
Chapter 13
Memristor for Neuromorphic Applications:
Models and Circuit Implementations

Alon Ascoli, Fernando Corinto, Marco Gilli, and Ronald Tetzlaff

13.1 Introduction

The current-controlled ideal memristor is a passive bipole linking charge q(t) and
flux ϕ(t) through a nonlinear relation, i.e. ϕ(t) = ϕ(q(t)). From application of
Faraday’s Law and of the chain rule it follows that voltage v(t) depends upon current
i(t) through

v(t) =
dϕ(t)

dt
= M(q(t)) i(t), (13.1)

where M(q) = dϕ(q)
dq is the memristance (i.e. memory-resistance) of the bipole. Since

q(t) =
∫ t
−∞ i(t ′)dt ′, then M(q) = M(

∫ t
−∞ i(t ′)dt ′). In other words the resistance of

the memristor depends upon the time history of the current flowed through it. This
explains the memory capability of the memristor, theoretically envisioned by Chua
in 1971 [1] and later classified by Chua and Kang in 1976 as the simplest element
from a large class of nonlinear dynamical systems endowed with memristance, the
so-called memristive systems [2].

In [2] a memristive system (or memristor system1) is a nonlinear dynamical
circuit element defined by the following differential-algebraic system of equations:

1In the following memristive systems are referred to as memristor systems, whereas the term ideal
memristor is used for systems described by (13.1).
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dx(t)
dt

= f(x(t),u(t)), (13.2)

y(t) = g(x(t),u(t))u(t), (13.3)

where2 x ∈ R
n is the state, u ∈ R refers to the input, y ∈ R describes the output,

f(x,u) : Rn ×R → R
n stands for the state evolution function, while g(x,u) : Rn ×

R → R denotes the memductance (memristance) if input u is in voltage (current)
form.

Since 2008, when its existence at the nano-scale was certified at Hewlett-Packard
(HP) Labs [3], the memristor has attracted a strong interest from both industry
and academia for its central role in the setup of novel integrated circuit (IC)
architectures, especially in the design of high-density nonvolatile memories [4],
programmable analog circuitry [5], neuromorphic systems [6], and logic gates [7,8].

The development of innovative strategies for the design of memristor-based
electronic systems requires the availability of mathematical models [3, 9–14, to
name but a few] for the memristor nano-structures under study. A good model
should be as general as possible, i.e. it should be able to capture the memristor
dynamics of a large number of nano-films. In this respect the Boundary Condition
Memristor (BCM) model, recently introduced in [12], was developed so as to meet
this generality requirement. In fact the distinctive feature of the BCM model is
the adaptability of the nano-device behavior at boundaries. In particular, the model
makes use of adaptable3 threshold voltages vth0 and vth1, respectively, defining4

the magnitude of the limit value the input voltage (i.e., the voltage drop across the
memristance) needs to cross after its negative-to-positive and positive-to-negative
sign reversal before the memristor state may be released from its lower and upper
bound. It is straightforward to establish an optimization procedure, which, on the
basis of observed data, sets the most suitable values for the threshold voltages, i.e.
those values, let us identify them as v∗th0 and v∗th1, minimizing the mean squared
error between observed and modeled data. This enables the BCM model to stand
out over other models available in the literature for the larger number of detectable
dynamics, despite the extreme simplicity of the window function embedded into the
state equation (when the state variable lies within its two bounds its time evolution
is governed by the basic linear dopant drift model [3]). It is noteworthy that the
class of detectable dynamics include not only all the behaviors observed in the
HP memristor [3], but also phenomena exhibited by various other nano-structures

2For the sake of brevity the explicit time dependency is dropped where it is not strictly necessary.
3Note that by defining a time evolution rule for the threshold voltages, it was recently demonstrated
[15] that an adaptable threshold voltage-based version of the memristor model from [6] may
explain the Suppression Principle [16] of the Spike-Timing-Dependent-Plasticity (STDP) Rule
[6], which may occur in the case of triplet spikes.
4Throughout the paper, unless stated otherwise and without loss of generality, we assume that the
doped layer is spatially located to the left of the un-doped layer along the horizontal extension of
the nano-film [12], and in this case we assign a value of +1 to the memristor polarity coefficient η
(see (13.6)).
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where memristor behavior arises from distinct physical mechanisms [17–20]. In
order to enable the BCM model to support various neural learning rules, we recently
developed a generalized version [21], in which the activation threshold property
characterizing the boundary behavior in the original BCM model [12] is extended
to the whole admissible range of the state variable, thus allowing the modeling of
the degree of non-volatility of the nano-device.

Another necessary requirement for the investigation of potential applications of
memristor devices is the implementation of the mathematical models into a software
package for computer-aided integrated circuit design. In this chapter we shall first
present the PSpice [22] implementation of the generalized BCM model. In the
PSpice realization the voltage drop across a linear capacitor models the memristor
state. Further the memristance is determined by the series combination of a linear
resistance and a nonlinear resistance depending upon the capacitor voltage. The
current through the memristance is first nonlinearly filtered so as to model the degree
of non-volatility of the nano-structure. In other words, this current is multiplied by
a nonlinear function which is responsible for the activation of the state dynamics as
the control voltage crosses a tunable positive (negative) threshold vt0 (−vt1) in its
ascent (descent). The filtered current drives a current source, which, under positive
(negative) input voltage polarity, charges (discharges) the capacitor. For each of the
two lower and upper bounds of the memristor state, flexible boundary conditions
are implemented in PSpice by means of a reference voltage source with value equal
to that bound and by a pair of voltage-controlled voltage switches, one controlled
by the voltage across the capacitor and responsible for clipping the memristor state
at the lower (upper) limit under negative (positive) input voltage, the other calling
for the release of the state from its lower (upper) bound as the input voltage cuts
through yet another tunable positive (negative) threshold vth0 (−vth1) in its ascent
(descent).

