.20GHz PCusing theWindows 7 operating system.

The CPU time for each query process was recorded for each retrieval condition.
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The average retrieval time for top five driving scenes was calculated. This was

considered to represent system speed performance under a given retrieval condition

for each scene. Figure 14.8 shows the average retrieval time taken to retrieve scenes

from the 140,000-frame database. On average, retrieval condition a took the least

time, and condition a + b + c was the next fastest.

14.5 Conclusions

In this chapter, we developed two systems for retrieving recorded driving scenes

based on measuring the similarity of driving behavior and environmental driving

signals. In the first study, similar scenes were retrieved using driving behavior

signals, and they were integrated using two methods, early and late integration.

Experimental results showed that an average of more than 95 % retrieval accuracy

was achieved for driving scenes of stops, starts, and right and left turns. In most

situations, the early integration method achieved better performance than the late

integration method. In the second study, we used environmental driving signals

with the idea that similar driving scenes could be retrieved by measuring similarity

in surrounding environments. Experimental results showed that the integrated use

of information from surrounding vehicles and road conditions achieved higher

retrieval accuracy than the use of either type of information alone.

Currently, we are working to integrate these two systems, to see if retrieval

accuracy can be further improved.

R
et

rie
va

l a
cc

ur
ac

y 
an

d 
st

an
da

rd
 e

rr
or

 [s
]

Retrieval conditions

8.2

28.1

16.4

28.5

10.2

3.9

23.1

6.8

33.8

5.45.8

21.5

9

38.7

7.4

4.1

17.5

6.4

22.2

5.4

Traffic jam
Lane change
Curve
Straight road

Fig. 14.8 Comparison of retrieval speed

14 Content-Based Driving Scene Retrieval Using Driving Behavior. . . 255



Acknowledgement This work was partially supported by the Strategic Information and

Communications R & D Promotion Programme (SCOPE) of the Ministry of Internal Affairs

and Communications of Japan under No. 082006002, by Grant-in-Aid for Scientific Research

(C) from the Japan Society for the Promotion of Science (JSPS) under No. 24500200, and by the

Core Research of Evolutional Science and Technology (CREST) of the Japan Science and

Technology Agency (JST).

References

1. S.Y. Cheng, S. Park, M.M. Trivedi, Multispectral and multi-perspective video arrays for driver

body tracking and activity analysis. Comput. Vis. Image Understand. 106, 245–247 (2007)

2. D. Mitrovic, Reliable method for driving events recognition. IEEE Trans. Intell. Transp. Syst. 6

(2), 198–205 (2005)

3. N. Oliver, A. Pentland, Graphical models for driver behavior recognition in a SmartCar, in

Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 7–12, 2000
4. M. Naito, A. Ozaki, C. Miyajima, N. Kitaoka, R. Terashima, K. Takeda, A browsing and

retrieval system for driving data, in Proceedings of the IEEE Intelligent Vehicles Symposium,
pp. 1159–1165, June 2010

5. J.Z. Wang, J. Li, G. Wiederhold, SIMPLIcity: semantics-sensitive integrated matching for

picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 947–963 (2001)

6. N. Kaempchen, Feature-level fusion of laser scanner and video data scanner and video for

advanced driver assistance systems, Ph.D. dissertation, University of Ulm, Germany, 2007

7. H. Rakha, B. Crowther, Comparison of Greenshields, pipes, and Van aerde car-following and

traffic stream models. J. Transp. Res. Board 1802, 248–262 (2007)

8. K. Takeda, J. Hansen, P. Boyraz, L. Malta, C. Miyajima, H. Abut, International large-scale

vehicle corpora for research on driver behavior on the road. IEEE Trans. Intell. Transp. Syst. 12,

1609–1623 (2011)

256 Y. Li et al.



Chapter 15

Driving Event Detection by Low-Complexity

Analysis of Video-Encoding Features

Elias S.G. Carotti and Enrico Masala

Abstract All standard video-encoding algorithms rely on differential encoding

with motion compensation to improve the compression. When a video from a front-

facing camera onboard a vehicle is compressed, the information computed for

compression purposes, in particular motion vectors, can be effectively used to

gain some understanding of the driving dynamics and eventually to support driver

decisions and improve driving safety. In this chapter an algorithm that can use such

side information to detect a number of driving events is presented. Numerous

potential applications are envisaged. Since video-encoding software and hardware

are usually strongly optimized, it is possible to implement the proposed algorithms

in battery-powered embedded devices with strict limits on processing capabilities

such as camera-equipped mobile phones mounted on the car dashboard and conse-

quently allow different types of low cost vehicles, which in most cases do not

include cameras as a standard equipment, to be fitted with at least a warning device

with very low cost. If the video is captured in the context of a video surveillance

scenario, differentiating the events could be used to automatically decide which

portion of the video should be transferred to a remote monitoring center thus

optimizing network resources usage and costs.

Keywords Driving event detection • Event classification • Support vector

machines • Video analysis • Video coding
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15.1 Introduction

The availability of cheap video cameras is constantly increasing due to their low cost

and usefulness in a number of contexts. In the vehicular environment, for instance,

applications include courtesy cameras to facilitate maneuvering, video logging to

facilitate reconstruction of events in case of, e.g., an accident happened, and remote

surveillance. In order to compress the huge amount of data produced by video

capturing, video encoders perform a number of computationally heavy operations,

the most complex one being motion compensation. This chapter shows that such

processing operations, when performed on a video captured from a vehicle onboard

camera oriented towards the travel direction, could be used to gain some insight

in the semantics of the scene and eventually improve driving safety.

For the vehicular environment, several context-understanding techniques

have been developed during the recent years [1]. However, most of them require

computationally heavy operations, identification of single elements inside the

scene, etc. The novelty of our approach resides in the extremely low complexity

of the proposed techniques that make them suitable for battery-powered devices as

well as devices with limited processing power. The key idea is to exploit the side

information produced by the encoder to gain some understanding of the driving

dynamics going on. Examples of side information include macroblock (MB) size,

mean squared error (MSE) with respect to the uncompressed content, type of

macroblock chosen during encoding, and, most importantly, motion vectors (MV)

for each differentially encoded frame. Although motion vectors do not always

exactly represent the motion actually happening in the real scene, as the optical

flow is expected to do, we argue that nevertheless useful insight on the scene might

be extracted with very low complexity, as opposed to the optical flow approach that

presents high complexity.

