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    Abstract     Dysregulation of intracellular Ca 2+  is a major cause of neurologic 
 dysfunction and likely plays an important role in the pathophysiology of numerous 
acute and chronic neurodegenerative conditions. The Ca 2+ -dependent protease, cal-
pain, and the Ca 2+ /calmodulin (Ca 2+ /CaM)-dependent protein phosphatase, calci-
neurin, are primary effectors of multiple deleterious functions arising from altered 
Ca 2+  handling. Increasing evidence suggests that the calpain-dependent, irreversible 
conversion of calcineurin to a constitutively active phosphatase occurs in intact cel-
lular systems as a result of injury and disease. In this chapter, a brief overview of 
calpain and calcineurin functions in nervous tissue is given, followed by a more 
in-depth discussion of calpain/calcineurin interactions in vitro and in vivo. Particular 
emphasis is placed on recent studies that have identifi ed calpain proteolysis of cal-
cineurin as a key step in neurodegeneration associated with acute neurologic insults 
as well as chronic terminal diseases, like Alzheimer’s.  

  Keywords     Protease   •   Phosphatase   •   Calcium   •   Ischemia   •   Alzheimer’s   
•   Neurodegeneration   •   Dementia  

1         Introduction 

 The calcium ion (Ca 2+ ) is a ubiquitous messenger involved in countless, diverse cel-
lular functions. In biological systems, Ca 2+  leads a dual existence of sorts. On the 
one hand, Ca 2+  is essential for life. In the nervous system, the release of neurotrans-
mitters, remodeling of growth cones and dendritic spines in response to extracellular 
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stimuli, activation and termination of transcriptional programs at the proper stages 
of development, and many, many other cellular functions depend critically on Ca 2+ . 
On the other hand, Ca 2+  is also commonly the prelude to cellular degeneration and 
death. Studies in the early mid-1980s suggested that neuronal Ca 2+  regulation is 
disrupted during normal aging, leading to deleterious changes in neuronal excitabil-
ity and plasticity [ 1 – 4 ]. Around the same time, cytosolic Ca 2+  overload was demon-
strated to be one of the primary mechanisms of neuronal death following excitotoxic 
insults [ 5 – 7 ]. These fi ndings led to the hypothesis that Ca 2+  dysregulation is a gen-
eral mechanism for neurologic dysfunction and/or neurodegeneration associated 
with aging, stroke, acute brain injury, and progressive neurodegenerative diseases 
[ 1 – 3 ,  8 – 13 ]. Today, the Ca 2+  hypothesis remains viable but has evolved in important 
ways to emphasize selective changes in discrete Ca 2+  signaling mechanisms in dif-
ferent cell types and/or in different disorders (e.g., see [ 14 – 23 ]). 

 Of the numerous Ca 2+ -sensitive proteins and enzymes, the protease calpain and 
the phosphatase calcineurin have emerged as two of the most common effectors of 
Ca 2+ -induced dysfunction and degeneration. Interestingly, calpains and calcineurin 
are present in many of the same subcellular domains and exhibit similarly high lev-
els of activity following many of the same types of insults. Comparable changes in 
the expression/activity of calpains and calcineurin have also been observed in sev-
eral distinct neurodegenerative diseases and/or conditions, while pharmacologic 
and genetic inhibitors of these enzymes ameliorate deleterious changes in common 
biomarkers. Taken together, the evidence suggests that calpain/calcineurin interac-
tions may be a fundamental neurodegenerative mechanism and an opportune target 
for future therapeutic strategies. The purpose of this chapter is to provide a brief 
review of calpains and calcineurin and their roles in neurologic dysfunction, with 
particular emphasis placed on calcineurin signaling and the ramifi cations of calci-
neurin proteolysis in human neurodegenerative disease. Outstanding comprehen-
sive reviews of the biochemistry and regulation of each of these Ca 2+ -dependent 
enzymes (as well as historical backgrounds) can be found here [ 24 – 27 ] (for calpain) 
and here [ 28 – 30 ] (for calcineurin).  

2     Calpain 

2.1     Calpain Structure 

 Calpains are a family of intracellular, nonlysosomal cysteine proteases that belong 
to the papain superfamily of proteases. Calpains are regulatory proteases found in 
most mammalian species and show varying degrees of sensitivity to fl uctuating Ca 2+  
concentrations. Calpain proteins are heterodimers consisting of a large (~80 kDa) 
catalytic subunit and a smaller (28 kDa) regulatory subunit derived from different 
genes (Fig.  2.1 ). The catalytic subunit is made up of four distinct domains (I–IV), 
including a regulatory Ca 2+  binding domain (IV) containing fi ve EF-hand motifs; a 
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“C2-like” domain (III) that includes Ca 2+  and phospholipid binding sites; a catalytic 
domain (II) that consists of at least two Ca 2+  binding sites along with two proteolytic 
core subdomains (IIa and IIb) that come together upon Ca 2+  binding to form a func-
tional cysteine protease core domain (CysPc); and an N-terminal domain (I) that 
may be autolyzed upon activation of the holoenzyme. Though relatively poorly 
understood, the regulatory subunit appears to remain associated with the catalytic 
subunit during activation [ 31 ] (contrary to earlier fi ndings, e.g., see [ 32 ]) and is 
essential for maintaining the stability of the catalytic subunit in vivo. The regulatory 
subunit contains two domains (I and II): a glycine-rich domain (I) believed to regu-
late calpain interactions with membranes and/or membrane-related proteins and a 
Ca 2+  binding domain (II) that includes fi ve EF-hand motifs.

   In humans, there are more than a dozen calpain (or calpain-like) catalytic subunit 
genes (termed  CAPN1 ,  CAPN2 ,  CAPN3 , …), while there are at least two distinct 
regulatory subunit genes ( CAPNS1  and  CAPNS2 ). These genes are expressed in 
most cell types and/or tissues, though some genes can show tissue-type specifi c 
expression. The best characterized calpain holoenzymes consist of CAPN1 or 
CAPN2 and are commonly referred to as μ- and m-calpains, respectively (or cal-
pains 1 and 2). CAPN1/μ-calpain is activated by micromolar concentrations of 
Ca 2+ in vitro, while CAPN2/m-calpain is activated when Ca 2+  is in the millimolar 
range. In addition to Ca 2+ , the catalytic activity of calpain is also held in check by 
endogenous proteins called calpastatins. These proteins very specifi cally suppress 
the activity of μ- and m-calpains and are the only known endogenous proteins to 
serve this function. Unlike the calpain catalytic and regulatory subunits, there is 
only one human gene for calpastatin ( CAST ), though splicing variations can give 
rise to many distinct protein products [ 25 ,  27 ]. 

