Chapter 2
If 1t’s Pinched It’s a Memristor

Leon Chua

This chapter consists of two parts. Part I gives a circuit-theoretic foundation for the
first four elementary nonlinear 2-terminal circuit elements, namely, the resistor, the
capacitor, the inductor, and the memristor. Part I consists of a collection of colorful
“Vignettes” with carefully articulated text and colorful illustrations of the rudiments
of the memristor and its characteristic fingerprints and signatures. It is intended as a
self-contained pedagogical primer for beginners who have not heard of memristors
before.
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2.1 Abstract

This tutorial clarifies the axiomatic definition of (v(“>,i(ﬁ )) circuit elements via a
look-up-table dubbed an A-pad, of admissible (v, i) signals measured via Gedanken
Probing Circuits. The (v(“),i(m) elements are ordered via a complexity metric.
Under this metric, the memristor emerges naturally as the fourth element [1], char-
acterized by a state-dependent Ohm’s law. A logical generalization to memristive
devices reveals a common fingerprint consisting of a dense continuum of pinched
hysteresis loops whose area decreases with the frequency @ and tends to a straight
line as @ — oo, for all bipolar periodic signals and for all initial conditions. This
common fingerprint suggests that the term memristor be used henceforth as a
moniker for memristive devices.

2.1.1 Axiomatic Definition of Circuits Elements

How do you characterize a 2-terminal “black box” B such that its response to
any electrical signal can be predicted? Since you are not allowed to peek inside
B your only recourse is to carry out measurements by probing B with all possible
electrical circuits, containing arbitrary interconnections of circuit elements, such
as resistors, capacitors, inductors, diodes, transistors, op amps, batteries, voltage
and current sources with arbitrary time functions, etc. We will henceforth call such
circuits “Gedanken Probing Circuits,” as depicted in the Gedanken experimental
setup shown in Fig. 2.1. Let us insert an instrument called an ammeter in series with
the top wire to record a time function i(¢) called the current in Amperes entering the
top terminal (labeled by a plus (4) sign). Next let us connect an instrument called
a voltmeter across B to record a time function v(¢) called the volfage in Volts across
the plus-minus terminals of B.! Let us call (v(¢),i(¢)) an admissible (v,i) signal of B.
The recorded list

B(v,i) = {(vi(2),i1(2)), (v2(2),i2(2)), ., (va(t),in(t)),...} 2.1

of admissible (v,i) signals (AVIS) from all possible Gedanken Probing Circuits
constitutes the complete characterization of the 2-terminal black box B in the sense
that given any voltage signal or current signal, one can search the AVIS “memory
bank,” henceforth called the AVIS-pad of B or just A-pad, and identify the unique
admissible signals (¥(t),i(¢)) being sought. The A-pad must contain this entry in its
memory bank because the signal is associated with some circuit connected to B, and

1Observe that the voltage v and the current i are defined axiomatically via two instruments called
voltmeter and ammeter, without invoking any physical concepts such as electric field, magnetic
field, charge, flux linkages, etc. One does not even have to know how a voltmeter, or an ammeter,
works. They are just names assigned to the instruments.
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Fig. 2.1 Axiomatic definition of a 2-terminal circuit element

this circuit is a Gedanken probing circuit, by definition. The A-pad is just a look-
up-table containing all admissible (v,i) signals of B. Observe that the A-pad is in
general an infinitely long pad containing infinitely many pairs of admissible signal
waveforms (v(¢),i(r)) of B, as depicted in Fig. 2.1.

The above Gedanken experiment is only a thought experiment. However, for a
large number of real-world 2-terminal devices, the A-pad for B can be generated via
equations.

Example 2.1 (Ohm’s Law). A very small subset of all 2-terminal black boxes are
characterized by an A-pad that satisfies Ohm’s Law; namely,

v=Ri or i=Gv (2.2)

where R is called the resistance in Ohms (Q2) of B and G is called the conductance
in Siemens (S) of B. In this case

AVIS = {(Riy (¢),i1(1)), (Ria (1), i2(2)) - .- (Rin(t) 8 (1)) - } (2.3)

can be reconstructed by (2.2). When Ohm’s law is written with i as the independent
variable, namely; v = Ri, it is called current controlled. If it is written in the form
i = G, it is called voltage controlled. Often it is more convenient to recast (2.2) in
the implicit form

Jr(vi)=v—Ri=0 (2.4)
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Since (2.4) is neither a function of v, nor of i, it is called a relation in mathematics.
In nonlinear circuit theory, it is called a constitutive relation [2—4]. Observe that
the constitutive relation is just a compact formula, or algorithm, for generating the
A-pad of B.

Example 2.2. Suppose the A-pad of the 2-terminal black box B in Fig.2.1 can be
written in the form

1 1 1
AVIS = { <v1,v1 + §v?) , (vz,vz + §v§> <vn,vn+ gvg) } (2.5)

for all possible voltage signals

v(t) =vi(t),v(t) =va(t),...v(t) = vu(2)...

then the A-pad of B can be generated by the much more compact constitutive
relation

fR(v,i):v+%v3—i:0 (2.6)

Since both (2.4) of Example 2.1 and (2.6) of Example 2.2 involve the same pair
of circuit variables (voltage, current), and since all 2-terminal devices that can be
characterized by a constitutive relation

Jr(v,i) =0 2.7)

between the variable pair (v,i) can be proved to be dissipative (or passive) if vxi > 0
for all (v, i) listed in the A-pad, this class of 2-terminal elements are called resistors
[2-4].

