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Preface

Since 2007, when Stanley Williams and his team at HP Labs constructed a
nanoelectronic device [1] showing certain fingerprints of a memristor, there has
been a resurgence of research activities in developing elements of electronic circuits
and analyzing physical systems exhibiting those fingerprints. The existence of a
memristor (for MEMory ResISTOR) as a fourth basic circuit element relating flux-
linkage to charge had been postulated by Chua [2] in 1971. A memristor behaves
like a nonlinear resistor with memory depending on the past history of the current
or voltage in the device. An extension of the notion to memristive systems [3] was
given by Chua and Kang (1976) allowing that these systems depend additionally
on a state. In 2009, Ventra et al. [4] claimed that these resistive elements belong
to a larger class of memory circuit elements including capacitive and inductive
systems. Recently, Chua proposed to denote memristive systems as memristors as
well, while a circuit element classified according to the original definition can be
regarded as an ideal memristor. Since circuits and systems with memristors exhibit
several different nonlinear phenomena, these elements are considered not only for
the development of memory technology but moreover for playing an important role
in the development of new nonlinear information processing methods and their
implementation in hardware embodiments. Especially, major efforts will be made to
develop neuromorphic memristor technology to build complex brain-like computing
structures in the future.

This book aims at providing a comprehensive overview of major memristor
aspects. It includes memristor fundamentals, models, and their simulation, the
theory of memristor circuits, an overview of devices developed recently, logic gates,
neuromorphic systems, and applications. I am pleased to have contributions from
renowned technical and scientific experts who ensure to make this volume a useful
source for readers outside the field as well as for those inside. The book should
be helpful in getting a broad state-of-the-art overview, a deeper insight into the
theory of memristors and into the technology. It will be interesting for graduate
students and specialists in engineering, physics, neuroscience, biology, and applied
mathematics. The content of this book has been organized around four major parts.
While fundamentals of memristor theory and the discovery of the so-called HP
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memristor are summarized in Part I, computational models, simulation, and an
application of the Volterra series approach to multi memristor circuits are discussed
in Part II. Part III gives a state-of-the-art overview of memristor devices including
applications and, finally, Part IV addresses logic circuits and neuromorphic systems.
I hope this book will contribute to future technology.

I would like to express my appreciation and sincere thanks to all authors and
especially to Leon Chua for his valuable comments.

Dresden, Germany Ronald Tetzlaff
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Chapter 1
How We Found the Missing Memristor

R. Stanley Williams

1.1 The Memristor—the Functional Equivalent
of a Synapse—Could Revolutionize Circuit Design

It’s time to stop shrinking. Moore’s Law, the semiconductor industry’s obsession
with the shrinking of transistors and their commensurate steady doubling on a chip
about every 2 years, has been the source of a 50-year technical and economic
revolution. Whether this scaling paradigm lasts for 5 more years or 15, it will
eventually come to an end. The emphasis in electronics design will have to shift
to devices that are not just increasingly infinitesimal but increasingly capable.

Earlier this year, I and my colleagues at Hewlett-Packard Labs, in Palo Alto,
Calif., surprised the electronics community with a fascinating candidate for such a
device: the memristor. It had been theorized nearly 40 years ago, but because no one
had managed to build one, it had long since become an esoteric curiosity. That all
changed on 1 May, when my group published the details of the memristor in Nature.

Combined with transistors in a hybrid chip, memristors could radically improve
the performance of digital circuits without shrinking transistors. Using transistors
more efficiently could in turn give us another decade, at least, of Moore’s Law
performance improvement, without requiring the costly and increasingly difficult
doublings of transistor density on chips. In the end, memristors might even become
the cornerstone of new analog circuits that compute using an architecture much like
that of the brain (Fig. 1.1).

For nearly 150 years, the known fundamental passive circuit elements were
limited to the capacitor (discovered in 1745), the resistor (1827), and the inductor
(1831). Then, in a brilliant but underappreciated 1971 paper, Leon Chua, a professor
of electrical engineering at the University of California, Berkeley, predicted the

R.S. Williams (�)
Hewlett-Packard Laboratories, Palo Alto, CA, USA
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R. Tetzlaff (ed.), Memristors and Memristive Systems,
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4 R.S. Williams

Fig. 1.1 Thinking Machine: This artist’s conception shows a stack of multiple crossbar arrays,
of memristors. Because memristors behave functionally like synapses, replacing a few transistors
in a circuit with memristors could lead to analog circuits that can think like a human brain. Image:
bryan christie design



1 How We Found the Missing Memristor 5

existence of a fourth fundamental device, which he called a memristor. He proved
that memristor behavior could not be duplicated by any circuit built using only the
other three elements, which is why the memristor is truly fundamental.

Memristor is a contraction of “memory resistor,” because that is exactly its
function: to remember its history. A memristor is a two-terminal device whose
resistance depends on the magnitude and polarity of the voltage applied to it and
the length of time that voltage has been applied. When you turn off the voltage, the
memristor remembers its most recent resistance until the next time you turn it on,
whether that happens a day later or a year later (Fig. 1.2).

Think of a resistor as a pipe through which water flows. The water is electric
charge. The resistor’s obstruction of the flow of charge is comparable to the diameter
of the pipe: the narrower the pipe, the greater the resistance. For the history of circuit
design, resistors have had a fixed pipe diameter. But a memristor is a pipe that
changes diameter with the amount and direction of water that flows through it. If
water flows through this pipe in one direction, it expands (becoming less resistive).
But send the water in the opposite direction and the pipe shrinks (becoming more
resistive). Further, the memristor remembers its diameter when water last went
through. Turn off the flow and the diameter of the pipe “freezes” until the water
is turned back on.

That freezing property suits memristors brilliantly for computer memory. The
ability to indefinitely store resistance values means that a memristor can be used as
a nonvolatile memory. That might not sound like very much, but go ahead and pop
the battery out of your laptop, right now—no saving, no quitting, nothing. You’d
lose your work, of course. But if your laptop were built using a memory based
on memristors, when you popped the battery back in, your screen would return to
life with everything exactly as you left it: no lengthy reboot, no half-dozen auto-
recovered files.

But the memristor’s potential goes far beyond instant-on computers to embrace
one of the grandest technology challenges: mimicking the functions of a brain.
Within a decade, memristors could let us emulate, instead of merely simulate,
networks of neurons and synapses. Many research groups have been working toward
a brain in silico: IBM’s Blue Brain project, Howard Hughes Medical Institute’s
Janelia Farm, and Harvard’s Center for Brain Science are just three. However, even
a mouse brain simulation in real time involves solving an astronomical number of
coupled partial differential equations. A digital computer capable of coping with
this staggering workload would need to be the size of a small city, and powering it
would require several dedicated nuclear power plants.

Memristors can be made extremely small, and they function like synapses. Using
them, we will be able to build analog electronic circuits that could fit in a shoebox
and function according to the same physical principles as a brain.

A hybrid circuit—containing many connected memristors and transistors—could
help us research actual brain function and disorders. Such a circuit might even lead
to machines that can recognize patterns the way humans can, in those critical ways
computers can’t—for example, picking a particular face out of a crowd even if it has
changed significantly since our last memory of it.



6 R.S. Williams

Fig. 1.2 Picturing Memristance: HP Labs senior fellow R. Stanley Williams [left] and research
physicist Duncan Stewart [right] explain the fourth fundamental circuit element. Williams worked
with nearly 100 scientists and engineers to find the memristor. Photo: Paul Sakuma/AP Photo

The story of the memristor is truly one for the history books. When Leon
Chua, now an IEEE Fellow, wrote his seminal paper predicting the memristor, he
was a newly minted and rapidly rising professor at UC Berkeley. Chua had been
fighting for years against what he considered the arbitrary restriction of electronic
circuit theory to linear systems. He was convinced that nonlinear electronics had
much more potential than the linear circuits that dominate electronics technology to
this day.

Chua discovered a missing link in the pairwise mathematical equations that
relate the four circuit quantities—charge, current, voltage, and magnetic flux—to
one another. These can be related in six ways. Two are connected through the
basic physical laws of electricity and magnetism, and three are related by the
known circuit elements: resistors connect voltage and current, inductors connect
flux and current, and capacitors connect voltage and charge. But one equation is
missing from this group: the relationship between charge moving through a circuit
and the magnetic flux surrounded by that circuit—or more subtly, a mathematical
doppelgänger defined by Faradays Law as the time integral of the voltage across the
circuit. This distinction is the crux of a raging Internet debate about the legitimacy
of our memristor (see Sect. 1.2, “Resistance to Memristance”).

Chua’s memristor was a purely mathematical construct that had more than one
physical realization. What does that mean? Consider a battery and a transformer.
Both provide identical voltages—for example, 12 volts of direct current—but they
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do so by entirely different mechanisms: the battery by a chemical reaction going on
inside the cell and the transformer by taking a 110V ac input, stepping that down to
12V ac, and then transforming that into 12V dc. The end result is mathematically
identical—both will run an electric shaver or a cellphone, but the physical source of
that 12V is completely different.

Conceptually, it was easy to grasp how electric charge could couple to magnetic
flux, but there was no obvious physical interaction between charge and the integral
over the voltage.

Chua demonstrated mathematically that his hypothetical device would provide a
relationship between flux and charge similar to what a nonlinear resistor provides
between voltage and current. In practice, that would mean the device’s resistance
would vary according to the amount of charge that passed through it. And it would
remember that resistance value even after the current was turned off. He also noticed
something else—that this behavior reminded him of the way synapses function in
a brain.

Even before Chua had his eureka moment, however, many researchers were
reporting what they called “anomalous” current-voltage behavior in the micrometer-
scale devices they had built out of unconventional materials, like polymers and metal
oxides. But the idiosyncrasies were usually ascribed to some mystery electrochem-
ical reaction, electrical breakdown, or other spurious phenomenon attributed to the
high voltages that researchers were applying to their devices.

As it turns out, a great many of these reports were unrecognized examples of
memristance. After Chua theorized the memristor out of the mathematical ether, it
took another 35 years for us to intentionally build the device at HP Labs (Fig. 1.3),
and we only really understood the device about 2 years ago. So what took us so
long?

It’s all about scale. We now know that memristance is an intrinsic property of
any electronic circuit. Its existence could have been deduced by Gustav Kirchhoff
or by James Clerk Maxwell, if either had considered nonlinear circuits in the 1800s.
But the scales at which electronic devices have been built for most of the past
two centuries have prevented experimental observation of the effect. It turns out
that the influence of memristance obeys an inverse square law: memristance is a
million times as important at the nanometer scale as it is at the micrometer scale,
and it’s essentially unobservable at the millimeter scale and larger. As we build
smaller and smaller devices, memristance is becoming more noticeable and in some
cases dominant. That’s what accounts for all those strange results researchers have
described. Memristance has been hidden in plain sight all along. But in spite of all
the clues, our finding the memristor was completely serendipitous.

In 1995, I was recruited to HP Labs to start up a fundamental research group that
had been proposed by David Packard. He decided that the company had become
large enough to dedicate a research group to long-term projects that would be
protected from the immediate needs of the business units. Packard had an altruistic
vision that HP should “return knowledge to the well of fundamental science from
which HP had been withdrawing for so long.” At the same time, he understood that
long-term research could be the strategic basis for technologies and inventions that
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Fig. 1.3 Crossbar Architecture: A memristor’s structure, shown here in a scanning tunneling
microscope image, will enable dense, stable computer memories. Image: R. Stanley Williams/HP
Labs

would directly benefit HP in the future. HP gave me a budget and four researchers.
But beyond the comment that “molecular-scale electronics” would be interesting
and that we should try to have something useful in about 10 years, I was given carte
blanche to pursue any topic we wanted. We decided to take on Moore’s Law.

At the time, the dot-com bubble was still rapidly inflating its way toward
a resounding pop, and the existing semiconductor road map didn’t extend past
2010. The critical feature size for the transistors on an integrated circuit was 350
nanometers; we had a long way to go before atomic sizes would become a limitation.
And yet, the eventual end of Moore’s Law was obvious. Someday semiconductor
researchers would have to confront physics-based limits to their relentless descent
into the infinitesimal, if for no other reason than that a transistor cannot be smaller
than an atom. (Today the smallest components of transistors on integrated circuits
are roughly 45nm wide, or about 220 silicon atoms.)
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That’s when we started to hang out with Phil Kuekes, the creative force
behind the Teramac (tera-operation-per-second multiarchitecture computer)—an
experimental supercomputer built at HP Labs primarily from defective parts, just
to show it could be done. He gave us the idea to build an architecture that would
work even if a substantial number of the individual devices in the circuit were
dead on arrival. We didn’t know what those devices would be, but our goal was
electronics that would keep improving even after the devices got so small that
defective ones would become common. We ate a lot of pizza washed down with
appropriate amounts of beer and speculated about what this mystery nanodevice
would be.

We were designing something that wouldn’t even be relevant for another 10–15
years. It was possible that by then devices would have shrunk down to the molecular
scale envisioned by David Packard or perhaps even be molecules. We could think of
no better way to anticipate this than by mimicking the Teramac at the nanoscale. We
decided that the simplest abstraction of the Teramac architecture was the crossbar,
which has since become the de facto standard for nanoscale circuits because of its
simplicity, adaptability, and redundancy.

The crossbar is an array of perpendicular wires. Anywhere two wires cross, they
are connected by a switch. To connect a horizontal wire to a vertical wire at any
point on the grid, you must close the switch between them. Our idea was to open
and close these switches by applying voltages to the ends of the wires. Note that a
crossbar array is basically a storage system, with an open switch representing a zero
and a closed switch representing a one. You read the data by probing the switch with
a small voltage.

Like everything else at the nanoscale, the switches and wires of a crossbar are
bound to be plagued by at least some nonfunctional components. These components
will be only a few atoms wide, and the second law of thermodynamics ensures that
we will not be able to completely specify the position of every atom. However,
a crossbar architecture builds in redundancy by allowing you to route around any
parts of the circuit that don’t work. Because of their simplicity, crossbar arrays have
a much higher density of switches than a comparable integrated circuit based on
transistors.

But implementing such a storage system was easier said than done. Many
research groups were working on such a cross-point memory—and had been since
the 1950s. Even after 40 years of research, they had no product on the market.
Still, that didn’t stop them from trying. That’s because the potential for a truly
nanoscale crossbar memory is staggering; picture carrying around the entire Library
of Congress on a thumb drive.

One of the major impediments for prior crossbar memory research was the small
off-to-on resistance ratio of the switches (40 years of research had never produced
anything surpassing a factor of 2 or 3). By comparison, modern transistors have
an off-to-on resistance ratio of 10,000 to 1. We calculated that to get a high-
performance memory, we had to make switches with a resistance ratio of at least
1,000 to 1. In other words, in its off state, a switch had to be 1,000 times as resistive
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to the flow of current as it was in its on state. What mechanism could possibly give
a nanometer-scale device a three-orders-of-magnitude resistance ratio?

We found the answer in scanning tunneling microscopy (STM), an area of
research I had been pursuing for a decade. A tunneling microscope generates
atomic-resolution images by scanning a very sharp needle across a surface and
measuring the electric current that flows between the atoms at the tip of the needle
and the surface the needle is probing. The general rule of thumb in STM is that
moving that tip 0.1nm closer to a surface increases the tunneling current by one
order of magnitude.

We needed some similar mechanism by which we could change the effective
spacing between two wires in our crossbar by 0.3nm. If we could do that, we would
have the 1,000:1 electrical switching ratio we needed.

Our constraints were getting ridiculous. Where would we find a material that
could change its physical dimensions like that? That is how we found ourselves in
the realm of molecular electronics.

Conceptually, our device was like a tiny sandwich. Two platinum electrodes (the
intersecting wires of the crossbar junction) functioned as the “bread” on either end
of the device. We oxidized the surface of the bottom platinum wire to make an
extremely thin layer of platinum dioxide, which is highly conducting. Next, we
assembled a dense film, only one molecule thick, of specially designed switching
molecules. Over this “monolayer” we deposited a 2–3 nm layer of titanium metal,
which bonds strongly to the molecules and was intended to glue them together. The
final layer was the top platinum electrode.

The molecules were supposed to be the actual switches. We built an enormous
number of these devices, experimenting with a wide variety of exotic molecules and
configurations, including rotaxanes, special switching molecules designed by James
Heath and Fraser Stoddart at the University of California, Los Angeles. The rotaxane
is like a bead on a string, and with the right voltage, the bead slides from one end
of the string to the other, causing the electrical resistance of the molecule to rise or
fall, depending on the direction it moves. Heath and Stoddart’s devices used silicon
electrodes, and they worked, but not well enough for technological applications: the
off-to-on resistance ratio was only a factor of 10, the switching was slow, and the
devices tended to switch themselves off after 15 min.

Our platinum devices yielded results that were nothing less than frustrating.
When a switch worked, it was spectacular: our off-to-on resistance ratios shot past
the 1,000 mark, the devices switched too fast for us to even measure, and having
switched, the device’s resistance state remained stable for years (we still have some
early devices we test every now and then, and we have never seen a significant
change in resistance). But our fantastic results were inconsistent. Worse yet, the
success or failure of a device never seemed to depend on the same thing.

We had no physical model for how these devices worked. Instead of rational engi-
neering, we were reduced to performing huge numbers of Edisonian experiments,
varying one parameter at a time and attempting to hold all the rest constant. Even
our switching molecules were betraying us; it seemed like we could use anything at
all. In our desperation, we even turned to long-chain fatty acids—essentially soap—
as the molecules in our devices. There’s nothing in soap that should switch, and
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Fig. 1.4 Bow ties

yet some of the soap devices switched phenomenally. We also made control devices
with no molecule mono-layers at all. None of them switched.

We were frustrated and burned out. Here we were, in late 2002, 6 years into
our research. We had something that worked, but we couldn’t figure out why, we
couldn’t model it, and we sure couldn’t engineer it. That’s when Greg Snider, who
had worked with Kuekes on the Teramac, brought me the Chua memristor paper. “I
don’t know what you guys are building,” he told me, “but this is what I want.”

To this day, I have no idea how Greg happened to come across that paper. Few
people had read it, fewer had understood it, and fewer still had cited it. At that
point, the paper was 31 years old and apparently headed for the proverbial dustbin
of history. I wish I could say I took one look and yelled, “Eureka!” But in fact, the
paper sat on my desk for months before I even tried to read it. When I did study it, I
found the concepts and the equations unfamiliar and hard to follow. But I kept at it
because something had caught my eye, as it had Greg’s: Chua had included a graph
that looked suspiciously similar to the experimental data we were collecting.

The graph described the current–voltage (I–V) characteristics that Chua had
plotted for his memristor. Chua had called them “pinched-hysteresis loops”; we
called our I–V characteristics “bow ties.” A pinched hysteresis loop looks like a
diagonal infinity symbol with the center at the zero axis, when plotted on a graph
of current against voltage. The voltage is first increased from zero to a positive
maximum value, then decreased to a minimum negative value, and finally returned
to zero. The bow ties on our graphs were nearly identical (see Fig. 1.4).

That’s not all. The total change in the resistance we had measured in our devices
also depended on how long we applied the voltage: the longer we applied a positive
voltage, the lower the resistance until it reached a minimum value. And the longer
we applied a negative voltage, the higher the resistance became until it reached
a maximum limiting value. When we stopped applying the voltage, whatever
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resistance characterized the device was frozen in place, until we reset it by once
again applying a voltage. The loop in the I–V curve is called hysteresis, and this
behavior is startlingly similar to how synapses operate: synaptic connections
between neurons can be made stronger or weaker depending on the polarity,
strength, and length of a chemical or electrical signal. That’s not the kind of behavior
you find in today’s circuits.

Looking at Chua’s graphs was maddening. We now had a big clue that memris-
tance had something to do with our switches. But how? Why should our molecular
junctions have anything to do with the relationship between charge and magnetic
flux? I couldn’t make the connection.

Two years went by. Every once in a while I would idly pick up Chua’s paper, read
it, and each time I understood the concepts a little more. But our experiments were
still pretty much trial and error. The best we could do was to make a lot of devices
and find the ones that worked.

But our frustration wasn’t for nothing: by 2004, we had figured out how to do a
little surgery on our little sandwiches. We built a gadget that ripped the tiny devices
open so that we could peer inside them and do some forensics. When we pried them
apart, the little sandwiches separated at their weakest point: the molecule layer. For
the first time, we could get a good look at what was going on inside. We were in for
a shock.

What we had was not what we had built. Recall that we had built a sandwich
with two platinum electrodes as the bread and filled with three layers: the platinum
dioxide, the monolayer film of switching molecules, and the film of titanium.

But that’s not what we found. Under the molecular layer, instead of platinum
dioxide, there was only pure platinum. Above the molecular layer, instead of
titanium, we found an unexpected and unusual layer of titanium dioxide. The
titanium had sucked the oxygen right out of the platinum dioxide! The oxygen
atoms had somehow migrated through the molecules and been consumed by the
titanium. This was especially surprising because the switching molecules had not
been significantly perturbed by this event—they were intact and well ordered, which
convinced us that they must be doing something important in the device.

The chemical structure of our devices was not at all what we had thought it was.
The titanium dioxide—a stable compound found in sunscreen and white paint—was
not just regular titanium dioxide. It had split itself up into two chemically different
layers. Adjacent to the molecules, the oxide was stoichiometric TiO2, meaning the
ratio of oxygen to titanium was perfect, exactly 2 to 1. But closer to the top platinum
electrode, the titanium dioxide was missing a tiny amount of its oxygen, between
2 and 3 %. We called this oxygen-deficient titanium dioxide TiO2−x, where x is
about 0.05.

Because of this misunderstanding, we had been performing the experiment
backward. Every time I had tried to create a switching model, I had reversed the
switching polarity. In other words, I had predicted that a positive voltage would
switch the device off and a negative voltage would switch it on. In fact, exactly the
opposite was true.
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It was time to get to know titanium dioxide a lot better. They say 3 weeks in the
lab will save you a day in the library every time. In August of 2006 I did a literature
search and found about 300 relevant papers on titanium dioxide. I saw that each of
the many different communities researching titanium dioxide had its own way of
describing the compound. By the end of the month, the pieces had fallen into place.
I finally knew how our device worked. I knew why we had a memristor.

The exotic molecule monolayer in the middle of our sandwich had nothing to do
with the actual switching. Instead, what it did was control the flow of oxygen from
the platinum dioxide into the titanium to produce the fairly uniform layers of TiO2

and TiO2−x. The key to the switching was this bilayer of the two different titanium
dioxide species (see diagram, “How Memristance Works” in Fig. 1.5). The TiO2

is electrically insulating (actually a semiconductor), but the TiO2−x is conductive,
because its oxygen vacancies are donors of electrons, which makes the vacancies
themselves positively charged. The vacancies can be thought of like bubbles in a
glass of beer, except that they don’t pop—they can be pushed up and down at will
in the titanium dioxide material because they are electrically charged.

Now I was able to predict the switching polarity of the device. If a positive
voltage is applied to the top electrode of the device, it will repel the (also positive)
oxygen vacancies in the TiO2−x layer down into the pure TiO2 layer. That turns
the TiO2 layer into TiO2−x and makes it conductive, thus turning the device on. A
negative voltage has the opposite effect: the vacancies are attracted upward and back
out of the TiO2, and thus the thickness of the TiO2 layer increases and the device
turns off. This switching polarity is what we had been seeing for years but had been
unable to explain.

On 20 August 2006, I solved the two most important equations of my career—
one equation detailing the relationship between current and voltage for this equiv-
alent circuit, and another equation describing how the application of the voltage
causes the vacancies to move—thereby writing down, for the first time, an equation
for memristance in terms of the physical properties of a material. This provided
a unique insight. Memristance arises in a semiconductor when both electrons and
charged dopants are forced to move simultaneously by applying a voltage to the
system. The memristance did not actually involve magnetism in this case; the
integral over the voltage reflected how far the dopants had moved and thus how
much the resistance of the device had changed.

We finally had a model we could use to engineer our switches, which we had
by now positively identified as memristors. Now we could use all the theoretical
machinery Chua had created to help us design new circuits with our devices.

Triumphantly, I showed the group my results and immediately declared that we
had to take the molecule monolayers out of our devices. Skeptical after years of false
starts and failed hypotheses, my team reminded me that we had run control samples
without molecule layers for every device we had ever made and that those devices
had never switched. And getting the recipe right turned out to be tricky indeed. We
needed to find the exact amounts of titanium and oxygen to get the two layers to do
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Fig. 1.5 How Memristance Works. Image: bryan christie design

their respective jobs. By that point we were all getting impatient. In fact, it took so
long to get the first working device that in my discouragement I nearly decided to
put the molecule layers back in. A month later, it worked. We not only had working
devices, but we were also able to improve and change their characteristics at will.
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But here is the real triumph. The resistance of these devices stayed constant
whether we turned off the voltage or just read their states (interrogating them with a
voltage so small it left the resistance unchanged). The oxygen vacancies didn’t roam
around; they remained absolutely immobile until we again applied a positive or
negative voltage. That’s memristance: the devices remembered their current history.
We had coaxed Chua’s mythical memristor off the page and into being.

Emulating the behavior of a single memristor, Chua showed, requires a circuit
with at least 15 transistors and other passive elements. The implications are
extraordinary: just imagine how many kinds of circuits could be supercharged by
replacing a handful of transistors with one single memristor.

The most obvious benefit is to memories. In its initial state, a crossbar memory
has only open switches, and no information is stored. But once you start closing
switches, you can store vast amounts of information compactly and efficiently.
Because memristors remember their state, they can store data indefinitely, using
energy only when you toggle or read the state of a switch, unlike the capacitors in
conventional DRAM, which will lose their stored charge if the power to the chip is
turned off. Furthermore, the wires and switches can be made very small: we should
eventually get down to a width of around 4nm, and then multiple crossbars could
be stacked on top of each other to create a ridiculously high density of stored bits.

Greg Snider and I published a paper last year showing that memristors could
vastly improve one type of processing circuit, called a field-programmable gate
array, or FPGA. By replacing several specific transistors with a crossbar of
memristors, we showed that the circuit could be shrunk by nearly a factor of 10 in
area and improved in terms of its speed relative to power-consumption performance.
Right now, we are testing a prototype of this circuit in our lab.

And memristors are by no means hard to fabricate. The titanium dioxide structure
can be made in any semiconductor fab currently in existence. (In fact, our hybrid
circuit was built in an HP fab used for making inkjet cartridges.) The primary
limitation to manufacturing hybrid chips with memristors is that today only a small
number of people on Earth have any idea of how to design circuits containing
memristors. I must emphasize here that memristors will never eliminate the need
for transistors: passive devices and circuits require active devices like transistors to
supply energy.

The potential of the memristor goes far beyond juicing a few FPGAs. I have
referred several times to the similarity of memristor behavior to that of synapses.
Right now, Greg is designing new circuits that mimic aspects of the brain. The
neurons are implemented with transistors, the axons are the nanowires in the
crossbar, and the synapses are the memristors at the cross points. A circuit
like this could perform real-time data analysis for multiple sensors. Think about
it: an intelligent physical infrastructure that could provide structural assessment
monitoring for bridges. How much money—and how many lives—could be saved?

I’m convinced that eventually the memristor will change circuit design in the
twenty-first century as radically as the transistor changed it in the twentieth. Don’t
forget that the transistor was lounging around as a mainly academic curiosity
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for a decade until 1956, when a killer app—the hearing aid—brought it into the
marketplace. My guess is that the real killer app for memristors will be invented by
a curious student who is now just deciding what EE courses to take next year.

1.2 Resistance to Memristance

Introducing a new fundamental circuit element earned Stanley Williams some grief
along with his newfound fame. After the Nature article appeared in May, online
comments pages boiled over with skepticism. “Is this a hoax?” someone asked on
the Wikipedia memristor page on 30 April 2008, the day the news broke, in one of
the milder statements of disbelief. Seven months later, the debate continues.

Skeptics argue that the memristor is not a fourth fundamental circuit element but
an example of bad science. The crux of their argument rests on two fundamental
misunderstandings: first, skeptics overlook the expanded design space that arises
from working with nonlinear circuit elements. The second and more profound
misunderstanding concerns Leon Chua’s mathematical definition of a memristor.

At first, most people—including Williams—assumed that Chua defined mem-
ristance strictly as the relationship between electric charge and magnetic flux.
However, the actual definition of memristance is more general. Linking charge and
magnetic flux is one way to satisfy the definition, but it’s not the only one. In fact, it
turns out you can bypass magnetic interaction altogether.

Chua’s general memristance definition has two parts. The first equation defines
how the memristor’s voltage depends on current and a “state variable”—that is,
a quantity that measures some physical property of a device, like the length of
a column of mercury in a thermometer. The column’s length correlates with the
thermometer’s temperature, and adding or removing heat makes the column longer
or shorter. In Williams’s memristor, the state variable is the thickness of the
stoichiometric titanium dioxide in the switch; increasing or decreasing that thickness
causes the device’s resistance to increase or decrease.

The second equation expresses how the changing state variable (the TiO2’s thick-
ness) depends on the amount of charge flowing through the device. In Williams’s
memristor, the TiO2’s thickness depends on the distribution of the oxygen vacancies
throughout the material.

Here is what you need to remember: one, a magnetic interaction is not necessary
for memristance. Two, in nonlinear circuit elements, memristance is not the same
thing as nonlinear resistance. Three, because no combination of passive devices
can reproduce the properties of a memristor, memristance is a fundamental circuit
quantity.

Williams himself is sanguine about the memristor’s reputation. “A hundred years
after Einstein proposed his theory of relativity,” he says, shrugging, “you still have
some people arguing against it.” Sally Adee
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2.1 Abstract

This tutorial clarifies the axiomatic definition of (v(α), i(β )) circuit elements via a
look-up-table dubbed an A-pad, of admissible (v, i) signals measured via Gedanken
Probing Circuits. The (v(α), i(β )) elements are ordered via a complexity metric.
Under this metric, the memristor emerges naturally as the fourth element [1], char-
acterized by a state-dependent Ohm’s law. A logical generalization to memristive
devices reveals a common fingerprint consisting of a dense continuum of pinched
hysteresis loops whose area decreases with the frequency ω and tends to a straight
line as ω → ∞, for all bipolar periodic signals and for all initial conditions. This
common fingerprint suggests that the term memristor be used henceforth as a
moniker for memristive devices.

2.1.1 Axiomatic Definition of Circuits Elements

How do you characterize a 2-terminal “black box” B such that its response to
any electrical signal can be predicted? Since you are not allowed to peek inside
B your only recourse is to carry out measurements by probing B with all possible
electrical circuits, containing arbitrary interconnections of circuit elements, such
as resistors, capacitors, inductors, diodes, transistors, op amps, batteries, voltage
and current sources with arbitrary time functions, etc. We will henceforth call such
circuits “Gedanken Probing Circuits,” as depicted in the Gedanken experimental
setup shown in Fig. 2.1. Let us insert an instrument called an ammeter in series with
the top wire to record a time function i(t) called the current in Amperes entering the
top terminal (labeled by a plus (+) sign). Next let us connect an instrument called
a voltmeter across B to record a time function v(t) called the voltage in Volts across
the plus-minus terminals of B.1 Let us call (v(t), i(t)) an admissible (v, i) signal of B.
The recorded list

B(v, i)� {(v1(t), i1(t)),(v2(t), i2(t)), . . . ,(vn(t), in(t)), . . .} (2.1)

of admissible (v, i) signals (AVIS) from all possible Gedanken Probing Circuits
constitutes the complete characterization of the 2-terminal black box B in the sense
that given any voltage signal or current signal, one can search the AVIS “memory
bank,” henceforth called the AVIS-pad of B or just A-pad, and identify the unique
admissible signals (ṽ(t), ĩ(t)) being sought. The A-pad must contain this entry in its
memory bank because the signal is associated with some circuit connected to B, and

1Observe that the voltage v and the current i are defined axiomatically via two instruments called
voltmeter and ammeter, without invoking any physical concepts such as electric field, magnetic
field, charge, flux linkages, etc. One does not even have to know how a voltmeter, or an ammeter,
works. They are just names assigned to the instruments.
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Fig. 2.1 Axiomatic definition of a 2-terminal circuit element

this circuit is a Gedanken probing circuit, by definition. The A-pad is just a look-
up-table containing all admissible (v, i) signals of B. Observe that the A-pad is in
general an infinitely long pad containing infinitely many pairs of admissible signal
waveforms (v(t), i(t)) of B, as depicted in Fig. 2.1.

The above Gedanken experiment is only a thought experiment. However, for a
large number of real-world 2-terminal devices, the A-pad for B can be generated via
equations.

Example 2.1 (Ohm’s Law). A very small subset of all 2-terminal black boxes are
characterized by an A-pad that satisfies Ohm’s Law; namely,

v = Ri or i = Gv (2.2)

where R is called the resistance in Ohms (Ω) of B and G is called the conductance
in Siemens (S) of B. In this case

AVIS = {(Ri1(t), i1(t)),(Ri2(t), i2(t)) . . . (Rin(t), in(t)), . . .} (2.3)

can be reconstructed by (2.2). When Ohm’s law is written with i as the independent
variable, namely; v = Ri, it is called current controlled. If it is written in the form
i = Gv, it is called voltage controlled. Often it is more convenient to recast (2.2) in
the implicit form

fR(v, i) = v−Ri = 0 (2.4)
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Since (2.4) is neither a function of v, nor of i, it is called a relation in mathematics.
In nonlinear circuit theory, it is called a constitutive relation [2–4]. Observe that
the constitutive relation is just a compact formula, or algorithm, for generating the
A-pad of B.

Example 2.2. Suppose the A-pad of the 2-terminal black box B in Fig. 2.1 can be
written in the form

AVIS =

{(
v1,v1 +

1
3

v3
1

)
,

(
v2,v2 +

1
3

v3
2

)
, . . . ,

(
vn,vn +

1
3

v3
n

)
. . .

}
(2.5)

for all possible voltage signals

v(t) = v1(t),v(t) = v2(t), . . .v(t) = vn(t) . . .

then the A-pad of B can be generated by the much more compact constitutive
relation

fR(v, i) = v+
1
3

v3 − i = 0 (2.6)

Since both (2.4) of Example 2.1 and (2.6) of Example 2.2 involve the same pair
of circuit variables (voltage, current), and since all 2-terminal devices that can be
characterized by a constitutive relation

fR(v, i) = 0 (2.7)

between the variable pair (v, i) can be proved to be dissipative (or passive) if v× i> 0
for all (v, i) listed in the A-pad, this class of 2-terminal elements are called resistors
[2–4].

Example 2.3. Most 2-terminal black boxes can not be described by a constitutive
relation between the variable pair (v, i). However, another important subclass can be
expressed by a relationship between the variable pair (v,q), where

q(t) =
∫ t

−∞
i(τ)dτ = q0 +

∫ t

t0
i(τ)dτ (2.8)

and

q0 �
∫ t0

−∞
i(τ)dτ (2.9)
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is called the initial state2 of q(t) at the initial time t = t0. This subclass of 2-terminal
black boxes can be characterized by a collection of admissible signals between the
variable pair (v,q), namely,

B(v,q) = {(v1(t),q1(t)),(v2(t),q2(t)), . . . ,(vn(t),qn(t)), . . .} (2.10)

where

q =Cv (2.11)

and C is a constant called the Capacitance of B. Equation (2.11) is the constitutive
relation of B because we can generate the corresponding AVIS (v(t), i(t)) via (2.8);
namely

i(t) =
dq(t)

dt
(2.12)

Indeed, any relationship

q = fC(v) (2.13)

is a valid constitutive relation and this class of 2-terminal devices are called
capacitors.

By the same reasoning, the constitutive relation

ϕ = fL(i) (2.14)

involving the variable pair (i,ϕ) defines a third subclass of 2-terminal devices called
inductors, where

ϕ(t) =
∫ t

−∞
v(τ)dτ = ϕ0 +

∫ t

t0
v(τ)dτ (2.15)

Observe that the above three classes of basic circuit elements, called resistors,
capacitors, and inductors, are defined axiomatically, via a constitutive relation
between a pair of variables chosen from {v, i,q,ϕ}. There are six different pairs
that can be formed from these four variables; namely

{(v,ϕ),(i,q),(v, i),(v,q),(i,ϕ),(ϕ ,q)} (2.16)

2In practice one can never know the precise signal i(t) over the infinite past. Rather we can only
set up our measurements to begin at some initial time t = t0. Consequently, the initial condition q0
in Eq. (2.8) represents a summary of the past memory of q(t) measured at t = t0.
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Fig. 2.2 Four axiomatically
defined circuit elements

The first two pairs (v,ϕ) and (i,q) are already related via (2.15) and (2.8),
respectively, and are not constitutive relations because they cannot predict the
corresponding current i(t) and voltage v(t). However, the last pair (ϕ ,q) defines yet
another constitutive relation since given any admissible signals (ϕ(t),q(t)), one can
recover the corresponding (v(t), i(t)) via (2.15) and (2.8). For logical consistency,
and symmetry considerations, it is necessary to define a 4th circuit element [1] via
the constitutive relation

fM(ϕ ,q) = 0 (2.17)

between the variables ϕ and q. This element was postulated and named the
memristor (acronym for memory resistor in [5]). A physical approximation of such
an element has been fabricated in 2008 as a TiO2 nano device by Dr. Stanley
Williams group at hp [6]. The above axiomatic definition of the four basic circuit
elements is summarized in Fig. 2.2, along with their respective symbols [7]. Note
that the standard symbols for resistor, capacitor, and inductor are enclosed by a thin
rectangle with a dark band at the bottom because it is essential to distinguish the
reference polarity of each nonlinear element if its constitutive relation is not odd-
symmetric.

We wish to stress that although the symbols of q and ϕ in Fig. 2.2 are given the
names charge and flux, respectively, they need not be associated with a real physical
charge as in the case of a classical capacitor built by sandwiching a pair of parallel
metal plates between an insulator, or a real physical flux as in the case of a classical
inductor built by winding a copper wire around an iron core.
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2.1.2 (v(α)− i(β)) Circuit Elements

Let us introduce the notations [4]

v(α)(t)�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dα v(t)
dtα , if α = 1,2, . . . ,∞

v(t), if α = 0∫ t
−∞ v(τ)dτ, if α =−1∫ t
−∞

∫ τ|α|
−∞ · · ·∫ τ2−∞ v(τ1)dτ1dτ2 · · ·dτ|α |, if α =−2,−3, . . . ,∞

(2.18)

and

i(β )(t)�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dβ i(t)
dtβ , if β = 1,2, . . . ,∞

i(t), if β = 0∫ t
−∞ i(τ)dτ, if β =−1∫ t
−∞

∫ τ|β |
−∞ · · ·∫ τ2−∞ i(τ1)dτ1dτ2 · · ·dτ|β |, if β =−2,−3, . . . ,∞

(2.19)

where |α| and |β | are integers. Let us identify a (v(0), i(0)) element as a resistor,
a (v(0), i(−1)) element as a capacitor, a (v(−1), i(0)) element as an inductor, and a
(v(−1), i(−1)) element as a memristor. Using this notation, we can define an infinite
family of circuit elements, each one identified by its element code (v(α)− i(β )) and
referred to simply as an (α,β ) element.

The first 25 (α,β ) elements are listed in Fig. 2.3, each coded by an integer
pair (α,β ), and identified by a rectangular box where “α” and “β ” are printed on
the “top,” and at the “bottom,” respectively. Each (α,β ) element is located at the
intersection between a vertical line through α , and a horizontal line through β . The
four circuit element symbols shown in Fig. 2.2 are printed in their corresponding
locations in Fig. 2.3. The two elements (α,β ) = (−1,−2) and (α,β ) = (−2,−1)
are called memcapacitor and meminductor, respectively [8], and are identified by
their corresponding symbols.

The above infinite family of circuit elements are defined not for the sake of
generality. Rather, they are essential for developing a rigorous mathematical theory
of nonlinear circuits in the sense that if one excludes all elements with |α| > k and
|β |> k, for any finite integer k, then one can construct hypothetical circuits whose
solutions do not exist after certain finite times t ≥ Tk due to the presence of a “singu-
larity” called an impasse point [2, 3, 9]. It is unlikely, however, that (α,β ) elements
with |α|> 2 and |β |> 2 will be needed in modeling most real-world devices.

It can be proved that any (α,β ) element with |α|+ |β |> 2 is active in the sense
that it can be built only with active components, such as transistors and op amps,
which requires a power supply. Finally, we remark that every (α,β ) element can be
built by the same procedure illustrated in [2, 5, 10] using a family of linear active
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Fig. 2.3 The first 25 (α ,β )
circuit elements, −2 ≤ α ≤ 2,
−2 ≤ β ≤ 2

2-ports called mutators. They can also be emulated via various off-the-shelf digital
components [11], or by programmable softwares interfaced with analog-to-digital
(A/D) and digital-to-analog (D/A) converters.

2.1.3 Complexity Metric of Circuit Elements

For each (α,β ) element, let

χ � |α|+ |β | (2.20)

be its associated complexity metric [12]. For example, χ(0,0) = 0 for a resistor,
χ(0,−1) = 1 for a capacitor, χ(−1,0) = 1 for an inductor, χ(−1,−1) = 2
for a memristor, χ(−1,−2) = 3 for a memcapacitor, and χ(−2,−1) = 3 for a
meminductor. If one associates the vertical and horizontal lines passing through
the elements in Fig. 2.3 as streets of Manhattan, New York city, then the complexity
metric χ of an (α,β ) element gives a measure of its distance from the resistor
(α,β ) = (0,0). The larger the metric χ(α,β ), the farther it is from the resistor.
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The complexity metric measures not just only the distance of (α,β ) element
from the resistor but also the minimum number of capacitors (or inductors) needed to
build an (α,β ) element using off-the-shelf components. For example, a minimum of
one capacitor along with active elements such as transistors and op amps is needed
to build a memristor while a minimum of two capacitors are needed to build a
meminductor. From a mathematical perspective, the larger the complexity metric,
the higher the dimension of the state space and the larger the number of nonlinear
differential equations and exotic dynamical phenomena that can emerge.

Based on any of the above measures of complexity, the four elements depicted in
Fig. 2.3 are indeed the simplest circuit elements, with the memristor ranked as the
4th element in increasing complexity.

2.1.4 Fingerprint of Memristors

The formal mathematical definition of the memristor is given in [5], along with
its circuit-theoretic properties. Here we recall that the memristor is defined by a
collection of all admissible signals, namely, an A-pad listing all signals measured
from all admissible “Gedanken Probing Circuits” (Fig. 2.1) and which can be
completely reproduced by the constitutive relation (2.17).

For example, a charge-controlled memristor can be defined by

ϕ = fM(q) (2.21)

where fM is a piecewise-differentiable function [12]. In this case, we can generate
all (v(t), i(t)) from the A-pad via the following q-dependent Ohm’s law:

v = R(q)i

R(q)� d fM(q)
dq

(2.22a)

(2.22b)

The function R(q) is called the memristance (acronym for Memory Resistance)
where

R(q)≥ 0 (2.23)

for all passive memristors [2].
Now observe from (2.8) that since

dq
dt

= 0 when i = 0 (2.24)
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the memristor can assume a continuous range of distinct equilibrium states

q = q(t0), t ≥ t0 (2.25)

when the power is switched off at any time t = t0. It follows that the memristor can
be used as a nonvolatile analog memory. In particular, it can be used as a nonvolatile
binary memory where two sufficiently different values of resistance are chosen to
code the binary states “0” and “1,” respectively. Because the hp memristor reported
in [6] as well as in many other nano devices [13] can be scaled down to atomic
dimensions, the memristor offers immense potentials for an ultra low-power and
ultra dense nonvolatile memory technology that could replace flash memories and
DRAMS.

An incisive analysis of (2.22) reveals that the nonvolatile memory property
possessed by the memristor is a direct consequence of its state-dependent Ohm’s
law. Moreover, all circuit-theoretic properties possessed by the memristor are
preserved if we generalize (2.22) to the form [14].

v = R(x, i)i

dx/dt = f(x, i)

(2.26a)

(2.26b)

The generalized memristor defined in (2.26) is dubbed a memristive device in
[14] where x = (x1,x2, . . . ,xn) denotes n states variables, which do not depend on
any external voltages or currents. However, since both (2.22) and (2.26) are endowed
with the same circuit-theoretic properties, it is more convenient and logical to refer
to both equations as defining a memristor. In the rare events where a distinction may
be desirable, one can refer to (2.22) as defining an “ideal memristor.”

The most important common property of (2.22) and (2.26) is that the loci (i.e.,
Lissajous figure) of (v(t), i(t)) due to any periodic current source, or periodic
voltage source, which assumes both positive and negative values, must always
be pinched at the origin in the sense that (v, i) = (0,0) must always lie on the
(v, i)-loci, called a pinched hysteresis loop in the literature [13]. We wish to stress
that (2.22) and (2.26) imply that the pinched hysteresis loop phenomenon of
the memristor must hold for any periodic signal, v(t) or i(t), that assumes both
positive and negative values, as well as for any intial condition used to integrate
the differential equations to obtain the corresponding steady state i(t) and v(t),
respectively.

Another unique property shared by all memristor hysteresis loops is that for every
given periodic function i = f (t) (where f (•) assumes both positive and negative
values), and for any initial state x(0) the area enclosed within the part of the pinched
hysteresis loop in the first quadrant, and the third quadrant, of the v− i plane shrinks
continuously as the frequency ω increases, and the hysteresis loop tends to a single-
valued function through the origin as ω tends to ∞.
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The above dense continuum of pinched hysteresis loops, as well as their single-
valued function limiting phenomenon as ω → ∞ must hold for all memristors.
Any purported system which may exhibit a pinched hysteresis loop but which vio-
lates the above continuum and frequency-dependent limiting memristor fingerprint
is not a memristor, the reader is referred to [15] for several contrived examples
which fails the above “memristor fingerprint test.”

We end this tutorial by pointing out that not all memristors are nonvolatile
memories. In fact there is an even larger class of locally active memristors [2, 4, 9]
which exhibit many exotic nonlinear dynamical phenomena. A very interesting
and scientifically significant example is the classic Hodgkin–Huxley Axon circuit
model of the squid giant axon.3 Notwithstanding the immense importance of their
circuit model, Hodgkin and Huxley had erroneously named two circuit elements in
their model associated with the potassium ion, and the sodium ion, respectively, as
time-varying conductances. This mistaken identity has led to numerous confusions
and paradoxes ever since the publications of their classic axon circuit model [16].
Well-known physiologists were puzzled by experimentally observed rectification
phenomenon as well as gigantic inductances that could not exist within the soft
tissues of the brain. The following quotation from Cole (see page 78 of [17]), an
eminent physiologist and the recipient of the 1967 USA National Medal of Science,
is a case in point:

“The suggestion of an inductive reactance anywhere in the system was shocking
to the point of being unbelievable”

We have solved the above conundrum, and many other hitherto unresolved
paradoxes associated with the Hodgkin–Huxley Axon, by showing the Hodgkin–
Huxley time-varying potassium conductance is in fact a 1st-order memristor, and
the Hodgkin–Huxley time-varying sodium conductance is in fact a 2nd-order
memristor, as defined in Fig. 2.4b, c, respectively [18]. Also depicted in Fig. 2.4
are the pinched hysteresis loops associated with each memristor. Observe that they
are all pinched at the origin, and that the lobe area in the first and third quadrants
shrinks continuously to a straight line as ω increases, both being the fingerprint of
memristors.

We conclude this tutorial by stressing that memristors are not inventions. They
are discoveries and are ubiquitous. Indeed, many devices, including the “electric
arc” dating back to 1801, have now been identified as memristors [19, 20]. Aside
from serving as nonvolatile memories [21], locally passive memristors, have been
used for switching electromagnetic devices [22], for field programmable logic arrays
[23–27], for synaptic memories [28–30], for learning [31–33], etc.

In addition, locally active memristors have been found to exhibit many exotic
dynamical phenomena, such as oscillations [34], chaos [35, 36], Hamiltonian
vortices [37] and autowaves [38], etc.

3Hodgkin and Huxley were awarded the 1965 Nobel Prize in physiology for their derivation of the
circuit shown in Fig. 2.4a, where the two memristors were drawn as time-varying resistors in Fig. 1
(page 501) of [16].
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Fig. 2.4 Hodgkin–Huxley Axon. (a) Memristive Hodgkin–Huxley Circuit model of giant axon
(center) of North Atlantic squid Loligo (right). (b) Postassium ion-channel memristor and its
pinched hysteresis loops. (c) Sodium ion-channel memristor and its pinched hysteresis loops [18]

2.2 Concluding Remarks

Any 2-terminal device which exhibits a pinched hysteresis loop in the v-i plane
when driven by any bipolar periodic voltage or current waveform, for any initial
conditions, is a memristor. In the case where the memristance R(x1,x2, . . . ,xn) does
not depend on the current i, the loop shrinks to a straight line whose slope depends
on the excitation waveform, as the excitation frequency tends to infinity.



30 L. Chua

Except in ideal cases, memristors, memcapacitors, and meminductors do not
behave like resistors, capacitors, and inductors, respectively. For example, the
potassium and sodium ion channel memristors in the Hodgkin–Huxley axon circuit
model behave like R-L circuits ([18, 39]). It is conceptually wrong and misleading
to identify memristors, memcapacitors, and meminductors with resistors, capac-
itors, and inductors. Each (α,β ) element is a distinct circuit element because it
cannot be built from the other elements.

Readers who may have been misled by some erroneous commentary in the
popular press which associates an earlier gadget called a memistor with the
memristor are referred to a technical clarification in [40].

We end this tutorial with the following succint signature of a memristor [13]:
If it’s pinched it’s a memristor.
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Part II
Theory, Modeling, and Simulation



Chapter 3
The Art and Science of Constructing
a Memristor Model

R. Stanley Williams and Matthew D. Pickett

3.1 Introduction

The methods utilized here for constructing a useful model of a memristor [6, 7]
are adapted from those described by Prof. Leon O. Chua [8, 9] to illustrate the
more general problem of device modeling for any nonlinear circuit elements. The
basic reason why creating a device model is so difficult is that one is essentially
trying to solve an inverse problem in a complex nonlinear system. Experience has
shown that the total time required for analyzing a particular system theoretically to
capture the essential device physics, collecting a substantial and robust electrical
data set, testing various hypotheses and finally iterating to a model that reproduces
the measured nonlinear behavior of a memristor to satisfactory accuracy generally
requires more than one year of effort for a small research team. This laborious task is
rewarded by having a mathematical representation that provides significant intuition
into how the device works the way it does, reveals the most important physical
processes that determine its behavior, and can be used in computer programs such as
SPICE to successfully design and numerically simulate complex integrated circuits
that utilize the device.

A nonlinear device model [8, 9] consists of a set of ideal circuit elements
appropriately connected together that can replicate the experimentally measured
electrical properties of the physical device to a desired accuracy. The ideal ele-
ments are defined mathematically and may include nonlinear algebraic, ordinary
differential, partial differential and integral equations. These can be thought of as
providing the basis set of solutions for the device model and should be chosen
from carefully defined relations to be as complete and relevant as possible. For
nonlinear devices, Chua has constructed a Circuit-Element-Array [8], also called a
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doubly periodic table of ideal circuit elements [10], that covers the mathematically
possible relationships between measurements of current (i) and voltage (v) in a
two-terminal device. He has also proven that these elements are independent (no
individual element can be emulated by any combination of other two-terminal
element types) and any combination of two or more elements of the same type
belongs to that type (element closure). A critical realization is that there is no perfect
model for any physical device [8]—all models are approximations, and in fact a
particular physical device may be described by different models depending on the
operating environment. The best guide is parsimony with iteration; find the simplest
model that produces satisfactory results, but modify it if new measurements are not
predicted with sufficient accuracy.

Chua has described a set of five qualities that a realistic device model should
possess [8]. It must be well-posed, or in other words it should not yield any
nonphysical solutions, such as a voltage or current that tends to infinity in a finite
time. It must have simulation capability, i.e. a computational solution of the model
should yield results that are judged to be close enough to experimentally measured
data for the physical device. The model should have qualitative similarity to the
device, especially with respect to any limiting or asymptotic behaviors that are
observed. A truly useful model must have predictive ability, in that simulations
of operating environments for which no previous experimental data have been
collected prove to be accurate when corresponding measurements are performed.
The structural stability of the model means that its properties do not change
qualitatively when small changes are made to the parameters of the model. An
additional requirement is that any parameters in the model determined by fitting
to experimental data should be intrinsic to the device and not depend on the external
measurement circuitry. Finally, there is the issue of judgment—if a model appears
to violate a law of physics or involves parameters that diverge or oscillate wildly
while the voltage and current of the physical device are well behaved, the model is
not useful and a different model needs to be formulated, likely using a different set
of ideal circuit elements.

The necessity and importance of analyzing nonlinear circuits and extracting
valid device models from them are growing dramatically as feature sizes on
integrated circuits rapidly approach single digit nanometer dimensions [10] and
neurophysiologists strive to understand the signaling that occurs in biological
networks [11, 13, 14, 16]. However, there is a substantial benefit that accrues to
a successful confrontation of the difficulties. The complexity of nonlinear systems
also means that there is a great deal more information about the circuit in the
measurement data than can be obtained from the analysis of a purely linear network.
For example, no set of external electrical measurements on a three-terminal black
box can distinguish between a wye (Y) and a delta (Δ) network of three linear
impedances. However, if such a black box contains one nonlinear element, it is easy
to determine a unique model structure if one makes the appropriate measurements
[9]. This realization can be tremendously helpful in constructing the wiring diagram
of the brain, for example, since there is much that can be inferred from the measured
signaling data to complement the structural information about neuron connectivity.
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Chua has described two different ideal procedures, each with four basic steps,
for finding a device model: the physical principles approach and the black box or
measurement approach [8]. The physical approach assumes that one understands
the physics and operating mechanisms of the device to a sufficiently high level of
confidence that one can derive the device model from known information. The four-
step process involves the following [8]: (1) device physics analysis and partitioning,
(2) physical equation formulation, (3) equation simplification and solution, and
(4) nonlinear network synthesis. The black box approach assumes that nothing
is known about the physics of the device and thus one must characterize the
device experimentally and find a mathematical model that reasonably reproduces
the measurements. In this case, the four steps are as follows [8]: (1) experimental
observations, (2) mathematical modeling, (3) model validation, and (4) nonlinear
network synthesis. For memristors, it is critical that the experiments include time
(or frequency)-dependent measurements over many orders of magnitude—static
measurements (or quasi-static measurements in which a current or voltage is varied
slowly and perhaps irregularly without a time stamp) will not contain enough
information to specify a valid model. The end goal of either path is a predictive
model that can be used in a dynamical simulation of a complex circuit that contains
one or more instances of the nonlinear device, and thus step four, utilizing the model,
is the same for both paths. In practice, the actual route to finding a device model
will be some hybrid of the two ideal procedures. In order to ensure that the model
is constrained by physics, one needs to include as much information as possible
on what is known about the operating mechanisms, especially what the expected
functional forms and asymptotic behavior are for the model. However, especially for
nanoscale or biological systems, it is unlikely that a sufficient model can be derived
from scratch, so some set of measurements will have to be performed to be able
to fit parameters in a derived model or even to distinguish among several different
possible functional forms in the model. As a classical example, Hodgkin and Huxley
appear to have followed a similar heuristic in the development of their famous model
for the action potential of the squid axon [19], which was informed by the physical
process of transmembrane ion flow but used ad hoc differential equations and state
variables to fit their experimentally measured electrical behavior.

After carefully formulating a mathematically rigorous treatment of nonlinear
networks [5], Chua realized that the set of basis functions for describing general
nonlinear circuit elements was incomplete and first postulated the existence of a
memory resistor or memristor [6], although no physical example was known at the
time. This formulation was generalized to define a class of nonlinear dynamical
circuit elements originally called memristive systems [7], but in his paper “The
Fourth Element” [15], he simplified the nomenclature by using the term “memristor”
for the more general element and recommended using the phrase “ideal memristor”
to describe the originally defined circuit element if necessary. He has recently
written or co-written several tutorials to clear up confusion that has arisen to
describe how to recognize a memristor from its electrical properties [2, 15]. In
particular, the current–voltage (i–v) characteristic of a memristor will display a
“pinched hysteresis loop” if energized by a sinusoidal voltage or current source,
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with the hysteresis loops collapsing with increasing frequency of the excitation (in
contrast to capacitive hysteresis, for which any loops will get larger and/or more
complex). In another tutorial, “Resistance switching memories are memristors”
[12], he again describes how to recognize a memristor via the pinched hysteresis
loop and shows that the memristor equations provide the basis for modeling the
behavior of a wide variety of devices presently under investigation for nonvolatile
memories, even though the devices are based on completely different physical
principles.

A memristor is thus defined to be any dynamical electronic circuit element that
obeys the following Chua memristor equations [7], independent of the underlying
physics in the system that gives rise to the relations:

v = R(w, i) i and

dw/dt = F(w, i) ,

where the first equation is the quasi-static resistance equation, or state-dependent
Ohm’s law, and the second is the dynamical equation that describes the temporal
evolution of the state variable (or variables) w as a function F of w and possibly the
current (or alternately voltage if one is considering the conductance of the element).
In these equations, i is an independent input function and often a function of time.
The resistance R is a function of the physical state w, which imparts memory to the
device, and also possibly the current i, which results in a nonlinear Ohm’s law.

Even though they are both constructed from transition metal oxide materials,
the two example devices to be analyzed in this chapter have very different physical
properties and the approaches used to their construct memristor models were quite
distinct, so they serve to illustrate the general approach for creating nonlinear device
models quite well.

3.2 Locally Active Niobium Dioxide Memristor:
Physical Principles Approach

Niobium dioxide, NbO2, represents a class of Mott insulator materials that enable
locally active memristors, which were described by Itoh and Chua [20] and shown to
facilitate the construction of an oscillator circuit. Although NbO2 has been known
to exhibit a current-controlled negative differential resistance (NDR) for decades
[4, 18], only recently was it demonstrated that this system can be modeled by
the Chua memristor equations [23]. At room temperature NbO2 is an insulator.
Sandwiched in a crosspoint device (Fig. 3.1a, insert), this material will warm up
as the voltage across it is increased and current starts to flow through it. As the Joule
heating increases, feedback [3] between lower resistance and higher current causes
a channel through the device to exceed the electronic phase transition temperature
(∼800 C) and the NbO2 in this channel becomes metallic, as illustrated in Fig. 3.1b,
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Fig. 3.1 Niobium dioxide Mott memristor. (a) Experimentally measured (blue dots) and modeled
(red line) current–voltage curve for a 110× 110 nm2 niobium dioxide memristor with an inset SEM
image of a crosspoint device. (b) Schematic cross section of the device model during operation
showing an NbO2 channel that consists of two concentric cylindrical electronic phases, the inner
core heated above the insulator-to-metal transition temperature and the outer lower temperature
Mott insulating material [23]

with roughly a four order of magnitude increase in conductivity. This rapid decrease
in resistance gives rise to the NDR—the voltage across the device decreases as the
current increases, as shown in Fig. 3.1a, until all the NbO2 in the device has become
metallic and the slope of the i–v characteristic becomes positive again.

At the same time, the heat capacity and latent heat of transformation of the
NbO2 provides a delay or transient memory in the time required for the device to
warm up or cool down. The result is a locally active memristor—a device that has
the capacity to inject energy into a circuit when it is biased within the regime of
negative i–v characteristic slope. A simple analytical model for the Chua memristor
equations of this system is easily derived [23]. The resistance R is a function of a
state variable w that in this case represents the normalized radius (i.e., the radius of
the metallic phase rmet divided by the radius of the total NbO2 cylinder rch in the
device, Fig. 3.1b) of the material heated above the electronic transition temperature
by Joule heating:

v = Rch(w) · i.
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The dynamical equation describes how the state variable w increases or
decreases, depending on if the power dissipation in the device is larger than or
smaller than the thermal conductance:

dw
dt

= g(w, i) =

(
dΔH
dw

)−1

· (Rch(w)i
2 −Γth(w)ΔT

)
.

The dynamical equation has three parts: the Joule heating Ri2 of the material,
the heat conduction from the surface of the metallic cylinder to the boundary of the
device Γth(w)ΔT, where ΔT is the difference between the electronic phase transition
temperature and the ambient temperature of the surroundings, and the derivative
of the net enthalpy change ΔH of the device with respect to the radius w of the
metallic channel. The agreement between the model and experimentally measured
quasi-static data (Fig. 3.1a) is surprisingly good, considering the simplifications
and the extremely large temperature gradient assumed. Sometimes, one gets lucky.
Most of the parameters in the model were obtained from the literature for bulk
properties, with a fitting parameter being the effective radius rch of the entire NbO2

channel [23]. However, since this is a model for a dynamical device, it is necessary
to compare simulation results to time-dependent data. Using SPICE, both the
frequency and the shape of the v(t) traces of a Pearson–Anson oscillator constructed
from a Mott memristor and a capacitor were very accurately simulated [23]. This
observation was critically important, because there was no inductor in either the
experimental circuit or the model; the conclusion is that the Mott memristor has a
positive reactance under certain biasing conditions and can be used to ensure that
current in a circuit is continuous in time. The SPICE model has also been used
to very accurately model the threshold, gain, and spiking behavior of a neuristor
[17], an electronic device that emulates the action potential in an axon of a neuron,
built with two Mott memristors and two capacitors [24]. The very good agreement
between the time-dependent simulations and experimental measurements provides
the verification of the memristor model, as shown in Fig. 3.2.

3.3 Nonvolatile Titanium Dioxide Memristor:
Measurement Approach

Titanium dioxide (TiO2) was the first material explicitly identified to exhibit
memristor properties [26]. The simple model first used to explain why this device
displayed a pinched hysteresis loop was the drift of positively charged oxygen
vacancies, which act as dopants in many semiconducting transition metal oxides,
in an applied electric field. However, this model left out several important processes
involved in the motion of oxygen vacancies, in particular Fick diffusion [27, 28]
and thermophoresis [29]. Writing down the full set of equations that describe the
coupled motion of electrons and ions as well as the generation of heat and thermal
gradients leads to a complex system of coupled differential equations, and a priori
it is not possible to predict which terms are important or how to approximate
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Fig. 3.2 (Top) Schematic
diagram of the neuristor
circuit, which includes two
nominally identical Mott
memristors M1 and M2, two
capacitors C1 and C2 that in
general are different from
each other, two bias voltages
with the same magnitude but
opposite polarity and a load
resistor RL that couples the
two oscillators. (Bottom) For
a current sourced neuristor
with IDC = 20 μA (a), the
experimental (b, d, f ) and
simulated (c, e, g) voltage
outputs vs. time plots are
shown. By tuning the channel
capacitances C1 and C2, the
neuristor exhibits (b, c)
regular spiking (C1 = 5.1 nF,
C2 = 0.75 nF), (d, e)
chattering (C1 = 5.1 nF,
C2 = 0.5 nF), and (f, g) fast
spiking (C1 = 1.6 nF,
C2 = 0.5 nF) modes of
operation. C1 controls the
inter spike intervals (ISI) and
C2 controls the spike
width (Δt)

the equations with a reasonable analytical form. Thus, two sets of experiments
are necessary: one to understand the quasi-static current–voltage relation and the
other to capture the dynamics of the state variable(s). To determine the quasi-
static R(w,i) relation, we should measure the underlying transport physics without
interference from dynamical or switching processes, which requires a series of low
amplitude current–voltage measurements to avoid switching or otherwise perturbing
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the device. We need to identify what physical property of the system is represented
by the state variable(s) w and understand how to control the state so that we
can perform current–voltage measurements over a wide range of w. Since the
transport is likely to be nonlinear, the range of voltages and currents over which
the measurements are made must be large enough to properly capture and quantify
the current–voltage relation, identify w, and produce a self-consistent analytical
expression for R(w,i), but low enough to avoid state drift or switching.

Determining a dynamical expression for F(w,i) is even more demanding because
of the large number of measurements required. Since the devices exhibit stochastic
behavior in their switching characteristics [21], each measurement should be
performed several times in order to determine the mean or median behavior of
the device. Since the dynamics of a device that operates via ion motion can be
affected by a complex combination of drift, diffusion, and thermophoresis, finding
an equation that reproduces the data accurately may require testing hundreds of
different possible models.

The dynamical measurements to determine F(w,i) require that the resistance of
a device be measured as a function of time over many orders of magnitude and
for many different applied voltages (or currents), which results in a very large two-
dimensional data set (resistance vs. voltage and time). This is done by first setting
the device to a known initial state, or value of w. Then, an approximately constant
voltage (or current) is applied to the device and both the current and voltage are
measured as a function of time to follow the evolution of the state. Once a set of
measurements have been collected, the device is reset back to its original state w,
and the measurements are performed again with a different value of the voltage (or
current) applied to the device. This procedure must be repeated for a wide range of
voltage (or current) amplitudes and both positive and negative polarities, in order to
obtain a complete picture of both the “ON” and “OFF” switching of the device if it
is bipolar. If the device is unipolar, in principle only one set of voltage polarities is
needed but it is best to check both polarities to see if there is an asymmetry.