The PSpice circuit of the generalized BCM model may be used to model
dynamics typical of biological synapses. It is in fact capable to support various
rules governing the way neurons learn from each other. As an example, this
chapter demonstrates how the PSpice circuit favors associative learning based on
the Hebbian rule, one of the most important adaptation rules in neural learning [23].

The last part of this chapter proposes a novel class of memristor emulators. Each
element from the class is an electronic circuit comprising standard passive electrical
components from circuit theory, namely static nonlinear devices such as diodes and
linear dynamical elements such as resistors, inductors, and capacitors.

The structure of the manuscript is organized as follows. Section 13.2 reviews the
most noteworthy memristor circuit models available in the literature. Section 13.3
briefly reviews the generalized BCM model and describes its PSpice implementa-
tion. Section 13.4 illustrates the ability of the PSpice circuit model to support the
Hebbian neural learning rule. Section 13.5 introduces a novel class of memristor
emulators. Finally Sect. 13.6 outlines the conclusions.
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13.2 Brief Review of Memristor Models

Various memristor circuit models have been proposed in the literature. A large
number of models assume that the control waveform is in current form (the voltage
v-current i relationship is expressed by (13.1)), views the memristance as the series
between two variable resistances, associated with the insulating and conductive
layers of the nano-film, and sets the width w of the conductive layer, normalized with
respect to the entire length D of the device, as the state x = w

D ∈ [0,1] of the system.
The linear drift model from Williams [3], where the time derivative of the state is
proportional to the input waveform in current form, is valid under the assumption
that the state is confined within its two bounds, since it does not take into account
the boundary behavior.

In the nonlinear drift models from [9, 10] and [24] the rate of change of the
state is proportional to the product between the input waveform in current form
and a window function accounting for nonlinear dynamical behavior and imposing
suitable boundary conditions.

In Joglekar’s model [9] the window function is defined as fJ(x) = 1− (2x −
1)2p (p ∈ Z+). Such window describes the suppression of dopant drift close to the
extremities, but is not vertically scalable (i.e. its maximum value may not be up-
or down-shifted) and introduces the so-called terminal-state problem [24], since if
the state is at either of its two bounds it may not leave it for any subsequent time
instant. Note that for p = 1 Joglekar’s window is a scaled (by a factor of 4) version
of yet another window previously derived by Strukov in [3], i.e. fS(x) = x(1− x).
Benderli [25] presented a circuit realization of Strukov’s model [3], where the use of
comparators and logic gates allowed the emulation of the state clipping at or release
from either bound.

In Biolek’s model the window function depends on both state x and input current
i, being defined as fB(x, i) = 1− (x− stp(−i))2p, where stp(x) = 1 for x ≥ 0 and 0
otherwise (p ∈ Z+). Such window resolves the “terminal-state problem,” but has
limited scalability (in particular, its maximum value may not exceed +1 [24]).
PSpice implementations of Joglekar’s and Biolek’s models are reported in [10].

In the versatile model proposed by Prodomakis [24] the window function fP(x) =
j(1− ((x− 0.5)2 − 0.75)p) has two control parameters j and p lying in R+ and is
vertically scalable, i.e. 0 ≤ max{ fP(x)} � 1. A PSpice version of such model may
be easily derived by modifying the PSpice .circ [22] file available in [10].

Another model endowed with a PSpice circuit implementation was developed by
Cserey [26]. In this model the state evolution function in Strukov’s model [3] was
augmented with an additive state-dependent linear term to resolve the “terminal-
state problem.”

One of the finest circuit emulators of memristor behavior is credited to Shin and
Kang [11], which proposed a general model where the control waveform may be
in either current or voltage form and the state is defined as the memristance. Their
model, from which the charge-flux relationship of the memristor under modeling
may be easily extracted, may be suitably tuned through the introduction of a window
function depending on the memristor charge.
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Kavehei [27] proposed a memristor model based upon the specification of a
piecewise-linear charge q-flux ϕ relationship. In such model the state and output
equations are not specified. Its PSpice implementation is based on Chua’s [1] first
circuit realization of a memristor through a type-1 memristor-resistor mutator.

An interesting model was presented in [28] to explain the memristor behavior of
nanoparticle assemblies.

The nonlinear dependence of the time derivative of the state on the input signal
is taken into account in Lehtonen’s model [29], inspired by the experimental work
from [30], where the current is related to the voltage by means of a rectifying
exponential function in the off state (as in a diode) and of a sinh function in the on
state (typical of electron tunneling). This model, where the control waveform is in
voltage form, was implemented in PSpice to describe the neighborhood connections
among cellular neural networks (CNNs) [31, 32].

An even more nonlinear function of the input governs the state equation in the
voltage-controlled model from Poikonen [33], which studied the transition between
non-programming and programming phases in memristor devices.

In the memristor emulator circuit from [34], used as basic building block of a 4-
memristor bridge synapse for neuromorphic applications, the memristance, modeled
by the input impedance of an active circuit, is made proportional to the time integral
of the memristor current by constraining the voltage at one of the input terminals
of an operational amplifier to be the analogue multiplication between the voltage
across a resistor, proportional to the memristor current, and the voltage across a
capacitor, proportional to the time integral of the memristor current.

In [35] Strukov and Williams demonstrated the exponential relationship between
drift velocity and local electric field. Since this discovery a number of models have
been introduced to support threshold-activated state dynamics.

Among them, one which merits mention, is the physics-based Pickett’s model
from [13], in which the dependency of the rate of change of the state on the current-
form input is strongly nonlinear. In such model the memristor is seen as the series
between a low resistance associated with the conductive layer of the nano-film and
Simmons’ electron tunneling barrier [36], whose width is chosen as the system state.
A PSpice version of Pickett’s model was presented in [37].