Example 2.3. Most 2-terminal black boxes can not be described by a constitutive
relation between the variable pair (v, ). However, another important subclass can be
expressed by a relationship between the variable pair (v,q), where

1

q(t):/;i(r)dr:qo+ i(t)dt (2.8)

Io
and

qo = / ’ i(t)dt (2.9)
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is called the initial state? of ¢(¢) at the initial time ¢ = fo. This subclass of 2-terminal
black boxes can be characterized by a collection of admissible signals between the
variable pair (v,q), namely,

B(v,q) ={(v1(1),q1(2)), (v2(t),42(1)), .-, (va(£), 4 (0)), - .- } (2.10)

where
qg==Cv (2.11)
and C is a constant called the Capacitance of B. Equation (2.11) is the constitutive

relation of B because we can generate the corresponding AVIS (v(¢),i(z)) via (2.8);
namely

o dq(t)
Indeed, any relationship
q=fc(v) (2.13)

is a valid constitutive relation and this class of 2-terminal devices are called
capacitors.
By the same reasoning, the constitutive relation

o= fr(i) (2.14)

involving the variable pair (i, @) defines a third subclass of 2-terminal devices called
inductors, where

o) = ./jwv(r)dr =@+ tv(r)dr (2.15)

fo

Observe that the above three classes of basic circuit elements, called resistors,
capacitors, and inductors, are defined axiomatically, via a constitutive relation
between a pair of variables chosen from {v,i,q,@}. There are six different pairs
that can be formed from these four variables; namely

{(V, (p)7 (i7q)7 (V, i)’ (V7 q)? (i7 (P)7 ((p7q)} (2'16)

2In practice one can never know the precise signal i(¢) over the infinite past. Rather we can only
set up our measurements to begin at some initial time ¢ = #y. Consequently, the initial condition ¢
in Eq. (2.8) represents a summary of the past memory of g(¢) measured at ¢ = 1.
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The first two pairs (v,@) and (i,q) are already related via (2.15) and (2.8),
respectively, and are not constitutive relations because they cannot predict the
corresponding current i(¢) and voltage v(¢). However, the last pair (¢, q) defines yet
another constitutive relation since given any admissible signals (¢(z),q(t)), one can
recover the corresponding (v(z),i(z)) via (2.15) and (2.8). For logical consistency,
and symmetry considerations, it is necessary to define a 4th circuit element [1] via
the constitutive relation

fu(@,q) =0 (2.17)

between the variables ¢ and g. This element was postulated and named the
memristor (acronym for memory resistor in [5]). A physical approximation of such
an element has been fabricated in 2008 as a TiO, nano device by Dr. Stanley
Williams group at hp [6]. The above axiomatic definition of the four basic circuit
elements is summarized in Fig. 2.2, along with their respective symbols [7]. Note
that the standard symbols for resistor, capacitor, and inductor are enclosed by a thin
rectangle with a dark band at the bottom because it is essential to distinguish the
reference polarity of each nonlinear element if its constitutive relation is not odd-
symmetric.

We wish to stress that although the symbols of ¢ and ¢ in Fig. 2.2 are given the
names charge and flux, respectively, they need not be associated with a real physical
charge as in the case of a classical capacitor built by sandwiching a pair of parallel
metal plates between an insulator, or a real physical flux as in the case of a classical
inductor built by winding a copper wire around an iron core.
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2.1.2  (v\® —B)) Circuit Elements

Let us introduce the notations [4]

o), ifo=1,2,...

vy 2 V0 ifo=0 (2.18)
[t v(n)dr, ifo=—1
S 0 2 v(n)dTd T d Ty, i 0= —2,-3,.. 00

and

aPi(r) en_
—5 itf=12,...,00

iB) () 2 10, itp=0 (2.19)
[t i(t)dr, ifB=—1
fiwfjil "'ff%oi(Tl)d‘CldTQ . 'dT‘m, ifﬁ =-2,-3,...,00

where || and |B]| are integers. Let us identify a (v(9),i(0)) element as a resistor,
a (v9, (=) element as a capacitor, a (v\=1) i(0)) element as an inductor, and a
(v(’” , i(’l)) element as a memristor. Using this notation, we can define an infinite
family of circuit elements, each one identified by its element code (v(“) - i(ﬁ)) and
referred to simply as an (¢, ) element.

The first 25 (o, 3) elements are listed in Fig.2.3, each coded by an integer
pair (a, ), and identified by a rectangular box where “o” and “B” are printed on
the “top,” and at the “bottom,” respectively. Each (o, B) element is located at the
intersection between a vertical line through ¢, and a horizontal line through 3. The
four circuit element symbols shown in Fig.2.2 are printed in their corresponding
locations in Fig.2.3. The two elements (o, ) = (—1,-2) and (o, ) = (-2,—1)
are called memcapacitor and meminductor, respectively [8], and are identified by
their corresponding symbols.

The above infinite family of circuit elements are defined not for the sake of
generality. Rather, they are essential for developing a rigorous mathematical theory
of nonlinear circuits in the sense that if one excludes all elements with |o| > k and
|B| > k, for any finite integer &, then one can construct hypothetical circuits whose
solutions do not exist after certain finite times ¢ > T due to the presence of a “singu-
larity” called an impasse point [2,3,9]. It is unlikely, however, that (c, B) elements
with |et| > 2 and || > 2 will be needed in modeling most real-world devices.

It can be proved that any (¢, ) element with |oc| + || > 2 is active in the sense
that it can be built only with active components, such as transistors and op amps,
which requires a power supply. Finally, we remark that every (o, ) element can be
built by the same procedure illustrated in [2, 5, 10] using a family of linear active
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Fig. 2.3 The first 25 (o, 8)
circuit elements, —2 < o < 2,
—2<B<2

4 Basib
Circuit Elements a

2-ports called mutators. They can also be emulated via various off-the-shelf digital
components [11], or by programmable softwares interfaced with analog-to-digital
(A/D) and digital-to-analog (D/A) converters.

