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Introduction

The highly capital intensive nature of the semiconductor industry requires its factories
to operate at high utilization levels, where small changes in utilization can cause large
changes in lead times. Demand for these products over time can be quite uneven,
which leads to firms trying to shape their demand by price promotions in order to
maintain high factory utilization levels. However, it is well known from queuing
models of manufacturing systems (Buzacott and Shanthikumar 1993) that higher
resource utilization leads to increasing lead times. This raises the possibility of price
reductions becoming counterproductive—an unwise price promotion can create a
surge in demand that, after some time, results in a large increase in lead times,
missed delivery dates, cancelled orders and lost future business.

To this end, companies will often develop aggregate production plans at the prod-
uct family level for several months (up to 18 months in the case of one semiconductor
manufacturing firm described by Allison et al. (1997)) in order to identify potential
capacity bottlenecks and make sure that competitive lead times can be maintained.
This plan, based on current order books and marketing forecasts, permits the plan-
ning of price promotions as part of the process. Given the long planning horizon, an
aggregate planning model focusing on the loading of resources and management of
prices over time to achieve maximum profit with competitive lead times would be
useful to management. The high utilization levels at which many capital-intensive
factories, such as semiconductor wafer fabs, operate renders a planning model that
accounts for the nonlinear relationship between resource utilization and lead times
desirable, especially when customers are sensitive to both lead times and prices.
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Most existing pricing-production planning models do not address this problem in
its full complexity. In particular, most such models do not consider the effect of work-
load on queues and lead times, and hence may underestimate the price that should
be charged at a given output level. In particular, if high demand results in long lead
times due to congestion in the production facility, the assumption that demand can
be met within a fixed lead time may result in significant lost sales. Dynamic pricing
models based on queuing, on the other hand, generally describe long-run steady-state
behavior and do not provide a framework for decisions to be made over time.

The model presented in this chapter is a first step towards addressing these issues.
We use clearing functions (CFs, Asmundsson et al. 2009) to capture the nonlinear
relationship between resource utilization and lead times. Following the literature,
customer behavior is modeled using a demand function that is linear in both price
and lead time, with a maximum lead time beyond which no demand will be forthcom-
ing. In each planning period, customers can observe the average flow time associated
with the current workload of the production system, and place orders accordingly.
Such systems are already in use by semiconductor manufacturing companies such as
Taiwan Semiconductor Manufacturing Corporation which provide contract manufac-
turing services to other firms (www.tsmc.com/english/dedicatedFoundry/services/
eFoundry.htm). The model jointly determines the price and the amount of work to
be released in each time period, thus determining the average lead time associated
with that planning period. The model allows the possibility of production smoothing
through the accumulation of finished goods inventories and price promotions.

Our results show that when the demand is sensitive to lead times, the CF model
with workload-dependent lead times produces significantly higher profits than a
conventional model assuming a fixed lead time. In several scenarios the release
plans suggested by the fixed lead time model are unable to satisfy the market demand
generated by the associated prices, since they assume that a fixed lead time can be
maintained in the face of the high demand created by low prices. In fact, the increased
demand resulting from price reductions can only be met with long lead times, which
end up reducing demand. Hence a thorough understanding of the effects of pricing
on lead times and queues is essential for capacity constrained firms that plan to use
dynamic pricing. As suggested by Pekgun et al. (2008), the separation of lead time
and pricing considerations between the production and marketing operations is a
significant obstacle to this understanding, suggesting the need for more emphasis on
this interface in capital-intensive firms operating at high utilization levels.

Literature Review

Our research is related to three different streams of literature: joint pricing and
production planning models, models for load-dependent lead-time quotation, and
steady state models that study relationships between price and lead times.

Joint pricing and production planning models aim to produce a profit-maximizing
combination of prices and production plans. Eliashberg et al. (1991) and Yano and
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Gilbert (2003) present detailed reviews of this stream of literature. This literature also
includes dynamic pricing models that change prices over time to improve profitability
(Swann 2001; Charnsirisakskul et al. 2006; Deng and Yano 2006). Ahn et al. (2007)
present an interesting model where demand in a given period depends on prices in
preceding periods. Adida and Perakis (2006) consider a continuous time model with
a linear demand function and an additive model of uncertainty, and present a robust
optimization model. In a subsequent paper (Adida and Perakis 2010) they compare
robust and stochastic optimization models for this problem, noting that stochastic
optimization models can be sensitive to the probability distributions used. The related
area of dynamic pricing focusing on the interface with inventory management is
reviewed by Elmaghraby and Keskinocak (2003).

Researchers in this area have used simple, aggregate capacity constraints with
limited ability to consider interactions between capacity utilization and lead time.
When faced with high demands that saturate capacity constraints in a given period,
these models will build inventory in earlier periods, effectively increasing lead times.
However, this dynamic does not capture the rapid nonlinear increase in lead times
observed at higher utilizations, providing an incomplete picture of system behavior.
Recent work (Kefeli et al. 2011) has shown that in the presence of congestion the
theoretical output of the system may not be achieved due to the very high work
in process inventories required to achieve them, causing these types of capacity
constraints to give an optimistic picture of the production system’s ability to meet
demand. We illustrate this effect in our numerical examples.

Chen and Hall (2010), in contrast, consider the pricing of individual orders on
a single machine or a two-machine flow shop to maximize profit under different
cost criteria which are determined by the production schedules. They provide exact
dynamic programming algorithms and heuristics, and demonstrate that even heuristic
solutions to the problem yield significant improvement in profit over the case where
prices and schedules are determined independently. Since these models represent
capacity at a very fine level of detail, they capture the relationship between utilization
and lead times correctly. However, such models do not easily scale up to the longer
time periods addressed in this chapter.

The second stream of literature encompasses models that estimate lead times
based on the current state of the system and use these lead times for order negotiation.
These models recognize that lead times are load dependent and address operational
decisions like input control or order selection, price and lead-time quotation, and
capacity investment (Donohue 1994; Easton and Moodie 1999; Elhafsi and Rolland
1999; Elhafsi 2000; Charnsirisakskul et al. 2004; Plambeck 2004). While these
models allow marketing to make realistic lead-time quotations to be used in price
negotiation, they do not capture the relationship between prices, resource utilization
and lead times.