These measurements can be performed in a pulsed mode, in which the pulse
width increases exponentially in order to sample many decades of time intervals,
and a small amplitude current–voltage measurement is made to determine the device
state after each pulse [22]. Alternately, the measurements can be made in real time
by applying a step excitation (voltage or current) to the device, and following both
the current and voltage as the device state evolves in time [25]. In both of these
approaches, it is critical that all of the voltage and current data have an accurate
time stamp. It is also necessary to use an effective four-point probe type of analysis
so that the temporal evolution of both the current and the voltage can be obtained
independently, with as little contribution from series resistance as possible. The
result of all these measurements is a two-dimensional array of values of w(i,t). We
then either find an analytical function that closely approximates w and differentiate
with respect to t or numerically differentiate the array of values to obtain a new two-
dimensional array dw(i,t)/dt. We then invert the function w(i,t) to create the array
dw(w,i)/dt. The art is to find the analytical equation F(w,i) that best matches the
derivative of w. In order to have a high quality predictive model that does not break
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Fig. 3.3 Current–voltage characteristics of a TiO2 nonvolatile memristor for a selection of times
during a 4.5 V OFF-switching state-test. The curves are best fits to a series resistor plus Simmons
tunnel barrier. The legend lists the total time the device was under the applied voltage in seconds,
after which the i–v data were collected. Each fit yielded a value of the state variable w, the width
of the tunnel barrier after the total time under bias [22]

down in unanticipated regions of device parameters, we should be guided in our
choice of functions by the known or at least plausible physics-based state equations.
We employed the pulsed state-test to experimentally determine the Chua memristor
equations for a TiO2-based nonvolatile memristor [22]. After each pulse to change
the state of the device, we measured its i–v characteristic with a low voltage ramp
to determine the resistance. We found that the i–v curves were best described by the
Simmons tunneling equation shown below with the constants defined in [22], and fit
many hundreds of i–v curves to this equation while only allowing the width of the
tunnel barrier to vary. We obtained excellent fits over all the i–v curves, with a few
examples shown below in Fig. 3.3.

i =
j0A

Δw2

{
φI exp

(
−BφI

1/2
)
− (φI + evg)exp

(
−B(φI + evg)

1/2
)}

As shown in Fig. 3.4a, we then plotted each value of w obtained from the
tunneling fits as a function of time for all the different voltages applied to have a
graphical representation of w(v,t). These curves were then numerically differentiated
and plotted vs. w to obtain the desired plots of dw(w,v)/dt, as shown in Fig. 3.4b.
Given that the current–voltage characteristic (tunneling) was exponential in nature
and the switching speed was also exponential, we explored a set of double
exponential functions in order to obtain our model, shown as solid lines in Fig. 3.4b,
to the data.

The agreement between the model and the data was quite good, and the equation
utilized for Fig. 3.4b and shown below has been used in a SPICE simulation
to successfully model the titanium dioxide memristor electronic properties [1].
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Fig. 3.4 Dynamical behavior
of the tunnel barrier width w
for the titanium dioxide
memristor. The state variable
w evolves as a function of
time for different applied
voltages for a series of (a)
OFF-switching state tests.
The legends indicate the
applied external voltage. The
lines are the numerical
solution to the respective
switching differential
equations described in the
text. (b) Shows the numerical
derivative of the data in (a)
plotted as a function of w for
the different applied voltages.
The lines are calculated from
the differential equations
using the measured values of
w and i at each point in time.
The derivative of the state
variable is interpreted as the
speed of the oxygen vacancy
front as the applied voltage
pushes it away from the top
electrode [22]

The OFF-switching equation is shown below (there is a similar equation with
different constants for ON-switching).

ẇ = fOFF sinh

(
i

iOFF

)
exp

(
−exp

(
w− aOFF

wc
− |i|

b

)
− w

wc

)

3.4 Conclusions

At this time, constructing a compact model of a memristor that is useful for circuit
design and simulation is a complex and arduous task. Perhaps after several examples
of successful models have been derived and the methodology for creating them has
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become clearer, it will be more straightforward. The examples described here show
that there is no set procedure that one can follow blindly. There really is both an art
and a science to memristor modeling.
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Chapter 4
Fourth Fundamental Circuit Element: SPICE
Modeling and Simulation

Dalibor Biolek and Zdenek Biolek

4.1 Introduction

The memristor was originally defined as an electric element which provided the last
vacant connection between voltage, current, and their time-domain integrals, i.e.
between flux and charge [1]. It is rightly described as the fourth fundamental circuit
element next to the resistor, capacitor, and inductor.

It turns out that scientists met with the signs of memristive behavior long before
the discovery of the memristor itself. These signs were described and modeled using
means among which the memristor was missing. Immediately after the introduction
of the concept of memristor in 1971 this hypothetical element was used for modeling
certain processes that exhibited the attributes of memory behavior. The memristor
was used for the modeling of devices based on varied and mutually unrelated
physical principles. An example is the work of Oster [2], which shows that the
tapered dashpot or an electrochemical system can be modeled as a memristor. Since
the 1970s the memristor has gained a firm position as a standard modeling tool in
branches which utilize the methods of network thermodynamics [3].

So it soon turned out that the concept of memristor is also useful for fields of
study other than electrical engineering. The researchers involved in the modeling of
systems that are composed of subsystems of different physical nature, as is common,
for example, in electromechanics, now use the so-called generalized memristor
[4]. It establishes a link between two physical quantities, which are in the given
physical field of study analogous to the flux and the charge; for example in the
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case of mechanics, they are the effort and the position. Using the memristor we can
therefore model processes in a variety of systems differing in their physical nature,
be it mechanical [5], hydraulic [6], neuromorphic [7], or other systems. With this
general conception, the memristor can be seen as an element that guarantees a clear
correlation between the accumulated effort (momentum, the integral of effort) and
the state achieved (displacement, integral of flow).

After a report was published on the successful implementation of memristor in
TiO2 [8] in 2008, the interest in this element skyrocketed. However, the memristor
comes to be considered specifically as an element of electrical nature. Moreover,
according to the original definition of the memristor, the state from which the
instantaneous value of memristance is derived is the charge (or the flux). In the
course of time, however, it was discovered that in real systems the memristive
behavior can be caused by complicated physical processes the instantaneous state
of which can be determined by an entire vector of values of various physical origins
[9]. Memory realized by magnetic spin, processes in TiO2, etc. can be given as
examples. Though in terms of resistive port, the voltage and current appear in the
memristor equation, the specific physical principle that ensures memory behavior is
projected into the equation by the state of x, where x is, generally, the vector of non-
electrical quantities. This is a significant generalization of the original definition
of the memristor, in which the electric charge was considered the only state of the
system. The idea of generalized memristor as an element of general non-electrical
nature, whose usefulness for the description of real systems had shown even before
the discovery in Palo Alto, thus begins to affect one of the two equations of
memristor—the equation of state. In terms of port equation, however, the memristor
is still regarded as an electrical element.

Another complex process was set in motion with the discovery that the physical
principles, governed by equations of the memristor and still suitable for the
implementation of electronic nonvolatile memory in the real world, are very rare.
Most of the discovered principles rather fall into the category of memristive systems
that differ from the memristor in two practical ways.

The first difference is that the memristance of an element depends not only on
the state of the system, but it is also affected by the instantaneous values of voltage
or current. This, however, contradicts the original definition of memristor, whose
memristance must depend only on the state of the system. The nonlinearity of an
element due to voltage or current would mean that the instantaneous state of an
element should not be automatically taken for the instantaneous state of memory.
In terms of the nonvolatile memory, an element remembers the instantaneous state
even when disconnected from the external power source. If the state depended
on the value of voltage or current, it would mean that when the power source is
disconnected it could change.

The second difference concerns the dynamics of an element. Actually, the rate of
change of the state is usually not only dependent on the values of voltage and current
but is often also influenced by the instantaneous state of the element. In the case of
a true memristor the rate of change does not depend on the state itself. Otherwise,
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in the aftermath of voltage or current excitation, its own dynamics would cause
another change of state, which would mean that the element would not necessarily
be applicable as analog nonvolatile memory.

Today, we already know that the HP memristor is actually a complex memristive
system which can be, according to all available data, used as nonvolatile memory.
A similar situation also occurred with some other discoveries, when it turned out that
the element either behaved as a memristor only when the operating point remained
in a predefined area or this did not happen at all because of the nonlinearities related
to voltage or current. These difficulties have led to efforts by some scientists to
review the original definition of memristor such that it does not strictly distinguish
memristors from less specific memristive systems [10]. It is a very delicate question
that remains to be answered. The idea of the memristor as a fundamental element
that logically complements the missing element in the mosaic of the basic elements
of electrical engineering is so valuable that it is appropriate to distinguish between
the “ideal” memristor in terms of the original definition of 1971 [1] and its
generalized versions, which can be summarized as memristive systems [11]. Since
the memristor in the sense of [1] is, in principle, an ideal circuit element, this
attribute will not be used in this chapter, and the bare term “memristor” will be
used for the fourth fundamental element.

The issue of appropriately modeling a memristor became topical immediately
after the publication of the discovery in Palo Alto [12–14]. Due to the unavailability
of memristors, it was necessary to develop sufficiently accurate models that would
allow experimenting with the memristor via simulation programs and studying
situations that would occur in real experiments in laboratory conditions. Over time,
some researchers have realized that developing more and more sophisticated models
of samples from HP laboratories is not enough. The knowledge of the fundamental
principles of ideal memristor was lacking and so was the contact with real time
experimentation with a component that fully complies with the definition of the
memristor. Since the properties of a memristor are determined by the shape of its
constitutive relation, there is no such thing as a universal generic memristor. Despite
all the diversity of behavioral expressions resulting from an almost arbitrary choice
of the constitutive relation, memristors show specific behavioral characteristics, the
so-called fingerprints (FPs), which can be effectively examined through computer
experiments.

This chapter discusses two stages of studying the memristor: the creation of
a model and the simulation of the behavior of an element by way of using the
model and the software tools. The initial stage, i.e. modeling of two-terminal
components that are related to memristors, must be based on the elementary pillars
of L. Chua’s “correct modeling” [15]. These are referred to in the introductory part
of the chapter. The starting point for the creation of the “correct models” is the
defining characteristics of the memristor, especially the port and state equations,
constitutive relations, and the “parameter vs. state map” [10], which are so versatile
that they determine the behavior of memristors in the general situation. From the
defining characteristics of memristor some specific features are apparent and can
be identified in their behavior. The definition of these FPs is useful because the
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“fingerprints” can help to assess whether the model of memristor, no matter whether
mathematical, software or hardware model, behaves correctly. In the next section of
this chapter are described some possible ways of implementing memristor models
into simulation programs such as SPICE, including examples of simulation results.

4.2 Starting Points of a “Correct Modeling” of Memristors

4.2.1 Memristor Definition by Its Port and State Equations

The principles of L. Chua’s “correct modeling” can be briefly summarized in the
statement that a correct model of the system must only depend on the system and
not on its environment [15]. These dependencies are usually expressed either by the
constitutive relation (CR) or by the parameter vs. state map (PSM) or by port and
state equations.

As for memristors controlled by voltage or current (or by flux or charge) or
memristors of “non-electrical” nature, whose port quantities are not necessarily
voltages and currents, it is possible to generalize the above definition of memristor
characteristics (i.e. the starting points of its correct modeling) as follows.

The memristor can be defined by a port equation which denotes the relationship
between the excitation variable u and the response y:

y(t) = g(x)u(t). (4.1)

The symbol g(x) denotes a nonlinear function of the state variable x whose
derivative with respect to time is equal to the excitation quantity:

d
dt

x = u. (4.2)

The above port (4.1) and state (4.2) equations may define a wide variety of
known memristors of electrical and non-electrical nature, depending on the choice
of physical quantities u and y. It is obvious from (4.2) that the state variable x is the
time-domain integral of the excitation quantity u (the abbreviation is TIU), which
can also be denoted uI . For further explanation, it will be helpful to consider a fourth
variable, the time-domain integral of the response y (TIY), denoted by the symbol yI .

4.2.2 Memristor as Electrical Two-Terminal Device

Table 4.1 shows such a selection of the u and y quantities that Eqs. (4.1) and
(4.2) correspond to the well-known classical definitions of “electrical” memristors
controlled by voltage (VCMR) and current (CCMR). The state variable is the flux
ϕ for VCMR and the charge q for CCMR.
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Table 4.1 Voltage- and current-controlled memristors (VCMR and CCMR) and their circuit and
state variables

Memristor Input (u) Output (y) TIU= state (x= uI) TIY (yI ) PSM [g(x)] CR [yI =F(uI )]

VCMR v i ϕ q GM(ϕ) q(ϕ)
CCMR i v q ϕ RM(q) ϕ(q)

4.2.3 Parameter vs. State Map (PSM), Constitutive Relation
(CR), and Pinched Hysteresis Loop (PHL)
of the Memristor

The function of state, g(x), is introduced in the penultimate column of Table 4.1
by the acronym PSM, i.e. parameter vs. state map [10]. This parameter is a
memductance GM for VCMR and memristance RM for CCMR. PSM can be
considered as the basic memristor characteristic, which is independent of the way
the memristor interacts with its environment. This characteristic can be derived from
the constitution relation (CR) of the memristor. According to the last column of
Table 4.1, CR can be defined as a relationship between TIY and TIU, i.e.

yI = F (uI) = F(x). (4.3)

Differentiating (4.3) with respect to time yields

d
dt

yI(t) = y(t) =
d
dt

F(x) =
d
dx

F(x)
dx
dt

=
d
dx

F(x)u(t). (4.4)

Comparing this result with (4.1), one can verify the statement from [10] that the
CR and PSM are equivalent characteristics for the description of memristor, and that
the following relationship holds between them:

g(x) =
d
dx

F(x). (4.5)

For the needs of modeling such memristors, some of whose parameters, for
example the memristance, may also show discontinuous dependence on the state
variable, it can be useful to consider g(x) as a piecewise-continuous function with
potential points of step discontinuities. Then it results from (4.5) that CR can be
represented by a piecewise differentiable function F(x) with possible points of
discontinuity of its derivative with respect to x.

The y versus u relationship is a third frequently used memristor characteristic,
namely v(i) or i(v) for the current- or voltage-controlled memristor. When driving
the memristor by the controlling signal u(t), the typical pinched hysteresis loop
(PHL), drawn in the [y,u] coordinates, strongly depends on the type of excitation.
That is why, in contrast to CR and PSM, it does not represent a “correct model” of
the memristor [10]. Regarding the hysteresis, the v(i) and i(v), and thus also y(u)
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Fig. 4.1 Examples of CR, PSM, and PHL of current-controlled memristor

dependence relations cannot be modeled by single-valued mathematical functions
in the classical sense of the word. The essence of the memristor is thus coded in its
CR or also PSM. Some FPs described below result from the general rules which are
related to these characteristics (Fig. 4.1).

4.2.4 Memristor Generalization for Non-Electric Domains

From a broader perspective, the voltage and current are physical quantities, which
are specified in the bond graph theory [2] as effort (E) and flow (F). Table 4.2
summarizes the definitions of E and F variables for physical sub-domains in the
port-Hamiltonian framework [4, 5]. It is obvious that VCMR and CCMR from
Table 4.1 are only special cases of memristors, which could be abbreviated to
ECRM and FCMR (effort-controlled memristor and flow-controlled memristor).
For example, a hydraulic “WC memristor” controlled by “Flow Rate” is given in
[6]. An interesting analysis is given in [2], where the mechanical tapered dashpot is
represented by unambiguous nonlinear dependence of the integral of applied force
and the piston displacement, whereas a pinched hysteresis loop appears in the force–
velocity coordinates. This indicates the mechanical memristor. The port and state
equations (4.1) and (4.2), PSM and CR discussed above then represent universal
characteristics of all these generalized memristors across various domains.
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Table 4.2 Effort and flow and their time-domain integrals in various domains as port quantities
and native state variables of generalized memristors

Port variables Native state variables

Domain Effort E Flow F Momentum=TIE Displacement =TIF

Electrical Voltage Current Flux Charge
Mechanical,

translation
Force Linear velocity Momentum Position

Mechanical,
rotation

Torque Angular velocity Angular
momentum

Angle

Hydraulic Pressure Volumetric flow Pressure
momentum

Volume

Thermodynamic Temperature Entropy flow Temperature
momentum

Entropy

Chemical Chemical
potential

Molar flow Chemical
momentum

Moles

4.2.5 State Variables of Memristors

The knowledge resulting from Eq. (4.2), namely that the natural state quantity alias
the memristor memory is the time-domain integral of the excitation quantity, is
expressed in Table 4.2 in the column “native state variables.” Depending on whether
the excitation quantity of the memristor is a quantity of the effort or flow type, the
state variable is either its time-domain integral (TI), denoted as momentum (TIE),
or displacement (TIF).

It should be noted that the values of the above state variables are theoretically
unbounded. The total value of the electric charge passed through the electric
memristor is a typical example. For an unambiguous dependence of memristance on
the amount of this charge, the memristor would need to have an unlimited memory.
In an actually existing system, this memory is put into effect by a specific physical
principle. For example, the state of the TiO2 memristor is determined by the position
of the boundary between the undoped and doped layers [8]. This boundary can move
only within strictly given limits. Although there is a link between this position and
the charge flowing through, this dependence is strongly nonlinear near the limit
positions, which can be simply described as a “thickening of memory” near the limit
states. Because there is a direct connection between the position of the boundary and
the resistance of the memristor, the memristance can be directly selected as the state
variable of the TiO2 memristor.

The freedom in the choice of various state variables of the same system, which
does not change the port behavior of the system, shows the usefulness of denoting
the memristor state variables of the momentum and displacement types, listed in
Table 4.2, as native state variables of the memristor, and thus distinguishing them
from all other potential optional state variables. The choice of the state variable
other than the native one may cause that the equations of a particular memristor are
not in a unified form (4.1) and (4.2). Therefore, it is useful to know the answer to
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the question whether the port and the state equations of a concrete system, which
do not meet the formal definition equations (4.1) and (4.2), actually describe a
memristor. The answer is positive if the transformation from the given into the
native state variable leads to a unified form of the memristor equations (4.1) and
(4.2). If these equations are in a unified form, then the system can be described by
the characteristics of the CR and PSM types, which do not depend on anything other
than this system. This is an unmistakable sign of the memristor.

To illustrate this problem, consider the memristor described by Eqs. (4.1)
and (4.2), whose memory is implemented by a certain physical principle. The
corresponding state variable x′, modeling this principle, is limited within the interval
(x′min, x′max) and it is in an unambiguous algebraic functional relationship with the
native state variable x

x = S
(
x′,x′0

)
, (4.6)

where S is a strictly monotonous function with respect to the variable x′. The symbol
x0

′ denotes the initial value of the state variable x′ at the time instant when the
exciting quantity u is applied to the memristor or, in other words, at the moment
when the native state variable x is x0 (see Fig. 4.2a). The coordinate x0

′ of the point
of intersection of the curve in Fig. 4.2a with the x′ axis thus denotes the initial state
of the physical memory of the memristor prior to signal excitation. This state can be
set via an appropriate vertical shift of the given curve. Its strict monotonicity ensures
an unambiguous reversed dependence of the state x′ on the native state variable x
(see also Fig. 4.2b)

x′ = H
(
x,x′0

)
, (4.7)

where the function H can be obtained via the inversion of the function S with respect
to the argument x′. The function H models a causal dependence of the physically
implemented state x′ on the native state variable. The initial state x0

′ at the beginning
of the memristor excitation can be modeled via a proper horizontal shift of the curve
in Fig. 4.2b.

Note that if the function H reached its limit values x′min or x′max for finite values
of the native state variable x as, for example, illustrated in Fig. 4.2c, then the
condition of the strict monotonicity would be violated in the sections with zero-
valued derivative of the function H, and the change of the native state variable
would not cause any change of the state variable x′. Since in really existing systems,
in contrast to the state variable x′, the native state variable is not stored, such a
system loses the attribute of the boundless memory and, strictly speaking, it is not a
memristor.

Taking into account equation (4.6), the port equation (4.1) of a memristor
will be described by the state-dependent Ohm’s law, where the memristance or
memductance will depend on a new state variable x′:

y(t) = g(x)u(t) = g
(
S
(
x′,x′0

))
u(t). (4.8)
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x=S(x’,x’0)

x’min

x’min

x’min

x’max

x’max

x’max

x’0

x’0

x’0

x

x’=H(x,x’0)
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Fig. 4.2 Example of nonlinear relationships between native state variable x of memristor and a
state variable x′ which models a concrete way of physical implementation of memristor memory:
(a) dependence (4.6), (b) inverse dependence (4.7), (c) example of the dependence (4.7) for a
system with limited memory
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Considering Eq. (4.6), the state equation (4.2) will be transformed as follows:

d
dt

S
(
x′,x′0

)
=

dS (x′,x′0)
dx′

dx′

dt
= u, (4.9)

thus

d
dt

x′ = f
(
x′
)

u, f
(
x′
)
=

1
dS(x′,x′0)

dx′
(4.10)

For a strictly monotonic function S, its derivative in (4.10) is not equal to zero and
the function f attains only finite values for x∈R. This ensures that without excitation,
i.e. for u= 0, the right-hand side of state equation (4.10) is always zero and the state
of the system would therefore not be changing (an attribute of non-volatility). An
example of the system, described by a state equation of type (4.10), is the well-
known TiO2 memristor, provided that the state variable x′ is the normalized width of
doped layer and that nonlinear dopant drift is modeled by simple window functions
[8, 13, 14, 16].

It is obvious that, according to Eq. (4.10), the controllability of the state x′ will
depend on the attributes of the function f. For example, consider that f (x′)= 0 for
some state x′. This would happen for an infinite derivative of the transforming
function S with respect to x′. Then no excitation u would be able to change this
state since the derivative of the state would be zero regardless of the value of
the excitation u. The system with limited memory, having the characteristic as in
Fig. 4.2c, is a typical example. Probably the best-known example is the problem of
fixing the limit states of the TiO2 memristor, which is modeled, for instance, by the
Joglekar window [16], if one accepts the idea that such a limit case can occur at all.

If, on the contrary, we start from the nonstandard-form state equation (4.10) of
the system, and look for an answer to the question whether it models a memristor,
then this equation can be arranged to the form

∫
dx

f (x)
=

∫
udt = uI, f (x) �= 0. (4.11)

It is thus obvious that if we select the integral on the left side of Eq. (4.11) as
the state variable of the system, and consider the limitation (4.11) for the function
f, which follows from the strict monotonicity of the functions S and H, then the
derivative of this variable with respect to time will be equal to the excitation variable
u. The new state equation will therefore be exactly in the unified form (4.2) and the
system is thus a memristor. For the TiO2 memristor, which is modeled as current-
controlled memristor, the integral on the left side of (4.11) is the charge, i.e. the
native state variable of this memristor.

It is also apparent from Eq. (4.10) and from Fig. 4.2 that, due to the limitation of
the state variable x′ within the bounded interval (x′min, x′max), the rate of change of
the state variable approaches zero when x′ approaches the borders of this interval.



4 Fourth Fundamental Circuit Element: SPICE Modeling and Simulation 115

As a result, these limit states are not actually accessible in the course of a finite time.
In the case of the “true” memristor, i.e. ideal hypothetical element, the problem of
the “state fixation” cannot occur because such a memristor cannot be put into this
state via an external signal within a finite time.

4.2.6 General Memristive System Versus Memristor

In terms of utilizing the memristor as a memory, it is important that the state
of the memory is determined by the native state variable. However, it is usually
not observable directly but only through another currently chosen state variable,
which is related to the physical implementation of the memristor. The most easily
accessible variable is memristance or memductance. The defining Eqs. (4.1) and
(4.2) provide the non-volatility of the memory in two ways: (1) the state derivative
with respect to time does not depend on the state itself [see Eq. (4.2)], (2) the
memristor parameter g is unambiguously determined by the state and it does not
depend on the instantaneous values of the port quantities [see Eq. (4.1)].

In general, these attributes are not fulfilled for general memristive systems that
are describable by the generalized port and state equations in the form

y = g(x,u) u, (4.12)

d
dt

x = f (x,u) . (4.13)

The symbol x represents here an n-dimensional vector of state variables. Since
the system parameter g already depends on the excitation quantity, the PSM
characteristics cannot be simply defined as a mere function of the state. The
constitutive relation, which is closely related to the PSM, cannot be defined either.
In addition, the state derivative with respect to time depends on the state as well as
on the excitation, and the nature of this dependence can be flexibly modified via the
function f. That is why we cannot speak of a memristor in the sense of the definitions
(4.1) and (4.2).

In the following text, we focus on memristors in the sense of their conventional
definition. If some of the parts are related to more general memristive systems, this
will be explicitly specified.

4.3 Fingerprints

The so-called memristor fingerprints (FPs) are mentioned already in the original
paper [1]. FPs are useful because they can serve to identify the memristive nature
of the system from experimental data. The v–i pinched hysteresis loop (PHL),
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measured under periodical excitation, is the most widely known memristor FP.
These PHLs, observable in the past for systems of different nature [10], can be of
miscellaneous shapes. Some of their attributes were analyzed, for example, in [10,
11] but from the point of view of general memristive systems. The loop classification
into “crossing type” (CT) and “non-crossing type” (NCT) was introduced in [9]. The
latter loops are observable, for example, for thermistors [9]. However, it is shown in
[17] that such loops cannot be the FPs of ideal memristors, thus the thermistor is not
a memristor in the sense of the original definition in [1] but is a memristive system
according to the more general definition in [11].

The paper [18] is an illustration of the dispute whether a given element is or
is not a memristor, and whether it is or is not a memristive system. The FPs of
these systems are specified there over the frame of the definitions from [1, 11], for
example that the PHLs must be observable for any initial conditions [18], etc. In
the invited lecture at the third Memristor and Memristive Symposium [19], L. Chua
specifies the basic FPs of memristive systems, including one degenerate case of DC
behavior of “ideal” memristors.

Therefore it turns out to be useful to analyze the basic FPs of memristive systems,
focusing on “ideal” memristors in the first step. This section thus follows the
memristor definition in Sect. 4.2, which determines the memristor essence, knowing
that all possible manifestations of memristor behavior are governed by its basic
characteristics. Some memristor FPs (i.e., consequences of the memristor essence)
are pointed out for the memristor DC and AC excitations.

4.3.1 Memristor in DC (Pseudo) Steady State

It follows from Eq. (4.2) that there are no theoretical limitations to the evolution of
the native state variable of the ideal memristor. For a constant input signal u, the
state variable tends to infinity. Any nonlinear limitation, which is natural for real
systems, would violate formula (4.2).

Suppose that at time t0 = 0, when the native state variable is set to the value x0,
the memristor will be driven by a constant signal u(t)=U. Then Eqs. (4.1) and (4.2)
can be rewritten in the form

y = g(x) U, x = x0 + Ut. (4.14)

The state variable increases (U > 0) or decreases (U < 0) ad infinitum or it
remains constant (U = 0).

From the point of view of the native state of the memristor, the true steady state
can only be established for a zero-valued controlling signal.

From the point of view of an external observer who is working only with the u
and y quantities, the internal state can be unobservable. If the following limits exist,

G+ = lim
x→∞

g(x), G− = lim
x→−∞

g(x), (4.15)
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then the circuit containing such a memristor moves towards a DC pseudo-steady
state. For this state, the memristor behaves as a linear resistor with conductance
(4.15) (voltage-controlled memristor), or resistance (4.15) (current-controlled mem-
ristor). The conductance/resistance will depend on the polarity of the controlling
signal.

It should be noted that the integration of the native state variable is permanently
in progress during this DC pseudo-steady state. To recover the original state of the
memristor, we would need a longer time period than the time interval for which the
memristor persisted in the previous state.

It is obvious from the above analysis that the true DC steady state, which is
characterized by steady values of not only port but also state variables, is only for
u= 0 and y= 0. Then the following FPs can be formulated:

FP1: In the DC steady state, when voltage, current, and memristor state variables are
steady, the memristor behaves as a nullor, i.e. with zero volts across its terminals
and zero current flowing through.

FP2: In the DC pseudo-steady state, when the memristor state variables are not
settled, the memristor behaves as a linear resistor, described by limits (4.15).

FP3: For memristors with undefined limits (4.15), the DC pseudo-steady state does
not exist.

FP1 has been authored by L. Chua [19]. The pseudo-steady states, which can
cause various paradoxical manifestations of ideal hypothetical elements, can be
avoided, for example, via a direct excitation of the memristor by periodical signals
with zero DC components.

It follows from the analysis in Sect. 4.2.5 that if a relationship between the native
state variable x and the state variable x′ as defined here exists, then a continuous
integration of both state variables is in progress, and thus a true steady state cannot
be reached from the point of view of the state variable x′ either. However, within
the frame of existing real systems, when the memory implementation can be done
with some finite precision, the true DC steady state is achieved within a finite time
which depends on the precision of fulfilling the condition f (x′)= 0 [see Eq. (4.10)].
Among other things, this can be a reason for the seemingly paradoxical behavior of
memristor models during their computer simulation (see Sect. 4.4 for more details):
Owing to the finite precision in the representation of the numerical value of the
state variable x′, its value can be set to its boundary value during the analysis. Then,
however, f (x′)= 0, the state derivative is zero, and the system can extricate itself
from this “dead regime” only with the help of other potential numerical inaccuracies.
The model behavior near such boundary states then has not much in common with
the behavior of the memristor which has been originally modeled.
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4.3.2 Memristor in Periodical Steady State

Consider the memristor (4.1), (4.2) driven by a periodical signal u with a repeating
period T, repeating frequency F = 1/T or angular frequency Ω = 2πF. For a zero
DC component, the signal has its Fourier series

u(t) =
∞

∑
k=1

[Ak cos(kΩt)+Bk sin(kΩt)], (4.16)

where Ak and Bk are the amplitudes of the cosine and sine terms of the kth
harmonics.

Assume that at time t0 = 0, at which the memristor state is x= x0, the controlling
signal (4.16) is applied. Then the state variable x(t) for t ≥ 0 will be as follows:

x(t) = xDC +
1
Ω

∞

∑
k=1

[
Ak

k
sin(kΩt)− Bk

k
cos(kΩt)

]
, xDC = x0 +

∞

∑
k=1

Bk

kΩ
. (4.17)

The state variable and also the output variable y, which is derived from the
state variable via algebraic equation (4.1), behave periodically without any initial
transients. We conclude that

FP4: If a periodical signal u(t) with zero DC component is applied to the memristor,
the state and output variables x(t) and y(t) proceed immediately to the periodical
steady state without any transient phenomena.

FP4 can be utilized as a quick test whether the memristive system, analyzed
by a simulation program, is or is not a memristor according to [1]. For example,
the SPICE models of the so-called potassium and sodium ion-channel memristors
[19], driven by a sinusoidal signal, exhibit gradual transition to periodical steady
state. The PHL then settles into a stable figure in the course of several repeating
periods of excitation. Therefore, according to FP4, these are not memristors defined
in [1]. On the other hand, when modeling a system satisfying formally the Eqs.
(4.1) and (4.2), and the simulation outputs exhibit transient processes, this can
indicate computational errors due to possible numerical problems. However, without
considering FP4, the simulator outputs can be misinterpreted as correct.

Now consider that the frequency of the signal (4.16) increases ad infinitum. It
follows from (4.17) and (4.1) that the state variable converges to a constant value x0

and that a simple linear relationship y= g(x0)u exists between the output and input.
Then the hysteresis effect in the y–u coordinates disappears. These conclusions,
which are well known for simple sinusoidal excitation, can be generalized as
follows:

FP5: When driving the memristor by a general periodical signal with zero DC
component, and when the frequency increases ad infinitum, the area of the
corresponding PHL tends to zero, and the memristor behaves as linear resistor.
Its resistance is equal to the initial memristance at the beginning of excitation.
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Now consider that the input signal (4.16) contains only sine-type harmonic
components, i.e. it is described as an odd function, thus u(– t)= – u(t). Then the state
signal x(t) (4.17) is an even function, thus x(– t)= x(t). According to (4.1), the output
signal y(t) must be an odd function. Then the following FP6 can be conceived:

FP6: When driving the memristor via a periodical signal described by an odd
function of time, then the y–u PHL will be odd-symmetric.

Two less obvious FPs result from FP6: For odd-type excitation, the memristor
response always has zero DC component, and the corresponding PHL is always of
the “crossing type” [9].

The sine waveform belongs to frequently used odd-type signals for memristor
testing. Many papers contain examples of PHLs, obtained under such excitation,
which violate the odd symmetry either quite evidently (the loops located in first and
third quadrants are asymmetrical) or latently (the loops have incorrect orientations,
thus the PHLs are of the non-crossing type [9]).

In the following, consider a general memristive system excited by a sinusoidal
signal with a single nonzero Fourier coefficient B1 in (4.16). Round the origin of
the y–u coordinates, the hysteresis loop can be pinched in the following ways:
(1) crossing type (CT), (2) non-crossing type (NCT), (3) degenerating type (DT).
The first two types are defined in [9]. DT denotes the boundary case when the
contour lines of the loop merge into one single-valued curve (the hysteresis has
vanished) [10].

The type of pinching can be deduced from the derivatives of the difference signal
yd(t)= y(t) – y(T/2 – t) at time 0. The condition yd = 0 implies the loop passing
through the origin. The nonzero first derivative indicates CT. If the first derivative is
zero with nonzero second derivative, the PHL is NCT. With the first two derivatives
being zero and the third derivative nonzero, a point of inflexion appears, which
indicates a CT loop. These conditions can be arranged into the following unclosed
scheme:

CT(0): dyd(t)/dt �= 0
NCT(1): dyd(t)/dt= 0, d2yd(t)/dt2 �= 0
CT(2): dyd(t)/dt= 0, d2yd(t)/dt2 = 0, d3yd(t)/dt3 �= 0
NCT(3): dyd(t)/dt= 0, d2yd(t)/dt2 = 0, d3yd(t)/dt3 = 0, d4yd(t)/dt4 �= 0
. . .

The numbers inside braces denote the so-called order of touching, i.e. the
maximum order of the zero derivative of yd at the origin. Starting from the first-order
touching, we talk about the tangential CT or NCT, when the PHL passes through the
origin in both directions with the same slope.

As regards the memristor, its output signal y(t) is an odd function of time. Then
it can be shown that all even-order derivatives of yd at t= 0 are zero. According to
the above scheme, the existence of NCT loops for the memristor is ruled out. The
degenerate PHL (DT) appears when all the derivatives are zero. It is obvious that
there can be loops with tangential crossing of even order (second or higher).
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Fig. 4.3 Examples of
degenerate loop (g1) and
tangential CT loop (g2)

The following FPs can be summarized from the above analysis:

FP7: The y–u PHL of a memristor driven by a sinusoidal signal can be either CT
with even-order crossing or DT.

FP8: The necessary and also sufficient condition for the existence of tangential CT
loop of a memristor driven by a sinusoidal signal is as follows: the boundary
points of the range of the state variable x∈<xmin, xmax> on the curve g(x) must
lie on a horizontal line (see Fig. 4.3, case “g2”).

FP9: When driving the memristor by a sinusoidal signal, then the necessary and also
sufficient condition for the existence of the tangential CT loop with 2n-order of
touching, where n is a positive integer, is

dig(xmin)

dxi = (−1)i dig(xmax)

dxi (4.18)

for all i= 0,1,2, . . . ,n–1.
FP10: The necessary and also sufficient condition for the existence of DT loop of

a memristor driven by a sinusoidal signal is as follows: the curve g(x) must be
symmetrical with regard to the vertical line which demarcates the center of the
range of the state variable x (see Fig. 4.3, case “g1”).

FP8 means that at any time instant when the PHL passes through the y–u origin,
the g parameter of the memristor, i.e. memristance or memductance, is of the same
value. The corresponding slopes of the contour curves of the PHL are thus equal in
both directions.

FP9 can be understood as follows: the 2n-order touching at the origin means that
the derivatives diy/dui, i= 0,1,2,3, . . .,2n must be identical for each passage of the
y–u characteristic through the origin, and they only start differing with the (2n+1)
order. Consider the state defined according to (4.2) as a time-domain integral of the
input signal. The Faà di Bruno’s Formula holds for the derivative of the (2n+1)
order [20]:

d2n+1y
du2n+1 =

d2ng(x(u))
du2n =∑ak

dkg
dxk (4.19)
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where

ak =
(2n)!

k1!k2! · ·k2n!

2n

∏
i=1

(
1
i!

dix
dui

)ki

(4.20)

and the sum is applied over all nonnegative integer roots k1, . . . , k2n of
the Diophantine equation k1 + 2 k2 + . . . + 2nk2n = 2n, with k being the sum
k= k1 + k2 + . . . + k2n. It can be proved that, with regard to the zero-valued odd
derivatives of the function x= x(u) at the origin, this series contains only n nonzero
terms which correspond to all roots ki for k= 1,2, . . . , n. Then Eq. (4.19) can be
simplified to the form

d2n+1y
du2n+1

∣∣∣∣
t=0

− d2n+1y
du2n+1

∣∣∣∣
t= T

2

=
n

∑
k=1

ak

(
dkg(xmin)

dxk − (−1)k dkg(xmax)

dxk

)
(4.21)

where the ak coefficient is evaluated for the state xmin. Supposing that the odd-
order derivative (4.21) is nonzero and all lower-order derivatives are zero, then the
statement from FP9 according to (4.18) must hold.

FP10 is a limiting case of FP9 for n→∞. It can be derived based on the
consideration that the degenerate scenario holds for the equality y(t)= y(T/2 –t).
For u(t)=B1 sin(Ω t) and considering FP9, Eqs. (4.1) and (4.2) lead to the equality

g

(
xDC − B1

Ω
cos(Ωt)

)
= g

(
xDC +

B1

Ω
cos(Ωt)

)
(4.22)

Since Eq. (4.22) holds for any arbitrary time t, the function g must be symmetrical
with regard to the vertical line x= xDC.

FP8 to FP10 state that loops with tangential crossing and also degenerate loops
cannot occur in memristors with monotonic functions g(x), e.g. in the well-known
TiO2 memristor.

4.4 Memristor Models and Their Software Implementation

The method for modeling a memristor as described below is based on a simple
conception which can be expressed by the sentence:

Memristor models must accurately reflect all FPs of the “ideal” memristor.

This underlines the fact that what is being modeled is the fourth fundamental
element and not a generalized memristive or other system. Such models are essential
for the analysis of the behavior of the fundamental, i.e. ideal circuit elements, where
any deflection from the theoretical model leads to an erroneous behavior of the
object under study. Possible modeling of the real properties of an application circuit
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Fig. 4.4 Models of ideal
memristors, based on
(a) constitutive relation
yI =F(uI ), (b) PSM g(x) or
port equation (4.1) and state
equation (4.2)

is done by adding extra blocks of models that reflect these influences. Memristor
models in the above sense of the word should therefore be behavioral models, which
are based on port and state equations or on the PSM or CR characteristics.

Another possible approach is to create a model of a specific physically existing
system, which we believe acts as a memristor. In this case, we usually proceed
from the state equation for the state variable which is given by a physical principle,
such as the coordinate of the boundary between doped and undoped layers in the
TiO2 memristor. Then it is appropriate to verify if it is actually a memristor (i.e., to
check whether there is a clear connection between this variable and the native state
variable).

The next step is to implement these models in a suitable simulation program, e.g.
one from the group of SPICE-family programs.

Models based directly on the memristor PSM or CR can of course be used only
for the “ideal” memristors, for which these characteristics are defined. Models based
on equations are universal for all memristive systems. In the following text, we will
demonstrate that models based on the knowledge of CR are not recommendable
for practical simulations, and that the other two memristor models, based either on
circuit equations or PSM, have the same structure. Further on, we will point out a
potential numerical problem which can be associated with the computer simulation
of systems based on state equations of the type of (4.10), and the way how to
overcome it.

4.4.1 Block Diagrams of Models

The model shown in Fig. 4.4a, based on the knowledge of CR, proceeds from the
fact that CR determines the integral quantity yI from the integral quantity uI through
a nonlinear function F according to Eq. (4.3). This calculation is therefore modeled
by the block F( ). It is therefore necessary to integrate the exciting signal u prior to
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Fig. 4.5 Memristor model according to (a) Eqs. (4.8) and (4.10), (b) Eqs. (4.8), (4.2), and (4.7)

its further processing in the nonlinear block F. On the contrary, we must differentiate
the output of the block F with respect to time to get the response y. With regard to the
well-known problems associated with numerical differentiation, it is a weak point
of this modeling scheme. Therefore, it is preferable to use the model in Fig. 4.4b,
which is based on the fact that the excitation quantity is also the time derivative
of the state variable. By integrating it, we get a state x which is converted in the
nonlinear block g to the memristor parameter g(x). If we multiply this parameter by
the excitation u, we will get the response y.

It is obvious that by using the function g(x), which is the derivative of F(x) with
respect to x, we can avoid the problematic differentiating circuit. Furthermore, it is
clear that the model in Fig. 4.4b can be constructed directly from the knowledge
of PSM regardless of the physical nature of the memristor, because x is directly
the native state variable. At the same time, however, the model structure is directly
related to port equation (4.1) and state equation (4.2), and the model can also be
derived from the physical model of the system.

Figure 4.5a represents a model generalization for the case when the memristor is
modeled by a modified state equation (4.10) with the use of another state variable
x′, which is derived from the native state variable x by a nonlinear transformation
(4.7). The derivative of the state with respect to time is now given by the product of
the excitation and the nonlinear state function f (x′). The state-dependent Ohm’s law
(4.1) is now represented by the composed nonlinear function g(S( )), see Eq. (4.8).
A number of published TiO2 memristor SPICE models, e.g. [13], are based on the
block diagram in Fig. 4.5a.
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Fig. 4.6 Model of general memristive system based on Eqs. (4.12) and (4.13)

A different approach is shown in Fig. 4.5b. Use is made here of the fact that
the state x′ can be derived from the native state variable using a transforming
function H according to (4.7). By integrating the excitation we get the signal uI ,
which is the native state variable, from which the state x′ can be obtained via a
nonlinear block H. From the state, the parameter g is calculated and by multiplying
it by the excitation quantity we get the response y. In Sect. 4.4.2 we demonstrate
the fundamental advantage of such modeling over the generally used model in
Fig. 4.5a. Let us be aware though that with the inclusion of an integrator in the
model in Fig. 4.5a we have incorporated a native state variable into the model,
which represents an unbounded memory. Then the model can act as a memristor,
even if the transformed state variable x′ represented a limited memory (see, e.g.,
Fig. 4.2c). The state equation of the system in Fig. 4.5b is a classical state equation
of memristor for the native variable, and the port equation is at the same time a
classical port equation of memristor (4.2), where g(x)= g(S(H(x)).

It is obvious that the standard method of dynamic system modeling with the aid
of integrators and nonlinear blocks is also usable for modeling general n-th order
memristive systems [11]. An example of the direct programming of Eqs. (4.12) and
(4.13) is shown in Fig. 4.6. We will not be concerned with other variants of the
model which would be based on alternatively selected state variables.
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4.4.2 Implementation of Models in PSPICE

Examples of the implementation of memristor models in the PSpice simulation
program are described in this section. With slight modifications, given by syntactic
differences, it is possible to implement these models also in other programs such as
LTSpice, WinSpice, and HSpice.

These programs deal with systems of equations where the unknown and the
input quantities have their physical dimensions of voltages and currents. When
modeling memristors, whose exciting, output, and state quantities may be of a
different physical nature, it is therefore necessary to use the following approaches:

1. The method of representing the exciting and response quantities: As for a
memristor of electrical nature, we assemble the model such that it can be
fully used for the modeling of more complex applications. In other words, we
model the memristor as a floating two-terminal device. For the voltage-controlled
memristor (VCMR), the exciting quantity will be the differential voltage across
its terminals and the response quantity will be the current. In the case of the
current-controlled memristor (CCMR), it will be the other way round. When
considering memristors with non-electrical nature of their port quantities, it is
necessary to consider how to define the excitation and the response. It is useful
to do so in accordance with Table 4.2, i.e. to represent the quantity of the effort
type by electrical voltage and the quantity of the flow type by electric current.
However, if we do not intend to combine different partial models into larger
units and if the object of the simulation is only a single memristive system, it is
also possible to express the excitation and the response arbitrarily, e.g. by a pair
of voltages.

2. The method of representing the state and other internal quantities: In principle,
it is irrelevant whether the internal quantity is represented by voltage or current.
In the SPICE-family programs, the former is usually preferred. Since internal
quantities are determined based on formulae, controlled sources participate in
their representation.

3. Most SPICE-family programs do not allow a direct modeling of resistors with
variable resistances. Therefore, when modeling memristors of electrical nature, it
is necessary to use an indirect way of modeling a memristive port by a controlled
source. Consider, for example, the model in Fig. 4.4b, where, for the voltage-
controlled memristor, the exciting quantity u would be a voltage and the response
quantity y would be a current. Then we connect a controlled current source to the
memristive port. Its current will be calculated according to the formula g(x)u. For
the current-controlled memristor, we connect a controlled voltage source to the
memristive port, and its voltage will be determined by the formula g(x)i, where i
is the port current.

4. The usual methods of modeling an integrator in the SPICE-type programs are as
follows. Consider that it is necessary to model the integration block with input u
and output x.
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The first method consists in utilizing a controlled source of voltage or current,
depending on whether we are going to represent the variable x in the form of voltage
or current. A formula for calculating the time-domain integral of u is assigned to this
source. In the PSPICE language, for example, the formula would be SDT(V(in1,
in2)). The SDT function calculates the time-domain integral of the memristor port
voltage between the pins in1 and in2. We can add a term to this formula that defines
the initial state of the integrator at the starting point of the transient analysis.

The second method is based on the knowledge that if a 1-Farad capacitor is
charged by the current i(t), then the capacitor voltage is equal to the time-domain
integral of this current. So irrespective of its physical nature, the quantity we intend
to integrate can be used to control the current of that source. The integral of this
quantity, no matter what its physical unit is, will be numerically equal to the voltage
across the charged capacitor in volts. The initial state of the integrator can be set by
the IC attribute of the capacitor or by the .IC command.

Note that memristive systems are being simulated especially in the time domain,
and their models should be designed such that they operate reliably during the
Transient analysis.

The model implementation in PSpice will be demonstrated on several specific
examples. A complete list of the source code of particular PSpice subcircuits is given
for each example. In addition, PSpice input files for each simulation are included,
with references to the library memristor.lib, summarizing the above subcircuits.

4.4.2.1 Memristor Switching Memory

Figure 4.7 illustrates an example of a piecewise-linear constitutive relation q= q(ϕ)
and two-state PSM GM =GM(ϕ) of a memristor for the RRAM binary memory [10].
The memristor parameter is a memductance GM, which is dependent on the flux ϕ
and on its threshold value Φ according to the relation

GM =
GM1 if abs(ϕ)< Φ
GM2 otherwise

(4.23)

Since the native state variable is used for memristor definition, we can use the
model in Fig. 4.4b. It is obvious that the exciting variable u is now the terminal
voltage v of the memristor, the output variable y is the memristor current, and the
state variable x is the flux ϕ , i.e. the time-domain integral of voltage.

One of the possible ways of specifying the block diagram for the purposes of
SPICE modeling is shown in Fig. 4.8a.

The floating memristor is modeled at the + and – terminals using the controlled
current source G. Its current is calculated as the product of the memristor voltage
V(+, –) and the variable V(GM), which is the voltage at the node GM. The
controlled voltage source EGM is connected to this node. Its voltage is calculated
using formula (4.23). This way the memductance, which depends on flux, is
modeled. The flux is represented in the model as a voltage of the node phi, thus



4 Fourth Fundamental Circuit Element: SPICE Modeling and Simulation 127

q

0

0 ϕ

ϕ

Φ-Φ

GM1

GM1

GM2

GM2

GM2

GM

Fig. 4.7 Model of voltage-
(or flux-) controlled
memristor for binary
memristive memories

+

_

phi

IC=phi0

Raux

1TOhm

GM

EGM

a

b

V(+,-)

C=1F
G

V(GM)*V(+,-)

if(abs(V(phi))<PH,GM1,GM2)

+

_

phi

Gint

Eint

phi0+SDT(V(+,-))

V(+,-)*if(abs(V(phi))<PH,GM1,GM2)

G

Fig. 4.8 Specification of block diagram from Fig. 4.4b for modeling memristor from Fig. 4.7 in
PSpice, (a) complete, (b) economical version

V(phi). This voltage is obtained by integrating the terminal voltage of the memristor
with respect to time. This integration is accomplished via the controlled current
source Gint, which charges the capacitor C. The initial state of the flux can be
adjusted via selecting the variable phi0. The auxiliary resistor Raux is necessary
for providing the DC path between the node phi and the ground.
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Figure 4.8b demonstrates a possible simplification of the model. The integrator
is now implemented by a controlled voltage source Eint, whose voltage is calculated
using the internal function SDT. Individual calculation of the voltage V(GM),
expressing the memductance, is now omitted, and it is applied directly to the
calculation of the current of the controlled source G. Note that, compared to the
model in Fig. 4.8a, the users would not have any direct data about the memductance
after finishing the simulation, but they may obtain them indirectly from the voltage
and current.

Based on the model in Fig. 4.8a, it is possible to compile a SPICE subcircuit with
the source code as below:

SUBCKT 1:
.subckt memristor_PWL + − params: GM1=20u GM2=100u
+ PH=0.2 phi0=0
G + − value={V(GM)*V(+,-)}
Gint 0 phi value={V(+,-)}
C phi 0 1 IC={phi0}
Raux phi 0 1 T
EGM GM 0 value={if(abs(V(phi))<PH,GM1,GM2)}
.ends memristor_PWL

The source code of the model from Fig. 4.8b is simpler:

SUBCKT 2:
.subckt memristor_PWL_simple + − params:
+ GM1=20u GM2=100u PH=0.2 phi0=0
G + − value={V(+,-)*if(abs(V(phi))<PH,GM1,GM2)}
Eint phi 0 value={phi0+SDT(V(+,-))}
.ends memristor_PWL_simple

If we excite such a memristor by a sinusoidal 2 V/1 Hz voltage source, then the
complete input file for the simulation may be as follows:

CIR 1:
PWL memristor, sin input
.param Vmax 2 f 1
Vmem mem 0 SIN 0 {Vmax} {f}
Xmem mem 0 memristor_PWL params: GM1=20u GM2=100u
+ PH=0.2 phi0=0
.lib memristor.lib
.tran 0 5 0 0.5m skipbp
.probe
.end

The following PWL memristor is defined on the fourth line: It is connected
between the nodes mem and 0, with the conductances GM1= 20 μs, GM2= 100 μs,
and with the parameter PH= 200 mV s (the threshold flux Φ from Fig. 4.7). The
initial flux is zero (phi0= 0). According to PSM in Fig. 4.7, the corresponding



4 Fourth Fundamental Circuit Element: SPICE Modeling and Simulation 129

V(Xmem.phi)

0V 100mV 200mV 300mV 400mV 500mV 600mV 700mV
V(Xmem.GM)

0V

50uV

100uV
V(mem)

-2.0V -1.0V 0V 1.0V 2.0V
I(Xmem.G)

-200uA

0A

200uA

SEL>>

Time

0s 2.0s 4.0s 5.0s
1 V(mem) I(Xmem.G) V(Xmem.phi)

-2.0V

0V

2.0V1

-200uA

0A

200uA
2

0V

0.5V

1.0V3

>>

2 3

Fig. 4.9 Results of transient analysis of PWL memristor with parameters GM1= 20 μs,
GM2= 100 μs, Φ= 200 mV s, excited by 2 V/1 Hz sinusoidal voltage. Quantities V(mem),
I(Xmem.G), V(Xmem.phi), and V(Xmem.GM) represent memristor voltage, current, flux, and
conductance. At time 0, memristor is in state phi0= 0

conductance is GM1. Since the terminal voltage of the memristor has a sinusoidal
character, its time-domain integral will always be nonnegative, and the flux ϕ will
move the operating points at the characteristics in Fig. 4.7 only within the region
ϕ ≥ 0.

The simulation results are shown in Fig. 4.9. Note that the quantities V(mem),
I(Xmem.GM), V(Xmem.phi), and V(Xmem.GM) represent the voltage, current,
flux, and conductance of the memristor. The flux waveform V(Xmem.phi) in the
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top plot confirms that the flux is nonnegative and oscillates between zero and ca
636 mV s. The bottom part of the figure, demonstrating the conductance versus
flux relationship, indicates a step change in the memristor conductance for the flux
threshold value PH= 0.2 mV s. The middle plot shows the corresponding PHL.

If the operating point is forced to move in the GM vs. flux characteristics
also in the area of negative flux, and thus all three piecewise-linear segments of
CR are used, then the effect which is known from the behavior of the so-called
complementary resistive switch will be produced [21]. It can be accomplished by
modifying the initial state of the memristor, e.g. via selecting phi0= – 0.3 Vs on the
fourth line of the input file. The corresponding results are given in Fig. 4.10.

Also note that the memristor passes immediately into the periodical steady state,
which is in accordance with FP4. By gradually increasing the excitation frequency f,
it is possible to verify the validity of FP5: Since the flux swing gradually diminishes,
then, after exceeding some upper limit frequency, the working point can no longer
be switched between different conduction states. The memristor will then behave as
a linear resistor, thus without any hysteresis in the i–v characteristic.

4.4.2.2 The TiO2 Memristor

The well-known simple physical model of a memristor [8] in Fig. 4.11 consists of
a thin TiO2 double-layer (thickness D is about 10 nm) between a pair of platinum
electrodes. One of the TiO2 layers is doped with oxygen vacancies and therefore it
behaves as a semiconductor. The second, undoped layer has insulating properties.
As a result of complex processes in the material, the width w of the doped layer
varies in dependence on the amount of electric charge that passes through the
memristor. When the current passes in a given direction, the boundary between the
two layers is moving in the same direction. The resulting resistance Rmem of the
memristor is given by the sum of resistances of doped and undoped layers, which
can be described as

Rmem
(
x′
)
= Ronx′+Ro f f

(
1− x′

)
= Ro f f −ΔRx′, ΔR = Ro f f −Ron (4.24)

where

x′ =
w
D

∈ (0,1) (4.25)

is the width of the doped layer, scaled to the total width D, and Roff and Ron are the
memristor resistance limit values for w= 0 and w=D. The ratio of both resistances
is usually given between 102 and 103.

Ohm’s law holds between the memristor voltage and current:

v(t) = Rmem
(
x′
) · i(t). (4.26)
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Fig. 4.10 Results of transient analysis of PWL memristor with parameters GM1= 20 μs,
GM2= 100 μs, Φ= 200 mV s, excited by 2 V/1 Hz sinusoidal voltage. Quantities V(mem),
I(Xmem.G), V(Xmem.phi), and V(Xmem.GM) represent memristor voltage, current, flux and
conductance. At time 0, memristor is in state phi0= –0.3 V s

The speed of the boundary between the two layers can be simply described by
the state equation [16]

dx′

dt
= ki(t) fW

(
x′
)
, k =

μvRon

D2 (4.27)
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where μv is the so-called average mobility of dopants with values of about
10–14 m2 s–1 V–1. In nano-devices, even small voltages may cause enormously high
strengths of electric field to occur that subsequently induce significant nonlinearities
in ion transport [8]. These nonlinearities have a specific impact at the edges of
a thin film when the speed of the boundary gradually decreases to zero when
approaching both edges of the layers. This phenomenon, known as nonlinear drift,
can be modeled in a simplified way by the so-called window function fW (x′) on the
right side of differential equation (4.27).

From the existing window functions, let us mention the rectangular (fWR),
Joglekar (fWJ) [16], and Biolek (fWB) [13] functions, see Fig. 4.12:

fW R
(
x′
)
= stp

(
x′
)− stp

(
x′ − 1

)
, (4.28)

fW J
(
x′
)
= 1− (2x′ − 1

)2p
, (4.29)

fW B
(
x′, i

)
= 1− (x′ − stp(−i)

)2p
, (4.30)

where p is a positive integer and i is the current flowing through the memristor.
The current direction is considered positive if this current increases the width of the
doped layer, thus x′ → 1. The stp symbol denotes the step function

stp(i) =

{
1 for i ≥ 0
0 for i < 0

(4.31)

With p growing towards infinity, the shape of window functions (4.29) and (4.30)
is changing towards the form of a rectangular window. For p→∞, the Biolek
window is passing to the Corinto window [22]. When comparing the Joglekar and
the Biolek windows, it is useful to mention that the curve of the Joglekar window
starts from the origin of the coordinates with a slope of 4p, whereas the slope of the
curve of the Biolek window, pointing to the origin, is only 2p. The Biolek window
should therefore be modeled with twice the parameter p for the Joglekar window in
order to maintain the same slopes.

A serious problem with the rectangular and Joglekar windows consists in the fact
that if the system got into one of its limit states, i.e. x′ = 0 or x′ = 1, then, according
to (4.27), this would mean a zero derivative condition and thus the impossibility
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to change this status by any external excitation (see the analysis at the end of
Sect. 4.3.1). Some authors circumvent this problem by considering nonzero values
of the window function at limit states [23]. However, then another problem appears:
If the system reaches a limit state that cannot be got over due to physical reasons, the
state cannot change anymore and its derivative with respect to time must therefore
be zero. This can be changed only by changing the direction of the exciting quantity.
The Biolek window is based on this fact. This window function depends on the state
as well as on the direction of the current in the circuit.

Note for completeness that other windows for modeling the nonlinear dopant
drift were also published, for example Strukov [8], Prodromakis [24], and TEAM,
or Kvatinski [25] windows.

When analyzing Eqs. (4.24)–(4.27), we conclude that they formally correspond
to memristor equations (4.8) and (4.10) in the nonstandard form. Comparing the
state equations (4.27) and (4.10), and taking into account the window functions
(4.28)–(4.30), we come to the following conclusions:

When modeling the TiO2 memristor by the rectangular or the Joglekar window,
the state equation corresponds to the equation of the current-controlled memristor,
i.e. u= i, in the nonstandard form (4.10): the state derivative is equal to the product
of the controlling quantity (current) and the nonlinear function of the state kfW (x′).
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An analysis of the rectangular window shows that the state variable is directly
proportional to the native state variable. More specifically, the state variables are
proportional within an admissible range (4.25), and the state variable (4.25) shows
limitations at both boundaries. This is the case from Fig. 4.2c. The result is that the
system can smoothly pass into states with zero-derivatives of these states within a
finite time, but it cannot extricate itself from these states. That is why it is not a
memristor in the true sense of the word. It acts as a memristor only if the state x′
moves within the limits (4.25). The model is therefore problematic, for instance,
when modeling the hard-switching effects.

For the finite values of the parameter p, the Joglekar window leads to a strictly
monotonic transformation between the native state variable x and the state variable
x′ as shown in Fig. 4.2b, and the corresponding model is thus a model of a memristor.

It is obvious from the above analysis that the respective window functions are
just another way of expressing the nonlinear relationship H or S between the native
and the “physical” state variables, and that the nonlinear functions H (4.7) could be
used instead of the window functions for modeling the nonlinear drift in the TiO2

memristor. This approach will be utilized below.
When modeling the TiO2 memristor with the Biolek or the Corinto window, it

is not a memristor model any more but the model of a more general first-order
memristive system according to Eqs. (4.10) and (4.11): The state derivative is a
nonlinear function of the state and also the controlling quantity kifWB(x′,i). This also
means that the actual TiO2 memristor, for which the above fixation of the state is
not observable (which can be well modeled using these windows), cannot, generally
speaking, be considered the fourth fundamental circuit element, and therefore some
of the FPs from Sect. 4.3 do not apply to it.

Over time, these simple models were elaborated in order to correlate more closely
with experimental data. However, the characterization was done only for a few
specifically manufactured memristive systems excited particularly by sinusoidal and
triangular signals. It is therefore not obvious to what extent the models are valid
under general conditions [26]. In other words, the given models probably still do not
show the attributes of the correct modeling by Prof. Chua. A typical representative
of such modeling is a refined model of the memristive port from [27]

i = xnc1 sinh(d1v)+ c2

(
ed2v − 1

)
(4.32)

where x is the normalized width of the doped layer according to (4.25), understood
here as a state variable, while the symbols n, c1, d1, c2, and d2 denote fitting
constants.

The state equation is considered in the form

dx
dt

= a fW (x)vq (4.33)

where a is a fitting constant, fw is the window function, and q is a positive odd
number.
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Fig. 4.13 Specification of circuit equations (4.24)–(4.27) for modeling TiO2 memristor in PSpice,
(a) complete, (b) economical version

We can conclude from the analysis of Eqs. (4.32) and (4.33) that the memristive
port is described by the port equation (4.12) for the voltage-controlled generalized
first-order memristive system, where the memductance depends on the state x as
well as on the voltage v:

g(x,v) =
xnc1d1 + c2d2 ..v = 0

xnc1
sinh(d1v)

v + c2
ed2v−1

v ..v �= 0
(4.34)

The state equation (4.33) corresponds to the state equation of the first-order
memristive system (4.13). That is why it is not a memristor. The mathematical model
shows that it is a nonvolatile memory because the state derivative is zero for v= 0,
and the given state then determines the memductance according to formula (4.34)
for v= 0. It results from (4.33), however, that if we use some of the classical window
functions of the type of (4.28) or (4.29), the model will suffer from the “fixed state”
problem. Instead of this, it is useful to use a function of the type of (4.30) which
will depend not only on the state but also on the excitation quantity, the voltage in
this case. An example is described in [26].

In the following, the procedures of modeling the basic memristor equations
(4.24)–(4.29) and (4.31) are given. The SPICE modeling of the TiO2 memristive
systems in terms of Eqs. (4.32)–(4.34) and others is described in detail in [26, 28].

The model of the TiO2 memristor, given by Eqs. (4.24)–(4.27), has been redrawn
to the diagram in Fig. 4.13a with the aim of implementing it subsequently in the
SPICE program.
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In the model in Fig. 4.13a, the memristance is calculated from formula (4.24) as
the terminal voltage of the auxiliary source ERM. The state variable, on which the
memristance is dependent, is represented by the voltage of the node x. In accordance
with the state equation (4.27), this voltage is computed by integrating the expression
kifW , which is the value of the current of the source Gint, charging the capacitor
C. The memristor resistance between the + and – terminals is modeled by the
controlled source E. Its voltage is calculated as the product of the memristance and
the current flowing through the memristive port.

Figure 4.13b shows one of the economical alternatives, when the source ERM
for computing the memristance is omitted. When modeling the memristive port, use
is made of the fact that the memristance is equal to the difference between the fixed
resistance Roff and the expression ΔRx. It can be modeled by a serial combination
of the resistor Roff and the reversed voltage source with the voltage equal to the
product of ΔRx and the current flowing through the memristor. The advantage of
such a modeling is that the memristive port is not modeled by an ideal source and
thus there is no risk of a potential conflict resulting from an improper connection of
ideal sources when integrating the memristor in an application circuit.

The code of the SPICE subcircuit (SUBCKT 3) of the model in Fig. 4.13b is as
follows.

SUBCKT 3:
.subckt memristor_TiO2_1 + − params:
+ Ron=100 Roff=100k Rini=10k p=10
.param uv 10F D 10n
+ k {uv*Ron/D**2} deltaR {Roff-Ron}
+ x0 {(Roff-Rini)/deltaR}
.func fwJ(x) {1-(2*x-1)**(2*p)}; Joglekar window
.func fwB(x,i) {1-(x-stp(−i))**(2*p)}; Biolek window
Roff + aux {Roff}
E aux - value={−deltaR*V(x)*I(E)}
* for using the Biolek window instead Joglekar window,

* replace fwJ(v(x)) by fwB(v(x),I(E)) on line below
Gint 0 x value={k*I(E)*fwJ(v(x))}
C x 0 1 IC={x0}
Raux x 0 1T
.ends memristor_TiO2_1

The input file CIR2 listed below models the memristor excitation from the source
of 0.2 V/1 Hz sinusoidal voltage. A simple Joglekar window for p= 1 is used here
for modeling the nonlinear dopant drift. The initial memristance Rini = 9 kΩ is set
close to the upper limit Rmax = 10 kΩ.

The auxiliary controlled voltage sources Eq and Ephi are used for computing
the time-domain integrals of memristor current and voltage, i.e. for computing
the charge and the flux. They can be used for a convenient visualization of these
variables in a PROBE postprocessor.



4 Fourth Fundamental Circuit Element: SPICE Modeling and Simulation 137

CIR 2:
TiO2 memristor, sin input
.param Vmax 0.25 f 1
VmemJ memJ 0 SIN 0 {Vmax} {f}
XmemJ memJ 0 memristor_TiO2_1 params:
+ Ron=1k Roff=10k Rini=9k p=1
Eq q 0 value={sdt(−i(VmemJ))}
Ephi phi 0 value={sdt(V(memJ))}
.lib memristor.lib
.tran 0 5 0 0.5m skipbp
.probe
.end

The simulation results are shown in Fig. 4.14. The simulation confirms several
memristor FPs. The flux-charge CR is an unambiguous curve (the top plot). The
same applies to the memristance vs. charge map (second picture from the top).
The PHL in current–voltage characteristics (third plot from the top) forms a simple
closed pattern, indicating that the circuit has immediately passed into the periodical
steady state (see the fingerprint FP4). The PHL exhibits the odd symmetry (see FP6)
and is of the crossing type (see FP7). The limit points of the PSM curve do not lie
on a horizontal straight line, so that the appropriate PHL cannot be of the crossing
type with tangential touching (see FP8) and cannot be degenerated (see FP10).

If we repeat the simulation for an increasing frequency of the excitation signal,
we can verify the validity of FP5 (the area within the loop gradually disappears).

The simulation may be repeated for the Biolek window (when modifying the line
defining Gint in the SUBCKT3 as indicated in the corresponding note) under the
same conditions except for p= 2. The results are given in Fig. 4.15. It is obvious
that several memristor FPs have now been violated. Both CR and PSM are not
unambiguous functions of a native state variable. PHL does not show the odd
symmetry, and, also, a gradual, not immediate transition to the periodical steady
state is evident. On the other hand, this window indicates its potential for modeling
real memristive systems that naturally violate the memristor FPs (for example, they
generate asymmetric PHLs).