The possibility to access part of the huge database of driving behavior signals

collected by the University of Nagoya project [2] allows to perform a statistical

analysis of the side information normally produced by a video encoder in various

driving conditions. The analysis is used to build a model that can identify, given the

features induced by the side information, and with no additional driving signals

such as those available from vehicle sensors, the driving conditions and potentially

act to increase safety by, e.g., activating warning signals. The possibility to deploy

such a system in a battery-powered device with strict limits on processing

capabilities would have a number of applications. For instance, it could be run on

embedded devices, such as camera-equipped mobile phones mounted on the car

dashboard, and consequently allow different types of low-cost vehicles, which in

most cases do not include cameras as standard equipment, to be fitted with a safety

warning device with very low cost.
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15.2 Feature Analysis

This section presents a preliminary analysis of the characteristics of very simple

features that can be extracted as side information from a state-of-the-art video

encoder at extremely low cost, such as size and MSE of each frame. For instance,

those two features alone could be exploited to decide, without any other input, if the

vehicle is moving or not. Intuitively, the scene captured by a camera in front of

the driver is much more static when the vehicle is not moving. Thus, an H.264

encoder [3] operating at constant quality would approximately use the same amount

of bits and introduce almost the same distortion for a number of consecutive

intercoded frames.

As seen in Fig. 15.1, the distribution of the size and distortion of each video

frame presents two different clusters, corresponding to the moving and still vehicle
conditions.

Motivated by the fact that those results seem quite promising, a more systematic

approach is employed in order to compute the relevance of each feature that can be

easily extracted from the compressed video stream, so that classification complex-

ity could be reduced. Feature selection is a very important problem in pattern

analysis and classification, and many different algorithms have been proposed in

literature, based on diverse criteria, among them mutual information [4] between

features and classes (which correspond to events in our case).

The mutual information of two random variables is a quantity that measures

the statistical dependence between the two variables, that is, the reduction in the

uncertainty (as measured by Shannon’s Entropy) about one random variable yielded

by knowledge of the other one [5]. Given two discrete random variables X, Y,
X ∈ X, Y ∈ Y and the corresponding probability mass functions (p.m.f.) pX(x),
pY(y), along with their joint p.m.f. pXY(x,y), their mutual information I(X;Y ) is

defined as

Fig. 15.1 Scatter plot of MSE vs. frame size of compressed video frames when the vehicle is

moving (grey) or still (black)
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I X; Yð Þ ¼
X
x∈X

X
y∈Y

pXY x; yð Þlog pXY x; yð Þ
pX xð ÞpY yð Þ : (15.1)

In principle, given a feature set F ¼ (X1,X2, . . .,Xn) with n features and a target

class C, one would like to find the subset S � F for a given m � n which bears

the most information about the class C, i.e., which has the largest dependency on the
target class (Max-Dependency):

arg max
S�F

I S ¼ Xk1 ;Xk2 ; . . . ;Xkmð Þ;Cð Þ: (15.2)

When m ¼ 1 the solution is almost trivial and is equivalent to finding the feature

whose mutual information with the class is maximal. When more features are

involved, i.e., m > 1, the mutual information between the feature should be con-

sidered as well because the information they bear to the reduction of the uncertainty

on the class can be partially overlapping. Directly maximizing (15.2) in this case

can be hardly done in practice, especially if m is large; thus, usually

Max-Dependency (15.2) is approximated with the simpler Max-Relevance:

arg max
S�F

1

Sj j
X
Xi∈S

I Xi;Cð Þ, (15.3)

which amounts to taking the subset of m features individually maximizing the

mutual information exchanged with the class. Note that mutual information among

the features is ignored in (15.3), i.e., the joint mutual information with the class may

be less than the sum of the individual mutual informations between each feature and

the class. However, the Max-Relevance criterion is simple to implement and proved

to be quite effective for our purposes.

To compute mutual information we estimated all the probability mass functions

by frequency counts on a training set. The considered features at frame and

macroblock level are listed in Table 15.1, where MVx and MVy represent the

horizontal and vertical components of the MV, respectively. The events of interest

considered here are listed in Table 15.2.

Figure 15.2 represents typical frames captured in the highway scenario, urban

scenario, and dual carriageway, respectively. Macroblock-level features can also

Table 15.1 Video features considered in this work

Level Name Value type

Frame Size Integer

MSE w.r.t. original Float

Macroblock Size Integer

MSE w.r.t. original Float

Motion vectors (MVx, MVy) Fractional (1/4-pel precision)

Number of MVs Integer (1, 2, or 4)
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consider more specific and numerous features such as motion vectors. Table 15.1

reports a sample list of macroblock-level features that can be easily extracted as

side information during the encoding process. Their individual contribution

towards identifying a number of situations is shown in Figs. 15.3, 15.4, 15.5,

15.6, 15.7, and 15.8. Brighter colors represent higher mutual information values.

Figure 15.3 shows that the contribution of the size of each macroblock to the

detection of the motion event is almost uniform throughout the picture. In Fig. 15.4

the macroblocks in the position corresponding to the converging horizontal white

lines depicted on the road surface are shown to be important for the detection of the

driving scenario. Concerning motion vectors, their horizontal component seems to

Table 15.2 Events of interest

Event Description Possible values

Moving Car is moving Yes/no

Scenario Type of road Urban/highway

Dual_carriageway Opposite car flows are separated Yes/no

Fig. 15.2 Example of a highway, urban, and dual carriageway conditions (from top to bottom)

15 Driving Event Detection by Low-Complexity Analysis of Video-Encoding Features 261



Fig. 15.3 Mutual information between macroblock size and moving event

Fig. 15.4 Mutual information between number of MVs in the macroblock and scenario event

Fig. 15.5 Mutual information between MVx and moving event

Fig. 15.6 Mutual information between MVx and scenario event

Fig. 15.7 Mutual information between MVx and dual carriageway event



be one of the most important features to consider for detecting various events.

For instance, in Fig. 15.5 the contribution of all macroblocks is important to detect

the movement of the vehicle, except for the macroblocks which are immediately in

front of the vehicle (bottom center part of the figure). This is probably due to the

fact that the area represented by them is very often a uniform road surface where

movements cannot be clearly detected by simply using motion compensation due to

the uniformity. The driving scenario seems to be detected mainly by analyzing the

converging horizontal white lines depicted on the road surface (Fig. 15.6), as well

as some macroblocks in the left and right parts of the image. The left part probably

includes the highly textured area at the side of the road in the urban scenario, while

the right part might indicate the presence of vehicles quickly moving in the opposite

direction. The dual_carriageway event can be detected by focusing on the left part

of the image, as shown in Fig. 15.7, again probably due to the highly textured area at

the side of the road. Finally, Fig. 15.8 shows the contribution of the vertical

components of the motion vectors to the detection of the scenario. The contribution

seems to be very concentrated in the area of the converging horizontal white lines

depicted on the road surface, suggesting that their movement can be used to

discriminate among different scenarios.

For events such as scenario, which has been classified for the purpose of these

experiments using a binary value (urban/highway), it can be easily seen that the

macroblocks that are in the position corresponding to the horizontal white stripes on

the road surface, which are aimed at separating the lanes, give the highest contri-

bution compared to the rest of the image. This is expected since the database

contained a test path in which, for almost all roads, horizontal road signs are clearly

marked. In addition, the left part of the image also gives a large contribution since

that part of the image is expected to contain visual information coming from the

roadside. This moves quite uniformly when the vehicle changes direction, for

instance, due to a turn or a lane change. Moreover, the intensity and direction of

motion are also highly related to the vehicle direction of movement. It is more

difficult to get this insight from the opposite side of the image because the road

surface is more uniform, and, often, the movements represented by the motion

vectors do not closely represent the real motion in the video scene. Note also that

this result is influenced by the fact that the video sequences used for the experiments

have been acquired in Japan, where cars are required to keep the left side. The

opposite consideration would hold in the case of right-side driving.