A related set of models, classified in the literature as order acceptance models,
assume stochastic (usually Poisson) customer arrivals and quote each customer a
delivery date based on system status (Dellaert 1991; Duenyas 1995; Duenyas and
Hopp 1995). These models assume a certain probability that the customer will actu-
ally place an order when quoted the delivery date, thus obtaining an effective arrival
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rate for orders. Late orders are penalized and the models aim to minimize the impact
of this penalty on revenue, which is fixed for every order.

The last stream of models conducts steady state analyses of relationships between
price, lead time and capacity for M/M/1 systems (Low 1974; Palaka et al. 1998;
So and Song 1998; Boyaci and Ray 2003; Ray and Jewkes 2004). Almost all these
models use a demand function that is linear in both price and lead time to represent
the market and aim to set prices and lead times subject to a service level constraint
under steady state conditions. These models yield useful managerial insights through
their characterization of optimal behavior, but their steady state nature does not allow
them to be used to develop pricing and production plans over a finite horizon. Liu
et al. (2007) study price and lead-time setting in a decentralized supply chain where
a supplier specified a wholesale price and a planned delivery time, while the retailer
quotes a retail price. Customers are sensitive to both lead time and retail price. They
model the behavior of the supplier and retailer as a Stackelberg game and obtain the
equilibrium strategy of both actors. Pekgun et al. (2008) developed a steady-state
make-to-order (MTO) model that incorporates coordination mechanisms for price
and lead-time quotation.

Plambeck (2004) considers capacity setting, price and lead-time quotation, and
order sequencing decisions in a MTO system with two customer classes and compares
dynamic against static lead-time quotations (similar to our Fixed Lead Time (FLT)
model). The key assumption the author makes is that customers belonging to the
“patient” class will tolerate long lead times. The author requires this slow-moving
portion of the order queue to be so large that the system utilization approaches 100 %,
allowing the author to apply heavy-traffic queuing approximations to derive optimal
decision policies. Our CF model considers a different problem, that of determining
an integrated aggregate plan for factory loading and pricing over discrete time periods
in the face of the market’s sensitivity to lead times. Our model does not impose a
utilization level on the system but instead allows the system to choose its optimal
utilization level. Consistent with Plambeck’s results, our model also shows that taking
the state of the system into account can yield significantly higher profit than a fixed
lead-time model.

The joint planning models in the first stream represent aggregate planning de-
cisions in a make-to-stock environment, where a different price is quoted every
period, but all orders in the same period observe the same price. These joint planning
models fall under the domain of models at the production/marketing interface that
also includes models for sales-production coordination mechanisms (Eliashberg and
Steinberg 1991; Upasani and Uzsoy 2008). Models in the last two environments fo-
cus on a MTO environment where no stocks of finished goods inventory are held and
each order can be quoted a separate price or lead time. Detailed reviews of models
in the last two streams are found in Chatterjee et al. (2002), Keskinocak and Tayur
(2004), and Upasani and Uzsoy (2008).

To summarize the existing literature, joint planning-pricing models have limited
ability to capture the effects of utilization on delivery times, whereas steady-state
lead-time quotation models do not yield medium-term plans over a finite horizon.
Recent developments in production planning models with load-dependent lead times
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(Pahl et al. 2005) provide avenues for integrating state-dependent lead times into
models of the production-marketing interface. Specifically, we use CFs (Pahl et al.
2005, 2007; Asmundsson et al. 2006; Asmundsson et al. 2009; Missbauer and Uzsoy
2010), which relate the expected throughput of a production system in a planning
period to the expected work-in-process (WIP) inventory level over the period.

Clearing Functions

A promising approach to modeling workload-dependent lead times in production
planning has been the use of CFs (Karmarkar 1989) that represent the expected
output of a resource over a given period of time as a function of the expected WIP
inventory level over that period. The term has its origin in work by Graves (1986)
that specifies the fraction of the current WIP that can be processed to completion
(“cleared”) by a resource in a given time period. Karmarkar (1989) and Srinivasan
et al. (1988) independently develop nonlinear CFs for production planning models.
We shall use the term “WIP” to denote any reasonable measure of the WIP inventory
level over a period of time that can be used as a basis for a CF. An extensive review
of CFs and their use in production planning models is given by Missbauer and Uzsoy
(2010)

To motivate the use of a nonlinear CF, consider a resource that can be modeled
as a G/G/ 1 queuing system in steady state. The average number in system, i.e., the
expected WIP, is given by Medhi (1991) as

w = (c2
a + c2

s )

2

ρ2

(1 − ρ)
+ ρ (3.1)

where ca and cs denote the coefficients of variation of interarrival and service times,
respectively and ρ the utilization of the server. Setting c= (c2

a + c2
s)/2 and rear-

ranging (1), we obtain a quadratic in W whose positive root yields the desired ρ

value. Solving for ρ with c > 1 yields

ρ =
√

(W + 1)2 + 4W (c2 − 1) − (W + 1)

2(c2 − 1)
(3.2)

which has the desired concave form. When 0≤ c < 1, the other root of the quadratic
will always give positive values for ρ. When c= 1, (3.2) simplifies to ρ=W/(1+W ),
again of the desired concave form. We see that for a fixed c value, utilization, and
hence throughput, increase with WIP but at a declining rate due to variability in
service and arrival rates.

Several authors discuss the relationship between throughput and WIP levels in the
context of queuing analysis, where the quantities studied are the long-run steady-state
expected throughput and WIP levels. Agnew (1976) studies this type of behavior in
the context of optimal control policies. Spearman (1991) presents an analytic con-
gestion model for closed production systems with increasing failure rate processing
time distributions that describes the relationship between throughput and WIP. Hopp
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Fig. 3.1 Examples of clearing
functions (Karmarkar 1989)

and Spearman (2001) provide a number of illustrations of CFs for a variety of sys-
tems. Srinivasan et al. (1988) derive the CF for a closed queuing network with a
product form solution. While these approaches are based, as is our analysis above,
on steady-state queuing models, a number of researchers have examined the issue of
estimating CFs when the underlying queuing system is not in steady state. Asmunds-
son et al. (2009) show that even under transient conditions the concave shape of the
CF will be maintained. Missbauer (2009) and Selçuk (2007) use transient queuing
models to derive CFs under somewhat different sets of assumptions.