The results of another simulation with the Joglekar window are shown in
Fig. 4.16. The simulation parameters are identical to those for the first simulation
in Fig. 4.14, only the initial value of the memristance Rini was reduced to 3 kΩ.
It results in a shift of the initial position of the boundary between the doped and
undoped layers towards the “right-side” edge of the TiO2 memristor in Fig. 4.11,
and thus in increasing the initial value of the state variable x′. The results in
Fig. 4.16 are surprising at first sight: a number of memristor FPs are violated. The
waveform of the state variable x′, V(XmemJ.x), manifests a slow transition to the
periodical steady state. It violates FP4. This subsequently leads to ambiguities in
other characteristics. Nevertheless, the model corresponds to a memristor model.

This contradiction can be explained by numerical errors that occur during the
simulation, especially during the first repeating period of the excitation signal, when
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Fig. 4.14 Results of analysis of TiO2 memristor according to data from CIR2. Joglekar window
with p= 1 is used to model nonlinear drift. First two plots from top are flux-charge CR and
memristance vs. charge map. Below them is the v–i PHL. Bottom plot shows waveforms of voltage,
current, and state variable x′

the differences between the calculated state variable x′ and its theoretical maximum
1 are so small that they cannot be expressed, within the given accuracy of the number
representation, other than by zero. However, the state derivative is then zero and the
already mentioned “fixed state condition” occurs. The system can extricate itself
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Fig. 4.15 Results of analysis of TiO2 memristor. Simulation parameters are similar to those in
Fig. 4.14. Biolek window with p= 2 is used to model nonlinear drift

from such a state only by the influence of similar numerical errors. If somebody does
not know FP4, they could easily consider the results in Fig. 4.16 correct, drawing a
mistaken conclusion that the system being modeled is not a memristor.

Unfortunately, this incorrect behavior of the simulation program cannot be
avoided, even if the accuracy of calculations is increased by tweaking the error
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Fig. 4.16 Results of analysis of TiO2 memristor. Simulation parameters are similar to those in
Fig. 4.14 with one exception: initial value of memristance Rini is reduced from 9 to 3 kΩ. Results
are burdened with unacceptable numerical errors

criteria such as RELTOL, ABSTOL, and VNTOL, or the step ceiling is reduced.
Therefore, it is necessary to look for other, nontraditional ways. One of them is to
change the philosophy of memristor modeling by changing from the diagram (a) to
the diagram (b) in Fig. 4.5. The source of the numerical errors lies in the effort to
solve numerically the differential state equation (4.27). The model in Fig. 4.5b does
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not use this equation at all. Instead, a primitive differential equation (4.2) is being
modeled for the native state variable x, and it is solved by a simple integration. The
state variable x′ and the memristance derived from x′ are determined from the native
state variable by simple arithmetic calculations.

To implement the model in Fig. 4.5b, it is necessary to determine the trans-
forming function H between the state variables x and x′. The procedure will be
demonstrated for the Joglekar window with p= 1, which was used in previous
models. Comparing Eqs. (4.10) and (4.27), we find that the transforming function S
for the TiO2 memristor must comply with the rule

dS (x′,x′0)
dx′

=
1

k fW J (x′)
=

1
k

1

1− (2x′ − 1)2 (4.35)

or

S
(
x′,x′0

)
=

1
k

x′∫

x′0

1

1− (2x′ − 1)2 =
1
4k

ln

(
x′

x′0
1− x′0
1− x′

)
. (4.36)

After inverting the S function with respect to the variable x′ we get a formula for
the transforming function H:

H
(
x,x′0

)
=

1

1+
(

1
x′0 − 1

)
e−4kx

(4.37)

which can be modified to the form

H (x,x0) =
1

1+ e−4k(x−x0)
, x0 =

1
4k

ln

(
1

x′0
− 1

)
. (4.38)

It is evident that the graph of the transforming function H between the native
state variable and the variable x′ (see Fig. 4.2b) for the TiO2 memristor and for
the Joglekar window with p= 1 corresponds to the well-known sigmoid (logistic)
function of the type 1/(1+ e– x), shifted along the x axis in dependence on the initial
value of the state x′0.

The SPICE subcircuit (SUBCKT4) shows the method of modeling the TiO2

memristor on the basis of the method in Fig. 4.5b, utilizing the sigmoid function
(4.38), which is defined on the fourth line. The memristive port is modeled the same
as in the previous SUBCKT3 (fifth and sixth lines). The purpose of the source Eq
is to calculate the native state variable, i.e. the charge, and thus the time-domain
integral of the current flowing through the memristive port. The computed charge
is then expressed as the voltage of the node q. The source Ex is used to convert the
native state variable to the boundary position via the sigmoid function H.
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SUBCKT 4:
.subckt memristor_TiO2_H + − params: Ron=100 Roff=100k
+ Rini=10k
.param uv 10F D 10n
+ k {uv*Ron/D**2} deltaR {Roff-Ron}
+ x0 {(Roff-Rini)/deltaR}
.func H(x,x0) {1/(1+(1/x0-1)*exp(−4*k*x))}
Roff + aux {Roff}
E aux - value={−deltaR*V(x)*I(E)}
Eq q 0 value={sdt(I(E))}
Ex x 0 value={H(v(q),x0)}
.ends memristor_TiO2_H

The simulation from Fig. 4.16 was repeated after replacing the classical model of
the memristor from SUBCKT3 with the SUBCKT4 model. The results are shown in
Fig. 4.17. It is obvious that the numerical errors from the previous simulation have
been removed.

A more detailed analysis of the effects of the numerical errors discussed leads
to the knowledge that these errors can completely corrupt the simulated outputs.
Examples are given in Fig. 4.18, which were generated on the basis of the input file
CIR3:

CIR 3:
TiO2 memristors, sin input
.param Vmax 1 f 1 Ron 1k Roff 10k Rini 9k p 1
VmemJ memJ 0 SIN 0 {Vmax} {f}
XmemJ memJ 0 memristor_TiO2_1 params:
+ Ron={Ron} Roff={Roff} Rini={Rini} p={p}
VmemH memH 0 SIN 0 {Vmax} {f}
XmemH memH 0 memristor_pokus params:
+ Ron={Ron} Roff={Roff} Rini={Rini}
.lib memristor.lib
.tran 0 5 0 0.5m skipbp
.probe
.end

The amplitude of the excitation voltage is now increased to 1 V. Two memristors
(XmemJ with the standard model and XmemH with the sigmoid model) are
simulated simultaneously. Even though the models are mathematically equivalent,
the simulation results are absolutely different. The standard model leads to a rapid
transition of the state x′ to its upper limit, which causes the above numerical errors.
These errors then burden all further calculations. The system is moving to a steady
state which can be evaluated as a “hard-switching effect.” After comparing it with
the upper pair of plots, it is clear that the memristor is in a different mode. The
curves of the evolution of the position of the boundary between doped and undoped
layers overlap only at the beginning of the transient analysis until the numerical
problem occurs.
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Fig. 4.17 Results of analysis of TiO2 memristor. Simulation parameters are similar to those
in Fig. 4.16, but SUBCKT4 is used for memristor modeling. Outputs are not affected by any
numerical errors as in Fig. 4.16

As can be seen, modeling a memristor by means of function that transforms the
state variables can be preferable to modeling it on the basis of the window functions.
Tweaking the window functions by their parameters (see the parameter p of the
Joglekar window) is accompanied by modifying the shapes of the transforming
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Fig. 4.18 Results of analysis of TiO2 memristor with two different but mathematically equivalent
models. Simulation parameters are defined in CIR3. First two plots show behavior of model
utilizing functions transforming states. Next two plots reveal unacceptable errors generated by
standard memristor model using window functions

functions S and H, which prompts the idea of searching for such transformation
functions (not window functions) that would lead to the required behavior of the
memristor model.
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4.4.2.3 Memristors with Polynomial CR

Consider a memristor with CR (4.3) expressed in the polynomial form

yI =
∞

∑
k=1

gkxk (4.39)

where gk, k= 1, 2, . . . are real numbers. The series does not contain an absolute
term. Then the CR graph will pass through the origin of the coordinates.

According to (4.5), the memristor PSM is

yI =
∞

∑
k=1

gkxk. (4.40)

Listed below is an example of the SPICE subcircuit (SUBCKT5) and input file
(CIR4) for the simulation of the memristor with CR (4.39), considering a fifth-
order polynomial. By selecting various values of the coefficients gk, we can choose
various shapes of the constitutive relations and the corresponding waveforms and
i–v PHLs. Figure 4.19 shows examples of some simulation outputs generated from
the data in CIR4. The PHL has the crossing points also outside the origin of the
coordinates.

SUBCKT 5:

*Model of flux-controlled memristor with polynomial CR
.subckt memristor_poly 1 2 params:
+ g1=1.5m g2=0.2 g3=−3 g4=0 g5=0 phi0=0
Ephi phi 0 value={phi0+SDT(v(1,2))}
Gm in 0 value={(g1+2*g2*v(phi)+
+ 3*g3*v(phi)**2+4*g4*v(phi)**3+5*g5*v(phi)**4)*v(1,2)}
.ends memristor_poly
CIR 4:
polynomial memristor, sin input
.param Vmax 1 f 10
Vmem mem 0 SIN 0 {Vmax} {f}
Xmem mem 0 memristor_poly params:
+ g1=10m g2=0.7 g3=10 g4=−240 g5=−10k phi0=0
EQ q 0 value={sdt(−i(Vmem))}
Ephi phi 0 value={sdt(V(mem))}
.lib memristor.lib
.tran 0 0.2 0 0.2m skipbp
.probe
.end



146 D. Biolek and Z. Biolek

Time

0s 40ms 80ms 120ms 160ms 200ms
1 V(mem) -  (Vmem)

-1.0V

0V

1.0V1

-40mA

0A

40mA
2

   >>

V(mem)

-1.0V -0.5V 0V 0.5V 1.0V
-  (Vmem)

-40mA

0A

40mA
V(phi)

0V 5mV 10mV 15mV 20mV 25mV 30mV 35mV
- (Vmem)/V(mem)

0

20m

40m

SEL>>

V(q)
0V

0.5mV

1.0mV

2

Fig. 4.19 Results of analysis of memristor with polynomial CR according to data from CIR4.
From top to bottom: charge-flux CR, memductance-flux PSM, current–voltage PHL, and voltage
and current waveforms

Figure 4.20 shows the simulation results based on the task defined in CIR5.

CIR 5:
polynomial memristors, sin input
.param Vmax 1 f 10
Vmem1 mem1 0 SIN 0 {Vmax} {f}
Xmem1 mem1 0 memristor_poly params:
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Fig. 4.20 Results of analysis of two memristors with polynomial CRs according to data from
CIR5. First two plots show the memductance vs. flux PSM and current vs. voltage PHL of
Xmem2 memristor with PHL having tangential touching at origin. Next two figures show similar
characteristics of memristor Xmem1 with degenerated PHL

+ g1=10m g2=0.7 g3=−100 g4=4022 g5=−50536
EQ1 q1 0 value={sdt(−i(Vmem1))}
Ephi1 phi1 0 value={sdt(V(mem1))}
Vmem2 mem2 0 SIN 0 {Vmax} {f}
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Fig. 4.21 Hydraulic memristor. Propeller is conducted within threaded rod. It is driven by liquid
flow which moves it between two extreme positions w= 0 and w=wmax (see also Fig. 4.22)

Xmem2 mem2 0 memristor_poly params:
+ g1=10m g2=−0.72 g3=70 g4=1000 g5=−57655
EQ2 q2 0 value={sdt(−i(Vmem2))}
Ephi2 phi2 0 value={sdt(V(mem2))}
.lib memristor.lib
.tran 0 0.2 0 0.2m skipbp
.probe
.end

Two memristors with different coefficients are simulated simultaneously, each
being excited from a source of identical harmonic signal. The boundary points
of the PSM of the memristor Xmem2 (the upper plot) lie on the horizontal line.
According to FP8, the PHL must then pass through the origin with a tangential
touching of its arms and the loop must be of the crossing type (CT). The second plot
from the top confirms this. The third plot from the top shows that the PSM of the
Xmem1 memristor is symmetrical with respect to the vertical line leading through
the middle of the swing of the native state variable. According to FP10, it is a sign
of degenerated hysteresis loop. This fact is confirmed in the last plot.

It should be noted that both the tangential crossing at the origin and the loop
degeneration may strongly depend on the memristor parameters as well as on the
parameters of its exciting signal. If, for example, the amplitude or frequency of
the excitation is changed, the swing of the native state variable (i.e., flux) is also
changed. Then it changes the coordinates of the boundary points of the PSM, and
the conditions for the existence of the tangential touching and the PHL degeneration
are violated. This example shows that, under certain conditions, the curve of the loop
area versus the frequency can pass through zero points.

4.4.2.4 Hydraulic Memristor

Consider a hydraulic system according to Fig. 4.21. A part of the liquid flowing
through a tube of a conic profile rotates a propeller that moves a plug, led through
a bolt thread in one or the other direction, following the direction of the liquid
stream. The active cross-area changes with the plug movement, and this modifies
the resistance that the tube puts up to the flowing liquid. If the liquid stops flowing,
the movement also stops and the hydraulic device remembers its state (and also its
hydraulic resistance) until the liquid continues flowing and moving the plug again.
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Fig. 4.22 Sizes of hydraulic memristor components, and dimensioning of plug position w; w
can change within interval [0, wmax]. Propeller is rotated by liquid flowing through cylindrical
opening of radius rin. Inner walls of tube and surface of outer part of plug have identical tapering
α= atn[(r2 – r1)/L]

The propeller remembers the total volume of the liquid that passed through its
inner opening via its immediate position w (see Fig. 4.22), and, based on this, it
continuously controls the hydraulic resistance R of the entire system. The maximum
resistance of the tube Roff is for the state w= 0 according to the left part of Fig. 4.21,
when it is closed by the plug and the flow passes just through the propeller opening.
In the state w=wmax, shown on the right of Fig. 4.21, the liquid flows not only
via the propeller but also around the plug, and the resistance of the system has the
minimum value Ron. We will demonstrate that if due to the liquid flow the plug
moves alternately to either side such that it still remains inside the tube (see the
middle part of Fig. 4.21), the system behaves as an ideal hydraulic memristor, i.e.
hydraulic resistor continuously changing value of its resistance in dependence on
the amount of liquid q that passed through.

Assuming laminar liquid flow, an analogy of Ohm’s law for hydraulic systems
can be described as follows:

p = Ri (4.41)

where p [Pa] is the difference between pressures at the ends of the tube, i [m3/s] is
the rate of the liquid flow through the tube, and R is the hydraulic resistance of the
system, which consists of the dominant resistance Rin of the central opening with
the radius r, and the resistance Rout between the tube walls and the plug.

The following formulae can be derived for both resistances:

Rin =
8μL

πr4
in

, Rout =
6μ

πw3tan4α
ln

(
r2

r1

)
(4.42)

where μ is the liquid viscosity.
Formula (4.42) for Rin is the well-known Hagen–Poiseulle relation [29]. The

formula for Rout holds if all along the tube the space between the plug and the walls
of the tube is negligible compared to the diameter of the plug.
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Note that the resistors Rin and Rout act in parallel in the face of the liquid flow.
Then the relationship between the current iin, rotating the propeller, and the total
current i is as follows:

iin =
i

1+ Rin
Rout

(4.43)

The propeller driven by the current iin moves the plug in accordance with the rule

dw
dt

= kiin (4.44)

where k is the proportionality constant given by the lead of the screw thread. The
state equation

dw
dt

= f (w)i (4.45)

follows from Eqs. (4.42)–(4.44). It is formally identical to Eq. (4.10), where

f (w) =
k

1+Aw3 , A =
4L
3

(
tanα

rin

)4

ln−1
(

r2

r1

)
. (4.46)

The function q= S(w, w0) from relation (4.6) between the native state variable,
i.e. the flow q=

∫
idt, and the plug position w, can be found by integrating according

to (4.11)

q = S (w,w0) =

w∫
w0

1+Aw3

k
dw =

1
k

[
w−w0 +

A
4

(
w4 −w4

0

)]
(4.47)

where w0 is the initial position of the plug.
The analytical expression of the inverse function w=H(q, w0) is rather difficult

in this case. It is technically inapplicable for constructing the model in Fig. 4.5b.
A method for solving this inversion directly within the SPICE environment will
be evident from the following example of a SPICE macro model of hydraulic
memristor.

SUBCKT 6:

*Model of hydraulic memristor
.subckt hydro_memristor in+ in- params:
+ Vinit=0 viscosity=1m L=50m ri=3m r2=6m r1=5m
+ w0=0k=2000
.param Rin {8*viscosity*L/(pi*ri**4)} tang {(r2-r1)/L}
+ ln21 {log(r2/r1)} A {4/3*(tang/ri)**4*L/ln21}
.func State(w,w0) {(w-w0+A/4*(w**4-w0**4))/k}
EQ Volume 0 value={Vinit+SDT(i(Vaux))}



4 Fourth Fundamental Circuit Element: SPICE Modeling and Simulation 151

x

V(w)+V(x)-state(w)

w

Ew

=0

Fig. 4.23 Controlled voltage
source searches for value
obtained by inverting the
function state( )

Ememductance Memductance 0 value=
+ {1/Rin+pi*tang**4*v(w)**3/(6*viscosity*ln21)}
Gmem in+ aux value={V(in+,in-)*(V(Memductance))}
Vaux aux in- 0
Ew w 0 value={V(Volume)-State(v(w),w0)+V(w)}
.ends hydro_memristor

The model parameters are chosen with a view to the requirement of laminar
liquid flow, i.e. the model works with low pressures and with low flow velocities.
The resistance between the plug and both ends of the tube is neglected. The
conductance of the tube is continuously calculated using a controlled voltage source
Ememductance, according to the current geometry of the memristor. The function
S( ) is denoted state and it is defined in a compact form as a SPICE function.
The inversion function H( ) is calculated automatically by a recursively specified
controlled source Ew. The general algorithm for calculating the inverse function
is shown in Fig. 4.23. A zero-voltage Vaux dummy source is used for sensing the
current flowing through the memristive port. The volume flow is calculated from
this current by integration using an EQ source.

The sought variable w is generated by the voltage source Ew, which generates
the voltage as a solution of the recurrent formula w=w+ x – S(w). The simulator is
therefore continually forced to find such a value w for which the equality S(w)= x
holds.

The following input file (CIR6) describes the hydraulic memristor connected by
a pipe of a total length of 5 m and inner radius of 5 mm to the source of pressure
with a harmonic waveform, having an amplitude of 10 kPa and a frequency of 1 Hz.

CIR6:
hydraulic memristor, sin input

*
Vin in 0 sin 0 10k 1Hz
Rs in pipe {8*viscosity*Ls/pi/rs**4}
.param Ls 5 rs 5m viscosity 1m
Xhydropipe 0 hydro_memristor
.lib hydro_memristor.lib
.tran 0.04 2 0 2m UIC
.probe
.end
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Time
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1/ V(Xhydro.Memductance)

0

1.0M

2.0M
V(Xhydro.w) D(V(Xhydro.w))
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Fig. 4.24 Behavior of model of hydraulic memristor. From top to bottom: time dependence of
liquid flow rate [m3/s] through memristor and amount of liquid passing through [m3] (top plot),
position of plug [m] and rate of plug movement [m/s] (middle plot), and hydraulic resistance
(bottom plot)

The simulation results are shown in Fig. 4.24. The initial state is w= 0, i.e.
the plug is in an extreme position when the hydraulic resistance is maximum.
The memristor achieves the minimum resistance at each odd half-period, when
the deflection of the plug is maximum, approximately 165 mm. The rate of the
liquid flow reaches a maximum value of 474 mL/s. The maximum speed of the plug
movement is 0.65 m/s. For each half-period, 150 mL of liquid will flow through the
memristor.
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V(pipe)

-800V -400V 0V 400V 800V
-I(Vin)

-500uA

0A

500uA

Fig. 4.25 Demonstration of FP5 for hydraulic memristor. Loops are drawn for frequencies in
ascending order: 1 Hz (red curve), 2 Hz (green), 3 Hz (violet), 20 Hz (blue)

The results of a simulation checking the validity of FP5 are in Fig. 4.25. The
loop area decreases with increasing frequency of harmonic excitation. In the limit
case, the loop degenerates into a line with a slope corresponding to the value of the
conductance of the tube with a plug in the position w0. For the parameters specified
in the netlist, the conductance is 636.2 nm3 Pa–1 s–1.

4.4.2.5 Sodium and Potassium Memristive Systems

The Hodgkin–Huxley (H–H) mathematical model from [30], describing how action
potentials in neurons are propagated along the axon, is considered one of the great
achievements of modern biophysics. The axon model is made up from a line of
identical H–H cells, which are coupled by identical passive resistors [31]. Two
components from the H–H cell were identified by Hodgkin and Huxley as time-
varying resistors. However, L. Chua and S. Kang pointed out in the paper [11] the
one-port denoted as RK is a potassium channel first-order memristive system, and
the other one-port RNa is identified as a sodium channel second-order memristive
system. The papers [31, 32] contain an excellent analysis of H–H cells from the new
perspective of the memristive Hodgkin–Huxley axon model, which clarifies many
hitherto unresolved anomalous phenomena, connected to the original incorrect
concept of time-varying resistors inside the H–H cell.

The potassium channel is described as follows [31]:

iK = GK(n)vK , (4.48)
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dn
dt

= f (n,vK) , (4.49)

where

GK(n) = gKn4, f (n,vK) = αn (vK)(1− n)−βn (vk)n, (4.50)

αn (vK) = 0.01
vK +EK + 10

e
vK+EK+10

10 − 1
, βn (vK) = 0.125 e

vK+VK
80 . (4.51)

In (4.51), the coefficients αn and β n are given in reciprocal msec and vK and EK

are in mV. As given in [31], EK = 12 mV. For the purpose of SPICE simulation, it is
advantageous to modify (4.51) such that αn and β n will be computed in reciprocal
sec, with vK and EK being in volts:

αn (vK) = 100
100(vK +EK)+ 1

e[100(vK+EK)+1]− 1
, βn (vK) = 125 e12.5(vK+EK) (4.52)

The dimensionless state variable n in (4.48), (4.49), and (4.50) can vary between
0 and 1. The constant gK in (4.50) is approximately 36 mS/cm2 [31].

Comparing (4.48), (4.49) with (4.12), (4.13), we can conclude that the potassium
channel is a first-order voltage-controlled memristive system.

The PSpice subcircuit of the potassium ion-channel memristive system, based
on Eqs. (4.48)–(4.52), together with self-explanatory notes, is given below.

SUBCKT 7:
.subckt Potassium_Ion_Channel_Mems in1 in2
+ params: Ek 12m ninit 0

*defining parameters and functions, see (4.48)-(4.50),
*(4.52)
.param gk 36m
.func GKn(n) {gk*n**4}
.func alphan(v)={100*(100*(v+Ek)+1)/
+ (exp(100*(v+Ek)+1)-1)}
.func betan(v)={125*exp(12.5*(v+Ek))}
.func fn(n,v)={alphan(v)*(1-n)-betan(v)*n}
* defining memristive port via Eq. (4.48)
G in1 in2 value={v(in1,in2)*GKn(v(n))}
*computing derivative of state variable according to

*(4.49)
Ed nd 0 value={fn(v(n),v(in1,in2))}
*computing state variable via integrating its

*derivative
E n 0 value={ninit+SDT(v(nd))}
.ends Potassium_Ion_Channel_Mems

Via the variable ninit we can define the initial state of the variable n. It
can be useful, for example, for setting the proper value of the initial condition,
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which corresponds to the steady state, skipping long transients. The system state
is computed via a controlled source denoted E which provides the time-domain
integration of the derivative of the state variable, stored in the variable v(nd).

The sodium channel is modeled as follows [31]:

iNa = GNa (m,h)vNa, (4.53)

dm
dt

= f1 (m,vNa) ,
dh
dt

= f2 (h,vNa) , (4.54)

where

GNa (m,h) = gNam3h,

f1 (m,vNa) = αm (vNa)(1−m)−βm (vNa)m, (4.55)

f2 (h,vNa) = αh (vNa)(1− h)−βh (vNa)h,

αm (vNa) = 0.1
vNa −ENa + 25

e
vNa−ENa+25

10 − 1
, βh (vNa) =

1

e
vNa−ENa+30

10 + 1
(4.56)

αh (vNa) = 0.07 e
vNa−ENa

20 , βm (vNa) = 4 e
vNa−ENa

18

In (4.56), the alpha and beta coefficients are given in reciprocal msec and vNa and
ENa are in mV. In [31], ENa = 115 mV. The modified Eq. 4.56 for αm, β m, αh, and
β h, computed in reciprocal sec for vNa and ENa in volts are as follows:

αm (vNa) = 2500
40(vNa −ENa)+ 1

e[100(vNa−ENa)+2.5]− 1
, βh (vNa) =

1000

e[100(vNa−ENa)+3] + 1
, (4.57)

αh (vNa) = 70 e50(vNa−ENa), βm (vNa) = 4000 e
vNa−ENa

0.018 .

The dimensionless state variables m and h in (4.53), (4.54), and (4.55) can vary
between 0 and 1. The constant gNa in (4.55) is approximately 120 mS/cm2 [32].

Comparing (4.53), (4.54) with (4.12), (4.13), we can conclude that the sodium
channel is a second-order voltage-controlled memristive system.

The PSpice subcircuit of the sodium ion-channel memristive system, based on
Eqs. (4.53)–(4.57), is as follows:

SUBCKT 8:
.subckt Sodium_Ion_Channel_Mems in1 in2
+ params: Ena 115m minit 0 hinit 0

*defining parameters and functions, see (4.53)-(4.55),
*(4.57)
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.param gna 120m

.func Gn(m,h) {gna*m**3*h}

.func alpham(v)={2500*(40*(v-Ena)+1)/
+ (exp(100*(v-Ena)+2.5)-1)}
.func betam(v)={4000*exp((v-Ena)/0.018)}
.func alphah(v)={70*exp(50*(v-Ena))}
.func betah(v)={1000/(exp(100*(v-Ena)+3)+1)}
.func f1(m,v)={alpham(v)*(1-m)-betam(v)*m}
.func f2(h,v)={alphah(v)*(1-h)-betah(v)*h}
*defining memristive port via Eq. (4.53)
G in1 in2 value={v(in1,in2)*Gn(v(m),v(h))}
*computing derivatives of state variables according to

*(4.54)
Emd md 0 value={f1(v(m),v(in1,in2))}
Ehd hd 0 value={f2(v(h),v(in1,in2))}
*computing state variables via integrating their

*derivatives
Em m 0 value={minit+SDT(v(md))}
Eh h 0 value={hinit+SDT(v(hd))}
.ends Sodium_Ion_Channel_Mems

Since it is the second-order memristive system, two first-order state differential
equations must be modeled and solved according to the general block diagram in
Fig. 4.5.

Figure 4.26 demonstrates the transient analysis of potassium ion-channel mem-
ristive device which is excited by sinusoidal voltage waveform under the conditions
specified in the circuit file CIR7:

CIR 7:
Potassium Ion Channel Memristive System
Vin in 0 sin 0 50m 1k
Xmem in 0 Potassium_Ion_Channel_Mems
.lib memristor.lib
.tran 0 30m 0 30u skipbp
.probe
.end

Note that for a rather high repeating frequency of the exciting signal (1 kHz, see
Fig. 4.26a), the steady state of the potassium mem-system is established after a long
transient. This is apparent from the curve v(n), which represents the evolution of the
state variable. The corresponding trajectories in the voltage–current coordinates (see
the upper part of the figure) converge to steady-state PHLs. It is an evident violation
of FP4 about the immediate establishing the periodical steady state for memristors,
indicating that the analyzed device is more general memristive system.

For lower frequencies (100 Hz, see Fig. 4.26b), when the repeating periods are
comparable to or lower than the system time constants, the steady state is reached
within a few periods.
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Fig. 4.26 PSpice simulation
of potassium ion-channel
memristive system. Transient
analyses from zero initial
conditions, for sinusoidal
50 mV input voltage with
frequency (a) 1 kHz,
(b) 100 Hz
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Similar observations can be made for the sodium ion-channel memristive system.
The simulation results in Fig. 4.27 have been obtained from the data in the circuit
file CIR8.

CIR 8:
Sodium Ion Channel Memristive System
Vin in 0 sin 0 50m 1k
Xmem in 0 Sodium_Ion_Channel_Mems
.lib memristor.lib
.tran 0 10m 0 10u skipbp
.probe
.end

In accordance with the simulations described in [31], sinusoidal voltage sources
were used with various repeating frequencies, and the corresponding PHLs were
analyzed, including the phenomena of the hysteresis disappearing with growing
frequency. Figure 4.28 shows the results of the transient analysis under the
conditions specified in the figure caption. Note that both devices exhibit the well-
known FPs of the memory elements: v–i PHLs, which shrink to straight lines if the
frequency of exciting signal is growing to infinity.

4.5 Conclusions

A simplified but today frequent view of the memristor as an element manufactured
in HP laboratories can cause a range of misunderstandings, possibly resulting in
two extreme views on the memristor. According to the first one, the memristor is
only a specific two-terminal element, utilizing the memory effect in the TiO2 nano-
structure. The second view perceives the memristor as an arbitrary element which
exhibits the v–i PHLs.

In this chapter the reader is reminded that the term memristor denotes an
ideal nonlinear circuit element with unambiguous flux-charge characteristic, and
that it only extends the well-known and commonly utilized set of ideal elements,
containing also resistors, capacitors, and inductors. Even though these elements
cannot be manufactured in their ideal representations, they are indispensable as
modeling tools for describing and understanding the essence of processes within
existing systems. It is shown below that the memristor concept can also be useful
in technical branches of non-electrical nature, particularly in mechanics, hydraulics,
and thermodynamics. In terms of the original definition [1] and the generalizing
views [2–5], the memristor is an element which provides a one-to-one connection
between the full histories of the effort and flow. That way it becomes the very first
fundamental element which correctly models [15] nonvolatile memory processes in
systems of both animate and inanimate nature. If this basic building block is omitted
when making up the model of a concrete system, it must be substituted via some
nonstandard framework. The model is then unnecessarily complicated and need not
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Fig. 4.27 PSpice simulation
of sodium ion-channel
memristive system. Transient
analyses from zero initial
conditions, for sinusoidal
50 mV input voltage with
frequency (a) 1 kHz,
(b) 100 Hz
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Fig. 4.28 Pinched hysteresis loops of (a) potassium, (b) ion-channel memristive system. Steady-
state transient analyses for sinusoidal 50 mV input voltage with frequency of 100 Hz (green lines),
1 kHz (red lines), 10 kHz (blue lines)

be sufficiently credible. As one of the most illustrative example, let us mention the
famous axon model from 1952 [30]. At that time, the memristor concept had not
been introduced yet and thus it could not be used in this model.

It is shown in this chapter that a physical system can be modeled as a memristor
if the system behavior can be described by quantities of the effort and flow types,
which conform to Eqs. (4.1) and (4.2) defining the memristor. This consideration
allowed introducing the so-called memristor native state variable, which can be
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the time-domain integral of effort or flow. The native state variable is naturally
boundless, that way expressing the memristor’s unbounded memory. We study
here its relation to another state variable, which represents a concrete method
of implementing the memory in an existing system. Connections to the window
functions for modeling nonlinear dopant drift in the TiO2 memristor are also
analyzed. The results are then utilized to find a method for increasing the precision
of computer simulations. This is the case, for example, of avoiding fatal numerical
errors when simulating hard-switching effects in the TiO2 memristor. Such errors
can occur when utilizing the conventional methods of modeling.

An analysis of selected ten fingerprints (FPs) of the memristor precedes the
Sect. 4.4 about the modeling and computer simulation of memristors. These FPs
are subsequently used as useful tools for verifying the correctness of the simulation
outputs as well as the correctness of the mathematical models. For example, the
application of a simple FP4 reveals the hidden effects of the above numerical errors
generated by the simulation program. Some FPs clarify, for the very first time, the
conditions of the occurrence of certain abnormalities in PHLs. This is particularly
related to FP7–10, which deal with the types of the loop crossing at the origin and
with the degenerate loops.

Section 4.4, which is concerned with memristor models and their implementation
in SPICE-like simulation programs, starts from the general block diagrams of
memristors, and these diagrams result from the general memristor characteristics, in
particular the PSM (parameter vs. state map), and from the port and state equations.
The methodology of generating the models, their software implementation, and their
utilization in the simulation program are demonstrated for memristors of various
types: switching memory memristor, TiO2 memristor, memristor with polynomial
CRs (Constitutive Relations), hydraulic memristor, and sodium a potassium mem-
ristive systems.
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Chapter 5
Application of the Volterra Series Paradigm
to Memristive Systems

Alon Ascoli, Torsten Schmidt, Ronald Tetzlaff, and Fernando Corinto

5.1 Introduction

The modeling [1] and investigation [2] of the nonlinear dynamics of memristive
systems [3, 4] is one of the hottest topics of current research. The nonlinearity of
these unique systems calls for the need to employ techniques from nonlinear system
theory [5] to investigate and model their behavior and the dynamics occurring in
memristor circuits. One of the most well-known theories for modeling dynamical
systems is the Volterra series paradigm [6]. Let us consider a dynamical system
with input x(t) and output y(t). Its block diagram is shown in Fig. 5.1.

The Volterra series representation of the output y(t) to the system is given by

y(t) =
∞

∑
n=1

yn(t), (5.1)

whose nth-order component yn(t) is described by

yn(t) =
∫ +∞

−∞
. . .

∫ +∞

−∞
hn(τ1, . . .τn)x(t − τ1) . . .x(t − τn)dτ1 . . .dτn. (5.2)
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{hn(τ1,...,τn)}x(t) y(t)

Fig. 5.1 Block diagram of a
Volterra system

Here hn(τ1, . . .τn) is a real valued function of τ1, . . . ,τn [7] called nth-order
Volterra kernel in the time domain. In Fig. 5.1 the whole set of Volterra kernels
for n ∈ [1,∞] is denoted as {hn(τ1, . . .τn)}.

The nth-order Volterra kernel in the s-domain is defined as [8]

Hn(s1, . . . ,sn) =

∫ +∞

−∞
. . .

∫ +∞

−∞
hn(τ1, . . .τn)e

−(s1τ1+···+snτn)dτ1 . . .dτn. (5.3)

Letting sk = jωk (k ∈ {1, . . . ,n}) (5.3) may be recast as

Hn( jω1, . . . , jωn) =

∫ +∞

−∞
. . .

∫ +∞

−∞
hn(τ1, . . .τn)e

−( jω1τ1+···+ jωnτn)dτ1 . . .dτn, (5.4)

denoting the nth-order Volterra kernel in the frequency domain.
Sect. 5.2 presents a brief historical overview of the Volterra series theory

including some of the most recent works and gives some insight on its application
for the modeling and investigation of memristive systems. Sects. 5.3 and 5.4,
respectively, introduce a systematic approach for modeling the dynamics of a class
of single- and two-memristor circuits. Finally conclusions are drawn in Sect. 5.5.

5.2 Application of the Volterra Series Paradigm
to Memristive Systems

The determination of solutions of differential equations by applying Volterra series
representations has been addressed by many authors. An approach based on a
power series expansion of the solution of a differential equation is addressed in
the pioneering work of Barrett [9] by separating the linear and nonlinear parts
of the considered differential equation. Further contributions have been given by
Waddington [10], Krener [11], Lesiak [12] and Gilbert [13]. An overviewing
presentation of applied methods, i.e. the Carleman linearization approach, the
variational equation method, and the growing exponential approach is outlined in
[14]. There, it has been shown that the so-called linear analytic state equations
can be represented by a Volterra series expansion. The question whether nonlinear
systems and their nonlinear operators can be approximated by Volterra operators has
been treated in different contributions of Sandberg, summarized in [15], and giving
the important result that, for kernel functions satisfying

∫
[0,∞)k

|hk(τ1, . . . ,τk)|dτ1 . . .dτk < ∞,
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the expansion

y(t) =
∞

∑
k=1

∫ t

−∞
. . .

∫ t

−∞
hk(τ1, . . . ,τk)x(t − τ1) . . .x(t − τk)dτ1 . . .dτk, −∞ < t < ∞

converges uniformly for Lebesgue measurable bounded inputs x(t) such that |x(t)| ≤
δ for −∞< t < ∞. In the fundamental work of Boyd [16] it was shown that a system
may admit a Volterra series representation provided it possesses the fading memory
property. It follows that for a nonlinear circuit with fading memory a Volterra series
expansion of the impedance operator may be derived. In yet another work of Boyd
[17] it was outlined that it is possible to model a nonlinear circuit by means of the
Volterra series theory provided the linearized circuit is exponentially stable and any
electrical component within the circuit is defined by analytic constitutive relations.

Essentially, in cases where the dynamics of a system can be modeled by means
of the Volterra series, it is important to determine the radius of the convergence
region of the series expansion. This problem has been tackled by different authors
[18–21]. By assuming that each term of a series expansion is bounded, Barrett [22]
has presented a method allowing time domain convergence analysis. Boyd [23]
addressed this problem in the frequency domain as well. Recently, Hélie [24] studied
single-input finite-dimension analytic systems described by

ẋ = Ax+Bu+P(x)+Q(x,u), and

y = g(x,u), (5.5)

where the state, the input, and the output are, respectively, defined as x(t) ∈ R
N ,

u(t) ∈ R, and y(t) ∈ R
M , the state initial condition is set to x(0) = 0, while A ∈

R
N×N and 0 �= B ∈ R

N×1. Further g(x,u) is analytic at (0,0), while P(x) ∈ R
N and

Q(x,u) ∈R
N are analytic functions given by

P(x) =
J

∑
j=2

P j(x, . . . ,x︸ ︷︷ ︸
j

), and

Q(x,u) =
K

∑
k=2

Qk(x, . . . ,x︸ ︷︷ ︸
k−1

,u),

with P j ∈ ML j(X,X)
1 and Qk ∈ MLk−1,1(X,R,X). More details are reported in

[24]. There it is shown that the Volterra kernel functions of an input-to-state system
can be derived by applying a recursive construction method. Theorems allowing

1ML(E1, . . .,EL,F) denotes the vector space of multilinear functions. Further the following
notation is introduced: ML j1,..., jL(E1, . . .,EL,F) =ML(E1, . . .,E1︸ ︷︷ ︸

j1

, . . .EL, . . . ,EL︸ ︷︷ ︸
jL

,F).
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the determination of bounds of the radius of the convergence region of the series
expansion are presented for several typical norms (L∞([0,T ]), L∞(R+) as well as
exponentially weighted norms). Moreover it is also indicated that an input-to-output
series expansion may be derived from the input-to-state series representation of
dynamical system (5.5). Comparing now (5.5) to the equations which Chua [25]
introduced as a way to unfold the memristor’s unique dynamical properties, i.e.

dx
dt

= a1x+ a2x2 + . . .+ amxm + b1i+ b2i2 + . . .+ bnin +
p,r

∑
j,k=1

c j,kx jik, and

v = R(x)i, (5.6)

(where R(x) is the state-dependent resistance or memristance, while v and i,
respectively, denote memristor voltage and current) it follows that several memristor
equations can be represented by single-input finite-dimension analytic equations by
letting n = r = 1 in (5.6). By considering now one of the examples given in [25] for
illustration, one can obtain the original Hewlett Packard [26] memristor equation
from (5.5) for the special choice A = 0, B = μν

Ron
D , P(x) = 0, Q(x,u) = 0, x = x

(where the one-dimensional state x denotes the normalized length l of the conductive
layer of the memristor nano-structure), and taking the memristor current as input
u = i, the memristor voltage as output y = v, and finally letting g(x,u) = R(x)i.
Using (5.6), the original Hewlett Packard memristor equation is derived by posing
ai = 0 for all i ∈ {1, . . . ,m}, b1 = μν

Ron
D , bi = 0 for all i ∈ {2, . . . ,n}, c j,k = 0 for all

j ∈ {1, . . . , p} and for all k ∈ {1, . . . ,r} and assuming, once again, x = l.
Another approach has been presented by Boyd [16] and shows that, letting ε

be a positive constant, any time-invariant fading memory operator N{·} can be
represented by a finite Volterra series operator N̂{·} such that

||N{u}− N̂{u}|| ≤ ε (5.7)

for any input u∈ K = {u∈C(R)| ||u|| ≤M1, |u(t̃)−u(t)| ≤M2(t̃− t), t ≤ t̃}, where
M1 and M2 are constants. Here N̂{·} is the input–output operator of an exponentially
stable, finite-dimension linear system expressed by

ż(t) = Az(t)+B ·u(t) (5.8)

with output described by

y(t) = P(z(t)), (5.9)

where state z(t) ∈ R
N , input u(t) ∈ R, and output y(t) ∈ R, while A ∈ R

NXN ,
B ∈ R

NX1, and P(z) ∈ R is a polynomial function. It is obvious that (5.8)–(5.9)
have the same form as mathematical models of certain memristive systems (in
particular, P(z) may model a memory resistance or conductance in case the input
u(t) is in current or voltage form, respectively). It is thus possible to represent such
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ż = Az + Bi P(z)

z1

zN

...
i(t) v(t)

Fig. 5.2 Representation of a current-controlled memristive system as a cascade connection of an
exponentially stable linear system with a static nonlinear polynomial system

memristive systems by means of a finite Volterra series expansion. Let us give some
more detail. By assuming for the moment a current-controlled memristive system,
i.e. u(t) = i(t), then (5.8)–(5.9) may be equivalently represented by the structure
shown in Fig. 5.2.

Assuming furthermore that the memristor current i(t) is the output of a linear
time-invariant system, i.e. a first-order Volterra system with kernel h1(τ) = δ (τ),
it directly follows that the memristor voltage v(t) can be regarded as the output of
a Volterra system. Thus, memristive systems having the structure given in Fig. 5.2
possess a Volterra series representation which can be further used to model fading
memory operators N{·} pertaining to memristive systems of different complexity. In
particular, if a circuit can be modeled as the connection of a number of memristive
elements, each of which admits a Volterra series expansion, then the kernel functions
of Volterra system referring to the interconnected structure describing the overall
circuit can be derived in a straightforward manner as outlined in [14] and [18].

As a final note, it is interesting to note that Corinto and Ascoli [27] have recently
discovered memristive behavior in a purely passive electronic system made up of the
cascade connection of a static nonlinear two-port and an exponentially stable linear
dynamic one-port. Such a system may be represented by a structure very similar to
the one in Fig. 5.2.

5.3 Investigation of the Nonlinear Dynamics of a Class
of Single-Memristor Circuits

In this section we shall present a systematic methodology to derive the Volterra
series representation for a class of current-driven single-memristor circuits of the
type shown in Fig. 5.3, where the two-port, an arbitrary linear and dynamic circuit, is
embedded between the excitation in current form and a charge-controlled memristor
load m. Note that a similar approach may be followed to analyze flux-driven
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v2

+

−
v1

+

−

i1

im

m

i2

Ŷ{·}

Fig. 5.3 General topology of
the single-memristor circuits

single-memristor circuits. Denoting the memristor current with symbol im and its
time integral, i.e. memristor charge, with symbol qm, let the charge-controlled
memristor m in Fig. 5.3 be characterized by the following memristance function

M(qm(t)) = M

(∫ t

−∞
im(t

′)dt ′
)
=

∞

∑
k=1

mk (qm(t))
k. (5.10)

Note that any linear resistance m0 within the memristance of memristor m,
extracted from the time series of M(qm) in (5.10), will be taken into account by
inserting it in series with the memristor, but will be considered as part of the two-
port. In this case the actual memristor voltage is the sum of the voltage drops across
M(qm) and m0. The proposed methodology may be split into three steps, which shall
be treated in Sects. 5.3.1–5.3.3:

1. Determination of the dynamic equation;
2. Determination of the Volterra kernel equations using the harmonic probe

technique [8];
3. Computation of the system output from the kernel equations.

In Sect. 5.3.4 we shall present a sample circuit from the class of circuits in
Fig. 5.3 together with simulation results confirming the accuracy of the Volterra
series representation in modeling the circuit dynamics.

5.3.1 Determination of the Dynamic Equation

Expressing the two-port input and output currents—i1 and i2, respectively—in terms
of the two-port input and output voltages—v1 and v2—the system may be described
by the following set of equations

i1(t) = Ŷ11{v1(t)}+ Ŷ12{v2(t)}, and (5.11)

i2(t) = Ŷ21{v1(t)}+ Ŷ22{v2(t)}, (5.12)

where Ŷα ,β{·} (α,β ∈ 1,2) are integro-differential operators and Ŷ{·} is the matrix
composed of them, i.e.

Ŷ{·}=
[

Ŷ11{·} Ŷ12{·}
Ŷ21{·} Ŷ22{·}

]
. (5.13)
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Note that the two-port of Fig. 5.3 may alternatively be described in terms of
the impedance matrix, defined in Sect. 5.4, where this alternative approach shall
be followed for the investigation of the class of two-memristor circuits. Applying
Ŷ21{·} to (5.11) and Ŷ11{·} to (5.12), subtracting the resulting equations and
assuming that Ŷ21{Ŷ11{·}}= Ŷ11{Ŷ21{·}} in (5.13) leads to

Ŷ21{i1(t)}− Ŷ11{i2(t)} = −det(Ŷ){v2(t)}, (5.14)

where det(Ŷ){·} = Ŷ11{Ŷ22{·}}− Ŷ21{Ŷ12{·}}. Expressing v2(t) in terms of i2(t)
and noting that i2(t) =−im(t) gives

v2(t) = M(qm(t))im(t) =−M(−q2(t))i2(t)

= −M

(
−
∫ t

−∞
i2(t

′)dt ′
)

i2(t) =−i2(t)
∞

∑
k=1

mk

(
−
∫ t

−∞
i2(t

′)dt ′
)k

. (5.15)

Using this into (5.14) leads to the dynamic equation of the circuit

Ŷ21{i1(t)}− Ŷ11{i2(t)} = det(Ŷ)

{
i2(t)M

(
−
∫ t

−∞
i2(t

′)dt ′
)}

. (5.16)

Furthermore, by the notation introduced in the previous section, the circuit of
Fig. 5.3 may be viewed as a Volterra system, as shown in Fig. 5.1, where x(t) = i1(t)
and y(t) = i2(t). As a result, this equation may be recast as

Ŷ21{x(t)}− Ŷ11

{
∞

∑
n=1

yn(t)

}
= det(Ŷ)

{
∞

∑
n=1

yn(t)M

(
−
∫ t

−∞

∞

∑
n=1

yn(t)(t
′)dt ′

)}
.

(5.17)

Inserting (5.10) into (5.17) results into the following dynamic equation for the
general circuit of Fig. 5.3

Ŷ21{x(t)} − Ŷ11{y(t)}= det(Ŷ)

{
y(t)

∞

∑
k=1

mk

(
−
∫ t

−∞
y(t ′)dt ′

)k
}
, (5.18)

where y(t) is expressed by (5.1).

5.3.2 Determination of the Volterra Kernels

Let us describe how dynamic equation (5.18) may be used to determine Volterra
kernels. One of the most powerful techniques to carry out this task is the harmonic
probe technique [8]. Let us explain how one may derive an equation involving the
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kernel of order m in the frequency domain, i.e. Hm( jω1, . . . , jωm), for an m-tone
complex exponential input of the form2

x(t)� x(m)(t) = c
m

∑
n=1

e jωnt , (5.19)

where c is a constant introduced to facilitate the final step of the technique (see end
of this section). Firstly the computation of each component of order n (n ∈ [1,m])—

let us use symbol y(m)
n (t) to denote it—of the system response y(t)� y(m)(t) to the

m-tone complex exponential input x(m)(t) has to be carried out by means of (5.2).

For each value of m the expression for y(m)
n (t) depends on the Volterra kernel of

order n in the frequency domain, i.e. Hn( jω1, . . . , jωn), according to the following
general formula, valid as t → ∞ [8]

y(m)
n (t) = cn

m

∑
i1=1

. . .
m

∑
in=1

Hn( jωi1 , . . . , jωin)e
( jωi1+...+ jωin )t . (5.20)

Next dynamic equation (5.18) is rewritten so as to involve only terms with
factor cm. This operation, facilitated by the previous introduction of constant c
within the expression of the m-tone input, consists of unfolding left- and right-
hand sides of (5.18) as follows. Let us first consider the left-hand side of dynamic
equation (5.18). Since the expression for the input—see (5.19)—has a c factor for
any value of m, x(t) shall be set to x(m)(t) for m = 1 and to 0 for any other value of

m. Further, within the series expressing y(t) only the mth-order component y(m)
m (t)

shall be considered. The right-hand side of dynamic equation (5.18) is set to 0 for
m= 1—since for this choice of m there exists no term with factor c—while for m> 1
it consists of a series of integrals with factor cm—where the number of terms in the
series increases with m (for m = 1 only one term is present). After this procedure
is completed, some algebraic calculations are carried out to combine all terms with
common harmonic content expressed by factor e j(ω1+...+ωm)t on each side of the
resulting equation. Equating these two groups of terms allows the determination of
Hm( jω1, . . . , jωm).

5.3.2.1 First-Order Volterra Kernel

Let us first determine an equation for the kernel of order 1 (thus here m = 1).
Reformulating (5.18) so that only terms with factor c appear in it, in accordance
with Sect. 5.3.2, yields

Ŷ21{x(1)(t)}− Ŷ11{y(1)1 (t)} = 0. (5.21)

2Note that for m > 1 the technique requires the preliminary derivation of all kernels of order
1, . . . ,m−1.
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In this equation we set x(1)(t) = ce jωt and express y(1)1 (t) as follows from (5.20)
with m = 1 and n = 1, i.e. as

y(1)1 (t) = ce jωtH1( jω). (5.22)

By using properties of integro-differential operators applied to periodic signals,
from (5.21) we may finally derive the Volterra kernel of order 1 in the frequency
domain for the class of circuits of Fig. 5.3. This is found to be described by

H1( jω) =
Ŷ21( jω)

Ŷ11( jω)
, (5.23)

where Yαβ ( jω) (α,β ∈ {1,2}) are the elements of the admittance matrix Ŷ( jω),
expressed—as it is standard in circuit theory—in the frequency domain and
arranged as

Ŷ( jω) =

[
Ŷ11( jω) Ŷ12( jω)

Ŷ21( jω) Ŷ22( jω)

]
. (5.24)

The determinant of Ŷ( jω) is defined as

det(Ŷ( jω)) = Ŷ11( jω)Ŷ22( jω)− Ŷ12( jω)Ŷ21( jω).

5.3.2.2 Second-Order Volterra Kernel

Let us determine an equation for the kernel of order 2 (here m = 2 and thus x(2)(t) =
c(e jω1t + e jω2t)). Using the methodology described in Sect. 5.3.2, extracting terms
with factor c2 from (5.18), we get

− Ŷ11{y(2)2 (t)}= det(Ŷ)

{
y(2)1 (t)m1

(
−
∫ t

−∞
y(2)1 (t ′)dt ′

)}
. (5.25)

In this equation we express y(2)1 (t) and y(2)2 (t) as follows from (5.20) when m = 2
and n is, respectively, set to 1 and 2, i.e. as

y(2)1 = c(e jω1tH1( jω1)+ e jω2tH1( jω2)), (5.26)

and

y(2)2 = c2
(

H2( jω1, jω1)e
2 jω1t +H2( jω2, jω2)e

2 jω2t + (H2( jω1, jω2)

+H2( jω2, jω1))e( jω1+ jω2)t
)
. (5.27)
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After some algebraic manipulation, under the assumption of a symmetric
second-order kernel, (5.25) yields the following closed-form expression for the
second-order Volterra kernel

H2( jω1, jω2) =
m1

jω1

det(Ŷ( j(ω1 +ω2)))

Ŷ11( j(ω1 +ω2))
H1( jω1)H1( jω2). (5.28)

In the general case of non-symmetric kernels, mathematical operations on (5.25)
do not lead to a closed-form solution for the second-order kernel. The resulting
equation is reported in Appendix 5.6.1. Note that, under no assumption on the
symmetry properties of the kernels, a closed-form expression for the nth-order
kernel in the frequency domain, i.e. Hn( jω1, . . . , jωn), may be given only for n = 1.
However, the proposed Volterra-series modeling approach may be easily applied to
this general case, as explained in Appendix 5.6.

5.3.2.3 Third-Order Kernel

Finally, let us derive an equation for the kernel of order 3 (here m is set to 3 and thus
x(3)(t) = c(e jω1t +e jω2t +e jω3t)). Unfolding (5.18) so as to contain only terms with
factor c3 gives

− Ŷ11{y(3)3 (t)} = det(Ŷ)

{
y(3)2 (t)m1

(
−
∫ t

−∞
y(3)1 (t ′)dt ′

)
+ y(3)1 (t)m1

(
−
∫ t

−∞
y(3)2 (t ′)dt ′

)
+ y(3)1 (t)m2

(
−
∫ t

−∞
y(3)1 (t ′)dt ′

)2
}
. (5.29)

Using (5.20) with m = 3 and n, respectively, set to 1, 2, and 3 to express

y(3)n (t) (n = 1,2,3) in (5.29), evaluating the integrals in this equation, carrying out
some algebraic manipulation and then equating left- and right-hand side of the
resulting equation with respect to terms with harmonic content e j(ω1+ω2+ω3)t (all
other harmonics are of no interest), under the assumption of a symmetric third-order
kernel, we derive the following closed-form expression for the third-order Volterra
kernel in the frequency domain

H3( j(ω1,ω2,ω3)) =
det(Ŷ( j(ω1 +ω2 +ω3)))

Ŷ11( j(ω1 +ω2 +ω3))

{
m1

H1( jω3)H2( jω1, jω2)

jω3

+m1
H1( jω1)H2( jω2, jω3)

j(ω2 +ω3)
−m2

H1( jω1)H1( jω2)H1( jω3)

jω2 jω3

}
.

(5.30)

In the non-symmetric case mathematical operations on (5.29) do not lead to a
closed-form solution for the third-order kernel. The resulting equation is reported in
Appendix 5.6.2.
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5.3.3 Computation of the System Output from the Knowledge
of the Kernels

Inserting a specific waveform to the input of a Volterra system of the type shown in
Fig. 5.1 its response y(t) may be computed using (5.1). For example, for a one-tone
sine wave input—let x(t) = x0 sin(ωt) = 1

2 j ∑+1
i=−1 xisgn(i)e jωit where xi = x0 for

i = −1,1 and ω−1 =−ω1—it follows that the nth-order component of y(t) may be
expressed as [28]

yn(t) =
1

(2 j)n

+1

∑
i1=−1, i1 �=0

. . .
+1

∑
in=−1, in �=0

xi1sgn(i1) . . .xinsgn(in)

Hn( jωi1 , . . . jωin)e
j(ωi1

+...+ωin )t . (5.31)

Defining ω1 � ω , denoting with ℜ{·} and ℑ{·} the operations extracting real
and imaginary parts, this equation yields the following expressions for the first three
components of y(t)

y1(t) = x0ℑ{H1( jω)e jωt}, (5.32)

y2(t) =−x2
0

2

(
−ℜ{H2( jω ,− jω)}+ℜ{H2( jω , jω)e2 jωt}

)
, (5.33)

and

y3(t) = −x3
0

4

(
ℑ{H3( jω , jω , jω)e3 jωt}+

ℑ{(H3(− jω , jω , jω)+H3( jω , jω ,− jω)+H3( jω ,− jω , jω))e jωt}
)
.

(5.34)

Finally, retaining the first l ≥ 1 components of the output response y(t) of the
Volterra system to the sine input x(t) = x0 sin(ωt) into (5.1) yields the lth-order
Volterra series approximation of the actual output current of a two-port in the class
of Fig. 5.3. In the next section we choose an element from this class and show how
well the output of the Volterra system reconstructs the time waveform of current
i2(t), derived through numerical integration of the nonlinear ordinary differential
equations describing the one-memristor circuit under study.

Our results show that the level of accuracy of the reconstruction improves as a
larger number of components is retained in the Volterra series of y(t), i.e. as l is
increased. This is even more important if the number of nonzero coefficients mk in
the memristance function M(qm) is increased, since the nonlinearity of the system
gets stronger, and, consequently, the output current i2(t) contains a larger number
of frequency components.
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Fig. 5.4 Single-memristor oscillator

5.3.4 Example

Let us consider a circuit in the class of Fig. 5.3, i.e. the single-memristor oscillator
depicted in Fig. 5.4.

The two-port within the dotted rectangular box is characterized by an admittance
matrix described by (5.24), where, defining

G1 = R−1
1 ,

Y1( jω) =
jωC1

1+ jωC1R2
, and

Y2( jω) =
jωC2

1+m0 jωC2 +LC2( jω)2 ,

we have

Ŷ11( jω) = G1 +Y1( jω)+Y2( jω), and

Ŷ12( jω) = Ŷ21( jω) =−Ŷ22( jω) =−Y2( jω).

In order to show the accuracy of the Volterra series-based model of the circuit of
Fig. 5.4, we shall compare the dynamical behavior predicted by the Volterra series-
based approach with that resulting from numerical integration of the dynamical
equations under the same setting for input waveform and circuit component values.
The dynamical equations of the non-autonomous dynamical system of Fig. 5.4 may
be expressed as

ẏ1 =
1

C1

(
− 1

R1 +R2
y1 − R1

R1 +R2
y3 +

R1

R1 +R2
i1(t)

)
,

ẏ2 =
1

C2
y3,
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Fig. 5.5 Time waveform of q2(t) from numerical integration of (5.35) (in red) and from Volterra-
series based estimate (in blue)

ẏ3 =
1
L

(
R1

R1 +R2
y1 −

(
R1R2

R1 +R2
+m0 +M(y(4))

)
y3 − y2 +

R1R2

R1 +R2
i1(t)

)
, and

ẏ4 = y3, (5.35)

where the states are defined as y1 = vC1, y2 = vC2, y3 = iL and y4 = qL.
Let us apply a current input i1(t) = i10 sinωt = x0 sinωt (where we let i10 = x0)

to the circuit of Fig. 5.4. The amplitude and angular frequency of the excitation
are, respectively, set to x0 = 1A and ω = 200rads−1. Denoting the time period of
the input sine wave as T = 2·π

ω , the time step is chosen as T
1000 , the initial time is

taken as 0s, and the simulation time is taken as 50 ·T . The values of the electrical
components are selected as follows: R1 = 10kΩ, C1 = 2 μF , C2 = 1 μF , R2 =
100Ω, and L = 5mH. Regarding the choice for the coefficients in the memristance
expression given in (5.10), only m0 and m1 are set to non-null values. In particular
we let m0 = 2kΩ and m1 = 0.83 · 106 ΩC−1. This choice refers to a simple model
for Williams’ memristor [26]. In the numerical simulation to follow the ordinary
differential equation solver ode15s, available in the Matlab software package,
was employed to solve (5.35) with initial conditions [y1(0),y2(0),y3(0),y4(0)]′ =
[0,0,0,0]′. Regarding the proposed Volterra series-based methodology, the system
output is approximated by expanding the Volterra series in (5.1) up to n = 4.
Figure 5.5 shows the time waveform of q2 according to the numerical simulation
of (5.35) (red curve) and to the Volterra series-based estimate (blue curve). It is
evident that the Volterra series-based estimate accurately tracks the dynamics of the
numerical result.

Figure 5.6 shows the agreement between the memristor voltage-current charac-
teristic from numerical simulation of (5.35) (red curve) and from Volterra series
estimation (blue curve). Note that the memristor voltage includes the drop across
linear resistor m0, as it is clear from Fig. 5.4.
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Fig. 5.7 Power spectrum of i2(t) from numerical simulation (in red) and first four coefficients of
the series of cosine functions in which the output y(t) of the Volterra system may be unfolded (blue
dots). The y-axis is in logarithmic scale

The red curve in Fig. 5.7 shows the power spectrum of the two-port output current
of the circuit of Fig. 5.4, computed by means of the fast Fourier transform of the time
series of i2 recorded from the above numerical simulation of (5.35). The blue dots
denote the coefficients—let us call them as Yn—of the series of cosine functions of
the form ∑m

n=0Yn cos(nωt +ϕn), in which we may recast the Volterra series-based
predicted output y(t) = ∑m=4

n=1 yn(t). The agreement between the blue dots and the
peaks of the red curve further demonstrates the goodness of the proposed approach.
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5.4 Investigation of the Nonlinear Dynamics of a Class
of Two-Memristor Circuits

In this section we extend the methodology proposed in Sect. 5.2 to the class of
two-memristor circuits shown in Fig. 5.8, where ip(t) and vp(t) denote current and
voltage of port p = {1,2,3} of a three-port network described by means of the
impedance matrix Ẑ{·} (alternatively the admittance matrix Ŷ{·} may be used),
composed of integro-differential operators Ẑγδ {·} (γ,δ ∈ 1,2,3) according to

Ẑ{·}=
⎡
⎣ Ẑ11{·} Ẑ12{·} Ẑ13{·}

Ẑ21{·} Ẑ22{·} Ẑ23{·}
Ẑ31{·} Ẑ32{·} Ẑ33{·}

⎤
⎦ . (5.36)

Port 1 of the three-port is closed on an input source providing current i1(t), while
ports 2 and 3 are, respectively, loaded with charge-controlled memristors m2 and m3.
Note that a similar approach may be followed to analyze flux-driven two-memristor
circuits. Let the memristance function of memristor mr (r ∈ {2,3}) be expressed by

M(qmr) = M

(∫ t

−∞
imr(t

′)dt ′
)
=

∞

∑
k=1

mrk qk
mr
, (5.37)

where qmr and imr = −ir, respectively, denote charge and current flowing through
memristor mr at port r ∈ {2,3}, while symbol mrk indicates the kth coefficient in
the series of powers of qmr in which the memristance function M(qmr) is unfolded
in (5.37).

In the class of dynamical systems of Fig. 5.8 current ir at port r may be seen as the
output of a Volterra system associated with memristor mr (r = {2,3}) and excited
with input i1(t). In the remaining part of this paper the Volterra system associated
with memristor mr shall be referred to as Volterra system r − 1 (r ∈ {2,3}). The
nth-order kernels of Volterra system r − 1 in the time and frequency domain are,
respectively, denoted as hrn(τ1, . . . ,τn) and Hrn( jω1, . . . , jωn).

v3

+

−

v1

+

−

i1

im3

m3

i3

i2 im2m2

v2+ −

Ẑ{·}
Fig. 5.8 General topology of
the class of two-memristor
circuits



178 A. Ascoli et al.

5.4.1 Determination of the Dynamic Equations

Expressing the port voltages in terms of the port currents, the three-port in Fig. 5.8
is described according to

v1(t) = Ẑ11{i1(t)}+ Ẑ12{i2(t)}+ Ẑ13{i3(t)}, (5.38)

v2(t) = Ẑ21{i1(t)}+ Ẑ22{i2(t)}+ Ẑ23{i3(t)}, and (5.39)

v3(t) = Ẑ31{i1(t)}+ Ẑ32{i2(t)}+ Ẑ33{i3(t)}. (5.40)

Equation (5.38) for port 1 closed on the excitation needs not be considered any
further in the analysis to follow. On the other hand, for port r, r = {2,3}, we express
vr as vr = M(qmr)imr , where M(qmr) is described by (5.37), and, as mentioned in
Sect. 5.4, we introduce Volterra system r − 1 with input x(t) = i1(t) and output
yr(t) = ir(t), expanded in Volterra series as

yr(t) =
∞

∑
n=1

yrn(t), (5.41)

Equations (5.39) and (5.40) may be recast as

−
∞

∑
k=1

m2k

(
−
∫ t

−∞
y2(t

′)dt ′
)k

y2(t) = Ẑ21{x(t)}+ Ẑ22{y2(t)}+ Ẑ23{y3(t)}, and

(5.42)

−
∞

∑
k=1

m3k

(
−
∫ t

−∞
y3(t

′)dt ′
)k

y3(t) = Ẑ31{x(t)}+ Ẑ32{y2(t)}+ Ẑ33{y3(t)}.
(5.43)

These are the dynamic equations of the class of circuits of Fig. 5.8.

5.4.2 Determination of the Volterra Kernels

In this section we shall apply the harmonic probe technique reviewed in Sect. 5.3 to

the dynamic equations (5.42)–(5.43). The nth-order component y(m)
rn (t) (n ∈ [1,m])

of the response yr(t) � y(m)
r (t) of the Volterra system r− 1 (r ∈ 2,3) to an m-tone

complex exponential input of the form given in (5.19), computed after tailoring
equation (5.20) to the Volterra system r − 1 (i.e., after replacing in this equation
y(t) and Hn( jω1, . . . , jωn) with yr(t) and Hrn( jω1, . . . , jωn), respectively), depends
upon the nth-order kernel in the frequency domain of the Volterra system r− 1.
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5.4.2.1 First-Order Kernels

Let us first derive the first-order kernel equations for the two Volterra systems
identified in Fig. 5.8.