Fig. 15.8 Mutual information between MVy and scenario event
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The mutual information approach is useful since it provides quantitative values

for each input feature. Since the number of macroblock for each frame is quite high,

and the video frame rate adds complexity to the problem, the mutual information

values can be used as a guidance in order to reduce the number of features needed to

detect the current driving situation. The underlying idea is that many macroblocks

are located in parts of the image which have low significance in terms of helping to

determine the current driving situation. For instance, the upper macroblocks gener-

ally present low utility values since they might represent a portion of the sky which

might not present particular patterns; therefore, motion vectors in that area are not

very useful. The ordering that mutual information creates between the macroblocks

will be employed to reduce the complexity of the detection algorithm, hopefully

without a significant impact on the performance of the algorithm.

15.3 Detection Algorithm

We experimented with different detection algorithms relying on either a generative

model or a more efficient discriminative model. In the first case, a Gaussian Mixture

Model (GMM) can be trained for each of the two conditions. Then, given certain

values for the input parameters, the output of each model is the likelihood of the

corresponding possible outcome, e.g., moving or still, and a simple comparison of

the likelihoods can be used to determine the maximum and which of the two

conditions apply accordingly.

We also employed two algorithms based on a discriminative model. The first one

is a binary linear Support Vector Machine (SVM) [6, 7]. For each binary event we

try to detect, we map the two possible outcomes on the labels {�1, + 1}, and given

a set of instance-label pairs xi; yi
� �

, i ¼ 1, . . . ,m, xi∈Rm, yi∈ �1, þ 1f g, the aim is

to solve the unconstrained optimization problem:

min
w

1

2
wTwþ

Xm
i¼1

max 1� yiw
Txi, 0

� �2
: (15.4)

Once the w vector is learned, binary classification proceeds as follows: a new

instance is assigned the + 1 label if wTx > 0 and � 1 otherwise.

A second algorithm relies on an SVM whose kernel is the radial basis function.

This is more complex than the linear SVM approach; hence, it will be used to

present reference results and for comparison purposes. In order to perform

experiments with this type of SVM, we relied on the software described in [8].
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15.4 Results

We tested our algorithm by means of tenfold stratified cross-validation over a set of

77,060 frames. Performance was assessed in terms of accuracy, precision, and

recall. Accuracy measures how many times the classifier is right on average, i.e.,

how many times it correctly identifies if an event is occurring or not (e.g., moving or

not moving), and is given by:

Accuracy ¼ True positivesþ True negativesð Þ=Number of instances

While accuracy gives an indication of the average performance of the classifier,

corresponding to the average identification rate, precision, and recall complements

this information. Precision is, in fact, defined as:

Precision ¼ True positives= True positivesþ False positivesð Þ,

and, as such, measures the fraction of times an event is identified (e.g., the classifier

outputs moving and the event is actually occurring). Recall, instead, measures the

fraction of occurring events actually identified by the classifier and is defined as:

Recall ¼ True positives= True positivesþ False negativesð Þ:

High recall implies that if an event occurs it is very likely the classifier will spot

it, while high precision indicates that most of the time the classifier is right when it

identifies an event.

15.4.1 Gaussian Mixture Model

First, the GMM algorithm has been tested. Average detection results are presented

in Table 15.3 which shows that, even with very few components for each GMM,

correct decisions can be taken successfully on more than 90 % of the analyzed

frames. It is noteworthy to say that this simple algorithm does not jointly consider

consecutive frames nor it considers other features available as side information at

the encoder.

Further investigation shows that there are a few cases where the algorithm fails

to correctly identify the still condition. This usually happens on frames characte-

rized by a mostly still image but with few and localized movements in the scene,

Table 15.3 GMM algorithm

accuracy
Number of components Identification rate

2 90.72 %

5 91.36 %
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such as vehicles crossing an intersection, while the vehicle is waiting at a traffic

light. Figure 15.9 shows such a condition, where the vehicle at the center of the

scene is rapidly moving in the direction which is perpendicular to the camera axis,

while the rest of the scene is completely static. Therefore, we expect that incor-

porating the information coming from the motion estimation algorithm could

improve the prediction accuracy.

Moreover, also note that the ground truth (i.e., the decision between moving and
still conditions as well as for the other events) has been determined by manually

annotating the video, and it is not always easy to determine if the vehicle is moving

or not by looking at the video when the speed is low. Therefore, such low-speed

conditions could be weighted differently when evaluating the performance of the

detection algorithm.

15.4.2 Support Vector Machine

The following results incorporate the features available at the macroblock level.

The linear SVM algorithm has been employed in this case, since it can easily cope

with the high number of features available for each frame. Table 15.4 shows the

performance results in terms of accuracy, precision, and recall when all the motion

vector components (both horizontal and vertical) of all macroblocks in each frame

are used, as well as the total frame size and MSE value. The results vary depending

on the event to be detected; however, all values are significant.

Improving the performance shown in Table 15.4 can be achieved by simply

considering that it is extremely unlikely that the value of the event rapidly changes

over time, especially for each frame. Therefore, Table 15.5 shows the results

Fig. 15.9 Vehicle crossing the intersection at a traffic light stop. Superimposed motion vectors

present a relatively high intensity in the direction of apparent motion when they are located in the

car area while they are nearly zero in the rest of the image
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obtained by grouping, as the SVM input, the features of five frames at a time. The

performance significantly improves, up to 3 % for both accuracy and precision.

The previous approach provides a performance improvement at the cost of an

additional complexity in terms of the number of input features. Therefore, to reduce

complexity, for each feature and event to be detected, macroblocks have been

sorted using the mutual information value computed as described in Sect. 15.2,

and only the ones with the highest value have been given as input to the SVM

algorithm.

Figure 15.10 reports the results as a function of the considered number of

macroblocks (the first 20, 50, 100). The all macroblocks case (504) has been

considered for reference purpose. Note that in the case of five frames, to further

reduce the complexity, only the horizontal component of the MVs has been

considered in addition to the other features. The performance gap between the

case of 20 macroblocks and the full case is limited; therefore, it is possible to

effectively reduce the complexity of the algorithm without significantly affecting

the performance. Note also that when 100 macroblocks are employed for the

five-frame case, the complexity, in terms of input features, is equivalent to

the case of considering all macroblocks of each frame for the one-frame case.