Figure 3.1, derived from Karmarkar (1989) depicts several examples of CFs con-
sidered in the literature to date. The horizontal line TH =C corresponds to a fixed
upper bound on output over the period, but without a lead-time constraint it im-
plies that production can occur without any WIP in the system if work release and
production are synchronized. This is reflected in the independence of output from
the WIP level, which may constrain throughput to a level below the upper bound by
starving the resource. This approach is implemented in, for example, the Capacitated
MRP (MRP-C) approach of Tardif and Spearman (1997) and most LP approaches
such as that of Hackman and Leachman (1989), but is supplemented with a fixed
lead time that is an exogenous parameter independent of workload. The linear CF
of Graves (1986) is represented by the TH =W/L line, which implies a lead time of
L periods that can be maintained independently of the WIP level. Note that if WIP
and output are measured in the same time units (e.g., hours of work), the slope of the
proportional part of the function is 1/L, where L is the average lead time. However,
as seen in Fig. 3.1, this model may suggest infeasible output levels when WIP levels
are high. If a fixed lead time is maintained up to a certain maximum output, we have
the relationship TH =min{W/L, C}. In the special case of the Graves CF where the
lead time is equal to the average processing time, with no queuing delays at all, we
obtain the line TH =W/p, where p denotes the average processing time. Assuming
that average lead time is equal to the average processing time up to the maximum



3 Integrated Production Planning and Pricing Decisions . . . 35

output level, it gives the “Best Case” model TH =min{W/p, C} described in Chap. 7
of Hopp and Spearman (2001). However, by linking production rate to WIP level,
a linear CF differs from the fixed delays used in most LP models, where the out-
put of a production process is simply the input shifted forward in time by the fixed
lead time. Orcun et al. (2006) illustrate the differences between these models using
system dynamics simulations. For most capacitated production resources subject to
congestion, limited capacity leads to a saturating (concave) CF. It is also apparent
from the Fig. 3.1 that the CF always lies below the TH =W/p and TH =C lines.

An important issue in using CF models is the question of how long the planning
periods should be. If the CFs are derived using steady-state queuing models, the
planning period must be long enough that the queues representing the production
system can be at least approximately in steady state. Given the long-term, aggregate
purpose of this type of model, as outlined in the introduction and the discussion in
Allison et al. (1997), the planning buckets are likely to be long enough (e.g., a month)
that most production systems with relatively short raw processing times should reach
steady state. However, even if this is not the case, current research is exploring means
of deriving CFs for systems under transient regimes (for example, Selcuk 2007 and
Missbauer 2009), showing that even under transient conditions the concave shape of
the CF is maintained.

A number of authors have suggested empirical approaches to estimating CFs,
where a functional form with the desired properties is postulated, and then fit to data
obtained either from an industrial facility or a simulation model using some form of
regression analysis. Karmarkar (1989) suggests a CF of the form

Xt = K1Wt

K2 +Wt

(3.3)

where Xt denotes the output in period t, Wt the WIP at the resource at the start of
period t, and K1 the maximum possible output of the resource in period t. The shape
parameter K2 is estimated by the user. Selçuk et al. (2007) demonstrate the derivation
of K2 for an M/G/ 1 system with bulk arrivals. Srinivasan et al. (1988) suggest an
alternative functional form

f (Wt ) = K1(1 − ekWt) (3.4)

where k is again a user-estimated shape parameter. Asmundsson et al. (2009) use
this latter functional form and give an extensive discussion of various issues in
collecting simulation data for fitting this type of CF. Asmundsson et al. (2006) use
a visual fit of linear segments to simulation data to develop a CF formulation for
a scaled-down semiconductor wafer fabrication facility with unreliable equipment
and reentrant flows. Kacar and Uzsoy (2010) and Kacar et al. (2010) use a linear
regression approach applied to data collected from a simulation model, with good
results. Asmundsson et al. (2009) show that an empirically fitted CF can give good
results even under a transient regime. The implication for this research is that it is
possible to represent the behavior of a production system with an appropriately fitted
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CF. Thus we shall proceed with our model on the assumption this can be done and
examine the potential impact on profits of using a model with fixed lead time that
does not consider queuing behavior.

A Single Product Dynamic Joint Price-Production Model
Incorporating Congestion

We now present a joint price-production model that incorporates CFs and lead-time-
dependent demand. We assume a single firm that behaves as a monopolist. The firm
sees a linear demand function D= g(P, L)=Max{0, M-aP-bL}, where a, b≥ 1 are
the price and lead-time sensitivities of demand D with respect to price P and lead
time L, respectively. Changes in market conditions are represented by changes in
these sensitivities. The intercept M of the demand function represents the maximum
possible demand, i.e., the market size.

In a given period t, the firm quotes a price Pt and a delivery time Lt to customers.
We assume that the firm quotes a delivery time for orders received in a period equal to
the average manufacturing lead time at the start of the period. Since the manufacturing
lead time (delivery time) depends on the number of orders waiting, the firm can
control the maximum delivery time by limiting the number of orders to be processed
(per Fig. 3.1). In effect, the firm quotes the delivery time based on the minimum of
two values: the average manufacturing lead time, and a guaranteed delivery time LG

by which all orders need to be satisfied, or customers will not place orders. Hence
an order received in period t has to be fulfilled by period t+LG.

The firm needs to align its production system with this market preference by
mapping LG on Fig. 3.1 and quoting an average delivery time below the value of LG.
This will, in turn, determine the number of orders that a firm may accept and hold
in queue for processing, yielding a target production rate and a target utilization.
Thus, the higher the guaranteed delivery time allowed by the market, the higher the
utilization at which the firm can operate its resources. From Fig. 3.1, as utilization
increases, a large increase in threshold value LG will allow only a small increase
in utilization, since lead time increases rapidly with additional workload at high
utilization levels. This guaranteed delivery time assumption is similar to that used
by Selcuk et al. (2007) and Spitter et al. (2005a; b) in their supply chain operations
planning (SCOP) models, where they assume a planned manufacturing lead time
within which an order must finish processing. The idea of a quoted lead time in
combination with a maximum lead time is also used by Dellaert (1991) and Duenyas
and Hopp (1995) in their models of due-date management with order selection.