Here m = 1 and thus a one-tone input is applied to Volterra system r − 1 (r ∈
{2,3}). Using (5.41) into (5.42)–(5.43) and retaining only terms with factor c, the
resulting equations have null left-hand sides and assume the following form

0 = Ẑ21{x(1)(t)}+ Ẑ22{y(1)21 (t)}+ Ẑ23{y(1)31 (t)}, and (5.44)

0 = Ẑ31{x(1)(t)}+ Ẑ32{y(1)21 (t)}+ Ẑ33{y(1)31 (t)}, (5.45)

where y(1)r1 (t) denotes the first component (n = 1) of the output response of Volterra
system r − 1 (r ∈ {2,3}) to the one-tone input (m = 1). In (5.44)–(5.45) x(1)(t) =

ce jωt , while the expression for y(1)r1 (t) is computed after tailoring equation (5.20)
to the Volterra system r − 1 (r ∈ {2,3}) and setting m = 1 and n = 1. It follows
that (5.44)–(5.45) lead to

0 = Ẑ21( jω)+ Ẑ22( jω)H21( jω)+ Ẑ23( jω)H31( jω), and (5.46)

0 = Ẑ31( jω)+ Ẑ32( jω)H21( jω)+ Ẑ33( jω)H31( jω), (5.47)

where Ẑγ,δ ( jω) (γ,δ ∈ 1,2,3) are the elements of the impedance matrix Ẑ( jω),
arranged as

Ẑ( jω) =

⎡
⎣ Ẑ11( jω) Ẑ12( jω) Ẑ13( jω)

Ẑ21( jω) Ẑ22( jω) Ẑ23( jω)

Ẑ31( jω) Ẑ32( jω) Ẑ33( jω)

⎤
⎦ . (5.48)

Solving (5.46)–(5.47) for the first-order kernel Hr1( jω) of Volterra system r− 1
(r ∈ {2,3}) gives

H21( jω) =
Ẑ21( jω)Ẑ33( jω)− Ẑ23( jω)Ẑ31( jω)

Ẑ32( jω)Ẑ23( jω)− Ẑ22( jω)Ẑ33( jω)
, and (5.49)

H31( jω) =
Ẑ31( jω)Ẑ22( jω)− Ẑ32( jω)Ẑ21( jω)

Ẑ32( jω)Ẑ23( jω)− Ẑ22( jω)Ẑ33( jω)
. (5.50)

5.4.2.2 Second-Order Kernels

This section determines the equation for the second-order kernel Hr2( jω1, jω2) of
Volterra system r− 1 (r ∈ {2,3}). Here m = 2, therefore a two-tone input x(2)(t) =
c
(
e jω1t + e jω2t

)
is applied to each of the two Volterra systems. Using (5.41) into

(5.42)–(5.43) and keeping only c2-terms in the resulting equations yields



180 A. Ascoli et al.

−m21

(
−
∫ t

−∞
y21(t

′)dt ′
)

y21(t) = Ẑ22{y(2)22 (t)}+ Ẑ23{y(2)32 (t)}, and (5.51)

−m31

(
−
∫ t

−∞
y31(t

′)dt ′
)

y31(t) = Ẑ32{y(2)22 (t)}+ Ẑ33{y(2)32 (t)}, (5.52)

where y(2)rn (t) denotes the nth component (n = {1,2}) of the output response of
Volterra system r − 1 (r ∈ {2,3}) to the two-tone input (m = 2). Let us express

y(2)rn (t) in (5.51)–(5.52) as follows after tailoring equation (5.20) to Volterra system
r − 1 (r ∈ {2,3}) and setting m = 2 and n ∈ {1,2}. Calculating the integrals
in (5.51)–(5.52), equating side-by-side terms with harmonic content expressed
by factor e j(ω1+ω2)t , and then assuming that Volterra system r − 1 (r ∈ {2,3})
admits a symmetric second-order kernel, some further algebraic manipulation on the
resulting equations allows the derivation of the following closed-form expression for
Hr2( jω1, jω2)

H22( jω1, jω2) =
1

jω2

(
Ẑ33( j(ω1 +ω2))m21H21( jω1)H21( jω2)

η j(ω1 +ω2)

− Ẑ23( j(ω1 +ω2))m31H31( jω1)H31( jω2)

η j(ω1 +ω2)

)
, (5.53)

and

H32( jω1, jω2) = − 1
jω2

(
Ẑ32( j(ω1 +ω2))m21H21( jω1)H21( jω2)

η j(ω1 +ω2)

− Ẑ22( j(ω1 +ω2))m31H31( jω1)H31( jω2)

η j(ω1 +ω2)

)
, (5.54)

where η(·) � Ẑ33()Ẑ22()− Ẑ23()Ẑ32(). Appendix 5.6.3 reports the equation for the
second-order kernel of Volterra system r−1 (r ∈ {2,3}) in the non-symmetric case.

5.4.2.3 Third-Order Kernels

Here we derive the equation for the third-order kernel Hr3( jω1, jω2, jω3) of
Volterra system r − 1 (r ∈ {2,3}). Letting m = 3, a three-tone input x(3)(t) =
c
(
e jω1t + e jω2t + e jω3t

)
is applied to each of the two Volterra systems.

Using (5.41) into (5.42)–(5.43), and then retaining only c3-terms, the resulting
equations reduce to

−m21

(
−
∫ t

−∞
y21(t

′)dt ′
)

y22(t)−m21

(
−
∫ t

−∞
y22(t

′)dt ′
)

y21(t)−m22

(
−
∫ t

−∞
y21(t

′)dt ′
)2

y21(t) = Ẑ22{y23(t)}+ Ẑ23{y33(t)}, (5.55)
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and

−m31

(
−
∫ t

−∞
y31(t

′)dt ′
)

y32(t)−m31

(
−
∫ t

−∞
y32(t

′)dt ′
)

y31(t)−m32

(
−
∫ t

−∞
y31(t

′)dt ′
)2

y31(t) = Ẑ32{y23(t)}+ Ẑ33{y33(t)}, (5.56)

where y(3)rn (t) denotes the nth component (n = {1,2,3}) of the output response of
Volterra system r − 1 (r ∈ {2,3}) to the three-tone input (m = 3). Let us express

y(3)rn (t) in (5.55)–(5.56) as follows from tailoring (5.20) to Volterra system r − 1
(r ∈ {2,3}) and setting m= 3 and n∈ {1,2,3}. Calculating the integrals in equations
(5.55)–(5.56), equating side-by-side terms with harmonic content expressed by
factor e j(ω1+ω2+ω3)t , and then assuming that Volterra system r − 1 (r ∈ {2,3})
admits a symmetric third-order kernel, some further algebraic manipulation on the
resulting equations allows the derivation of the following closed-form expression
for Hr3( jω1, jω2, jω3)

H23( jω1, jω2, jω3) =
1

η( j(ω1 +ω2 +ω3))

{
Ẑ33( j(ω1 +ω2 +ω3))

[
m21H22( jω2, jω3)H21( jω1)

(
1

jω1
+

1
j(ω2 +ω3)

)
+

m22

3

H21( jω1)H21( jω2)H21( jω3)

(
1

ω1ω2
+

1
ω2ω3

+
1

ω1ω3

)]

−Ẑ23( j(ω1 +ω2 +ω3))

[
m31

(
1

jω1
+

1
j(ω2 +ω3)

)

H32( jω2, jω3)H31( jω1)

+
m32H31( jω1)H31( jω2)H31( jω3)

(ω1ω3)

]}
, (5.57)

and

H33( jω1, jω2, jω3) =
1

−η( j(ω1 +ω2 +ω3))

{
Ẑ32( j(ω1 +ω2 +ω3))

[
m21H22( jω2, jω3)H21( jω1)

(
1

jω1
+

1
j(ω2 +ω3)

)

+
m22H21( jω1)H21( jω2)H21( jω3)

(ω1ω3)

]

−Ẑ22( j(ω1 +ω2 +ω3))

[
m31

(
1

jω1
+

1
j(ω2 +ω3)

)
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H32( jω2, jω3)H31( jω1)+
m32

3
H31( jω1)H31( jω2)H31( jω3)

(
1

ω1ω2
+

1
ω2ω3

+
1

ω1ω3

)]}
. (5.58)

Appendix 5.6.4 reports the equation for the third-order kernel of Volterra system
r− 1 (r ∈ {2,3}) in the non-symmetric case.

5.4.3 Computation of the System Output from the Kernels

The nth-order response yrn of Volterra system r − 1 (r ∈ {2,3} to a sine wave
excitation of the form x(t) = x0 sin(ωt) = 1

2 j ∑+1
i=−1 xisgn(i)e jωit , where xi = x0

for i = −1,1 and ω−1 = −ω1, may be computed after tailoring equation (5.31) to
Volterra system r− 1 (r ∈ {2,3}).

Inserting the first l ≥ 1 components of the output response yr(t) of Volterra
system r − 1 to sine-wave input x(t) = x0 sin(ωt) into (5.41) yields the lth-order
Volterra series approximation of the actual current ir(t) at port r of the three-port of
Fig. 5.8 resulting from the application of current i1(t) = i0 sin(ωt) (i0 = x0) at port
1. In the next section, we select one particular element from the class of Fig. 5.8
and then show the agreement between the output current ir(t) at port r (r ∈ 2,3)
derived by means of numerical integration of the nonlinear ordinary differential
equations describing the chosen two-memristor circuit and its Volterra series-based
approximation yr(t). The same comments regarding the level of accuracy of the
Volterra series-based approach as in the case of single-memristor circuits (see
Sect. 5.3.3) apply for the two-memristor circuits.

5.4.4 Example

Figure 5.9 shows an oscillator within the class of two-memristor circuits of Fig. 5.8.
The three-port within the dotted rectangular box is characterized by an

impedance matrix expressed by (5.48), where

Ẑ11( jω) = Ẑ13( jω) = Ẑ31( jω) = R,

Ẑ12( jω) = Ẑ21( jω) = 0,

Ẑ22( jω) = jωL+m0,

Ẑ23( jω) = Ẑ32( jω) =− jωL, and

Ẑ33( jω) = R+m0 + jωL+
1

jωC
.
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Fig. 5.9 Two-memristor oscillator

The state equations of the circuit of Fig. 5.9 may be written as

ẏ1 =
1
C

Ri1(t)− y1 +(m0 +M(−y3))y2

R+ 2m0+M(−y3)+M(−y4)
,

ẏ2 =
m0 +M(−y3)

L
Ri1(t)− y1 − (R+m0+M(−y4))y2

R+ 2m0+M(−y3)+M(−y4)
,

ẏ3 = −Ri1(t)− y1 − (R+m0 +M(−y4))y2

R+ 2m0+M(−y3)+M(−y4)
,and

ẏ4 = −Ri1(t)− y1 +(m0 +M(−y3))y2

R+ 2m0+M(−y3)+M(−y4)
, (5.59)

where the states are defined as y1 = vC, y2 = iL, y3 = q2 =
∫ t
−∞ i2(t ′)dt ′ and y4 = q3 =∫ t

−∞ i3(t ′)dt ′. Let us apply a sine-wave current i1(t) = i0 sin(ωt) = x0 sin(ωt) at port
1 and compare the results of the numerical simulation of (5.59) with the Volterra
series-based solutions. The amplitude and angular frequency of the excitation are,
respectively, set to x0 = 0.5A and ω = 200rads−1. Denoting the time period of the
input sine wave as T = 2·π

ω , the time step is chosen as T
1000 , the initial time is taken

as 0s, and the simulation time is set to 50 ·T . The values of the circuit components
are taken as R = 10kΩ, L = 50mH, and C = 2 μF . The non-null coefficients in the
memristance function M(qmr ) of memristor mr for each r ∈ {2,3} are m0 = 2kΩ
and m1 = 0.83 106ΩC−1. Equations (5.59) are numerically integrated by means
of the ode15s solver with initial condition [y1(0),y2(0),y3(0),y4(0)]′ = [0,0,0,0]′.
Regarding the proposed Volterra series-based methodology, the system output is
approximated by expanding the Volterra series in (5.41) up to n = 3.
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Fig. 5.10 Time waveform of q2(t) from its Volterra-series representation (blue curve) and from the
numerical simulation of (5.59) (red curve) under the circuit parameter and input setting specified
in the text
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Fig. 5.11 Time behavior of q3(t) resulting from the numerical integration of (5.59) (in red) and
from the Volterra series-based analysis (in blue)

Figures 5.10 and 5.11, respectively, show the time waveforms of q2(t) and of
q3(t) as observed in numerical simulation (red curves) and as predicted by the
proposed Volterra series technique.

The current-voltage characteristics of memristors m2 and m3 are, respectively,
plotted in Figs. 5.12 and 5.13, where, once again, the numerical and Volterra series-
based solutions are, respectively, shown in red and blue. In each of such figures
the memristor voltage includes the drop across the linear resistor m0. Note that
in the simulation scenario under observation memristor m2 is behaving as a linear
resistor. On the other hand memristor m3 exhibits in the current-voltage plane the
typical bow-tie expected of this type of two-terminal element under sinusoidal
excitation [3].
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Fig. 5.12 Voltage versus current for memristor m2. Here the blue and red curves, respectively,
refer to the Volterra-based representation of the dynamical system under study and to the
mathematical model expressed by (5.59)
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Fig. 5.13 Numerical result (in red) and Volterra-series representation (in blue) of the current-
voltage characteristic of memristor m3

Finally, the power spectra of currents i2(t) and i3(t) are, respectively, shown
in Figs. 5.14 and 5.15 for both the ode15s solution to (5.59) (red curve) and the
Volterra-series estimate (blue dots).

5.5 Conclusions

A full understanding of the nonlinear dynamics of memristors is one of the most
important steps toward a large-scale use of this electrical component in IC design.
Due to its unique dynamical behavior novel techniques need to be developed for
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Fig. 5.15 Power spectrum of i3(t). The same color coding as in Figs. 5.10–5.14 applies here

the investigation and modeling of memristors and circuits based upon them. In this
paper we propose an approach based on the Volterra series technique to track the
dynamics of classes of single- and two-memristor circuits. The approach is first
formulated from a theoretical point of view and then validated through examples.
The proposed analytical tool may be easily generalized to investigate the nonlinear
dynamics of a class of multi-memristor circuits.

5.6 Appendix

This section reports the equations for the Volterra kernels of orders 2 and 3 for
the class of single- and two-memristor circuits, respectively, analyzed in Sects. 5.3
and 5.4, for the general case of non-symmetric kernels. Note that, since, under no
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assumption on the symmetry properties of the kernels, closed-form expressions for
the kernels of a Volterra system may not be given except for the first order case, in
order to derive the output response of this system to a given sine-wave input x(t),
the following methodology needs to be used. First an expression for the Volterra
series-based representation of the nth component yn(t) of the system output y(t) to
the given input is determined by means of (5.31). In this expression the nth-order
Volterra kernel in the frequency domain, i.e. Hn( jω1, . . . , jωn), occurs a number
of times and in each occurrence it is sampled at a specific n-tuple of frequencies
(ω1, . . . ,ωn) (see (5.33)–(5.34) for the second- and third-order cases). Using these
specific n-tuple of frequencies into the kernel equation of order n, together with
results of similar analysis previously carried out for kernel equations of lower orders
(i.e. from order 1 up to order n− 1) allows the final derivation of the expressions of
the above-mentioned samples of the nth-order Volterra kernel within the expression
for yn(t).

5.6.1 Equation for the Second-Order Kernel in the
Non-Symmetric Case for Single-Memristor Circuits

From Sect. 5.3.2.2 using (5.25), the equation for the second-order Volterra non-
symmetric kernel in the frequency domain is found to be

H2( jω1, jω2)+H2( jω2, jω1) =
det(Ŷ( j(ω1 +ω2)))

Ŷ11( j(ω1 +ω2))
m1H1( jω1)

H1( jω2)
j(ω1 +ω2)

jω1 jω2
. (5.60)

5.6.2 Equation for the Third-Order Kernel in the
Non-Symmetric Case for Single-Memristor Circuits

From Sect. 5.3.2.3 using (5.29), the equation for the third-order Volterra non-
symmetric kernel in the frequency domain is found to be

H3( jω1, jω2, jω3)+H3( jω1, jω3, jω2)+H3( jω3, jω2, jω1)+H3( jω2, jω1, jω3)

+H3( jω2, jω3, jω1)+H3( jω3, jω1, jω2) =−det(Ŷ( j(ω1 +ω2 +ω3)))

Ŷ11( j(ω1 +ω2 +ω3))

{
−m1

[
(H2( jω2, jω3)+H2( jω3, jω2))

H1( jω1)

jω1
+(H2( jω1, jω3)+H2( jω3, jω1))
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H1( jω2)

jω2
+(H2( jω1, jω2)+H2( jω2, jω1))

H1( jω3)

jω3
+(H2( jω2, jω3)+

H2( jω3, jω2))
H1( jω1)

j(ω2 +ω3)
+ (H2( jω1, jω3)+H2( jω3, jω1))

H1( jω2)

j(ω1 +ω3)

+
H1( jω3)

j(ω1 +ω2)
(H2( jω1, jω2)+H2( jω2, jω1))

]
+ 2m2H1( jω1)H1( jω2)H1( jω3)

(
1

jω2 jω3
+

1
jω1 jω3

+
1

jω1 jω2

)}
. (5.61)

5.6.3 Equation for the Second-Order Kernel in the
Non-Symmetric Case for Two-Memristor Circuits

From Sect. 5.4.2.2 using (5.51)–(5.52), the equation for the second-order non-
symmetric kernel Hr2( jω1, jω2) in the frequency domain for Volterra system r− 1
(r ∈ {2,3}) is found to be

H22( jω1, jω2)+H22( jω2, jω1) =
j(ω1 +ω2)

jω1 jω2(
Ẑ33( j(ω1 +ω2))m21H21( jω1)H21( jω2)

Ẑ33( j(ω1 +ω2))Ẑ22( j(ω1 +ω2))− Ẑ23( j(ω1 +ω2))Ẑ32( j(ω1 +ω2))

− Ẑ23( j(ω1 +ω2))m31H31( jω1)H31( jω2)

Ẑ33( j(ω1 +ω2))Ẑ22( j(ω1 +ω2))− Ẑ23( j(ω1 +ω2))Ẑ32( j(ω1 +ω2))

)
,

(5.62)

and

H32( jω1, jω2)+H32( jω2, jω1) =
j(ω1 +ω2)

jω1 jω2(
Ẑ32( j(ω1 +ω2))m21H21( jω1)H21( jω2)

Ẑ32( j(ω1 +ω2))Ẑ23( j(ω1 +ω2))− Ẑ22( j(ω1 +ω2))Ẑ33( j(ω1 +ω2))

− Ẑ22( j(ω1 +ω2))m31H31( jω1)H31( jω2)

Ẑ32( j(ω1 +ω2))Ẑ23( j(ω1 +ω2))− Ẑ22( j(ω1 +ω2))Ẑ33( j(ω1 +ω2))

)
.

(5.63)
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5.6.4 Equation for the Third-Order Kernel in the
Non-Symmetric Case for Two-Memristor Circuits

From Sect. 5.4.2.3 using (5.55)–(5.56), the equation for the third-order non-
symmetric kernel Hr3( jω1, jω2, jω3) in the frequency domain for Volterra system
r− 1 (r ∈ {2,3}) is found to be

H23( jω1, jω2, jω3)+H23( jω1, jω3, jω2)+H23( jω2, jω1, jω3)

+H23( jω2, jω3, jω1)+H23( jω3, jω1, jω2)+H23( jω3, jω2, jω1)

=
1

−F1( jω̄ )

{
Ẑ33( jω̄ )

[
m21

(
F2( jω2, jω3)

(
H21( jω1)

jω1
+

H21( jω1)

jω2 + jω3

)

+F2( jω1, jω3)

(
H21( jω2)

jω2
+

H21( jω2)

jω1 + jω3

)
+

(
H21( jω3)

jω3
+

H21(s3)

jω1 + jω1

)

(5.64)

and

H33( jω1, jω2, jω3)+H33( jω1, jω3, jω2)+H33( jω2, jω1, jω3)

+H33( jω2, jω3, jω1)+H33( jω3, jω1, jω2)+H33( jω3, jω2, jω1)

=
1

F1( jω̄ )

{
Ẑ32( jω̄ )

[
m21

(
F2( jω2, jω3)

(
H21( jω1)

jω1
+

H21( jω1)

jω2 + jω3

)

+F2( jω1, jω3)

(
H21( jω2)

jω2
+

H21( jω2)

jω1 + jω3

)
+

(
H21( jω3)

jω3
+

H21( jω3)

jω1 + jω2

)

F2( jω1, jω2)
)
− 2m22

(
1

jω1 jω2
+

1
jω2 jω3

+
1

jω1 jω3

)
H21( jω1)H21( jω2)

H21( jω3)

]
− Ẑ22( jω̄ )

[
m31

(
F3( jω2, jω3)

(
H31( jω1)

jω1
+

H31( jω1)

jω2 + jω3

)

+F3( jω1, jω3)

(
H31( jω2)

jω2
+

H31( jω2)

jω1 + jω3

)
+

(
H31( jω3)

jω3
+

H31( jω3)

jω1 + jω2

)

F3( jω1, jω2)
)
− 2m32

(
1

jω1 jω2
+

1
jω2 jω3

+
1

jω1 jω3

)
H31( jω1)H31( jω2)

H31( jω3)

]}
, (5.65)
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F2( jω1, jω2)− 2m22

(
1

jω1 jω2
+

1
jω2 jω3

+
1

jω1 jω3

)
H21( jω1)H21( jω2)

H21( jω3)
]
− Ẑ23( jω̄ )

[
m31

(
F3( jω2, jω3)

(
H31( jω1)

jω1
+

H31( jω1)

s2 + s3

)

+F3( jω1, jω3)

(
H31( jω2)

jω2
+

H31( jω2)

jω1 + s3

)
+

(
H31(s3)

s3
+

H31(s3)

s1 + s2

)

F3( jω1, jω2)− 2m32

(
1

jω1 jω2
+

1
jω2 jω3

+
1

jω1 jω3

)
H31( jω1)H31( jω2)

H31( jω3)

]}
, (5.66)

where we defined

F1( jω) � Ẑ32( jω)Ẑ23( jω)− Ẑ22( jω)Ẑ33( jω),

F2( jω1, jω2) � H22( jω1, jω2)+H22( jω2, jω1),

F3( jω1, jω2) � H32( jω1, jω2)+H32( jω2, jω1), and

ω̄ � ω1 +ω2 +ω3. (5.67)
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Chapter 6
Memristive Devices: Switching Effects,
Modeling, and Applications

Yuchao Yang, Ting Chang, and Wei Lu

6.1 Introduction

The rapid, exponential growth of modern electronics has brought about profound
changes to our daily lives. However, maintaining the growth trend now faces
significant challenges at both the fundamental and practical levels [1]. Possible
solutions include More Moore—developing new, alternative device structures, and
materials while maintaining the same basic computer architecture, and More Than
Moore—enabling alternative computing architectures and hybrid integration to
achieve increased system functionality without trying to push the devices beyond
limits. In particular, an increasing number of computing tasks today are related to
handling large amounts of data, e.g. image processing as an example. Conventional
von Neumann digital computers, with separate memory and processer units, become
less and less efficient when large amount of data have to be moved around
and processed quickly. Alternative approaches such as bio-inspired neuromorphic
circuits, with distributed computing and localized storage in networks, become
attractive options [2–6].

The reemergence of neuromorphic systems is fueled by two factors. First,
more understanding has been obtained on both biological neural networks and
manmade networks through experimental and modeling studies [7–10]. Second, the
emergence of new classes of nanodevices, particularly two-terminal resistive switch-
ing devices (memristive devices) [11–17], makes it possible to build functional
neuromorphic hardware that will not only serve to test the various neural network
models but also can directly lead to new, effective, high-performance computing
hardware.
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In this chapter, we will discuss recent progress in the development of
neuromorphic hardware based on nanoscale memristive devices. In particular,
we will focus on a few representative device systems in terms of resistive switching
characteristics, switching mechanisms, and theoretical modeling and show how two
key properties, local adaptive learning and large connectivity, can be obtained
in memristive devices that in turn make them well suited for neuromorphic
applications.

6.2 Resistive Switching in Memristive Devices

Resistive switching (RS) phenomena have been reported as early as the 1960s
[18] and today such devices are extensively studied as resistive random-access
memory (RRAM) for future nonvolatile memory [14–17, 19–22]. These devices
generally are simple in structure (typically two-terminal) and nanoscale in dimen-
sions (scaling <10 nm has been demonstrated [23]), while at the same time
offering excellent performance in terms of switching speed [24] and write/erase
cycling [25]. Tremendous work has been performed to understand the various
types of switching mechanisms that are responsible for RS phenomena in different
material systems [14–17, 19–21, 26–30], which can be broadly categorized into
valence change, electrochemical metallization, phase change, thermo-chemical,
ferroelectric, and nanomechanical effects [15], as shown in Fig. 6.1. Here we focus
on devices that show “analog” memristive behavior, i.e. devices that are particularly
suitable for neuromorphic applications. Experimentally, devices that fall in the first

Fig. 6.1 Classification of
memristive devices according
to the working mechanism
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Fig. 6.2 Bipolar resistive switching in TiO2-based memristors. (a) An atomic force microscope
image of 1× 17 crosspoint devices with 50 nm half-pitch. Pt nanowires were fabricated by
nanoimprint lithography and sandwich a 50-nm-thick TiO2 insulating film. (b) Initial I–V curve
of the device in virgin state, showing a rectifying characteristic. Inset: the device structure.
(c) Experimental (solid) and modeled (dotted) switching I–V curves. Lower inset: the switching
I–V curves in log-scale. Upper inset: the equivalent circuit model consisting of a rectifier in
parallel with a memristor used for modeling. Reprinted with permission from [21]. Copyright
(2008) Nature Publishing Group

three categories (namely, valence change, electrochemical metallization, and phase
change effects) have been extensively studied for this purpose and below we present
results from a few representative studies.

6.2.1 Memristive Devices Based on Valence Change

The connection between resistance switching and memristive effects (definition
given later) was made by HP labs in 2008, where the behaviors of nanoscale
TiO2 crosspoint devices were shown to fit the descriptions of memristive devices
(memristors for short throughout this Chapter) [13]. Specifically, the devices
exhibited pinched hysteresis loops (so no energy is stored) and frequency and
history-dependent programming (see Fig. 6.2), in agreement with the predictions of
memristors. Physically, RS of TiO2 is a result of local stoichiometric change caused
by the migration of oxygen vacancies (VOs) and can be assigned into the valence
change category. As VOs act as donors in TiO2 the accumulation/depletion of VOs
can cause an increase/decrease of the local conductance which in turn results in the
modulation of the overall device conductance. Specifically, in the study of Yang
et al. [21], the drift of oxygen vacancies towards the Pt/TiO2 Schottky interface,
driven by the external electric field, results in the accumulation of VOs and the
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creation of conducting channels that shunt the barrier for electron injection. When
applying electric fields with a reverse polarity, the oxygen vacancies are driven away
from the Schottky barrier, hence dissolving the conducting channels and switching
the device back to off state. Later it was demonstrated that the aggregation of VOs
in TiO2 in the conductive region may in fact lead to the formation of a new oxygen-
deficient Magnéli phase (Ti4O7) that is metallic, as directly revealed by TEM studies
[26, 30].

Since the devices operate by the redistribution of VOs, the creation of a definitive
VO distribution profile will help obtain reliable device operations. Conventionally
this is achieved in a high-voltage “electroforming process” to create the oxygen
vacancies and define the VO distribution. The forming process involves electro-
reduction of oxygen ions, which produces oxygen gas and leaves oxygen vacancies
in the oxide films [31]. On the other hand, high-voltage forming is not desirable
in practical device applications, is hard to control, and reduces device yield and
reliability. Based on the improved understanding of the electroforming process
and the resistive switching mechanism, the forming process can be successfully
eliminated either by reducing the thickness of the oxide film to keep just the
switching interface or by intentionally introducing an oxygen-deficient layer next
to the switching layer in the device fabrication process as a reservoir of oxygen
vacancies [31].

Improved understanding of the switching mechanism has been obtained through
a series of material analyses that offered useful information on film composition,
microcrystalline structure, and switching locations [29, 30] as well as modeling that
attempted to match experimental results with known physical effects, for example,
the drift and diffusion current equations [27, 32], which will be discussed later.
It also needs to be noted that although the conducting channels may be formed
locally, the RS process, as determined by external stimuli, can be affected by the
global device design such as the electrode materials, layer stacks, and structures
around the switching regions [33, 34]. For example, the reactions between TiO2

and the metal electrodes (particularly with the thermally diffused Ti adhesion layer)
can create additional oxygen vacancies in TiO2 and largely modulate the electronic
barrier at the interface, which in turn affect the resistive switching behavior. The
localized diffused adhesion material may also serve as seeds for switching channel
formation, leading to improved switching reliability [34].

Similar memristive behaviors have also been observed in other oxide materials.
Here we choose WO3 as an example. In modern CMOS processing, W is widely
used as a contact material so WO3 can be easily incorporated into standard
manufacturing processes [35]. Additionally, WO3 has been a long-studied material
with well-known characteristics and preparation methods [36]. Similar to TiO2,
WO3 is also a transition metal oxide with many sub-stoichiometric states making
them n-type semiconductors. This material system thus offers many attractive
properties for device applications and has been used for both digital [37] and analog
[36, 38] types of memory studies.

Typical analog-type resistive switching in WOx-based memristive devices is
shown in Fig. 6.3 in a study performed by Chang et al. [36]. The device is composed
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Fig. 6.3 Memristive switching in WOx-based devices. (a) Cross-sectional SEM image of the
oxidized W film, showing a WOx film formed on top of W. (b) Pulse response of the WOx device
showing conductance potentiation and depression. (c–d) Analog resistive switching of the WOx

device in the positive (negative) voltage regions. Inset to (c): top-view SEM image of a crosspoint
WOx device. Scale bar: 2 μm

of a Pd top electrode (TE) and a W bottom electrode (BE) sandwiching a WOx

film, as shown by the top-view scanning electron microscope (SEM) image in
Fig. 6.3c. A rapid thermal annealing (RTA) step was adopted to partly oxidize the W
bottom electrodes, therefore directly forming a WOx layer on top of the W bottom
electrodes, as shown in Fig. 6.3a. This oxidation process naturally introduced a
continuous concentration gradient of oxygen vacancies [39], unlike the cases of
abrupt VO concentration profiles formed in other bilayer structures. By tuning the
VO distribution with external biases, analog-type resistive switching can be reliably
obtained (see Fig. 6.3b–d) [36].

The quasi-continuous tuning of the device resistance with memory effects is
the key enabling factor of memristor-based neuromorphic circuits. Briefly, the
conductance modulation in memristors can be thought as being analogous to the
plastic synaptic weight changes in biological synapses, so memristors can be used
to emulate biological functions. This behavior is more clearly demonstrated in
pulse measurements, as shown in Fig. 6.3b, where positive and negative pulses
(i.e., spike inputs) cause the memristor conductance to increase or decrease by
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incremental amounts, corresponding to the potentiation (P) and depression (D)
effects, respectively. Further characterizations and modeling confirmed the oxygen
vacancy motion origin of the resistive switching effects in these devices [36], which
will be discussed in more detail in the next section.

6.2.2 Memristive Devices Based on Electrochemical
Metallization

Besides oxygen vacancy (anion)-driven devices, memristive devices based on metal
ion (cation) redistribution have also been reported. They fall into the category of
electrochemical metallization cells. The Ag2S atomic switch reported in 2005 was
an ingenious design to control RS within a 1 nm spacing [40]. The electrochemical
(redox) effect between the Ag2S electrode and the Ag deposits determines whether
a conductive bridge is formed or disrupted, thus determining what resistive (conduc-
tive) state the device is in. Later, it was found that not only the conductive bridge
connection can be controlled, but the size (width/diameter) of the bridge can also
be modulated to produce multilevel (analog) switching effects. Hence, the Ag2S
devices also potentially have the ability to emulate learning and memory functions
of synapses [41, 42]. Specifically, electrical transport in the atomic switches can
be divided into two regimes: tunneling regime and contact regime (Fig. 6.4). When
the metal bridge has not connected the counter electrode, the electrical transport
of the device is dominated by tunneling through the gap between the front of the
metal bridge and the counter electrode. After the metal bridge forms contact with
the counter electrode, further application of electric signals will result in lateral
growth of the bridge, so the conductance is determined by the width of the bridge
[41]. As a consequence, the initial contact between the metal bridge and the counter
electrode will cause an abrupt transition of conduction from tunneling to contact,
hence leading to a digital-type switching behavior, while further growth of the
metal bridge in the contact area will only expand the size of the bridge and lead to
analog switching. This was indeed observed experimentally, as shown in Fig. 6.4a.
The device was initially in the tunneling regime, at about −0.2 V the contact was
achieved, accompanied by a sharp increase in current. Afterwards the current was
increased gradually in subsequent sweeps, corresponding to the expansion of the
bridge size. The digital and analog changes in resistance in the two regimes were
also clearly observed by recording the resistance values at the end of each sweep
(Fig. 6.4b, c).

One of the first demonstrations of memristor-based synaptic functions was
achieved by Jo et al. in Ag/a-Si-based memristive devices. Similar to the Ag2S
device, the Ag/a-Si devices rely on the redistribution of Ag ions within the a-Si
matrix. In digital-type devices, Ag conducting filaments can be formed/dissolved
in the a-Si matrix and high-performance metrics have been demonstrated for
nonvolatile memory applications, including high device yield of 99 %, scaling
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Fig. 6.4 Analog resistive switching in Ag2S-based atomic switches. (a) Experimental results
showing an initial abrupt change followed by gradual increase in current. (b) Resistance values
at the end of each negative sweep. The inset shows the resistance change in the contact regime
in linear scale. (c) Resistance values at the end of each positive sweep, during which the atomic
bridge was disconnected. The inset shows the resistance change in the contact regime in linear
scale. (d) Operation model of the atomic switch. Application of a negative bias voltage to the Pt
electrode widens the metal atomic bridge, while a positive bias results in a thinner one. Reprinted
with permission from [41]. Copyright (2010) Wiley-VCH Verlag GmbH & KGaA, Weinheim

potential of <50 nm, fast programming speed of 5 ns, high endurance of 108,
long retention of ∼7 years, and multilevel storage capability [20, 43, 44]. To
make the device suitable for neuromorphic applications, that is, to achieve analog
switching, co-sputtering was employed to controllably incorporate Ag into the a-Si
film to achieve a more gradual Ag concentration gradient as schematically shown
in Fig. 6.5a [45]. Incremental analog switching, as demonstrated by both pulse
measurements and DC sweeps was reliably achieved in these devices. Figure 6.5b
shows the incremental adjustment of the conductance of the memristor device by a
series of potentiating (3 V, 500 μs) and depressing (−2.6 V, 500 μs) pulses, while
Fig. 6.5c, d show the evolution of the pinched hysteresis loops under DC voltage
sweeps, where consecutive positive (negative) sweeps lead to gradual conductance
potentiation (depression). The analog switching can be understood by electric field-
driven migration of Ag ions and resultant movement of the conduction front between
the Ag-rich and Ag-poor regions in the active layer. Indeed, simulation results based
on this simple model satisfactorily fitted the experimental data in Fig. 6.5c. Through
careful material engineering, robust RS behaviors were obtained and the devices
were still functional after 1.5× 108 P/D pulses.
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Fig. 6.5 Analog resistive switching in Ag/a-Si-based memristive devices. (a) Schematic of using
a memristor as a synapse between two neurons. (b) Pulse responses of Ag/a-Si-based memristive
devices. (c) Measured (blue) and calculated (orange) I–V characteristics of the Ag/a-Si-based
memristor. Inset: calculated (orange) and extracted (blue) values of the normalized conduction
front position during positive DC sweeps. (d) Current and voltage data as functions of time.
Reprinted with permission from [45]. Copyright (2010) American Chemical Society

6.2.3 Memristive Devices Based on Phase-Change Materials

Another group of candidates for synaptic emulation are based on phase change
memory (PCM) [46]. By applying electric pulses to generate enough heat and
induce local phase transitions, phase change materials can exhibit resistance switch-
ing behaviors between amorphous (high resistivity) and crystalline (low resistivity)
states and this change can be quite fast and stable. GST (Ge2Sb2Te5) is the most
commonly used material for PCM. Here, phase change is achieved by heating and
quenching of GST through Joule heating. Although mostly studied as a digital
memory, when programming and erasing conditions are carefully designed, the GST
devices can exhibit analog-type resistance changes if the amount of material being
melted and re-crystallized can be controlled [47].

Shown in Fig. 6.6 is a demonstration of analog resistance changes in GST-
based devices in a study performed by Kuzum et al. [47]. The analog switching
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Fig. 6.6 Analog resistive switching in GST-based devices. (a) Gradual modulation of device
resistance by voltage pulses. (b) Finite element simulations of the temperature across the GST
region for reset voltages ranging from 0.7 to 0.9 V. The regions with T > 900 K are mapped using
a solid black line and would turn into amorphous phase. Reprinted with permission from [47].
Copyright (2012) American Chemical Society

was achieved by the application of voltage pulses with incrementally increasing
amplitudes, i.e., reset was performed by voltage pulses with increasing amplitude
in the range of 2–4 V with 20 mV steps, while set process was achieved by using
repeated staircase pulses (20 continuous pulses with amplitudes of 0.5, 0.6, 0.7,
0.8, and 0.9 V). The corresponding incremental resistance changes are shown in
Fig. 6.6a for both the set and reset processes [47]. Figure 6.6b shows the temperature
distribution in the cell based on finite element simulations, illustrating that the
voltage pulses incrementally expand the region with temperature (T > 900 K) above
the melting point of GST. These high temperature regions will be amorphized after
the pulses are removed and account for the gradual increase in resistance during
reset [47].

6.3 Modeling of Memristive Devices

6.3.1 General Modeling

Memristor as a device concept was first introduced by the pioneering work of Leon
Chua [11] and further formalized by Chua and Kang [12]. Briefly, a device can be
called a “memristive system” if it satisfies a set of equations below, with properly
chosen state variables:

v = R(w, i) i (6.1)

dw
dt

= f (w, i) (6.2)

Here the first equation is the normal I–V equation that relates voltage with current
through a resistive term. However, for memristive systems, the resistance R (termed
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memristance) depends not only on the instantaneous inputs v and i but also depends
on one or a set of internal state variable(s) w. The state variable w is in turn governed
in the second equation, which specifies how the state variable changes according to
the current state and the instantaneous inputs. Since here only the dynamics of w
(i.e., its rate) is determined, the full value of w can only be obtained from a time
integral, i.e. Eq. (6.2) implies that the state of the memristor is history dependent,
as observed from the experiments on various materials. This is the key difference
between a memristor and other two-terminal devices.

The memristor model is based on abstract mathematical equations (6.1) and
(6.2), without necessarily specifying the physics behind them. By mapping these
equations to the actual physical processes during device operation such as the
ionic diffusion/drift processes during conduction channel formation, realistic device
operations can be modeled within the memristor framework. Here again the key is to
identify the internal state variable(s) and the corresponding dynamic equation (6.2).
The advantage of describing the device operations in the memristor framework,
vs. other phenomenological models is that not only does this approach provide an
analytical description that can be readily ported into circuit simulators, but also
it helps one to identify the driving factors behind the switching effects so more
accurate descriptions, particularly those governing the device dynamics, can be
obtained.

6.3.2 State Variable as the Conduction Channel Length

The first approach to use the memristor model to explain resistive switching was
performed by Strukov et al. at HP Labs when trying to characterize the switching
behaviors of TiO2 devices [13]. Recall that RS in TiO2 is due to the movement
of oxygen vacancies inside the TiO2 film. To connect the memristor equations
with physical processes, Strukov assumed that the memristor is composed of two
resistors in series, one is undoped with high resistance and the other is doped by
VO, thus having low resistance [13], as schematically shown in Fig. 6.7a, b. The
total thickness of the film D is separated into the doped and undoped regions, and
the total resistance is the sum of the two regions. The length of the doped region
is taken as the state variable (w), which can be changed by moving the boundary
between the two regions under external field due to the drift of VOs. By assuming
Ohmic electronic conduction in both regions and a linear ionic drift with an average
ion mobility μv in a uniform field, the two memristor equations can be written as:

v(t) =

(
RON

w(t)
D

+ROFF

(
1− w(t)

D

))
i(t) (6.3)

dw(t)
dt

= μV
RON

D
i(t) (6.4)
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Fig. 6.7 Memristor model for the TiO2 devices consisting of two resistors in-series. Here the state
variable corresponds to the length of the conducting (doped) region. (a) Schematic of the model.
(b) Equivalent circuit of (a). (c) Simulation results incorporating nonlinear ionic drift. Upper: the
voltage stimulus (blue) and the corresponding change in normalized state variable w/D (red), as
functions of time. Lower: simulated I–V characteristics. Reprinted with permission from [13].
Copyright (2008) Nature Publishing Group

Although both assumptions—linear ionic drift and a uniform conduction front—
seem oversimplified the model can still successfully predict the pinched hysteresis
and the history-dependent resistance changes. The model was soon refined to
include nonlinear effects at high fields such as exponential ionic drift which are
important for these devices even under normal operations [32]. In one approach,
the nonlinear ionic drift was taken into account by multiplying the right side of
Eq. (6.4) with a window function w(D−w)/D2 [13]. The corresponding simulation
results are shown in Fig. 6.7c, where binary resistive switching can be apparently
observed. It should be noted that the memristor equations used here correspond to
the “current-controlled” devices which are easy to implement mathematically but
are not as practical as the “voltage-controlled” devices since currents are typically
much harder to control than voltages in practice, especially in large networks.

6.3.3 State Variable as the Conduction Channel Area (Width)

Instead of modeling the state variable as the conduction channel length, which
typically leads to nonuniform conductance changes (i.e., the conductance scales as
1/length), an alternative is to model the state variable as the conduction channel area
(or equivalently, width). This approach seems more natural for many devices since
the conduction channels typically form locally and in parallel, instead of creating
a uniform front. Additional programming either increases the area (width) of the
conduction channel or increases the number of conduction channels. Both effects
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Fig. 6.8 (a) Simulated I–V
characteristics when
considering the state variable
as the conduction channel
area. Inset: schematic of the
model. Reprinted with
permission from [36].
Copyright (2011) Springer.
(b) Simulated pulse responses
using the same set of
parameters. Potentiation
pulse: 1.2 V, 5 μs; depression
pulse: −1.2 V, 5 μs; read
pulse: 0.3 V, 3 ms

are equivalent mathematically and lead to an increase of the effective conduction
channel area. Using the conduction channel area as the state variable also leads
to more uniform conductance changes, in better agreement with experimental
observations.

The first attempt to explain resistance switching using the conduction channel
area as the state variable was carried out by Chang et al. [36] to explain the
resistance switching in WO3. Additionally, a model incorporating an exponential
ionic drift equation was used to model oxygen vacancy movement at high fields
[32]. In general, the overall device conductance can be calculated as the sum of
the conducting regions in parallel with the Schottky barrier formed in the resistive
regions, weighted by the state variable (w, which is the conducting region area
normalized over the total device area), as shown in the inset of Fig. 6.8a:

i = (1−w)α [1− exp(−β v)]+wγ sinh(δv) (6.5)
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Fig. 6.9 Threshold switching
and modeling of NbO2-based
devices. Dots and line
represent experimental and
simulated I–V characteristics,
respectively. The inset shows
schematic of the device
model showing a channel that
consists of two cylindrical
phases during operation.
Reprinted with permission
from [48]. Copyright (2012)
IOP

Here the first and second terms represent the contributions from Schottky
emission in the resistive regions and tunneling-type conduction in the conducting
channels, respectively. α , β , γ , and δ are all positive-valued fitting parameters
determined by the material properties. The rate equation is determined by the
expansion rate of the conduction region area which is related to the exponential
ionic drift:

dw
dt

= λ sinh(ηv)− w
τ

(6.6)

The second term w/τ is introduced here in the dynamic equation to account for
the lateral diffusion of ions that constitute the conduction channels (i.e., VOs here).
The spontaneous diffusion causes the weakening of the conduction channels and
leads to limited retention, an effect that will be discussed in more detail later on.

Figure 6.8 shows the simulated DC I–V characteristics and pulse responses based
on Eqs. (6.5) and (6.6), where analog bipolar resistive switching can be reliably
predicted using a single set of parameters. The simulation results also show decay in
retention, evidenced by the overlap between consecutive I–V curves during positive
voltage sweeps, agreeing well with the experimental data [36].

The use of conduction channel area as the state variable to explain RS behavior
was recently applied to other oxide systems. For example, NbO2 is another material
that exhibits interesting RS behaviors [48]. Unlike TiO2 or WO3-based devices,
switching in NbO2 is attributed to the thermally driven insulator-to-metal phase
transition. Instead of showing memory switching (i.e., the device memorizes the
new state after removal of the programming voltage), NbO2 displays threshold
switching characteristics (i.e., the device shows abrupt resistance changes but does
not memorize the new state after removal of the programming voltage and leads to
negative differential resistance (NDR)), as shown in Fig. 6.9 in a study performed
by Pickett and Williams at HP labs. To model the switching behavior, the device
was assumed to have a cylindrical core-shell geometry with a conducting core
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formed through the metal-insulator transition, and the state variable (u) was chosen
as the normalized radius of the conducting core u= rmet/rch (inset of Fig. 6.9). The
corresponding equations are provided below.

v = f (u, i) = Rch(u)i (6.7)

du
dt

= g(u, i) =

(
dΔH
du

)−1 (
Rch(u)i

2 −Γth(u)ΔT
)

(6.8)

where Rch is the total device resistance, ΔH is the total enthalpy change in the
channel, Γth is the thermal conductance of the insulating shell, and T is the absolute
temperature. This model successfully captured the threshold switching characteris-
tics of NbO2 devices, as displayed by the excellent agreement between simulation
and experimental results shown in Fig. 6.9. Furthermore, circuit simulations based
on the memristor model successfully predicted the behavior of these devices in
active circuits such as the “neuristor” behaviors that can effectively emulate the
lossless transmission in axons [49, 50].

6.4 Artificial Neuromorphic Applications Utilizing
Memristive Devices

The plasticity in conductance and the large connectivity that can be offered by mem-
ristors make them well suited for physical implementation of synaptic functions in
neuromorphic circuits. Biologically, the weight of a synapse is jointly determined by
the firing patterns of both the pre-synaptic and post-synaptic neurons connecting to
it. The synapse could either be potentiated or depressed, i.e. having their connections
being strengthened or weakened, depending on the neuron spike patterns, the
transmission/diffusion of ions (e.g., Ca2+), the activation of receptors, and many
other factors [51]. Several fundamental learning rules, including rate-dependent
synaptic plasticity, timing-dependent synaptic plasticity, and cooperativity [52],
have been discovered and believed to be critical for the efficient operation of
biological systems. While these learning rules may vary according to the specific
type and location of a synapse, some commonly accepted and well-established rules
are discussed here. These important local learning rules have also been successfully
demonstrated in memristors.

6.4.1 Spike-Timing-Dependent Plasticity

Spike-Timing-Dependent Plasticity (STDP) is an important synaptic learning rule
which states that the synaptic weight is modulated according to the relative timing
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Fig. 6.10 (a) Implementation of STDP with Ag/a-Si-based memristors. Reprinted with permis-
sion from [45]. Copyright (2010) American Chemical Society. (b) Implementation of STDP with
GST-based PCM cells. Reprinted with permission from [47]. Copyright (2012) American Chemical
Society

of the pre- and post-synaptic neuron firing [53, 54]. It was first postulated in 1949
by D. Hebb who described the effect as “neurons that fire together, wire together”
[55]. In general, if the spike (action potential) from the pre-synaptic neuron arrives
at the synaptic cleft before that of the post-synaptic neuron, potentiation will be
induced. Otherwise depression will be induced. How effectively the potentiation and
depression take place in turn depends on how far apart the pre- and post-synaptic
spikes arrive.

Implementation of STDP with memristors requires the careful design of neuronal
input signals at both the pre- and post-terminals. The key is to find a means to
translate the relative spike timing into a specific voltage (current) waveform that
controls the flux or charge through the memristors, which directly controls the
memristor conductance change. Triangular waves, complementary square waves,
pulses with exponentially decreasing tails, or other asymmetric waveforms are
common examples of the proposed neuronal inputs which could either be realized
through test programs or hardware circuits [6, 45, 47, 56–59]. In all of these
attempts, the relative timing between the signals from the post-synaptic neuron and
that of the pre-synaptic neuron determines how the signals overlap at the memristor
junction, which in turn tunes the memristor conductance accordingly.

The first work of this kind was performed by Jo et al. using a hybrid CMOS/
memristor circuit, as shown in Fig. 6.10a [45]. Timing information is encoded using
the time division multiplexing (TDM) scheme which allocates events to occur at
their prescribed time slots, while keeping the spike amplitude constant [60]. This
approach, with a fixed spike amplitude but modulated effective width, is more
effective for digital neuron circuits. STDP curves with controlled time constants and
incremental changes can be obtained, and by choosing the right device parameters
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results in good agreement with recorded data from biological synapses can be
obtained (Fig. 6.10a). Subsequent work by Kuzum et al. implemented using GST-
based phase change cells used a dedicated pulsing scheme that precisely controls the
crystallization states of the GST devices, as shown in Fig. 6.10b [47]. By adjusting
the pulsing waveforms to cause different overlapped signals in amplitude seen by
the memristor, a few different forms of STDP curves were observed, similar to
observations in neurobiological experiments. Several other similar studies have also
been reported to obtain STDP behaviors in different material systems [56, 59].

6.4.2 Rate-Dependent Plasticity

In addition to STDP, rate-dependent plasticity is also a widely observed synaptic
learning rule across different kinds of synapses [52]. It is not surprising—both the
pre- and post-neurons fire at seemingly randomly time instants and one can either
group the signals arriving at the synapse by pairs from the two neurons, or by spike
trains from individual neurons. In the second picture, the spike rate should have
a significant effect on the synaptic plasticity. It is natural to expect that the more
frequently a synapse is being stimulated, the stronger it becomes (and remains
strong). For example, by stimulating biological synapses at varying rates, post-
tetanic potentiation (PTP) and paired-pulse facilitation (PPF) effects were studied
systematically with their according decay time constants identified [61, 62].

The key to the implementation of the rate-dependent learning is identifying
an internal decaying element. Without decay the device will only respond to the
total number of stimulations, insensitive to the frequency (rate). However, with a
decaying mechanism, the synaptic adaptation is a result of the competing effects
between the internal decay and the external stimulation and how effective the
learning is then critically depends on the stimulation rate (with respect to the
decay rate).

The first report on rate-dependency of memristive devices was by Alibart et al.
[63] The memristive devices were based on organic nanoparticle transistors in
which the synaptic plasticity was achieved by trapping and detrapping of charged
carriers which in turn affect the transistor drain current. The nanoparticles were
alternatively charged during the pulse period and discharged (decayed) during the
intervals between pulses. The total trapped charges then depend on not only the
number of pulses but also the frequency. As shown in Fig. 6.11a, in the high
stimulating rate case, such as 2, 5, and 10 Hz, the number of holes that are trapped
in the nanoparticles exceeds that of detrapped ones. As a result, the number of
holes present in the channel is increased, depressing the output current. Adversely,
the output current is increased in the low stimulating rate case such as 0.5 and
1 Hz. This charge trapping/detrapping process is argued to be analogous to the
rate-dependent synaptic plasticity caused by consumption and recovery of the finite
chemical neurotransmitters in biological synapses [64] and can potentially be used
to implement rate-dependent learning rules.
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Fig. 6.11 (a) Rate-dependent plasticity in organic nanoparticle transistors. Reprinted with per-
mission from [63]. Copyright (2010) Wiley-VCH Verlag GmbH & KGaA, Weinheim. (b) Rate-
dependent plasticity in tungsten oxide-based memristors. The different symbols correspond
to different interval between pulses. Reprinted with permission from [38]. Copyright (2011)
American Chemical Society

The nanoparticle transistor devices are, however, three-terminal devices which
make scaling more difficult. A more systematic study on two-terminal memristor
devices were performed by Chang et al. on WO3 memristors [38]. As shown
in Fig. 6.11b, a high stimulation rate (smaller interval between pulses) leads to
more significant conductance enhancement while the device barely responds to
stimulations at low rate, even though both the strength and number of stimulations
are identical in each case. Here the decay term is the spontaneous diffusion of
the oxygen vacancies forming the conduction channels, discussed in Eq. (6.6).
PTP and PPF effects with behaviors similar to those in biological systems have
also be obtained in these oxide memristor devices [38]. The internal decay of
the conduction channels in turn suggests that the devices possess short memory
retention (analogous to short-term memory in biological systems). Although short
retention is obviously not desirable for nonvolatile data storage, the decay and short-
term memory can be desirable properties for neuromorphic circuit implementations,
as will be discussed next.

6.4.3 Short-Term and Long-Term Plasticity

While long-term plasticity (LTP) is obviously needed for storing the processed
information, it is believed that short-term plasticity (STP) helps the system process
information by releasing resources that are no longer needed [51]. Biologically,
it is still debatable whether these two kinds of plasticity take place at the same
location and how one may trigger the other. However, it seems clear that there exist
short- and long-memory regimes, separated by their retention times. Additionally,
short-term memory can be converted to long-term memory after sufficient training.
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Fig. 6.12 (a, b) Decay and stabilization of the conductance of Ag2S-based devices when the
input pulses were applied with intervals of 20 s (a) and 2 s (b). (c) Decay time constant as a
function of the number of input pulses for Ag2S-based devices. Reprinted with permission from
[42]. Copyright (2011) Nature Publishing Group. (d) Time constant and synaptic weight as a
function of the number of input pulses for WOx-based devices. Reprinted with permission from
[38]. Copyright (2011) American Chemical Society

In computation, this corresponds to a very practical mechanism to allocate limited
resources (e.g., the number of physical synapses) for the most efficient use since the
more crucial the information, the longer the memory is kept.

Two independent studies were performed that showed the existence of STP and
the transition of STP to LTP in memristive devices. These effects were observed
first by Ohno et al. in Ag2S devices [42], shown in Fig. 6.12a. One can see that the
device conductance always decays back to its initial value when low-repetition rate
pulses are applied, suggesting STP. However, when the repetition rate is increased
to a certain value, a stable high conductance state can be achieved (Fig. 6.12b),
indicating a transition from STP to LTP and corresponding to the formation of a
stable conducting bridge in the Ag2S device. It was found that the decay time of
the STP state (i.e., how fast STP loses its information) also depends on the training
conditions, with longer time constants obtained when the number of input pulses is
increased, as displayed in Fig. 6.12c.

In another study reported at roughly the same time, Chang et al. observed
STP and STP to LTP transition in WO3 devices, as shown in Fig. 6.12d. Briefly,
the conduction channel area in the memristors is increased through repeated
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stimulation, which leads to not only an increased conductance (weight) but also
longer retention time [38]. This effect corresponds well to the memory enhancement
effects observed in biological systems which lead to the transition from STP to LTP
[65]. Additionally, both the stimulation rate and the total number of stimulations are
found to strongly affect the memory enhancement. With sufficient stimulations, the
retention time can be increased by several factors, indicating a transition from STP
to LTP can be achieved in the memristors [38].

6.4.4 Associative Learning

Memristors are perhaps the ideal candidate to implement local, synaptic learning
rules for the implementation of efficient neuromorphic circuits. However, assem-
bling a large number of individual working devices does not necessarily make a
system functional. How functions evolve from biological networks is of course still
an ongoing research in the field of neuroscience and research on memristor-based
neuromorphic hardware in this field is still at the very early stage.

Associative learning is a form of Hebbian learning experimentally demonstrated
by the training of Pavlov’s dog [66]. By pairing conditioned stimulus (e.g., sound
of a bell) with unconditioned stimulus (e.g., sight of food), the dog learns to
associate both events and responds (e.g., salivates) to both stimuli. Associative
learning is especially important as it is believed to be behind how brains correlate
individual events and how neural networks perform certain tasks very effectively.
First proposed by Pershin et al., synaptic emulators and specially designed circuitry
were developed to demonstrate associative learning [67]. Figure 6.13 shows the
results from a study by Pershin et al., where before learning the “salivation”
neuron only responds to the “sight of food” neuron input, i.e. only synapse S1
is on. By simultaneously applying stimulations to both the “sight of food” and
“sound” neurons in the learning phase, synapse S2 between the “sound” neuron
and the “salvation” neuron is turned on. As a result, stimulus from the “sound”
neuron alone is able to excite the “salivation” neuron, therefore establishing an
association between the conditioned and unconditioned stimuli. Zeigler et al. later
demonstrated associative learning with Ge0.3Se0.7 memristors [68]. Along with their
neuron-mimicking circuit, both associative and non-associative learning could be
implemented.

6.4.5 Emergent Behaviors

Emergent behaviors arise when individual elements interact with each other in a
random, complex network, achieving collective behaviors that are not expected
from the simple sum of individual elements. Since biological neural networks are
highly complex systems with numerous interconnected elements, the evolution of
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Fig. 6.13 Associative
learning implemented with
electronic emulators.
(a) Schematic of the setup.
(b) Development of
associative memory simulated
by the setup in (a). Reprinted
with permission from [67].
Copyright (2010) Elsevier

emergent behaviors is believed to be key to the development of network functions.
A primitive attempt to achieve emergent behaviors in memristor networks was
performed by Stieg et al. when studying self-assembled Ag nanowire networks that
are interconnected randomly [69]. A wide range of discrete, metastable conductance
states were observed that were explained by the dynamic reorganization of the
interconnected atomic switch network. Such collective behavior is believed to be
similar to that of complex neural networks and if can be understood and controlled,
can hold potential for efficient memory, information transmission, and adaptability.

Emergence is one-step further in neuromorphic development because it only
appears at the network level, never at the synaptic or neuronal level. However, the
unpredictability of emergent behaviors also implies that there might not be a “cor-
rect” answer; instead, the behaviors of the network evolve with the characteristics of
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Fig. 6.14 (a) Schematic of the memristor circuit used to demonstrate interference and memory
capacity effects. The circuit is composed of parallel-memristors driven by a current-limited
source. Inset: optical microscope image of the parallel memristor array. (b) Normalized memristor
conductance after training as a function of the array size. Reprinted with permission from [70].
Copyright (2013) American Institute of Physics

individual elements, dynamic environments, and the physical network connectivity
(which can be enormous and random). As a result, useful information may only be
obtained from statistics, and through a large number of controlled experiments.

6.4.6 Limited Capacity Effect

Another reason that unexpected results may arise when individual devices are
connected in a network is that the different devices now share and compete for
the same resources. Depending on the specific physical configurations, inputs and
dynamics of the network and the devices, diverse results can thus be obtained when
individual elements, small networks, or large networks are formed.

The competition effect was recently demonstrated by Hermiz et al. in a study
focused on how resources are distributed among competing elements in a network,
and how different results can be obtained depending on the network size (Fig. 6.14)
[70]. Here a circuit of parallel-memristors connected to a constant current source
was studied both through simulation and experiments using WO3 devices. Specifi-
cally, how well the memristors are trained was found to depend on the network size,
due to the competition between training (which is amplified by the interference
effect) and internal state decay in each memristor. The more memristors sharing
the limited current source, the less firmly each memristor is trained, as shown
in Fig. 6.14b. Essentially, this study demonstrated the limited memory capacity
effect found in psychology studies—the ability to recall information stored in short-
term memory falls off significantly beyond a certain list size. By tuning the circuit
parameters, different critical list sizes can also be obtained (e.g., a critical list size
of 4 matching that found in psychology studies is shown in Fig. 6.14b).



216 Y. Yang et al.

6.5 Large-Scale Memristor Crossbar Network Hardware

Hardware implementation of more complex synaptic functions demands larger-scale
memristor networks with inherently high connectivity. Several studies have been
carried out recently to construct memristor arrays based on the success on single
devices, mostly focusing on implementing basic memory [19, 71] and logic [72]
functions so far. The simple two-terminal structure of memristive devices allows
them to be integrated into crossbar networks, composed of two sets of parallel
nanowire electrodes crossing each other with a memristive device formed at each
crosspoint. This configuration potentially provides both the high density and high
connectivity that are required to emulate neuromorphic systems. For example, a
human cortex has about 1010 synapses/cm2 in density and can be achieved in
crossbar arrays with 100 nm pitch.

Figure 6.15a shows an SEM image of a 32× 32 memristor crossbar array
fabricated on SiO2/Si substrates by Jo et al. [19]. Efforts were soon extended to

Fig. 6.15 (a) SEM image of a 32× 32 Ag/a-Si/p-Si crossbar array on a SiO2/Si substrate.
Reprinted with permission from [19]. Copyright (2009) American Chemical Society. (b) Optical
micrograph of a Pt/TiO2/Pt crossbar array on CMOS chip. Reprinted with permission from [72].
Copyright (2009) American Chemical Society. (c) SEM image of a 40× 40 Ag/a-Si/SiGe crossbar
array on CMOS chip. (d) A bitmap image by storing and retrieving data in the 40× 40 crossbar
array in (c). Reprinted with permission from [71]. Copyright (2012) American Chemical Society
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building similar crossbar arrays on top of CMOS chips in order to combine the
functionalities of CMOS circuits with the properties of memristive devices. Such
hybrid memristor/CMOS crossbar arrays have been demonstrated with both cation
and anion migration-based devices, e.g. using Ag/a-Si/SiGe [71] and Pt/TiO2/Pt [72]
devices, respectively. Figure 6.15b shows the optical graph of a Pt/TiO2/Pt array
fabricated on CMOS substrate via nanoimprint lithography, following an approach
based on CMOL [73, 74]. The hybrid memristor/CMOS system demonstrated field
programmable gate array-like functionalities [72]. Figure 6.15c shows a 40× 40
Ag/a-Si/SiGe crossbar array was fabricated on a CMOS chip using local inter-
connects by Kim et al. [71], showing reliable memory operations (Fig. 6.15c, d).
These hybrid memristor/CMOS arrays can potentially accommodate large crossbar
networks and can thus provide a good platform for studying complex neuromorphic
functions in these networks. However, we note that studies so far are only limited to
relatively simple memory and binary logic demonstration, while the development of
functional memristor-based neuromorphic networks requires much more complex
neuron designs and better understanding and control of the memristor dynamics,
as well as better understanding of how functions and emergent behaviors evolve in
large networks.

6.6 Summary and Outlook

In summary, tremendous progress has been made in the last a few years on
the development of memristive devices and the employment of such devices in
neuromorphic systems. Device operation mechanism, performance optimization,
and modeling have been extensively studied. A diverse range of local learning rules
have been demonstrated and prototype memristor crossbar arrays with very large
connectivity and hybrid memristor array/CMOS neuron systems have been demon-
strated. However, despite the rapid progress, the field is still only at its infancy. For
example, studies of the network dynamics and emergent behaviors have just started,
although preliminary results obtained from the few experimental and simulation
studies to date are already quite exciting and indicate more breakthroughs to come.

Looking into the future, we have every reason to believe this field will continue
to enjoy exponential growth. It is likely that in a few years memristor-based
neuromorphic hardware will be available to anyone interested in them, like carbon
nanotube or graphene is today to device researchers. This will further fuel the
development of modeling, new algorithms, and architectures to most efficiently
utilize this new class of hardware, which will in turn speed up device research to
take advantage of the new algorithms. It is intriguing to imagine a future where smart
neuromorphic chips significantly improve our quality of life. However, this Hercules
task can only be achieved through close collaborations among material scientists,
device physicist, electrical and computer engineers, and computer scientists.
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Chapter 7
Redox-Based Memristive Devices

Vikas Rana and Rainer Waser

Over the past few decades, MOSFET-based nonvolatile memories have played a
significant role in the growth of the portable electronic market. However, aggressive
device scaling trends are about to reach their limits. In the quest for the next
generation nonvolatile memory device, several mechanisms such as redox-based,
phase-change, magnetic-junction, and ferroelectrics have recently been extensively
investigated. A highly promising candidate that is expected to succeed the flash
memory device is the redox-based resistive random access memory (ReRAM). The
fundamental requirements of a nonvolatile memory are nondestructive write/read
operations at a speed comparable to current logic devices, infinite retention, low
energy consumption, and integration capability with the current CMOS process. In
this chapter, we will describe the current understanding of the physical mechanism
of redox-based resistive switching and address several technological aspects of
metal-oxide ReRAMs.

7.1 Metal-Oxide ReRAM

Silicon-based nonvolatile memory technology, i.e. flash memory [1], has been
extensively used, for example, in mobile storage, digital audio players, digital
cameras, video games, scientific instrumentation, industrial robotics, medical elec-
tronics, and so on. In the quest for faster speed and lower cost, this technology
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suffers from low endurance and high voltage in writing operations (16–20 V) and
is approaching its fundamental scaling limits due to the increasing difficulty of
retaining electrons in the shrinking dimensions [2]. These concerns demand an
alternative low-cost and low-power memory device. The expected characteristics
of an ideal nonvolatile memory comprise write and (preferably nondestructive) read
operations at speeds comparable to those of logic devices, low energy consumption,
infinite retention, and infinite number of read and write cycles. Various technologies
such as magnetic random access memory (MRAM) [3], ferroelectric random
access memory (FRAM) [4], spin-transfer torque random access memory (STT-
RAM) [5], and redox-based resistive random access memory (ReRAM) [6] are
competing to become a mainstream memory technology. In order to dominate
the nonvolatile memory market, a future technology must meet the requirements
of high performance, robustness, integration capabilities, and low-cost. The high
performance of a memory system is defined in terms of high speed, low power
consumption, and high reliability.

A promising candidate for future nonvolatile memory is the ReRAM, based on
oxide materials which show a significant change in resistance upon application
of a voltage bias above a critical threshold and switch back to the original state.
The first scientific report on the resistive switching was published in the early
1960s. However, research activities decreased in the 1980s due to the fact that
the interpretation of the microscopic mechanism involved in the resistive switching
was inherently limited by contemporary analytical tools. The activities were again
revived by Asamitsu et al. [7], Kozicki et al. [8] and Beck et al. [9]. So far, the
resistive switching phenomena have been observed in a variety of material systems
including TiO2 [10], HfO2 [11], NiO [12], Al2O3 [13], Nb2O5 [14], SrTiO3 [15],
Pr0.7Ca0.3MnO3 [16], CuO2 [17], Ag2S [18], and AgGeSe [19].