Table 15.6 shows the results obtained by means of the SVM approach based on

the radial basis function described at the end of Sect. 15.3. Almost the same

accuracy is achieved with respect to the linear SVM approach; however, precision

and recall may significantly change. For instance, for the moving event, accuracy

slightly increases (0.3 %), whereas precision increase is in the order of 5 %, but

the recall is reduced by 4–5 %. Consequently, when the event is identified by the

classifier, it is more likely to be actually happening; however, there are some more

events which are not spotted by the classifier. For the dual carriageway case, a

moderate decrease in accuracy (0.5–2 %) is accompanied by a strong increase in

precision (about 29–30 %), whereas the recall decrease is about 22 %. In this case,

there is a much higher probability that when the classifier identifies the event, it is

actually happening, while some of them are missed due to the lower recall. With the

scenario event, accuracy does not change significantly, while precision and recall

move in the opposite direction compared with the previous case.

Table 15.4 Performance

of the SVM algorithm

considering each frame

individually

Event Accuracy Precision Recall

Moving 91.44 % 92.85 % 96.00 %

Scenario 87.02 % 82.87 % 68.34 %

Dual carriageway 66.79 % 66.60 % 82.49 %

Table 15.5 Performance

of the SVM algorithm

considering five frames

at a time

Event Accuracy Precision Recall

Moving 91.84 % 93.64 % 95.62 %

Scenario 89.85 % 85.67 % 77.12 %

Dual carriageway 67.94 % 68.09 % 81.24 %
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15.5 Conclusions

This chapter presented driving event detection algorithms based on the side

information available from a video compression procedure. The algorithms achieve

good identification rate by employing both a GMM-based and SVM-based approach,

using numerous input features such as the ones provided by the motion estimation

algorithm of a video encoder. The results showed that the algorithms are able to

identify, with good reliability and low complexity, a number of driving conditions.

The comparison between the linear SVM approach and the SVM approach based on

Fig. 15.10 Accuracy, precision, and recall (from top to bottom) as a function of the number of

considered macroblocks, considering one or five frames at a time

268 E.S.G. Carotti and E. Masala



the radial basis function shows that the performance of the linear approach is close

to the one provided by the other, more complex, approach.

Further work will be devoted to investigate the possibility to identify more

interesting events such as lane changes and vehicles unexpectedly entering in the

scene. In case of a video surveillance scenario, the detection of different types of

events could be used to automatically decide which portion of the video should be

uploaded to a remote monitoring center thus reducing communication costs.

Finally, other possible applications besides driving assistance could be investigated,

such as a simple helper program to automatically produce a draft annotation for all

video signals captured from a front-facing camera in a signal collection campaign.

Such a draft annotation would then be refined by human annotators more quickly

than starting from scratch. Since during a signal collection campaign, the vehicle

usually follows roughly the same path in each recording session; it is expected that

such an approach could be quite accurate and could speed up the annotation of the

huge amount of collected video especially if the model is trained over a careful

human annotated recording session.
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Chapter 16

Target Shape Estimation

Using an Automotive Radar

Florian Engels

Abstract Estimating the shape of vehicles is crucial for radar-based advanced

driver assistance and safety systems. However, conventional radar processing is

unable to resolve the different parts of a vehicle as required for this task. To address

this issue a two-stage approach is considered which employs high-resolution

techniques in combination with conventional Fourier-based methods. Single- and

two-dimensional high-resolution estimation is discussed, which includes range

and range-rate estimation in the temporal dimensions of the radar data. A novel

technique referred to as cell interpolation is proposed, which can employ range and

range-rate estimates in combination with Fourier-domain data for direction-of-

arrival estimation. Two-stage processing has been implemented in the case of

two-dimensional high-resolution estimation using the spectral RELAX algorithm

and experimental results are shown.

Keywords Automotive radar • Target shape estimation • Complex target model

• High-resolution frequency estimation

16.1 Introduction

Advanced driver assistance systems (ADA), as well as active and passive safety

systems need precise knowledge of their environment. Radar sensors are commonly

applied in such systems as they can operate in inclement weather and provide direct

and reliable measurements of range and range-rate [15]. The drawback of today’s

automotive radar sensors is their limited angular and therefore lateral resolution

[14]. Estimating the lateral extents of a target with respect to the driving direction is
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however of utmost importance for ADA and safety systems. For example adaptive

cruise control (ACC), lane change assistance (LCA), as well as forward vehicle

collision mitigation system (FVCMS) need to report the highway lane in which a

target vehicle is located. This is surely not possible without knowledge of the target

vehicle’s width. For future collision avoidance systems [20], the task is generalized

to estimating the free space in front of the subject vehicle (the car equipped with the

radar sensor) in order to adjust the driving path to avoid a crash. A precise estimate

of the lateral obstacle extensions is therefore crucial. When a crash becomes

unavoidable, precrash systems need to classify the crash to determine which airbags

have to be fired or if belt pretensioners have to be activated. The crash class depends

on the overlap of the subject car and the obstacle and therefore on the obstacle

width [6].

The limited angular resolution of automotive radar sensors is a consequence of

commonly employed limited aperture antenna arrays in combination with digital

beamforming. As a small sensor size is imperative for vehicle integration, increas-

ing the array aperture is not an option. Therefore the focus of this chapter is signal

processing strategies which improve the angular resolution. Existing work in the

automotive context [7, 17] aims at separating multiple vehicles based on a point

target or far-range assumption. The far-range scattering of a target can be locally

modeled by a single plane wave, which causes a sinusoidal variation over the

antenna array with a frequency proportional to the sine of the target angle. For

multiple targets the array response becomes a sum of complex sinusoids, where

each frequency corresponds to one target angle. Therefore parametric methods for

line spectra estimation such as the ML method, MUSIC, or ESPRIT can be applied

[7, 17]. In the context of array processing, such methods are also known as high-

resolution direction of arrival (DOA) techniques.

If the far-range assumption is dropped (as in Sect. 16.3), the array response for a

single target can also be modeled as a sum of complex sinusoids, where each

frequency is associated with the angle of different target parts. Therefore high-

resolution DOA estimation techniques can be employed to separate scattering

contributions from different parts of a target. As the sum of complex sinusoids

model holds also in the temporal dimensions of the radar data (see Sect. 16.3), line

spectra methods can be used for high-resolution range and range-rate estimation.

The angle corresponding to high-resolution range or range-rate estimates can be

obtained by applying a new technique introduced in Sect. 16.4, which is called cell

interpolation. This enables one to choose the data dimension in which high-

resolution estimation is applied according to the radar sensor design.

In particular automotive safety systems require high angular resolution only for

targets in the driving direction of the subject vehicle. Therefore rough position

estimates of relevant targets can be used to limit the use of high-resolution estima-

tion to a subset of the radar data. This enables a two-stage approach to high-

resolution estimation where the first stage provides coarse target estimates which

are refined in the second stage using line spectra estimation techniques. Two-stage

processing is discussed in Sect. 16.4 and applied to experimental data in Sect. 16.6.
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16.2 Scattering Model

This section gives a short overview of the dominant mechanisms involved in radar

scattering from typical automotive targets, such as cars, trucks, or motorcycles. The

extent of such targets is large with respect to wavelengths of 3.7 mm (79 GHz),

3.9 mm (76 GHz), and 12.4 mm (24 GHz), which are commonly used in automotive

radar systems [20]. Therefore the principles of high-frequency scattering apply [12]

and a targets’ scattered field can be described as the superposition of local fields

originating from different parts of the target. The complex target shape can thus be

understood as a collection of simple shapes, such as curved surfaces, edges, or

corners, each attributed with a characteristic high-frequency scattering mechanism

[3, 10], which is illustrated in Fig. 16.1.