Another mechanism by which a firm may control quoted average delivery time
is to quote a higher price and thus accept fewer orders. This is possible due to the
monopolist assumption and the price and lead-time-dependent nature of demand.
Customers may be willing to pay a premium for lower-quoted average delivery times
and the relative magnitude of this premium would depend upon their sensitivity to
delivery time represented by parameter bt .
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The average delivery time quotation implies that some orders will be ready for
delivery earlier than promised. The customer may not always want to take delivery
early, in which case the manufacturer has to hold finished goods inventory. We
assume that the customer will allow a limited number of orders to be delivered early
in the planning horizon and represent this by a parameter ν. Late deliveries are not
allowed, though this can be incorporated in a straightforward manner. To further
simplify the model, we restrict every order to have a size of one unit. This enables
us to eliminate constraints that would otherwise be included to track fulfillments of
orders of varying sizes. We define the following notation:

Variables

Rt Order release quantity in period t
Wt WIP inventory at the end of period t
Xt Production quantity in period t
It Finished goods inventory (FGI) at end of period t
Pt Price in period t
Dt Sales quantity in period t
Yt Quantity shipped in period t

Parameters

at Price sensitivity of demand in period t
bt Lead-time sensitivity of demand in period t
ht Holding cost of finished goods inventory per unit in period t
ωt Holding cost of WIP inventory per unit in period t
φt Unit production cost in period t
ct Order release cost per unit released in period t
ν Maximum units allowed to be shipped before due date over the horizon
K1 Theoretical maximum production capacity
K2 Curvature parameter of CF
M Intercept of demand function, i.e., demand when price= lead time= 0
T Length of planning horizon, t= 1,..,T
LG Guaranteed delivery time (in periods)
f(.) CF

Let Ŵt be the estimated average WIP level in a period t. We use the CF form suggested
by Karmarkar (1989). From (3.3) we have

f
(
Ŵt

)
= K1Ŵt

K2 + Ŵt

The production Xt in period t is bounded by the CF in that period.
As mentioned earlier, the demand in period t is expressed by the demand function

Dt = M − atPt − btLt . By Little’s Law, the expected lead time in period t is given
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by Lt = Ŵt/Xt , expressed in units of periods. By invoking Little’s Law we assume
that the production system is in steady state within the planning period. Thus, the
demand observed in period t is given by

Dt = M −atPt −bt

(
Ŵt

Xt

)

Our CF-based joint price-production planning model is now as follows:

CF model

Max
T∑

t=1

[

Pt

(

M − atPt − bt

(
Ŵt

Xt

))

− ctRt − φtXt − htIt − ωtWt

]

(3.5)

s.t.

{λt } Wt = Wt−1 −Xt + Rt ∀t (3.6)

{πt } It = It−1 +Xt − Yt ∀t (3.7)

{θt } Xt ≤ K1Ŵt

K2 + Ŵt

∀t (3.8)

{μt } M − atPt − bt

(
Ŵt

Xt

)

≥ 0 ∀t (3.9)

{σt }
t∑

τ=1

Yτ ≥
t−LG∑

τ=1

[

M − aτpτ − bτ

(
Ŵτ

Xτ

)]

∀t (3.10)

{ρt }
t∑

τ=1

Yτ ≥
t−LG∑

τ=1

[

M − aτpτ − bτ

(
Ŵτ

Xτ

)]

+ ν ∀t (3.11)

{χt } Ŵt ≤ 1

2
(Wt−1 +Wt ) ∀t (3.12)

Pt , Xt , It , Wt , Rt , Yt , Ŵt ≥ 0 ∀t (3.13)

The objective is to maximize total contribution, expressed as the difference between
the total revenue in each period and variable operating costs. Equations (3.6) and (3.7)
are WIP and finished goods inventory balance constraints. Equation (3.8) represents
production capacity using the CF, and constraint (3.9) defines the sales quantity.
Constraint (3.10) requires that all orders be shipped within the planned delivery time,
but allows orders to be shipped earlier than due, rather than being held as finished
goods inventory. Since the customer may impose a limit on the number of orders
shipped early over the horizon (given by the parameter ν), we model this preference
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in constraint (3.11). We estimate the average WIP level Ŵt within a given period using
the WIP levels at the end points of the period using (3.12). All variables are required
to be non-negative by (3.13). The Greek letters in curly brackets to the left of each
constraint denote its associated Lagrange multipliers. We do not impose a cost on
shipping since it would require setting values for another parameter, which we avoid
for sake of parsimony in the experimental design. For the same reason, we do not
impose a penalty if the average delivery time quotation exceeds the planned delivery
time. Instead we reduce sales through our time-dependent demand function. This
mechanism is further discussed in the section “Experiments Without Early Delivery
Flexibility: ν = 0.

For comparison purposes we now state a joint price-production planning model
that assumes a fixed delivery time L≤LG which is specified as an exogenous pa-
rameter, and hence is denoted as the Fixed Lead Time (FLT) model. The demand
observed by this model in period t is expressed as Dt = M − atPt − btL. The
firm must set L≤LG to avoid exceeding the target utilization. We assign a Lagrange
multiplier for each constraint as was done for the CF model.

FLT model

Max
T∑

t=1

[
P̂t

(
M − at P̂ t − btL

)
− ct X̂t − ht Ît

]
(3.14)

s.t.

{γt } Ît = Ît−1 + X̂t−L − Ŷt ∀t (3.15)

{δt } X̂t ≤ K1 ∀t (3.16)

{μ̂t } M − at P̂t − L ≥ 0 ∀t (3.17)

{σ̂t }
t∑

τ=1

Ŷτ ≥
t−L∑

τ=1

(M − aτ P̂τ − bτL) ∀t (3.18)

{ρ̂t }
t∑

τ=1

Ŷτ ≥
t−L∑

τ=1

(M − aτ P̂τ − bτL) + ν ∀t (3.19)

X̂t , P̂t , Ŷt , Ît ≥ 0 ∀t (3.20)

We use the variable X̂t to denote production initiated in period t. Since there is
a fixed production lead time L, production initiated in period t is available to be
shipped in period t+ L. This variable corresponds to the releases variable Rt from
the CF model. Hence we incorporate a time lag L in the inventory balance constraint
(3.15). Since the FLT model ignores the buildup of queues in the system due to
its fixed lead-time assumption, it does not have any WIP variables or WIP balance
constraints. This model is consistent with FLT production planning models (Johnson
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and Montgomery 1974; Hackman and Leachman 1989; Spitter et al. 2005a; Spitter
et al. 2005a) or the joint price-production model of Swann (2001).