The ReRAM structure is simply composed of a resistance-changeable mate-
rial, especially transition metal oxides sandwiched between two-terminal metal
electrodes. Although the switching can be achieved by a current or voltage pulse
applied to the electrodes, the switching behavior is highly dependent on the oxide
materials as well as on the type of metal electrodes. Due to the simplest atomic
structure and conventional CMOS processing compatibility, the binary oxides
are the obvious choice for resistive switching applications and could become
the dominant nonvolatile memory technology. The ReRAM technology, which
combines the features of the high-speed performance of present SRAMs with the
non-volatility of the flash memory, can be realized at low cost and low power
consumption. Recent research activities show that the metal-oxide ReRAMs can be
programmed with a very low write current at an ultra-fast speed in the order of sub-
nanoseconds [20]. Figure 7.1 shows a comparison of the ReRAM cell performance
for different memory technologies [21]. Further performance improvement in terms
of power consumption, speed, and variability is under way.

So far, the metal oxide materials show promising properties for nonvolatile
memory applications, their integration into the ReRAM architectures is at an
early stage of development. Prior to any successful commercialization, any tech-
nology demands a robust and predictive understanding of its underlying mech-
anisms. Therefore, the switching mechanisms involved are still the subject of



7 Redox-Based Memristive Devices 225

10−7 10−6 10−5 10−4 10−310−910−10 10−8

10−10

10−12

10−8

10−6

10−4

10−2

100

Operation time/bit, t (s)

P
ow

er
/b

it,
 P

 (
W

)

MRAM

ReRAM

PCM

NAND
Flash

10 pJ

10 fJ

1 fJ

0.1 fJ

1 pJ

0.1 pJ
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current research activities. Several physical models, i.e. the redox-based conductive
filament model [18], Schottky barrier model [22], charge-trapping model [23], and
electrochemical migration of point defects [24], have been reported to elucidate
the resistive switching phenomenon. It is widely accepted that redox processes are
mainly involved in the switching mechanisms. However, many underlying details
of the switching are yet to be explained. To reveal all the mechanisms and to
predict more accurate resistive switching behavior, a deeper understanding of defect
chemistry and interactions of defects under the electrical field are required. For
example, the effects of oxygen vacancy ordering on the energy band diagram and
electron density of states are being studied in detail [25].

7.2 Physical Mechanism of Metal-Oxide ReRAM

Depending on the switching material and electrode type, the physical mechanism
of the resistive switching is explained by various models. Nevertheless, the resistive
switching operation in oxides is regarded as a toggling of the resistance states as a
result of electric stimulus. This operation which changes the resistance of the device
from the high resistance state (HRS) to the low resistance state (LRS) is known as
the SET process, whereas the reverse process is referred to as the RESET process.
Depending on the relationship of electrical polarity between the SET and the RESET
processes, the resistive switching behavior can be divided into the unipolar and
bipolar mode. Both switching modes are shown in Fig. 7.2.

Generally, the resistive switching is presumed to be the combination of physical,
chemical, and thermal effects. A typical resistive switching based on the thermal
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Fig. 7.2 Schematic demonstration of unipolar and bipolar resistive switching mode in binary
metal oxides. Current compliance (ICC) is used to avoid permanent breakdown [26]

effect shows the unipolar characteristic. In this mode, the switching direction does
not depend on the polarity of the applied voltage. A controlled soft breakdown
process initiated by an electric stimulus results in a conductive filament (CF) inside
the dielectric film. The filament is generally composed of the electrode metal
transported into the insulator or decomposed insulator material such as suboxides.
During the reset transition, this CF is again disrupted by Joule heating. This type
of conduction is referred to as thermochemical memory (TCM) [27] and has been
verified in a symmetrical metal–insulator–metal (MIM) stack, e.g. Pt/TiO2/Pt [28],
Pt/NiO/Pt [29].

In contrast, the bipolar switching mode depends on the polarity of the applied
voltage stimulus as shown in Fig. 7.2 and is commonly observed in asymmetrical
structures such as Pt/TiO2/Ti/Pt. In this type of device, the polarity of the reset
voltage (VRESET) is always opposite to the set voltage (VSET). The bipolar switching
relies on the migration of the anions/cations in the oxide as a result of oxidation and
reduction of an electrochemically electrode.

Several studies have been conducted to elucidate the origin of the resistive
switching mechanism in metal oxides. However, redox-based filamentary [18] and
interface-type conduction models [22] are widely accepted mechanisms for the LRS
conduction. According to the filamentary model, ionic transport and electrochemical
redox reactions provide the essential switching mechanism, and current in the LRS
mode flows through the confined local path in the insulating layer, whereas the
current in the HRS mode flows uniformly through the film. The switching MIM
systems consist of an active interface/electrode (AE) at which the switching takes
place, a mixed ionic-electronic conducting (MIEC) layer and an ohmic counter
electrode (OE). These systems generally require an initial electroforming process
prior to any resistive switching behavior. This process typically needs a higher
voltage/current than regular switching. As a first approximation, the forming voltage
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Fig. 7.3 Typical MIM stacks with the different concepts of insulating layer; (a) homogeneous
monolayer, including the gradient of degree of reduction, (b) homogeneous bi-layer, (c) heteroge-
neous bilayer [6]

(VFORM) is proportional to the insulator thickness. The forming process is described
in detail in the following Sect. 7.4. The bipolar switching relies on the migration of
anions, typically oxygen vacancies (Vo

2+), toward the cathode, and is referred to as
the valance-change memory (VCM), widely observed in transition metal oxides.
Upon the application of a positive voltage bias to the OE, an oxygen-deficient
region is created. If the cathode blocks ion exchange reactions, this region starts
to expand towards the anode. Transition metal cations accommodate this deficiency
by trapping electrons emitted from the cathode. In the case of TiO2, this reduction
reaction is equivalent to filling the Ti 3d band.

ne−+Ti4+ → Ti(4−n)+ (7.1)

The reduced valence states of the transition metal cations, which are generated by
this electrochemical process, typically turn the oxide into a metallically conducting
phase, such as TiO2–n/2, for approximately n > 1.5. This virtual cathode moves
towards the anode and finally forms a conductive path [27]. This conductive path
is terminated at a certain current/voltage compliance and the forming process
is completed. During the electroforming process, the local redox reaction leaves
an oxygen-deficient filament in the dielectric layer and the subsequent resistive
switching takes place in the so-called disk region—an interface part of the filament
and the high work function electrode [6]. Depending on the charge transfer during
switching, the resistance of the system can be established at intermediate levels,
which might help in creating multi-bit storage in future resistive memory cells.
The VCM-type MIM system can be realized in several ways [30]. Typical VCM
switching systems are shown in Fig. 7.3. In any case, the AE consists of low-
oxygen-affinity material (e.g., Pt, Ir, TiN). A distinct feature of the filamentary
model is that the resistance in the LRS state is independent of the device area,
whereas the resistance in the HRS state is inversely proportional to the cell size.
In this switching model, the CF size determines the ultimate scaling limit of the
device. Szot et al. [15], however, reported bipolar resistive switching in individual
dislocations of single-crystalline SrTiO3 by applying the electrical voltage with a
local-conduction AFM tip (LC-AFM).
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In the interface-type resistive switching, the switching event occurs at one
interface only, the rectifying non-ohmic interface, and the current is controlled
by the barrier height at the interface. The interface barrier height is modulated by
electrical stimuli. This type of resistive switching is observed in binary oxides and
complex perovskites. Yang et al. [22] reported on the interface-type switching in
Pt/TiO2/TiO2−x/Pt, where the Pt/TiO2 interface is Schottky-like and the TiO2−x/Pt is
ohmic. Upon the application of negative voltage, the movement of oxygen vacancies
from the TiO2−x to the TiO2 region can significantly modify the Schottky barrier
height and can lower the local potential within the TiO2 layer. With the opposite
polarity, the vacancies drift back to the TiO2−x layer and switch off the conduction.
In perovskites, a mechanism concerning the charging effect at the interface is also
proposed to explain the resistive switching [31]. The distribution of trapped charge
is modulated by the voltages applied in forward or reverse directions, resulting in
the modification of band lineup or tunneling probability at the interface barrier.
Similarly, the Mott transition induced by the carriers doped at the interface is also
classified as the interface-type resistive switching [26]. In the case of interface-type
switching, the resistance of the LRS and the HRS is inversely proportional to the
device size.

As a variant of the above-mentioned models, the bipolar resistive switching in
HfOx is also explained by a trap-assisted tunneling (TAT) model [32]. In this model,
the forming event is presented as a movement of oxygen ions rather than oxygen
vacancies, since the oxygen ion diffusion in crystalline HfO2 is more efficient
than the oxygen vacancy diffusion [33]. The oxygen dissociation is initiated by
the electric field and elevated temperature. The former is effective due to the high
polarizability of high-k dielectrics, while the latter is caused by electron transport
through the existing oxygen vacancies, which is accompanied by energy dissipation
that increases the local temperature. Due to the variation of trap-level energy
(shallow or deeper), a nonuniform heat dissipation across the dielectric is enhanced
and leads to a nonuniform temperature profile through the conductive path and
promotes the formation of a CF. The electron transport through the CF is dominated
by a hopping process. The nonuniformity of the CF seems to play a critical role in
switching by enhancing the redox processes at the region of the CF with the highest
resistance.

Another class of switching relies on migration of the cations as a result of
oxidation and reduction of an electrochemically active electrode metal such as Ag
and Cu upon the application of different voltage polarities. This type of cell consists
of an insulating layer sandwiched between an electrochemically active electrode
and an inert counter electrode. The insulating layer can either be a solid electrolyte
containing a host cation such as Ag2S, Cu2S or an insulator such as SiO2, WO3,
GeS, or GeSe doped with the cations. In this type of switching, the forming process
is accompanied by the migration of the metal cations towards the cathode where
they are reduced. The reduced metal atoms form a metal filament which grows
towards the anode to turn on the cell. This process is generally referred to as the
electrochemical metallization memory (ECM) effect [18]. This type of switching
behavior was first demonstrated in 1976 in the lateral Ag/As2S3/Mo structure,
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where the redox process of silver dendrites plays a key role in the formation and
annihilation of the CF [34]. Later, Kozicki et al. [8] developed a vertical MIM
system by using GeSe as the ion conductor and applied this in a nonvolatile
memory device. In the case of the GeSe electrolyte system with silver electrodes,
the following chemical reaction occurs at the anode and the cathode:

At anode : Ag → Ag++ e− (7.2)

At cathode : Ag++ e− → Ag (7.3)

Upon the application of an opposite bias voltage, Ag metal atoms start to dissolve
at the edge of the metal filament, eventually annihilating the entire filament so that
the cell is turned off. Typically, one filament dominates the growth and provides the
contact for the ON state and the filamentary growth terminates at current compliance
(ICC). The diameter of the CF and strength of the electrical contact between the
filament and active electrode are controlled by the ICC. Generally, the VFORM is
significantly higher than the VSET and increases linearly with the insulator layer
thickness. However, the VSET for all subsequent switching cycles is independent of
the thickness [35]. This observation reveals that the remaining structural template
of the dissolved filament after the first RESET serves as a fast transport and growth
path for subsequent switching cycles. Both the ECM- and the VCM-type of resistive
switching are generally bipolar in nature.

7.3 ReRAM Array Concepts and Device Fabrication

The simplest ReRAM device is composed of a metal–insulator–metal (MIM) stack
and also exists in the form of a nano-crossbar array with and without a selection
device. A number of selection devices are reported in the literature and can be
classified into MOSFET transistor, diodes, and nonvolatile switches [36]. The
choice of the selection device certainly impacts the ReRAM scaling limits. The
nano-crossbar configuration is highly desirable as it offers cross-point architecture
with an effective cell area of 4 F2, where F is the minimum lithographic limit.
Additionally, the ReRAM can be stacked in 3D integration in this configuration.
Figure 7.4 shows an isolated MIM stack and a nano-crossbar architecture. However,
the integrated nano-crossbar architecture leads to a parasitic current through non-
selected memory devices. To avoid this undesirable effect, a selection device is
therefore required and should be integrated with the memory elements.

Two-terminal selection devices, such as diodes and volatile switches, offer the
scaling advantage as these devices could in principle be scaled down below 10 nm
along with the memory element. A series connection of the diode at every cross-
point, shown in Fig. 7.5a, allows all non-selected devices to be reverse biased.
This can be arranged in a similar way to a conventional nano-crossbar memory
array. However, a sufficient drive current with a large rectification factor and
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Fig. 7.4 Different ReRAM cell architectures (a) MIM isolated structure, (b) simple passive array
nano-crossbar configuration [37]

Fig. 7.5 (a) Nano-crossbar integration under 1D-1R configuration where one bit cell consists
of a memory element and a switch element between bottom and top electrode [38]. (b) 1T-1R
architecture of the ReRAM device [39]

poor current-control capabilities is still a major challenge in the development of
these devices. Most diodes only work for the unipolar switching. For the bipolar
switching, the MOS transistor (1T-1R) offers the best memory selection function in
terms of on/off ratio, high drive current, and better current-controlling capability.
The transistor can limit the switching current by gate voltage modulation. However,
the larger footprint, high processing temperature, and additional processing steps
are the main disadvantages. To avoid the high-temperature processing steps, the
memory device may be integrated into the backend of the process line (BEOL) of
an advanced CMOS process.
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Another important requirement of the 1T-1R configuration is that the channel
resistance of the selector transistor should be significantly lower than the memory
element; otherwise, the effective memory window of the 1T-1R stack will be
dominated by the channel resistance and memory operation will fail. In order to
make a proper selection for the selector device, the on/off ratio, maximum drive
current, scalability, speed, endurance, and manufacturability should be considered.
For example, where the device size is less of a concern, the 1T-1R configuration
is preferred. For 3D architectures, either 1D-1R or a self-selecting device could be
the best candidate. Recently, a complementary resistive switch (CRS) concept [40]
was proposed as a self-selecting structure where two resistive switching elements
are connected anti-serially. The high resistance of the CRS cell helps to reduce
the sneak-paths in the nano-crossbar array. The destructive read-out scheme is
the main drawback of this concept. However, a capacitance-based nondestructive
read-out scheme is under investigation [41]. An interesting two-terminal concept of
the threshold type of resistive switching [42] is proposed and realized with Mott
insulators such as VOx, Nb2O5. The series connection of the Pt/VOx/Pt resistor
with Pt/NiO/Pt ReRAM showed a successful reduction of cross-talk at 10 ns
programming speed [43]. Compared with the 1T-1R configuration, 1D-1R and 1S-
1R configurations utilize a smaller area and are more suitable for 3D integration.
However, there are certain requirements of the selector device such as high on/off
current ratio, large forward current density, and low processing temperature [44, 45].

Depending on the selector device, the fabrication approach could vary. For
example, when the diodes or the volatile switches are used as the selector device,
the fabrication of the memory element is comprised of minimum of three steps;
patterning the bottom electrode, deposition of switching and memory element, and
patterning of the top electrode. In case of the MOS transistor as the selector device,
the ReRAM devices are generally fabricated in the BEOL of the standard CMOS
process. For the nano-crossbar architecture fabrication, a high throughput and low-
cost approach is nanoimprinting lithography (NIL) [46]. This technology is very
suitable for 3D integration. The basic types of the NIL are thermal nanoimprinting,
which uses thermoplastic polymers as a resist, and UV nanoimprinting (UV-NIL),
which uses ultraviolet light to crosslink a thin layer of liquid resist [47]. In most
cases, the UV-NIL is the method of choice for the nano-crossbar ReRAM device
fabrication because of its low operational pressure and temperature [48]. Figure 7.6
shows micrographs of the nano-crossbar architecture fabricated by the UV-NIL
method [48].

Several research groups have demonstrated a successful integration of ReRAM
devices at different technological node ranging from 180 to 32 nm. In the 1T-1R
integrated configuration, the MOSFET transistor works as an ideal current limiter
during the forming/SET process and avoids any possible overshoot in the ReRAM
devices. Govoreanu et al. [21] successfully integrated a 10× 10 nm2 Hf/HfOx

ReRAM device in the BOEL of the 65 nm CMOS process. After the completion
of the FOEL processing steps, a TiN bottom electrode is patterned in the BEOL
of the CMOS process. The next steps were planarization of the bottom electrode,
deposition of the resistive switching stack (Hf/HfOx), and deposition and patterning
of the TiN top electrode. All backend processing steps are performed at a lower
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Fig. 7.6 Micrograph of the Pt/TiO2/Ti/Pt nano-crossbar architecture [48]

thermal budget (∼400 ◦C) so that the MOSFET devices are not damaged. Lee
et al. [49] also demonstrated a fully integrated HfOx-based ReRAM with 0.18 μm
CMOS technology in 1R and 1T-1R configuration. The integrated TiN/HfOx/Ti/TiN
ReRAM device showed excellent performance in terms of low operating current
(<25 μA), high on/off resistance ratio (>103), fast switching speed (5 ns),
endurance cycle (>106 cycles), and data retention for 10 years. The integration of
ZrO2, TiOx, Ta2O5−x, AlOx and WOx in the 1T-1R configuration was successfully
demonstrated in references [50, 51].

At the sublithographic scale, a different fabrication approach is adopted. One-
dimensional (1D) ReRAM nanostructures can be synthesized based on bottom-up
technology [52] by using various techniques, including vapor–liquid–solid (VLS)
growth, chemical-vapor-deposition and atomic-layer-deposition. A variety of mate-
rials have been synthesized in the form of 1D nanostructure and demonstrated as the
nonvolatile memory device. The resistive switching behavior has been demonstrated
in NiO nanowires grown by using the VLS [53] and anodized aluminum oxide
(AAO) [54] approach. With a similar approach, other metal oxide nanowires such
as ZnO and TiO2 are grown and used for the resistive switching applications [55,
56]. A forming process is generally required to realize a memory operation in the
ReRAM devices in any configuration. This process will be described in detail in
next section.

7.4 Forming Process

Forming process refers to the first CF formation in a pristine film and is to
be equivalent to the nondestructive breakdown of the dielectric film. When a
sufficiently large voltage is applied to the MIM system, a significant increase of
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the oxygen vacancy concentration near the cathode and a strong depletion of the
oxygen vacancy region are generated. With the application of a higher voltage or
longer time, this conducting cathodic region, so-called virtual electrode, propagates
towards the anode. The O2 ions will either oxidize the anode metal or discharge
at the anode in the form of molecular oxygen (observable as gas bubbles). At the
current compliance, the virtual cathode makes an electronic contact with the anode
and the electroforming process is completed. The nature of the forming process
can be explained as an electro-reduction and oxygen vacancy transport process
towards the cathode caused by high electric fields and Joule heating [27]. This
process is highly nonuniform and leads to morphological changes in dielectric films.
As a rule of thumb, the forming voltage is higher than the VSET and the VRESET

and causes extra time and power consumption in memory operation. The forming
voltage (VFORM), as shown in Fig. 7.7, is approximately linearly dependent on the
dielectric thickness and, as a consequence, the as-fabricated device can even be
made without the forming process as the thickness of HfO2 film is thinned further
to 3 nm [49].

In order to have the reproducible switching process, different forming approaches
were studied by Nauenheim et al. [57]. The forming processes shown in Fig. 7.8
were performed on the Pt/TiO2/Ti/Pt nano-crossbar memory device with the appli-
cation of a sweeping voltage to the Ti/Pt electrode having either a positive/negative
voltage or a current polarity with respect to the other electrode (Pt). The negative
current controlled forming method is found to be most reliable for the switching
process as the memory device is formed into the higher resistance/off state and
avoids a complete breakdown of the device.

Generally, a high current overshoot phenomenon during the voltage-controlled
forming process is observed and may lead to either permanent breakdown or high
switching current. To overcome this shortcoming, an ideal current limiter such as a
MOSFET transistor is integrated with the ReRAM device. In this configuration, the
parasitic capacitance is minimized and the MOSFET transistor serves as a current
limiter during the forming and set process. Kinoshita et al. [58] first demonstrated
the effect of overshoot phenomena on a Pt/NiO/Pt memory device by integrating
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Fig. 7.8 Electroforming procedures with (a) positive voltage sweep and (b) subsequent operation,
starting with a reset. (c) Forming with a negative voltage sweep resulting in the (d) HRS and a
set step. (e) Positive current sweep into the (f) LRS and a reset operation, and (g) negative current
sweep with the (h) subsequent set sweep [57]
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Fig. 7.9 IRESET in 1T-1R configuration shows the function of the ISET compliance (ICC). This
is due to avoidance of overshoot phenomena and minimizing the parasitic capacitance in NiO
ReRAM [58]

the memory device in the 1T-1R configuration. In this configuration, the ICC is
a key parameter to define the switching characteristics and the IRESET reduces as
a function of the set ICC as shown in Fig. 7.9. The relationship, IRESET = ICC in
the binary oxides is only valid when the 1T-1R configuration does not impose any
parasitic capacitance on the memory cell.
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Fig. 7.10 (a) Cell resistance after forming as a function of ICC. A decrease in resistance is
postulated in terms of increase of CF diameter. (b) Dependence of RESET Imax on the forming
current ICC [59]

Generally, the maximum IRESET during the first cycle of switching is assumed
to be the figure of merit of the ReRAM memory device. It is directly related to the
diameter or numbers of the CFs. As the ISET compliance decreases, the diameter or
numbers of CFs decrease resulting in a lower maximum IRESET during the switching
process [59], shown in Fig. 7.10.

From this result, it can be concluded that in order to achieve the minimum
size of the CF, the compliance current should be reduced during the forming
process. Recently, a sub-nA range of the IRESET has been achieved in Al2O3

and HfO2/Al2O3 memory devices [60, 61, 62]. After the forming process, the
device can be successfully switched between the LRS and the HRS. The switching
characteristics and related processes will be discussed in the next section.

7.5 Switching Characteristics

7.5.1 RESET Characteristics

In order to demonstrate the switching ability of the ReRAM device, the RESET
process is generally carried out after the forming process. During the RESET
process, the generated filament is ruptured and the oxide returns to the HRS state.
The RESET kinetic in the unipolar switching device is described by the thermal
dissolution model [63]. According to this model, local heating and current crowding
effects are responsible for the rupture of the CF and the IRESET is closely related to
the ON resistance of the device. For the bipolar switching, the RESET mechanism is
generally explained by the redox-reaction model [27], as described in the previous
section. A local electrochemical redox process near the metal-oxide interface is
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Fig. 7.11 Measured IRESET for unipolar and bipolar switching oxides. The figure is redrawn from
reference [65]

presumably responsible for the rupture of the CF during the RESET process. This
creates a significant high-energy barrier and turns the device into the OFF state.
For homogeneous systems, this corresponds to complete depletion of the oxygen
vacancies, whereas for heterogeneous systems, there are either no charge carriers in
the disk region or a certain density of negative ions (O2−), which further increases
the barrier height [6]. Indeed, other reports have assumed the RESET process to be
the phase transition. The RESET operation in the TiO2 might be achieved by locally
melting the Magneli CFs with sufficient electric current (IRESET) and subsequent
cooling down [64].

The IRESET in the various metal oxides increases linearly with the ICC, shown in
Fig. 7.11 and affects the resistance of the HRS in a similar way to the resistance of
the LRS. The resistance of both states decreases at higher ICC, whereas the resistance
ratio between two levels remains almost unchanged. This can be understood from
the fact that the ICC controls the cross-sectional area of the CF. A higher ICC, i.e.
lower resistance of LRS, leads to a larger CF diameter, which results in the higher
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Fig. 7.12 (a) Measured I–V characteristics for a bipolar ReRAM with the TiN/HfOx/TiN
structure. (b) Set resistance is lowered with the ICC for different binary oxides ReRAM [66]

IRESET [65, 64]. The HRS resistance is mainly controlled by the disk region and
the disk resistance is a function of the CF cross-section since the remaining tips of
the CF serve as the virtual electrode. However, key questions such as the rupture
location of the CF and influence of the CF shape on the RESET process are still
under debate.

7.5.2 SET Characteristics

The SET process is closer to the forming process, except that the breakdown only
occurs in the recovered region or in the gap between the broken CF and the metal
electrode. During the SET process, the oxygen ions are removed from the disk
region. For homogeneous systems, this is identical to the injections of the oxygen
vacancies and is (at least partially) compensated by electrons. In the case of the
heterogeneous systems, the overall process is the same while the vacancy picture
might be more complicated and depends on the type of oxide. As for many other
phase transitions, a local lattice arrangement might take place. In any case, the
extraction of the oxygen ions will lead to a (chemical) reduction of the disk region,
which in turn leads to a decrease in barrier height.

In the ON state, the cell resistance is determined by a series combination of the
virtual electrode and disk region resistance. The ON-state resistance is a function
of the ISET compliance (ICC) due to the fact of a lateral increase in the CF cross-
sectional area at higher ICC [65]. The lateral growth stage can be controlled by
observing the dependence of the final set state R on the ICC. Figure 7.12a shows
the bipolar resistive switching in the TiN/HfOx/TiN ReRAM device with different
ICC. A larger diameter of the CF is expected for the ICC = 1 mA than that of 0.5 mA.
However, the product of the resistance after the SET process and the corresponding
ICC remains constant VC =RICC = 0.4 V. This characteristic voltage, VC, represents
the value of the voltage across the ReRAM device at the end of the SET transition,
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corresponding to the corner in the I–V characteristics of the ON state between the
ohmic current increase and apparent constant current region where I= ICC. This
characteristic voltage is constant for other metal oxides, shown in Fig. 7.12b. This
voltage controls both the electric field and the local temperature and is one of the
controlling parameters of the CF growth [66]. Although there is a consensus among
researchers that the resistive switching in the metal oxides is related to the creation
and rupture of the CF, the recreation/regrowth of the filament after each switching
cycle is still controversial and under debate.

7.6 Retention and Speed

Retention refers to the ability of a memory bit to retain its data state over long
periods of time regardless of the power supply. The retention time is estimated based
on accelerated stress methods and activation energy models [67, 68]. The speed of
a ReRAM device is determined by its ability to toggle the LRS to the HRS or vice
versa. Generally, a memory device with long data retention (∼10 years) and high
speed (∼10 ns) is required for the applications. However, the combination of these
requirements in the ReRAM devices leads to a voltage-time dilemma [69], which
suggests a physical mechanism of the switching kinetics that needs to be extremely
nonlinear. Based on the Nernst–Einstein model and oxygen vacancy diffusion data,
the oxygen vacancies can hardly migrate for a distance of about 1 nm under normal
conditions during the switching [15]. Therefore, the solution to the voltage-time
dilemma must be caused by other factors.

Waser et al. [27] described this phenomenon in terms of the thermal activa-
tion and field enhancement of the oxygen vacancy transport. The temperature-
accelerated drift of the oxygen vacancies leads to an exponential acceleration
(>1010) of the switching speed and is interpreted as the exponential dependence of
the switching kinetics on the switching voltage. Furthermore, a lattice strain caused
by a high oxygen vacancy concentration may increase the diffusion coefficient of
the oxygen vacancies. Similar behavior has been observed by other researchers [70,
71]. Wei et al. [72] explained the voltage-time dilemma in a non-stoichiometric
TaOx-based memory device by the formation of another phase. The phase change
from Ta2O5 to TaO2 in the Pt/TaOx/Pt memory device leads to a smaller band
gap and a significantly higher conductivity than the fully oxidized Ta2O5 phase.
The change in stoichiometry from an oxidized Ta2O5 phase (HRS) to the reduced
TaO2 phase (LRS) is explained by the redox reaction. In order to elucidate
the origin of the solution to the voltage dilemma in the ReRAM device, the
formation of a nanoscale phase and nucleation rate in different metal oxides needs
to be experimentally investigated for the VCM systems. Recently, Hermes [70]
experimentally demonstrated that the SET/RESET time in the Pt/TiO2/Ti/Pt nano-
crossbar memory device, shown in Fig. 7.13, exponentially decreases when the
voltage amplitude is linearly increased. This provides experimental evidence of the
solution of the voltage-time dilemma in metal-oxide-based ReRAM devices.
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crossbar memory device

The retention characteristics in the binary oxide ReRAM are explained by the
oxygen diffusion model [73], and the HRS and the LRS characteristics depend
on the CF size and the oxygen diffusion [74]. The data retention for 10 years at
85 ◦C has been reported on high-density Ir/Ta2O5−δ /TaOx/TaN ReRAM devices.
The density of the oxygen vacancies in the CF is presumed to play a key role in
ensuring data retention [75]. The retention property of the memory cell is considered
to be a function of the ISET compliance (ICC) and degrades in the lower ISET regime.
This degradation is acknowledged to be caused by the weakening of the CFs. In the
low-current regime, longer retention can only be achieved by scaling down the CF
and increasing the density of the oxygen vacancies during the forming process [76].

As another important aspect of the memory; speed is defined as the ability
to write/read the information. Mainstream nonvolatile memories, such as flash
memory, exhibit write/read times in the order of tens of microseconds. This low
speed hinders their use in high-performance applications. The metal-oxide-based
ReRAM devices show a switching speed ranging from nanoseconds down to few
hundred picoseconds. For example, a switching speed of 5 ns has been successfully
achieved in the Nb-doped single-crystal SrTiO3 [77] and the Pt/TiO2/Ti/Pt nano-
crossbar structure [78]. The ultra-fast speed of 300 ps, maintaining a sufficient
memory window for 1010 switching cycles in the HfOx-based resistive device,
shown in Fig. 7.14 has been reported [79].

Recently, resistive switching in a tantalum oxide coplanar waveguide (CPW)
structure was successfully achieved using the SET pulse of 105 ps and the RESET
pulse of 120 ps [81]. The limiting factor for the switching speed in the binary
metal oxides is to be the mobility of the oxygen vacancies. However, a significant
temperature increase within the entire CF during the switching process overcomes
this limit. A study shows that both the temperature and the electric field play an
important role in the switching kinetics [80]. The published literature and ongoing
research activities show that the binary metal-oxide ReRAMs are very suitable for
high-speed memory applications.
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7.7 Reliability and Endurance

Reliability and endurance determine the number of switching cycles with a pre-
defined resistance window. Both parameters depend on a number of factors such
as device structure, material processing, and read/write scheme. However, mainly
three types of failure behavior are observed in the ReRAM devices [82]; one is due
to the loss of the RHRS/RLRS ratio accompanying the decreased RHRS and increased
RLRS, the second is the sudden loss of the RESET capability, and the last is a
gradual decrease of the RHRS value with the switching cycle and approaches the low
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Fig. 7.15 Schematic views of endurance degradation mechanism. The scale on the Y axis is
assumed to be logarithmic. Type I: interface oxide formation during the forming/SET process is
mainly responsible for this degradation. Type II: electric-field-induced generation of extra oxygen
vacancies leads to degradation of the HRS state. Type III: reduction in the recombination rate of
the oxygen vacancies in the electrode layer leads to a reduced HRS state [82]

resistance state. These phenomena are shown in Fig. 7.15. Possible explanations for
the above-mentioned phenomena are anode interface oxidation and extra vacancy
generation and depletion of O2− ions [82]. An additional impact could arise from
the fact that all bipolar ReRAM act as batteries, i.e. they display a cell voltage in
the OFF state due to an inherent emf voltage generation in the stack structure [83].
Doping in oxides, different device structures and novel read/write schemes have
been proposed to improve the endurance of the memory cells.

Lee et al. [84] proposed the chemical mechanical polishing method to smoothen
the bottom electrode and improve the endurance of HfOx-based memory devices
over 1010 cycles using 40 ns write/erase pulses in comparison with the method
without a polished bottom electrode. Further, the reliability of the ReRAM device
is improved by the forming and the switching in the long current regime. In this
way, the diameter of the CF is scaled down while keeping a sufficient high density
of oxygen vacancies in the filament. Ninomya et al. [75] demonstrated the scaling
of the CF in TaOx bipolar ReRAMs and achieved a long retention time of 1,000 h at
150 ◦C with a low SET current (∼80 μA).

The reliability of the ReRAM devices is generally affected by the SET/RESET
pulse amplitude/width. Unbalanced SET/RESET amplitude could lead to premature
breakdown. For example, too strong SET pulses lead to an excess amount of the
oxygen vacancies induced at the switching interface so that the RESET pulse is
unable to rupture the CF. On the other hand, too strong RESET pulses result in the
depletion of the oxygen vacancies at the interface so that the SET pulse is unable
to reconstruct the CF. Researchers at IMEC [85] studied the failure mechanism
in the Hf/HfO2 1T-1R devices and observed that the unbalanced SET/RESET
pulse amplitude/width influences the stability of the HRS/LRS states and causes
premature device failure. By optimizing pulse conditions, the endurance of 40 nm
Hf/HfO2 1T-1R devices, shown in Fig. 7.16, can be extended to 1010 cycles in
comparison with 106 cycles without optimized pulse conditions. In order to improve
the endurance and the reliability of ReRAM devices, further optimization of the
forming/read/write scheme, switching current, cell design, and material selection is
required.
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Fig. 7.16 Optimizing the
SET and the RESET pulse, a
higher endurance in 40-nm
Hf/HfO2 1T-1R devices is
achieved [85]

7.8 Multiple-Bit Operation

Multiple level cell (MLC) operation exploits the phenomenon of storing more than
one digital data per cell. For high-density memory applications, it is desirable to
store more and more information in one cell. This phenomenon is considered to
be due to the fact that the ISET compliance modulates the diameter or number of
the CFs. The main requirements for the MLC operation are a sufficiently large
resistance window between the HRS and the LRS, high endurance of each state,
and thermal stability of the stored data. Figure 7.17 shows the MLC operation in
40 nm W/WOx/TiN ReRAM for more than 10 K cycle endurance with a verified
programming algorithm [86]. In the programming algorithm, an incremental pulse
amplitude is applied until the resistance state toggles to the target value. To
write/erase the information, the first pulse is chosen to raise the cell resistance close
to the desired value, and then the smaller incremental voltages are used to finish
the MLC programming. Other oxide-based ReRAM materials such as CuOx [87],
HfOx [49], ZrO2 [50], TiOx [88], Ta2O5−x [89], and AlOx [13] have also shown the
capability of the MLC operation. Yu et al. [90] utilized a field-driven oxygen ion
migration model to realize the multiple-bit operation in the ReRAMs and proposed
two pulse programming schemes. One depends on the linear increment in pulse
amplitude and the other relies on an exponential increment in programming pulse
width. Although both schemes are able to achieve the target resistance values the
first scheme consumes considerable low energy during the operation.

As a variant, a constant signal pulse programming (CSPP) scheme is also
proposed and is verified on a triple layer (base layer/oxygen exchange layer/barrier
layer) TaOx-based ReRAM [91]. In this algorithm, the constant reset pulses are
repeatedly applied until the resistance level reaches the target range. With the CSPP
algorithm, the switching endurance of the TaOx ReRAM in 2 bit/cell operation
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Fig. 7.17 (a) MLC operation
scheme and verification
algorithm. The MLC program
starts from state 00 (lowest
R). Different first RESET
pulses are chosen depending
on the target state. Then small
increments in pulse voltage
are applied until the cell
resistance reaches the target
value. (b) Multilevel bit
operation in a W/WOx/TiN
ReRAM. A 3 bit per cell
operation is achieved by using
a verified algorithm [86]

was extended to 107 cycles. In order to enhance further reliability and variability
of multi-resistance states in the ReRAM devices, a better forming/set/reset/reading
scheme is required.

7.9 Scalability of ReRAM Technology

Much of the interest in the ReRAM technology is due to its tremendous scaling
potential down to the atomic regime. The smallest possible structure of the binary
oxide that can potentially demonstrate the bipolar switching is a chain of ions in
the crystal, changing their valence state. The occurrence of the redox process in
such a crystal system seems to be the fundamental scaling limit of these devices.
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Fig. 7.18 Trends in HRS/LRS states with cell area in metal-oxide ReRAM. Data were taken
from [68]

Local conductivity AFM studies on single-crystal SrTiO3 shows the confinement of
the bipolar switching within the 1–2 nm area [15]. For a more practical and realistic
approach, we need to fulfill the requirement of distinguishable ROFF/RON in order
to implement the switching event and to charge/discharge the bit line capacity along
with the switching operation. As a first order calculation in the TiO2-based resistive
system, a donor concentration of 3.1021 cm−3 is required for the ROFF/RON = 10
[92]. This leads to the CF diameter of 4 nm.

For scaling and integration with the CMOS devices, conventional patterning
methods such as optical lithography [93], nanoimprint lithography [22, 94], or
e-beam lithography [95] are being used to fabricate the sub-nanometer ReRAM
device. Recently, the HfOx ReRAM [21] has been aggressively scaled down to
10 nm× 10 nm by the conventional photolithography process. Further, device size
miniaturization has also been realized by a bottom-up approach [54]. Primarily, the
resistance states (HRS and LRS) are affected by the ReRAM device scaling. The
HRS resistance is often determined by the resistance of the residual filament and of
the rest of the area, whereas the LRS typically shows no or only a weak dependence
on the cell area since the conductance of the CF predominantly determines the cell
resistance. The ROFF/RON therefore tends to improve with the smaller cell area. The
scaling trends of the HRS and the LRS with cell area from various metal-oxide
memories are plotted in Fig. 7.18 [68].

Another important device parameter is the IRESET that defines maximum power
consumption during memory operation. The IRESET does not show any dependence
on the device size. However, it can be scaled down by using a smaller ISET

compliance (ICC) during the set process. Ielmini et al. [96] demonstrated the scaling
of the IRESET with the ISET compliance for various unipolar and bipolar ReRAM
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devices. In short, it can be concluded that the smaller device size scales down the
ISET leading to a decrease in the IRESET while keeping the HRS/LRS window large.
Therefore, the IRESET can scale down with the device size. The ultimate limiting
factor for the scaling of the ReRAM technology will be the tunneling distance
between neighboring cells as well as the leakage current from the word and the
bit lines [92]. Technologically, the scaling of the ReRAM devices will, however,
be determined by the fabrication of efficient and reliable electrode contacts and
interconnects within the memory matrix. Another obvious limit to scaling of the
chip size will be the size of the periphery circuit and, for active matrices, the size of
the access transistors within the memory matrix.

7.10 Future Outlook

In the past decade, the binary metal-oxide ReRAMs have emerged as high-density
and ultra-fast nonvolatile memories which are compatible with conventional CMOS
technology. The simplest way to integrate the ReRAM cells is the passive nano-
crossbar matrix, which just connects the word and the bit lines at each node.
However, this configuration has inherent problems of current sneak-paths and
requires a selector device. Current research trends indicate that the bipolar switching
devices (ECM- and VCM-type ReRAM) show better performance and lower
variability than the unipolar switching devices (TCM-type ReRAM). This makes
the search for a suitable cell selection device even more difficult as the selection
device has to conduct current in both directions and the conventional reverse-bias
blocking effect cannot be used. For this purpose, the MOSFET device is most
suitable as a selector. However, this increases both the memory device area and
the total processing cost.

Another major challenge is device uniformity. Device variation is a major barrier
to using the ReRAMs in large memory arrays. To overcome the cycle-to-cycle
and device-to-device variation of the device characteristics, circuit designers should
innovate and implement new ideas. To make progress in this area, it is necessary to
have a more complete understanding of the conduction and the resistive switching
mechanism. Ultimately, the solution may come from a combination of materials
engineering, device structure optimization, and innovations in addressing/read-
out circuitry. Meanwhile, further understanding of the underlying physics of the
ReRAM device has been obtained through progress in modeling from the atomistic
level to the device level [25], although much work is still needed on this front.
Compared with several other emerging memory concepts, the binary oxide ReRAM
technology has the potential to be a universal memory, i.e. low power consumption,
high integration density, and long retention. In addition, the redox-based resistive
switching cells have also shown the potential to serve as logic devices. For example,
the oxide resistive switches are suggested as the core elements in a CMOS-
nano hybrid reconfigurable field-programmable gate array (FPGA) architecture
[97]. Another huge emerging application field is hardware-based neuromorphic
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computing, where the redox-based resistive switches can serve as artificial synapse
elements. Owing to their multilevel capability, they can be used like an analog
memory emulating the function of plastic synapses in a neural network. Recently,
TiOx- [98], WOx- [99], and HfOx-based [100] synapses have been experimen-
tally demonstrated for spike-timing-dependent plasticity [101]. Additionally, a
low-temperature oxide-based ReRAM technology has been realized on flexible
substrates [102].

In order to promote the practical applications of the ReRAM technology, a
deeper understanding must be achieved of the microscopic mechanism of the
switching, process and material optimization, the effects limiting the reliability and
the retention time, the yield improvement, all aspects of the fabrication technology,
and guidelines for the scaling. These unresolved questions currently represent an
exciting hotspot for research in the fields of physics, electronics, and material
science.
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Chapter 8
Silicon Nanowire-Based Memristive Devices

Davide Sacchetto, Yusuf Leblebici, and Giovanni De Micheli

8.1 Introduction

Due to the natural limitations of materials, future nano-scale circuits will have to
exploit more efficient ways for computation and memory storage. One possible
scenario envisages an end of charge-based technologies, after which computation
will rely on alternative, more power efficient state variable manipulation. A long list
of fundamental state variables other than charge includes the spin, phase, multipole
orientation, mechanical position, polarity, orbital symmetry, magnetic flux quanta,
molecular configuration, and other quantum states [1]. Nevertheless, technologies
using new state variables would have to be implemented within a completely new
technological platform and cannot be seen as CMOS-compatible alternatives in the
short term.

The physical realization of the memristor, whose behavior was postulated by
Leon Chua [2] and generalized by Chua and Kang [3] for memristive devices and
systems, offers a completely new set of possibilities for logic [4] and memory [5]
applications. It is worth noting that a generalized model for memristive systems
can be implemented under direct current, small signal, and sinusoidal excitation [3].
The implications of such modeling is linked with the observation of memristive
functionalities over a broad range of technologies based on nanoelectronic and
nanoionic behaviors.

One typical application targets standalone memories, and in this respect, the
two-terminal memristive devices have a potential for very high density storage.
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Fig. 8.1 (a) Parallel nanowire two-terminal memristive devices. (b) Crossbar array consisting of
memristive cross-points (two-terminal). (c) Gate controlled three-terminal nanowire memristive
device. (d) Double-gate four-terminal nanowire memristive devices

Complementary logic based on two-terminal memristive devices (see Fig. 8.1a)
or ultra-dense crossbar arrays with memristive cross-points (see Fig. 8.1b) can
dramatically improve device density up to 1011 bits per square centimeter [6].
Moreover, the use of memristive effects as new state variables for computation can
be exploited to build new types of functional devices with three- or four-terminals
(see Fig. 8.1c, d, respectively).

In the following sections, after a short review on the top-down fabrication meth-
ods of Si nanowire-based memristive devices (Sect. 8.2), two-terminal (Sect. 8.3),
three-terminal (Sect. 8.4), and four-terminal (Sect. 8.5) memristive devices are
presented.

8.2 Top-Down Fabrication Methods

The methods presented here are fully scalable by using a more advanced lithography
and the authors demonstrated an alternative solution that skips the oxidation steps
for the fabrication of ultra-dense vertically stacked nanowires that are below 30 nm
diameter [7]. Nevertheless here is reported an inexpensive top-down processing
solution that uses standard photolithography with 1μm resolution applicable to both
bulk-Si and SOI substrates.
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8.2.1 Fabrication of Vertically Stacked Si Nanowire Arrays

The following top-down fabrication technique enables the structuring of Si
nanowires at a pitch that is not limited by the lithographic resolution is based
on the Deep Reactive Ion Etching (DRIE) technique. This approach is utilized
to obtain arrays of vertically stacked Si nanowires (SiNWs). While the density of
horizontal strands is limited by the lithographic pitch, each strand can be composed
of several vertically stacked nanowires by adjusting the number of cycles in the
DRIE process.

In [8], the process begins by defining a photoresist line on a p-type silicon
bulk wafer (see Fig. 8.2a). This mask will be used as protective layer for the
successive DRIE technique. This technique that alternates a plasma etching with
a passivation step has been optimized to produce a scalloped trench in silicon with
high reproducibility. Etching time, passivation time, and plasma platen power can
be changed in order to enhance the scalloping effect. The application of the DRIE
technique gives a trench like the one depicted in Fig. 8.2b. The flexibility of the
process allows us to change the number of scallops easily. After trench definition,
a sacrificial oxidation step is carried out. The effect of oxidation results in the total
Si consumption of the smaller portions of the trench. The wider parts of the trench
leave vertically stacked Si nanowires embedded in the grown oxide (see Fig. 8.2c).
Then the cavities produced by the Bosch process are filled with photoresist
(Fig. 8.2d). After a combination of Chemical Mechanical Polishing (CMP) and
buffered hydrofluoric acid dip, the wet oxide is removed around the nanowires (see
Fig. 8.2e). After removal of the resist, caves with stacks of several nanowires are
freestanding on a layer of thick wet oxide, which is left to isolate the substrate from
the successive processes (Fig. 8.2f). Nanowires are oxidized in dry atmosphere, for a
10–20 nm higher quality oxide, as the dielectric for FET devices (Fig. 8.2g) as gate
dielectric. Then between 200 nm and 500 nm of LPCVD polysilicon is deposited
(Fig. 8.2h). The LPCVD polySi layer allows conformal coverage of the 3D structure,
enabling the formation of gate-all-around (GAA) devices. The polysilicon gate is
then patterned by means of a combination of isotropic and anisotropic recipes (see
Fig. 8.2i). Depending on the structure, implantation, or metallization of the Si pillars
can be carried out, so to produce MOSFETs or SBFETs, respectively.

Examples of fabricated structures demonstrating arrays having from 3 up to 12
vertically stacked Si nanowires are shown in Fig. 8.3. The obtained nanowires can
be used to build gate-all-around field effect transistors (see Fig. 8.4) interconnected
through Si pillars.

8.2.2 Si Nanowires with Double Independent Gates

The device consists of a 20 μm-long crystalline SiNW attached between two Si
pillars on a SOI wafer (see Fig. 8.5a). The SiNW is then covered by two independent
n++ polysilicon gates with this scheme: a main central gate (gate 1) of 7.5μm
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Fig. 8.2 Vertically stacked Si nanowire process steps. (a) Optical lithography; (b) Four steps
DRIE etch; (c) Wet oxidation; (d) Cave filling with photoresist; (e) BHF oxide removal; (f)
Photoresist removal; (g) Dry oxidation; (h) Conformal LPCVD polySi deposition; (i) PolySi
patterning

length and a second gate (gate 2) that is used to control the SiNW portions between
the main gate and source and drain regions, respectively. First, a low doping p-
type (NA ≈ 1015atoms/cm2) SOI wafer with 1.5μm device layer is spin coated.
The photoresist is then patterned in 1.5μm wide lines (see Fig. 8.5b) and used as
mask for a next isotropic Si etching. The ICP SF6 plasma etching recipe is tuned to
form a triangular 75 nm wide SiNW lying on top of the buried oxide (BOX) layer
(Fig. 8.5c). Then a 30 nm thick gate oxidation and a 150 nm polysilicon layer are
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Fig. 8.3 Arrays of vertically stacked Si nanowires [8]: (a) Silicon nanowire arrays with 12 vertical
levels. (b) Silicon nanowire arrays with three vertical levels

Fig. 8.4 Vertically stacked Si nanowire transistors [8]: (a) Three horizontal Si nanowire strands
with two parallel polysilicon gates. (b) FIB cross-section showing triangular and rhombic
nanowires embedded in a gate-all-around polysilicon gate

deposited with low pressure chemical vapour deposition (LPCVD) method to form
a main gate with 7.5μm length (gate 1, Fig. 8.5d). The main gate is then isolated by
a 300 nm LPCVD low temperature oxide (LTO). A second 500 nm polysilicon layer
is then deposited. Then a thick photoresist is spun over the wafer and planarized
using a chemical mechanical polishing procedure similar to the one previously
described by the authors in [8]. This method leaves a protective polymer layer that
is used to etch a second polysilicon gate self-aligned within the cavity, thanks to the
topography (see gate 2 in Fig. 8.5e). After standard cleaning steps, one additional
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Fig. 8.5 Fabrication flow. (a) Top view of the dual-gate device. (b) Photoresist mask is patterned.
(c) After isotropic etching of Si a triangular-shaped SiNW is formed. (d) Gate oxidation and
LPCVD polysilicon are deposited and patterned to form the main, central gate stack. (e) An
LTO inter-poly dielectric is deposited and a second polysilicon gate is made self-aligned with
the nanowire

patterning of gate 2 is performed to remove the unnecessary polysilicon and to form
areas for the contacts (see the top view of the device in Fig. 8.5a). In Fig. 8.6, a
focused ion beam cross-section of the triangular SiNW channel with the double
independent gate stack is shown. Then source/drain contacts are formed by means
of NiSi silicidation in a horizontal wall furnace in forming gas at 400◦C. Finally Al
metal lines and pad area are defined for the electrical characterization.
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Fig. 8.6 Focused ion beam
cross-section showing a
triangular SiNW channel with
two 75 nm sides and 100 nm
base. The gate 1, gate 2 and
the LTO inter-poly dielectric
have 150 nm, 500 nm, and
300 nm thicknesses,
respectively

8.2.3 Si Nanowire with Memristive Functionality

Bulk-Si wafers with low boron concentration (NA ∼ 1015 atoms/cm3) have been
used as a substrate for the fabricated devices. Vertical stacks of Si nanowires are
defined on the substrate by optical lithography (see Fig. 8.7a) without any constraint
on the resolution limit (1 μm). The photoresist is then used as a mask for a deep
reactive ion etching (DRIE) (Fig. 8.7b). The optimized Si etching technique, which
uses an isotropic Si etching, defines scalloped trenches attached to Si pillars with
high reproducibility. The enhanced scalloping effect produces vertical modulation
of the trench width. A sacrificial oxidation is then carried out with the double
purpose of eliminating the Si where the trench is thin, and also to reduce the surface
roughness induced by the etching (Fig. 8.7c). A combination of CMP and buffered
HF dip leaves an SiNW suspended on a thick layer of insulating oxide (Fig. 8.7d).
The gate oxide is grown in a horizontal furnace with a dry atmosphere (Fig. 8.7e).
The gate poly-silicon is conformally deposited and doped with phosphorous by
means of a diffusion process and then patterned with a combination of isotropic and
anisotropic plasma etching steps (Fig. 8.7f). The fabrication of SBFETs requires
the use of metallic source and drain contacts, meaning source-to-body and drain-to-
body Schottky junctions. We pattern a Cr/Ni bilayers (10nm/50nm) on top of the
Si pillars, partially covering the SiNW at the anchor points (see Fig. 8.8). This leads
to the silicidation of the nanowire starting from the Cr/Ni bilayer toward the gated
region of the nanowire.

8.2.4 Ambipolar Si Nanowires for Memristive-Bio-Sensing

The fabrication method utilizes some of the steps that were previously reported
[9] for memristive Schottky-barrier silicon nanowire field-effect-transistors.
The process starts from low resistivity SOI substrates, with 1.5μm device layer
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Fig. 8.7 GAA SiNW SBFET process flow. (a) A photoresist line determines the nanowire
position. (b) DRIE etching forms a scalloped trench. (c) After wet oxidation, the Si trench
reduces to a suspended nanowire. The caves are filled with photoresist and planarized with CMP.
(d) Buffered HF oxide etch releases the SiNWs. (e) Gate oxidation. (f) Poly-silicon is deposited
and patterned to form the gate. (g) Legend

Fig. 8.8 GAA SiNW SBFET with Cr/Ni source/drain after the lift-off process. The change in
contrast on the NW channel is attribute to a difference between Si and silicided regions

and 3 μm SiO2 insulating layer. After standard lithography, the silicon nanowire
is carved anchored at the top of two silicon pillars. Then, Ni is deposited on
top of the pillars with overlap on the outer portions of the silicon nanowire.
Hence, an annealing step at 450◦C in a horizontal wall furnace forms NiSi
contacts. Figure 8.9a shows a nano-fabricated memristive silicon nanowire with
NiSi contacts.
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Fig. 8.9 (a) Suspended functionalized silicon nanowire with NiSi extremities. Scale bar is 4μm.
(b) Suspended functionalized Si nanowire with NiSi extremities. The functionalized layer is
capable of trapping antigen molecules which in turn affects the memristive hysteresis behavior,
giving a new method for bio-sensing [12]

The silicon nanowire surface was derivatized with 3-glycidoxypropyltrime-
thoxysilane GPTS [10] and functionalized by covalent attachment of anti-rabbit
polyclonal antibodies (AB) [11]. Antigen (rabbit antibodies, AG) interacts with the
functionalized wire as depicted in Fig. 8.9b.

8.3 Two-Terminal Memristive Devices

Two-terminal memristive devices can be based on metal/oxide switches, such as for
SiO2, Hf2O [13], CuO [14], NiO [15], ZnO [16], Al2O3 [17], VO2 [18], SrTiO3 [19].
These devices behave as solid-state electrochemical switches, whose resistance is
defined by a metallic filament formation mechanism related to the solid-state redox
reactions stimulated by the polarity of the applied electric field [20]. One example is
the CuO-based ReRAM of Dong et al. [14] that shows repeatable resistive switching
at very low voltages (see Fig. 8.10).

The well-known TiO2-based ReRAM [21, 22] seems to be based on a different
mechanism, which is attributed to the vacancy/dopant diffusion in the oxide layer.
The re-distribution of oxygen vacancies into the TiO2 depends on the polarity of the
applied voltage, and it causes the switching between a semiconductor state into a
metallic one. Typical ReRAM functionality of the TiO2-based ReRAM is shown in
Fig. 8.11 [21].

Another type of two-terminal memristive device is the phase change (PC)
RAM [23]. The main switching mechanism is based on phase transition between
an amorphous and a crystalline type due to Joule heating dynamics controlled by
a voltage pulse. For instance, Si nanowires can be engineered such that melting
and solidification processes can be iterated, thus giving rise to alternate resistance
states [24].

Another class is based on polymers [25]. Several memristive switches can
be built by inter-posing a bio-molecule layer with properties ranging from



262 D. Sacchetto et al.

Fig. 8.10 Switching
mechanism of a CuO-based
ReRAM. The image is taken
from [14]
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from [21]

molecule-dependent switching, such as rotaxanes [6], or more in general on
inter-locked molecules [26] but also on molecule-independent switching, where
a filament formation mechanism through the molecular layer is involved [27].

A fifth class belongs to spintronics [28]. Pershin et al. demonstrated that electron-
spin polarization controlled by the external voltage applied to a spintronic device,
acts as a state variable that can be modeled as memristance (see Fig. 8.12 [29]).

In all these devices the amplitude and frequency of the input signal contribute in
the formation of a so-called pinched hysteresis loop, whose salient feature is its zero
crossing property [3], which is critical for ultra low power operation.
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8.4 Three-Terminal Nanowire Memristive Devices

Examples of three-terminal memristive devices are the electrochemical organic
memristor [30], the solid-electrolyte nanometer switch [31], the ferroelectric
FET [32], and the ambipolar Si nanowire Schottky barrier FET (SiNW
SBFET) [8, 33].

A classification of three-terminal memristive devices can be based from the
general concept of the FET structure (see Fig. 8.13a) in which memristive func-
tionality can be inserted either by engineering the gate dielectric or by gating a
memristive channel. For instance, trap charging dielectric layers inserted between
the channel and the gate fall into the category of FET with capacitive memory
storage (Fig. 8.13b). One example in this category can be the flash memory for
which the trap charging into the gate dielectric influences the transconductance state
of the channel. Thus a first category that exploits the operation of writing/erasing
cycles into the gate dielectric will be a generalization of the flash memory concept,
for which volatility of the charges that are injected into the trap charging layer can
be tuned according to a desired frequency response.

A second category is the one of the gated memristors (Fig. 8.13c). A few
examples are the electrochemical organic memristor [30], the bio-memristive
nanowire [12], and the solid-electrolyte nanometer switch [31]. In the electro-
chemical organic memristor the gate potential is represented by the potential of
the bath, which is used to transfer positively charged Rb+ ions into a polyaniline
(PANI) layer. The conductivity change can be iterated by switching the polarity
of the bath potential, thus giving rise to a unipolar Ids-Vds curve that can be
modeled as a memristor. In this case the device can be set into either memristive
or diode functionality. Similarly, a novel method for bio-sensing that has been
recently proposed exploits the memristive effect to detect low concentration of bio-
molecules [12]. The device consists of a NiSi/Si/NiSi nanowire structure coated with
antibody layer (see Fig. 8.14) shows memristive behavior. The hysteresis loop of this
device has been demonstrated for detection of low concentrations of bio-molecules
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(antigen) in a dry environment. Conversely, the three-terminal solid-state electrolyte
nanometer switch shows a typical bistable resistance state but using 100 times
less current than standard two-terminal operation [34]. This device is based on
controlling the filament formation mechanism using the voltage of a gate terminal
(Figs. 8.15, 8.16).

The ambipolar SB FET with SiNW channel reported in [9] (see Fig. 8.13d)
falls in both categories of gated memristor and trap charging dielectric, as it
shows dynamic trap charging mechanisms at the Schottky junctions and in the gate
dielectric insulator. The result depicted in Fig. 8.17 shows a hysteretic behavior that
is reminiscent of a two-terminal monolithic memristive device [35]. The hysteresis
reflects the fact that the Ids −Vds curve for forward Vds sweep is not identical
to the same curve for backwards Vds sweep. It can be attributed to the presence
of interface states at the metal/semiconductor junctions as reported in literature
for Schottky diodes [36]. First, two-terminal measurements are performed. The
drain-source current Ids is measured vs. the drain-source voltage Vds at constant
Vgs = 5 V . The device is equivalent to two back-to-back Schottky diodes. The two
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Fig. 8.15 Cyclic voltage
measurement of an
electrochemical organic
memristor showing bistable
memristive behavior. The
image was taken from [30]
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e- e-Fig. 8.16 Controlled
filament formation of the
three-terminal nanobridge
device. The image was taken
from [31]

diodes operate in opposite regimes: for negative Vds, the source-to-channel diode is
reversely biased while the drain-to-channel diode is forward biased. For positive Vds

both diodes invert their respective bias conditions. In either case, Ids is limited by the
current flowing in the reverse-biased diode. The reverse current of a metal-insulator-
semiconductor diode has been observed to be very sensitive to charge trapping at
the metal/semiconductor interface [17]. The large current value in the range of mA
is most likely due to the large parallel parasitic structure in the bulk. In an ideal
Schottky diode, the current is given by:

I = IS · e−φBq/kT (eVq/kT − 1) (8.1)

with I and V the diode current and voltage, respectively, φB the Schottky barrier,
k the Boltzmann constant, q the elementary charge, and T the absolute temperature.
From the measured hysteretic behavior, it seems that the diode curve is modified as
follows:

I = IS · e−φBq/kT (e(V−V0(V ))q/kT − 1) (8.2)
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with V0 a built-in voltage at the Schottky contact that is positive for a positive V
sweep and negative for a negative V sweep. As the measurement is performed at a
speed which is comparable with the dynamic of interface states, a variation of the
Schottky barrier height can be obtained by the variation of the image charge:

ΔφB =

√
q ·Eapp

4 ·π · εs
(8.3)

where Eapp is the applied electric field across the Schottky junction and εs is the
permittivity of the semiconductor. Moreover, for Schottky junctions, the barrier
height can also be influenced by dipole lowering, which depends on the quality
of the metal to semiconductor interface, and by the presence of impurities:

ΔφB,dl ≈ α ·Em (8.4)

where α is the rate of change and Em is the electric field perpendicular to the surface.

8.5 Four-Terminal Memristive Devices

Memristive functionality can be seen as state variable that can be used for more
expressive logic gates [4]. The memristive behavior reported in Sect. 8.4 for the
SB SiNW FETs can be tuned by operating on the polarity of the gate voltage [37].
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Fig. 8.18 (a) Schematic cross-section of a dual gate device with NiSi source and drain regions on
SOI substrate. (b) A 20 μm long SiNW with two parallel GAA polysilicon gates having 4 μm gate
lengths. (c) An FIB cut cross-section image showing the SiNW channel surrounded by a 500 nm
polysilicon top gate

This type of behavior is linked with the double conductance, for holes and electrons.
As described in [38] for SB carbon-nanotube (CNT) FETs, the ambipolarity can be
controlled by using an additional control gate, such that it blocks one type of carrier
conductance. Following this principle, four-terminal memristive SB SiNW FETs
can be built (see Fig. 8.18). In the following, two modes of operation are reported,
depending on the nature of the controlling signal applied at the Si nanowire channel.

8.5.1 Voltage-Controlled 4-T Memristive Device

A voltage-controlled four-terminal memristive Schottky barrier SiNW FET is
obtained by using a dual gate configuration such that one of the two gates is
controlling a portion of the channel that is between the source/drain contacts and
the main gate. This configuration is exploited to control the ambipolarity imbalance,
such as for CNT FETs [38]. Since the back-gate voltage modifies the ambipolar
conductance, this fact can be used in ambipolar memristive devices to limit the
current levels for one of the carriers. A fixed back-gate voltage Vbg = +5 V
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(see Fig. 8.19a) leads to imbalanced bistable hysteresis loops under different Vgs

voltages. By applying a negative Vbg = −5 V this imbalance is toggled to the
negative side of the characteristics, giving a complementary effect (Fig. 8.19b).
Finally, a Vbg = 0 V (Fig. 8.19c) levels off the conductances of electrons and holes,
giving a fairly symmetric hysteresis.
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Fig. 8.20 Current-controlled memristive Schottky barrier SiNW FET hysteresis loop. For increas-
ing Ids current bias a Vin inversion threshold increases, suggesting applications for both memory,
sensing (see Sect. 8.6.3) and threshold logic (see Sect. 8.6.4)

8.5.2 Current-Controlled 4-T Memristive Devices

A current-controlled version of the four-terminal memristive Schottky barrier SiNW
FET is obtained by using a current Ids bias instead of a Vds. The output voltage
is then compared with Vgs (Fig. 8.20). The obtained hysteresis can be used as a
latch device, whose position in the Vout −Vin plane can be adjusted by using a
different value of the current bias. A similar behavior has been exploited with
three-terminal Schottky-barrier polysilicon nanowire FETs circuits to build a new
logic family based on precharge and evaluation scheme [39]. Moreover, a similar
scheme has been demonstrated for DRAM type of memory [40] and for pA current
and temperature detection [41]. Similarly, SB Si nanowire transistors fabricated
with a low thermal budget process and biased in current-controlled mode show a
similar hysteresis. Moreover, polycrystalline SiNWs SB FETs can give an hysteretic
transfer characteristic (Fig. 8.21) very similar to the one reported for crystalline
SiNW SB FETs fabricated with a low thermal budget process [42]. As it is shown
in Fig. 8.21 the maximum output voltage in the transfer characteristics increases
with the Ids bias current. From Fig. 8.21a–c the sweep time is reduced. Similarly
to what was discussed for the three-terminal SB SiNW FET memristive device, the
sweeping time impacts on the amount of charge that traps at the gate oxide/channel
interface, thus influencing the conductance state of the nanowire channel. A faster
sweeping time outbalances the charge trapping/detrapping mechanism, resulting in
lower output voltages (see Fig. 8.21a, b compared with Fig. 8.21c).
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8.6 Applications

Several applications of memristive devices can be envisaged, for instance: stan-
dalone memories, FPGA applications, synapse emulators for neuromorphic circuits,
multi-value logic, physical and chemical sensors. In the following sections, exam-
ples of such applications will be showcased.

8.6.1 Field Programmable Gate Arrays

With the recent development of ReRAM technology, a number of novel Field
Programmable Gate Array (FPGA) building blocks and architectures have been
proposed in the past few years. For example, routing structures based on ReRAMs
have shown promise. In [43], a cross point for switchboxes, using the ReRAMs
as nonvolatile switches, is proposed to route signals through low-resistive paths, or
to isolate them by means of high-resistive paths. The concept of routing elements
based on ReRAM switches was then exploited in [44, 45] for timing optimization
in FPGAs. In FPGAs, the programming customizable resources play a major role
in the overall performance indexes and contribute to more than 80 % of the total
delay and area. Instead of simply using ReRAMs as a replacement technology
for configuration memories, we highlight an efficient opportunity by incorporating
ReRAM-based MUXs into the routing architecture of an FPGA. With this respect,
the authors proposed a solution to reduce the size of the building blocks by a factor
of up to 3x compared to traditional flash memories [46]. The impact in FPGA design
and we showed that area and critical path delay could be reduced by a factor of up
to 28 % and 34 %, respectively, due to the compactness of ENVMs and the speed of
ENVM-based switchboxes. Moreover, it is important to notice that the innovative
architectures based on ReRAM devices can also be exploited in combination with
other disruptive technologies, for instance 3D-stacking with Through Silicon Via
(TSV) interconnects (see Fig. 8.22) [47].

C1 C2 C3

R1

R2

programmable
TSV

ReRAM
switch

Fig. 8.22 A crossbar
architecture made of
ReRAM-TSV vertical
interconnects
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8.6.2 Neuromorphic Circuits

The nonvolatile property of the two-terminal memristive devices has a tremen-
dous potential for neuromorphic circuits, in particular forming artificial synapses
following the Hebbian rule of learning based on spike-rate-dependent plasticity
(SRDP) as well as new building elements for hybrid CMOS/memristor circuits. For
instance, when considering the perceptron model of the neuron (see Fig. 8.23), the
weighted connections of the inputs to the summation element can be modeled with
the properties of nonvolatile memristive devices.

With this respect, the Hudgkin-Huxley model can be mathematically described
by first order differential equations. More specifically, Chua and Kang demonstrated
that the H-H model of the potassium channel can be identified as a first-order time
invariant voltage-controlled memristive one-port and that the sodium channel can
be described as a second-order time invariant voltage-controlled memristive one-
port. Since this representation is compatible with the mathematical representation
of memristive devices, it is noteworthy to notice that memristive devices-based
circuits can be built to emulate the behavior of biological systems, in this particular
case emulating the potassium and sodium channels of the neurons. One example is
an energy-efficient memristor-based integrate and fire neuron circuit which exploit
the bistability of a ReRAM to model both the short time spike event and the
refractory period [48]. Another example is the use of the analog programmability
of the ReRAM devices that can be used to emulate the weighted connections of the
perceptron model.