More recently Kvatinski developed a simplified version of the Pickett’s model
[13] and named it as ThrEshold Adaptive Memristor (TEAM) model [14]. In
such model for input current magnitude below a certain adaptable threshold no
state change occurs, otherwise the state evolution rule may be tuned to the
memristor element under modeling through specification of an appropriate set of
control parameters and of suitable window and memristance functions. The PSpice
architecture of the TEAM model is similar to the one originally presented in [11].

Another activation-type state model, where the state variable expresses the
memristance and the control signal is in voltage form, embedded in the PSpice
software program [38], enabled to capture the adaptive behavior of a unicellular
organism named amoeba through a simple memristor-based oscillator [39].

Another interesting model with threshold-activated state dynamics was proposed
in [40] to explain Spike-Timing-Dependent-Plasticity (STDP) in neural synapses.
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Most of these PSpice models have been classified in [41]. Another insightful
discussion on the models available in the literature was recently published in
[42], where a novel model inspired from Simmons’ electron tunneling theory [36],
endowed with programming threshold capability and PSpice circuit implementa-
tion, was also proposed.

The Boundary Condition Memristor (BCM) model is a simple yet accurate
boundary condition-based mathematical model for memristor nano-structures made
up of two layers with different conductivity levels, whose longitudinal extensions
depend on the time history of the input. In comparison with the classical BCM
model [12], the generalized version [21] is augmented with programming threshold
capability [42], i.e. with tunable nonvolatile behavior.

Recently, in [43], assuming Pickett’s model [13] as reference for comparison,
various memristor models, including Biolek’s, the TEAM and the BCM models,
were first compared on the basis of the ability to reproduce (after an optimization
process) the dynamics of the reference model in a particular simulation scenario,
and secondly employed in a couple of memristor-based circuits to investigate the
variance in the nonlinear dynamical behaviors they give rise to. The latter study
revealed the model-dependency of the dynamics of memristor-based circuits, and
thus raised a warning against a blind faith in the memristor models and pointed
out the necessity to develop a universal mathematical model for exploring the full
potential of the memristor and unfolding its unique properties.

Section 13.3 describes the recently proposed generalized BCM model and its
PSpice-based circuit [21] (the PSpice emulator of the classical BCM model is
reported in [44]).

13.3 Generalized BCM model and Its Circuit
Implementation

Let Ron and Ro f f stand for the on and off resistances of a memristor nano-film.
The memristor state variable x is chosen as the length w(t) of the conductive layer
of the nano-film normalized with respect to the entire longitudinal extension D of
the nano-film (i.e. x = w(t)

D ∈ [0,1]). Denoting memristor current and voltage as i
and v, respectively, the state-dependent input–output algebraic relationship of the
generalized BCM model is expressed by

i(t) =W (x(t))v(t), (13.4)

where W (x(t)) describes the state-dependent memductance, expressed by

W (x(t)) =
GonGo f f

Gon −ΔGx(t)
, (13.5)

with Gon = R−1
on , Go f f = R−1

o f f , while ΔG = Gon −Go f f .



13 Memristor for Neuromorphic Applications: Models and Circuit Implementations 385

The state equation of the generalized BCM model is defined as

dx(t)
dt

= η k W (x(t))v(t) f (x(t),η v(t),vth0,vth1,vt1,vt2,a,b) , (13.6)

where k ∈ R is a constant depending on physical properties of the memristor (its
dimensions are C−1), η ∈ {−1,+1} is a coefficient denoting the polarity of the
nano-device, while f (x(t),η v(t),vth0,vth1,a,b) ∈ {0,a,b}, a switching window
function defining not only the boundary behavior but also the degree of non-
volatility [42], is expressed as

f (x,η v,vth0,vth1,vt0,vt1,a,b) =

⎧
⎨

⎩

b if C1 or C2 holds,

0 if C3 or C4 holds,

a if C5 holds,

(13.7)

where tunable conditions Cn (n = 1,2,3,4,5) are mathematically described by

C1 = { (x(t) ∈ (0,1) and ((η v(t)> vt0) or (η v(t)<−vt1)))}, (13.8)

C2 = { (x(t) = 0 and η v(t)> vth0) or (x(t) = 1 and η v(t)<−vth1)}, (13.9)

C3 = { x(t) = 0 and η v(t)≤ vth0}, (13.10)

C4 = { x(t) = 1 and η v(t)≥−vth1}, (13.11)

C5 = { (x(t) = x̄ ∈ (0,1) and ((η v(t)≤ vt0) and (η v(t)≥−vt1)))}, (13.12)

where vth0 ∈ R+, vth1 ∈ R+ represent the input thresholds at boundaries, vt0 ∈ R+,
vt1 ∈ R+ define the programmability thresholds, (vt0 ≤ vth0 and vt1 ≤ vth1), while a
and b are constants modulating the degree of non-volatility of the memristor (b ∈
R+, a ∈ R0,+, a < b).

The PSpice implementation of the generalized BCM model is depicted in
Fig. 13.1. The source code is reported in Table 13.1.

In the circuit of Fig. 13.1 voltages at nodes y and z, the two terminals of the
bipole, are, respectively, denoted as vy and vz, while v = vy − vz and i, respectively,
stand for voltage across and current through the memristor. The architecture of this
circuit realization takes inspiration from the design of Batas and Fiedler [45], which,
however, was lacking the adaptability of the boundary behavior and the tunability
of the degree of non-volatility.

The memristor state x is modeled by the voltage vθ across capacitance Cx. The
series between linear resistor Ro f f and nonlinear voltage-controlled resistor R(vθ ) =
−ΔRvθ , where ΔR = Ro f f −Ron, implements the input–output equation (13.4).