The sides of a car give rise to geometrical optics (GO) type or specular scatter-

ing, which is very strong when the incident wave’s propagation direction is normal

to the car’s side. The same holds for a car’s back and in principle for all singly or

doubly curved surfaces of a car. The scattered or reflected GO field propagates in

the direction of the so-called GO ray, a straight path in homogeneous media. Along

the GO ray the reflected field is locally plane [12]. The direction of the reflected GO

ray depends on the direction of incidence with respect to the surface normal and is

determined by the law of reflection, which is also known as Snell’s law [19]. Note

that the direction of interest is the direction back to the radar sensor. Straight or

curved edges, such as the radiator grill or the wheelhouse edges, lead to diffracted

fields which are described by the geometrical theory diffraction (GTD) or the

uniform geometrical theory of diffraction (UTD) [12]. Diffracted waves propagate

in the direction of the so-called diffracted ray, which is formally equivalent to

the GO ray. As in the GO case, the diffracted field is locally plane along the

diffracted ray. The direction of the diffracted ray depends on the direction of

incidence with respect to the edge and is determined by the law of edge diffraction

[12]. The wheelhouses of a car produce a multi bounce GO return, see ([2],

Chap. 13) and references therein. This means a ray entering the wheelhouse is

reflected multiple times before eventually leaving the wheelhouse. As the field

scattered from the wheelhouse can be modeled as GO field, it is also locally plane

along the reflected ray. The direction of the reflected ray depends on the direction of

incidence and the inner geometry of the wheelhouse. Scattering from the underbody

of the car can reach the radar indirectly over the street surface, which acts as a

Fig. 16.1 Parts of a car

attributed with dominant

scattering mechanisms
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mirror at 79, 76, and 24 GHz [16]. Being also of GO type, the scattered fields from

the car’s underbody are also locally plane along their respective rays.

All mentioned high-frequency scattering contributions lead to reflected fields,

which are locally plane along the direction of propagation. Where multiple reflected

rays in the direction of the radar sensor exist, the local field at the radar sensor

becomes a superposition of plane waves with each corresponding to a different part

of a target. This is an important result and will be used to derive the signal model

presented in the following section. Experimental results showing the high-

frequency radar scattering of a car can be found in [1].

16.3 Automotive Radar Sensors

Automotive radar sensors differ in their employed waveform and their applied

angular measurement principle. Commonly chosen waveforms are frequency-

modulated continuous wave (FMCW), stepped frequency, and coherent linear

frequency-modulated (LFM) pulse train signals [20]. FMCW and stepped frequency

signals are popular due to their low complexity. The main drawback of either

waveform is that range and range-rate cannot be measured independently. This is

particularly unfavorable in multi-target situations [20] and equivalently for

estimating the extent of a target. In contrast, coherent LFM pulse trains enable

almost independent range and range-rate measurements [11]. Therefore the remain-

der of this chapter focuses on coherent LFM pulse trains, and the other waveforms

will not be discussed further.

Figure 16.2 shows the frequency of transmitted (solid line) and received (dashed

line) LFM pulses for one coherent processing interval (CPI) and the time interval

for transmitting and receiving allM pulses. The frequency axis is normalized to the

center frequency fc and each pulse has a bandwidth B. The pulses are transmitted at

multiples of the pulse repetition time tr. The n-th pulse is reflected from a target and

arrives at the radar sensor delayed by tn. If the target is not moving relative to the

radar sensor, τn will be equal for all Np pulses. On the other hand, if the target is

Fig. 16.2 Pulse frequency over time for one coherent processing interval
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moving, τn becomes a function of the target’s range at time ntr. Thus the delay

change over all pulses in one CPI can be utilized to measure the range-rate of a

target, which will be shown in Sect. 16.3. The target’s range can also be measured

by exploiting the fact that τn is proportional to the difference frequency Δωn.

Mixing each transmitted with the corresponding received pulse followed by band

pass filtering yields a sinusoidal signal with a frequency of Δωn, which can be used

for range measurement. This concept is known as stretch pulse compression [11].

Two popular angular measurement principles in automotive radar systems are

monopulse and array processing. Monopulse techniques have no angular resolution

capability and are not considered further. On the other hand, array techniques offer

angular resolution via multiple spatially distributed antennas in combination with

frequency estimation methods. A simple and often used antenna geometry is the

uniform linear array (ULA), which consists of equidistant antennas in horizontal or

vertical direction.

Figure 16.3 shows an azimuthal projection of a locally plane wave front imping-

ing on a four element ULA and the outline of the radar sensor, and transmit antenna

is provided for reference. The wave propagates with velocity c and forms an

azimuth angle α with the array normal. The wave front arrives at the n-th antenna

with a delay τn, which is a function of sin α and the antenna position. The delay

differences between the antennas can be used to estimate α. Note that the exemplary

ULA has no measurement capability in elevation.

A radar system employing a coherent LFM pulse train and array processing is

depicted in Fig. 16.4. In this system the generated LFM pulses are successively

transmitted and directly mixed with the received pulses. After filtering and amplifi-

cation the resulting signal is sampled with a sampling frequency fs. As observed
from Fig. 16.4 this is done for each antenna in parallel. Thus the data y(n) for one
CPI is three dimensional and is indexed by a vector

n ¼ n0n1n2ð ÞT∈L � M � N , (16.1)

where L denotes the number of samples per pulse, M the number of pulses, N the

number of antennas, and

i ¼ 0, � � �, i� 1f g
are sets comprising all integer values from 0 to i. For example, y(n1) with n1
¼ 0 1 2ð Þ is the first sample of the second pulse received with the third antenna.

Fig. 16.3 Plane

wave impinging on

a four-element ULA
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As seen in Fig. 16.4, y(n) can be visualized as a cube with the edges corresponding

to the sample, pulse, and antenna data dimensions. Therefore y(n) is referred to as

the radar cube in the following.

Table 16.1 lists the parameters of a sample radar system employing a coherent

LFM pulse train and array processing. These parameters will be used in the

following sections, particularly in Sect. 16.6, where experimental results using

such a radar system are discussed.