8.6.3 Multi-value Logic

Multiple-valued logic (MVL) is a candidate circuit design technique to replace
traditional Boolean logic based on CMOS [49]. One-dimensional devices exploiting
novel functionalities are the most credible candidates for future nanosystems
[38, 50]. Recently, a fully CMOS compatible process flow has been proposed for
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Fig. 8.24 (a) Opposite polarities TL nanowire gates having two different threshold voltages are
used to construct a literal function of MVL input. (b) MVL-AND function obtained from two TL
nanowire gates and a AND logic gate. (c) MVL NOR function obtained from two TL nanowire
gates and a NOR logic gate. (d) Product of terms function obtained using a MVL-NOR gate and
MVL-NAND in combination with a inverter and a Boolean logic AND gate

the fabrication of vertically stacked GAA SB SiNW transistors showing ambipolar
behavior [8]. Ambipolarity has been envisaged as a way to build gates capable of
exploiting denser logic functions [51], and here we originally propose to exploit
the Schottky barrier SiNW ambipolarity for threshold logic (TL) gates, enabling the
constructions of MVL functions.

Threshold logic (TL) gates are implemented exploiting the shift of the inversing
point of the devices by changing the current bias. A set of three threshold gates
having threshold voltages of 0.25 V, 0.5 V, 0.75 V are obtained by using bias currents
of 20 pA, 35 pA, and 50 pA, respectively. A one-variable literal function using
an AND gate and 2 TL gates having opposite polarities and thresholds at 0.5 V
and 0.75 V is shown in Fig. 8.24a. A two-input MVL function can be obtained
by connecting a two-input Boolean function with 2 TL gates. By using an AND
gate we obtain a MVL-AND function (Fig. 8.24b), whereas an NOR gate is used to
implement an MVL-NOR function (Fig. 8.24c). More complex combinations are
possible, and a proposed MVL function is depicted in Fig. 8.24d, where MVL-
NOR and MVL-NAND gates are combined with a Boolean INV and AND. The
surface plot of Fig. 8.24d shows how a function can be mapped inside a two-variable
input space. Some of the most commonly used functions in MVL are the MIN and
MAX operators. A three-layer arrangement consisting of a first layer of TL gates, a
second layer of Boolean logic gates, and a third layer of level recovery allows the
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Fig. 8.25 (a) Circuit schematic of a NMAX logic function. Three MVL-NOR gates driving a level
recovery circuit are used for mapping a two-variable input space into a one-variable output space.
Note that the NMIN function can be implemented by changing the Boolean layer into a NAND
one. (b) Output representation of the MVL-NMAX function implemented with nanowire based
threshold gates

construction of the MVL-NMAX or MVL-NMIN operators (Fig. 8.25a). The 3D
staircase output representation of the MVL-NMAX function is shown in Fig. 8.25b.

The proposed nanowire-based device proves to be a versatile TL block for the
synthesis of several MVL functions. The excellent input/output voltage ranges
observed experimentally enable cascaded operation of TL nanowire gates with
Boolean gates. A reset signal is required to set the device threshold before using
it for MVL logic circuit operation. Moreover, the threshold function related to the
output characteristic of SB SiNW FET can also present an hysteretic behavior,
which can further extend the functionality of the MVL circuits.

8.6.4 Current and Temperature Sensor

This paper reports on the fabrication and characterization of a pA current and
temperature sensing device with ultra-low power consumption based on a Schottky
barrier silicon nanowire transistor. Thermionic and trap-assisted tunneling current
conduction mechanisms are identified and discussed on the base of the device
sensitivity upon current and temperature biasing. In particular, very low current
sensing properties are confirmed also with previously reported polysilicon-channel
nanowire Schottky barrier transistors, demonstrating that these devices are suitable
for temperature and current sensing applications. Moreover, the process flow com-
patibility for both sensing and logic applications makes these devices suitable for
heterogeneous integration. A range of device operation conditions are investigated,
showing how an ambipolar device can be used for different applications, the only
requirement being the biasing condition.
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Fig. 8.26 (a) Effect of the temperature on the Ids −Vgs at Vds = 100mV (b) Subthreshold swings
associated with the Ids −Vgs. Very low swing minima are measured at 100◦C and 115◦C close
to threshold voltages. Notice the voltage shift with temperature increase and the extremely low
minima of 40mV/dec for the highest temperature. (c) Arrhenius plot for different Vgs values
showing both thermionic emission and tunneling mechanisms. The linear decreasing slopes are
associated with thermionic emission regimes. (d) Extracted Ea over a large range of Vgs. Inset A
shows constant Ea ≈ 450±5meV. Inset B shows a maximum at 525meV which is taken as the
value of the effective Schottky barrier height

The Ids −Vgs dependence with T is mainly attributed to the Ith; however; T
also influences the Itunnel since hotter carriers pass through a narrower Schottky
barrier, leading to an increasing current level [36]. The IOFF current is increasing
exponentially with temperature and its main contribution is a thermionic emission
component. A different behavior has been observed for the ION current. Increasing
the temperature makes the ION current to decrease until the temperature reaches
55◦C and then it rises exponentially with linear increase of T. At lower temperatures
tunneling and trap-assisted tunneling are more important than thermionic emission.
Rising T up to 70◦C makes the charges trapped into the gate oxide to un-trap, reduc-
ing the Itunnel component. A different behavior is observed for the ION currents
for 70◦C ≤ T ≤ 115◦C. In this range, the ION exponentially increases with T. This
effect is evidence of two main current components, for which the ION changes from
a tunneling to a thermionic emission dominated regime. A set of Ids −Vgs curves
(Fig. 8.26a) taken at different temperatures at constant Vds = 100mV and Vbg = 5V



276 D. Sacchetto et al.

are used to extrapolate the Arrhenius plot (Fig. 8.26c). The constant Vbg = 5V is
used to set the device operation more favorable for electron conductance at low Vgs.
Constant subthreshold swings≈ 110mV/dec are observed independently from the
temperature (see Fig. 8.26b). Low negative Vgs voltages ranging from −1 V to 0 V
show an almost linear slope with inverse of temperature and can be correlated with a
thermionic-emission regime. However, for this Vgs range the current level is on the
order of fAs, which is comparable to the background noise, and it cannot be used
to extrapolate the Schottky barrier height. Another distinct regime is observed for
−0.3V ≤ Vgs ≤−0.5V, for which the slopes are greatly affected by tunneling. This
regime shows a dominant tunneling component for the two lowest temperatures.
Finally, an exponential dependence with T is observed again for Vgs ≥ 0V with the
exception of the lower temperature. All these regimes demonstrate that the current
in our device is mainly thermionic for ≥ 70◦C and that the tunneling contribution
is trap assisted. The slopes from the Arrhenius plot are then used to extract the
effective Schottky barrier height φBeff with the activation energy Ea method. As
shown in inset A of Fig. 8.26d, an average effective barrier height Ea ≈ 450± 5meV
is found over a large range of Vgs ≥ 0.2V. However, these values cannot be taken
as Schottky barrier height since in this regime the device has both tunneling and
thermionic components. As suggested by Svensson et al. [51], a better evaluation of
the Schottky barrier height can be taken at the maximum of Ea for low current levels.
As shown in the inset B of Fig. 8.26d, this maximum corresponds to Vgs =−0.45V
and gives a φBeff = 525meV, confirming the mid-gap Schottky barrier height.

8.6.4.1 pA Current Sensing

Current biasing the devices with a constant Ids current makes the device to behave
as a pseudo-inverter configuration with hysteretic transfer function. Thanks to the
ambipolarity, the Vout-Vin curves shift linearly with the applied current bias. For
instance in Fig. 8.27a, low pA current levels can be either read from the high-to-
low or the low-to-high transition voltage with sensitivities of 17 mV/pA. A similar
biasing scheme for polysilicon nanowires has been previously characterized by the
authors show a similar trend. In Fig. 8.27b, forward and reverse threshold voltages
for currents between 100 fA and 500 fA show a linear increase with current (adapted
from [52]).

8.6.4.2 Temperature Sensing

Another application is temperature sensing. Upon application of increasing tem-
perature of operation, the hysteresis window observed in pseudo-inverter biasing
scheme shrinks. The crystalline Si nanowire Schottky barrier FET shows different
sensitivities at different temperature regimes, depending on which mechanism
dominates the conductance. Since the hysteresis is attributed to the storage of
charges in either gate oxide and/or at the Schottky barrier junctions [9], an increased
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Fig. 8.27 (a) Measured input–output transfer characteristics of a hysteretic inverter based on a
single Si nanowire FET with low current bias, showing current-dependent thresholds. (b) Forward
and reverse threshold voltages for polysilicon Schottky barrier FETs under constant current biasing
from 100 fA up to 500 fA (adapted from [52])
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hysteresis window is expected for the lowest temperatures. The highest sensitivity
of 40mV/◦C is found in the T range around 40◦C at which the trap tunneling
mechanism dominates. For temperatures higher than 55◦C the sensitivity tends to
saturate according to the dominance of thermionic current contribution, leading
to lower sensitivity of 10mV/◦C. In Fig. 8.28 the hysteresis window shrinks for
increasing T when 70◦C ≤ T ≤ 100◦C.

8.7 Conclusions

An overview on Si nanowire-based multi-terminal memristive devices has been
given, showcasing several potential disruptive applications touching the area of
logic, memory and sensing. In addition to the very broad application potential



278 D. Sacchetto et al.

offered by the memristive Schottky barrier SiNW FETs, the ease of fabrication and
top-down CMOS process compatibility paves the way to novel circuit architectures
implementing the memristive functionality.
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Chapter 9
Spintronic Memristor as Interface Between
DNA and Solid State Devices

Yiran Chen, Hai Li, and Zhenyu Sun

9.1 Introduction

Magnetic sensing is widely used in various modern bio-medical devices since
many physiological functions (e.g., nerve impulses) generate electrical currents
that create magnetic field [24]. Monitoring such signals by detecting magnetic
field is less invasive and more reliable than implanting electrodes to sense the
electronic signals. Generally, magnetic sensors can be utilized to detect the changes
or disturbances of magnetic field, i.e., the strength and/or direction of magnetic
flux. For example, magnetic sensors with high sensitivity have been widely used
in heart disease monitor by detecting the bio-magnetic signals from heart (known
as magnetocardiography, or MCG) [8]. The magnetic sensors in bio-medical
applications are required to detect the low-field signals that are much lower than
the Earth’s magnetic field (< 0.5 Oe) [17].

Compared to other low-field sensing techniques, such as search coil, flux
gate, and superconducting quantum interference detectors (SQUID) [14, 15, 18],
solid state sensors have demonstrated many unique advantages, including small
size (< 0.1 mm2), low power consumption, high sensitivity (∼ 0.1 Oe), and good
compatibility with CMOS technology, etc. [17]. A solid state magnetic sensor
usually converts a magnetic field into the change of resistance that can be easily
detected by applying a sense current/voltage.

The giant magnetoresistance (GMR) spin valve sensor and tunnel magnetoresis-
tance (TMR) sensor are two major solid state magnetic sensor technologies used
for low magnetic field detection. In both technologies, the relative angle of the
magnetization directions of two ferromagnetic layers changes in the presence of
magnetic field, leading to the resistance variation of the sensor. The GMR and TMR
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technologies have been successfully utilized in the recording head of hard disk
drive (HDD) for almost two decades [11]. Thanks to the advance of integrating
GMR/TMR sensors with CMOS VLSI circuitry, fabricating a large TMR/GMR
micro-array became economically feasible to realize some complicated sensing
systems. For example, a GMR sensor array was designed for DNA assay [6]: The
DNA samples being detected are pre-labeled (tagged) by magnetic nanoparticles.
Under an external magnetic field, the GMR sensor array can capture the magnetic
responses of the nanoparticles, which reflect the density and distributions of DNA
samples.

On the one hand, the utilization of nanoparticles with a diameter of 100−1000A
is attracting in magneto-nano biochip [12]. Such a dimension range is comparable
to that of the target DNA molecules. In addition, the magnetic field for nanoparticle
excitation can be modulated to reduce the impact of 1/ f noise, enabling useful
signal detection in a limited frequency band. On the other hand, detecting such
tiny magnetic nanoparticles with limited physical volume is extremely challenging
because the induced magnetic moments are very low and constrained by external
factors such as noise and thermal turbulence [10]. Thus, ultra high sensitive detector
is required in mass-produced magnetic microarray.

Besides TMR and GMR devices-based sensor, another emerging nonvolatile
device—memristor is also very promising in the nanoparticle detection. Especially,
the recent proposed domain wall motion-based spintronic memristor [22] can
change its memristance (resistance) when responding to its external electrical
or magnetic excitation. Unlike GMR and TMR sensors, the resistance states of
memristor still maintain even the external excitations are removed. Due to the
different magnetic and electrical characteristics among TMR, GMR, and spintronic
memristor, operating mechanisms of these devices are also different. In this work,
we present a novel spintronic memristor-based sensing mechanism which has dif-
ferent relative resistance change, noise, sensitivity, reliability compared to TMR and
GMR sensor. Also corresponding optimization philosophy will be discussed here.

The rest of this chapter is organized as follows. Section 9.2 gives the funda-
mentals of GMR/TMR sensors and spintronic memristor, as well as the application
of magnetic sensors in DNA assay. The proposed magnetic sensing mechanism of
spintronic memristors will be described in Sect. 9.3. We then discuss the design
tradeoffs of different devices in DNA assay application in Sect. 9.4 and analyze the
noise endurability of the proposed readout scheme in Sect. 9.5. At last, Sect. 9.6
concludes our work.

9.2 Preliminary

9.2.1 GMR and TMR Sensors

Figure 9.1a, b illustrate the structures of a typical GMR spin valve sensor and
a typical TMR device, respectively. Both structures are in the form of magnetic
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Fig. 9.1 (a) GMR spin valve sensor structure and (b) TMR MTJ structure

tunneling junction (MTJ) consisting of two ferromagnetic layers, namely, reference
layer (RL) and free layer (FL). The two ferromagnetic layers are separated by a
thin non-ferromagnetic spacer, e.g., AlO in GMR and MgO in TMR devices. The
magnetization direction (MD) of RL is fixed by coupling to a pinned magnetic layer
while the MD of FL can be changed in the presence of magnetic field. The MTJ
resistance is determined by the relative angle between the MD’s of RL and FL:
when the MD of RL is parallel or anti-parallel to that of FL, the MTJ reaches its
minimum or maximum resistance value represented by RL or RH , respectively. The
magnetoresistance ratio, therefore, is defined as MR = (RH −RL)/RL.

As illustrated in Fig. 9.1a, the electrons in a GMR spin valve device travel with
their spins orientated parallel to the ferromagnetic layers. In contrast, we can eject
electrons through the oxide barrier to change the MD of FL in a TMR device, as
shown in Fig. 9.1b.

In the presence of a magnetic field, the resistance of a GMR or TMR sensor vary
between RL and RH . The exact resistance value that is determined by the direction
and amplitude of the magnetic field can be detected by applying a small sensing
current through the device and measuring the voltage across it. Once the sensed
magnetic field is removed, the sensor will resume back to its stable state, at which
the MD of FL is parallel or anti-parallel to that of RL.

9.2.2 Spintronic Memristor

As early as year 1971, Professor L. Chua predicted the existence of memristor
based on the completeness of circuit theory: besides resistor, capacitor, and inductor,
there must be a fourth fundamental passive circuit element to bridge the electrical
charge (q) and the magnetic flux (φ ) [4]. The element was named as memristor. The
corresponding physical variable—memristance (M) is uniquely determined by the
historic profile of the current/voltage through it.

The memristor can be realized by many different materials, such as Mn-doped
ZnO films [23], Pt/BiFeO3/Nb-doped SrTiO3 [7], or even carbon nanotube [13].
Figure 9.2 shows the spintronic memristor proposed by Wang et al. [22]. The
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Fig. 9.2 A spintronic
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structure is very similar to the GMR sensor except that its free layer is divided by
a magnetic domain wall into two segments with opposite magnetization directions.
When applying a current through the spintronic memristor, the domain wall could
move along the longitudinal direction. Because of the difference in resistance per
unit length of the two segments, the overall memristance varies from RL to RH ,
determined by the domain wall position X(t) at time t. In general, the device
resistance can be calculated as:

R(t) = RH − (RH −RL)X(t)/D, (9.1)

where D represents the length of memristor.
We note that the domain wall movement happens only when the applied current

density (J) is above the critical current density (Jcr). Also, the domain wall
velocity v is proportional to the current density J. Besides the spin torque excitation
generated by electrical current, the domain wall mobility is also affected by the
thermal fluctuation and the applied magnetic field [21]. Under certain conditions,
the amplitude of magnetic field can be sensed as the resistance of the spintronic
memristor (or the domain wall location). As an obvious advantage of spintronic
memristor, the device state, i.e., the domain wall location, will maintain after the
sensed magnetic field is removed.

9.2.3 Magnetic Sensor Microarray for DNA Assay

The principle of magnetic sensor microarray-based DNA assay is shown in
Fig. 9.3 [20]: Single-stranded DNA receptors (or known as DNA probes) are
immobilized on the surface of a magnetic sensor microarray. The unknown
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Fig. 9.3 Magnetic sensor microarray for DNA assay

DNA fragments (targets) are labeled by high moment magnetic nanoparticles
(nano-tags) with some binding technique, e.g., biotin-streptavidin chemistry.
During DNA detection, the tagged DNA fragments (targets) are captured by the
complimentary DNA probes. To detect the density and the distribution of the DNA
targets, nanoparticles are excited by applying an external magnetic field and their
corresponding magnetic responses are sensed by the magnetic sensor array.

9.3 Spintronic Memristor Based Magnetic Sensing

The spin torque-induced domain wall motion at finite temperature can be described
by stochastic Landau–Lifshitz–Gilbert equation [2] with a spin torque term [1, 16].
Using rigid wall approximation [5,19], the domain wall motion is expressed in terms
of magnetization spherical angle θ and ϕ as

θ (x, t) = θ0(x−X(t)),ϕ(x, t) = ϕ0(t) (9.2)

where x is the position of the domain wall along the length of the memristor.
θ0(x)= arccos[tanh(x/w)] is the function of domain wall shape. w is the domain wall
thickness. X(t) is the domain wall position. Domain wall velocity v = dX(t)/dt.
The domain wall position X(t) satisfies following stochastic differential equations
[5, 19]:

dφ
dt

+
a
w

dX
dt

= γ ·H +ηφ ,
1
w

dX
dt

−α
dφ
dt

= w0sin(2φ)+
Vs

w
+ηx. (9.3)

where w0 = γHp/2 (δ is gyro-magnetic ratio); is the damping parameter; H is the
magnetic field including external unbalanced field and intrinsic domain wall pinning
field. vs = PJμB/eMs is the spin torque excitation strength; P is the polarization effi-
ciency; B is the Bohr magneton; and e is the elementary electron charge. ηϕ(t) and
ηX(t) are the ϕ and X components of the thermal fluctuation fields, respectively.
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Fig. 9.4 The normalized
domain wall velocity as a
function of the normalized
current density under the
different magnetic fields
at 300 K

Spintronic memristors sense the magnetic field change with magnetic nanoparticles
relative to that without magnetic nanoparticles [3]. Figure 9.4 demonstrates the
normalized domain wall velocity as a function of the normalized current density
under different magnetic fields at 300 K. The magnetic field is the additional field
due to the existence of the bound magnetic nanoparticles. When the applied current
density is close to the critical one (Jcr), the domain wall velocity becomes very
sensitive to the amplitude of the applied external magnetic field.

During the sensing operation, a current with the density slightly below the critical
current density Jcr is applied to spintronic memristor for certain duration. The
domain wall will move to the different locations under the different magnetic fields
excited by the bound magnetic nanoparticles.

Figure 9.5 shows the spintronic memristor resistance as a function of time under
the different number of magnetic nanoparticles at 300 K. Based upon [3], the ampli-
tude of magnetic field generated by nanoparticles is approximately proportional to
nanoparticle numbers. 500 nanoparticles in Fig. 9.5 corresponds to a magnetic field
around 10 Oe at the spintronic domain wall center.

9.4 Design Space Exploration

9.4.1 Biosensor Array Architecture

Similar biosensor array architecture shown in Fig. 9.6 can be used for GMR, TMR,
and spintronic memristor. In our design, an N×N array of biosensor cells form
a DNA spot. The whole on-chip biosensor is composed of 44 DNA spots with
the corresponding control bus. To increase the throughput of the biosensor array,
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Fig. 9.5 Spintronic
memristor resistance as a
function of time under
different number of magnetic
nanoparticles at 300 K

both frequency division multiplexing (FDM) and time division multiplexing (TDM)
are utilized [5]. In this architecture, every four DNA spots share one physical link
with four carrier frequencies to realize FDM. Then all the four FDM channels are
connected to one 4-to-1 multiplexer to achieve TDM. The final output is sent to
off-chip signal processing system to carry out Fourier Transform and frequency
spectrum analysis.

9.4.2 Circuit Design

Figure 9.7 shows the circuit schematic of the readout channel for biosensor. The
readout channel includes a read current source, a frequency divider, a mixer,
a low noise differential amplifier, a programmable operational amplifier, and a
transmission gate-based multiplexer. The readout circuit is designed at PTM 90 nm
technology node [3]. All circuit level simulations are conducted under Cadence
Spectre Analog environment. The device models of GMR, TMR, and spintronic
memristor were developed by using Verilog-A language.

During the readout operation, current source injects a small (i.e., 0.1 mA) read
current into both the sensor cell (Act) and the reference resistance (Ref) to incur Act
and Ref voltages, respectively. These two voltages are connected to the inputs of the
mixer, which multiplies the readout voltage by sampling pulse (carrier frequency)
generated by the frequency divider with a master clock of 20 kHz. As shown in
Fig. 9.7, each DNA spot within one readout channel has its own carrier frequency.
The low noise differential amplifier (DA) is used to amplify the voltage difference
between the Act and Ref voltages. Furthermore, it can also serve as an analog adder
by swapping the Act and Ref voltages at the inputs of the mixer. Thus, at the end
of the each readout channel, the sensing signals (difference between Act and Ref



288 Y. Chen et al.

DNA
spot

Mix &
Amp

DNA
spot

Mix &
Amp

DNA
spot

Mix &
Amp

DNA
spot

Mix &
Amp

DNA
spot

Mix &
Amp

DNA
spot

Mix &
Amp

DNA
spot

Mix &
Amp

DNA
spot

Mix &
Amp

Fre .div

Column RowClk

FDM channel

4:1m
ux

TD
M

Off-chip
Signal

processing

4X4

Sum &
Amp

Sum &
Amp

On-chip
Readout

WL_0 WL_NWL_1

BL_0

BL_1

BL_N

2bit counter

Magnetic
Sensor

DNA
hybridized

Magnetic
nanoparticle

Fig. 9.6 Biosensor architecture design

voltages) of all the four DNA spots have been summed up to share one physical
channel. In our design, FDM is realized by modulating the signals with different
carrier frequencies, which can be extracted by off-chip bandpass filter. FDM can
also reduce 1/f noise effectively. A programmable operational amplifier (POA) with
a gain range from 10 to 60 is designed to maximize the dynamic range of the
output signal. Instead of pushing the amplifier gain even higher, we use multi-level
amplifiers to reduce design complexity and improve circuit reliability.

Figure 9.9 shows the simulated output signal of one readout channel. The
main clock frequency is set as 20 kHz. The four carrier frequencies are 20/6 kHz,
20/8 kHz, 20/10 kHz, and 20/12 kHz. To guarantee cycle integrality of all signals,
the minimal time slot should cover integral multiples of all the carrier clock period,
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Table 9.1 Baseline circuit design parameters

Differential amp gain 2 or 3

Programmable operation amp gain 10–60
Output swing of operation amp (mV) 300
Main clock frequency and limitation (kHz) 20
Carrier frequencies for FDM (kHz) 3.33, 2.5, 2, 1.67
One time slot of TDM (ms) 6

e.g., 6 ms in our configuration. The outputs of the four readout channels are
connected to a 4-to-1 multiplexer. Each channel is assigned to a time slot to achieve
TDM function. The baseline design parameters are summarized in Table 9.1.

9.4.3 Comparison Among Different Devices

GMR, TMR, and spintronic memristor are all spintronic sensors. However, these
devices demonstrate the different responses to extraneous magnetic field distur-
bances of nanoparticles in terms of the resistance value changing (R) and the
resistance transition time. Accordingly, the circuit design should be adjusted for
each specific device as shown in Table 9.2. The MR ratio of a typical GMR device
is around 10 % [9]. The minimum resistance gap before and after absorbing nanopar-
ticles could be only 100 m [10], which results in only 10 V voltage difference at the
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Table 9.2 Circuit design parameters specific to three device

Device R (m) DA gain PGA gain V (mV)

GMR 100–400 333 60 16.2–64.8
TMR 1,000–5,000 222 10 8–40
Memristor 10,000 222 10 80

output of DNA spot. Thereby, the overall voltage gain of the amplifiers need to be
relatively high. Usually, a TMR device has an MR ratio of 100 % or higher [11].
Hence, the resistance gap and voltage difference could be significantly improved.

Unlike spintronic memristor, neither GMR nor TMR sensors can maintain the
resistance states after removing the external magnetic fields. Note that the resistance
gap (R) of a memristor sensor can be adjusted by controlling the time period of apply
external magnetic field as shown in figure. We assume the magnetic field applied for
10 ns, and then the resistance gap could be more than 10.

As shown in Table 9.2, the gain of differential amplifier and programmable
operation amplifier can be adjusted accordingly. In GMR, due to the small R (from
100 m to 400 m), we select the maximum gain for both DA with 3 and PGA with 60.
Therefore the output voltage can be speculated by R(DA gain)3 (PGA gain). If DA
gain and PGA gain is 3 and 60, respectively, the output voltage could range from
16.2 to 64.8 mV. Nevertheless, if all circuit parameters keep same but substituting
GMR by TMR device, the maximum voltage will be 648 mV which is 10 times of
GMR sensor. Under above situation, voltage signals of four DNA spots are summed
up in FDM so that the total output could surpass VDD (1V). Hence, the PGA gain
and DA gain should be adjusted to a lower value. On the other hand, we have another
constraint that the sum up of output voltages of four DNA spots cannot beyond the
voltage swing (300 mV) of PGA; otherwise, the amplifier does not work at linear
region. Moreover, the DA gain may need to be redesigned when different device is
used (i.e., TMR, memristor). Decreasing in DA gain can not only address voltage
swing issue but also save chip area. For example, the MOS transistor width of a DA
with gain of 2 is 5 times smaller than that of a DA with gain of 3 (Fig. 9.7).

9.5 FDM Signal Processing and Noise Analysis

9.5.1 Modulation Theory and Implementation

In the previous section, we have discussed about the combination of FDM and TDM
scheme by using pulse sampling to achieve high throughput and low noise. In this
section, we will further improve the efficiency and leverage the noise endurability
of the FDM modulation technology by using cosine signal which is originally
developed for radio telecommunication. In its basic form, a signal with power
concentrated at the carrier frequency will be produced. In modulation, message
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signal is multiplied by carrier signal which has a much higher frequency than the
message signal and is defined as

f (t) = m(t) · cos(2π · f0 ·n/ fs). (9.4)

where m(t) is usually referred to as the message signal and f0 is the carrier
frequency. As shown in above equation, the modulation consists of multiplying the
message signal m(t) by the carrier cos(2π · f0 · n/ fs). Therefore, we can use the
modulation theorem of Fourier Transforms to obtain the spectrum F( f ) in frequency
domain by calculate:

F( f ) =
1
2
[M( f − f0)+M( f + f0)]. (9.5)

where M( f ) is the Fourier Transform of M( f ). According to the property of
Fourier Transform, multiplication of signals in time domain will result in their
convolution in frequency domain. And the Fourier Transform of cosine function
is shifted Dirac delta function, so the wave of message signal will be shifted to − f0

and f0. In the implementation of our biosensor circuit, the message signal is the
voltage variation caused by the memristance changing of the microarray spintronic
memristor detector. The voltage signal of each detection point will be multiplied
by the carrier frequency through the analog mixer. We have four DNA spots in one
FDM channel, so totally four cosine signals with four different carrier frequencies
are needed. They can be expressed by f (t) = ∑4

i=1 micos(2 · π · fi · t). We still use
the frequencies as shown in Table 9.1. The benefit by using this FDM modulation
technology is that most of the power of the signal will concentrate at the carrier
frequency; therefore, we can use bandpass filter to obtain the useful information
and eliminate most of the noise at the same time.
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We use simplified model to illustrate the FDM principle of circuit as shown in
Fig. 9.9. Three-stage amplifiers in readout circuit of Fig. 9.7 are simplified into one
ideal amplifier added with a noise source. And the mixer also brings in certain noise.
The target signals m1(t) to m4(t) are four voltage levels (v1 to v4) generated by the
memristor which is applied by a read current. As we have mentioned before, the
output y(t) will be TDM to off-chip signal processing, hinting that it is impossible
for the time slot of each FDM channel to be infinite. With limited time period,
the spectrum of the output signal in frequency domain cannot be ideal Dirac delta
function as shown in Fig. 9.9. In the following sections, we will show the simulation
results with different lengths of time slots and different types of noise in order to
measure the noise endurability of the design.

9.5.2 Noise Source

The noise behavior of the bio-chip is dominated primarily by two noise sources:
thermal noise and pink or the so-called 1/ f noise. Thermal noise is approximately
white, meaning that the power spectral density is nearly equal throughout the
frequency spectrum. Additionally, the amplitude of the signal is similar with
Gaussian probability density function. In the signal process simulation, we use
white noise to approximately model the thermal noise. We can simulation stationary,
continuous-time random process x(t): t is real with constant mean μ and covariance
function

Kx(τ) = E(x(t1)− μ))(x(t2)− μ)∗. (9.6)

where τ = t1 − t2 and power spectral density

Sx( f ) =
∫ ∞

−∞
Kx(τ)e− jwτ dτ. (9.7)
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Fig. 9.10 Output power after Fourier Transform with gaussian white noise

Pink noise or 1/ f noise is a signal with a frequency spectrum that the power spectral
density is inversely proportional to the frequency

Nf =
α

N · f
(I ·R)2. (9.8)

where α is the dimensionless (sometimes field dependent) Hooge constant, N is the
total number of conduction electrons in the sensor (often taken as the number of
atoms in the active area of the sensor), f is the frequency, I is the read current, and
R is the resistance of micro sensor. [14] gave α values ranging from 6.7× 10−3 to
2.8× 10−1.

We will show Fast Fourier Transform (FFT) of FDM voltage output mixed with
the above-mentioned two noise. According to Nyquist sampling theory, sampling
frequency must be at least twice bigger than the message signal. The highest carrier
frequency is 3.33 kHz, so we define the sampling frequency fs to be 10 kHz in our
simulation.

9.5.3 Simulation Result

Figure 9.10 shows the FFT of FDM output with gaussian random white noise. The
main curve is in frequency domain. As we can see from the main curve, the four
message signals are clearly centered at 1.67 kHz, 2 kHz, 2.5 kHz, and 3.33 kHz
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along with the frequency coordinate. Subgraphs shows the FDM output before
FFT in time domain with and without white noise. As we can see, the impact of
white noise in the time domain is very larger, while it is much more trivial in the
frequency domain. Once we use bandpass filter to extract the useful information, the
impact of the white noise will be even smaller. We will measure the signal-to-noise
ratio (SNR) later to estimate the benefit brought by FDM in the bio-circuit readout.
Figure 9.11 shows the FFT of FDM output with 1/ f noise. The power density of
1/ f noise is gathered around low frequency region and rolls off with the increasing
of frequency. When the frequency is beyond 1 KHz, the impact of 1/ f noise turns
to be very small. Subgraphs shows the FDM output before FFT in time domain with
and without 1/ f noise. Obviously, the impact of 1/ f noise in time domain is much
greater than that in the frequency domain that further proves the efficiency of FDM
in eliminating noise influence.

In order to leverage the endurability of our scheme, signal-to-noise (SNR) is used
as a leveraging metric. Under the impact of gaussian random white noise, the SNR
can be calculated by

SNRwhite = 10log

(
∑4

i=1(I�Ri × cos(2π fit))2∫ ∞
−∞ Kx(τ)e− jwτ dτ

)
. (9.9)

where I is the read current, �Ri is the resistance change of each detection device.
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Fig. 9.12 Monte-Carlo simulation of SNR with gaussian random noise

Figure 9.12 shows the 104-run Monte-Carlo simulation of SNR with gaussian
random white noise. Four lengths of time slot are compared in the simulation. The
larger the time slot is, the higher the SNR will be. That is because larger time
slot implies the closer the Fourier Transform will be to the Dirac delta function at
frequency domain. Because we use ideal bandpass filters whose center frequencies
are 1.67 kHz, 2 kHz, 2.5 kHz, and 3.33 kHz with bandwidth of 200 Hz. Therefore,
the power of the output signal physically concentrates more at certain frequency
point resulting in high SNR after passing the ideal bandpass filter. However, larger
time slot means low throughput, so trade-off between SNR and throughput has to
be balanced according to requirement. Because the resistance changing of GMR
and TMR device is relatively small, so the impact of noise will become bigger in
return. When GMR and TMR are used as bio-sensor interface, we will give more
priority to SNR. For spintronic memristor, the resistance changing is much larger
than GMR or TMR device, so the SNR is reasonably high as we can see from the
simulation. When the time slot is 0.1 ms, the SNR can approach almost 50 dB. That
means the power of useful information is 316.22 times of the power of noise. If we
want to improve the throughput, we can tune the time slot to be 0.01 ms. In other
words, we can obtain information of four detection spots in every 10 ms, and the
corresponding SNR also stays as high as 40 dB.

Under the impact of 1/f noise, the SNR can be calculated by

SNR1/ f = 10log

(
∑4

i=1(I�Ri × cos(2π fit))2

α/(Nf� f )I2R2

)
= 20log

(
∑4

i=1 I�Ri × cos(2π fit)√
α/(Nf� f )IR

)

(9.10)
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Fig. 9.13 Monte-Carlo simulation of SNR with 1/f noise

Figure 9.13 shows the 104-run Monte-Carlo simulation of SNR with 1/f noise.
When the time slot is selected as 0.1 ms, the SNR can reach 70 dB. The reason
behind is when frequency surpasses 1 kHz, the 1/f noise levels off to zero. We also
compared SNR before bandpass filter and after bandpass filter. The bandpass filter
can help improve SNRwhite and SNR1/ f by 3.4 and 5.83 times, respectively, when
one time slot period is 0.01 ms. Explicitly, the reason SNR1/ f has been improved
more than SNRwhite is the power of 1/f noise is gathered at low frequency region
and most of them is filtered by the bandpass filter.

9.6 Conclusion

In this work, we discuss a possible magnetic field sensing mechanism of spin-
tronic memristors, which can be utilized in DNA hybridization detection. The
circuit implementation of a biosensor array based on spintronic memristors is
also proposed. We compare the differences between spintronic memristors and
the other two popular spintronic devices—GMR and TMR, in terms of working
mechanism, magnetic and electric parameters, etc. Our analysis shows that besides
the nonvolatility (the sensed value is kept in the device after the sensed magnetic
field is removed), spintronic memristors also show a higher sensing signal amplitude
than TMR and GMR devices. We also propose a on-chip readout scheme with a
telecommunication method-frequency division multiplexing (FDM) technique that
can efficiently transmit useful information and filtrate the noise. We can achieve
high SNR up to 70 dB by using proposed scheme.
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Chapter 10
Memristor-Based Resistive Computing

Sung-Mo Steve Kang and Sangho Shin

10.1 Introduction

In 1971, Chua published a seminal paper on memristor as a missing basic circuit
element by explaining the constitutive relationship between electrical charge q and
flux π linkage [1]. Chua demonstrated that the memristor can be physically realized
by using other passive and active circuit elements and predicted that inherently
passive memristors would be found. In 1976, Chua and Kang published a paper
that defined a large class of devices and systems which they named memristive
devices and systems to broaden the domain of useful nonlinear devices with
memristive characteristics substantially and showed that many physical systems can
be categorized as memristive devices and systems [2]. In 2008, almost 40 years later,
Stan Williams and his research team at HP Labs unveiled a two-terminal titanium
dioxide nanoscale device that exhibited memristor characteristics in a restricted
operating range [3].

Continuing demands for more complex information processing require future
systems integration to overcome various physical limitations of traditional CMOS
technologies, including the lithographical limitation and the power density limit
[4]. Such barriers to Moore’s Law call for revolutionary approaches to sys-
tems integration. To meet the increasingly difficult technological requirements,
the emergent nanoscale resistive memory device technologies [3] have received
much attention in order to help overcome the limitations of CMOS technologies.
Memristive devices [2, 5] have been realized in a form of bipolar voltage-actuated
nanoscale switches such that they can be used to build ultra-dense resistive
memory arrays. Nanoscale memristor devices can be reconfigured into nonvolatile
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memories, logic gates, programmable interconnects with a very high integration
density and, more importantly, with CMOS compatibility [6, 7]. Thus, memristors-
based nanocomputing architectures offer promises for low-power and high-density
computing applications, pushing Moore’s Law far beyond the present silicon
roadmap horizons.

A myriad of research opportunities have been opened by the memristive tech-
nologies. Besides the ultra-dense nonvolatile memory applications, they include
self-adaptable analog/digital electronics [8–12], resistive signal processors [13],
and synaptic neuromorphic networks [14]. One of the most plausible architectures
is the CMOS/Molecular hybrid (CMOL) [6] which can be implemented by using
Field Programmable Nanowire Interconnect (FPNI) [7, 15]. This is based on
hybrid circuits composed of a conventional CMOS layer connected to multiple
crossbar layers that contain memristive switches. These architectures have been
proposed by primarily taking advantage of their regularity and compatibility with
CMOS processes for the ease of fabrication of nanoelectronic circuits into the
single-digit nanometer scale. Such “molecular electronics and computing” enabled
by a nanoscale memristive devices technology can extend Moore’s Law well
beyond 2020. High-density vertical interconnects such as through silicon vias
(TSVs) can provide high-bandwidth, low-latency communication between stacked
layers without sacrificing area in each layer for vias. FPNI leverages on a Field-
Programmable Gate Array (FPGA) architecture by lifting configuration bits and
associated components out of the CMOS plane and replacing them with nonvolatile
switches in interconnects. In FPNI, logic gates and flip-flops which form the most
crucial part of the FPGA reside in the CMOS layer.

When the properties of nanoscale memory devices are exploited together with
CMOL/FPNI architecture, replacing CMOS transistors with memristive devices
for latching or switching circuits, new analog/digital functions can be developed
to significantly reduce the form factor, manufacturing cost, and active/leakage
power consumption. Recently, stateful logic operations for which the memristive
switches function as gates and latches have been demonstrated [16–26]. Since
these memristive switches can implement memory, programmable interconnects,
logic operation, and latches, with higher density and lower power consumption,
the nanowire crossbar layers of memristive devices have become an intriguing
technology. In such stateful logic gates, the voltage-actuated bipolar memristive
devices offer their unique properties of nonvolatile memory function and conditional
set/reset capability. And such stateful logic gates functioning NAND or NOR
operation can serve as basic elements to construct general-purpose large-scale
stateful logics and low-power field programmable logic arrays [21, 22]. In addition
resistive signal processing units for nonvolatile arithmetic computation such as
signal multiplication have been reported [24–26].

This chapter introduces a high-density resistive computing architecture that can
perform as general logic gates and signal multipliers, and as base technologies
of future nanocomputing. The resistive multipliers, which can be imbedded in
hybrid integrated circuits, are consisted of bistable memristive devices and CMOS
switches. Using nonvolatile memristors with a conditional set/reset, these resistive
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multipliers can execute, even with passive unipolar resistances, exclusive OR (XOR)
and exclusive NOR (XNOR) equivalent bipolar multiplications, in two and three
phases, respectively. The function of the resistive multiplier is demonstrated for
XOR/XNOR operation with inherent register capability. In particular, a massively
parallel array of the resistive multiplier, each of which functions as either XOR or
XNOR, is constructed to compute complex multiplication tasks, such as correlation
computing.

10.2 Memristors and Memristive Devices

The memristive devices realized in a form of nanoscale bipolar voltage-actuated
devices use “resistance” as a physical state variable [1, 5]. Since nanoscale
memristor devices can be reconfigured into nonvolatile memories, logic gates,
programmable interconnects with high integration density and, more importantly,
with CMOS compatibility, the memristor technology together with CMOS is a
formidable technology candidate that can advance Moore’s Law beyond the present
silicon roadmap horizons. A multitude of new opportunities can be provided by
memristive nanotechnologies. Due to their potential for inexpensive manufactur-
ing and ultrahigh density, various forms of memristors are being explored for
many potential applications. Besides the ultra-dense nonvolatile memory applica-
tions, other opportunities may reside in highly programmable and self-adaptable
analog/digital electronics, resistive nanocomputing architectures, and synaptic neu-
romorphic networks, among many others. A hybrid type of integration of CMOS
circuits and memristive nano devices [6, 7] is considered promising for diverse
next generation applications such as the implantable low-power biological sensor
application.

10.2.1 Properties and Modeling of Memristive Devices

The resistances of memristors and memristive devices change depending on their
current state and the voltages applied across them and/or currents driven through
them [1–3]. When operated with low voltages over short time intervals, they
behave as analog devices displaying a controllable hysteresis in their current–
voltage characteristics. However, when overdriven by large voltages, they become
essentially two-state digital switches or latches which can be opened or closed by
applying opposite polarity voltages.

Among the several properties of the memristive systems which were identified
in [2], the most distinct property is that the output voltage (or current) is always
zero whenever the input current (or voltage) is zero regardless of the internal
state variables and the momentary resistance (or conductance). This property is
manifested in the pinched hysteretic voltage–current (v–i) characteristics for a
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Fig. 10.1 Momentary v–i behaviors of memristors

periodic balanced input. Also it is noteworthy that the memristor behaves as a linear
resistor in the limit of infinite frequency at which there is no time allowed to respond
and produce resistance change during the short input period.

The v–i characteristics of memristors under a periodic sinusoidal input, i.e.,
vM(t)=VO · sin(int), are shown in Fig. 10.1, where the pinched hysteretic loops
appear at low frequencies. They are collapsed to that of a linear resistor at high
frequencies. For a fully balanced periodic input, the memristance is also periodic
over the input period, since the injected amount of net charge or flux over each
period is equal to zero. Also it can be noted that the range of memristance change is
strongly dependent on the input frequency and the amplitude, because the amplitude
of the flux pattern is linearly proportional to the input voltage amplitude and almost
inversely proportional to the input frequency. For voltage input with balanced
polarity, memristors have negligible memristance changes at high frequencies and
thus can be treated as static linear resistors. However, if the input polarity is
unbalanced, the memristance will change even at high input frequencies, since the
net flux will be accumulated over time and eventually will affect the memristance.

Unlike the theoretical memristors or memristive devices [1–3], the practical
bistable memristive devices, e.g., bistable Resistive Random Access Memory
(RRAM) devices, exhibit three distinguishable features: a finite number of threshold
voltages exist based on which the device function can be set either for read or write
mode; the device switches its resistance state in a linear or nonlinear switching rate;
and such device behaves with its unique boundary assurance when the device is in
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a resistance state. Such bistable memristive devices which exhibit two distinctive
resistance states, namely RON for their on-state resistance and ROFF for off-state,
are considered in this chapter [16–26]. Their resistance is assumed to switch in
a short switching duration (TS) when a voltage with magnitude higher than their
switching thresholds (VCLOSE for off-to-on and VOPEN for on-to-off switching)
is applied across them for a sufficiently long time duration. In other words, the
device is assumed to change its resistance after a fixed time duration (Thold), and
the transition will be completed after attaining the other resistance [19–21]. For
simplicity, we assume that the resistance switching rate is constant, zero for smaller
voltage amplitude than the thresholds and nonzero constant for larger amplitudes,
the resistance switching behaviors are described in a Verilog-A behavioral model.

Figure 10.2 shows low-frequency voltage–current characteristics of a bistable
memristive device that exhibit distinctive two resistance states, the low-resistance
of RON (closed) and the high-resistance of ROFF (open). A long enough positive
voltage pulse with its level higher than the voltage threshold VCLOSE closes the
device switching from ROFF to RON, while a negative pulse with magnitude larger
than VOPEN opens the device for long enough voltage applications. On the other
hand, for the applied voltage with amplitude smaller than VCLOSE or VOPEN , the
device remains in its previous state with no change of the resistance state. With the
thresholds of VCLOSE and VOPEN , the device can be set (or reset) by applying larger
voltage amplitude of VSET (or VRST) than the thresholds, while the resistance is held
for the readout voltage (VEVL) with smaller amplitude than the thresholds.

10.3 Memristive Stateful Logics

Stateful logics is an intriguing important application of memristive devices which
function for both logic and latch operations [16, 17]. Since these memristive
devices can implement memory, programmable interconnects, and logic operations
and latches, with ultra-high integration density together with CMOS devices, the
memristive device technology structured in a nanowire crossbar array has emerged
as an intriguing technology that can allow Moore’s Law to continue overcoming the
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barriers of CMOS technologies due to lithographical limitation and power density
limit among others. One of the most plausible architectures for hybrid integration
of memristive nano devices and CMOS devices is the CMOS/Molecular hybrid
(CMOL) [6], which can be implemented by using Field Programmable Nanowire
Interconnect (FPNI) [7]. This is based on hybrid circuits composed of a conventional
CMOS layer connected to multiple crossbar layers that contain memristive devices.
With its inherent data-latching property, stateful logic can effectively implement
low-cost fully pipelined digital systems [20–22], and therefore holds potential for
implementing high performance next generation nano computers. Also, the latches
with embedded memristors can provide a power shutoff mode with non-volatility
against power failures.

However, the memristive stateful logic structure holds several technical issues
that must be resolved to effectively complement CMOS logic. The challenging
issues are on power consumption, operation speed, multiple fan-in/fan-out capa-
bility, and two- or three-dimensional integration for large-scale computations [21].
This section discusses the feasibility of nanowire crossbar memristive devices as
candidate devices to implement a general-purpose computation.

10.3.1 Basic Operations of Stateful Logic

Based on the memristive devices’ conditional set/reset operation and their
nonvolatile memory property, a stateful NAND gate has been reported [19].
Figure 10.3a illustrates the base material implication operation in the stateful logic,
where two memristive devices P and Q are connected by a common horizontal
nanowire to a load resistor RS. The logic values stored in the devices P and Q
as their resistance status are represented by p and q, respectively, and logic 0 (1)
corresponds to the open (closed) state of the switch. A switch is set to logic 0 (1) by
applying a negative (positive) voltage VRST (VSET) pulse through its corresponding
voltage driver. A VEVL pulse that is applied to a switch which is previously set to
logic 1 (0) prevents (allows) a state change of the other switch which is concurrently
driven by a VSET pulse. This conditional set operation enables the circuit to function
as a gate implementing material implication as shown in Fig. 10.3b.
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Fig. 10.4 Stateful NAND gate: (a) circuit configuration, and (b) a schedule to execute a NAND
operation

A stateful NAND gate is shown in Fig. 10.4a of which operation is executed
through three sequential steps as illustrated in Fig. 10.4b [19]. The inputs are logic
levels of p1 and p2 stored in switches P1 and P2, and the output is the logic value q′′
accumulated in switch Q. Initially, a VRST pulse is applied to switch Q to execute
q= 0. The second step q′= p1 + q = p1 is performed by applying a VEVL pulse to
VP1 concurrently with a VSET pulse to VQ. Finally, the operation q′′ = p2 + q′ =
p2 + p1 = p1 p2 is executed by concurrently applying VEVL and VSET pulses to
VP2 and VQ, respectively. Since the NAND operation is known to be universal, any
Boolean logic operation can be constructed by a network of NAND gates [19].

10.3.2 Issues for Large-Scale Logic Integration

However, several technical issues arise in designing memristive devices-based
stateful logic architecture [21]: Firstly the stateful NAND gate requires deep
pipeline steps for logic execution, as shown in an example where three dedicated
steps are required for a two-input NAND operation shown in Fig. 10.4b. The
pipeline steps are not dependent on the circuit size, but determined by the maximum
fan-in of the constituent NAND gates. If this dependency is removed, and the
multiple implication operations can be executed concurrently in a single step, the
performance—the data latency as well as the pipeline period—can be significantly
reduced.

Secondly, a simultaneous execution of multiple logic calculations is a basic
required capability of large-scale logic arrays. When there are functionally disjoint
logic cells, they should be executed in parallel so that the total required time for
computation can be reduced. However in the stateful NAND gate of Fig. 10.4a
with shared common horizontal nanowire and load resistance (RS), every one-to-one
implication process should be non-overlapped in time and thus very deep pipeline
steps are needed for large-scale logics. A proper switch-based array configuration
with isolated logic gates can perform concurrently multiple logic operations.
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In stateful logic, resistance of a memristive device is used as the physical state
variable. Also, the memristive switches involved in an operation need to be isolated
from those in other operations. This constraint prohibits a logic state from fanning
out. Therefore, each logic state should be explicitly duplicated by a dedicated
operation. In order to integrate a complex logic function with high density, two-
or three-dimensional circuit configurations that can be mapped onto the FPNI fabric
are favored instead of the one-dimensional devices array [21].

10.3.3 Reconfigurable Stateful NOR Gate

In consideration of aforementioned technical issues, a CMOS/memristors hybrid
structure of NOR function was reported to execute multiple implications in a
single step [21]. Any Boolean logic operation can be constructed by a network of
NOR gates since NOR operation is also universal. Figure 10.5a shows the circuit
configuration for two-step NOR operations where k+ 1 number of memristive
devices are connected in parallel with a shared common horizontal nanowire and
a load resistor RS. Devices P1, P2, . . . , Pk are input memristive switches with logic
states p1, p2, . . . , pk, respectively, and the Q is the output device with its logic
state q. Instead of composing a network of multiple two-input NAND gates to form
a k-input NOR operation, this circuit is devised to execute q′ = p1 + p2 + · · ·+ pk

in two steps. After q is cleared by applying a VRST pulse to VO in Step-I, a single-
step simultaneous execution of multiple implication processes is made enabled in
Step-II by applying properly conditioned VEVL pulse simultaneously to all input
switches and concurrently applying VSET to the device Q. VEVL and VSET for the
conditional set operations of the single-step NOR executions can be analyzed by
using an equivalent resistor network model shown in Fig. 10.5b [21].
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However, since more than two parallel connected memristive switches are
involved in the NOR operation, the load resistance needs to be scaled with the
number of inputs so that the voltages across the memristive switches are properly
maintained within the valid ranges for all possible input fanning-ins. The scaled
equivalent load resistance will lower the required levels of conditional set voltages
(VSET and VEVL) and desensitize the dependency of the voltage conditions on the
input fan-in. The circuit construction becomes simple if a load resistor is attached
to each memristive switch as shown in Fig. 10.6. Here, the effective load resistance
is inversely proportional to the number of inputs, and the logic computation always
uses all load resistors unlike that the sequential implications in [18] use only one
shared load resistor.

Based on the logic structure of Fig. 10.6, a generalized hybrid type of two-
dimensional circuit structure is devised as shown in Fig. 10.7 so that a group
of the logic units can be easily mapped onto the FPNI fabric [21]. CMOS and
nanowire inter-layer vias to blue (red) horizontal (vertical) input (output) nanowires
are marked by ⊗ (⊕). Green wires are connected to voltage drivers through the
vias marked by ⊕. It is composed of four different devices groups: memristive
logic devices (P1, P2, . . . , Pk, and Q) for input and output; memristive interconnect
switches (I11, I21, . . . , and Ik1) for logic configuration; CMOS switches (SI and SO)
for implication scheduling; dedicated load resistors (RS). Each load resistor can be
implemented by using either correctly biased CMOS transistors or multiply stacked
nanowires. Note that the functionality can be reconfigured solely by the interconnect
crossbar switches on the nanowire layer and no reconfiguration is required in the
CMOS layer. Since every logical value is latched in memristive logic devices, this
architecture can operate reliably as a pipeline [20]. In other words, the pipelined
architecture which can execute the corresponding computation at a constant rate
independent of the system size can be devised by using the inherent data-latching
property of memristive switches. The pipeline architecture can be easily mapped to
the fabric as a two-dimensional array of columns. In a column, a tri-state voltage
driver (VI) is shared by multiple unit cells each of which consists of a memristive
switch, a load resistor, and a CMOS control switch. The units in a column of the
pipeline alternate between the write mode in which a new state is registered, and the
read mode in which the state is read to determine the state at the next column. Any
two neighboring columns are executed in different modes each other.
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The single-step NOR execution is validated for large input fan-in by using a
Verilog-A compact model for the memristive devices. For voltage pulse levels
higher than VOPEN (VCLOSE), devices’ resistance states switch with the minimum
pulse width of 10 ns. Nine transient analyses for an 8-input NOR gate of Fig. 10.7,
each with n= 0, 1, . . . , 8, respectively, were performed, with devices’ switching
thresholds of VOPEN = 1 V and VCLOSE =−1 V. The analyzed conditional set
voltages of (VSET, VEVL)= (1.7×VCLOSE, 1.2×VCLOSE) and VRST = 1.6×VOPEN

with an adaptive β -ratio (two for Step-2 and 200 for Step-1) are used. The pulse
widths of voltage drivers are all set at 20 ns which is twice the minimum requirement
for a state switching.

Figure 10.8a shows the applied voltages for Steps-I and -II where thin blue
and thick red pulses, respectively, display VI and VO pulses. All results for Step-
I are displayed in dotted lines while those for Step-II are in solid waveforms. The
input states of p1 through pk are programmed before each Step-I process such that
n= 0, 1, 2, . . . , and 8, sequentially. However for clarity, only the transient results
of Step-I and Step-II are compiled into the graphs. As shown the equivalent input
resistance (RP-EQ) in Fig. 10.8b, the programmed input states are well maintained,
not affected by the subsequent conditional set processes. This can be validated
by the well confined small enough voltage drops across the input devices (VP) in
between VCLOSE and VOPEN , shown in thin blue lines in Fig. 10.8d, for all possible
cases. While the voltage drops across the memristive interconnecting devices, shown
in Fig. 10.8c, are also maintained with less than 120 mV far below the VOPEN,
and that of the output device (VQ) exceeds VCLOSE only when n= 0 as shown in
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Fig. 10.8d, where the smallest VQ difference between the cases of n= 0 and n �= 0
is larger than 0.5×VCLOSE. The conditional VQ transition successfully yields, with
a large margin, the 8-input NOR operation in a single-step by setting q′ = 1 only for
n= 0 from its initial state of q= 0. The resulting transient output resistance (RQ)
behaviors are shown in Fig. 10.8e, where the resistance switches to RON from ROFF

only for n= 0.

10.3.4 Memristive XOR Gate Functioning
as a Resistive Multiplier

Recently [23] reported that the memristors enable bipolar signal multiplications
with inherent property of output registering, in two computing phases. Figure 10.9a
shows the reported resistive multiplier circuit which is composed of two bistable
memristive devices (RY and RP) together with a load resistor (RS) and a CMOS
switch (SX). While VX is a two-level digital input voltage, VP is a fixed bias voltage
chosen to guarantee memristors’ conditional set operation together with the logic
level of VX. The switch SX is turned on and off by the input logic level. When SX is
turned on by the high level of VX (VX =VEVL > 0), RS sinks the currents supplied
by the memristive devices RP and RY in parallel. On the other hand, for VX = 0,
SX is turned off by the input level and RS becomes isolated, thus a current path is
formed through RP and RY in series. By choosing proper levels of VP and VX, the
two operation modes controlled by VX can perform a bipolar multiplication, where
the two inputs are the level of VX and the resistance state of RY, and the multiplied
output is registered as the resistance state of RP [23].

With the variables x, y, and p, respectively, representing the logic values of
VX, RY, and RP, where the logic level “1” stands for VX =VEVL, RY =RON, and
RP =RON, and the logic “0” for VX = 0, RY =ROFF, and RP =ROFF, the computing
sequence is summarized in Fig. 10.9b. As shown for the evaluation sequence in
Fig. 10.9c for all possible combinations of x and y, the evaluated XOR output after
two steps is stored as the last state of RP (p′), where the RP is initially reset to “0”
(p= 0).
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In order for the conditional set operations which are the basic function of the
XOR computation to be done securely, the bias voltage of VSET and the logic
level VEVL need to be carefully chosen [23, 25]. Figure 10.10a, b shows equivalent
circuits of Fig. 10.9a, respectively, for Step-II with x= 0 and x= 1, where the VP

bias of VSET is normally higher than VCLOSE for these conditional set operations.
If x= 0 in Step-II, the voltage drop across RP, VRP, which is initially in off state
(p= 0) is proportional to y, and thus VRP can be higher than VCLOSE only for y= 1.
Under such condition, the state of RP registers a duplication of y, i.e., p′= y. On the
other hand, if x= 1, VRP becomes inversely related to y, since the smaller RY state
yields the higher value of VS. When the VSET and VEVL are chosen to have VRP

higher than VCLOSE only for y= 0, the circuit can function as an inverter where the
inverted version of y is registered in the memristive device RP, i.e., p′ = y. The bias
constraints for the conditional set operations in Step-III are exactly the same as for
the case with x= 1 for Step-II.

With parameters of α and β , respectively, for off-to-on resistance ratio
(ROFF/RON) and the ratio of ROFF/RS, aforementioned conditional set operations
for Steps-II (x= 0 and x= 1) eventually arrive at the following set of four bias
constraints:

VSET < 2×VCLOSE , (10.1)

VSET ≥
(

1
1+β

)
×VEVL +

(
1+

1
1+β

)
×VCLOSE , (10.2)

VSET > (1+β )×VEVL − (2+β )×VCLOSE , (10.3)

VSET <

(
α

α +β

)
×VEVL +

(
1+

1
α +β

)
×VCLOSE , (10.4)
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where (10.1) and (10.4) offer two upper bounds, and (10.2) and (10.3) show the
lower bounds of available bias space for VEVL and VSET.

Figure 10.11 depicts an example solution space for a case with α = 100 and
β = 10, where the solid and dashed lines, respectively, plot the upper and lower
bounds. Within the wide range of available biases, we chose VEVL =VCLOSE and
VSET = 1.5×VCLOSE as a demonstrative case. The solution space satisfying the
constraints always exists forα >β > 1. In consideration of process variations that
can happen to the bistable resistance levels (RON and ROFF) and the threshold
voltages (VCLOSE and VOPEN), it is important to choose the bias voltages of VSET

and VEVL around the center of the solution space.

10.3.5 Extension to XNOR Operation

Based on the resistive XOR, we introduce a resistive multiplier circuit that operates
as an XNOR gate. As the circuit diagram shown in Fig. 10.12a, the memristive
XNOR is composed of three bistable memristive devices (RY, RP, and RQ), five
CMOS switches (S1–S4, and SX), and a load resistor (RS) [25]. Similar to the
resistive XOR circuit of Fig. 10.9a, its computing sequence is composed of 3 phases,
Steps-I through Step-III, where the devices RP and RQ are simultaneously reset in
Step-I, and the x⊕ y is computed and registered in RP during Step-II, p ′ = x⊕ y,
whereas the registered p′ is then inverted and the complementary state of RP is
registered in RQ during the Step-III, q′′= x⊕ y. The three computing steps allow the
circuit to register the logic values of x⊕ y and x⊕ y, respectively, as the resistance
states of RP and RQ. The registered outputs can be accessed anytime later on by
reading the nonvolatile state of RP and RQ. The computing sequence and switch
controls are summarized in Fig. 10.12b, and its truth table is shown in Fig. 10.12c.
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Fig. 10.12 Memristors-based resistive multiplier that registers an evaluated XNOR output in the
state of RQ (q), in three computing phases. (a) circuit configuration, (b) XNOR execution phases,
and (c) truth table for the 3-step XNOR execution

Table 10.1 Readout
configuration

Mode VP VQ S1 S2 S3 S4

XOR VEVL 0 0 0 1 1
XNOR 0 VEVL 0 0 1 1

Consisting of memristive devices and CMOS switches, the resistive multipliers
of Figs. 10.9a and 10.12a can execute, even with passive unipolar resistances,
bipolar multiplications in two or three computing phases. Compared to the CMOS
XOR/XNOR gate, the memristors-based resistive XOR/XNOR take less chip area
and hence increase the packing density, since only three or five transistors and a
resistor will be needed on the CMOS layer and the memristors can be stacked on
top of the CMOS circuit through hybrid integration. Other required peripherals for
Step control and voltage drivers can be shared with other circuits in the system.
In addition to the superior packing density, the proposed memristors-based XOR
and XNOR inherently register the computed outputs in nonvolatile memristors, and
thus can save the costly registers, especially for massively parallel deep pipeline
computing applications [27, 28].

After completing the Steps-I through III, either of evaluated logic values p or q
can be read by sensing VS under a readout voltage appliance to the device to be
read, since both the evaluated XOR and XNOR outputs are registered as the state
of RP and RQ. Since the RP and RQ are basically complementary each other, i.e.,
q = p, a sensed voltage window can be maximized by configuring the switches
and readout voltages as summarized in Table 10.1. With the configurations, VS

becomes proportional to XNOR output (q) if VQ =VEVL and VP = 0, whereas it
is proportional to XOR output (p) for VQ = 0 and VP =VEVL. Here the switch S3

in the XNOR gate is turned on together with S4 for this readout duration in order
to prevent potential VS dependency on VX. When the switch-induced parasitics are
ignored, VS for a readout of XNOR output can be represented with parameters of
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Fig. 10.13 XNOR execution. Simulation results for the stateful two-input XOR gate

α and β , respectively, for off-to-on resistance ratio (ROFF/RON) and the ratio of
ROFF/RS, as:

VS =

(
RP//RS

RQ +RP//RS

)
×VEVL =

{
1

α +β + 1
+

(
α − 1

α +β + 1

)
·q
}
×VEVL.

For a case with α = 100 and β = 10, the sensed voltage VS for q= 0 and q= 1
are, respectively, 0.09×VEVL and 0.9×VEVL, of which the voltage difference is
wide enough to identify the stored information.

10.3.6 Simulations of Resistive XOR/XNOR

The circuits in Figs. 10.9a and 10.12a were designed for the 0.18um CMOS
process, and the behaviors of memristive devices were described in a Verilog-A
model. Circuit simulations were performed with the circuit parameters of β = 10,
VEVL =VCLOSE, VSET = 1.5×VCLOSE, and VRST = 1.5×VOPEN . Assuming 10 ns
for the devices’ hold time (Thold) before resistance switching, pulse widths of VP

and switch control signals were chosen to be 2×Thold, 20 ns, so that the memristive
devices can safely be switched when all other constraints are met.

While the switches S1 and SX in the XOR gate (Fig. 10.9a) are sized to the
minimum width, Wn/Ln = 0.22 um/0.18 um, to minimize the parasitics, S2 is sized
to Wn/Ln = 1 um/0.18 um in order for the channel resistance not to significantly
shift the conditional set constraints [23]. Figure 10.13 shows the simulated results
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of the resistive XOR circuit for all possible four input combinations, x∈{0,1} and
y∈{0,1}. Each simulation started from the initial RP state of “1” (RP =RON). In
Steps-I, the initial RP was reset to ROFF, p= 0, and then the XOR function was
executed in Steps-II registering the evaluated results (p′). The transient RP behaviors
clearly show that the RP device successfully registers the evaluated output in its
resistance state, p ′ = x⊕ y, for all input combinations. This can be confirmed by the
observation that VRP higher than VCLOSE is sustained for longer duration than Thold

only for the case x �= y. For other cases of x= y, VRP in Steps-II remains in a range
lower than VCLOSE, with a margin larger than 250 mV. Also it can be noted that the
state of RY (y) always holds its value, since VRY is well confined within the range
[VOPEN, VCLOSE] with a margin larger than 250 mV [23].

Figure 10.14 shows the simulated results of the two-input resistive XNOR circuit
shown in Fig. 10.12a, for all possible input combinations. In Steps-I, the initial
RP and RQ were reset to ROFF, p= 0 and q= 0, and then the XOR function was
executed in Steps-II registering the evaluated results in RP (p′). Finally in Step-III,
the inverted version of p′ is registered in RQ, (q′′ = p′). The transient behaviors of
RP and RQ clearly show that the devices successfully register the evaluated outputs
in their resistance states, p′= p′′= x⊕ y and q′′ = x⊕ y, for all input combinations.
This can be confirmed since VRP (VRQ) of higher than VCLOSE is sustained for longer
duration than Thold only for the case x �= y (x= y). For other case of x= y (x �= y),
VRP (VRQ) in Steps-II and -III remains in a range lower than VCLOSE, with more than
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200 mV margin. It can be noted that the state of RY, y, holds its value, since VRY

is well confined within the range [VOPEN , VCLOSE] with larger margin than 200 mV.
The evaluated p′ also holds its value for Step-III [25].

10.4 Multiplier Application to Pattern Matchers

The resistive XOR and XNOR function as signal multipliers with negative and
positive multiplication polarities, of which one of the two inputs is the stored
information in a memristor (RY) and the other one being the input logic level (VX).
Among many potential applications where such multiplication capability can be
used, we consider a correlation-based pattern matcher as a demonstrative example.
In numerous applications of pattern recognition of voice or image, estimation and
detection of noisy signal in the communication systems, the signal similarity more
specifically the correlation between the input data pattern and the stored reference
data is a fundamental measure of the matching as a function of a time-lag applied to
one of them. Applications also include scientific data analysis of climate, astronomy,
or bioinformatics, as well as national security applications including cyber security,
surveillance, and forensics.