2.1.3 Complexity Metric of Circuit Elements

For each (¢, ) element, let
x = o+ 1B (2.20)

be its associated complexity metric [12]. For example, x(0,0) = 0 for a resistor,
x(0,—1) =1 for a capacitor, y(—1,0) = 1 for an inductor, y(—1,—1) =2
for a memristor, y(—1,—2) = 3 for a memcapacitor, and y(—2,—1) =3 for a
meminductor. If one associates the vertical and horizontal lines passing through
the elements in Fig. 2.3 as streets of Manhattan, New York city, then the complexity
metric ¥ of an (o, 3) element gives a measure of its distance from the resistor
(a, B) = (0,0). The larger the metric y (o, 3), the farther it is from the resistor.
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The complexity metric measures not just only the distance of (¢, 3) element
from the resistor but also the minimum number of capacitors (or inductors) needed to
build an (¢, §) element using off-the-shelf components. For example, a minimum of
one capacitor along with active elements such as transistors and op amps is needed
to build a memristor while a minimum of two capacitors are needed to build a
meminductor. From a mathematical perspective, the larger the complexity metric,
the higher the dimension of the state space and the larger the number of nonlinear
differential equations and exotic dynamical phenomena that can emerge.

Based on any of the above measures of complexity, the four elements depicted in
Fig.2.3 are indeed the simplest circuit elements, with the memristor ranked as the
4th element in increasing complexity.

2.1.4 Fingerprint of Memristors

The formal mathematical definition of the memristor is given in [5], along with
its circuit-theoretic properties. Here we recall that the memristor is defined by a
collection of all admissible signals, namely, an A-pad listing all signals measured
from all admissible “Gedanken Probing Circuits” (Fig.2.1) and which can be
completely reproduced by the constitutive relation (2.17).

For example, a charge-controlled memristor can be defined by

¢ = fu(q) (2.21)

where fy is a piecewise-differentiable function [12]. In this case, we can generate
all (v(¢),i(r)) from the A-pad via the following g-dependent Ohm’s law:

v=R(q)i (2.22a)

A dfu(q)
=

R(q) (2.22b)

The function R(q) is called the memristance (acronym for Memory Resistance)
where

R(q) >0 (2.23)

for all passive memristors [2].
Now observe from (2.8) that since
dq

i 0 when i=0 (2.24)
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the memristor can assume a continuous range of distinct equilibrium states
g=q(to), t>to (2.25)

when the power is switched off at any time ¢ = #(. It follows that the memristor can
be used as a nonvolatile analog memory. In particular, it can be used as a nonvolatile
binary memory where two sufficiently different values of resistance are chosen to
code the binary states “0” and “1,” respectively. Because the hp memristor reported
in [6] as well as in many other nano devices [13] can be scaled down to atomic
dimensions, the memristor offers immense potentials for an ultra low-power and
ultra dense nonvolatile memory technology that could replace flash memories and
DRAMS.

An incisive analysis of (2.22) reveals that the nonvolatile memory property
possessed by the memristor is a direct consequence of its state-dependent Ohm’s
law. Moreover, all circuit-theoretic properties possessed by the memristor are
preserved if we generalize (2.22) to the form [14].

v =R(x,i)i (2.26a)
dx/dt =f(x,i) (2.26b)

The generalized memristor defined in (2.26) is dubbed a memristive device in
[14] where x = (x1,x2,...,%,) denotes n states variables, which do not depend on
any external voltages or currents. However, since both (2.22) and (2.26) are endowed
with the same circuit-theoretic properties, it is more convenient and logical to refer
to both equations as defining a memristor. In the rare events where a distinction may
be desirable, one can refer to (2.22) as defining an *“ideal memristor.”

The most important common property of (2.22) and (2.26) is that the loci (i.e.,
Lissajous figure) of (v(z),i(¢)) due to any periodic current source, or periodic
voltage source, which assumes both positive and negative values, must always
be pinched at the origin in the sense that (v,i) = (0,0) must always lie on the
(v,i)-loci, called a pinched hysteresis loop in the literature [13]. We wish to stress
that (2.22) and (2.26) imply that the pinched hysteresis loop phenomenon of
the memristor must hold for any periodic signal, v(t) or i(t), that assumes both
positive and negative values, as well as for any intial condition used to integrate
the differential equations to obtain the corresponding steady state i(¢) and v(¢),
respectively.

Another unique property shared by all memristor hysteresis loops is that for every
given periodic function i = f(¢) (where f(e) assumes both positive and negative
values), and for any initial state x(0) the area enclosed within the part of the pinched
hysteresis loop in the first quadrant, and the third quadrant, of the v — i plane shrinks
continuously as the frequency @ increases, and the hysteresis loop tends to a single-
valued function through the origin as @ tends to oe.
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The above dense continuum of pinched hysteresis loops, as well as their single-
valued function limiting phenomenon as @ — e must hold for all memristors.
Any purported system which may exhibit a pinched hysteresis loop but which vio-
lates the above continuum and frequency-dependent limiting memristor fingerprint
is not a memristor, the reader is referred to [15] for several contrived examples
which fails the above “memristor fingerprint test.”