In our numerical experiments we use a modified version of the FLT model that
facilitates direct comparisons with the CF model. Recall that X̂t models the material
released in period t so that it finishes processing and is available for shipping in
period t+ L. This definition, while capturing the nature of fixed lead times, does not
allow a direct comparison between the two models. Hence, we replace the variable
X̂t with two variables: R̂t to denote the material release in period t, and X̂′

t , the actual
production in period t. The two variables are related by the expression R̂t = X̂′

t+L.
Hence, the R̂t units of work released in period t will remain in WIP for L time
periods, which we explicitly include in the objective function. The modified FLT
model is thus as follows:

T∑

t=1

⎡

⎣P̂t

(
M − at P̂t − btL

)
− ct R̂t − φtX̂

′
t − ht Ît − ωt

t∑

j=t−L+1

R̂j

⎤

⎦ (3.21)

s.t.

X̂′
t+L = R̂′

t ∀t
Ît = Ît−1 + X̂

′
t − Ŷt ∀t (3.22)

X̂
′
t ≤ K1 ∀t (3.23)

M − at P̂t − btL ≥ 0 ∀t (3.24)

t∑

τ=1

Ŷt ≥
t−L∑

τ=1

(M − at P̂t − btL) ∀t (3.25)

t∑

τ=1

Ŷt ≤
t−L∑

τ=1

(M − at P̂t − btL) + ν ∀t (3.26)

X̂
′
t , P̂t , Ît , Ŷt , R̂t ≥ 0 ∀t (3.27)

In the following section we examine the structure of locally optimal solutions to
both the FLT and CF models to explore the differences between them, induced by
the different models of production capacity they use.

Model Analysis

In Appendix 3.1, we show that the revenue function of the FLT model is concave,
resulting in a concave objective function. Further, the linear demand function results
in constraints (3.15)–(3.19) being linear. Thus the FLT model aims to maximize a
concave function over a convex constraint set, so a locally optimal solution is also
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globally optimal. The CF model has a quasi-concave objective function if the sales
variable is positive and the capacity constraint is tight (see Appendix 3.2). However,
satisfying the capacity constraint at equality causes the constraint set to lose convexity
and become concave. Hence the CF model does not have a unique global optimum.
Nevertheless, all local optima should satisfy the Karush-Kuhn-Tucker (KKT)
optimality conditions and since the global optimum must also be a local optimum,
structural properties derived for a local optimum are valid for a global optimum.

We begin by examining the relationships between price, demand, lead time and
capacity using the KKT conditions for a local optimum (Appendix 3.3). We then
examine the relationship between the ending FGI and the delivery flexibility
parameter ν and discuss properties of some Lagrange multipliers used in the
formulations.

Sales, Price and Delivery Time at Optimality

We first develop expressions for price and sales quantity based on the KKT conditions
for a local optimum. We are interested in local optima with non-trivial solutions, i.e.,
the firm operates in a reasonable manner that yields non-zero revenue, or in other
words, both price and sales are non-zero. Using Pt > 0 in (3.46) and (3.61) we obtain
the optimal prices for both models as follows:

Price(FLT model)

P̂t = M

2at

− bt

2at

L− 1

2

(

μ̂t −
T∑

τ=t+L

σ̂τ +
T∑

τ=t+L

ρ̂τ

)

(3.28)

Price(CF model)

Pt = M

2at

− bt

2at

(
Ŵt

Xt

)

− 1

2

⎛

⎝μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ (3.29)

Substituting these expressions into the demand functions for the respective models,
we obtain the following expressions for the sales quantities:

Sales (FLT model)

D̂t = M

2
− bt

2
− at

2

(
T∑

τ=t+L

σ̂t −
T∑

τ=t+L

ρ̂t − μ̂t

)

(3.30)

Sales(CF model)

Dt = M

2
− bt

2

(
Ŵt

Xt

)

− at

2

⎛

⎝
T∑

τ=t+LG

σt −
T∑

τ=t+LG

ρt − μt

⎞

⎠ (3.31)
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Equations (3.28)–(3.31) clearly show that under the CF model both price and sales
decisions are dependent upon the observed lead time. Equation (3.29) is particularly
interesting since price is expressed as a downward sloping function of lead time using
the basic decision variables of the production system. Ray and Boyaci (2004) assume
price to be a downward sloping function of lead time in order to investigate the effects
of ignoring lead-time sensitivity of prices while making pricing decisions. However,
our model does not require such an assumption, since the relationship between price
and lead time emerges directly from the model. The last terms in all four expressions
represent the interactions between the cumulative shipment constraints and can be
interpreted in terms of the Lagrange multiplier of the finished goods inventory balance
constraints of the respective models. We discuss this in the section “Properties of
Lagrange Multipliers”.

It is interesting to examine the behavior of the model as lead times approach the
threshold delivery time LG. We can write

(
Ŵt

Xt

)

= LG −
(

LG −
(

Ŵt

Xt

))

= LG −�L

which, in turn, allows us to rewrite (3.29) and (3.31) as:

Pt = M

2at

− bt

2at

LG + bt

2at

�L− 1

2

⎛

⎝μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ (3.32)

Dt = M

2
− bt

2
LG + bt

2
�L− at

2

⎛

⎝
T∑

τ=t+LG

στ −
T∑

τ=t+LG

ρτ − μt

⎞

⎠ (3.33)

The ΔL term represents the difference between the maximum allowable delivery
time and the average delivery time quotation (i.e., the average manufacturing lead
time). When ΔL < 0, i.e., the average delivery time quotation exceeds the maximum
allowable delivery time, our model penalizes the firm by reducing demand per (3.33),
thus reducing the WIP in the production system and hence the average lead time.
This self-regulating behavior removes the need to include explicit penalty terms for
exceeding the delivery time guarantee in the objective function of model CF.