In the linear digital signal processing, this is commonly known as a sliding
inner product. Since the quantity of correlation between two inputs is equivalent
to the inner product of the two signals, a simple correlator can be constructed with
a number of multipliers and one adder as shown its diagram in Fig. 10.15a. At
every computation, an L-number of input bit sequence X= [x0, x1, . . . , xL−1] is,
respectively, multiplied with the same number of reference sequence Y= [y0, y1,
. . . , yL−1], and then summing the all products together becomes the quantity of
signal correlation (c), i.e., c=∑i= 0

L− 1xi · yi. Similar to the linear digital correlator,

x0

y0

cx1

y1

x2

y2

xL-1

yL-1
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c*
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a b

Fig. 10.15 (a) Linear digital correlator of which output (c) is dumped during ON durations of the
dump switch (SD), (b) nonlinear pattern matcher implemented by an array of resistive XORs
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Fig. 10.16 Resistive XOR cell implementation for a pattern matcher. After registering XOR
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Table 10.2 Pattern matcher
computing sequence

Step VP VQ S1 S2 S3 SD Mode

I VRST VRST 1 0 0 0 Reset
II VSET – 0 1 0 0 XOR
III VEVL – 0 0 1 1 Correlation

a nonlinear pattern matcher for L-bit width vector comparisons is constructed by
a parallel network composed of L-number of memristive XOR multipliers, as the
diagram shown in Fig. 10.15b [26].

Individual resistive XOR cell is comprised as the circuit in Fig. 10.16. Here the
reference vector Y is assumed to be registered as the resistance states of devices
(RY). During the XOR evaluation periods of Steps-I and -II as its sequence described
in Table 10.2, each XOR cell computes the bit-wise signal multiplication between
xi and yi with the dump switches (SD) turned off. Then in the similarity evaluation
period of Step-III, the SD switches are turned on to connect all the VS nodes of
participating XOR cells while applying evaluation voltage VEVL to VP. The switch
S3 of each XOR gate is turned on for this period in order to prevent potential VS

dependency on VX which cause undesirable inaccuracy of the evaluated output (c*).
If the SD switches are in off states under the bias voltage of VP =VEVL, each

XOR gate operating in a readout mode produces its VS node output (VSO.i), when
the parasitics are ignored, as:

VSO.i =

(
RS

RP.i +RS

)
×VEVL =

(
1+ zi (α − 1)

1+ zi (α − 1)+β

)
×VEVL,

where RP.i =
ROFF

1+zi(α−1) and zi = x⊕ y. It produces VSO.i =
(

1
1+β

)
× VEVL for

matched bits (zi = 0), and VSO.i =
(

α
α+β

)
×VEVL for mismatched bits (zi = 1).

For the similarity evaluation of two L-bit width vectors with closed SD switches,
the output voltage at c* node in Fig. 10.15b, VXY, becomes:

VXY =

(
RS.EQ

RP.EQ +RS.EQ

)
×VEVL,



320 S.-M.S. Kang and S. Shin

where RP.EQ = ROFF

∑L−1
i=0 {1+ zi (α − 1)}

and RS.EQ = RS
L = ROFF

β L . The output voltage,

VXY, can be recast as a function of the number of matched bits (k) out of L-bits, as:

VXY =

(
1+α (L− k)

1+α (L− k)+β L

)
×VEVL. (10.5)

As the evaluated similarity output, VXY is inversely related to the correlation

between the vectors X and Y, ranging from the largest VXY of
(

1+αL
1+(α+β )L

)
×VEVL

for k= 0, to the smallest VXY of
(

1
1+β L

)
×VEVL for k=L. Here it can be noted

that the VXY is nonlinear to the number of matched bits. As the k approaches to
L, the VXY is reduced much more rapidly compared to cases with less number of
matched bits. Such nonlinear VXY behavior to the signal correlation significantly
enhances the matcher performance, since a small reduction of the correlation from
the perfect matching case will cause significant amount of VXY difference. It is also
noteworthy that, even though the unit resistive multiplier individually may exhibit
relatively slow computing speed, pattern matchers comprised of a massive array of
the resistive multipliers can be much faster than conventional CMOS correlators by
performing multi-bit calculations in a single step. In other words, the computation
speed is independent of L, implying that the circuit can complete the computing
for any complex sources in 3-steps, 2-steps for XOR evaluation, and 1-step for
evaluation and readout of similarity output [26].

For the 0.18 um CMOS process, the resistive multiplier-based pattern matcher
of Fig. 10.15b was designed for a simple demonstrative pattern matcher case. For
an example case with L= 8, a stored reference code (Y) and nine different input
code words (X) were generated such that the ideal correlation values are equally
distributed within [−1, 1]. For the same device and circuit parameters that used
in Sect. 10.3.6, Fig. 10.17a shows the correlation-dependent equivalent parallel
impedances of RP.EQ and RS.EQ, and the output similarity values of VXY are shown
in Fig. 10.17b. Induced by the nonlinear RP.EQ whose value is highly sensitive for
the close matching cases, the matcher output (VXY) sensitively identifies the pattern
similarity [26].

In order to validate the matcher’s functionality, we constructed an 8-bit memris-
tive XOR-based pattern matcher with 8-different branches as shown in Fig. 10.18
[26]. The input symbol stream was encoded into 8-bit binary code words at a rate
of fsymbol = 1.67 MHz (Tsymbol = 600 ns), and then was serialized with paddings of
two zeros in between the symbols at a rate of fbit = 16.7 MHz (Tbit = 60 ns). The
serialized bit stream was then pushed into the 8-bit shift registers whose outputs
were fed to the 8 matcher branches in parallel. Here the matchers were clocked
by fCK = 3× fbit = 50 MHz (TCK = 20ns), so that the 3-Steps of matcher operations
(Steps-I and II for XOR executions, and Step-III for the similarity evaluation) can
be done in every Tbit duration.
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For a demonstrative application example, each of the matcher branches was set to
store one of the eight binary encoded characters of “ACFILNOR,” and the character
stream of “CALIFORNIA” was fed to the input. Figure 10.15 depicts simulated
matcher branch outputs (VXY) captured for the similarity evaluation period (Steps-
III) of every input bit cycle, showing the matcher successfully detects the matched
input pattern [26]. As desired, each branch produces the low level VXY only if the
input bit stream is perfectly aligned and matched to its stored reference vector Y
(Fig. 10.19).
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10.5 Summary and Future Memristive Electronics

In this chapter we discussed recently reported memristor applications to resistive
stateful logic gates and pattern matchers. Memristive technology is anticipated
to yield new revolutionary analog/digital functions by exploiting the nonlinear
properties of memristors, and supplement and replace transistors with memristors
for latching or switching circuits, such as FPGAs, which will significantly reduce
the form factor, manufacturing cost, and active/leakage power consumption. One
potential example is the dependable memristive logic array, for which basic
architectures and appropriate circuit compositions for reconfigurable resistive logic
array can be investigated with particular attention to the technical barriers such
as difficulties for multiple fan-in/fan-out capability and functional robustness. The
memristive logic array can effectively implement low-cost fully pipelined digital
systems, and therefore holds great potential for implementing low-power and high
performance next generation resistive nanocomputers. The memristive-technology-
enabled low-cost, nonvolatile, solid-state circuit technology will significantly reduce
the energy cost associated with all other electronic systems.

It is also anticipated that a reliable low-power hardware platform for truly
dependable nanocomputing systems will help Moore’s Law to be extended far
beyond the barriers currently observed in CMOS technologies. In addition to the
barriers to Moore’s Law, such as the scaling limit and the power wall, future
computers for complex and advanced information processing must overcome the
severe connectivity issues. Since the power consumption for communication can
take more than 90 % of the entire computing power, the computer architectures
with co-location of memories and processors on a chip becomes preferable. Placing
the massive memristive nano devices into local logic and processing cores will be
a key to truly co-locate memory and processor on a chip. Since the co-located
memory devices can basically function as nonvolatile local memories, stateful logic
gates, and also as reconfigurable interconnects, all with very high integration density
and low power, the hybrid hardware structure can become a leading technology,
significantly relaxing the issue related with scaling and leakage power, and enabling
instant resiliency at power shutoff.

Recently demonstrate dare several key technologies for high-density nonvolatile
memory architectures; reconfigurable resistive logic gates and nonvolatile CMOS
logic structure; resistive computation structures; and many others, all of which will
contribute to building a fundamental basis for truly flexible nonvolatile resistive
nanocomputers. The related research would open a new electronics and computing
paradigm, and directing the research community to a completely new way.
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Chapter 11
Memristor Device Engineering and CMOS
Integration for Reconfigurable Logic
Applications

Qiangfei Xia

11.1 Introduction

In the past few decades the integrated circuits (IC) industry has successfully
followed Moore’s Law in delivering more and more powerful computer chips
with reduced cost per transistor [1]. However, CMOS (complementary metal oxide
semiconductors) scaling is approaching a physical and economical limit. On the
one hand, it becomes more and more challenging and expensive to build smaller
transistors that are packed into a very small area. On the other hand, the leakage
current associated with smaller transistors will deteriorate or even destroy the
device. To sustain rapid progress in information technology, there are intensive
efforts to go beyond Moore’s Law in research areas including new devices/materials,
new technologies, and new architectures and algorithms.

The memristor (memristive device) emerges as one of the most promising
devices for the post-CMOS era. As a nonvolatile, two-terminal electronic device,
the memristor has variable resistance that changes with the polarity and amplitude
of the applied voltage [2–4]. High and low resistance states instead of charge storage
are used to represent the logic “1” and “0” in these devices. The typical structure
of a memristor consists of a layer of switching material sandwiched between two
electrodes. With a cross-point structure, these devices offer great scalability since
the junction area is dependent solely on the width of the two nanowires. Materials
that are widely used for the switching layer include binary or ternary transition
metal oxides, perovskites, and solid-state electrolytes [5]. Depending on the device
switching mechanism, the electrode materials are usually inert metals such as Pt, W,
or active metals such as Ag, Cu, etc.
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Although the fundamental physics for the switching mechanism is not thoroughly
understood, there has been significant progress in memristive device research and
development. Particularly, superior device performance has been achieved, such
as high endurance higher than 1012 cycles [6], faster than 1 ns switching speed
[7], sub-100 fJ energy consumption per switching event [8] and an extrapolated
date retention time longer than 10 years at room temperature [9]. Because of the
achievement in device performance, memristors have been proposed and demon-
strated for applications in nonvolatile memory [10–12], reconfigurable switches
[13], nonvolatile logic [14], and bio-inspired neuromorphic computing [15–17].

This section focuses on the memristor device engineering and integration for
reconfigurable logic circuits applications. First, the requirements in particular device
performance parameters are reviewed. Next, device engineering approaches used
to achieve these metrics are discussed. These include the fabrication techniques,
the choice of switching materials, the multilayer devices, and the device geometry
engineering. Finally, hybrid memristor/CMOS circuits with reconfigurable logic
functions are demonstrated.

11.2 Performance Requirements

Depending on the application, specific requirements for the device’s performance
are different. For reconfigurable logic applications, the metrics of the switches can
be characterized by the following parameters.

11.2.1 Power Consumption

Resistive switching effect can be implemented through a number of physical
mechanisms including phase change, electrochemical reaction, and the creation
and migration of charge carriers (such as oxygen vacancies). However, widespread
application of the resistive switching is limited by practical power consumption
concern. For example, resistive switching based on the amorphous/crystalline phase
change phenomenon has been widely studied and was proposed for memory and
neuromorphic computing. But one potential barrier for such device is the high power
consumption in heating the volume of the materials in the cell. For reconfigurable
switches in a larger array, it is important that each device consumes a minute amount
of power so that the switch network is not going to be the bottleneck of power
consumption. Equally important is the power dissipated in the nanowire network
for a memristor crossbar array. The demonstrated sub-100 fJ energy consumption
per switch event in oxide-based memristor devices is encouraging, but the power
dissipation in the metal nanowire electrodes is yet to be explored.
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From the circuit’s point of view, the power consumption of the memristors
dictates the CMOS compatibility of the devices, as discussed in the following
sections.

11.2.2 Endurance

In some applications, such as solid-state drives or as electrical synapses for neuro-
morphic computing, the devices might experience much more reading than writing.
Consequently, the endurance requirement of memristors for those applications is
not as demanding. However, for memristors as reconfigurable switches, this is not
the case. The devices are programmed every single time when a reconfiguration
is necessary. The frequent change of the device states imposes extremely high
standards for the device’s endurance. Previously, up to 1010 cycles of endurance
were demonstrated for a TaOx device at HP Labs [18], and this record was soon
broken by Samsung using a bilayer TaO2−x/Ta2O5−x device that exhibited 1012

cycles of endurance [6]. The common feature of their devices is that both used
a TaOx-based oxide as the switching layer. Although the best endurance was
demonstrated with the TaOx-based devices, one drawback of such devices is their
low ON/OFF ratios. It is desirable that the endurance of the memristor device be
comparable to that of DRAM, that is, on the order of 1015 cycles.

11.2.3 Uniformity

The temporal (cycle-to-cycle) and spatial (device-to-device) variation in device
performance has been identified as one of the biggest obstacles for the wide adoption
of memristor devices. There are several fundamental origins for the nonuniformity.
First of all, the number and location of conductive filaments in a junction are
random, especially for a device with a relatively large junction area. Second, the
junction geometry such as the thickness uniformity and the line edge roughness
of the electrode wire are not the same from device to device. Third, during the
RESET process, the interface between the conductive filament and the oxide is not
deterministically controllable.

For logic computing purposes, some of the nonuniformity issues can be
addressed by adopting new computing algorithms, such as statistical computing
[19] that uses the stochastic nature of the memristive devices and use a bit stream
from several devices rather than one to represent the logic state. However, this is
not practical for reconfigurable switches since each junction serves as a switch.
It is hence important that the switching voltages are uniform from device to
device and from cycle to cycle so that proper drive circuits can be used for these
devices. The best demonstrated device-to-device uniformity was 5 % variation in
the programming voltages [20].
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11.2.4 Switch Speed

How fast the device can SET (to low resistance or ON state) or RESET (to
high resistance or OFF state) is critical for many applications. For reconfigurable
switches, this will affect the bandwidth of the logic circuits. The measurement of the
switch speed is practically challenging especially down to the nanosecond region.
This is partly due to the lack of ultrahigh speed measurement equipment, as well
as the fact that shorter electrical pulses are hard to reach the junction area due to
significant reflectance loss on the metal wires. To couple ultra-short electrical pulses
into the device with reduced reflection, a tapered coplanar waveguide (CPW) test
structure was introduced and the best reported switch speed data was on the order
of 100 ps [7]. It was also discovered that there is a speed-voltage trade-off for the
memristor devices [21]. Higher switching voltage is usually needed to switch the
devices if shorter electrical pulses are used.

11.2.5 CMOS Compatibility

In order for the memristor to be used for reconfigurable logic circuits, it is often used
together with silicon-based transistors in a hybrid fashion. It is straightforward that
the materials and process used in building the circuits should be compatible with
state-of-the-art CMOS technology. Moreover, the programming voltage should be
compatible with the CMOS driving circuits. Memristors can be built with standard
IC fabrication techniques such as lithography, deposition, and etching. While there
is a broad spectrum of materials that have exhibited memristive behavior, including
standard materials used in the IC industry such as silicon, silicon oxides are
considered advantageous for the wide adoption of memristors without significant
alteration in the fabrication infrastructure. To further improve the device’s behavior,
memristors with electrodes embedded into the substrates have demonstrated much
improved endurance and reduce series resistance [22]. This can be implemented
in the industry with a process similar to dual Damascene process that is currently
widely used for Cu interconnection in the IC industry.

Voltage compatibility with CMOS imposes high demand in the device’s perfor-
mance, especially the programming voltages. The current generation of transistors
operates at a voltage lower than 1 V. To make memristors compatible with CMOS, it
is hence important to (1) develop memristors that do not require an electroforming
process (electroforming is a process in which a higher voltage/current is used to
create a conductive path (or filament) by softly breaking down the switching layer
for a wide variety of transition metal oxides), and (2) develop memristors with
ultralow programming voltages.
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11.2.6 I–V Nonlinearity

When memristors are connected in a cross bar, all the cells in a row are connected to
each other. This inevitably creates a problem in selectively programming a particular
cell because the neighboring cells could be affected. This is the so-called sneak
path problem. When a crossbar array becomes bigger, this problem becomes more
complicated. Several selective devices such as transistors, diode, etc. have been
proposed to solve this problem, but they have their own problems as well. For
example, diode is better for a unipolar switching device, while a transistor will
increase the area of each cell, limiting the scalability of the cross bar.

For reconfigurable switches, it is hence desirable to use devices that exhibit
intrinsic I–V nonlinearity without introducing external selector devices to precisely
program a particular device. I–V nonlinearity of memristive devices will minimize
the sneak path current with no overhead in the cell area.

11.2.7 ON/OFF Conductance Ratio

The ON/OFF ratio is important for high-density memory applications, especially
for multi-level cells. Storing more than one single bit of information in a memory
cell is one of the most promising approaches to effectively increase the information
density. To this end, a big enough ON/OFF ratio will enable big enough resistance
window between any resistance states. However, the requirement in the ON/OFF
ratio for the reconfigurable switches is much relaxed. As a binary device, as long
as the device can be reliably turned to stable ON or OFF states, it should serve the
purpose for a switch. Given the discussion on the endurance requirements, it appears
that TaOx-based memristor devices are one of the best candidates for reconfigurable
switch applications.

To meet all the aforementioned requirements, tremendous efforts should be
devoted to device engineering by adopting new switching materials, novel device
geometry, reliable fabrication techniques, and electrode nanostructure engineering.

11.3 Device Engineering

11.3.1 Fabrication Techniques

For memristors with a cross-point structure, a key issue in device fabrication is
the patterning of the electrodes. Since the width of the electrode wires determines
the junction size, nanopatterning techniques such as deep ultraviolet (DUV) pho-
tolithography, electron beam lithography (EBL), and nanoimprint lithography (NIL)
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Fig. 11.1 The “standard” fabrication process flow for cross bar structures using nanoimprint
lithography (NIL). Two NIL steps, one for the bottom electrodes and the other for the top electrodes
are used in this scheme [26]

are candidates for making nanoscale memrsitor devices. Among these techniques,
NIL has been widely used for fabricating memristor crossbar arrays over a large
area due to its resolution, patterning area, and cost advantages.

Usually ultraviolet nanoimprint lithography (UV–NIL) [23–25] is the preferred
method because it operates at low pressure and at room temperature. A key
component for NIL is the imprint mold. A master mold (usually made of Si with
a thin layer of thermally grown SiO2) with nanoscale (nanowires, nanoscale fan
outs, etc.) and microscale features (contact pads, alignment marks, microscale fan
outs, etc.) is first made by EBL, photolithography, and reactive ion etching (RIE).
These features are then duplicated using NIL and RIE onto a quartz (QZ) wafer.
QZ is chosen because it is transparent to the UV light used for NIL, chemically
compatible with the UV resist, and mechanically strong to achieve high resolution
nanopatterning. The fabricated QZ molds are then treated with trichlorosilane to
form an anti-sticking monolayer before being used for imprint. It is worthwhile
pointing out that in order to achieve smaller devices, the feature sizes on the master
SiO2/Si mold can be further shrunk using simple techniques such as wet etching
with diluted hydrofluoric (HF) acid [21].

Figure 11.1 schematically illustrates the procedure of memristor crossbar fabri-
cation using NIL to pattern both the bottom and the top electrodes [27, 28]. The
procedure is as follows. First, double layer resists consisting of an underlayer and a
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Fig. 11.2 Schematic of the
self-aligned fabrication
approach with one NIL step.
The cross-shaped trenches are
patterned by one NIL step
and RIE in resists; after
depositing the three layers, a
lift-off process concludes the
fabrication. The metal
electrodes were deposited
using angle evaporation so
that the metals reach the
bottom of one trench but not
the other [29]

UV-curable top layer are spin coated onto the substrate sequentially. The underlayer
is necessary if lift-off is used for electrode fabrication, and it can be dissolved in
a solvent such as acetone. The UV-curable layer is a liquid that can be turned into
a solid upon exposure to a UV source. Circuit patterns on the QZ mold are then
transferred to the UV-curable layer during NIL. The residual cross-linked UV resist
and the underlayer are etched by RIE using fluorine and oxygen-based etching
chemistry, respectively. During the second RIE process, undercuts in the transfer
layer are intentionally made by over etching to get better lift-off properties. The
bottom electrodes are deposited onto the sample followed by a lift-off process in
a solvent. A thin layer of switching material is then coated onto the sample with
sputter or atomic layer deposition (ALD) equipment. Following a second set of NIL,
RIE, metallization, and lift-off processes, the top electrodes are made on top of the
oxide thin film with the nanowires oriented orthogonal to the bottom wires.

The fabrication process in Fig. 11.1 has been widely used as a “standard” process
for memristor crossbar fabrication. Although nanoscale devices with excellent
electrical performances have been routinely fabricated, the “standard” process can
be optimized to improve the device performances. Recently, an alternative approach
that employs only one lithography step was proposed and demonstrated (Fig. 11.2)
[29]. In this new technique, an NIL mold with crossbar structures instead of
nanowire arrays was used to pattern crossbar-shaped trenches in the resist stack.
Metal evaporation with an oblique angle to the sample surface was then carried out
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Fig. 11.3 Images of a 1× 21
array of memristors
fabricated using one NIL step.
The junction area for each
device is 100× 100 nm2 [29]

to make the bottom electrodes. Due to shadow effects, metal entered into one trench
but not the other. The switching layer was immediately deposited in a sputter, and
the top electrodes were made by shadow evaporation along the direction of the other
trenches.

The advantages of the new fabrication technique are as follows. First, the critical
interfaces between the switching layer and the two electrodes are protected from
contaminants such as wet chemicals, resists, and charged particles during RIE.
Cleaner interfaces could lead to better device performance. Second, with only one
lithography step, the device fabrication process is self-aligned. As a result, the
requirement on accurate overlay alignment between the top and bottom electrode
is relaxed. The fabrication time and cost are reduced and the throughput will be
increased. Third, as NIL is a contact lithography technique, the defectivity of the
devices is increased if multiple NIL steps are used. Reducing to one NIL step means
fewer defects and higher device yield.

Figure 11.3 shows a typical scanning electron microscope (SEM) image of a
1× 21 TiO2 device array with the single horizontal wire at the bottom fabricated
with one NIL. The junction area of these devices is 100 nm× 100 nm. The device
stack has 12.5 nm of Pt as the top electrode, 13 nm thick TiO2 as the switching
layer, and 9 nm of Pt and 3.5 nm of Ti as the bottom electrode. Compared with
devices of the same geometry but fabricated with the “standard” two NIL steps,
devices fabricated with this technique exhibited forming-free nonvolatile switching
behavior with an ON/OFF ratio over 1,000. The switching current was at nA scale,
much lower than usually observed for similar devices fabricated using a multistep
lithography process (μA) (Fig. 11.4).

The forming-free behavior and the low programming current of devices fab-
ricated with one NIL step were due to the rougher surface created by angle
evaporation. Atomic force microscope (AFM) surface characterization showed that
a smaller deposition angle results in a rougher surface. For a 90◦ incidence, the
root-mean-square (rms) roughness was 0.50 nm, while that for a 20◦ incidence
angle was 0.98 nm. There were also a certain amount of metal spikes on the film
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Fig. 11.4 Typical I–V curve
of a forming-free device with
nA operational current. The
device exhibits nonvolatile
switching behavior with an
ON/OFF ratio over 1000 at
1 V [29]

surface. Figure 11.5 illustrates the electric field distribution on the surface of metal
electrodes deposited at different angles. As the numerical simulation results showed,
the electric field was concentrated at the metal spikes that served as “artificial
filaments.” For 3 V applied voltages, the calculated maximum electrical field for
(a) and (b) are 2.8× 108 and 6.4× 108 V/m, respectively. Consequently, the devices
were able to be switched at lower applied biases without the necessity of an
electroforming process.

The discovery can be further engineering by precise control of the “artificial
filaments” over a large area with high uniformity. The will lead to forming-free
devices with better performance uniformity. It is also possible to design a deposition
system so that all the critical layers (metal electrodes and switching materials) can
be deposited in the same system without breaking the vacuum. Such an instrument
will offer even better protection of the critical interfaces between the metal electrode
and the switching material.

11.3.2 Switching Materials

First reported nearly 50 years ago in anodic oxide thin film [30], the signature
hysteresis I–V curves have been discovered in different systems. A wide variety
of materials have been demonstrated with memristive behavior recently and they
can be roughly categorized as transition metal oxides (such as NiO [31], CuO
[32], MoOx [33], ZrO2 [34], TiO2 [4, 35, 36], TaOx [18, 37]), perovskites [38,
39], and solid-state electrolytes [40] and even Si and SiO2, etc. [20, 41–43]. The
switching behavior has been widely studied for these materials and the reported
device behavior can be best summarized in Table 11.1 [5].
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Fig. 11.5 Simulation of the
effect of bottom electrode
surface roughness on the
electric field distribution.
Sinusoidal surface profiles
with 10 nm grain size are
assumed for the bottom
electrodes. The rms
roughnesses are 0.5 and
0.98 nm for (a) and (b),
respectively, and the metal
pillars in (b) are 6 nm high,
corresponding to the
experimental observation.
With a rougher surface, the
electric field is more localized
at the tips of the metal
pillars [29]

Although most memristive devices use materials such as transition metal oxide
and perovskites as the functional switching layer, not all of these materials are
compatible with current IC industry infrastructure. There has recently been a
focused interest in amorphous silicon and silicon oxide. The resistive switching
phenomenon in these materials was actually discovered a long time ago [44].
Recent studies using mostly silicon oxide made by different technologies such as
plasma enhanced chemical vapor deposition (PECVD) have made great progress
[43, 45–47]. However, despite the fact that the devices are compatible with CMOS
technologies regarding materials, the reported programming voltages for silicon
oxide-based devices were too high (from 3.5 to 13 V). As a result, significant
efforts have to be devoted to dramatically lower the programming voltages in order
for the devices to be truly compatible with the state-of-the-art low-power CMOS
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Table 11.1 List of oxides used for memristive devices and the corresponding device behavior
(adapted from [5])

Oxide TE-BE
ON/OFF
ratio

Switching
speed

Retention
time(s) Endurance

Binary, bipolar
CoO Ta–Pt 103 20 ns – 100
CuxO Ti/TiN–Cu 102 50 ns 105 @ 90◦C 600
HfLaOx TaN–Pt 106 10 ns 104 @ 27◦C 104

HfOx/TiOx TiN–TiN 103 5 ns 104 @ 200◦C 105

TaOx Pt–Pt 101 10 ns 107 @ 150◦C 109

TiO2 Pt–TiN 103 5 ns 106 @ 85◦C 106

ZrO2 TiN–Pt 101 1 μs 104 @ 27◦C 103

Binary, unipolar
Gd2O3 Pt–Pt 106 – 105 @ 85◦C 60
HfO2 Pt–Pt 102 – 106 @ 27◦C 140
Lu2O3 Pt–Pt 103 30 ns 106 @ 27◦C 300
NiO Pt–Pt 102 5 μs 107 @ 27◦C 106

TaOx Cu–Pt 102 80 ns 106 @ 27◦C 100
TiOx Pt–Pt 104 – – 25
WOx TiN–W 4 300 ns 104 @ 100◦C 107

ZnO Pt–Pt 104 – – 100

Perovskite, bipolar
Cr:Ba0.7Sr0.3TiO3 Pt–SrRuO3 4 0.2 s 104 @ 27◦C 104

Pr0.7Ca0.3MnO3 Ag–YBa2Cu3O7−x 102 8 ns – 105

Pr0.7Ca0.3MnO3 Al–Pt 102 20 μs 104 @ 125◦C 103

Cr:SrTiO3 Au–Au 10 1 ms 8× 104 @ 27◦C 103

Nb:SrTiO3 Pt 102 50 μs 108 @ 125◦C 107

Cr:SrZrO3 Au–SrRuO3 20 100 ns 107 @ 27◦C –
Cr:SrZrO3 Al–LaNiO3 102 500 μs 103 @ 85◦C –

transistors. One promising approach demonstrated recently [48] involves the use of
chemical method to create an ultrathin layer of silicon oxide (∼1 nm) on the silicon
wafer surface, and the demonstrated switch voltage was as low as 0.6 V.

The choice of materials in memristor devices is truly dependent on the appli-
cation. For example, the TaOx device has the best demonstrated endurance, but
the ON/OFF ratio is less than ten. If the resistance window is not a concern, this
materials system is a great choice for many applications. On the other hand, it
has to be pointed out that even with the same materials systems and electrodes,
slight change in device fabrication condition could lead to dramatically different
device behavior. For example, the ON/OFF conductance ratio for a TiO2 device
can be modulated by changing the switching layer deposition condition. We have
demonstrated that with a small amount of oxygen flow introduced into the sputter
chamber, the ON/OFF ratio of a Pt/TiO2/Pt/Ti device read at 0.5 V was increased
from below 100 to more than 10,000. This suggests that there is plenty of room in
switching materials engineering in order to optimize the device performances.
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11.3.3 Multilayer Devices

While devices with a single layer of switching materials are easy to fabricate,
multilayer oxides are widely used to achieve properties that cannot be implemented
with a single layer oxide. The multilayers can be homogeneous, meaning they are
from the same origin but part of the original single layer is modulated by creating
extra amount of charge carries such as oxygen vacancies. In reality, most of the
TiO2-based memristors consist of a conductive TiO2−x layer and a semiconducting
TiO2 layer. The in situ doping was a result from the diffusion of the Ti adhesion layer
through grain boundaries in the Pt bottom electrode, which reacts with TiO2 and
creates abundant oxygen vacancies [37]. Heterogeneous multilayer devices were
also widely used and they are usually created by deposition of different oxide
materials in sequence during device fabrication. In some rare cases, intermediate
metal layers were also introduced in between the multi-level switching layers,
effectively creating interconnected memristor device stacks at one junction.

The benefits of multilayer devices have been testified with novel properties such
as electroforming free switching behavior, nonlinearity in the switching curves,
improved switching uniformity, etc. For example, by intentionally creating a thick
layer of oxygen vacancy reach layer (TiO2−x) in the TiO2 switching layer, forming-
free behavior has been observed in the device [49]. Devices with HfO2/TiO2 double
oxide layer showed much improved switching uniformity [50]. It is also expected
that devices with both high endurance and high ON/OFF ratio are possible by
introducing a heterogeneous oxide layer to the TaOx stack.

Particularly, multilayer devices are attractive for memristor crossbar arrays to
solve the sneak path problem. Excellent nonlinearity has been achieved using
TaOx/TiO2−x heterostructure [51]. Complementary resistive switching (CSR) was
proposed by stacking two memristors head to head in one junction [52] and was
also implemented using a single device with Ta2O5−x/TaOy bilayer structure [53].

11.3.4 Device Geometry Engineering

When fabricated on a flat substrate, the bottom electrodes of a crossbar array form
a set of “ribs” on the substrates. These ribs are preserved after the conformal
deposition of the thin layer of the switching material. As a result, the top electrodes
have to climb up one side and down the other of each rib, leading to four kinks
in the top electrode metal wire at each junction. These kinks are the mechanically
and electrically weakest parts of the devices and can be detrimental to the device’s
performance, especially endurance (Fig. 11.6 and 11.7).

In order to avoid the kink structure in the junction, a planar device geometry was
proposed and demonstrated. In this structure, the bottom electrodes are embedded
into trenches in the substrate, the switching layer and the top electrode are built
on flat surfaces. Figure 11.7 shows the schematic of the device geometry and
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Fig. 11.6 (Left) Device structure of aPd/Ta2O5−x/TaOy/Pd memristor and the I–V curve (right)
if programmed with a voltage range of (−2, 2) V. This demonstrates a typical complementary
resistive switching behavior [53]

Fig. 11.7 The schematics
and atomic force (AFM)
images for the ribbed devices
(a) and planar devices (b).
The arrows in the AFM
images indicate the location
of bottom electrodes. Device
junction area is 50 nm2 and
the stacking is (from top to
bottom):12 nm Pt//30 nm
TiO2//12 nm Pt/4 nm Ti [22]

AFM images of traditional ribbed devices and the new planar devices. In contrast
to the ribbed devices that have a bump at each cross point, the planar device
structure does not have kinks in the top electrodes. There are two advantages for the
new device geometry. First, without the kinks, the top electrode metal nanowires
are less susceptible to electromigration, a popular failure mechanism for crossbar
devices. As a result, the device’s endurance is expected to be extended. Second, the
electrodes can be made thicker to reduce the series resistance. This is extremely
important as the nanowire electrodes become narrower and narrower for smaller
devices.

To fabricate the devices, nanoscale trench arrays were first patterned in the sub-
strate. With precise control on the subsequent RIE and metal deposition processes,
these trenches were filled with the bottom electrode metals to the substrate surface
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level, achieving a flat surface for further device fabrication. After deposition of
the oxide switching layer, the top electrodes were fabricated on the oxide surface
without forming any protrusions.

The planar devices demonstrated four times improved endurance for a 50 nm2

device with 12 nm Pt//30 nm TiO2//12 nm Pt/4 nm Ti structures. The median
endurance for the ribbed devices in this test was 2900 cycles, while the planar
devices were 12,000 cycles (both without passivation and packaging) (Fig. 11.8).
During the endurance measurements, electrical pulses with 100 μs pulse width was
used to switch the device ON or OFF, and a much lower voltage (100 mV) was used
to read the resistance states between switching steps.

The poorer device endurance for the ribbed devices was caused by the defects
related to the kinks in these devices. Numerical simulations show that the current
density and Joule heating are localized at the corners, especially at the kinks
for the ribbed structure. As a result, the ribbed devices are more likely to fail
before the planar structure. For example, for devices with the aforementioned
structure, the induced total currents at the corners of the bottom electrodes were
nearly at the same level (2.56× 105 and 2.35× 105 A/m2 for the ribbed and
planar structures, respectively) (Fig. 11.9). While those at the top electrode/oxide
interfaces were significantly different (1.5× 105 vs. 13.8 A/m2). The four orders
of magnitude higher induced current in the traditional ribbed devices has resulted
in much more heat generation at the top electrode/oxide interfaces during device
operation (Fig. 11.9). This simulation is supported by experimental observation that
the popular failure mode of the crossbar devices is the breaking down of the top
electrodes at the kinks.

It is worth noting that the planar geometry is compatible with the standard
IC fabrication process. For example, the dual Damascene process in IC industry
has enabled narrow metal wires with high aspect ratios for interconnection. This
indicates that the new memristor device geometry can be effectively integrated with
other components or CMOS substrates.

On the other hand, this is just one example of how the device geometry
greatly affects the device performance, particularly endurance. It is expected that
with nanostructure engineering, other aspects of the device performance such as
the uniformity and power consumption can be significantly improved as well.
Furthermore, the device geometry engineering is likely more powerful if used in
combination with other device engineering approaches, such as multilayer oxide,
new materials, etc.

11.3.5 Device Scaling

Extending the device to new physical dimensions is significant for memristor
crossbar arrays. Memristor scaling will not only dramatically increase the packing
density but also significantly enhance their electrical performance and deepen our
understanding in fundamental device physics. Previously, electrical behavior of
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Fig. 11.8 Typical endurance test curves for (a) a “ribbed” memristive device and (b) a planar
memristive device. (c) Statistical data of the endurance test for different types of devices. The
median cycle number for the ribbed and planar devices are 1,700 and 8,300, respectively [22]

memristor crossbar devices with 50 × 50nm2 junction area or larger was intensively
studied [40, 54]. Single or discrete memristive devices of 10 nm size were reported
recently, but they were not built in densely packed and addressable arrays [55, 56].
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Fig. 11.9 Total current density (a, b) and resistive heating (c, d) simulation for ribbed and planar
devices in the first 10 μs electric pulse of 2 V using the COMSOL multiphysics model. The
localization of current density and heat at the kinks for the ribbed structure is likely the cause
of lower device endurance [22]

To adopt the memristor devices for applications in high-density memories, high-
efficiency reconfigurable logics and high-performance mixed-signal information
processing, large area arrays of densely packed sub-10 nm devices are required.
In other words, the scaling in this context means both “scaling down” the feature
size and “scaling up” the area of the arrays.

Several approaches that can be used for memristor device scaling include some
traditional and disruptive nanopatterning methods such as electron beam lithography
(EBL), nanoimprint lithography (NIL), directed self-assembly (DSA) of block
copolymers, and state-of-the-art optical lithography with resolution enhancement
techniques (RETs). One particular interesting approach is to use EBL or DSA to
make a master imprint mold and use NIL to make the densely packed memristor
crossbar arrays over large area. We have successfully fabricated crossbar arrays of
memristors that have a junction area of 8 × 8 nm2 [21].

Devices with smaller junction areas exhibited much lower power consumption
during the switching. For example, the programming current for the 8 × 8 nm2

device was on the order of 600 pA, five orders of magnitude lower than that for a
25× 25 nm2 device [21]. On the other hand, the cycle-to-cycle switching uniformity
was greatly improved as well. The improved device uniformity was a result from
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the small junction area that limited the location and dimension of the conductive
filament (CF). The diameter of a CF in a TiO2 device was proved to be smaller
than 10 nm [57]. Hence it is reasonable to believe that in the 8 × 8 nm2 device,
there was only a single CF that has participated in the switching event every time.
Different from larger devices that have multiple CFs with different diameter, length
and unpredictable locations, a single small CF will lead to a smaller programming
current and much more uniform switching behavior.

11.4 Hybrid Memristor/CMOS Circuits

To get more computing per transistor on a chip, one approach is the CMOL
(CMOS/molecule) architecture proposed by of Strukov and Likharev [58]. In
this architecture, nanoscale reconfigurable molecular switches are used to connect
CMOS transistors for computing. This architecture was later modified by Snider and
Williams [59] by adapting larger area contact pads to improve its manufacturability
and to separate the routing and computing functions. This scheme was called field-
programmable nanowire interconnect (FPNI). In FPNI, the data routing network is
separated from the Si CMOS layer using field-programmable memristor crossbar
arrays. Since the data routing layer is placed directly above the CMOS circuit, the
chip footage area is smaller and the communication distance between the transistors
are shorter (which means shorter RC delay or higher information processing
speed). With the cross bar structure, alternative routes can be used if defects
are found in the data routing layer, resulting in a highly defect-tolerant circuit.
The hybrid architecture of nanowire crossbar/CMOS has several advantages over
conventional transistor-based field-programmable gate arrays (FPGA) in terms of
density, functionality, and power consumption. Numerical simulations showed that
this type of architecture can dramatically increase the logic density of an FPGA-like
chip without degrading power dissipation or speed, even in the presence of large
numbers (up to 20 %) of defective components [59].

The memristor was chosen for the FPGA-like hybrid chip for a number of
reasons. First, a single memristor is capable of implementing functions that need
several transistors in a CMOS circuit, namely, a configuration-bit flip-flop and
associated data routing multiplexer. Second, memristors are nonvolatile devices,
which mean they do not require power to refresh their states; hence, the hybrid chip
is power efficient. Third, the simple device structure enables the feasibility of inte-
gration with CMOS substrates with cost-effective technology such as nanoimprint
lithography.

The concept of the memristor-CMOS hybrid circuits is schematically shown in
Fig. 11.10. The memristor crossbar layers (nanowire layer 1, switching material
layer, nanowire layer 2) are fabricated on top of a CMOS substrate and connected to
two sets of tungsten vias coming up from the CMOS through an area interconnect
(pads).
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Fig. 11.10 (a) Conceptual
illustration of the
memristor-CMOS hybrid
architecture. Tungsten vias
(red and blue) on the CMOS
substrate are designed as the
area interface between the
transistors and the
memristors. (b) The hybrid
chip with memristor crossbars
built on top. The inset shows
an SEM image of a fragment
of the memristor crossbar
array. (c) CMOS layer fabric
on a die and possible wiring
for digital circuits using
configured memristors
(dashed purple lines). This
figure shows one of the many
possible signal routings for
some basic logic gates. The
reading voltage across the
memristors is 0.5–1.7 V and
the CMOS logic voltage is
3.3 V. The size of each cell is
50 μm× 50 μm [13]
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A milestone was recently achieved to physically implement the memristor/C-
MOS hybrid circuits with demonstrated FPGA-like functionality by integrating
titanium dioxide memristor crossbars on top of a CMOS substrate using nanoimprint
lithography.

In this particular demonstration, the CMOS substrates were fabricated in a
commercial foundry using a high-voltage 0.5 μm technology. A 1 μm thick layer of
silicon dioxide was deposited onto the completed wafers using tetraethyl orthosil-
icate (TEOS), and the resulting surface was planarized by chemical mechanical
polishing (CMP) to expose the tungsten vias. This step resulted in surfaces with
∼50 nm deep depressions above the tungsten vias, which were planarized by using
a thin layer of liquid NIL resist that was flattened with a polished quartz plate and
cured with UV radiation. These memristors connected to the CMOS devices had
2 nm Ti/9 nm Pt as the bottom electrode, 36 nm thick TiO2 as the switching layer,
and 12 nm thick Pt as the top electrode. The junction area was 100 nm× 100 nm.
To make alignment feasible between the CMOS and crossbar layers, interconnects
between the memristor layer and the CMOS layer are implemented using larger
contact pads, or “flags” that connected the nanowires to the tungsten vias in the
CMOS substrate. Images of the CMOS substrate and the finished hybrid chip are
shown in Fig. 11.10, with part of the memristor arrays shown in the inset.

In circuits operation, certain memristors are configured by the CMOS circuitry to
be closed, thus connecting components in the CMOS layer to synthesize particular
logic circuits in a field-programmable gate array (FPGA) fashion, as shown in
Fig. 11.10. For example, configuring the memristor between channel 15 and 16
would result in a NOT gate. Similarly, other basic logic gates such as OR, AND,
NAND, NOR, and a positive-edge triggered D flip-flop can be configured in this
hybrid circuit (Fig. 11.11). The successful operation of the logic gates implies
that (1) the memristors were configured correctly by the CMOS circuitry, (2) the
transistors in the CMOS layer were successfully connected using the configured
memristors and could communicate to perform higher level functions, and (3)
the fabrication processes for building the memristor crossbars did not disturb the
underlying CMOS.

More importantly, the memristors’ states can be changed by applying the proper
voltages, making the hybrid circuits reconfigurable. For example, a memristor
initially in the OFF state was turned ON using a negative voltage and then turned
back OFF using a positive voltage (Fig. 11.12). As a result, no signal could be passed
through, thus decommissioning the NOT gate and making the resources available
for another purpose. The reconfigurability provides significant flexibility in data
routing, and it can also reduce power consumption by disconnecting components
that are not needed for a particular task.

From a circuit-fabrication point of view, our current work incorporated technolo-
gies from different generations to implement a novel architecture. It may be possible
and even necessary in the future to extend Moore’s Law without CMOS scaling. To
the best of our knowledge, this is the first demonstration of NIL on an active CMOS
substrate that was fabricated in a commercial semiconductor fabrication facility. The
successful integration opens up opportunities in other areas such as NV-RAM and
non-Boolean neuromorphic computing.
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Fig. 11.11 Equivalent computing circuits, visualized digital results and the measured truth tables
for the logic gates in the hybrid circuits. In the visualization results, the lower blue dots are logic 0
and the upper dots are logic 1. The clock frequency for the flip-flop was 50 Hz [13]
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Fig. 11.12 (a) A memristor
initially in the OFF state was
turned ON using a negative
voltage and then turned back
OFF using a positive voltage.
Note that the voltage scale is
large because this is a
two-wire measurement and
most of the voltage dropped
on the metal nanowire
electrodes. (b) and (c) are the
computation results for a
NOT gate when the
connecting memristor is at
different states. A string of
00001111 was inverted by the
NOT gate when the
memristor is ON (b) while
the signal did not pass
through when it is OFF (c).
The reading voltage across
the memristors is 0.5 V [13]

However, in the first demonstration, the electrical performance of the memristor
devices was not optimized. For instance, one particular problem was that the
programming voltages were relatively high so that a separate high voltage circuitry
was used to configure the memristors. The high programming voltage arose from the
high series resistance of the thin metal nanowire electrodes, which took the majority
of the applied voltage. There was a practical limit in the thickness of the metal
nanowires for the devices. When the crossbar density increases, the nanowire widths
need to be narrower, and the series resistance problem will become more severe.
This will lead to even higher programming voltages that limit the compatibility of
memristive devices with lower voltage CMOS circuits.

To solve this problem, planar crossbar memristor devices were integrated with
CMOS substrates for reconfigurable logic. As discussed earlier in this chapter, with
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bottom electrodes embedded into the substrate, a planar memristive device exhibited
greatly enhanced endurance and lower series resistance. By carefully designed the
process parameters, much thicker bottom electrodes were used and were embedded
into the TEOS passivation layer of the CMOS substrate [60]. As a result, the
series resistances, and consequently the programming voltages, were lowered down.
Furthermore, with the planar geometry, the devices also exhibited much improved
switching uniformity. The integration of planar memristors with CMOS substrates
opened the road to hybrid circuits of high-density memristor devices and low-power
CMOS circuits.

11.5 Concluding Remarks

The memristor has a broad spectrum of applications, among which the reconfig-
urable switch has a small but important share. Although significant progress in
memristor research and development has been made, challenges still remain for
the wider applications. Particularly, there have yet to be demonstrations on practical
approaches to dramatically improve the device performance uniformity and to avoid
the sneak path problem over very large array of devices.

From the hybrid circuit point of view, increasing the memristor density to achieve
more powerful hybrid chips is of great importance. This requires close collaboration
between circuit designers, device engineers, integration experts, and computer
architects. With recent progress in device engineering, further improvements of the
integration process (as described later in this chapter), and some emerging computer
architecture such as 4D addressing [61], we should be optimistic for the future of
this bourgeoning research area.
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Chapter 12
Spike-Timing-Dependent-Plasticity in Hybrid
Memristive-CMOS Spiking Neuromorphic
Systems

Teresa Serrano-Gotarredona and Bernabé Linares-Barranco

12.1 Introduction

Neuromorphic engineering “http://en.wikipedia.org/wiki/Neuromorphic” is
an interdisciplinary discipline that takes inspiration from biology, physics,
mathematics, computer science, and engineering to design artificial neural systems,
such as vision systems, head-eye systems, auditory processors, and autonomous
robots, the physical architecture and design principles of which are based on those of
biological nervous systems. The term neuromorphic was coined by Carver Mead, in
the late 1980s [2] to describe very large-scale integration (VLSI) systems containing
electronic analog circuits that mimic neuro-biological architectures present in the
nervous system. In recent times the term neuromorphic has been used to describe
both analog, digital or mixed-mode analog/digital VLSI systems that implement
models of neural systems (for perception, motor control, or sensory processing)
and also software algorithms. A key aspect of neuromorphic engineering is
understanding how the morphology and signal processing of neurons, circuits,
and overall architectures creates desirable computations, influences robustness
to damage, incorporates learning and development, and facilitates evolutionary
change.

It is obvious that interdisciplinary research broadens our view of particular
problems yielding fresh and possibly unexpected insights. This is the case of
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neuromorphic engineering, where technology and neuroscience cross-fertilize each
other. One example of this is the recent impact of fabricated memristor devices
[3–6], postulated since 1971 [7–9], thanks to research in nanotechnology electron-
ics. Another is the mechanism known as Spike-Time-Dependent-Plasticity (STDP)
[10–24] which describes a neuronal synaptic learning mechanism that refines the
traditional Hebbian synaptic plasticity proposed in 1949 [25]. These are very dif-
ferent subjects from relatively unrelated disciplines (nanotechnology, biology, and
computer science), which have nevertheless been drawn together by researchers in
neuromorphic engineering [26–30]. STDP was originally postulated as a family of
computer learning algorithms [10–12] and is being used by the machine intelligence
and computational neuroscience community [15–24]. At the same time its biological
and physiological foundations have been reasonably well established during the
past decade [31–38]. If memristance and STDP can be related, then (a) recent
discoveries in nanophysics and nanoelectronic principles may shed new light on the
intricate molecular and physiological mechanisms behind STDP in neuroscience,
and (b) new neuromorphic-like computers built out of nanotechnology memristive
devices could incorporate biological STDP mechanisms, yielding a new generation
of self-adaptive ultra-high-dense intelligent machines. Here we explain how by
combining memristance models with the electrical wave signals of neural impulses
(spikes) converging from pre- and post-synaptic neurons into a synaptic junction,
STDP behavior emerges naturally [28–30]. This helps us to understand how
neural and memristance parameters modulate STDP and may offer new insights to
neurophysiologists searching for the ultimate physiological mechanisms responsible
for STDP in biological synapses. At the same time, it also provides a direct means of
incorporating STDP learning mechanisms into a new generation of nanotechnology
computers employing memristors. Here we focus on this second aspect.

In this chapter we first describe some interesting concepts and properties behind
spiking neural networks, also called event-driven neural systems, focusing on vision
sensing and processing. Then we quickly review STDP (Sect. 12.3) and memristor
(Sect. 12.4) concepts. Afterwards, in Sect. 12.5, we explain how the memristance
mechanism, and one particular formulation of it, can explain the experimental
characterization of the STDP phenomena in biological synapses. We will see how
the shape of action potentials is a crucial component which influences and defines
the mathematical learning of STDP, and how by changing action potential shapes
the STDP learning rule can be modulated and changed. Section 12.5 also proposes
circuit techniques for achieving STDP learning neural systems using memristors as
synapses. In Sect. 12.6 we describe how by exploiting present day AER (Address
Event Representation) technology it is feasible to build hybrid CMOS/memristive
scalable and reconfigurable neural systems capable of assembling in the order of 108

neurons in one printed circuit board (PCB). Finally, Sect. 12.7 discusses practical
limitations.
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12.2 Spiking Neural Networks for Event-Driven
Sensing and Processing

For the sake of clarity we will illustrate spike-based or event-driven (ED) sensing
and processing within the domain of vision, but the principles described here extend
to all other sensory domains and to new asynchronous ED computing paradigms.
State of the art in artificial vision is based on video streams, by capturing sequences
of images at a given “frame rate” and processing them frame after frame by
computational algorithms. Frame-by-frame processing is CPU-hungry and always
includes the latencies of sensing, transmitting, and processing each frame. On
the other hand, biological vision is frame-free: nor the eyes nor the brain have a
clue of what a video frame is. In biology, retina cells (pixels) respond to external
stimulation asynchronously sending action potential (“spikes” or “events”) to the
brain through the optical nerve fibers. Cells in the brain process these spikes through
complex hierarchical structures to achieve, for example, shape size and position
invariant object recognition. There are no frames, but a continuous flow of events
from the retina through the cortical brain structures. Each neuron autonomously
decides when to send out an event depending on the spatio-temporal collection
of the received events. This asynchronous frame-free sensing and processing is
what we call here “event-driven,” ED, (as opposed to “frame-driven”). In humans,
object recognition can be performed as quickly as in about 150 ms [39], giving
time to each neuron in the ventral stream hierarchy to fire just one spike [39],
revealing a highly efficient timing-domain signal encoding in the brain. Based on
these observations, neuromorphic researchers worldwide have developed in the
last 10 years a collection of ED sensor [40–48] and processor [49–52] chips. For
example, Fig. 12.1 illustrates the basic principle of ED sensing and signal encoding,
by showing the characteristics of one of the most popular ED vision sensors, the
“Dynamic Vision Sensor” (DVS) [42–45] developed first during project CAVIAR
[53] and used in a variety of applications [29, 54–70]. Whenever a pixel senses
a change of light above a threshold it sends out of the chip an “event” in the
form of a digital word (x,y, p) representing its address (x,y) and a polarity bit
p (positive for a dark to bright change and negative for a bright to dark change)
that typically needs fractions of a micro-second to be communicated. The DVS
output consists of an asynchronous flow of events, known as AER “Address Event
Representation.” Figure 12.1b shows the output event flow produced by a DVS
chip when observing the 500 Hz spiral shown in Fig. 12.1a for 6 ms. Each event is
represented as (x,y, p, t), where the polarity is denoted with color (blue for negative
events and red for positive ones). The observed dynamic scene in Fig. 12.1a is thus
represented by the frame-free event flow in Fig. 12.1b. As can be seen, the ED
DVS sensor provides very rich temporal information within these 6 ms with sub-
microsecond precision. Furthermore, such high temporal resolution was captured
with the ambient light produced by the oscilloscope [42]. Physically, inter-chip AER
communication typically uses a high speed digital multi-bit parallel bus, where one
bit is used for ‘p’ (polarity) and the rest for (x,y), together with handshaking signals
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Fig. 12.1 Illustration of ED (event-driven) sensing and processing. (a) 500 Hz spiral displayed
on an analog oscilloscope, and (b) events (x,y,t) captured from an ED artificial retina (DVS)
during 6 ms. (c) Poker card deck browsed quickly, and (d) events captured during 3 ms with a
DVS and displayed in the (x,y) plane. (e) Comparison of frame-driven vs. event-driven vision
sensing and processing: (e.1) a symbol is flashed during 1 ms, captured by a sensor, and processed
by five sequential stages; (e.2) in a frame-driven system with 1 ms frame-time, the sensor needs
1 ms to capture reality, and each processing stage requires a frame-time delay (assumed also
1 ms) for processing; (e.3) in an ED sensing and processing system the sensor generates events as
it observes reality, and these events are processed by the first stage “as they flow”; the output events
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for asynchronous communication. Alternatively, serial AER schemes have also been
proposed where a differential microstrip communicates (x,y, p) events bit-serially
and asynchronously [71–73].

The availability of ED sensing and processing chips has allowed the imple-
mentation of first ED sensory systems [50, 51, 55] that show the unique pseudo-
simultaneity property, where the input and output event flows of a processing
stage are (in practice) simultaneous or coincident in time. This is illustrated in
Fig. 12.1(e–g) where a 5-layer structure of a feed-forward Convolutional Neural
Network (ConvNet) [74] typically used for size and pose invariant object recogni-
tion, handwritten character recognition, scene recognition for robots, etc., is used.
Figure 12.1e1, f show schematically this 5-layer ConvNet. If this ConvNet is imple-
mented using traditional frame-driven sensing and image processing computing
hardware [75], each stage has to wait until the output image from the previous
stage is available. Figure 12.1e2 shows the latencies in a frame-driven system when
a symbol is quickly flashed (in 1 ms) to the vision sensor. A total of six frame
delays (each 1 ms) are needed for recognition. On the contrary, Fig. 12.1e3 shows
the situation for an ED implementation. An ED processor module processes events
as they flow in, with a delay typically in the 100 ns range per event [51]. The system
does not need to wait for collecting image frames, but output events are emitted
while the input events are processed as soon as enough input events are received,
as is in cortical circuits. For orientation extraction, a 2D Gabor filter can produce
an output event after just 4–6 correlated input events, signalling the presence of
an oriented edge in that location at that time, producing an output that is almost
simultaneous to the input event flow (with the delay of a few events). We call this
the pseudo-simultaneity property between input and output event flows in an ED
processing system. Thanks to the pseudo-simultaneity property the output events
of all stages are available concurrently to the sensor output event flow (which is
concurrent to reality), and correct object recognition is feasible while the sensor is
still producing events. This pseudo-simultaneity property has already been verified
experimentally with cascades of available ED convolution chips [51], with large
arrays of ED convolution modules implemented within high-end FPGAs [54], and
has been verified by simulations of full feed-forward ConvNets processing high
speed DVS recordings, achieving symbol recognition with 1–2 ms delays [55], as
shown in Fig. 12.1g. Figure 12.1g shows the detailed ED processing during a 1 ms
flash of poker symbol “club” for the ConvNet in Fig. 12.1f, displaying the individual
positive (red circles) and negative (blue crosses) events at the retina output, at
internal layers 2, 4, and 5, and at the output category layer. As can be seen, correct
recognition is available 0.84 ms after stimulus onset.

�
Fig. 12.1 (continued) of each stage are also processed by the next stage “as they flow,” making
it possible to achieve recognition while the sensor is still capturing the 1 ms flash; (f) 5-layer ED
Convolutional Neural Network (ConvNet) for recognizing poker card symbols when browsing a
card deck; (g) Simulation results of the ConvNet in (f) using DVS recorded data representing 1 ms
events and describing each convolution unit using parameters from real convolution chips
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Consequently, spiking (or ED) neural sensing and processing systems present
interesting features inhereted from their biological counterparts. However, for
proper recognition, neural networks need to be trained and correctly learn the
intended application. Spiking neural networks can be trained using the Spike-
Timing-Dependent-Plasticity learning rule, which can be implemented using mem-
ristors. This is the subject of the rest of this chapter.

12.3 Spike-Timing-Dependent Plasticity

Spike-timing-dependent plasticity (STDP) is a family of learning mechanisms
originally postulated in the context of artificial machine learning algorithms (or
computational neuroscience), exploiting spike-based computations (as in brains)
with great emphasis on the relative timings of spikes. Gerstner started to report the
first spike-timing-dependent learning algorithms [10, 11] in 1993. STDP has been
shown to be better than Hebbian correlation-based plasticity at explaining cortical
phenomena [23, 24] and has been proven successful in learning hidden spiking
patterns [20] or performing competitive spike pattern learning [21]. Astonishingly,
experimental evidence of STDP has been reported by neuroscience groups during
the past decade [31–38], so today we can state that the physiological existence of
STDP has been reasonably well established. For a historical overview on how STDP
research evolved independently among computational and experimentalist groups,
please refer to the Section on STDP history by Gerstner elsewhere [12]. However,
the full implications of the molecular and electro-chemical principles behind STDP
are still under debate [76]. Before describing STDP mathematically, let us first
explain how neurons interchange information and what the synaptic connections are.

Figure 12.2 illustrates two neurons connected by a synapse. The pre-synaptic
neuron is sending a pre-synaptic spike Vmem−pre(t) through one of its axons to the
synaptic junction. Neural spikes are membrane voltages from the outside of the
cellular membrane Vpre+ with respect to the inside Vpre− . Thus Vmem−pre = Vpre+ −
Vpre− and Vmem−pos =Vpos+ −Vpos− . The “large” membrane voltages during a spike
(in the order of a hundred mV ) cause a variety of selective molecular membrane
channels to open and close allowing many ionic and molecular substances to flow,
or preventing them from flowing through the membrane. At the same time, synaptic
vesicles inside the pre-synaptic cell containing “packages” of neurotransmitters
fuse with the membrane in such a way that these “packages” are released into
the synaptic cleft (the inter cellular space between both neurons at the synaptic
junction). Neurotransmitters are collected in part by the post-synaptic membrane,
contributing to a change in its membrane conductivity. The cumulative effect of
pre-synaptic spikes (coming from this or other pre-synaptic neurons) will eventually
trigger the generation of a new spike at the post-synaptic neuron. Each synapse is
characterized by a “synaptic strength” (or weight) w which determines the efficacy
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VmempreVmem−pos

pre–synaptic
neuron

post–synaptic
neuron

synapse

Vpos+

Vpos−

Vpre+

Vpre−

post−

pre−

neurotransmitters

a

b

Fig. 12.2 Illustration of synaptic action. (a) A synapse is where a pre-synaptic neuron “connects”
with a post-synaptic neuron. The pre-synaptic neuron sends an action potential Vmem−pre traveling
through one of its axons to the synapse. The cumulative effect of many pre-synaptic action
potentials, generates a post-synaptic action potential at the membrane of the post-synaptic neuron,
which propagates through all the neuron’s terminations. (b) Detail of synaptic junction. The cell
membrane has many membrane channels of varying nature which open and close with changes in
the membrane voltage. During a pre-synaptic action potential vesicles containing neurotransmitters
are released into the synaptic cleft

of a pre-synaptic spike in contributing to this cumulative action at the post-synaptic
neuron. This weight w could well be interpreted as the size and/or number of
neurotransmitter packages released during a pre-synaptic spike. However, for our
analyses, we will interpret w more generally as some kind of structural parameter
of the synapse (like the amount of one or more metabolic substances) that directly
controls the efficacy of this synapse per spike. The synaptic weight w is considered
to be nonvolatile and analog in nature, but it changes in time as a function of the
spiking activity of pre- and post-synaptic neurons. This phenomenon was originally
observed and reported in 1949 by Hebb, who introduced his hebbian learning
postulate [25]: “When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of the
cells firing B, is increased.” Traditionally, this has been described by computational
neuroscientists and machine learning computer engineers as producing an increment
in synaptic weight Δw proportional to the product of the mean firing rates of pre-
and post-synaptic neurons. STDP is a refinement of this 1949 rule which takes into
account the precise relative timing of individual pre- and post-synaptic spikes, and
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ΔT>0 ΔT<0
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a b

Fig. 12.3 Membrane voltage waveforms. Pre- and post-synaptic membrane voltages for the
situations of positive ΔT (a) and negative ΔT (b). Voltage vMR is the difference between the post-
synaptic membrane voltage Vmem−pos and the pre-synaptic membrane voltage Vmem−pre
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Fig. 12.4 (a) Experimentally measured STDP function ξ (ΔT ) on biological synapses (data from
Bi and Poo [32, 33]). (b) Ideal STDP update function used in computational models of STDP
synaptic learning. (c) Anti-STDP learning function for inhibitory STDP synapses

not their average rates over time. In STDP the change in synaptic weight Δw is
expressed as a function of the time difference between the post-synaptic spike at
tpos and the pre-synaptic spike at tpre (see Fig. 12.3). Specifically, as is shown in
Fig. 12.4, Δw = ξ (ΔT ), with ΔT = tpos − tpre. The shape of the STDP function ξ
can be interpolated from experimental data from Bi and Poo as shown in Fig. 12.4a
[33]. For positive ΔT (that is to say, the pre-synaptic spike has a highly relevant role
in producing the post-synaptic spike) there will be a potentiation of synaptic weight
Δw > 0, which will be stronger as |ΔT | reduces. For negative ΔT (that is to say,
the pre-synaptic spike is highly irrelevant for the generation of the post-synaptic
spike), there will be a depression of synaptic weight Δw < 0, which will be stronger
as |ΔT | reduces. Bi and Poo concluded that they had observed an asymmetric
critical window for ΔT of about ±40–80 ms for synaptic modification to take place.
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Mathematically, this ξ (ΔT ) STDP learning function is described by computational
neuroscientists as

ξ (ΔT ) =

{
a+e−ΔT/τ+ i f ΔT > 0
−a−eΔT/τ− i f ΔT < 0

(12.1)

The STDP learning function ξ (ΔT ) as defined in Fig. 12.4a, b is useful for
synapses with positive weights. In these cases, weight w is strengthened if it is
increased (Δw > 0) when ΔT > 0, and weakened if it is decreased (Δw < 0) when
ΔT < 0. However, if the weight is negative (w < 0), as in some inhibitory synapse
implementations, the STDP learning function in Fig. 12.4b is not appropriate
because an increase in weight (Δw > 0) would weaken the strength of the synapse,
and vice versa. For negative weight synapses an STDP learning function with a
shape similar to that shown in Fig. 12.4c [77] is required. In this case, the synapse is
strengthened by decreasing its weight (Δw < 0), which should happen for ΔT > 0.
Let us call this an Anti-STDP synaptic update or learning function. Other more
exotic shapes for ξ (ΔT ) are also possible, as we will discuss later in Sect. 12.5.

Most of the present day literature on STDP presents a learning function ξ
which depends on ΔT but not on the actual weight value w. This type of weight-
independent STDP learning rule is usually known as “additive STDP.” Additive
STDP requires the weight values to be bounded to an interval because weights will
stabilize at one of their boundary values [78,79]. On the other hand, in multiplicative
STDP (mSTDP) [78–80] the learning function is also a function of the actual weight
value ξm(w,ΔT ). Furthermore, there usually appears a weight-dependent factor
which multiplies the original additive STDP learning function ξa, and which may
generally be different for the positive (ΔT > 0) and negative (ΔT < 0) sides

ξm(w,ΔT ) = F(w,sign(ΔT ))ξa(ΔT ) (12.2)

In mSTDP weights can stabilize to intermediate values inside the boundary
definitions. Thus, it is often not even necessary to enforce boundary conditions for
the weight values [78]. Normally, factor F(w,sign(ΔT )) is considered proportional
to w. However, one may consider it to be proportional to wa. As we will see later
in Sect. 12.5, some memristors yield a multiplicative type of STDP with power
a = 2 (quadratic STDP), while other memristors result in plain additive STDP (with
a = 1).