We end this tutorial by pointing out that not all memristors are nonvolatile
memories. In fact there is an even larger class of locally active memristors [2,4, 9]
which exhibit many exotic nonlinear dynamical phenomena. A very interesting
and scientifically significant example is the classic Hodgkin—Huxley Axon circuit
model of the squid giant axon.> Notwithstanding the immense importance of their
circuit model, Hodgkin and Huxley had erroneously named two circuit elements in
their model associated with the potassium ion, and the sodium ion, respectively, as
time-varying conductances. This mistaken identity has led to numerous confusions
and paradoxes ever since the publications of their classic axon circuit model [16].
Well-known physiologists were puzzled by experimentally observed rectification
phenomenon as well as gigantic inductances that could not exist within the soft
tissues of the brain. The following quotation from Cole (see page 78 of [17]), an
eminent physiologist and the recipient of the 1967 USA National Medal of Science,
is a case in point:

“The suggestion of an inductive reactance anywhere in the system was shocking
to the point of being unbelievable”

We have solved the above conundrum, and many other hitherto unresolved
paradoxes associated with the Hodgkin—Huxley Axon, by showing the Hodgkin—
Huxley time-varying potassium conductance is in fact a 1st-order memristor, and
the Hodgkin—Huxley time-varying sodium conductance is in fact a 2nd-order
memristor, as defined in Fig.2.4b, c, respectively [18]. Also depicted in Fig.2.4
are the pinched hysteresis loops associated with each memristor. Observe that they
are all pinched at the origin, and that the lobe area in the first and third quadrants
shrinks continuously to a straight line as @ increases, both being the fingerprint of
memristors.

We conclude this tutorial by stressing that memristors are not inventions. They
are discoveries and are ubiquitous. Indeed, many devices, including the “electric
arc” dating back to 1801, have now been identified as memristors [19,20]. Aside
from serving as nonvolatile memories [21], locally passive memristors, have been
used for switching electromagnetic devices [22], for field programmable logic arrays
[23-27], for synaptic memories [28—-30], for learning [31-33], etc.

In addition, locally active memristors have been found to exhibit many exotic
dynamical phenomena, such as oscillations [34], chaos [35, 36], Hamiltonian
vortices [37] and autowaves [38], etc.

¥Hodgkin and Huxley were awarded the 1965 Nobel Prize in physiology for their derivation of the
circuit shown in Fig. 2.4a, where the two memristors were drawn as time-varying resistors in Fig. 1
(page 501) of [16].
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Fig. 2.4 Hodgkin—Huxley Axon. (a) Memristive Hodgkin—Huxley Circuit model of giant axon
(center) of North Atlantic squid Loligo (right). (b) Postassium ion-channel memristor and its
pinched hysteresis loops. (¢) Sodium ion-channel memristor and its pinched hysteresis loops [18]

2.2 Concluding Remarks

Any 2-terminal device which exhibits a pinched hysteresis loop in the v-i plane
when driven by any bipolar periodic voltage or current waveform, for any initial
conditions, is a memristor. In the case where the memristance R(x1,x,,...,x,) does
not depend on the current i, the loop shrinks to a straight line whose slope depends
on the excitation waveform, as the excitation frequency tends to infinity.
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Except in ideal cases, memristors, memcapacitors, and meminductors do not
behave like resistors, capacitors, and inductors, respectively. For example, the
potassium and sodium ion channel memristors in the Hodgkin—Huxley axon circuit
model behave like R-L circuits ([18,39]). It is conceptually wrong and misleading
to identify memristors, memcapacitors, and meminductors with resistors, capac-
itors, and inductors. Each (o, 3) element is a distinct circuit element because it
cannot be built from the other elements.

Readers who may have been misled by some erroneous commentary in the
popular press which associates an earlier gadget called a memistor with the
memristor are referred to a technical clarification in [40].

We end this tutorial with the following succint signature of a memristor [13]:

If it’s pinched it’s a memristor.
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What is this Device ?

A 4.5 billion-year
old meteorite
(chondrite) from

the milky way

What is a resistor, inductor, and
capacitor ?

Shocking Fact !

Before the publication of my book
Introduction to Nonlinear Network
Theory in 1969, there was no scientific
definition of basic circuit elements.
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Standard definitions from classical Circuit Theory textbooks:
What is a Resistor ?
i

——

v 3| v=Ri

._r

What is a Capacitor ?

25 j — Cﬁ
v 1TC i =
What is an Inductor ?
di
= i
L v dt

Time-varying Capacitance C(f)

i)

distance changes as a
function of time, giving a
time-varying capacitance C(f)
Example:
C(t) =10 + 5sint

15
10
>

of
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[Example : Time-varying Capacitance

i(?) = (10+551nt) ()
0

Does this obvious generalization of
the formula dv
i=C—
_ d
give the correct current i(¢) for any
applied voltage v(7) ?

Does this calculated

capacitor current agree

with the /laboratory

measurement?

L. Chua
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Reason :
Our classical definition
of the capacitor 1s wrong.

The classical definition

dv(1)

i) =C —

uses an incorrect pair of
variables
dv(1)

i) and V)2 —y,

Let us integrate both
sides to obtain

q@) =Cv(1)

This equation defines a
relationship between a
different pair of

~ variables ¢(7) and v(1),

and gives the correct
answer.

37
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L. Chua

Correct formula:

q(t) = C(1) v(1)

g(#)= (10 + 5 sin £) W)
\—V—/

C(t)

= m=(10+5 sim‘)@+(5 cost)v(t)
a < d

c®

i = %=C(1)m + vl ——

dc(t)

dt dt

extra term 18 needed !

An analogy of a

similar mistake

from Mechanics
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Rocket Launching

mass decreases
as fuel is

a

> 1

Newton’s
Law of Motion

velocity v(t)

£@=m@®2

Is this formula
correct ?