 While Ca 2+  is clearly the critical activating factor for calpains—binding to 
EF-hand motifs on both subunits as well as to multiple other binding sites within the 
catalytic and C2-like domains—the precise biochemical mechanisms/interactions 
that couple Ca 2+  binding to increased protease activity have remained surprisingly 
elusive. One of the central issues is that concentrations of Ca 2+  required for calpain 
activation in vitro seem too high to be physiologically relevant, since cytosolic Ca 2+  

  Fig. 2.1    μ- and m-calpain 
subunits. Schematic 
illustration of the structure of 
the typical calpain (i.e., 
μ- and m-calpain) catalytic 
and regulatory subunit.  NT  
N-terminus region,  CysPC  
calpain-like cysteine protease 
core region,  PEF  pentameric 
EF-hand domain,  GR  
glycine-rich domain. See text 
for a description of these 
subunits and their domains       
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concentrations are not likely to rise into the high micromolar range. This has led to 
much speculation that an additional biochemical event—such as autolysis, subunit 
dissociation, and/or the binding of some other cofactor—is necessary for calpain 
activation [ 24 ].Of these possibilities, Ca 2+ -dependent autolysis of the N-terminal 
region of the large calpain subunit has been widely accepted as an essential step in 
calpain activation. Early studies showed that autolysis reduces the Ca 2+  concentra-
tion for activation of both μ and m-calpain in vitro [ 25 ]. However, many later studies 
have shown that autolysis is not necessary for activation in vivo, though it may still 
play an important regulatory function (for in-depth discussions, see [ 24 ,  25 ,  27 ]). 
Conversely, it has been suggested (i.e., [ 24 ]) that Ca 2+  elevations in cellular micro-
domains (e.g., in postsynaptic spines and/or immediately adjacent to Ca 2+  channels) 
may indeed be high enough to meet calpain activation requirements without the 
need of autolysis. In this case, calpain activation would only be brief due to the rapid 
drop in Ca 2+  concentration in these microdomains and/or due to inhibition by cal-
pastatins. Prolonged calpain activation would therefore only occur under pathologic 
conditions in which Ca 2+  levels are chronically elevated and/or calpastatin function/
expression is downregulated [ 24 ].  

2.2     Calpain Functions in Nervous Tissue 

 Calpains are highly expressed in nervous tissue and have long been recognized for 
their important roles in modulating cellular structure and function. Numerous sub-
strates for calpains have been identifi ed and include cytoskeletal proteins, mem-
brane receptors, ion channels, protein kinases, protein phosphatases (as discussed 
later), other proteases, and many other protein targets. Consequently, calpains are 
believed to take part in numerous and diverse signaling cascades. For a comprehen-
sive list of calpain substrates and description of calpain functions, see [ 25 ,  27 ]. One 
of the earliest proposed functions of calpain in nervous system was the rapid, 
activity- dependent degradation of cytoskeletal proteins, such as spectrin, leading to 
the structural reorganization of dendritic spines and other neuronal processes [ 33 –
 37 ]. Subsequently, calpain was also shown to target key glutamatergic receptors 
[ 38 – 42 ], as well as the proteins that modulate glutamate receptor expression/func-
tion including membrane-anchoring proteins [ 43 – 45 ] and protein kinases and phos-
phatases [ 46 – 48 ]. Calpain-mediated cleavage of protein kinases, such as protein 
kinase C, and phosphatases, such as CN, results in high levels of kinase/phosphatase 
activity that can persist long after the restoration of basal Ca 2+  levels [ 46 ,  48 ]. The 
reorganization of the dendritic cytoskeleton, along with the generation of so-called 
memory molecules by calpain, may be critical to the expression and maintenance of 
long-term synaptic potentiation (LTP) and other forms of synaptic plasticity 
involved in neurodevelopment and cognition. 

 In addition to these benefi cial functions, calpains also mediate numerous delete-
rious functions and are commonly implicated in neurodegenerative processes 
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associated with severe Ca 2+  dysregulation [ 26 ]. High levels of calpain expression/
activity (or downregulation of calpastatins) are consistently found in primary neural 
cultures exposed to ischemia/hypoxia, glutamate/kainate, amyloid-β peptides (Aβ), 
and numerous other neurotoxic insults (e.g., [ 36 ,  48 – 51 ]). In intact animal models, 
elevated forms of activated calpain (both μ and m) have been reported in the brain 
within hours following injury due to carotid artery occlusion [ 52 ,  53 ], glutamate/
kainate insult [ 48 ,  54 ], controlled cortical impact [ 55 ], or fl uid percussion [ 56 ,  57 ]. 
In many of these same studies, calpain inhibitors exhibited strong neuroprotective 
and/or nootropic properties. Aberrant calpain activation also appears to be an excel-
lent biomarker for chronic, progressive neurodegenerative disorders including 
Alzheimer’s disease (AD) [ 50 ,  58 ,  59 ], Parkinson’s disease [ 60 ], multiple sclerosis 
[ 61 ], and glaucoma [ 62 ,  63 ], to name a few. Moreover, similar to acute injury mod-
els, inhibition of calpains using pharmacologic or genetic approaches generally 
ameliorates functional and pathologic changes in cell culture and/or animal models 
of these disorders [ 50 ,  64 – 69 ]. 

 The cellular mechanisms for calpain-mediated neurotoxicity can be diffi cult to 
pin down and may vary considerably depending on the brain region/cell type inves-
tigated or on the nature of the injury or disease state. One of the diffi culties is that 
calpain interacts with so many different target proteins linked to cell death and 
degeneration. Indeed, distinct proapoptotic factors including caspase-3, BAX, 
apoptosis-inducing factor, and several others are directly targeted by calpains and 
have been proposed to mediate the deleterious actions of calpains in nervous tissue 
[ 52 ,  70 – 74 ]. Another complicating issue is that calpains interact extensively with 
other Ca 2+  signaling mechanisms, many of which play a critical role in regulating 
Ca 2+  homeostasis. For instance, several kinds of Ca 2+  channels and pumps respon-
sible for shuttling Ca 2+  from the cytosol to the extracellular space, or into intracel-
lular stores, are degraded by calpains leading to elevated cytosolic Ca 2+  levels 
[ 75 – 77 ]. Calpains also appear to be involved in the cleavage of the pore-forming 
subunit of the L-type voltage-sensitive Ca 2+  channel to a smaller, higher- conductance 
channel [ 78 ]. Each, or all of these changes, would be expected to exacerbate Ca 2+  
dysregulation, promoting further calpain activation and/or hyperactivation of other 
Ca 2+ -dependent enzymes. 