16.4 Signal Model

It was discussed in Sect. 16.2 that the scattered field of a complex target such as a

vehicle can be locally modeled as a superposition of plane waves. Localized plane

wave sources lead to harmonic variations in the sample, the pulse, and the antenna

dimension of the radar cube when a radar system such as the one introduced in

Table 16.1 Parameters

for a sample radar sensor
System parameter

Center frequency fc 24 GHz

Pulse bandwidth B 200 MHz

Pulse duration tp 8 μs
Number of samples L 256

Pulse repetition time tγ 76.3 μs
Number of pulses M 256

Antenna distance da 6.207 mm

Number of antennas N 7

Fig. 16.4 Radar system

employing a coherent LFM

pulse train and array

processing
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Sect. 16.3 is employed [9, 15]. Thus the radar cube can be modeled as a sum of

complex sinusoids

y nð Þ ¼
XK�1

k¼0

ake
jωkn þ w nð Þ, (16.2)

where each complex sinusoid is parameterized with a frequency vector

ωk ¼ ρkμkνkð ÞT∈3 (16.3)

and a complex amplitude ak. The index k refers to one of K target parts. The index

vector n is given by (16.1) and w(n) denotes an additive noise term. The elements

of (16.3) are normalized to the respective sampling frequencies fs, fr ¼ t�1
r , and

fa ¼ d�1
a and are functions of range r, range-rate v, and azimuth angle α, respec-

tively [9, 15]:

ρk ¼ c0rk
μk ¼ c1vk
νk2 ¼ c2 sin αk,

(16.4)

where the constants

c0 ¼ ctpf s
4πB

c1 ¼ cf r
4πf c

c2 ¼ cf a
2πf c

(16.5)

depend on the radar system parameters given in Table 16.1. Estimating r, v, and α of
different parts of a target is thus a frequency estimation problem which is in

principle solved by minimizing

X
n

y nð Þ �
XK�1

k¼0

ake
jωkn

�����

�����
2

(16.6)

with respect to (a0 � � � aK � 1, ω0 � � � ωK � 1) [18].

Note that the number K will change with the target’s position and orientation

with respect to the radar. Even if K is equal for different orientations, the target parts

contributing to the radar cube can be different. Figure 16.5 illustrates two possible

16 Target Shape Estimation Using an Automotive Radar 277



target orientations with K ¼ 3. Here the solid lines represent ray paths leading back

to the radar sensor, which are included in the sum of (16.2). The dashed lines denote

ray paths which lead away from the radar and therefore do not contribute to the

radar cube.

16.5 Signal Processing

The objective of radar signal processing is to extract information from the radar

cube which is needed for the realization of a given ADA or safety function.

As pointed out in Sect. 16.1, a common requirement is to know the positions,

extents, and dynamic properties of function relevant targets. Thus a generic signal

processing approach could be to provide a list of all targets detected by the radar

sensor, and let the specific ADA function pick the relevant ones from this list.

Radar signal processing happens at two different time scales, one spanning a

single CPI and the other multiple CPIs. Single CPI processing provides a list of

detections based on the most recent radar cube. Using multiple CPIs enables target

estimates which are tracked over time and which are updated with detections from

the most recent CPI. The multi CPI processing is therefore commonly referred to as

tracker. The single CPI detection list ideally contains multiple detections per target,

where a detection is parameterized by range r, range-rate v, and azimuth angle α.
Those detections are used by the tracker to estimate the target extent as well as the

target orientation [5], which are crucial parameters for ADA and safety functions

(see Sect. 16.1).

Here the focus will be single CPI processing, which is based on estimating the

frequencies of the radar cube given in (16.2). Putting these frequency estimates

in (16.4) results in range r, range-rate v, and azimuth angle α, which constitute

a detection. In the following sections a two-stage approach to frequency estimation

is discussed. The first stage employs the so-called periodogram to provide

Fig. 16.5 Examples of rays directed away and back to the radar sensor
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coarse estimates, which are used to select the region of interest for the second stage.

The second stage then applies high-resolution estimation in one or two dimensions.

Both stages are discussed in the following sections.

16.5.1 Periodogram-Based Processing

The periodogram is a frequency estimation method based on the discrete Fourier

transform (DFT). It is popular in automotive radar systems because it can be

calculated efficiently via the fast Fourier transform (FFT) algorithm. In the follow-

ing the application of the periodogram to the radar cube is briefly discussed.

If it is assumed that either

ΔρR ¼ inf
k 6¼p

ρk � ρp
�� �� > 2π

L
, (16.7)

or

ΔμR ¼ inf
k 6¼p

μk � μp
�� �� > 2π

M
, (16.8)

or

ΔνR ¼ inf
k 6¼p

νk � νp
�� �� > 2π

N
, (16.9)

holds, then (16.6) is approximately minimized by the frequencies corresponding to

the K largest maxima of the periodogram [18]

P ωð Þ ¼ Y ωð Þj j2, (16.10)

where

Y ωð Þ ¼ 1

N
�
X
n

y nð Þe�jωn, (16.11)

with ω∈3 and eN ¼ LMN (see Table 16.1). Equations (16.7), (16.8), and (16.9)

are known as Rayleigh limits. Note that in (16.11) the sum over an index vector

equals the sums over its elements. Therefore (16.11) represents the three-

dimensional time discrete Fourier transform of the radar cube, which is commonly

calculated at the DFT frequencies
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ρs ¼
2π

L
s

� �L�1

s¼0

, μs ¼
2π

M
s

� �M�1

s¼0

, νs ¼ 2π

N
s

� �N�1

s¼0

using the FFT algorithm.

Note that the K largest maxima of (16.10) do not have to correspond to a single

target. For automotive applications the number of targets can be rather large as not

only other vehicles, but also the road border, street signs, and other stationary

targets contribute to the radar cube. Therefore no a priori knowledge of K is

available, and the largest maxima are determined by finding all local maxima

of (16.10). Owing to the limited sampling points obtained from the DFT, the

frequency estimates are refined using local interpolation [8]. The frequencies

corresponding to the local maxima which exceed a detection threshold constitute

the periodogram frequency estimates.

16.5.2 Two-Stage Processing

Most ADA and safety systems require high angular resolution only in a narrow

region around the driving path of the subject vehicle. Therefore the resolution

capability of the periodogram is sufficient in regions which have a large lateral

offset with respect to the subject vehicle. High-resolution estimation can thus

be restricted to a small angular sector around the driving path. Furthermore the

periodogram can be used to limit the region of interest to a longitudinal distance

around detections in the driving path. This allows a two-stage approach where high-

resolution estimation is applied only to preprocessed subsets of the radar cube,

which will be referred to as cells. Cell preprocessing is done by applying (16.11)

only in the so-called cell dimensions. The remaining dimensions of the radar cube

which are not preprocessed are referred to as high-resolution dimensions. Note that

the cell, as well as the high-resolution dimensions, is related to the respective

parameter by (16.4) and (16.5).

One- and two-dimensional high-resolution estimation can be applied to the radar

cube. This leads to six possible combinations of cell parameters and high-resolution

parameters, which are listed in Table 16.2 together with the cell data to which high-

resolution estimation is applied. Depending on the cell parameters, Fourier-based

preprocessing is only applied in one or two dimensions. The frequency and

index vectors ωc, n, and m in Table 16.2 are therefore two dimensional. For high-

resolution range-rate estimation (high-resolution parameter v and cell parameters

(r, α)), the complete processing chain is shown in Fig. 16.7. The processing

starts with calculating samples of (16.11) using a three-dimensional DFT. This is

followed by taking the absolute value squared to obtain (16.10). A local maxima

search and applied thresholds result in frequency estimates corresponding to the

L strongest maxima of the frequency domain radar cube. The corresponding

frequencies are refined by local frequency interpolation and then used to obtain

280 F. Engels



the detection parameter estimates range, range-rate, and angle by employing (16.4).