If the value of window function (13.7) were unitary at all times, as in the original
model from Williams [3], state equation (13.6) would be simply implemented by
letting memristor current i flow through linear capacitor Cx (in any case a tiny
conductance g is placed in parallel to the capacitor so as to prevent node z from
floating). However, f (vθ (t),η v(t),vth0,vth1,a,b) ∈ {0,a,b} and its behavior is
regulated by conditions C1 and C5, governing the degree of non-volatility, and by
conditions C2-C4, determining the boundary behavior.
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Fig. 13.1 PSpice implementation of the generalized BCM model. Note that Δv denotes for each
switch the width of the transition region between on and off states

Conditions (13.8) and (13.12) are implemented by nonlinearly filtering memris-
tor current i before letting it flow through capacitor Cx. This filtering consists of
performing the multiplication between a k-scaled version of memristor current i and
a nonlinear function h(v,vt0,vt1,a,b), which, under x ∈ (0,1), is responsible for the
modulation of the evolution rate of the state. In particular, under positive (negative)
input larger (smaller) than a suitable threshold vt0 (−vt1) the right-hand-side of state
equation (13.6) is multiplied by a factor (b) larger than the factor (a) by which it
is multiplied in the sub-threshold input case. Nonlinear function h(v,vt0,vt1,a,b) is
mathematically expressed by

h(v,vt0,vt1) = b+
a− b

2
(sign(v+ vt1)− sign(v− vt0)), (13.13)

Note that the multiplication between current k i and function (13.13) may be
easily implemented by letting flow through capacitor Cx one of the currents of
two complementary-activated parallel branches. One of these branches is activated
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Table 13.1 Netlist of the PSpice implementation of the generalized BCM model in Fig. 13.1

* L oca l p a r a m e t e r s :

* Ron , Roff : on and o f f r e s i s t a n c e s

* d e l t a _ R : d i f f e r e n c e between Roff and Ron

* x0 : i n i t i a l s t a t e

* v t h0 : a c t i v a t i o n t h r e s h o l d f o r x=0

* v t h1 : a c t i v a t i o n t h r e s h o l d f o r x=1

* vt0 , v t 1 : a c t i v a t i o n t h r e s h o l d s f o r 0<x<1

* Cx : c a p a c i t a n c e v a l u e

* k : m em r i s t o r cha rge s c a l i n g f a c t o r

* a , b : c o n s t a n t s m odu l a t i ng t h e deg ree o f non−v o l a t i l i t y

* d e l t a _ v : width o f t h e t r a n s i t i o n r e g i o n o f t h e s w i t c h e s
. SUBCKT BCM_MEMRISTOR 1 2 3

* node 1 : node y i n Fig . 13 . 1

* node 2 : node z i n Fig . 13 . 1

* node 3 : node t h e t a i n Fig . 13 . 1
R1 1 8 { Roff }
Vsense1 8 7 0
E1 7 2 VALUE={{− d e l t a _ R }* I ( Vsense1 )*V( 3 ) }
C1 3 0 {Cx} IC ={x0}
R3 3 0 1G
Vsense2 10 0 1
G1 0 3 VALUE={k*Cx* I ( Vsense1 )*V( 1 0 ) * h (V(1)−V( 2 ) , vt0 , vt1 , a , b )}
S1 3 9 1 2 SMODRH
S2 9 4 3 0 SMODCH
S3 3 6 1 2 SMODRL
S4 6 5 3 0 SMODCL
Vl 5 0 0
Vu 4 0 1
.MODEL SMODRH VSWITCH Roff =1G Von={−v t h1 } Voff={−vth1−d e l t a _ v }
.MODEL SMODCH VSWITCH Roff =1G Voff ={1− d e l t a _ v } Von={1}
.MODEL SMODRL VSWITCH Roff =1G Von={ v t h0 } Voff ={ v t h0 + d e l t a _ v }
.MODEL SMODCL VSWITCH Roff =1G Voff = d e l t a _ v Von=0
. func h ( v , v0 , v1 , a , b )={ b +( a−b ) / 2 *SGN( v+v1 )−( a−b ) / 2 *SGN( v−v0 )}
. ENDS

through a voltage-controlled voltage-switch for v > vt0 or v < −vt1 and carries
a current equal to k b i . The other branch is activated through another voltage-
controlled voltage-switch for v≤ vt0 and v≥−vt1 and carries a current equal to k a i .

Boundary conditions (13.9)–(13.11) are modeled by two reference voltage
sources, i.e. vL = 0 and vU = 1, respectively, denoting the lower and upper limits
of capacitor voltage vθ (hence the use of letter L or U as subscript of symbol v
for the reference voltage source), and by two pairs of voltage-controlled voltage
switches, one pair for each of the two memristor state bounds vθ = 0V and vθ = 1V
(the first subscript of symbol S for a switch indicates whether it refers to the lower
or upper state bound, hence letter L or U is chosen). Within each pair of switches,
the clipping switch is controlled by capacitor voltage vθ , while the release switch is
controlled by input voltage v (the second subscript of symbol S for a switch hints
at whether it models the exit from or the entrance into condition C2 expressed by
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(13.9), i.e. the clipping or release event, hence letter C or R is chosen). Basically,
for each state bound, node θ is connected to a reference voltage source through
the series between the output resistances of the corresponding pair of clipping and
release switches. With regard to the upper (lower) state bound, the relative clipping
switch remains open, i.e. in the off state, as long as the memristor state keeps below
the unitary (above the zero) value. In this case, due to the large output resistance
of the clipping switch, reference voltage source vU (vL) is unable to constrain the
voltage at node θ , irrespective of the behavior of the release switch. However, the
clipping switch turns into on state in case vθ approaches its upper (lower) bound
in its ascent (descent). When this occurs, the associated release switch is always
closed, i.e. in the on state, thus allowing the memristor state to be clipped at the
upper (lower) bound. Only with memristor state vθ clipped to +1V (0V ), do the
dynamics of the release switch become relevant: this switch turns into off state in
case the input voltage v goes below (above) a certain adaptable negative (positive)
threshold voltage −vth1 (vth0), thus enabling the memristor state to be released from
the upper (lower) bound.