 Herein lies an additional complication: Does hyperactivation of other Ca 2+ -
dependent enzymes following injury arise simply from increased Ca 2+  binding or 
from direct calpain-mediated proteolysis? High activity levels resulting from increased 
Ca 2+  binding is perhaps less troublesome because an ebb in cytosolic Ca 2+  levels 
would be expected to result in a corresponding decrease in enzyme activity. Calpain-
dependent activation, on the other hand, would appear to be a far greater threat to the 
cell because the resulting proteolytic enzyme fragments are generally uncoupled from 
their normal regulatory mechanisms and prone to dangerously high and enduring 
activity levels. The Ca 2+ -/calmodulin-dependent protein phosphatase, calcineurin, is 
one potential target of calpain. The following sections will discuss the structure and 
function of calcineurin, with particular emphasis on recent studies that have uncov-
ered important calpain/calcineurin interactions in neurodegeneration and disease.   
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3     Calcineurin 

3.1     Calcineurin Structure 

 Calcineurin, or protein phosphatase 3 (PPP3, formerly protein phosphatase 2b), is a 
nearly ubiquitously expressed serine/threonine protein phosphatase and the only 
known phosphatase to exhibit direct regulation by Ca 2+ /CaM. Calcineurin is typi-
cally found in intact cells as a heterodimer (see Fig.  2.2a ) consisting of a catalytic 
subunit (CN A or PPP3C, ~61 kDa) and a smaller regulatory subunit (CN B or 

  Fig. 2.2    Calcineurin and its regulation by calpain proteolysis. ( a ) Schematic illustration of the 
structure of the CN A catalytic and CN B regulatory subunits. See text for a description of these 
subunits and their domains. ( b ) Cartoon illustration of the regulation of CN A activity by Ca 2+ /
CaM, the CN A AID, and calpain proteolysis. Under normal conditions when intracellular Ca 2+  
levels are low, CN A activity is held in check by the CN A AID. When Ca 2+  levels rise, Ca 2+ /CaM 
binds to the CN A subunit displacing the AID from the catalytic domain, resulting in high levels of 
phosphatase activity. Under abnormal conditions, like severe Ca 2+  dysregulation, the protease cal-
pain cleaves CN A at several locations near the C terminus, thus removing the AID. Without the 
AID, the CN A catalytic domain is no longer occluded resulting in high levels of phosphatase 
activity, even after the local Ca 2+  concentration falls to basal levels. ( c ) Schematic illustration of the 
57, 48, and 45 kDa CN A fragments generated by calpain-dependent cleavage, as demonstrated by 
Wu et al. [ 48 ]. ( d ) Western blot showing CN Aα proteolysis to 57 and 48 kDa fragments in primary 
hippocampal neural cultures 24 h after addition of neurotoxic amyloid-β peptides (Aβ). The lower 
37 kDa band in the CN Aα blot was not sensitive to local Ca 2+  levels nor to the addition of calpain, 
suggesting it represents a nonspecifi c band, a calpain-insensitive fragment, or an alternative splice 
variant. Proteolytic breakdown of the calpain substrate, a-spectrin, occurred in parallel with CN A 
proteolysis. Blockade of calpain activity with calpeptin prevented CN Aα proteolysis to 57 and 
48 kDa fragments. However, a specifi c caspase 1 inhibitor (Z-YVAD-FMK) was without effect. 
Blot shown in panel  d  was from Mohmmad Abdul et al. [ 50 ] and used with permission       
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PPP3R, ~19 kDa). The catalytic subunit contains the catalytic core region, CN B 
binding domain, a Ca 2+ /calmodulin binding domain, and an autoinhibitory domain 
(AID) near the C-terminus that lies over the cleft of the catalytic domain and pre-
cludes substrate binding when cytosolic Ca 2+  levels are low [ 79 ]. The regulatory CN 
B subunit is a calmodulin-like Ca 2+  binding protein with four EF-hand motifs, two 
of which show very high affi nity for Ca 2+  and are likely occupied at normal resting 
Ca 2+  levels (<10 nM). Ca 2+  binding to CN B is thought to increase the physical asso-
ciation between CN A and CN B and appears to promote low levels of catalytic 
activity [ 80 ]. Early in vitro experiments suggested that the physical association 
between CN A and B could only be disrupted under supraphysiologic conditions, 
such as protein denaturation [ 80 ]. However, recent investigations on intact primary 
neurons indicate an increased physical association between catalytic and regulatory 
subunits in response to neurotoxic stimuli [ 81 ], suggesting the possibility that these 
subunits are not always bound to one another in vivo. These observations are con-
sistent with other work showing that the CN B subunit can associate with and regu-
late specifi c target proteins in a CN A-independent manner [ 82 – 85 ]. Additional 
distinct roles of the CN B subunit in neurologic function are largely unknown but 
will likely be forthcoming in the next few years.

   There are two major CN A isoforms expressed in brain (CN Aαor PPP3CA and CN 
Aβ or PPP3CB), of which, the CN Aα isoform is the most abundant [ 86 ]. A “testis”-
specifi c CN A isoform (CN Aγ or PPP3CC) is also expressed in nervous tissue but at 
comparatively much lower levels. At least two regulatory CN B isoforms (CN Bα and 
CN Bβ or PPP3R1 and PPP3R2) have been characterized. CN Bα exhibits similar 
expression patterns as CN Aα and CN Aβ, while CN Bβ is testes specifi c [ 30 ]. 
Although isoform-specifi c differences in tissue distribution and cellular function have 
been well characterized outside of the brain, much less is known about the expres-
sional/functional differences of CN Aα and CN Aβ inside the brain. However, as dis-
cussed in a later section, studies from our lab have shown that CN Aα is the isoform 
that exhibits the most striking changes and is most susceptible to calpain-mediated 
proteolysis during the progression of Alzheimer’s disease (AD) [ 14 ,  50 ,  87 ].  

3.2     Calcineurin Function in Nervous Tissue 

 Calcineurin is perhaps best known and characterized in T and B lymphocytes where 
it coordinates transcriptional programs involved in lymphocyte activation, cytokine 
production, and lymphocyte anergy [ 88 ,  89 ]. However, calcineurin is most abun-
dantly expressed in brain, especially in regions like the hippocampus [ 90 ], which is 
important for learning and memory and highly susceptible to age-related neurode-
generative disease [ 91 ,  92 ]. In fact, calcineurin was originally named for its high 
abundance in nervous tissue and its critical dependence on Ca 2+  [ 93 ]. In healthy 
brain tissue, calcineurin is primarily enriched in neurons [ 86 ,  94 ] where it is highly 
expressed in dendrites and postsynaptic spines. Glial cells, in contrast, appear to 
express very low levels of calcineurin under normal conditions [ 94 ]. However, after 
injury, or during aging and age-related neurodegenerative disease, activated glial 

2 Calpain/Calcineurin Interactions in CNS Disease



24

cells (especially astrocytes) can label very intensely for the presence of calcineurin 
[ 87 ,  95 – 97 ]. As discussed below, the major functions of calcineurin are likely very 
different in neurons and glia. 