This behavior can be visualized by examining relationships between different
variables by means of a causal loop diagram (Sterman 2000) in Fig. 3.2. The variable
at the tail of an arc is linked to the variable at the head of the arc by the sign on the head
that indicates whether an increase in the variable at the tail causes a corresponding
increase or a decrease in the variable at the head. Average delivery times eventually
have a negative feedback on sales, since an increase in sales will cause an increase
in quoted average delivery times, which in turn will reduce ΔL, making it negative.
Negative values of ΔL cause a reduction in sales, keeping the average delivery time
and sales variables in close relation with each other. Recall that these two variables
are tightly coupled with the price variable through the demand function. Hence a
reduction in both sales and average delivery time would require an increase in price.
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Fig. 3.2 Relationship
between variables

Thus the firm can use both price and delivery time in an aggregate planning framework
to manage sales. Webster (2002) proposes a similar feedback loop in his model for
determining equilibrium values for price and lead time in face of a changing demand
function. His model changes capacity in response to a change in sales, keeping lead
time fixed, but does not consider the costs of changing capacity.

Prices and Utilization

If ΔL > 0, the quoted average delivery time is less than the guaranteed delivery
time. From (3.33), it would appear that this would cause sales to increase, increasing
resource utilization and delivery times. Recall that a target guaranteed delivery time
corresponds to a particular utilization level. However, it is not possible to determine a
priori whether a targeted utilization level will allow satisfying the guaranteed delivery
time, since we only have information about average delivery times and the maximum
realized delivery time may exceed the guaranteed delivery time at high utilizations.
Attaining higher utilization levels in the CF model requires additional WIP, and the
marginal increase in utilization decreases with each unit increase in WIP. The CF
model uses this information to determine a utilization level that may be lower than the
target utilization level corresponding to the guaranteed delivery time parameter. This
decision is implemented by limiting sales (to control utilization) by increasing prices
instead (ΔL > 0 in (3.32)). At high values of LG, ΔL could be significant enough
that a large difference may exist between the prices quoted by the two models.

Analytically, this behavior can be explained as follows. Let ut denote the uti-
lization level in period t due to production level Xt , i.e., Xt = utK1. Using this

relationship we obtain Lt = Ŵt

K1ut
. Initially it appears counterintuitive that lead time

decreases with increasing utilization. However, this expression must be viewed in
the light of the relationship between WIP Wt and utilization ut . As shown in Fig. 3.1,
a unit increase in utilization will cause WIP, and thus lead times, to increase by a
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larger amount. Conversely, if utilization threatens to increase, the CF model can
lower WIP, thus controlling it and keeping average delivery time in check. The FLT
model is blind to the effects of utilization on delivery time and thus has one less lever
for managing sales and system operation. The impact of this can be observed by
simulating the key decisions of the FLT model in a congestion-prone system, which
we do in the section “Low Utilization: u= 0.8, L= 1”.

The key decisions made by a joint pricing and production planning model are
prices and material releases. For the FLT model, these correspond to the variables
P̂t and X̂t respectively. If we define Ŵ

′
t to be the WIP level arising from the material

release X̂t , then the production in a given period is found to be f (Ŵ
′
t ) from the

CF. Thus, the average delivery time can be written as Ŵ
′
t

f (Ŵ
′
t )

. Now let D
′
t be the sales

decision arising from this average delivery time quotation and price quotation P̂t .
Then we have

D
′
t = M − at P̂t − bt

(
Ŵ

′
t

f (Ŵ
′
t )

)

(3.34)

Further, if Dt>0 and Ŵ
′
t > 0, then μt = 0 and μ̂t = 0 from complementary

slackness conditions (3.52) and (3.65). Using this in (3.28) and (3.29), we can express
the difference in prices as

Pt − P̂t = bt

2at

(

L− Ŵt

Xt

)

+
T∑

τ=t+LG

(σt − σ̂t ) −
T∑

τ=t+LG

(ρt − ρ̂t )

= bt

2at

�L
′ +

T∑

τ=t+LG

(σt − σ̂t ) −
T∑

τ=t+LG

(ρt − ρ̂t )

At high values of L (corresponding to high utilization), it is possible that �L
′
>0

and is large enough for P̂t to be significantly less than Pt . In this scenario, we have
D

′
t > Dt . Further, since ΔL

′
> 0, the material release decisions X̂t could load the

system with significantly higher WIP than the release decisions Rt made by the CF
model, leading to larger queue sizes. Average quoted lead times will not be met and
there will not be enough FGI to satisfy sales D

′
t . If we allow unsatisfied sales to be

lost, revenues will drop since the prices quoted are lower than those in the CF model.
We discuss this further through a numerical example in the section “Experiments
with Early Delivery Flexibility: ν > 0”.

On the other hand, at low values of L (corresponding to low utilization), ΔL
′

will be small and will have less influence over the differences in prices quoted by
the two models. From Fig. 3.1, it can be seen that lower utilizations imply lower
WIP levels and hence lower average delivery times. Further, the marginal increase
in throughput with a unit increase in WIP is higher at low utilization than at high
utilization. This allows the production system to fulfill demand in a timely manner
more easily. Lower utilizations are achieved by having low sales or ample excess
capacity. Neither of these alternatives is practical in a capital-intensive environment,
motivating our interest in high-utilization environments.
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Properties of Lagrange Multipliers

Proposition 1 In an optimal solution to the CF model the capacity constraint is
always tight (i.e., θt > 0) if Ŵt , Rt , Pt and Dt are all strictly positive.

Proof See Appendix 3.4.
Capacity in the CF model is expressed in terms of the amount of WIP in the system

that can be cleared in a given period. The above proposition implies that the release
pattern will be coordinated with the sales pattern, so that there is just enough WIP
to create the capacity required for fulfilling sales.

Proposition 2 In an optimal solution to the CF model, the marginal cost of holding
finished goods inventory is always positive (i.e., πt > 0) if θt > 0, Xt > 0, and
Ŵt > 0.

Proof See Appendix 3.5.