Note that it is possible to develop a more realistic implementation of the
PSpice circuit of Fig. 13.1 by replacing the voltage-controlled voltage switches with
suitable combinations of Complementary-Metal-Oxide-Semiconductor (CMOS)
transistors.

13.4 Case Study: Neuromorphic Applications

This section uses the PSpice circuit of the generalized BCM model to model
dynamics typical of biological neural networks. One of the most natural ways in
which neurons strengthen their synaptic connections is by sending signals to each
other at the same time. This primitive form of neural learning is named Hebbian rule
[23]. In order to demonstrate that the circuit of Fig. 13.1 does indeed favor Hebbian-
based associative learning, we set up a transient simulation (with time step equal to
0.1ms, initial and final time, respectively, fixed to 0s and 1.4s) in which we excite
nodes y and z with pulses of magnitude, let us call it vp, equal to −1V and +1V ,
respectively, width, let us name it Δ tp, of value 10ms, rise and fall time 1ms and
period 10s (i.e. larger than the simulation final time). The time delay of the pulse
exciting node y (i.e. the post-synaptic signal), let us name it td,pos, was swept in
steps of 0.1ms from 0.975s to 1.025s, while that of the pulse exciting node z (i.e.
the pre-synaptic signal), let us name it td,pre, was chosen as 1s.

The memristor under modeling is a nano-structure of the kind discussed in
Sect. 13.3, therefore k = μ Ron

D2 . The BCM parameters were specified as fol-
lows: Ron = 526.3158Ω , Ro f f = 18182Ω , vθ (0) = 1V , D = 10nm, μ = 1e −
10−14 m2 V−1 s−1 (therefore k = 52631.58C−1), and Cx = 50 μF . The activation
threshold voltages at the boundaries (used in conditions (13.9–13.11)) and those
within the boundaries (used in conditions (13.8) and (13.12)) are set to vth0 = vth1 =
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Fig. 13.2 Demonstration of Hebbian-based associative learning under partial temporal overlap
between pre- and post-synaptic signals (Δtd = 0.0049s). Top plot: Pre- and post-synaptic pulses.
Middle plot: Memristor voltage (negative activation thresholds are shown with dotted lines).
Bottom plot: Memristor state

1.1V and to vt0 = vt1 = 1.1V , respectively. The parameters modulating the degree
of non-volatility are set to a = 0 and b = 5. The width of the transition region of the
switches is set to Δv = 0.1V .

Figure 13.2 shows for td,pos = 1.0049s the pulse waveforms at nodes y and z, i.e.
vy = vpos and vz = vpre, the voltage across the memristor, i.e. v = vy − vz, and the
memristor state, modeled by capacitor voltage vθ in the PSpice circuit of Fig. 13.1.
In this case the post- and pre-synaptic pulses overlap in time. The difference between
the time delays of such pulses, defined as Δ td = td,pos − td,pre, is 0.0049s. Only
within the overlapping time window is the memristor voltage below the negative
activation threshold referring to upper boundary vθ = 1V , i.e. −vth1 (and, since
vth1 ≥ vt1, also below the negative activation threshold within the boundaries, i.e.
−vt1) and, as a result, does the memristor state decrease from its initial unitary value.
As Fig. 13.3 demonstrates, the change in memristor state Δvtheta = vtheta − vtheta(0)
is more significant as the overlapping time window gets larger, i.e. as the magnitude
of Δ td gets smaller. The maximum of the absolute value of Δvtheta occurs in fact
when the two pulses completely overlap in time, i.e. when tpos = 1s, implying Δ td =
0s.
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13.5 A Novel Class of Passive Memristor Circuits

This section shall introduce a novel class of memristor systems. Each element from
the class is an electrical circuit employing only purely passive components from
circuit theory (diodes and linear capacitors, inductors and resistors).

Each of the circuits from the class to be presented shall be characterized by
a system of differential-algebraic equations of the kind given in (13.2)–(13.3).
Section 13.5.1 is devoted to the presentation of the core block of each element
from the novel class of memristor systems, i.e. a switching two-port based upon
the Graëtz diode bridge.

13.5.1 The Graëtz Diode Bridge

Let us consider the full-wave rectifier shown in Fig. 13.4. It is a two-port where vi

and ii, respectively, denote input voltage and current, while vo and io, respectively,
refer to output voltage and current.

The voltage across and the current through diode D j are, respectively, expressed
as v j and i j, where j = {1,2,3,4}. Let us identify the constraints upon voltages and
currents of the two-port. These constraints shall play a key role in the emergence
of memristor behavior in the circuits from the class to be presented. Application of
Kirchhoff’s Current Law (KCL) to the input and output port, respectively, yields

ii = i1 − i4, (13.14)

ii = i3 − i2, (13.15)

io = i1 + i2. (13.16)
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Combining (13.14) and (13.15) yields

i1 + i2 = i3 + i4. (13.17)

Applying Kirchhoff’s Voltage Law (KVL) to the input and output port gives

vi = v1 − v2, (13.18)

vi = v3 − v4, (13.19)

vo = −v1 − v4. (13.20)

Combination of (13.18)–(13.19) results into

v1 + v4 = v2 + v3. (13.21)

Assuming perfectly matched diodes, we express i j = i j(v j), where j =

{1,2,3,4}, as i j = IS
(
exp
(
v j n−1 V−1

T

)− 1
)
, where IS symbolizes the saturation

current,VT =KTq−1 stands for the thermal voltage and n is the emission coefficient,
where K = 1.38 ·10−23 J K−1 is the Boltzmann’s constant, T represents the absolute
temperature, and q = 1.6 ·10−19C refers to the elementary electronic charge.