Newton’s Law of Motion

High school physics:
f=ma

College Physics:
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NO !

Correct Newton’s Formula is:

_%
f_d‘

pP=mv < | momentum

For time-varying mass, we have:

p=m()v

dm(t)
dt

]

1) = m(t)% £ (0)

= mr
exfra term !

Inductor ? L

voltage
v(t)

coil wound around an iron core

L is called
the Inductance of the Inductor L.

L. Chua
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Inductor

The classical definition

—L—
dt

which relates the 2 variables volrage v and

Adi

the derivative j' 2 —— gives the wrong answer !

The correct definition

o=Li

relates the 2 variables flux ¢ and current i

Correct formula:

o(t) = L(2) i(1)

() =(10+ 5 sin 1) i(1)
\-\—V—J

_do@)
dt

L(t)
=(10+5si nr)
—'Y_/

L(t)

+{5 cost)i(t)

d:(!)

_do1)

dL(r )

dt =H0

\_‘V_'_—j
extra term is needed !

dt

Conclusion:

A time-varving inductance L(f) must be defined
by a relationship between the flux @(r) and

the current i(t), and not between v(:) and

di(t)
dt

s

as in the incorrect formula v = L(:) —_
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What i1s an Inductor ?

.

Definition
Any device which imposes a relationship
between the flux ¢ 2 I; w(t)dt and the current i
is an inductor. The s/ope at any point Q is called
the small-signal inductance L at Q

slope L = small signal
inductance at Q

Axiomatic Definitions

To obtain the correct definitions
of elementary circuit elements,
it is necessary to introduce

an axiomatic approach involving

the 4 basic circuit variables
voltage v(t), current i(t), flux ¢(t),
and charge q(t).
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Axiomatic Definition

of

Circuit Elements

PROBING

CIRCUIT ]

Admissible Signal-Pair

(v (1), i(t))

43
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(Admissible V I Signals)

AVIS no. 1

T/"\ o NN
o v g vy

it)
4

t

AVIS no. 2

AVISno.n

L. Chua
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’ Perfect Device model |

The perfect device model is simply an
analag “look-up-table™

No device model is Perfect

A useful device model

must reproduce the
input-output behaviors of a
physical device to acceptable
engineering accuracy.

Model

must

L _Predict ! |

45
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Four Basic Circuit Variables

FOUR
ELEMENTARY
CIRCUIT ELEMENTS

What is a Resistor ?

i
+
4 . v
slope R = amall-signal .

resistance at Q

Definition
Any device which imposes a relationship
between the voltage v and the currentiis
aresistor. The slope at any point Q 1s called the
small-signal resistance R at Q

L. Chua
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Current-controlled Resistor: v = v({)
R, = small-signal resistance a1 Q,

Linear resistor: V=Ri or i=GV

R = Resistance, G £ o

Conductance

Voltage-controlled Resistor: § = i(v)

G, = small-signal conductance at Q

47
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Simplest Example of a Resistor

. v
1
iy R
v .
0 ol |
P /i slope R = resistance

Special Case : Linear resistor

Ohm’s
Law

Resistor

' Ohm*s Law:
v =Ri
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What is a Capacitor ?

slope C = .ﬁmll-sigml

. capacitance at Q
Definition

Any device which imposes a relationship

between the voltage v and the charge ¢ é_[_’y i(t)dt
1s a capacitor. The s/lope at any point Q 1s called
the small-signal capacitance C' at Q

What is an Inductor ?

slope L = small-signal
inductance at Q

Definition

Any device which imposes a relationship
between the flux ¢ EJ‘ '00 v(t)dt and the current i
is an inductor. The s/ope at any point Q is called
the small-signal inductance L at Q

49
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AOLIDVAVD

L. Chua

RESISTOR
Rw,i)=0

0

INDUCTOR

L(gp )

The missing
circuit element
is the

memristor !
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‘ What is a Memristor ? \

slope M = small-signal
memristance at Q

Definition

Any device which imposes a relationship between the
charge g gj" i(f)dt and the flux @ ér v(£)dt

is a Memristor. The slope at any point Q is called

the small-signal memristance M at Q

51



52

L. Chua

PROBING

Axiomatic definition of a 2-terminal circuit element

4 Basie Circuit Elements
RESISTOR current, Ampere A

Ru9=0

-‘..

CAPACITOR
-0

INDUCTOR
Lig ¥

charge, Coutomb ¢ MEMRISTOR  flyx weper w
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A Mechanical Linear Resistor

: &
velocity W)=—"  Fixed metal disc for guiding
at x(0) the piston rod

R = Mechanical resistance
due to friction

A Mechanical Nonlinear Resistor

velocity
force flt) 2 dx
> wt) = 5

L displacement
x=0 ¥ x=x{t)
Slope= £ = mechanical resistance
' (coefficient of friction)
l!v=v°

S = force
v = velocity

Constitutive Relation : f = R(v)

53
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Newton's Equation

High School version:
force = mass x acceleration
dv

f=m"d—t

Integrating both sides:
t tdv

Ndt=m| —dt

Lf( ) L "

Momentum  veldeity

Correct Newton’s Equation:

A Mechanical Memristor
p=f"_f@adr

P=fx)--.__

of  x x=[" v(e)dr
p = momentum, [ = force
x = displacement (distance)
from some reference point, v = velocity

Constitutive Relation : p = f(x)

dp _df(x) &
Ldt

dx dt
—

For';:e Memristance V;locity

L. Chua
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Example of a Mechanical Memristor
with continuously—varying “friction”

“Tapered friction™ rod attached to Fixed metal disc for guiding
dashpot enclosure and metal disc the piston rod

Tx=0 x=D

14
p=[  S@adr Diameter of “flexible™ mibber slecve
varies with distamce x

Meg-soese | f= MI(x) V

x=[" v@)ydr

low resistance (friction)

high resistance (friction)
M(xg) = slopeat Q
Py x= ijv(r)dr

55
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A “Coke-shape” Mechanical Memristor

to dashpot enclosure and metal disc the piston rod

momentum xf_

- ) r=D
P:I.wf @dry = v= piston velocity

displacement

Our
4 Circuit-Element

Axiomatic
Approach
dates back to
Aristotle !