12.4 Memristance

Memristance was postulated in 1971 by Chua [7] based on circuit theoretical
reasonings. According to circuit theoretical fundamentals, there are four basic
electrical quantities [9]: (1) voltage difference between two terminals “v,” (2) current
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Fig. 12.5 Description of the four canonical two-terminal devices. (a) A resistor is defined by
a static relationship between a device’s voltage and current. (b) A capacitor is defined by a
static relationship between a device’s charge and voltage. (c) An inductor is defined by a static
relationship between a device’s current and flux. (d) And a memristor is defined by a static
relationship between a device’s charge and flux

flowing through into a device terminal “i,” (3) charge flowing through a device
terminal or integral of current q =

∫
i(τ)dτ , and (4) flux or integral of voltage

φ =
∫

v(τ)dτ . A two-terminal device is said to be canonical [9] if either two of
the four basic electrical quantities are related by a static1 relationship, as shown in
Fig. 12.5. A resistor has a static relationship between terminal voltage v and device
current i, as shown in Fig. 12.5a. A capacitor shows a static relationship between
charge q and voltage v, as shown in Fig. 12.5b. An inductor has a static relationship
between its current i and flux v, as shown in Fig. 12.5c. These three devices have
been very well known since the origins of Electronics and Electricity. However,
there are other possibilities for combining the four basic electrical quantities: (q, i),
(v,φ), and (q,φ). Ignoring the combinations of a quantity with its time derivative
leaves us with one single additional possibility: (q,φ). This reasoning led Chua
to postulate the existence of a fourth basic two-terminal element, which he called
the Memristor. The memristor would show a static relationship between charge
q and flux φ , as shown in Fig. 12.5d. If the q vs. φ relationship is linear, the
memristor degenerates into a linear resistor. Memristors behave as resistances in
which the resistance changes through some of the basic electrical quantities and
is somehow memorized. Although none of the so-far reported memristors can be
described by a static constitutive relationship in the (q,φ) plane (and thus, strictly
speaking, the 1971 fourth canonical element is still missing), they all fall within
Chua’s 1976 generalization of Memristive Systems [8]. From here on we will use
the term memristor for Chua’s 1976 definition of memristive system.

Memristance has recently been demonstrated in nanoscale two-terminal devices,
such as certain titanium-dioxide [3, 4, 81, 82] and amorphous Silicon [6] cross-
point switches. However, memristive devices were reported earlier by other groups
[83–85]. Memristance arises naturally in nanoscale devices because small voltages

1By “static” we mean it is not altered by changes of the above electrical quantities, or by their
history, integrals, derivatives, etc. These “static” curves can, however, be time-varying if the change
is caused by an external agent. For example, a motor-driven potentiometer would have a “static”
i/v curve that is time varying.
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Fig. 12.6 (a) Memristor asymmetric symbols. (b) Illustration of moving wall model describing
memristor operation as two variable resistors in series. (c) Illustration of filament formation/anni-
hilation model describing memristor operation as two variable resistances in parallel. (d) Shape of
memristor weight update function f (vMR), (e) spike shape waveform

can yield enormous electric fields that produce the motion of charged atomic
or molecular species, changing structural properties of a device (such as its
doping profile) while it operates. Memristors are asymmetric two-terminal passive
devices. Consequently, their circuit symbol must indicate somehow their polarity.
Figure 12.6a shows two possible symbols. By definition, memristors can be either
voltage/flux driven or current/charge driven. Voltage/flux-driven memristors can be
described by [8]

iMR = G(w,vMR, t)vMR (12.3)

ẇ = f (w,vMR, t) (12.4)

while current/charge-driven memristors would be described as [8]

vMR = R(w, iMR, t)iMR (12.5)

ẇ = f (w, iMR, t) (12.6)

Here w represents some structural property parameter of the memristor. For
example, in the 2008 HP paper [3] the operation of the reported memristor was
postulated as described by the moving wall model depicted in Fig. 12.6b. In this
simplified model a memristor of height L, sandwiched between two electrodes, has
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a low resistance region of height w and a high resistance region of height L−w. The
memristor is considered to be divided into two regions. Both regions are separated
by a boundary wall at position w, which moves up and down with the amount of
charge that has flown through the memristor (in the case of being current/charge
driven) or the accumulated flux (in case of being voltage/flux driven). The memristor
would behave as two variable resistors in series. The total effective resistance of the
memristor would be described by

R = RON
w
L
+ROFF

(
1− w

L

)
(12.7)

This moving wall model can approximate phenomena like migration of oxygen ions
[86] and vacancies [87], the lowering of Schottky barrier heights by trapped charge
carriers at interfacial states [88], and the phase-change in some PCM (phase change
materials) devices [89].

However, resistive switching effects in dielectric-based devices have normally
been assumed to be caused by conducting filament formation across the elec-
trodes, although the understanding and modeling of these phenomena remains
controversial. As a matter of fact, some researchers are observing the formation
and annihilation of nanoscale width conducting filaments in memristors [90, 91].
However, let us here propose the following very simplified view to approximate
this physical mechanism. Figure 12.6c illustrates schematically a memristor with
several conducting filaments between the two electrodes. The number of filaments
or their cross-sectional area would increase or decrease with memristor operation.
Let us call now w the total cross sectional area of the effective conducting filaments
at a given instant in time, and S the total cross section area of the memristor. The
filaments present high conductivity (low resistivity), while the bulk presents much
lower conductivity (high resistivity). All formed parallel filaments behave as one
effective resistance of low resistance, while the rest of the bulk behaves as another
higher resistivity resistor. Therefore, now the memristor behaves as two variable
resistors in parallel. Consequently, its total conductance (inverse of resistance) could
be described as

G = GON
w
S
+GOFF

(
1− w

S

)
(12.8)

where GON is the conductance per effective cross section area of the filaments, and
GOFF is the conductance per effective cross section area of the filament-less bulk
material. Parameter w would change from 0 to wmax, the maximum possible effective
cross section area of total conducting filaments (wmax ≤ S).

This changing cross section description approximates not only filament forma-
tion/annhilation phenomena but also some other gradual cross section area varia-
tions observed in some phase-change or ferroelectric-domains-based materials [92].

As we will highlight later in Sects. 12.4 and 12.5, whether a memristor is
better described by the moving wall model or the filament formation/annihilation
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model impacts severely on the resulting type of STDP learning mechanism. The
latter yields an additive type of STDP, while the former results in a quadratic type
STDP. Note that a memristor can be either voltage/flux or current/charge driven,
independently of whether it is a “wall” or a “filament” memristor.

12.5 Combining Memristors and CMOS Neurons for STDP

The STDP learning rule, as modeled by (12.1), can be implemented by [28–30] (a)
using a particular type of voltage/flux-driven memristor [5] whose operation might
be approximated by (12.4–12.5) with (see Fig. 12.6d)

f (vMR) =

{
Io sign(vMR)

[
e|vMR|/vo − evth/vo

]
i f |vMR|> vth

0 otherwise
(12.9)

and bounded synaptic strength w ∈ [wmin,wmax], while (b) providing appropriately
shaped pre- and post-synaptic spikes available at both synapse (memristor) elec-
trodes [29]. For example, consider a pair of identical pre- and post-synaptic spikes
with a shape resembling that of biological spikes, with an on-set duration |t+ail | and
a tail of duration |t−ail |, as shown in Fig. 12.6e,

spk(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A+
mp

et/τ+−e−t+ail/τ+

1−e−t+ail/τ+
i f −t+ail < t < 0

−A−
mp

e−t/τ−−e−t−ail/τ−

1−e−t−ail/τ− i f 0 < t < t−ail

0 otherwise

(12.10)

Under these circumstances, memristor voltage is vMR(t,Δ t) = αposspk(t) −
αprespk(t + Δ t) and from (12.4) and (12.9) synaptic strength update can be
computed as

Δw(ΔT ) =

∫
f (vMR(t,ΔT ))dt = ξ (ΔT ) (12.11)

which has been shown to result in the same shape illustrated in Fig. 12.4b [29].
Furthermore, by reshaping the spike waveform one can fine-tune or completely alter
the STDP learning function ξ (Δ t), as illustrated in Fig. 12.7 [93]. This way, by
building neurons with a given degree of shape programmability, it is possible to
change the STDP learning function at will, depending on the application, or make it
evolve in time as learning progresses.

Figure 12.8a shows a way of interconnecting memristors and CMOS neurons for
STDP learning. Triangles represent the neuron soma, being the flat side its input
(dendrites) and the sharp side the output (axon). Dark rectangles are memristors,
representing each one synaptic junction. Each neuron controls the voltage at its input
(Vpost in Fig. 12.8b) and output (Vpre in Fig. 12.8b) nodes. When the neuron is not
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Fig. 12.7 Illustration of influence of action potential shapes on the resulting STDP memristor
weight update function ξ (ΔT ). Memristor upper and lower thresholds are normalized to ampli-
tudes +/-1.0. From (a1)–(a2) to (e1)–(e2) the same spike waveform travels forward and backward.
In (f1)–(f2) the forward and backward waveforms are the same but have opposite polarity. In (g1)–
(g2) to (h1)–(h2) the forward and backward waveforms are different. In (g1)–(g2), the positive
pulse of the backward waveform exceeds amplitude +1.0, thus producing negative STDP update
whenever there is a post-synaptic spike alone (g2); otherwise if pre- and post-synaptic spikes
happen within a given time window, there will be positive STDP update

spiking it forces a constant voltage at both nodes, while collecting through its input
node the sum of input synaptic spike currents coming from the memristors, which
contribute to changing the neuron internal state. When the neuron spikes, it sets a
one-spike waveform at both input and output nodes. This way, they send their output
spikes forward as pre-synaptic spikes for the destination synaptic memristors, but
also backward to preceding synaptic memristors as post-synaptic spikes. Zamarreño
et al. showed extensive simulations on these concepts, and how one can change
from STDP to anti-STDP by switching polarities of spikes or memristors [29].
For example, Fig. 12.7f1, f2 illustrate the case where forward and backward spikes
have opposite polarities, resulting in a symmetric STDP update function ξ (ΔT ).
Figure 12.7g1, g2 illustrate an example where forward and backward spikes are
different, with the backward spike such that its positive part exceeds the positive
memristor threshold (vth = 1.0). This produces LTD (long-term depression) or
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Fig. 12.8 (a) Example of Memristors and CMOS neuron circuits arrangement for achieving STDP
learning: feed-forward neural system with three layers of neurons and two fully connecting synapse
crossbars. (b) Details of parts around one post-synaptic neuron. While a neuron is silent, it sets a
constant DC voltage at its input (Vpost ) and output (Vpre) nodes. When a neuron is sending a spike,
it sets a voltage spike at both nodes. (c) Implementation of single spike STDP: Block diagram of
CMOS neuron together with single memristor synapse connected between pre- and post-synaptic
neurons, (d) example spike waveform with negative square neural activation shape, and (e) example
spike waveform with positive more biological neural activation shape

negative STDP update whenever there is a post-synaptic spike sufficiently apart
from a pre-synaptic one; and produces LTP (long-term potentiation) if pre- and
post-synaptic spikes happen within a given time window [70, 94]. Figure 12.7h1,
h2 illustrate a similar STDP update behavior, except that update (whether positive
or negative) is restricted to a constraint time window.

If the system is structured into neural layers (for example, Fig. 12.8a shows a
3-layer neuron system) with memristive synapses in between, then for each layer
all pre-synaptic neurons should have the same forward spike shape and all post-
synaptic neurons should have the same backward shape. This way, all memristive
synapses between these two neural layers will have the same STDP function ξ (ΔT ).

In all these circuits, synaptic strength is the conductance G of the memristor: the
higher the conductance of a memristor G is (or the lower its resistance R = 1/G is)
the stronger the synaptic efficiency will be, as it will let more current through and
thus affect more strongly the destination neuron state. Therefore, if the memristors
used obey a “moving wall” model (see (12.7)), then STDP update Δw = ξ (ΔT )
changes wall position w, which from (12.7) is directly proportional to resistance

ΔR(ΔT ) = (RON −ROFF)
Δw(ΔT )

L
= ρξ (ΔT ) (12.12)

where ρ is a constant. Consequently, synaptic strength G = 1/R will change as

ΔG(ΔT ) =−ΔR(ΔT )
R2 =−G2ΔR(ΔT ) ∝ −G2ρξ (ΔT ) (12.13)

This means that synaptic strength update would follow a quadratic STDP
learning rule.
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If the memristor physics is better represented by the inter-electrode filament
formation/annihilation model, then synaptic update would change parameter w of
(12.8), which is now directly proportional to memristor conductance (synaptic
strength),

ΔG(ΔT ) =
GON

S
Δw(ΔT ) = γξ (ΔT ) (12.14)

where γ is a constant. Therefore, synaptic update would be independent of actual
weight (conductance) and the resulting STDP update rule is said to be of additive
type. Note that (12.9)–(12.11) and the resulting functions ξ (ΔT ) in Fig. 12.7 are
common for both “wall” and “filament” models.

12.6 Proposal for Scalable Spiking Neural systems
with STDP Learning Capability

Using present-day AER (Address Event Representation) technology it is quite
feasible to build hybrid CMOS-memristor systems with many million neurons, once
one could assemble reliably dense arrays of memristors on top of CMOS. This is
illustrated in Fig. 12.9. On the top left we show a printed circuit board (PCB) hosting
110 identical AER chips, each communicating with its four neighbors through
bidirectional bit-serial AER asynchronous links, for event-driven (spiking) com-
munications. Each chip contains an AER processor, which in general is any array
of neural processing units. This processor would receive events asynchronously,
which shall be processed “as they flow,” generating asynchronous output events.
The chip also contains a block for programming and configuration of parameters,
and a router block. The events interchanged between chips contain not only the
standard Address Event (x,y, p) (where (x,y) is event coordinate and p its polarity),
but also a header (a,b) indicating the chip address in the PCB. This chip address
can indicate either the chip where the event was originated (source coding) or the
destination chip (destination coding) [54]. The router block in each chip looks at the
event header of each traveling event and decides whether to send it to its local event
processor, or to one of its output ports. Similarly, for each event generated by the
local event processor, the router adds a header and sends the event out through one of
its output ports. The router takes all these decisions based on a local programmable
routing table. The set of all routing tables in the array of chips in the PCB defines
the architectural topology of the overall neural network.

In order to implement the STDP learning mechanism with memristors and
spiking neurons as described throughout this chapter, each AER processor in a chip
may contain an array of CMOS cells, each containing an input and an output neuron.
The input neuron sends out a spike of programmable shape whenever it is stimulated
by an incoming event with its (x,y) coordinate. The output neuron receives and
integrates incoming currents, and when it reaches its threshold sends out an Address
Event with its (x,y) coordinate and polarity p, while at the same time sends a
backward spike of programmable shape through its current summing input terminal.
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Fig. 12.9 Top down description of hybrid CMOS/nano multi-chip STDP event-driven system. A
PCB holds a large number of chips arranged in a 2D grid communicating events serially through
AER differential microstrip lines. Each chip contains an event-driven processor, a router, and
test and configuration circuitry. The event-driven processor is made of an array of cells each
containing one pre- and one post-synaptic neuron. On top of this array there would be two layers
of perpendicular nanowires. At the crossing of two perpendicular nanowires there is memristive
material implementing physically one synapse

This current summing input terminal of the output neuron and the output terminal
of the input neuron of each cell connect to a crossbar of nano-wires assembled on
top of the CMOS chip using the connection arrangement known as CMOL [95].
At the crossing of each nano-wire pair there is memristive material implementing
physically one memristor synapse. This arrangement would implement the scheme
shown in Fig. 12.8.

12.7 Practical Limitations, Realistic Sizes, Pitches, Density,
Crosstalk and Power Considerations

Nanoscale memristor technology is still quite incipient and no realistic large-scale
systems have been reported at the time of writing (as far as we know). However, we
can estimate an orientative scale and density of what may realistically be achieved
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in the near future, and the main limitations which may be encountered in a real
physical implementation.

Regarding the wiring density of synaptic memristors, a pitch of 100 nm is
conservatively realistic for present day technologies [96, 97], while the near future
might bring us closer to 10 nm [98]. Assuming technologies of 100 nm pitch 2D
memristor arrays capable of interfacing reliably with lower CMOS become available
some time soon, this would result in a synaptic density of 1010 synapses per cm2.

In the brain, the number of synapses per neuron is about 103 to 104. If we want
to maintain the 104 ratio, we would need to fabricate CMOS neurons with a pitch
of 10μm, resulting in 106 neurons per cm2. Such neuron sizes are quite realistic for
present day nanometer scale CMOS (45 nm or 32 nm), given the complexity of the
neurons needed.

Another problem is that of resistance value ranges of the memristors’ Rmin

(synapse ON) and Rmax (synapse OFF). Reported memristors present resistance
values from the kΩ range up to the MΩ range [4–6]. The memristor resistance
value range affects the performance, reliability, crosstalk, and power dissipation of
a full large-scale system. For example, it affects the driving capability of the neurons
and their power consumption. If one neuron needs to drive 104 synapses of average
value 1MΩ to an average 1V level, it has to be able to provide an average current
of 10 mA during a spike (of say 20 ms), delivering 10 mW per spike. If there are 106

neurons per cm2 each firing at an average of 10 Hz (which is similar to biological
neurons), the synapses would dissipate a power of about 2 kW. The neurons would
need at least the same power, presumably more. It is obvious that such a structure
would melt quickly. The resistance range needs to be increased by a minimum factor
of 100, so that minimum resistances are at least 100MΩ , or even larger. As pitches
are lowered, resistances would need to increase quadratically with pitch decrease,
to maintain the power limitation. Another option would be to scale down voltage,
but there is not much range. Even our 1V maximum voltage assumption is quite
optimistic for available present day memristors, which tend to operate between
2− 10sV [4–6]. Also, we have always assumed so far that voltage sources driving
memristor terminals behave as ideal voltage sources, or at least, that the output
resistance of such voltage sources is negligible compared to the total resistance they
have to drive. Again, this will be achieved more easily if memristors present rather
high resistance values. If driving voltage sources are no longer so ideal, then there
will be crosstalk between lines. For example, if a spike is sent to a column, then the
voltage on all rows would change slightly. The consequence of this is that part of
the charge provided by the incoming spike will be lost through non-desired synapses
and the impact of the spike on the target neurons will be weaker. During learning, the
situation is less severe because for STDP update the memristor voltage has to exceed
the learning threshold (vth in (12.5)). The effect of having non-ideal voltage sources
is that the terminal voltage difference on the memristors needing synaptic update
would be slightly less than in the ideal situation and learning would be weaker
than expected ideally. However, having non-ideal voltage sources would not induce
STDP update in undesired synapses. Another parasitic issue related to crosstalk is
parasitic capacitive crosstalk between lines, which can be more pronounced as pitch
and line distances decrease.
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Also, one highly critical aspect which needs to be evaluated is the influence
of component mismatches. Nano scale devices suffer from high mismatch in
general. Consequently, we should expect nano scale memristors too to suffer from
great parameter variations from one to another. It is true that they will operate
as adaptive devices that will learn their functionality hopefully compensating for
(some) mismatches. However, their learning and adaptation rules will also suffer
from mismatch, making some synapses learn faster than others, or in slightly
different fashions. In any case, the main sources of mismatch in memristor devices
still need to be identified, and then their influence in the overall system learning
behavior evaluated. However, to undertake such an initiative, we first need ready
access to large arrays of reliable memristors fabricated in a stable and repeatable
manner.

In general, an important issue is precise memristor modeling. Throughout this
chapter we have assumed an idealized voltage-driven memristor ideal model. This is
useful to devise possible system architectures to achieve a desired functionality, such
as STDP learning. However, to estimate realistic performance figures of resulting
systems, it will be necessary to include non-ideal effects, both of the memristors and
companion CMOS circuits. In this chapter, no high order effects have been modeled,
such as those related to noise, mismatch, and other memristor non-idealities not yet
reported.

12.8 Conclusions

In this chapter we have shown that STDP learning can be induced by the
voltage/flux-driven formulation of a memristor device. We have used this
formulation to develop fully asynchronous circuit architectures capable of
performing STDP, by having neurons send their spikes not only forward but also
backwards. We have seen that depending on the memristive mechanism taking
place, the resulting STDP behavior can be of additive or quadratic type. We have
shown how the shape of spikes is critical to achieve and modulate a specific STDP
learning function. At the end we have also discussed possible limitations of present
day memristors.

The presented results are ideal extrapolations based on behavioral simulations.
As memristor devices are further developed and non-ideal effects become known,
the impact of non-idealities in the presented architectures and methods can be
further assessed. Future work has to evolve towards more realistic memristor models
and improved memristor devices, specially devices with much higher resistivities.
One critical property that memristors need to provide for efficient STDP and
non-volatility is the central dead-zone in Fig. 12.9b, which the already reported
memristor from Michigan University [6] seems to present. Another issue relates
to the quadratic type of multiplicative STDP followed by the presented devices
and architectures. This is a quite unusual form of STDP, which needs to be further
investigated from a theoretical point of view. In general, there might be stability
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issues with generic STDP when used in complex biological models [99, 100].
Similarly, since the presented approach allows the shape of the neural spikes, and
therefore the shape of the STDP learning curves to be changed in time, further
theoretical studies are required to incorporate time-varying STDP learning functions
for speeding up, stabilizing, or in general improving learning performance.
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Chapter 13
Memristor for Neuromorphic Applications:
Models and Circuit Implementations

Alon Ascoli, Fernando Corinto, Marco Gilli, and Ronald Tetzlaff

13.1 Introduction

The current-controlled ideal memristor is a passive bipole linking charge q(t) and
flux ϕ(t) through a nonlinear relation, i.e. ϕ(t) = ϕ(q(t)). From application of
Faraday’s Law and of the chain rule it follows that voltage v(t) depends upon current
i(t) through

v(t) =
dϕ(t)

dt
= M(q(t)) i(t), (13.1)

where M(q) = dϕ(q)
dq is the memristance (i.e. memory-resistance) of the bipole. Since

q(t) =
∫ t
−∞ i(t ′)dt ′, then M(q) = M(

∫ t
−∞ i(t ′)dt ′). In other words the resistance of

the memristor depends upon the time history of the current flowed through it. This
explains the memory capability of the memristor, theoretically envisioned by Chua
in 1971 [1] and later classified by Chua and Kang in 1976 as the simplest element
from a large class of nonlinear dynamical systems endowed with memristance, the
so-called memristive systems [2].

In [2] a memristive system (or memristor system1) is a nonlinear dynamical
circuit element defined by the following differential-algebraic system of equations:

1In the following memristive systems are referred to as memristor systems, whereas the term ideal
memristor is used for systems described by (13.1).

A. Ascoli (�) • R. Tetzlaff
Technische Universität Dresden, Mommsenstraße 12, 01062 Dresden, Germany
e-mail: alon.ascoli@tu-dresden; ronald.tetzlaff@tu-dresden

F. Corinto • M. Gilli
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
e-mail: fernando.corinto@polito.it; marco.gilli@polito.it

R. Tetzlaff (ed.), Memristors and Memristive Systems,
DOI 10.1007/978-1-4614-9068-5__13,
© Springer Science+Business Media New York 2014

379

mailto:alon.ascoli@tu-dresden
mailto:ronald.tetzlaff@tu-dresden
mailto:fernando.corinto@polito.it
mailto:marco.gilli@polito.it


380 A. Ascoli et al.

dx(t)
dt

= f(x(t),u(t)), (13.2)

y(t) = g(x(t),u(t))u(t), (13.3)

where2 x ∈ R
n is the state, u ∈ R refers to the input, y ∈ R describes the output,

f(x,u) : Rn ×R → R
n stands for the state evolution function, while g(x,u) : Rn ×

R → R denotes the memductance (memristance) if input u is in voltage (current)
form.

Since 2008, when its existence at the nano-scale was certified at Hewlett-Packard
(HP) Labs [3], the memristor has attracted a strong interest from both industry
and academia for its central role in the setup of novel integrated circuit (IC)
architectures, especially in the design of high-density nonvolatile memories [4],
programmable analog circuitry [5], neuromorphic systems [6], and logic gates [7,8].

The development of innovative strategies for the design of memristor-based
electronic systems requires the availability of mathematical models [3, 9–14, to
name but a few] for the memristor nano-structures under study. A good model
should be as general as possible, i.e. it should be able to capture the memristor
dynamics of a large number of nano-films. In this respect the Boundary Condition
Memristor (BCM) model, recently introduced in [12], was developed so as to meet
this generality requirement. In fact the distinctive feature of the BCM model is
the adaptability of the nano-device behavior at boundaries. In particular, the model
makes use of adaptable3 threshold voltages vth0 and vth1, respectively, defining4

the magnitude of the limit value the input voltage (i.e., the voltage drop across the
memristance) needs to cross after its negative-to-positive and positive-to-negative
sign reversal before the memristor state may be released from its lower and upper
bound. It is straightforward to establish an optimization procedure, which, on the
basis of observed data, sets the most suitable values for the threshold voltages, i.e.
those values, let us identify them as v∗th0 and v∗th1, minimizing the mean squared
error between observed and modeled data. This enables the BCM model to stand
out over other models available in the literature for the larger number of detectable
dynamics, despite the extreme simplicity of the window function embedded into the
state equation (when the state variable lies within its two bounds its time evolution
is governed by the basic linear dopant drift model [3]). It is noteworthy that the
class of detectable dynamics include not only all the behaviors observed in the
HP memristor [3], but also phenomena exhibited by various other nano-structures

2For the sake of brevity the explicit time dependency is dropped where it is not strictly necessary.
3Note that by defining a time evolution rule for the threshold voltages, it was recently demonstrated
[15] that an adaptable threshold voltage-based version of the memristor model from [6] may
explain the Suppression Principle [16] of the Spike-Timing-Dependent-Plasticity (STDP) Rule
[6], which may occur in the case of triplet spikes.
4Throughout the paper, unless stated otherwise and without loss of generality, we assume that the
doped layer is spatially located to the left of the un-doped layer along the horizontal extension of
the nano-film [12], and in this case we assign a value of +1 to the memristor polarity coefficient η
(see (13.6)).
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where memristor behavior arises from distinct physical mechanisms [17–20]. In
order to enable the BCM model to support various neural learning rules, we recently
developed a generalized version [21], in which the activation threshold property
characterizing the boundary behavior in the original BCM model [12] is extended
to the whole admissible range of the state variable, thus allowing the modeling of
the degree of non-volatility of the nano-device.

Another necessary requirement for the investigation of potential applications of
memristor devices is the implementation of the mathematical models into a software
package for computer-aided integrated circuit design. In this chapter we shall first
present the PSpice [22] implementation of the generalized BCM model. In the
PSpice realization the voltage drop across a linear capacitor models the memristor
state. Further the memristance is determined by the series combination of a linear
resistance and a nonlinear resistance depending upon the capacitor voltage. The
current through the memristance is first nonlinearly filtered so as to model the degree
of non-volatility of the nano-structure. In other words, this current is multiplied by
a nonlinear function which is responsible for the activation of the state dynamics as
the control voltage crosses a tunable positive (negative) threshold vt0 (−vt1) in its
ascent (descent). The filtered current drives a current source, which, under positive
(negative) input voltage polarity, charges (discharges) the capacitor. For each of the
two lower and upper bounds of the memristor state, flexible boundary conditions
are implemented in PSpice by means of a reference voltage source with value equal
to that bound and by a pair of voltage-controlled voltage switches, one controlled
by the voltage across the capacitor and responsible for clipping the memristor state
at the lower (upper) limit under negative (positive) input voltage, the other calling
for the release of the state from its lower (upper) bound as the input voltage cuts
through yet another tunable positive (negative) threshold vth0 (−vth1) in its ascent
(descent).

The PSpice circuit of the generalized BCM model may be used to model
dynamics typical of biological synapses. It is in fact capable to support various
rules governing the way neurons learn from each other. As an example, this
chapter demonstrates how the PSpice circuit favors associative learning based on
the Hebbian rule, one of the most important adaptation rules in neural learning [23].

The last part of this chapter proposes a novel class of memristor emulators. Each
element from the class is an electronic circuit comprising standard passive electrical
components from circuit theory, namely static nonlinear devices such as diodes and
linear dynamical elements such as resistors, inductors, and capacitors.

The structure of the manuscript is organized as follows. Section 13.2 reviews the
most noteworthy memristor circuit models available in the literature. Section 13.3
briefly reviews the generalized BCM model and describes its PSpice implementa-
tion. Section 13.4 illustrates the ability of the PSpice circuit model to support the
Hebbian neural learning rule. Section 13.5 introduces a novel class of memristor
emulators. Finally Sect. 13.6 outlines the conclusions.
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13.2 Brief Review of Memristor Models

Various memristor circuit models have been proposed in the literature. A large
number of models assume that the control waveform is in current form (the voltage
v-current i relationship is expressed by (13.1)), views the memristance as the series
between two variable resistances, associated with the insulating and conductive
layers of the nano-film, and sets the width w of the conductive layer, normalized with
respect to the entire length D of the device, as the state x = w

D ∈ [0,1] of the system.
The linear drift model from Williams [3], where the time derivative of the state is
proportional to the input waveform in current form, is valid under the assumption
that the state is confined within its two bounds, since it does not take into account
the boundary behavior.

In the nonlinear drift models from [9, 10] and [24] the rate of change of the
state is proportional to the product between the input waveform in current form
and a window function accounting for nonlinear dynamical behavior and imposing
suitable boundary conditions.

In Joglekar’s model [9] the window function is defined as fJ(x) = 1− (2x −
1)2p (p ∈ Z+). Such window describes the suppression of dopant drift close to the
extremities, but is not vertically scalable (i.e. its maximum value may not be up-
or down-shifted) and introduces the so-called terminal-state problem [24], since if
the state is at either of its two bounds it may not leave it for any subsequent time
instant. Note that for p = 1 Joglekar’s window is a scaled (by a factor of 4) version
of yet another window previously derived by Strukov in [3], i.e. fS(x) = x(1− x).
Benderli [25] presented a circuit realization of Strukov’s model [3], where the use of
comparators and logic gates allowed the emulation of the state clipping at or release
from either bound.

In Biolek’s model the window function depends on both state x and input current
i, being defined as fB(x, i) = 1− (x− stp(−i))2p, where stp(x) = 1 for x ≥ 0 and 0
otherwise (p ∈ Z+). Such window resolves the “terminal-state problem,” but has
limited scalability (in particular, its maximum value may not exceed +1 [24]).
PSpice implementations of Joglekar’s and Biolek’s models are reported in [10].

In the versatile model proposed by Prodomakis [24] the window function fP(x) =
j(1− ((x− 0.5)2 − 0.75)p) has two control parameters j and p lying in R+ and is
vertically scalable, i.e. 0 ≤ max{ fP(x)} � 1. A PSpice version of such model may
be easily derived by modifying the PSpice .circ [22] file available in [10].

Another model endowed with a PSpice circuit implementation was developed by
Cserey [26]. In this model the state evolution function in Strukov’s model [3] was
augmented with an additive state-dependent linear term to resolve the “terminal-
state problem.”

One of the finest circuit emulators of memristor behavior is credited to Shin and
Kang [11], which proposed a general model where the control waveform may be
in either current or voltage form and the state is defined as the memristance. Their
model, from which the charge-flux relationship of the memristor under modeling
may be easily extracted, may be suitably tuned through the introduction of a window
function depending on the memristor charge.
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Kavehei [27] proposed a memristor model based upon the specification of a
piecewise-linear charge q-flux ϕ relationship. In such model the state and output
equations are not specified. Its PSpice implementation is based on Chua’s [1] first
circuit realization of a memristor through a type-1 memristor-resistor mutator.

An interesting model was presented in [28] to explain the memristor behavior of
nanoparticle assemblies.

The nonlinear dependence of the time derivative of the state on the input signal
is taken into account in Lehtonen’s model [29], inspired by the experimental work
from [30], where the current is related to the voltage by means of a rectifying
exponential function in the off state (as in a diode) and of a sinh function in the on
state (typical of electron tunneling). This model, where the control waveform is in
voltage form, was implemented in PSpice to describe the neighborhood connections
among cellular neural networks (CNNs) [31, 32].

An even more nonlinear function of the input governs the state equation in the
voltage-controlled model from Poikonen [33], which studied the transition between
non-programming and programming phases in memristor devices.

In the memristor emulator circuit from [34], used as basic building block of a 4-
memristor bridge synapse for neuromorphic applications, the memristance, modeled
by the input impedance of an active circuit, is made proportional to the time integral
of the memristor current by constraining the voltage at one of the input terminals
of an operational amplifier to be the analogue multiplication between the voltage
across a resistor, proportional to the memristor current, and the voltage across a
capacitor, proportional to the time integral of the memristor current.

In [35] Strukov and Williams demonstrated the exponential relationship between
drift velocity and local electric field. Since this discovery a number of models have
been introduced to support threshold-activated state dynamics.

Among them, one which merits mention, is the physics-based Pickett’s model
from [13], in which the dependency of the rate of change of the state on the current-
form input is strongly nonlinear. In such model the memristor is seen as the series
between a low resistance associated with the conductive layer of the nano-film and
Simmons’ electron tunneling barrier [36], whose width is chosen as the system state.
A PSpice version of Pickett’s model was presented in [37].

More recently Kvatinski developed a simplified version of the Pickett’s model
[13] and named it as ThrEshold Adaptive Memristor (TEAM) model [14]. In
such model for input current magnitude below a certain adaptable threshold no
state change occurs, otherwise the state evolution rule may be tuned to the
memristor element under modeling through specification of an appropriate set of
control parameters and of suitable window and memristance functions. The PSpice
architecture of the TEAM model is similar to the one originally presented in [11].

Another activation-type state model, where the state variable expresses the
memristance and the control signal is in voltage form, embedded in the PSpice
software program [38], enabled to capture the adaptive behavior of a unicellular
organism named amoeba through a simple memristor-based oscillator [39].

Another interesting model with threshold-activated state dynamics was proposed
in [40] to explain Spike-Timing-Dependent-Plasticity (STDP) in neural synapses.
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Most of these PSpice models have been classified in [41]. Another insightful
discussion on the models available in the literature was recently published in
[42], where a novel model inspired from Simmons’ electron tunneling theory [36],
endowed with programming threshold capability and PSpice circuit implementa-
tion, was also proposed.

The Boundary Condition Memristor (BCM) model is a simple yet accurate
boundary condition-based mathematical model for memristor nano-structures made
up of two layers with different conductivity levels, whose longitudinal extensions
depend on the time history of the input. In comparison with the classical BCM
model [12], the generalized version [21] is augmented with programming threshold
capability [42], i.e. with tunable nonvolatile behavior.

Recently, in [43], assuming Pickett’s model [13] as reference for comparison,
various memristor models, including Biolek’s, the TEAM and the BCM models,
were first compared on the basis of the ability to reproduce (after an optimization
process) the dynamics of the reference model in a particular simulation scenario,
and secondly employed in a couple of memristor-based circuits to investigate the
variance in the nonlinear dynamical behaviors they give rise to. The latter study
revealed the model-dependency of the dynamics of memristor-based circuits, and
thus raised a warning against a blind faith in the memristor models and pointed
out the necessity to develop a universal mathematical model for exploring the full
potential of the memristor and unfolding its unique properties.

Section 13.3 describes the recently proposed generalized BCM model and its
PSpice-based circuit [21] (the PSpice emulator of the classical BCM model is
reported in [44]).

13.3 Generalized BCM model and Its Circuit
Implementation

Let Ron and Ro f f stand for the on and off resistances of a memristor nano-film.
The memristor state variable x is chosen as the length w(t) of the conductive layer
of the nano-film normalized with respect to the entire longitudinal extension D of
the nano-film (i.e. x = w(t)

D ∈ [0,1]). Denoting memristor current and voltage as i
and v, respectively, the state-dependent input–output algebraic relationship of the
generalized BCM model is expressed by

i(t) =W (x(t))v(t), (13.4)

where W (x(t)) describes the state-dependent memductance, expressed by

W (x(t)) =
GonGo f f

Gon −ΔGx(t)
, (13.5)

with Gon = R−1
on , Go f f = R−1

o f f , while ΔG = Gon −Go f f .
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The state equation of the generalized BCM model is defined as

dx(t)
dt

= η k W (x(t))v(t) f (x(t),η v(t),vth0,vth1,vt1,vt2,a,b) , (13.6)

where k ∈ R is a constant depending on physical properties of the memristor (its
dimensions are C−1), η ∈ {−1,+1} is a coefficient denoting the polarity of the
nano-device, while f (x(t),η v(t),vth0,vth1,a,b) ∈ {0,a,b}, a switching window
function defining not only the boundary behavior but also the degree of non-
volatility [42], is expressed as

f (x,η v,vth0,vth1,vt0,vt1,a,b) =

⎧⎨
⎩

b if C1 or C2 holds,

0 if C3 or C4 holds,

a if C5 holds,

(13.7)

where tunable conditions Cn (n = 1,2,3,4,5) are mathematically described by

C1 = { (x(t) ∈ (0,1) and ((η v(t)> vt0) or (η v(t)<−vt1)))}, (13.8)

C2 = { (x(t) = 0 and η v(t)> vth0) or (x(t) = 1 and η v(t)<−vth1)}, (13.9)

C3 = { x(t) = 0 and η v(t)≤ vth0}, (13.10)

C4 = { x(t) = 1 and η v(t)≥−vth1}, (13.11)

C5 = { (x(t) = x̄ ∈ (0,1) and ((η v(t)≤ vt0) and (η v(t)≥−vt1)))}, (13.12)

where vth0 ∈ R+, vth1 ∈ R+ represent the input thresholds at boundaries, vt0 ∈ R+,
vt1 ∈ R+ define the programmability thresholds, (vt0 ≤ vth0 and vt1 ≤ vth1), while a
and b are constants modulating the degree of non-volatility of the memristor (b ∈
R+, a ∈ R0,+, a < b).

The PSpice implementation of the generalized BCM model is depicted in
Fig. 13.1. The source code is reported in Table 13.1.

In the circuit of Fig. 13.1 voltages at nodes y and z, the two terminals of the
bipole, are, respectively, denoted as vy and vz, while v = vy − vz and i, respectively,
stand for voltage across and current through the memristor. The architecture of this
circuit realization takes inspiration from the design of Batas and Fiedler [45], which,
however, was lacking the adaptability of the boundary behavior and the tunability
of the degree of non-volatility.

The memristor state x is modeled by the voltage vθ across capacitance Cx. The
series between linear resistor Ro f f and nonlinear voltage-controlled resistor R(vθ ) =
−ΔRvθ , where ΔR = Ro f f −Ron, implements the input–output equation (13.4).

If the value of window function (13.7) were unitary at all times, as in the original
model from Williams [3], state equation (13.6) would be simply implemented by
letting memristor current i flow through linear capacitor Cx (in any case a tiny
conductance g is placed in parallel to the capacitor so as to prevent node z from
floating). However, f (vθ (t),η v(t),vth0,vth1,a,b) ∈ {0,a,b} and its behavior is
regulated by conditions C1 and C5, governing the degree of non-volatility, and by
conditions C2-C4, determining the boundary behavior.
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Fig. 13.1 PSpice implementation of the generalized BCM model. Note that Δv denotes for each
switch the width of the transition region between on and off states

Conditions (13.8) and (13.12) are implemented by nonlinearly filtering memris-
tor current i before letting it flow through capacitor Cx. This filtering consists of
performing the multiplication between a k-scaled version of memristor current i and
a nonlinear function h(v,vt0,vt1,a,b), which, under x ∈ (0,1), is responsible for the
modulation of the evolution rate of the state. In particular, under positive (negative)
input larger (smaller) than a suitable threshold vt0 (−vt1) the right-hand-side of state
equation (13.6) is multiplied by a factor (b) larger than the factor (a) by which it
is multiplied in the sub-threshold input case. Nonlinear function h(v,vt0,vt1,a,b) is
mathematically expressed by

h(v,vt0,vt1) = b+
a− b

2
(sign(v+ vt1)− sign(v− vt0)), (13.13)

Note that the multiplication between current k i and function (13.13) may be
easily implemented by letting flow through capacitor Cx one of the currents of
two complementary-activated parallel branches. One of these branches is activated
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Table 13.1 Netlist of the PSpice implementation of the generalized BCM model in Fig. 13.1

* L oca l p a r a m e t e r s :

* Ron , Roff : on and o f f r e s i s t a n c e s

* d e l t a _ R : d i f f e r e n c e between Roff and Ron

* x0 : i n i t i a l s t a t e

* v t h0 : a c t i v a t i o n t h r e s h o l d f o r x=0

* v t h1 : a c t i v a t i o n t h r e s h o l d f o r x=1

* vt0 , v t 1 : a c t i v a t i o n t h r e s h o l d s f o r 0<x<1

* Cx : c a p a c i t a n c e v a l u e

* k : m em r i s t o r cha rge s c a l i n g f a c t o r

* a , b : c o n s t a n t s m odu l a t i ng t h e deg ree o f non−v o l a t i l i t y

* d e l t a _ v : width o f t h e t r a n s i t i o n r e g i o n o f t h e s w i t c h e s
. SUBCKT BCM_MEMRISTOR 1 2 3

* node 1 : node y i n Fig . 13 . 1

* node 2 : node z i n Fig . 13 . 1

* node 3 : node t h e t a i n Fig . 13 . 1
R1 1 8 { Roff }
Vsense1 8 7 0
E1 7 2 VALUE={{− d e l t a _ R }* I ( Vsense1 )*V( 3 ) }
C1 3 0 {Cx} IC ={x0}
R3 3 0 1G
Vsense2 10 0 1
G1 0 3 VALUE={k*Cx* I ( Vsense1 )*V( 1 0 ) * h (V(1)−V( 2 ) , vt0 , vt1 , a , b )}
S1 3 9 1 2 SMODRH
S2 9 4 3 0 SMODCH
S3 3 6 1 2 SMODRL
S4 6 5 3 0 SMODCL
Vl 5 0 0
Vu 4 0 1
.MODEL SMODRH VSWITCH Roff =1G Von={−v t h1 } Voff={−vth1−d e l t a _ v }
.MODEL SMODCH VSWITCH Roff =1G Voff ={1− d e l t a _ v } Von={1}
.MODEL SMODRL VSWITCH Roff =1G Von={ v t h0 } Voff ={ v t h0 + d e l t a _ v }
.MODEL SMODCL VSWITCH Roff =1G Voff = d e l t a _ v Von=0
. func h ( v , v0 , v1 , a , b )={ b +( a−b ) / 2 *SGN( v+v1 )−( a−b ) / 2 *SGN( v−v0 )}
. ENDS

through a voltage-controlled voltage-switch for v > vt0 or v < −vt1 and carries
a current equal to k b i . The other branch is activated through another voltage-
controlled voltage-switch for v≤ vt0 and v≥−vt1 and carries a current equal to k a i .

Boundary conditions (13.9)–(13.11) are modeled by two reference voltage
sources, i.e. vL = 0 and vU = 1, respectively, denoting the lower and upper limits
of capacitor voltage vθ (hence the use of letter L or U as subscript of symbol v
for the reference voltage source), and by two pairs of voltage-controlled voltage
switches, one pair for each of the two memristor state bounds vθ = 0V and vθ = 1V
(the first subscript of symbol S for a switch indicates whether it refers to the lower
or upper state bound, hence letter L or U is chosen). Within each pair of switches,
the clipping switch is controlled by capacitor voltage vθ , while the release switch is
controlled by input voltage v (the second subscript of symbol S for a switch hints
at whether it models the exit from or the entrance into condition C2 expressed by
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(13.9), i.e. the clipping or release event, hence letter C or R is chosen). Basically,
for each state bound, node θ is connected to a reference voltage source through
the series between the output resistances of the corresponding pair of clipping and
release switches. With regard to the upper (lower) state bound, the relative clipping
switch remains open, i.e. in the off state, as long as the memristor state keeps below
the unitary (above the zero) value. In this case, due to the large output resistance
of the clipping switch, reference voltage source vU (vL) is unable to constrain the
voltage at node θ , irrespective of the behavior of the release switch. However, the
clipping switch turns into on state in case vθ approaches its upper (lower) bound
in its ascent (descent). When this occurs, the associated release switch is always
closed, i.e. in the on state, thus allowing the memristor state to be clipped at the
upper (lower) bound. Only with memristor state vθ clipped to +1V (0V ), do the
dynamics of the release switch become relevant: this switch turns into off state in
case the input voltage v goes below (above) a certain adaptable negative (positive)
threshold voltage −vth1 (vth0), thus enabling the memristor state to be released from
the upper (lower) bound.

Note that it is possible to develop a more realistic implementation of the
PSpice circuit of Fig. 13.1 by replacing the voltage-controlled voltage switches with
suitable combinations of Complementary-Metal-Oxide-Semiconductor (CMOS)
transistors.

13.4 Case Study: Neuromorphic Applications

This section uses the PSpice circuit of the generalized BCM model to model
dynamics typical of biological neural networks. One of the most natural ways in
which neurons strengthen their synaptic connections is by sending signals to each
other at the same time. This primitive form of neural learning is named Hebbian rule
[23]. In order to demonstrate that the circuit of Fig. 13.1 does indeed favor Hebbian-
based associative learning, we set up a transient simulation (with time step equal to
0.1ms, initial and final time, respectively, fixed to 0s and 1.4s) in which we excite
nodes y and z with pulses of magnitude, let us call it vp, equal to −1V and +1V ,
respectively, width, let us name it Δ tp, of value 10ms, rise and fall time 1ms and
period 10s (i.e. larger than the simulation final time). The time delay of the pulse
exciting node y (i.e. the post-synaptic signal), let us name it td,pos, was swept in
steps of 0.1ms from 0.975s to 1.025s, while that of the pulse exciting node z (i.e.
the pre-synaptic signal), let us name it td,pre, was chosen as 1s.

The memristor under modeling is a nano-structure of the kind discussed in
Sect. 13.3, therefore k = μ Ron

D2 . The BCM parameters were specified as fol-
lows: Ron = 526.3158Ω , Ro f f = 18182Ω , vθ (0) = 1V , D = 10nm, μ = 1e −
10−14 m2 V−1 s−1 (therefore k = 52631.58C−1), and Cx = 50 μF . The activation
threshold voltages at the boundaries (used in conditions (13.9–13.11)) and those
within the boundaries (used in conditions (13.8) and (13.12)) are set to vth0 = vth1 =
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Fig. 13.2 Demonstration of Hebbian-based associative learning under partial temporal overlap
between pre- and post-synaptic signals (Δtd = 0.0049s). Top plot: Pre- and post-synaptic pulses.
Middle plot: Memristor voltage (negative activation thresholds are shown with dotted lines).
Bottom plot: Memristor state

1.1V and to vt0 = vt1 = 1.1V , respectively. The parameters modulating the degree
of non-volatility are set to a = 0 and b = 5. The width of the transition region of the
switches is set to Δv = 0.1V .

Figure 13.2 shows for td,pos = 1.0049s the pulse waveforms at nodes y and z, i.e.
vy = vpos and vz = vpre, the voltage across the memristor, i.e. v = vy − vz, and the
memristor state, modeled by capacitor voltage vθ in the PSpice circuit of Fig. 13.1.
In this case the post- and pre-synaptic pulses overlap in time. The difference between
the time delays of such pulses, defined as Δ td = td,pos − td,pre, is 0.0049s. Only
within the overlapping time window is the memristor voltage below the negative
activation threshold referring to upper boundary vθ = 1V , i.e. −vth1 (and, since
vth1 ≥ vt1, also below the negative activation threshold within the boundaries, i.e.
−vt1) and, as a result, does the memristor state decrease from its initial unitary value.
As Fig. 13.3 demonstrates, the change in memristor state Δvtheta = vtheta − vtheta(0)
is more significant as the overlapping time window gets larger, i.e. as the magnitude
of Δ td gets smaller. The maximum of the absolute value of Δvtheta occurs in fact
when the two pulses completely overlap in time, i.e. when tpos = 1s, implying Δ td =
0s.
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13.5 A Novel Class of Passive Memristor Circuits

This section shall introduce a novel class of memristor systems. Each element from
the class is an electrical circuit employing only purely passive components from
circuit theory (diodes and linear capacitors, inductors and resistors).

Each of the circuits from the class to be presented shall be characterized by
a system of differential-algebraic equations of the kind given in (13.2)–(13.3).
Section 13.5.1 is devoted to the presentation of the core block of each element
from the novel class of memristor systems, i.e. a switching two-port based upon
the Graëtz diode bridge.

13.5.1 The Graëtz Diode Bridge

Let us consider the full-wave rectifier shown in Fig. 13.4. It is a two-port where vi

and ii, respectively, denote input voltage and current, while vo and io, respectively,
refer to output voltage and current.

The voltage across and the current through diode D j are, respectively, expressed
as v j and i j, where j = {1,2,3,4}. Let us identify the constraints upon voltages and
currents of the two-port. These constraints shall play a key role in the emergence
of memristor behavior in the circuits from the class to be presented. Application of
Kirchhoff’s Current Law (KCL) to the input and output port, respectively, yields

ii = i1 − i4, (13.14)

ii = i3 − i2, (13.15)

io = i1 + i2. (13.16)



13 Memristor for Neuromorphic Applications: Models and Circuit Implementations 391

i2

+

−
v2

i1

+

−v1
i4

+

−
v4

D1

D2D3

D4

i3
+

−
v3

ii

+

−

vi

io

+

−

vo

Fig. 13.4 The Graëtz diode
bridge

Combining (13.14) and (13.15) yields

i1 + i2 = i3 + i4. (13.17)

Applying Kirchhoff’s Voltage Law (KVL) to the input and output port gives

vi = v1 − v2, (13.18)

vi = v3 − v4, (13.19)

vo = −v1 − v4. (13.20)

Combination of (13.18)–(13.19) results into

v1 + v4 = v2 + v3. (13.21)

Assuming perfectly matched diodes, we express i j = i j(v j), where j =

{1,2,3,4}, as i j = IS
(
exp

(
v j n−1 V−1

T

)− 1
)
, where IS symbolizes the saturation

current,VT =KTq−1 stands for the thermal voltage and n is the emission coefficient,
where K = 1.38 ·10−23 J K−1 is the Boltzmann’s constant, T represents the absolute
temperature, and q = 1.6 ·10−19C refers to the elementary electronic charge.

Defining y j = exp
(
v j n−1V−1

T

)
, (13.17) and (13.21) may be recast as

y1 + y2 = y3 + y4, (13.22)

y1 y4 = y2 y3. (13.23)

Solving (13.22) for y1 and inserting the resulting expression into (13.23) gives:

y2
4 +(y3 − y2)y4 − y2y3 = 0,

from which, given the sign of y4, the only acceptable solution is y4 = y2. Using
(13.22), we also have y1 = y3. Recalling the definition of y j, we then have v4 = v2

and v1 = v3. Note that these two voltage constraints, each involving one pair of



392 A. Ascoli et al.

parallel diodes, represent the key mechanism at the origin of the memristor behavior
of the circuits to be proposed. Recalling the current-voltage relationship for a diode
it follows that i4 = i2 and i1 = i3.

Equations (13.14) and (13.18) for input port current and voltage and (13.16) and
(13.20) for output port current and voltage may thus be recasted as

ii = i1 − i2, (13.24)

vi = v1 − v2, (13.25)

io = i1 + i2, (13.26)

vo = −v1 − v2. (13.27)

Equations (13.24)–(13.27) represent the four bridge constraints. Let us present
the novel class of memristor electronic systems.

13.5.2 Classification and Properties

Each element from the proposed class is characterized by the following
properties:

1. The switching two-port of Sect. 13.5.1 is cascaded with a suitable nth-order
dynamical one-port employing n linear dynamical elements (capacitors or
inductors) and, not necessarily though, some linear resistor.

2. The input voltage vi and current ii of the bridge, taken in any prescribed order,
denotes input and output of the memristor element.

3. Either the output voltage vo or the output current io of the bridge denotes one of
the n state variables of the memristor element. In the first (latter) case the linear
dynamical one-port contains a capacitor (an inductor) with voltage vo across it
(current io through it).

The first and third properties constrain the set of one-port topologies which may be
chosen as load to the Graëtz diode bridge.

Remark 1. The elements from the novel class, one of which was recently presented
in [46], represent the first-ever circuit implementations of memristor systems
employing only diodes and linear inductors, capacitors and resistors. This discovery
contradicts common expectations according to which memristor behavior may not
arise out of elementary circuits comprising solely purely passive components known
in circuit theory before the advent of the memristor.

The novel class of memristor electronic systems may be split into two sub-
classes, respectively, comprising voltage-controlled and current-controlled systems,
i.e. systems where the input, respectively, is voltage vi and current ii (and thus the
output, respectively, is ii and vi). The first sub-class is dealt with in Sect. 13.5.3,
while the reader may derive the second class by duality. Within each of such sub-
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classes, two further sub-classes shall be identified, respectively comprising voltage-
state and current-state systems, i.e. systems where one of the states respectively
is voltage vo and current io. Such systems shall be presented in Sects. 13.5.3.1
and 13.5.3.2, respectively.

13.5.3 Voltage-Controlled Systems

The input and output to each of these systems, respectively, are vi and ii. Let us
present the two sub-classes a circuit of this kind may belong to.

13.5.3.1 Voltage-Controlled Voltage-State Systems

For these systems one of the states is vo. The most appropriate representation of the
two-port of Fig. 13.4 for the synthesis of such systems is the current-voltage form.
Let us derive it. Solving (13.25)–(13.27) for v1 and v2 yields

v1 =
vi − vo

2
, (13.28)

v2 = −vi + vo

2
. (13.29)

Recalling the current-voltage relationship for a diode and using (13.28)–(13.29)
into (13.24) and (13.26), the current-voltage representation of the two-port of
Fig. 13.4 is found to be:

ii = 2IS exp

(
− vo

2nVT

)
sinh

(
vi

2nVT

)
, (13.30)

io = 2IS exp

(
− vo

2nVT

)
cosh

(
vi

2nVT

)
− 2IS. (13.31)

Equation (13.30) may be recast as

ii = g(vo,vi)vi, (13.32)

with g(·, ·) expressed by

g(vo,vi) =
IS

nVT
exp

(
− vo

2nVT

) ∞

∑
k=0

(
vi

2nVT

)2k

(2k+ 1)!
, (13.33)
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where we used the Taylor series expansion of the hyperbolic sine [47]. From (13.32)
it follows that any time vi = 0, then ii = 0 and vice versa. This is the so-called
zero crossing property, typical of a memristor system [2]. Equation (13.32) models
the input–output relation of the voltage-controlled voltage-state circuits, whose
memductance function is expressed by (13.33).

The state equation of the elements from this class depends on the particular
linear dynamic one-port chosen as load to the full-wave rectifier. After choosing
a particular one-port topology (making sure it contains a capacitor with voltage
vo across it), the constitutive equations of the dynamical elements within the one-
port are then written down. Then, inserting (13.31) into these constitutive equations
yields the state equations of a voltage-controlled voltage-state system. Let us
present examples of first- and second-order circuits of this kind, deriving their state
equations.

• First-order circuit

With regard to a first-order case, let us close the output port of the diode bridge
onto the parallel combination of a capacitor of value C and of a resistor of value R
(see Fig. 13.5a). Inserting (13.31) into the constitutive equation of the capacitor, i.e.
io − vo

R =C dvo
dt , the state equation of the resulting system is found to be

dvo

dt
=

2IS

C
exp

(
− vo

2nVT

)
cosh

(
vi

2nVT

)
− 2IS

C
− vo

RC
, (13.34)

where vo denotes the state of the system. This first-order voltage-controlled voltage-
state memristor circuit is modeled by (13.32) and (13.34).

• Second-order circuit

Let us introduce a second-order example. Let the two-port be cascaded with the
second-order one-port of Fig. 13.5b, which is an inductor L-capacitor C parallel
circuit augmented with the series resistance R of the inductor and characterized

by a resonance frequency expressed by ωo =

√
1

LC − (R
L

)2
. Choosing vo and iL,

the current through the inductor, as the states of the system, writing down the
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constitutive equations of the dynamical elements of the one-port, and using (13.31)
into them, the following state equations are finally obtained:

d
dt

[
vo

iL

]
=

[
− 1

C iL +
2IS
C exp

(
− vo

2nVT

)
cosh

(
vi

2nVT

)
− 2IS

C
1
L (vo −RiL)

]
. (13.35)

In conclusion, (13.32) and (13.35) define this second-order voltage-controlled
voltage-state memristor circuit.

13.5.3.2 Voltage-Controlled Current-State Systems

For these systems one of the states is io. The use of the inverse hybrid representation
of the two-port of Fig. 13.4 is the most appropriate for the synthesis of these
elements. Let us derive such representation. Rearranging (13.31), we have:

2IS exp

(
− vo

2nVT

)
=

(io + 2IS)

cosh
(

vi
2nVT

) . (13.36)

Using (13.36) into (13.30) and extracting from (13.36) an expression for vo as
function of vi and ii, the inverse hybrid representation of the two-port turns out to be

ii = (io + 2IS)
sinh

(
vi

2nVT

)

cosh
(

vi
2nVT

) , (13.37)

vo = −2nVT ln

⎛
⎝ io + 2IS

2IS cosh
(

vi
2nVT

)
⎞
⎠ . (13.38)

Equation (13.37) may be recast as

ii = g(io,vi)vi, (13.39)

with g(·, ·) given by

g(io,vi) =
(io + 2IS)

2nVT

∑∞
k=0

(
vi

2nVT

)2k

(2k+1)!

∑∞
k=0

(
vi

2nVT

)2k

(2k)!

, (13.40)

where we used the Taylor series expansions of the hyperbolic sine and cosine [47].
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From (13.39) we deduce that vi = 0 implies ii = 0 and viceversa. Equation (13.39)
defines the input–output relation of the voltage-controlled current-state circuits,
whose memductance function is modeled by (13.40).

The state equation of the elements from this class depends on the particular
linear dynamic one-port chosen as load to the full-wave rectifier. After choosing
a particular one-port topology (making sure it contains an inductor with current
io through it), the state equations of a voltage-controlled current-state circuit are
obtained by inserting (13.38) into the constitutive equations of capacitors and
inductors of the one-port. Let us describe examples of first- and second-order
circuits of this kind and determine their state equations.

• First-order circuit

With regard to a first-order case study, the series combination between an inductor L
and a resistor R, as given in Fig. 13.6a, is taken as the load of the switching network
of Fig. 13.4. Inserting (13.38) into the constitutive equation of the inductor, i.e. vo −
Rio = L dio

dt , yields the following state equation:

dio
dt

=−2nVT

L
ln

⎛
⎝ io + 2IS

2IS cosh
(

vi
2nVT

)
⎞
⎠− R

L
io, (13.41)

where io denotes the state of the system. In conclusion, (13.39) and (13.41) define
this first-order voltage-controlled current-state memristor circuit.

• Second-order circuit

With regard to a second-order example, let us close the output port of the full-wave
rectifier of Fig. 13.4 onto the inductor L-capacitor C series circuit augmented with
the parallel resistance R of the capacitor. The resonance frequency of such second-

order one-port, shown in Fig. 13.6b, is expressed by ωo =

√
1

LC − ( 1
RC

)2
. Writing
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Fig. 13.7 A second-order voltage-controlled current-state memristor element from the proposed
class. The element is driven by input voltage source vi

down the constitutive equations of the dynamic elements of the one-port and the
inserting (13.38) into them, the state equations are found to be:

d
dt

[
v
io

]
=

⎡
⎢⎣

1
C

(
io − v

R

)
− 1

L v− 2nVT
L ln

(
io+2IS

2IS cosh
(

vi
2nVT

)
)
⎤
⎥⎦ , (13.42)

where v, the voltage across the capacitor, and io denote the states of the system.
In conclusion, the defining equations of this second-order voltage-controlled

current-state memristor circuit are (13.39) and (13.42).

13.5.4 Simulation Results

With reference to the voltage-controlled current-state second-order memristor
circuit of Fig. 13.7 [46], making use of the diode bridge of Fig. 13.4 loaded by
the second-order one-port shown in Fig. 13.6b and discussed in Sect. 13.5.3.2,
the system state is expressed as x = [x1 x2]

′, where state variables are defined as
x1 = v(VT )

−1 and x2 = io (IS)
−1. Further system input and output are chosen as

u= vi (VT )
−1 and y = ii (IS)

−1 respectively, and dimensionless time variable is taken
as τ = t (t0)−1, where t0 = 2π (ω0)

−1 stands for the time normalization factor and ω0

is the resonant frequency of the one-port of Fig. 13.6b, which we previously defined.
After some algebraic manipulation we get:

dx
dτ

=

⎡
⎣ β (x2 −αx1)

γ
(
−x1 − 2n ln

(
x2+2

2cosh( u
2n)

))
⎤
⎦ (13.43)



398 A. Ascoli et al.

v i l i

τ

m−1

1 2 3 4

2e4 2.5e4 3e4 3.5e4 4e4
−1

−0.5

0.5

1
X10−3

0

2

1

–1

–2

0

Fig. 13.8 Time waveforms of current ii (red signal) and voltage vi (blue signal) under sinusoidal
excitation with vio = 1.75V and fi = 10Hz. The dimensionless input period m−1 is divided into 4
intervals, numbered from 1 to 4, separating zeros, minimum and maximum of the voltage waveform

y = (x2 + 2)
sinh

(
u
2n

)
cosh

(
u
2n

) (13.44)

where α = VT
RIS

, β = t0IS
CVT

and γ = t0VT
LIS

are dimensionless parameters. The Matlab
software environment [48] was used for the numerical integration of the mathemati-
cal model of the memristor circuit of Fig. 13.7, i.e. (13.43)–(13.44), for a sine-wave
input source with amplitude vio = 1.75V and varying frequency fi, expressed as
vi = vi0 sin(2π fit), which yields u = ui0 sin(2πmτ), where uio = vio (VT )

−1 and m =
fi t0 denotes the dimensionless input frequency. The values of the circuit components
were set to R= 1.5kΩ , C = 4 μF , and L = 2.5 μH. The values for saturation current
IS and emission coefficient n of the four matched diodes were respectively taken as
2.682 · 10−9 and 1.836, i.e. as in the case of standard diode D1N4148. The initial
conditions of the voltage across the capacitor and of the current through the inductor
are respectively chosen as v(0) = 0.01V and iL(0) = 0.01A. Ordinary differential
equation solver ode15s [48] was employed to integrate (13.43)–(13.44) from τ = 0
up to τ equal to 10 times the dimensionless input period m−1 = f−1

i t−1
0 . Under

such parameter setting, letting the input frequency fi = 10Hz, the time evolutions
of voltage vi and current ii are depicted in Fig. 13.8, from which it is evident
that voltage and current exhibit zeros at the same instants but have misaligned
maxima and minima. As a result, the circuit of Fig. 13.7 manifests the typical
pinched hysteretic current-voltage loop characterizing memristor systems, as it is
shown in Fig. 13.9 (black bow-tie). With reference to Fig. 13.8, note that over each
normalized period m−1 the maximum and minimum of the current always occur
before the maximum and minimum of the voltage. As a result, following the path
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Fig. 13.9 Current ii-voltage
vi bow-ties under sinusoidal
excitation with vio = 1.75V
and fi, respectively, equal to
10Hz (black loop), 100Hz
(red loop), and 1000Hz (blue
loop). Brown arrows,
mapping one-to-one with
time intervals 1-4 in Fig. 13.8,
show the non-self-crossing
property of the ii-vi loop for
fi = 10Hz (note that this
property is exhibited by the
other loops as well)

drawn by the trajectory point on the ii-vi plane in one period, as indicated by the
four consecutively numbered brown arrows in Fig. 13.9 (corresponding to the four
intervals in which the period is divided in Fig. 13.8), it may be realized that the loop
is non-self-crossing, i.e. it is of type II, according to the definition given by Biolek
in [49]. With reference to Fig. 13.7, the voltages across the bridge diodes may be
expressed as

v1 = v3 = nVT ln

(
x2 + 2

2 cosh
(− u

2n

)
exp

(− u
2n

)
)
,

v2 = v4 = v1 − vi. (13.45)

Figure 13.10 shows the time dependence of v1 and v2 in the simulation of
Fig. 13.8.

Sweeping frequency above 10Hz, the lobes of the loop get increasingly squeezed
(while stretching along the ii axis), as it is demonstrated in Fig. 13.9, where the
red and blue bow-ties respectively refer to an input frequency fi set to 100Hz and
1000Hz. Note that these other two loops also are of type II.

It is worth pointing out that at infinite frequency, when the inductor and the
capacitor respectively are an open and a short circuit, the electronic system of
Fig. 13.7 behaves as a nonlinear resistor. Furthermore, sweeping frequency below
10Hz also yields a gradual flattening of the loop lobes. Finally, bear in mind that
nonlinearly resistive behavior also arises at direct current (dc), when the inductor
and the capacitor respectively are a short and an open circuit.

An experimental proof for the occurrence of memristor behavior in the circuit of
Fig. 13.7 is reported in [50].



400 A. Ascoli et al.

v 1

τ

v 2

2.5e42e4 3e4 3.5e4 4e4
−1

−0.5

0.5

1

0

2

1

–1

–2

0

Fig. 13.10 Voltage drops
across the bridge diodes for
the sinusoidal excitation at
frequency fi = 10Hz

13.6 Conclusions

After a brief review of the memristor models available in the literature, this paper
describes the PSpice-based implementation of the generalized Boundary Condition
Memristor (BCM) model, which stands out over the other models thanks to the
adaptability of the boundary behavior and to the tunability of the non-volatility
degree. The first part of the paper ends with a case study where the use of the PSpice
emulator sheds light into the synapse-like behavior of the memristor. Such circuit
implementation of the generalized BCM model may be of great help to researchers
willing to investigate in the user-friendly PSpice environment the extraordinary
opportunities memristors offer in integrated circuit design.

The second part of the paper introduces a class of purely passive circuits,
each made up of a nonlinear static two-port (a full-wave rectifier employing a
four diode bridge) cascaded with a linear dynamic one-port (employing standard
linear components from circuit theory, namely resistors, inductors and capacitors).
The state equations of these circuits fall into the class of memristor systems, as
originally formulated by Chua and Kang in 1976 [2]. This manuscript presents
voltage-controlled elements from the proposed class. Dual memristor emulators
with current-control may be derived in a similar manner [50]. These novel circuits
may be used to introduce the undergraduate students to the concept of memory
systems [51, 52]. In conclusion, it is important to note that all the novel memristor
circuits proposed in this manuscript are volatile. However, we conjecture that non-
volatility could be attained by inserting active elements into the one-port loading the
diode bridge. This shall be the topic of future studies, where we aim at increasing
the complexity of the circuits presented in this manuscript so as to model memristor
systems within the Hodgkin-Huxley neuron [53].
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