Defining y j = exp
(
v j n−1V−1

T

)
, (13.17) and (13.21) may be recast as

y1 + y2 = y3 + y4, (13.22)

y1 y4 = y2 y3. (13.23)

Solving (13.22) for y1 and inserting the resulting expression into (13.23) gives:

y2
4 +(y3 − y2)y4 − y2y3 = 0,

from which, given the sign of y4, the only acceptable solution is y4 = y2. Using
(13.22), we also have y1 = y3. Recalling the definition of y j, we then have v4 = v2

and v1 = v3. Note that these two voltage constraints, each involving one pair of
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parallel diodes, represent the key mechanism at the origin of the memristor behavior
of the circuits to be proposed. Recalling the current-voltage relationship for a diode
it follows that i4 = i2 and i1 = i3.

Equations (13.14) and (13.18) for input port current and voltage and (13.16) and
(13.20) for output port current and voltage may thus be recasted as

ii = i1 − i2, (13.24)

vi = v1 − v2, (13.25)

io = i1 + i2, (13.26)

vo = −v1 − v2. (13.27)

Equations (13.24)–(13.27) represent the four bridge constraints. Let us present
the novel class of memristor electronic systems.

13.5.2 Classification and Properties

Each element from the proposed class is characterized by the following
properties:

1. The switching two-port of Sect. 13.5.1 is cascaded with a suitable nth-order
dynamical one-port employing n linear dynamical elements (capacitors or
inductors) and, not necessarily though, some linear resistor.

2. The input voltage vi and current ii of the bridge, taken in any prescribed order,
denotes input and output of the memristor element.

3. Either the output voltage vo or the output current io of the bridge denotes one of
the n state variables of the memristor element. In the first (latter) case the linear
dynamical one-port contains a capacitor (an inductor) with voltage vo across it
(current io through it).

The first and third properties constrain the set of one-port topologies which may be
chosen as load to the Graëtz diode bridge.

Remark 1. The elements from the novel class, one of which was recently presented
in [46], represent the first-ever circuit implementations of memristor systems
employing only diodes and linear inductors, capacitors and resistors. This discovery
contradicts common expectations according to which memristor behavior may not
arise out of elementary circuits comprising solely purely passive components known
in circuit theory before the advent of the memristor.

The novel class of memristor electronic systems may be split into two sub-
classes, respectively, comprising voltage-controlled and current-controlled systems,
i.e. systems where the input, respectively, is voltage vi and current ii (and thus the
output, respectively, is ii and vi). The first sub-class is dealt with in Sect. 13.5.3,
while the reader may derive the second class by duality. Within each of such sub-
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classes, two further sub-classes shall be identified, respectively comprising voltage-
state and current-state systems, i.e. systems where one of the states respectively
is voltage vo and current io. Such systems shall be presented in Sects. 13.5.3.1
and 13.5.3.2, respectively.

13.5.3 Voltage-Controlled Systems

The input and output to each of these systems, respectively, are vi and ii. Let us
present the two sub-classes a circuit of this kind may belong to.

13.5.3.1 Voltage-Controlled Voltage-State Systems

For these systems one of the states is vo. The most appropriate representation of the
two-port of Fig. 13.4 for the synthesis of such systems is the current-voltage form.
Let us derive it. Solving (13.25)–(13.27) for v1 and v2 yields

v1 =
vi − vo

2
, (13.28)

v2 = −vi + vo

2
. (13.29)

Recalling the current-voltage relationship for a diode and using (13.28)–(13.29)
into (13.24) and (13.26), the current-voltage representation of the two-port of
Fig. 13.4 is found to be:

ii = 2IS exp

(

− vo

2nVT

)

sinh

(
vi

2nVT

)

, (13.30)

io = 2IS exp

(

− vo

2nVT

)

cosh

(
vi

2nVT

)

− 2IS. (13.31)

Equation (13.30) may be recast as

ii = g(vo,vi)vi, (13.32)

with g(·, ·) expressed by

g(vo,vi) =
IS

nVT
exp

(

− vo

2nVT

) ∞

∑
k=0

(
vi

2nVT

)2k

(2k+ 1)!
, (13.33)
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where we used the Taylor series expansion of the hyperbolic sine [47]. From (13.32)
it follows that any time vi = 0, then ii = 0 and vice versa. This is the so-called
zero crossing property, typical of a memristor system [2]. Equation (13.32) models
the input–output relation of the voltage-controlled voltage-state circuits, whose
memductance function is expressed by (13.33).

The state equation of the elements from this class depends on the particular
linear dynamic one-port chosen as load to the full-wave rectifier. After choosing
a particular one-port topology (making sure it contains a capacitor with voltage
vo across it), the constitutive equations of the dynamical elements within the one-
port are then written down. Then, inserting (13.31) into these constitutive equations
yields the state equations of a voltage-controlled voltage-state system. Let us
present examples of first- and second-order circuits of this kind, deriving their state
equations.

• First-order circuit

With regard to a first-order case, let us close the output port of the diode bridge
onto the parallel combination of a capacitor of value C and of a resistor of value R
(see Fig. 13.5a). Inserting (13.31) into the constitutive equation of the capacitor, i.e.
io − vo

R =C dvo
dt , the state equation of the resulting system is found to be

dvo

dt
=

2IS

C
exp

(

− vo

2nVT

)

cosh

(
vi

2nVT

)

− 2IS

C
− vo

RC
, (13.34)

where vo denotes the state of the system. This first-order voltage-controlled voltage-
state memristor circuit is modeled by (13.32) and (13.34).