One detection of interest r̂ 0 v̂ 0 α̂ 0ð Þ is extracted from the L detections, and

the corresponding frequencies ρ̂ 0 μ̂ 0 v̂ 0ð Þ are used for cell selection. The

corresponding cell data Y r;αð Þ
�
m, ρ̂ 0 v̂ 0

�T� �
,m ¼ 0, � � �,M � 1 is then used for

high-resolution estimation yielding K frequency estimates μ̂ k for the range-rate

dimension. By using cell interpolation the cell dimension frequency estimates ρ̂ k

and v̂ k are obtained. By applying (16.4), the frequency estimates are converted to

range, range-rate, and angle and are finally (together with the periodogram

detections) passed to the tracker.

Which of the six possible choices in Table 16.2 is most beneficial depends on the

radar sensor design. For example, an ultra-wideband short-range radar sensor might

employ high-resolution range estimation, because the large bandwidth results in

high-range resolution [15]. In contrast, long-range radar sensors with comparatively

large antenna arrays might use high-resolution DOA estimation to increase the

angular resolution. Whether to use one- or two-dimensional high-resolution esti-

mation is a trade-off between computational complexity, signal-to-noise ratio

(SNR), and resolution performance. Two-dimensional algorithms will in general

be more computationally demanding than one-dimensional algorithms, but offer a

higher resolution capability [13]. On the other hand, cell preprocessing via the

DFT increases the SNR with each cell dimension. This means one-dimensional

high-resolution estimation can benefit from a higher SNR compared to the

two-dimensional case.

16.5.3 Cell Interpolation

Based on high-resolution estimates in one dimension of the radar cube, cell

interpolation yields estimates in the remaining cell dimensions. This is shown in

Fig. 16.6, where range and azimuth angle estimates based on high-resolution

Table 16.2 High-resolution (HR) and cell parameters for two-stage processing

HR parameter Cell parameter Preprocessed data

r (r,α) Y v;αð Þ n;ωcð Þ ¼
X
m

y n;m0;m1ð ÞT
� �

e�jωcm

v (r,α) Y r;αð Þ n;ωcð Þ ¼
X
m

y m0; n;m1ð ÞT
� �

e�jωcm

α (r,v) Y r;vð Þ n;ωcð Þ ¼
X
m

y m0;m1; nð ÞT
� �

e�jωcm

(r,v) α Yα n;ωcð Þ ¼
X
m

y n0; n1;mð ÞT
� �

e�jωcm

(r,α) v Yv n;ωcð Þ ¼
X
m

y n0;m; n1ð ÞT
� �

e�jωcm

(r,α) r Yr n;ωcð Þ ¼
X
m

y m; n0; n1ð ÞT
� �

e�jωcm
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range-rate estimates are obtained. The idea behind cell interpolation is to estimate

the complex amplitudes corresponding to high-resolution estimates in the cells

adjacent to the so-called main cell. The main cell is the cell which is selected for

high-resolution estimation, as in Fig. 16.6. Looking at frequency domain data as in

(16.11), the complex amplitudes in the adjacent cells will be samples of the spectral

response of each complex sinusoid in (16.2). Their absolute values can thus be used

to estimate the maximizing frequency. This will be derived in the following for

high-resolution range-rate estimation in combination with range-angle cells.

The frequency domain radar cube in (16.11) can be written as

Y ωð Þ ¼
XK�1

k�0

akS ωk � ωð Þ þW ωð Þ, (16.12)

Fig. 16.6 Two-stage signal

processing including

high-resolution range-rate

estimation
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where

S ωð Þ ¼ SL ρð ÞSM μð ÞSN νð Þ

and

SP ωð Þ ¼ ej
P�1
2
ω sinωP=2

sinω=2
:

By dropping the noise term and fixing ρ and v to ρc and νc, respectively, (16.12)
can be written as

Y ωð Þ ¼
XK�i

k¼0

ckSM μk � μð Þ, (16.13)

where

ck ¼ akSL ρk � ρcð ÞSN νk � νcð Þ: (16.14)

The complex amplitudes (16.14) can be estimated from a set of N samples

y ¼ Y ρcμ
0ð Þ
s νc

� �T
	 


� � �Y ρcμ
N�1ð Þ
s νc

� �T
	 
	 
T

at the sampling points {μð0Þs , � � �,μðN�1Þ
s }. Using (16.13) for each sample and

gathering (16.14) in a vector

c ¼ c0� � �cK�1ð ÞT (16.15)

yields

y ¼ Sc, (16.16)

where

S ¼
S μ0 � μ 0ð Þ

s

� �
� � � S μK�1 � μ 0ð Þ

s

� �

⋮ ⋱ ⋮
S μ0 � μ N�1ð Þ

s

� �
� � � S μK�1 � μ N�1ð Þ

s

� �

2
64

3
75: (16.17)

If the μk, k ¼ 0, � � �, K � 1 in (16.17) are known, (16.16) is solved by

ĉ ¼ SHS
� ��1

SHy (16.18)

in a least squares sense [18].
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Equation (16.18) can be used to obtain angle and range based on high-resolution

range-rate estimates and the frequency domain radar cube. This will be explained

using Fig. 16.7, which shows the outline of a target vehicle together with the

corresponding range-angle cells. Each cell is associated with so-called cell

frequencies corresponding to range and angle, respectively. The grey scale

represents the values of (16.10) for the respective cell frequencies. In the vicinity

of the car, the cell with index zero is referred to as main cell and the cells with

indices from one to four as adjacent cells. The corresponding cell frequencies are

denoted by

ρ ið Þ
c

n o4

i¼0
, ν ið Þ

c

n o4

i¼0
,

where

ρ 0ð Þ
c ¼ ρ 2ð Þ

c ¼ ρ 4ð Þ
c

and

ν 0ð Þ
c ¼ ν 1ð Þ

c ¼ ν 3ð Þ
c :

The cell power values

γ ið Þ
k ¼ akSL ρk � ρ 0ð Þ

c

� �
SN νk � ν ið Þ

c

� ����
���
2

, i ¼ 0, 2, 4

δ ið Þ
k ¼ akSN νk � ν 0ð Þ

c

� �
SL ρk � ρ ið Þ

c

� ����
���
2

, i ¼ 0, 1, 3
(16.19)