Aristotle, 350 BC

L. Chua
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Our axiomatic definitions
of the 4 elementary circuit

elements 1s analogous to

Aristotle s definitions of the

4 building blocks of matter.

Arstotle’s Theory of Matter

All matter consisted of four elements:

1.EARTH
2. WATER
3.ARR

4. FIRE

Each of these elements exhibited two of four
fundamental properties :

* Moistness

* Dryness
* Coldness

* Hotness

57
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Anistotle’s 4 Pairs of
Complementary Vanables

* (Dryness, Hotness) = FIRE

* (Moistness, Hotness) = AIR

* (Moistness, Coldness) — WATER

* (Dryness, Coldness) = FARTH

Aristotle’s 4 Building Blocks of Matter

Co]d;s% icosahedron
WATER
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Mendeleev

Mendeleev's First Published
Periodic Table, 1869

o 8% mell, wwb wamerca, yae Acu0 supamaerca npubHMOCTS BU
CTABAACMADD NHOD) BRYAXA EO Beell COBOXYNEOCTH SAeMEHTORS, Dail

p Berens cb bprocrin. Ha srorspassa m meanns
upensymectsennd Bafite ofmym cucrewy ssementons. Bors srors
ONMTE:

— Ti=80  Zr=00  ?=150,
|Ga Vabl  Nb=gd  Ta=1s2
3 Cr=52  Mo=096 W=136
Gallium Mo=§5  Rhe1044 PL=197
E -_“. Fem56 Ru=1044 Ir=198.
*, Ni=Co=59 Pl=106s, Os=199.
Yo Cus=634  Ag=108 Hg=200.
Be=0s  Mg=24 ‘yIn=gse  Ci=112
B=ll  Al=2ly Ur=116 Au=197?
C=12 Si=2 [J=m] Su=18
N=14 P=3l  As=25%  Sh=122 Bi=210
0=16 §=32  Sem1941  Te=128
F=19  Clm3ss  DBrag0 1 lw127
Lim7 Nam23 K=39  Rb=gse: Cs=I133 TI=204

: ———3,00=d0  Sr=@7p) Ba=137 Phm207,
Se G —————
- y Wr=s6  La=gt  Ge
[Scandium | symg0  Dizss )
| oty o Germanium

& BOTON] APRNOINTEE WL PAOSNTS pasars Wb puanivioe wrubaenie pusocred,
uete wbry o rEMEUns vecsrs speuiiracwol rafnemd. How me spagercr mpesse-
INTATL OpH COCTMMMewin Cacrewd otews wworo pepocramuxs viewnn. To 2
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Dmitr1 Mendeleev’s

1dea of the periodic table

of elements originated

from a dream.

Nature | pages 42-43

May 1, 2008

ELECTRONICS

The fourth element

James M. Tour and Tao He

Almost four decades since its existence was first proposed, a fourth basic
circuit element joins the canonical three. The ‘memristor’ might herald a

step-change in the march towards ever more powerful circuitry.
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Most Electronic Memories are volatile

Esaki
tunnel @
diode

load line with
llnpe--é and '
voltage intercept
E>0

[1]

Q, and (), represent 2 memory states

oadine withsope - *
and voltage intercept
E=0

+

0 v

=EA
|
o ty+A
Observe that althoughv,(t) = 0, for 121, + A, we have
o(t)=0pp=EA, fort>t,+A

Hence, the biased point P remains where it was before cutting the power supply.

61



62

How to Switch
from low resistance to high resistancg

iin

.~ high resistance

. low resistance

I 2

_dq _ .
slope = o W (@), Siemens (S)

= Memductance

How to Switch

from high resistance to low resistanc
v

0 f

f

. high resistance

|
- ¢
0 @,

_dq _ A
slope—dg’ W (p), Siemens (S)

= Memductance

L. Chua
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How to Write Memory State ?

An Bimtmkle mﬂwﬁ
vl A mnm conditi on

Aszume
nitial

it Assume

e vt m:-ont—o
=0

Coul omb
2 Q3 3)
binary state 1

Q1. 0.5)
a9 A, 1) binary state 0

@ Weber

H

[

| o) = [nr)dr |

To WRITE binary state (), To WRITE binary state |,
bias memristor at Qy(l,0.5) bias memristor at Q;(3,3)

P(Q)=(AE)(A)=1 || 9(Q)=(AE)(A=3
(Ihoosei .. Choo .
ﬂE=E\blt AE= E\blt

1+

[ How to Read Memory State ?

|zluﬂa'nwiw" i ] I
i = g0 79 cunve

Apply & sl and marrow
valtage dowbier sensing signal.
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Memristor E

9
?=Aq

M(q) is called the Memristance.

Example: A two-state Charge-Controlled Memristor

¢, Weber
high-
resistance
slate

Charge-

Charge-controlled
@-qcurve :
?=¢q)

low-resistance
slale

controlled
memristor

[o=0@]

> q’
Coulomb

Memristance

Mg2 4

L. Chua
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Memristor is an Analog
Non-volatile memory

no

@
E
V,(t) @=plq)
: C% M !