Proposition 3 In an optimal solution to the FLT model, the marginal cost of holding
finished goods inventory is always positive (i.e., γt > 0).

Proof See Appendix 3.6.
Since we quote an average delivery time, production that is realized earlier than

due can be held as finished goods inventory to fulfill orders by the guaranteed delivery
time. This can be clarified further when the marginal FGI costs are seen in relationship
to the shipment Yt . Considering the FLT model, if shipments Ŷt > 0, for some period
t, then from condition (3.63), we have

γt −
T∑

τ=t

σ̂τ +
T∑

τ=t

ρ̂τ = 0

⇔ −
T∑

τ=t

σ̂τ +
T∑

τ=t

ρ̂τ = −γt

If Y t+LG
> 0, we have −

T∑

τ=t

σ̂τ +
T∑

τ=t

ρ̂τ = −γt+LG

Since P̂t > 0, from condition (3.61), we have

−M + at P̂t + btLG + at

⎛

⎝P̂t + μ̂t −
T∑

τ=t+LG

σ̂τ +
T∑

τ=t+LG

ρ̂τ

⎞

⎠ = 0

when D̂t > 0, μ̂t = 0. Hence−M + at P̂t + btLG + at (P̂t − γt+LG
) = 0. Rewriting,

we obtain
γt+LG

= 2P̂t − M
at
+ bt

at
LG > 0 by Proposition 3. Thus when there are positive

sales in period t, it is beneficial to have FGI in period t+LG in order to meet the
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quoted delivery date. The analogous expression for the CF model is

πt+LG
= 2Pt − M

at

+ bt

at

(
Ŵt

Xt

)

.

Since Dt , Pt , and the average quoted delivery time for the CF model are strictly
positive (section “CF model”), we find that the marginal cost of the FGI constraint
in period t+ L is strictly positive by a simple manipulation of the demand function.
In addition, the marginal cost of the FGI constraint in the CF model varies with both
the price and the average delivery time, whereas for the FLT model it can vary only
with price.

We also investigate the optimal sales decision made by our CF model if the linear
demand function is replaced by the power function used by So and Song (1998). The
demand function itself is expressed as Dt = MP

−at
t L

−bt
t , where all symbols have

the same meaning as before. By repeating the steps in Appendix 3.3 and the section
“CF model”, we obtain the optimal sales decision as:

ln Dt = ln M − at ln

⎡

⎣
(

at

1 − at

)⎛

⎝
T∑

τ=t+LG

ρτ −
T∑

τ=t+LG

στ

⎞

⎠

⎤

⎦− bt ln

(
Ŵt

Xt

)

(3.35)

We find that the negative feedback loop discussed in the section “Sales, Price, and
Delivery Time at Optimality” for the linear demand function also holds for the power
demand function, though on a logarithmic scale. We conjecture that the negative
feedback relationship between sales and average delivery times would exist in case
of any demand function form that is downward sloping in delivery time. We now
present a numerical study to compare the behavior of the CF and FLT models.

Numerical Study

The length of the planning horizon is chosen to be 24 periods where each period
corresponds to a month. The price and lead time sensitivities for each period are
presented in Table 3.1. Price sensitivity is low in the first half of the horizon and
increases in the latter half. This change in sensitivity represents a typical scenario
in semiconductor products where, as other manufacturers bring competing devices
to market, the price for the device will begin to decrease significantly (Akcali et al.
2000; Leachman and Ding 2007). Lead-time sensitivity, on the other hand, is low in
the first and third quarters, and high in the second and fourth quarters of the horizon.
The high-sensitivity periods represent seasonal effects where the market is unwilling
to wait for a longer time interval between placing the order and taking delivery of
the product.

Values of other input parameters are given in Table 3.2. The value of the curvature
parameter K2 is selected such that the slope of the CF at Ŵt = 0 does not exceed the
reciprocal of the raw process time.
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Table 3.1 Price and
lead-time sensitivities

Period range Price sensitivity (at ) Lead-time sensitivity (bt )

1–6 1 1
7–12 1 2

13–18 2 1
19–24 2 2

The relationship between utilization u and fixed lead time L for chosen values of
the CF parameters K1 and K2 is obtained as seen in Appendix 3.7. We chose the
value for guaranteed lead time as LG = L+ 1 periods. Thus sales will only be lost
if the realized lead time exceeds the planned lead time L by more than one period.
We consider four combinations of unit costs given in Table 3.3. Combination 1 is the
base case. Combination 2 allows comparison of objective function values when unit
material cost is less than the unit production cost. Combination 3 allows for a similar
comparison when WIP holding cost is less than the FGI holding cost. To facilitate
direct comparison of the objective function values, we use the modified FLT (MFLT)
model that considered WIP costs in the objective function instead of the original FLT
model used for the analytical results.

We assume there is no residual demand from earlier planning periods to be met in
the current planning horizon. Both CF and modified FLT models are initialized with
WIP equal to the targeted production in period 1, i.e., W0 = uK1. We also require
that ending WIP in periods 23 and 24 for both CF and FLT model equals uK1.
WIP inventory in the FLT model at the end of a period is the sum of the releases
in the previous L periods; we impose this boundary condition on the FLT model
by controlling the material releases. By imposing these boundary conditions, we
aim to avoid ramp-up and end-effects that would normally influence behavior at the
beginning and end of the horizon.

Table 3.2 Input parameter values

Length of planning horizon T 24 periods
Theoretical production capacity per period K1 500 units
Curvature parameter K2 100
Demand at zero price and zero lead time M 1,000 units
Early delivery flexibility ν 0 units
Fixed lead time L and corresponding target utilizations u L 1 period (u= 0.8),

2 periods (u= 0.9),
4 periods (u= 0.95)

Initial WIP for CF and FLT models (u= 0.8) Wo 400
WIP at ending of period 23 for CF and FLT models (u= 0.8) W23 400
WIP at ending of period 24 for CF and FLT models (u= 0.8) W24 400
Initial WIP for CF and FLT models (u= 0.9) Wo 900
WIP at ending of period 23 for CF and FLT models (u= 0.9) W23 900
WIP at ending of period 24 for CF and FLT models (u= 0.9) W24 900
Initial WIP for CF and FLT models (u= 0.95) Wo 1,900
WIP at ending of period 23 for CF and FLT models (u= 0.95) W23 1,900
WIP at ending of period 24 for CF and FLT models (u= 0.95) W24 1,900
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Table 3.3 Unit cost combinations

Combination Unit material cost Unit production cost Unit WIP holding cost Unit FGI holding cost

1 1/unit 1/unit 1/unit/period 1/unit/period
2 0.5/unit 1/unit 1/unit/period 1/unit/period
3 1/unit 1/unit 0.5/unit/period 1/unit/period
4 0.5/unit 1/unit 0.125/unit/period 0.25/unit/period

Both models are solved using the CONOPT solver in the general algebraic mod-
eling system (GAMS) optimization suite (www.gams.com). Since this solver does
not guarantee a globally optimal solution for the nonconvex CF model, we used six
different starting points for both models, and found that for both models all initial
starting points led to the same values for the objective function and decision variables.