 While not nearly as promiscuous as other related serine/threonine phosphatases 
(e.g., protein phosphatase 1 and 2a), calcineurin nevertheless acts on a broad range 
of substrates; many of which are directly involved in the structural and functional 
regulation of synapses. In neurons, calcineurin has long been known to dephos-
phorylate a host of cytoskeletal proteins involved in the dynamic modulation of 
dendritic spines, including MAP2b and cofi lin [ 98 – 100 ]. Calcineurin has also been 
shown to modulate (i.e., reduce) glutamate receptor activity and/or surface expres-
sion via direct dephosphorylation of glutamate receptor subunits [ 101 ,  102 ] and/or 
through indirect activation of protein phosphatase 1 or other accessory proteins 
[ 103 ,  104 ]. Through these interactions, neuronal calcineurin is widely believed to 
play an essential role in mediating long-term synaptic depression (LTD) [ 105 ]. 

 In addition to its close functional association with the cytoskeleton, calcineurin is 
also one of the primary mechanisms for coupling fl uctuations in cytosolic Ca 2+  to 
changes in gene expression. In neurons, calcineurin-dependent dephosphorylation of 
transcription factors, such as the cyclic AMP response element binding protein, is 
widely believed to underlie long-term reductions in key synaptic proteins involved in 
activity-dependent plasticity and cognitive function [ 106 ,  107 ]. Among the numer-
ous transcription factors that exhibit sensitivity to calcineurin, perhaps none are as 
closely associated with calcineurin or are more important to overall calcineurin sig-
naling than  n uclear  f actor of  a ctivated  T  cells (NFATs). These transcriptions typi-
cally reside in the cytosol in a heavily phosphorylated state when the cell is at rest 
and Ca 2+  levels are low. However, with cellular activation and elevated Ca 2+ , NFATs 
are bound tightly by calcineurin and dephosphorylated. This event leads to the trans-
port of NFATs into the nucleus, where they remain until they are re- phosphorylated 
by a variety of “NFAT kinases” and transported back to the cytosol. 

 NFATs are clearly best known for their role in coupling calcineurin activation in 
lymphocytes to the transcriptional induction of numerous cytokines and immune/
infl ammatory mediators [ 108 ]. While much less is known about NFAT functions in 
neural cells, the existing data suggest these calcineurin-dependent factors play 
unique roles in different cell types and are likely key players in neurologic dysfunc-
tion and disease [ 14 ]. In neurons, activation of NFATs leads to the upregulation of 
proteins involved in Ca 2+  signaling and homeostasis including inositol type 3 recep-
tors [ 109 ,  110 ]. In glial cells, NFATs play a critical role in the induction of immune/
infl ammatory signaling factors, including a number of cytokines [ 111 – 113 ]. These 
functions are similar to that observed in T and B lymphocytes, as well as other 
peripheral immune/infl ammatory cells [ 108 ]. Interestingly, glial-specifi c excitatory 
amino acid transporters (EAATs), particularly Glt-1/EAAT2 (i.e., the major gluta-
mate transporter in the brain), also show high sensitivity to calcineurin/NFAT activ-
ity [ 87 ,  113 ]. However, unlike many cytokine factors, Glt-1/EAAT2 appears to be 
downregulated by calcineurin/NFAT in response to infl ammatory and/or neurotoxic 
insults. Thus, in addition to its immune/infl ammatory functions, the glial  calcineurin/
NFAT pathway also appears to be critical for regulating glutamate homeostasis. 
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 Similar to calpain, calcineurin is often a “usual suspect” when it comes to neuro-
degeneration associated with Ca 2+  dysregulation (e.g., see [ 114 ]). Through its 
actions on cytoskeletal proteins and glutamate receptors, neuronal calcineurin has 
been shown to mediate dendritic spine retraction and/or impaired synaptic function 
in response to a variety of injurious stimuli (e.g., see [ 115 – 118 ]). Aberrant calcineu-
rin activity has also been linked to cell death cascades through the direct dephos-
phorylation of proapoptotic factors, such as BAD [ 119 ,  120 ], or through the 
transcriptional induction of other proapoptotic proteins such as the Fas ligand 
(FasL) [ 121 ]. In glial cells, calcineurin activity induces the expression of numerous 
proinfl ammatory mediators [ 97 ,  111 – 113 ,  122 ] and promotes glutamate dysregula-
tion and excitotoxicity through activation of NFAT transcription factors [ 87 ,  113 ]. 
Finally, as alluded to above, the transcriptional and posttranslational modulation of 
Ca 2+  channels and pumps by calcineurin may be a key mechanism for promoting 
and maintaining neuronal Ca 2+  dysregulation in aging and age-related neurodegen-
erative diseases [ 109 ,  123 – 125 ]. 

 Consistent with these observations, elevated calcineurin activity/signaling is 
often observed following acute injury to nervous tissue [ 126 ,  127 ] or during CNS 
aging [ 128 ] and/or disease [ 58 ,  87 ,  118 ,  129 ,  130 ]. In aged animals and transgenic 
animal models of AD, increased calcineurin activity/expression is linked to synaptic 
dysfunction [ 131 ,  132 ], dendritic spine irregularities [ 133 ,  134 ], elevated neuroin-
fl ammation [ 97 ,  135 ,  136 ], and cognitive decline [ 128 ,  129 ]. In human brain tissue, 
calcineurin/NFAT signaling is elevated during the emergence of clinical symptoms 
associated with AD [ 50 ,  87 ] and continues to increase with the progression of amy-
loid pathology and dementia [ 87 ]. Suppression of calcineurin activity using com-
mercially available immunosuppressants, or through genetic manipulations, 
provides strong neuroprotection in many experimental models of acute injury [ 137 , 
 138 ]. Glial activation and neuroinfl ammation in animal models of AD or stroke are 
also blunted by calcineurin inhibitors (or NFAT inhibitors) [ 132 ,  135 ,  136 ], as are 
numerous other biomarkers including synaptic dysfunction/degeneration [ 132 – 134 , 
 139 ], amyloid pathology [ 132 ,  140 ], and cognitive impairment[ 129 ,  132 ,  141 ,  142 ]. 
However, despite all this evidence implicating a causative role of calcineurin in 
neurodegeneration, it deserves noting that other studies have shown that calcineurin 
can also activate cell survival pathways in neurons [ 143 ] and help resolve harmful 
neuroinfl ammatory signaling in glial cells under certain conditions [ 112 ,  144 ]. The 
precise conditions and cellular mechanisms that transform calcineurin from cellular 
protector to killer remain unclear and will require further investigation.  