• Second-order circuit

Let us introduce a second-order example. Let the two-port be cascaded with the
second-order one-port of Fig. 13.5b, which is an inductor L-capacitor C parallel
circuit augmented with the series resistance R of the inductor and characterized

by a resonance frequency expressed by ωo =

√
1

LC − (R
L

)2
. Choosing vo and iL,

the current through the inductor, as the states of the system, writing down the
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constitutive equations of the dynamical elements of the one-port, and using (13.31)
into them, the following state equations are finally obtained:

d
dt

[
vo

iL

]

=

[
− 1

C iL +
2IS
C exp

(
− vo

2nVT

)
cosh

(
vi

2nVT

)
− 2IS

C
1
L (vo −RiL)

]

. (13.35)

In conclusion, (13.32) and (13.35) define this second-order voltage-controlled
voltage-state memristor circuit.

13.5.3.2 Voltage-Controlled Current-State Systems

For these systems one of the states is io. The use of the inverse hybrid representation
of the two-port of Fig. 13.4 is the most appropriate for the synthesis of these
elements. Let us derive such representation. Rearranging (13.31), we have:

2IS exp

(

− vo

2nVT

)

=
(io + 2IS)

cosh
(

vi
2nVT

) . (13.36)

Using (13.36) into (13.30) and extracting from (13.36) an expression for vo as
function of vi and ii, the inverse hybrid representation of the two-port turns out to be

ii = (io + 2IS)
sinh

(
vi

2nVT

)

cosh
(

vi
2nVT

) , (13.37)

vo = −2nVT ln

⎛

⎝ io + 2IS

2IS cosh
(

vi
2nVT

)

⎞

⎠ . (13.38)

Equation (13.37) may be recast as

ii = g(io,vi)vi, (13.39)

with g(·, ·) given by

g(io,vi) =
(io + 2IS)

2nVT

∑∞
k=0

(
vi

2nVT

)2k

(2k+1)!

∑∞
k=0

(
vi

2nVT

)2k

(2k)!

, (13.40)

where we used the Taylor series expansions of the hyperbolic sine and cosine [47].
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From (13.39) we deduce that vi = 0 implies ii = 0 and viceversa. Equation (13.39)
defines the input–output relation of the voltage-controlled current-state circuits,
whose memductance function is modeled by (13.40).

The state equation of the elements from this class depends on the particular
linear dynamic one-port chosen as load to the full-wave rectifier. After choosing
a particular one-port topology (making sure it contains an inductor with current
io through it), the state equations of a voltage-controlled current-state circuit are
obtained by inserting (13.38) into the constitutive equations of capacitors and
inductors of the one-port. Let us describe examples of first- and second-order
circuits of this kind and determine their state equations.

• First-order circuit

With regard to a first-order case study, the series combination between an inductor L
and a resistor R, as given in Fig. 13.6a, is taken as the load of the switching network
of Fig. 13.4. Inserting (13.38) into the constitutive equation of the inductor, i.e. vo −
Rio = L dio

dt , yields the following state equation:

dio
dt

=−2nVT

L
ln

⎛

⎝ io + 2IS

2IS cosh
(

vi
2nVT

)

⎞

⎠− R
L

io, (13.41)

where io denotes the state of the system. In conclusion, (13.39) and (13.41) define
this first-order voltage-controlled current-state memristor circuit.

• Second-order circuit

With regard to a second-order example, let us close the output port of the full-wave
rectifier of Fig. 13.4 onto the inductor L-capacitor C series circuit augmented with
the parallel resistance R of the capacitor. The resonance frequency of such second-

order one-port, shown in Fig. 13.6b, is expressed by ωo =

√
1

LC − ( 1
RC

)2
. Writing
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Fig. 13.7 A second-order voltage-controlled current-state memristor element from the proposed
class. The element is driven by input voltage source vi

down the constitutive equations of the dynamic elements of the one-port and the
inserting (13.38) into them, the state equations are found to be:

d
dt

[
v
io

]

=

⎡

⎢
⎣

1
C

(
io − v

R

)

− 1
L v− 2nVT

L ln

(
io+2IS

2IS cosh
(

vi
2nVT

)

)
⎤

⎥
⎦ , (13.42)

where v, the voltage across the capacitor, and io denote the states of the system.
In conclusion, the defining equations of this second-order voltage-controlled

current-state memristor circuit are (13.39) and (13.42).

13.5.4 Simulation Results

With reference to the voltage-controlled current-state second-order memristor
circuit of Fig. 13.7 [46], making use of the diode bridge of Fig. 13.4 loaded by
the second-order one-port shown in Fig. 13.6b and discussed in Sect. 13.5.3.2,
the system state is expressed as x = [x1 x2]

′, where state variables are defined as
x1 = v(VT )

−1 and x2 = io (IS)
−1. Further system input and output are chosen as

u= vi (VT )
−1 and y = ii (IS)

−1 respectively, and dimensionless time variable is taken
as τ = t (t0)−1, where t0 = 2π (ω0)

−1 stands for the time normalization factor and ω0

is the resonant frequency of the one-port of Fig. 13.6b, which we previously defined.
After some algebraic manipulation we get:

dx
dτ

=

⎡

⎣
β (x2 −αx1)

γ
(

−x1 − 2n ln

(
x2+2

2cosh( u
2n)