For a memristor with a smooth function

@ = @(g), we can obtain a continuous range
of resistances, not just binary states,

by simply choosing the pulse height E, or
the pulse width w of a biasing voltage pulse.

Application : 1deal for neural network
learning via synaptic tunings. With the
tiny HP memristor, which can be scaled
down to 2 nanometers, it is possible

to mimic biological neurons with more
than 20,000 synapses per neuron.

How do you know your device
may be a Memristor ?

Examine:
v=M(q)i

i=G(p)v
=p
vit)=0 & i(t)=0

or

Both v(f) and i(t) of a memristor
must have identical zero crossings,
i.e., they must be in phase,

A )

Memristor
Fingerprint

65
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| [ite)=sint
vir)=|1+(1=cosr) |sing

r n\/!n Sx\/dn t
-1

i(1r)=sint vif)= |1+ (1=cosr)’ |sint
(c) qlr)=1-cost (d) w[l}=|l—tm.rul+%u-tmn‘}
Figure 1

Pinched Hysteresis Loop

1

|

Memristor Fingerprint
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Theorem

Memristor pinched hysteresis loop shrinks
continuously as frequency increases.

Example i
o=1KHz
y © = 50 KHz

» o = 100 KHz
: v

The pinched hysteresis loop of a memristor becomes thinner
as frequency o increases, and tends to a straight line as ® —» oo

High-Frequency Memristor Behavior

()=, +I; Asin (o7)dr

A
=@y +—( cosat — coswty) — @y, as @—>o
@

Memductance at @ - o©
W (p(1)) - W(p,)
Memristance at @ —> o©

M (q(t)) - M(g,)

where

M@0 =+ (‘%)

67
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Theorem : No Energy-Storage Property
Memristors can not Store Energy

i

R>0, M(q)é%ao . 4(0) 0 (nitial condition)

de s

. dg dr

ve—Ri W

-_Rd’ dq dq
[® +M(q)]E=o = 3=0
q()=g(0), t>0
i)=w1)=0,t>0

Power p(t) = W) i{) =0, t>0

Demonstration Showing
Memristors can not Store Energy

Switch closed att=0 _

it <. Brief
) | ‘.:: flash
vel(0) > 0 T ‘

of light

Switch closed att=0 _

.. Brief
= flash
T of light

Switch closed att=0

-+
90) >0

Memristor

L. Chua
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Memristor Passivity Condition

The @-q curve of all physical
memristors must be a

Examples

Proof of the Memristor Passivity Conditiol
Consider a non-monotone-increasing memristor,

and apply the following voltage signal v,(1), and
its associated Mux oft).

n,m-am)-:ni

=
Brt) and 8i(t) = ¥(a0)

have apposite phase, i.c.,

St = i) < 0
—

U]
e P 1" (o)
[ - -®

A1) A

0] % A
VD) o | vt M= Energy

[

=00
wit) b —mi that this is capable of
an infinite amount of encrgy, which is impossible !

Is 1t possible to
build a
passive solid state
memristor ?

Answer :
Yes, provided the memristor satisfies
the memristor passivity condition.
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| T,0, HP Memristor |

0

00 02 04 0.6 Charge
Memristance

WD _ oy (1- 2204 ) s

dg

—
o

G oo;m

|
o

(e-01%) eun)

Voltage and current waveforms from the

HP memristor exhibit identical zero crossings
and phase shifis
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4]

Current (x10-?)
hHh o

5
o

-0.5 0.0
Voltage

Memristor Model of an
Experimental Nano Device

The following slide shows a nano device, reported from
Professor Lieber’s Harvard Nano-device Laboratory,
whose experimentally measured v-i characteristic is a
pinched hysteresis loop. The conductance of the device
can be switched from “0” nS (off state), to 800 nS

(on state), by applying a square wave.

Professor Lieber had confirmed (private communication)
that the loop “shrinks” with increasing frequency. This
device can therefore be modeled as a memristor.
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| Pinched Hysteresis Loop from Lieber’s Harvard Laboratory |

/
V.

Bias (V) On/ofTf cycles
(a) Pinched hysteresis loop of  (b) Conductance switches from
Lieber’s nano device 0 to 800 nano Siemens

From:

Xiangfeng Duan, Yu Huang, and Charles M. Lieber,

“Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires,”
Nano Letters,Vol.2, No. 5, p. 487,2002

Piecewise-linear Memrnstor Model of Lieber’s Nano Device

¥

ElELE
O.U:.s!_zlz.s

E|'?\/'

Wi tsl 2[ds{ Bldsl &
{1 | 1

UL
[T

(a) Memristorg-vs.-@ @ ©° o5 1 152 253 35 4
characteristic

The above memristor reproduces almost exactly
Lieber’s measured conductances.

L. Chua
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Smooth Memristor Model of Lieber’s Nano Device

iomd

133
3000

: Ko
ki (N Memristor g-vs.-p characteristic
The above memristor reproduces approximately
Lieber’s pinched hysteresis loop in the first quadrant.

Ideal and Generalized
Memristors

v = M(q)i Ideal
dq _ i Memristor
dt — (x = g = charge)
1.Change “charge” ¢ to “n* state

variables ¥ = (xq, Xy, ..., x,) and
current i:
M(q) = M(x,i)
2.Generalize to a nonlinear differential
equation:

i—=f(xi)

Memristor

73
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What is a Memristor ?
it
+

= )

. Ithas 2 electrical terminals
. Itobeys Ohm's law

3. Risnot a constant:

R=g(x, x5,...%,,; i)

Physical Definition of
Memristor

Any 2-terminal device
defined by a state-dependent
Ohm’s Law
1sa
memristor.
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Memristor v-i Pinched Hysteresis
Loop Fingerprint

Theorem

The v-vs.-i loci of a
memristor can cross
the voltage and
current axes only

at the origin.