3.3     Mechanisms for Calcineurin Regulation 

 Clearly, changes in the activation state of calcineurin can spell the difference 
between optimal physiologic function and neurodegeneration. Consequently, mul-
tiple mechanisms are available for keeping calcineurin activity in check and/or for 
directing calcineurin to its proper substrates [ 29 ]. Anchoring proteins, such as 
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A-kinase anchoring proteins (AKAPs), FK-506 binding protein 12 (FKBP12), and 
postsynaptic density 95 (PSD-95), can help sequester calcineurin to the membrane, 
thus limiting the access of calcineurin to cytosolic substrates. Usually, calcineurin is 
anchored along with other protein kinases to provide rapid and dynamic regulation 
over nearby membrane channels and pumps [ 145 ]. Moreover, membrane anchoring 
of calcineurin close juxtaposition to ligand and/or voltage-gated Ca 2+  ionophores 
(e.g., NMDA receptors and L-type Ca 2+  channels) allows calcineurin to respond 
rapidly to, and/or provide feedback regulation over, Ca 2+  infl ux. In addition to 
sequestration mechanisms, calcineurin activity is also directly modulated by a hand-
ful of endogenous proteins, the most widely studied of which are cabins ( ca lcineu-
rin  bin ding) and RCANs (( R egulator of  Ca lci n eurin)  D own  S yndrome  C ritical 
 R egion) [ 146 ]. These modulating proteins have gone by several different names 
(i.e., cabins–cains; RCANs–MCIPs and DSCRs) depending on the species investi-
gated. Cabins and RCANs are highly expressed in brain and exhibit distribution 
patterns similar to calcineurin. While both proteins can bind to and inhibit calcineu-
rin activity in vitro and in vivo (especially when inhibitors are overexpressed), 
RCANs may also facilitate calcineurin activity at physiologic levels, depending on 
the presence of other accessory proteins, as well as the phosphorylation state of 
RCAN [ 147 ,  148 ]. Finally, similar to calpains, calcineurin shows high redox sensi-
tivity. Oxidation of the Fe 2+ –Zn 2+  binuclear center in the calcineurin A catalytic 
domain, due to elevated superoxide and peroxide levels, is typically associated with 
reduced calcineurin activity, and a number of antioxidants have been shown to pre-
serve calcineurin function [ 149 ].  

3.4     The Importance of the Calcineurin AID 

 Among the numerous mechanisms for calcineurin regulation, none are more impor-
tant than Ca 2+ /calmodulin and the calcineurin AID (Fig.  2.2a ). Indeed, the interac-
tion between these mechanisms is what permits discrete and high-fi delity coupling 
of calcineurin activity to local Ca 2+  gradients [ 150 ]. Calcineurin is exquisitely sensi-
tive to Ca 2+  and has a Kd to Ca 2+ -saturated CaM in the picomolar range (28–100 pM) 
[ 151 ]. This value is far lower than that for other CaM-regulated enzymes, including 
the CaM kinases [ 152 ]. When Ca 2+  is very low, calcineurin phosphatase activity is 
allosterically blocked by the AID (Fig.  2.2 ) [ 150 ]. Binding of Ca 2+  to the four 
EF-hand motifs of the CN B subunit during elevations in cellular Ca 2+  triggers a 
conformational change in the CN A subunit, exposing the Ca 2+ /CaM-binding site. 
Though Ca 2+ /CN B can, by itself, stimulate low levels of phosphatase activity and 
modulate the affi nity of CN A for substrate phosphoproteins [ 80 ], it is the exposure 
of the calmodulin binding domain and subsequent binding of Ca 2+ /CaM that fully 
unleashes catalytic activity. Indeed, this binding event physically displaces the AID 
from the CN A catalytic core region [ 153 ], where it remains fully accessible to 
phosphosubstrates for as long as Ca 2+ /CaM is bound. Subsequently, when Ca 2+  lev-
els in the cell fall, allosteric inhibition of the catalytic domain by the AID is rapidly 
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restored as Ca 2+ /calmodulin dissociates from calcineurin. Without the AID, calci-
neurin loses much of its sensitivity to Ca 2+  and, as discussed below, becomes a 
highly disruptive constitutively active phosphatase (Fig.  2.1 ) [ 48 ].  

3.5     Early In Vitro Evidence for Proteolysis 
of the Calcineurin AID 

 It has been known since the early to mid-1980s that calcineurin is susceptible to 
proteolysis in vitro. Early studies showed that exposure of the CN A/CN B holoen-
zyme to trypsin or chymotrypsin produced an enzyme complex containing the CN B 
subunit and a truncated ~40–46 kDa CN A subunit [ 154 – 156 ]. This proteolized CN 
A fragment retained physical interactions with the CN B subunit, but was incapable 
of binding Ca 2+ /CaM, and did not require CaM for high enzymatic activity. 
Application of trypsin/chymotrypsin to Ca 2+ /CaM-bound CN A resulted in slower 
rates of proteolysis with the additional appearance of 57, 55, and 54 kDa CN A frag-
ments, suggesting that Ca 2+ /CaM binding offers some degree of protection from pro-
teolysis. Interestingly, these proteolytic fragments also retained the capacity to bind 
to Ca 2+ /CaM. In subsequent studies, CN A was shown to undergo proteolysis in vitro 
by exposure to Ca 2+  and calpain [ 157 ,  158 ]. Similar to earlier work, calpain protein 
was applied in vitro at different Ca 2+  concentrations, in the presence or absence of 
CaM. Again, proteolysis of CN A did not affect interactions with the regulatory CN 
B subunit but did produce high levels of phosphatase activity independent of Ca 2+ /
CaM. However, unlike earlier studies with trypsin, the presence of Ca 2+ /calmodulin 
did not protect calcineurin from calpain and instead hastened the rate of proteolytic 
cleavage. Under these conditions, calpain exposure produced CN A fragments of 55 
and 48 kDa, which retained some capacity to bind to and/or respond to Ca 2+ /CaM 
[ 157 ]. These results suggest that calpain-mediated proteolysis greatly reduces but 
does not fully eliminate the responsiveness of CN A to Ca 2+ . In contrast to CN A, the 
regulatory CN B subunit does not appear to be vulnerable to proteolysis.  

3.6     Effects of Overexpressing Truncated CN A 
in Intact Cell Systems 

 The proteolysis studies discussed above provided the fi rst evidence that calcineurin 
activity is held in check by an AID located near the CaM binding domain in the 
C-terminus of the CN A subunit. Later work confi rmed the existence of a C-terminus 
AID; demonstrated that the AID physically obscures the CN A catalytic core when 
Ca 2+ /CaM is absent; and showed that the binding of Ca 2+ /CaM to CN A displaces 
the AID from the catalytic region. Studies on calcineurin proteolysis also led to the 
development of cDNA clones that encode an ~48 kDa C-terminus truncated CN A 
fragment (ΔCN) that retains CN B binding properties but exhibits high levels of 
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activity in the absence of Ca 2+ /CaM. The use of ΔCN, combined with newly devel-
oping gene delivery techniques, provided a convenient way to produce elevated 
calcineurin signaling without stimulating key cellular receptors and/or indiscrimi-
nately raising intracellular Ca 2+  levels, which, in turn, greatly increased our under-
standing of calcineurin’s role(s) in cellular physiology. A consistent theme to 
emerge from ΔCN overexpression studies is that unchecked calcineurin activity, 
whether in peripheral tissues or in brain, leads to severe cellular dysfunction and/or 
death. In primary neuron cultures, ΔCN has been shown to induce numerous detri-
mental outcomes including postsynaptic spine retraction, dendritic atrophy, and/or 
apoptosis [ 118 ,  119 ,  159 ]. In astrocytes, ΔCN was found to trigger cellular hyper-
trophy and induce numerous genes involved in immune/infl ammatory signaling 
[ 97 ]. In intact rodents, forebrain expression of ΔCN caused defi cits in LTP and 
spatial memory [ 160 – 162 ]. Interestingly, these alterations are very similar to those 
observed in animal models of aging, injury, and or neurodegenerative disease in 
which endogenous calcineurin activity is aberrantly high.   