))
⎤

⎦ (13.43)
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Fig. 13.8 Time waveforms of current ii (red signal) and voltage vi (blue signal) under sinusoidal
excitation with vio = 1.75V and fi = 10Hz. The dimensionless input period m−1 is divided into 4
intervals, numbered from 1 to 4, separating zeros, minimum and maximum of the voltage waveform

y = (x2 + 2)
sinh

(
u
2n

)

cosh
(

u
2n

) (13.44)

where α = VT
RIS

, β = t0IS
CVT

and γ = t0VT
LIS

are dimensionless parameters. The Matlab
software environment [48] was used for the numerical integration of the mathemati-
cal model of the memristor circuit of Fig. 13.7, i.e. (13.43)–(13.44), for a sine-wave
input source with amplitude vio = 1.75V and varying frequency fi, expressed as
vi = vi0 sin(2π fit), which yields u = ui0 sin(2πmτ), where uio = vio (VT )

−1 and m =
fi t0 denotes the dimensionless input frequency. The values of the circuit components
were set to R= 1.5kΩ , C = 4 μF , and L = 2.5 μH. The values for saturation current
IS and emission coefficient n of the four matched diodes were respectively taken as
2.682 · 10−9 and 1.836, i.e. as in the case of standard diode D1N4148. The initial
conditions of the voltage across the capacitor and of the current through the inductor
are respectively chosen as v(0) = 0.01V and iL(0) = 0.01A. Ordinary differential
equation solver ode15s [48] was employed to integrate (13.43)–(13.44) from τ = 0
up to τ equal to 10 times the dimensionless input period m−1 = f−1

i t−1
0 . Under

such parameter setting, letting the input frequency fi = 10Hz, the time evolutions
of voltage vi and current ii are depicted in Fig. 13.8, from which it is evident
that voltage and current exhibit zeros at the same instants but have misaligned
maxima and minima. As a result, the circuit of Fig. 13.7 manifests the typical
pinched hysteretic current-voltage loop characterizing memristor systems, as it is
shown in Fig. 13.9 (black bow-tie). With reference to Fig. 13.8, note that over each
normalized period m−1 the maximum and minimum of the current always occur
before the maximum and minimum of the voltage. As a result, following the path



13 Memristor for Neuromorphic Applications: Models and Circuit Implementations 399

vi

i i

'

10Hz

100Hz

1000Hz

1

3

4

2

−2
−2

−1.5 −0.5 0 0.5 1 1.5 2

2
x 10−3

1

0

−1

−1

Fig. 13.9 Current ii-voltage
vi bow-ties under sinusoidal
excitation with vio = 1.75V
and fi, respectively, equal to
10Hz (black loop), 100Hz
(red loop), and 1000Hz (blue
loop). Brown arrows,
mapping one-to-one with
time intervals 1-4 in Fig. 13.8,
show the non-self-crossing
property of the ii-vi loop for
fi = 10Hz (note that this
property is exhibited by the
other loops as well)

drawn by the trajectory point on the ii-vi plane in one period, as indicated by the
four consecutively numbered brown arrows in Fig. 13.9 (corresponding to the four
intervals in which the period is divided in Fig. 13.8), it may be realized that the loop
is non-self-crossing, i.e. it is of type II, according to the definition given by Biolek
in [49]. With reference to Fig. 13.7, the voltages across the bridge diodes may be
expressed as

v1 = v3 = nVT ln

(
x2 + 2

2 cosh
(− u

2n

)
exp
(− u

2n

)

)

,

v2 = v4 = v1 − vi. (13.45)

Figure 13.10 shows the time dependence of v1 and v2 in the simulation of
Fig. 13.8.

Sweeping frequency above 10Hz, the lobes of the loop get increasingly squeezed
(while stretching along the ii axis), as it is demonstrated in Fig. 13.9, where the
red and blue bow-ties respectively refer to an input frequency fi set to 100Hz and
1000Hz. Note that these other two loops also are of type II.

It is worth pointing out that at infinite frequency, when the inductor and the
capacitor respectively are an open and a short circuit, the electronic system of
Fig. 13.7 behaves as a nonlinear resistor. Furthermore, sweeping frequency below
10Hz also yields a gradual flattening of the loop lobes. Finally, bear in mind that
nonlinearly resistive behavior also arises at direct current (dc), when the inductor
and the capacitor respectively are a short and an open circuit.

An experimental proof for the occurrence of memristor behavior in the circuit of
Fig. 13.7 is reported in [50].
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13.6 Conclusions

After a brief review of the memristor models available in the literature, this paper
describes the PSpice-based implementation of the generalized Boundary Condition
Memristor (BCM) model, which stands out over the other models thanks to the
adaptability of the boundary behavior and to the tunability of the non-volatility
degree. The first part of the paper ends with a case study where the use of the PSpice
emulator sheds light into the synapse-like behavior of the memristor. Such circuit
implementation of the generalized BCM model may be of great help to researchers
willing to investigate in the user-friendly PSpice environment the extraordinary
opportunities memristors offer in integrated circuit design.

The second part of the paper introduces a class of purely passive circuits,
each made up of a nonlinear static two-port (a full-wave rectifier employing a
four diode bridge) cascaded with a linear dynamic one-port (employing standard
linear components from circuit theory, namely resistors, inductors and capacitors).
The state equations of these circuits fall into the class of memristor systems, as
originally formulated by Chua and Kang in 1976 [2]. This manuscript presents
voltage-controlled elements from the proposed class. Dual memristor emulators
with current-control may be derived in a similar manner [50]. These novel circuits
may be used to introduce the undergraduate students to the concept of memory
systems [51, 52]. In conclusion, it is important to note that all the novel memristor
circuits proposed in this manuscript are volatile. However, we conjecture that non-
volatility could be attained by inserting active elements into the one-port loading the
diode bridge. This shall be the topic of future studies, where we aim at increasing
the complexity of the circuits presented in this manuscript so as to model memristor
systems within the Hodgkin-Huxley neuron [53].
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