Fig. 16.7 Range-angle

cells for a target vehicle
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are defined as the absolute value squared of (16.14) for the respective cell

frequencies. By comparing (16.19) with

SL ρk � ρð Þj j2 ¼ sin ρk � ρð ÞL=2ð Þ
sin ρk � ρð Þ=2ð Þ

������

������

SN νk � νð Þj j2 ¼ sin νk � νð ÞN=2ð Þ
sin νk � νð Þ=2ð Þ

������

������

(16.20)

it is found that (16.19) represents scaled samples of (16.20). This enables the

use of local interpolation techniques as described in [8] for estimating the true

frequencies, which are related to (16.20) by

ρk ¼ argmax
ρ

SL ρk � ρð Þj j2

νk¼ argmax
ν

SN νk � νð Þj j2:

As an example local parabolic interpolation is considered, which leads to the

following frequency estimates [8]

ρ̂ k ¼ ρ 0ð Þ
c þ Δρk

v̂ k ¼ ν 0ð Þ
c þ Δνk,

(16.21)

where

Δρk ffi
1

2

γ 4ð Þ
k � γ 2ð Þ

k

γ 4ð Þ
k þ γ 2ð Þ

k � 2γ 0ð Þ
k

Δνk ffi 1

2

δ 3ð Þ
k � δ 1ð Þ

k

δ 3ð Þ
k þ δ 1ð Þ

k � 2δ 0ð Þ
k

:

(16.22)

In (16.22) the cell power values given by (16.19) are used and

max
i

γ ið Þ
k ¼ 0, i ¼ 0, 2, 4

max
i

δ ið Þ
k ¼ 0, i ¼ 0, 1, 3

is assumed.

Applying (16.18) in each cell and taking the absolute value squared provide

estimates for

γi ¼ γ ið Þ
0 � � �γ ið Þ

K�1

� �T
, i ¼ 0, 2, 4

δi ¼ δ ið Þ
0 � � �δ ið Þ

K�1

� �T
, i ¼ 0, 1, 3:

(16.23)
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Employing (16.21) and (16.22) to the estimates of (16.23) leads to the desired

range and angle-dependant frequency estimates. The required frequencies μk,
k ¼ 0, � � �, K � 1 in (16.17) are estimated in the main cell using high-resolution

techniques in the range-rate dimension.

Note that even though cell interpolation was derived for high-resolution range-

rate estimation, it can also be applied for high-resolution range or angle estimation.

Cell interpolation can also be extended to the two-dimensional case by applying

stacked vectors and matrices in (16.16).

16.6 Experimental Results

In this section two-stage processing is applied to experimental data recorded with

an automotive radar sensor. The sensor is described in Sect. 16.3, and relevant

system parameters are listed in Table 16.1. High-resolution estimation is applied in

the range-rate and angle dimensions of the radar cube and leads to cells

parameterized by range. For high-resolution estimation the two-dimensional spec-

tral RELAX algorithm is used, which is described in detail in [4].

The experimental setup is depicted in Fig. 16.8. The target vehicle is

approaching the radar sensor with a constant velocity of 14 m/s and a constant

lateral offset of 1 m. Starting at a longitudinal distance of 20 m, the target car drives

past the radar sensor, which is not moving.

Also shown in Fig. 16.8 are two sample scattering contributions denoted by S0
and S1 at the front of the car. The longitudinal distance of the car to the radar sensor
is 8 m, and its lateral offset as well as its velocity is according to the experimental

setup described before. The angle and range-rate differences of S0 and S1 can be

converted to frequency differences by (16.4) and the system parameters listed in

Table 16.1. Comparing the frequency differences with the corresponding Rayleigh

Fig. 16.8 Experimental

setup and sample scattering

contributions at the car’s

front

286 F. Engels



limits gives an approximate measure of the periodogram’s expected resolution

performance. Using the parameters from Table 16.1 in (16.8) and (16.9) yields

ΔνR ¼ 2π

M
¼ 0:024rad

ΔμR ¼ 2π

N
¼ 0:897rad:

The azimuth angles of S0 and S1 are given as:

α0 ¼ tan �1 y0
x0

¼ 7:1�

α1 ¼ tan �1 y0 þ 0:5w

x0
¼ 13:3�:

The angular difference of 62� can be converted to a frequency difference of

0:34rad < ΔμR,

which is smaller than the respective Rayleigh limit given by (16.9). The range-rate

of S0 and S1 can be calculated by [8]

v0 ¼ vt cos α0 ¼ 13:99m=s
v1 ¼ vt cos α1 ¼ 13:71m=s

which results in a range-rate difference of 0.28 ∘ m/s. The corresponding fre-

quency difference

0:022rad < ΔνR

is again smaller as the respective Rayleigh limit given by (16.8). Therefore the

periodogram will most likely not resolve scattering contributions with a lateral

difference of less than half the car’s width. In contrast, the second processing stage

using RELAX does not share the resolution limitations of the periodogram and is

therefore expected to resolve closely spaced scattering contributions. With this

example in mind, the experimental results will be discussed.

Figure 16.9 shows detections of the first periodogram processing stage in a birds’

eye view for one CPI. Detections corresponding to the target vehicle can be

distinguished by marker size, which is proportional to range-rate. This means

that the greater the marker size, the greater the range-rate of the corresponding

detection. The target car’s approximate position is outlined for reference. It can

be observed that one detection is located at the front of the car and several others

at the rear. The rear detections originate from the wheelhouse and the wheel,

respectively. The area around the car’s front is also shown in Fig. 16.9 in
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greater detail. In addition to the first-stage detections, the second-stage detections

obtained with RELAX are shown. It can be observed that one first-stage detection is

obtained which is used to select the range-cell needed for the second-stage

processing. The RELAX-based second processing stage is able to resolve two

scattering contributions at the car’s front. The periodogram cannot resolve multiple

contributions but can be used for cell selection.

To see how reliably RELAX yields multiple detections at the car’s front, the

same experiment was repeated 37 times. Figure 16.10 shows the second-stage angle

Fig. 16.9 Birds’ eye view for one CPI
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Fig. 16.10 Angle and range-rate estimates of the second processing stage using RELAX
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and range-rate estimates from all experiments in distances from 7.5 to 8.5 m in a

scatter plot. Also shown are the relative frequencies for angle and range-rate,

respectively. The angle estimates range from approximately 7� to 18�. This

corresponds to contributions from the right corner to approximately the middle of

the front. The range-rate estimates are consistent with angle estimates as

v ¼ cos α:

16.7 Conclusions

A two-stage approach to improve the angular resolution of automotive radar sensors

has been discussed. It was shown how one- and two-dimensional high-resolution

parameter estimation can be incorporated in a Fourier-based signal processing

chain. The concept of cell interpolation was presented, which yields angle estimates

through the use of high-resolution range or range-rate estimates. Therefore cell

interpolation allows one to choose the high-resolution data dimension according to

the radar sensor design. In particular low-cost automotive radar sensors with small

antenna arrays could benefit from the use of cell interpolation.

Two-stage processing was applied to experimental data and was shown to

successfully resolve closely spaced target parts. High-resolution estimation was

employed in two data dimensions and implemented using the spectral RELAX

algorithm. The resulting angle and range-rate estimates were observed to be in good

agreement with the expected results.
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