4     Calpain Proteolysis of Calcineurin 
in Intact Nervous Tissue 

 Given the early evidence showing that calcineurin is highly susceptible to calpain- 
mediated proteolysis in vitro, it is somewhat surprising that the fi rst demonstrations 
of calcineurin proteolysis in intact cellular systems were not provided until rela-
tively recently [ 48 ]. It’s possible that the presence of proteolyzed calcineurin in 
neurologic disease and other disorders escaped detection because the majority of 
commercially available calcineurin antibodies target the CN A carboxy-terminus 
which is, of course, missing in smaller proteolyzed calcineurin fragments. 
Regardless, in the early to mid-2000s, proteolysis of calcineurin was shown to occur 
in both heart and neural tissue under pathologic conditions [ 48 ,  163 ,  164 ]. Western 
blots of CN A (using a primary antibody targeting amino acid residues 264–283) 
performed on primary neuronal cultures exposed to an excitotoxic glutamate insult 
revealed at least three truncated CN A products in conjunction with an elevation in 
Ca 2+ /CaM-independent calcineurin activity [ 48 ]. In the same study, a similar band-
ing pattern for CN A was observed in Western blots of whole hippocampal lysates 
from mice treated with a kainic acid insult. However, when nervous tissue was 
treated with distinct calpain inhibitors prior to the administration of glutamate/kai-
nite, CN A appeared as a single 60 kDa band. Using matrix-assisted laser desorp-
tion/ionization time-of-fl ight mass spectrometry (MALDI-ProTOF/MS), it was 
shown that calpains induce cleavage of the CN A subunit in vitro at amino acid resi-
dues 392, 424, and 501 resulting in cleavage products of 45, 48, and 57 kDa, respec-
tively (see Fig.  2.2c ). Note that these bands corresponded very closely to the CN A 
truncation products observed in cell cultures following excitotoxic injury. These 
results demonstrated that the majority of the AID remains intact in the 57 kDa CN 
A fragment but is excluded from the 45 and 48 kDa fragments. In addition to lack-
ing the AID, the 45 kDa fragment (but not the 48 kDa fragment) is also devoid of 
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the Ca 2+ /CaM binding domain. The work by Wu et al. [ 48 ] not only showed that 
calcineurin undergoes calpain-mediated proteolysis in intact cellular systems but 
that it also likely plays a signifi cant role in driving pathologic outcomes. Consistent 
with this study, investigations across multiple laboratories have discovered calpain- 
dependent proteolysis in several distinct neurologic injuries and disease states 
including Alzheimer’s disease, ischemia, and glaucoma. The major fi ndings of 
these studies are highlighted in Table  2.1  and discussed further below.

4.1       Calcineurin Proteolysis in Alzheimer’s Disease 

 Alzheimer’s disease (AD) is a devastating and terminal neurodegenerative disorder 
leading to profound cognitive defi cits, personality alterations, and the eventual loss 
of most all daily life skills. The pathologic hallmarks of AD are extracellular Aβ 
plaques, intracellular neurofi brillary tangles, and extensive neuronal degeneration 
and neuronal death [ 165 ]. There is also ample evidence implicating neuroinfl amma-
tion [ 166 ,  167 ], Ca 2+  dysregulation [ 16 ,  20 ], and excitotoxic mechanisms [ 168 ,  169 ] 
in the pathophysiology of the disorder and, by corollary, calpain, and calcineurin 
signaling pathways, as well. 

 In 2005, it was demonstrated that changes in calpain and calcineurin during AD 
are extensively and directly intertwined, providing a novel mechanism for AD-related 
neurologic dysfunction and degeneration [ 58 ]. In this study by Liu et al., levels of 
the 57 kDa CN A truncation product were detected at signifi cantly higher levels in 
medial temporal cortex of human subjects with severe AD pathology, compared to 
age-matched, non-demented control subjects. Higher levels of the 57 kDa fragment 
were directly correlated with levels of the 76 kDa active calpain fragment and, 
importantly, corresponded to greater calcineurin phosphatase activity. Furthermore, 
levels of proteolyzed calcineurin showed a direct positive correlation with neurofi -
brillary tangle load, suggesting that calpain/calcineurin interactions play an impor-
tant role in disease pathology. Consistent with this observation, a later study from 
this group showed that calcineurin proteolysis in human neocortical regions coin-
cided with elevated phospho-tau levels [ 170 ]. These results are particularly intrigu-
ing because tau hyperphosphorylation in AD was previously suggested to result 
from a decrease, rather than an increase, in calcineurin activity. It therefore appears 
that the relationship between calcineurin phosphatase activity and tau pathology 
may be different, or perhaps more complicated, than originally proposed. 

 Subsequent studies have provided further evidence that calcineurin is proteo-
lyzed and activated to a greater degree during the progression of AD, though there 
are some discrepancies among the reports. In 2010, Wu et al. [ 118 ] observed 
increased expression of calcineurin proteolytic fragments in human AD cortical tis-
sue, but unlike the Liu et al. study [ 58 ], the calcineurin truncation product associ-
ated with AD had a molecular weight of 48 kDa and was detected primarily in 
nuclear fractions. Increased nuclear localization of the 48 kDa fragment corre-
sponded to increased nuclear levels of the NFAT3 isoform. Similar observations 
were observed in primary neuronal cultures from transgenic amyloidogenic mice. 
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Moreover, forced overexpression of the 48 kDa calcineurin fragment in wild-type 
neuron cultures recapitulated dendritic dystrophy and spine loss typically observed 
with elevated amyloid levels. Whether the 48 kDa calcineurin fragment found in 
human AD tissue resulted from increased calpain-mediated proteolysis was not 
investigated in this study. 