Proof

Assumption:
M@ET D50

do d@(@) dq

d dg_a

e W T

= w0 = M) i
Since M(q) > 0,
wW)=0 <> =0

Experimental Definition
of

Memristor

Any 2-terminal device which
exhibits a pinched hysteresis loo
the voltage-vs.-current plane un r

any periodic excitation is called a
memristor.
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i(n (4

Concise Definition of

Memristor

A memristor 1s

any state-dependent

linear 2-terminal

resistor.

| Experimental Definition

i(f)

+

\v

i(7)

i(r)=sinr

MEMRISTOR

v

v

Y

v(£)=[1+(1—cost)’|sinz

34
2
14
1
2

e T

Pinched

*| Ohm’s Law

v = R(q)i
P (fl)t
T

L. Chua
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Experimental Test for
Memristors

Any 2-terminal device exhibiting the
following fingerprint characteristics is a
memristor:

1. The Lissajoux figure in the voltage-
current plane is a pinched hysteresis loop
when driven by any bipolar periodic voltage
v(t), or current i(t), and under asn) initial
conditions.

2. The area of each lobe of the pinched
hysteresis loop shrinks as the frequency w of
the forcing signal increases.

3. As the frequency « tends to infinity, the
pinched hysteresis loop degenerates to a
straight line through the origin, whose slope
depends on the amplitude and shape of the
forcing signal.

(b) 1968

A4 AT0TAR R
Volage V)

(k) 2001
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/1

v

06 -04 02 00 02 04 0§
Voltage(V)

(g) 2003

M:ﬂm

If it’s pinched,
It’s a memristor
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Resistance Switching

implies

Memristor

RRAM
and
Phase Change
Memory
are
Memristors
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commentary

Two centuries of memristors

Mernristors are dynamic electronic devices wh i has led to
research Interest. However, their experimental histary goes back two centuries.

NATURE MATERIALS | VOL 11 | JUNE 2012 | www.nature.com/naturematerials

The Oldest Known Memristor
Device (1801)

L. Chua
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Breaking News!
A memristor
has been built
with only
one molecule.

July 3, 2012

Nature: Molecule Changes
Magnetism and Conductance

The entire library of congress can be
stored in 8 multi-layer Hp memristor chip

21,218,408 books
ps (1012
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Brian Josephson
1973 Nobel Prize for Physics for discovering
the Josephson junction device and circuit model.

Modeling Quasi-Particle Pair Interference
Current in Josephson Junctions

In the quantum-mechanical analysis of the
Josephson junction, a small contribution to the
device current is derived by Josephson to be

given by

i= M(cos@)v

where M is a constant which depends on the device
parameters. This equation, which is usually negligible,

represents a memristor defined by

q=M sin @
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Brian Josephson
1973 Nobel Prize in Physics:

JOSEPHSON JUNCTION

b=ASDgs  j—[Beose,lv,
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How to Make a Memristor ?

A memristor with any @-vs.-q characteristic

can be synthesized via a mutator and

Resistor-to-Memristor Mutator

a nonlinear resistor.

Resistor-to-Memristor Mutator |

Theorem
A Resistor- istor Afudaior
any nonlinear resistor i connecled across
port 2 into a meswistor when viewed acroess
port 1, with the same consti tative relation
obtained by changing the variables (v, iy) of
the resistor into (@, q,).

4 &

L. Chua
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Building a Resistor-to-Memristor Mutator
Symbol

i, =% = v =vg =J'£|(l')dt
iy = —vg, = —[4(D)dt

This circuit is copied from page 509 of
/ Chua’s 1971 Paper.

@, milli-
weher

Horizontal Scale: 2.66 milli-weber per division.
Vertical  Scale: 5 j coul per division.
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Memristors are not Lossless

As non-volatile memories,

memristors do not consume power

when idle.
It does dissipate a little heat
whenever it is being

“written” or “read”

L. Chua
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Memory Capacitor
o2 I; q(r)dt

Co=fp
E s 2 [ v(ydt

do _df(p) _df(p) do
dat  drt do dt
e

Nt . A
q Clp) Vv

o=flp) | = |¢=C@)Vv

where

Constitutive Relation

C((D) = —d{if) , Farads

is called the memory capacitance.

Theorem

The memory capacitor

IS a lossless element
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Memory Inductor
Pl pwyd

4
T ; .
v % —p=Aq) e
fo »q 2| iwa
dp 9@ ity &
d dt

dg dt
- - - L.r,_}
Constitutive Relation T, L (q' )' F

pP=Ag) | = | p=L(g)i

is called the memory inductance.

Theorem

The memory inductor

is a lossless element
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2/ -1
4 Basic
Circuit Elements

The first 25 (., 1) circuit elements, -2 < <2, -2 < |«

Frequently Asked |
Question

Why did it
take so long

for your memristor
theory to be
validated ?
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New Scientific ideas do L
not succeed by converting a_
contemporary scientists,

but rather by their

opponents’ dying off

Max Planck

New theories have four stages of acceptances:

I. this is worthless nonsense;

IL. this 1s interesting, but perverse;

J. B. S. Haldane
III. this 1s true, but quite unimportant;

IV. I always said so.

J. B. S. Haldane
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