 A year later, Mohmmad Abdul et al. [ 50 ] reported an increase in the expression 
of the 48 kDa CN A product in the hippocampus of human subjects diagnosed with 
mild cognitive impairment (MCI): a putative transition state between normal age- 
related cognitive decline and AD-related dementia [ 171 ]. Generation of the 48 kDa 
fragment showed a direct positive correlation with levels of the activated calpain 1 
fragment, suggesting an increased interaction between calpain and calcineurin dur-
ing the early clinical stages of AD. While both the CN Aα and CN Aβ isoforms each 
exhibited signs of proteolysis in human brain tissue, signifi cant differences between 
subject categories were only observed for the CN Aα isoform. Consistent with an 
earlier report [ 172 ], proteolytic conversion of full-length CN Aα to the 48 kDa frag-
ment as assessed by Mohmmad Abdul et al. [ 50 ] was also observed in primary rat 
hippocampal cultures 24 h after treatment with cytotoxic amyloid peptides (also see 
Fig.  2.2d ). This proteolysis was associated with increased NFAT transcriptional 
activity, elevated proteolysis of the NR2B isoform of the NMDA receptor, and 
increased neuronal degeneration. Blockade of calpain activity signifi cantly attenu-
ated each of these effects, while inhibition of caspase 1 was largely ineffective, 
suggesting selective involvement of calpains in calcineurin proteolysis. 

 Interestingly, unlike the Wu et al. [ 118 ] report, the 48 kDa CN A fragment 
reported by Mohmmad Abdul et al. [ 50 ] was localized to cytosolic, rather than 
nuclear, fractions. The reason for this discrepancy is unclear but may be due in large 
measure to disease severity. Work on cardiomyocytes suggests that maintenance of 
truncated calcineurin in the nucleus may be more disruptive to cellular structure and 
function than cytosolic calcineurin [ 164 ]. It’s possible that the nuclear localization 
of calcineurin AD brain results from a more toxic stage of Ca 2+  dysregulation. If 
true, nuclear localization of proteolyzed calcineurin may refl ect a critical transition 
state between MCI and AD-related dementia.  

4.2     Brain Ischemia/Hypoxia 

 Brain ischemia resulting from stroke or other vascular accidents can cause irrevers-
ible neuronal damage and/or death due to excitotoxicity and/or other deleterious 
processes. Recent studies on several rodent species subjected to ischemic insults 
(i.e., carotid artery occlusion) discovered the appearance of truncated CN A products 
in damaged brain tissue, in conjunction with elevations in activated calpain and/or 
with the breakdown of spectrin, a major calpain substrate [ 121 ,  173 ,  174 ]. In one 
report by Shioda et al. [ 174 ], proteolysis of calcineurin to a 48 kDa fragment occurred 
within hours of the ischemic insult and was associated with an increase in Ca 2+ /CaM-
independent phosphatase activity along with an increase in the nuclear localization 
of NFAT4 in hippocampal CA1 pyramidal neurons. A follow-up study from this 
group suggested that proteolytic activation of calcineurin after ischemia underlies 
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delayed neuronal death in the hippocampus [ 121 ]. Neuronal loss was hypothesized 
to occur via the nuclear translocation of NFAT4 and forkhead, followed by the tran-
scriptional induction of the proapoptotic factor, FasL. Indeed, each of the events in 
this pathway was prevented in ischemic animals treated with the calcineurin inhibi-
tor, FK-506. In the Rosenkranz et al. study, a proteomics approach was used to iden-
tify modifi ed proteins following perinatal hypoxic−ischemic brain damage in rats 
[ 173 ]. CN A was among the proteins signifi cantly upregulated after ischemia. In 
addition to elevated levels of full-length calcineurin, several CN A truncation prod-
ucts were also observed including 54, 48, and 46 kDa fragments. The appearance of 
these smaller calcineurin products were associated with reduced phosphorylation of 
the calcineurin substrate, DARP32, suggestive of elevated calcineurin activity.  

4.3     Glaucoma 

 Glaucoma is one of the leading causes of blindness and involves the progressive 
death of retinal ganglion cells (RGC), followed by the degeneration of optic nerve 
fi bers. Increased intraocular pressure (IOP), which leads to RGC apoptosis and optic 
nerve degeneration in experimental models (e.g., see [ 175 ,  176 ]), is widely believed 
to be a primary cause of glaucoma [ 177 ]. In 2005, a study by Huang et al. [ 178 ] 
reported on the progressive accumulation of a 45 kDa CN A fragment in rat retina 
during treatments that increase IOP. A similar calcineurin proteolytic fragment was 
also observed in retinal cell lysates harvested from transgenic mice that spontane-
ously develop increased IOP and other glaucoma-like symptoms. The appearance of 
the 45 kDa CN A fragment coincided with a reduction in the phosphorylation state 
of the proapoptotic factor BAD and an increase in the mitochondrial release of cyto-
chrome C. Consistent with previous reports linking calcineurin to mitochondrial 
dysfunction and apoptosis [ 119 ,  159 ], pretreatment of rats with the calcineurin 
inhibitor FK-506 suppressed the dephosphorylation of BAD, reduced cytochrome C 
release, and ameliorated RGC death and degeneration. Using MALDI-ProTOF/MS 
to identify cleavage sites in CN A, a follow-up study from the same research group 
suggested that IOP-related calcineurin proteolysis is most likely attributable to the 
activation of calpains, rather than other proteases, such as caspases [ 62 ].   

5     Unresolved Issues and Future Avenues of Research 

5.1     Calpain/Calcineurin Interactions in Brain: 
Role of Different Isoforms and the Contribution 
of Different Cell Types 

 There are multiple isoforms of calpain and at least two major CN A isoforms 
expressed in brain. As alluded to above, we know relatively little about isoform- 
specifi c differences in calcineurin, in terms of function and distribution in the brain. 
However, our previous work on human AD tissue indicates that disease-related 
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changes in both the subcellular localization and proteolysis of calcineurin are far 
more prominent for the CN Aα isoform [ 50 ,  87 ]. It’s possible that the different CN 
A isoforms show different patterns of co-localization with calpains or interact with 
different affi nities to the calpains, among other possibilities. One complicating fac-
tor in resolving this issue is that we don’t really know which cell types exhibit cal-
cineurin proteolysis. Most investigations of calpain/calcineurin interactions have 
dealt with neurodegenerative processes in neurons (discussed above and see 
Fig.  2.3 ). However, in recent years it has become increasingly clear that calcineurin 
also appears at high levels in activated glial cells, especially astrocytes [ 97 ], where 
it likely contributes to increased neuroinfl ammation during aging, injury, and dis-
ease. Calpains, too, are found in activated astrocytes and microglia with certain 
types of injury [ 179 – 182 ], and there is evidence that several astrocyte-enriched pro-
teins, including the glial fi brillary acidic protein (GFAP) and vimentin, are targets 
of calpain-mediated proteolysis [ 183 ,  184 ].

   Early work in spinal cord tissue further showed that calpain inhibitors attenuated 
several markers of gliosis following acute injury [ 185 ], suggesting that calpains 
may help drive astrocyte activation. If so, neuroinfl ammatory signaling in glial cells 
may be yet another disease-related process in which calpains and calcineurin are 
common mechanisms (Fig.  2.3 ). This possibility raises an interesting dilemma: i.e., 
are calpain and calcineurin inhibitors neuroprotective because they suppress harm-
ful neuroinfl ammatory cascades? Or, do calpain and calcineurin inhibitors reduce 
neuroinfl ammation by stemming neurodegeneration and/or apoptosis? The extent to 
which calpain-mediated proteolysis contributes to calcineurin signaling in glial 
cells is not presently known and diffi cult to assess in intact tissue with available 
research tools. Although N-terminus antibodies to the CN A subunit detect the 
appearance of full-length and truncated forms of CN A in Western blots, these anti-
bodies do not make a distinction between full-length and truncated forms in immu-
nohistochemistry applications. Thus, until a primary antibody is generated that 
selectively identifi es CN A proteolytic products (i.e., recognized proteolyzed but 
not full-length CN A), it will be very diffi cult to determine where (i.e., which cell 
type) calcineurin is actually proteolyzed in heterogeneous tissues, such as brain.  

5.2     Are There More Effective Ways to Selectively Target 
Calpain/Calcineurin Interactions for Therapeutic 
Purposes? 

 The evidence to date suggests that calpain/calcineurin interactions are possibly an 
important upstream mechanism of numerous deleterious changes associated with a 
variety of neurodegenerative diseases. A critical question is this: can the physical 
interaction between calpains and calcineurin be exploited for the development of 
new treatment strategies? Separately, calpain and calcineurin inhibitors have shown 
neuroprotective properties in numerous disease models. However, the use of these 
inhibitors in the clinic is fraught with many diffi culties. For instance, commercially 
available calcineurin inhibitors are notorious for their numerous adverse effects, 
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  Fig. 2.3    Calpain/calcineurin interactions in neurons and astrocytes. Cartoons showing putative 
functions/outcomes of calpain/calcineurin interactions in neurons ( top panel ) and astrocytes ( bot-
tom panel ). Based on the literature discussed, calpain-mediated proteolysis of calcineurin in neu-
rons is strongly linked to neurodegenerative processes. Dephosphorylation of BAD leads to its 
translocation to the mitochondrial membrane and the subsequent release of cytochrome C, fol-
lowed by caspase activation and apoptosis (e.g., see [ 119 ,  178 ]), while activation of NFAT3 and 4 
isoforms triggers the transcriptional induction of the FasL proapoptotic factor and/or hastens the 
degeneration of dendrites and synapses (e.g., see [ 118 ,  121 ]). Though astrocytic calpain/calcineu-
rin interactions ( bottom panel ) have yet to be investigated extensively, both appear at high levels in 
activated astrocytes as a result of injury. In astrocytes, calpain-dependent proteolysis of calcineurin 
could lead to extensive activation of the NFAT1 isoform followed by the upregulation of numerous 
cytokines involved in neuroinfl ammation, as well as the downregulation of EAATs resulting in 
excitotoxicity (e.g., see [ 87 ,  97 ,  111 – 113 ]). Note that calpain/calcineurin interactions in either cell 
type could lead to deleterious processes common to many neurologic disorders.  CP  calpain,  CN  
CN,  Cyt. C  cytochrome C,  Mito.  mitochondria,  CaM  calmodulin,  AID  autoinhibitory domain       
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many of which are potentiated in elderly populations, who also show greatest sus-
ceptibility to neurodegenerative disease [ 186 ]. The relatively high level of toxicity 
associated with these drugs is very likely due to their poor specifi city. Indeed, the 
most commonly used calcineurin inhibitors (cyclosporine and tacrolimus) are well 
known to bind to an inhibit immunophilins [ 30 ], which participate in many 
calcineurin- independent signaling cascades [ 187 ]. In addition, calcineurin is ubiq-
uitously expressed and has pleiotropic functions all of which are suppressed by 
calcineurin inhibitors. Based on the toxic responses to these drugs, it seems clear 
that many calcineurin and immunophilin-dependent signaling pathways are critical 
for cell function and viability and should be left unperturbed. 

 The ideal drug or treatment would prevent calpain from proteolyzing CN A into 
a constitutively active fragment but would not interfere with the normal activation 
of calpains and calcineurin or interfere with the interactions of these enzymes with 
other substrates. This would require extensive investigation into the molecular 
mechanisms through which calpains recognize, bind to, and proteolyze the CN A 
subunit. Is there something unique about the primary sequence of CN A that makes 
it a good substrate for calpain? Is there a way that we could pharmacologically 
modify the CN A subunit to permit normal Ca 2+ /CaM binding but exclude binding 
of calpain? In this regard it may be instructive to consider strategies that have been 
used successfully to disrupt calcineurin interactions with NFATs for the purpose of 
developing safer and more effective immunosuppressive agents. Calcineurin inter-
acts with NFATs, in part, by binding to a specifi c amino acid substrate, PxIxIT, 
located upstream from the NFAT DNA binding domain. In the late 1990s, Rao and 
colleagues developed a peptide (i.e., MAGPHPVIVITGPHEE or VIVIT) based on 
the PxIxIT sequence in an attempt to disrupt calcineurin/NFAT interactions [ 188 ]. 
VIVIT was shown to prevent NFAT activation as effectively as commercial calci-
neurin inhibitors but did not inhibit calcineurin catalytic activity, per se, in vitro. 
Since this report, VIVIT has been used by many labs as an alternative to calcineurin 
inhibitors for the study of diverse processes in numerous and distinct cell types. 
Proof of principle studies on intact animal models has also shown the potential of 
VIVIT as a prophylactic in allogenic tissue transplants [ 189 ] and as a neuroprotec-
tant in AD-like amyloid pathology [ 132 ,  133 ]. Development of similar peptide or 
chemical-based reagents to selectively prevent calpain/calcineurin interactions 
could have a similar impact on therapeutic strategies for treating neurodegenerative 
disease. At the least, reagents of this type would rapidly advance our understanding 
of the specifi c functional consequences of calpain/calcineurin interactions and 
would therefore have great value to basic research.   

6     Conclusions 

 Calpain and calcineurin are fascinating enzymes and important effectors of Ca 2+ -
mediated neurotoxicity. Recent work has shown us that calpain and calcineurin are 
not merely regulators of their own discrete signaling pathways but interact exten-
sively. This interaction could prove to be a key step in the transition from normal 
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cellular function to pathological function. Extensive work will be necessary to 
determine not only when, but where, calpain/calcineurin interactions occur. 
Moreover, a greater understanding of the molecular basis of this interaction could 
lead to more specifi c and effective therapies for a variety of neurodegenerative 
 disorders and diseases.     
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