The primary question of interest is how important it is to consider the effects of
congestion explicitly—do they lead to significant differences in profit, and, if so
under what conditions? One way to approach this issue is to examine how much
profit-planned solutions from the FLT model would yield if the production system is
subject to the type of congestion represented in the CF model. In other words, how
much profit is lost if we plan using a fixed lead time when our production system is,
in reality, subject to congestion as represented by a CF?

In order to examine this question, we simulate the behavior of the production
system period by period using expressions (3.6) and (3.7). The material releases
obtained from the MFLT model are used to determine the WIP level in each period,
and the CF is used to determine the production at this WIP level. The WIP level in a
period can be calculated using the endingWIP in the previous period and the release in
the current period using expressions derived inAppendix 3.8. We estimate the average
delivery time resulting from the WIP level as Lt = Ŵt/Xt . These provide estimates
of the realized production, WIP and finished goods inventory available when the
system operates as represented by the CF, allowing us to obtain actual shipments.
Projected sales in each period under the price quoted by the FLT model are given
by the linear demand function, allowing us to calculate the revenue that would be
realized if the production system were able to produce exactly the quantities planned
by the FLT model in each period. We assume sales are lost if not enough finished
goods are available for order fulfillment. The realized shipments are multiplied by
the quoted price to give the realized revenue in each period. We deduct the material,
production and inventory costs incurred due to the release and sales decisions to
obtain the realized profit for both models. We impose no boundary conditions on the
system during this simulation.

Experiments without Early Delivery Flexibility: ν= 0 In our base case we use
the unit costs described by Combination 1 to study the behavior of each model
with no early delivery flexibility, i.e., ν= 0. We will discuss the results for each
planned utilization level u, and hence each planned lead time L, separately. In all
figures, the captions “FLT,” and “CF” denote the quantity computed by the respective
optimization models. “Realized FLT” denotes the quantities that are realized when
the plans computed from the FLT model are implemented in a system that is subject
to congestion as represented by the CF.
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Fig. 3.3 Sales comparison at u= 0.8

Low utilization: u= 0.8, L= 1 The results of this experiment are summarized in
Figs. 3.3, 3.4 and 3.5. As seen in Fig. 3.4, the CF model consistently sets prices
somewhat higher than MFLT model, but not by a great deal. Both models reduce
prices in the second half of the planning horizon when the market becomes sensitive
to price. However, Fig. 3.3 shows that the FLT model realizes substantially lower
sales than the CF model in the later periods. Examination of Figs. 3.5 and 3.6, which
show the planned lead times and FGI levels, explains the situation. The CF model
plans to operate at a higher utilization level with longer lead times from the start of the
horizon. It must meet demands within the maximum lead time LG, but accomplishes
this by building finished goods inventory early in the horizon which it draws down
over time, allowing the model to meet demand within the specified maximum lead
time LG that the market will bear. As a result of this approach and the slightly higher
prices it sets, the planned sales of the CF model are lower than those of the FLT
model.

However, Fig. 3.6 shows that the finished goods inventory realized when the
material releases and prices from the FLT plan are implemented in the presence
of congestion is very different from that planned. The FLT model assumes that any
demand that does not exceed the capacity of the system can be met within the planned
lead time L= 1, allowing it to set lower prices than CF. However, the low prices and
low-quoted lead time lead to high demand, which the congested system cannot meet
within the planned lead time LG. This results in a stock out in periods 9 through 11
where there is no available product to ship and sales are lost. The net result, seen in
Fig. 3.7, is an approximately 20 % difference in planned and realized revenue for the
FLT model in periods 11 through 20.
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Fig. 3.4 Pricing comparison at u= 0.8

Fig. 3.5 Planned and realized average lead times at u= 0.8

Figure 3.7 shows that both models plan to achieve very similar revenue, but the CF
is able to achieve its aim while the FLT model is not. The difference is almost entirely
due to the FLT model’s assumption that the fixed lead time L can be maintained
regardless of utilization. The FLT model loads the system to its available theoretical
capacity, which results in utilization levels incompatible with the maximum lead time
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Fig. 3.6 Finished goods inventory levels for u= 0.8
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Fig. 3.7 Revenue comparison for u= 0.8

LG. It is also interesting that this significant difference in behavior occurs despite
low demand sensitivity to both prices and lead times.

The results of this experiment highlight what we believe is the principal reason for
an FLT model to perform poorly in an environment subject to congestion. The basic
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Fig. 3.8 Sales comparison for u= 0.9

issue is that the planning model fails to represent accurately the realized behavior
of the production system, which is manifested in the realized lead time. Figure 3.5
clearly indicates that the planned lead time L is a gross underestimate of the realized
lead time that becomes worse as the planning horizon advances.

Intermediate utilization: u= 0.9, L= 2, LG = 3 The results of this experiment are
given in Figs. 3.8–3.11. In this situation the difference between the two models is
rather less than might be expected, although the behavior of the inventory and lead
times differs somewhat between the models. This is because the maximum lead
time LG is consistent with a high level of utilization. The FLT model again loads
the system to its capacity, resulting in lead times higher than LG, but because LG

is already quite high the impact on predicted lead times is not as severe as at the
lower utilization level. The CF model, on the other hand, varies lead times over the
horizon, keeping them below LG. Hence in this case both models plan very similar
total revenues and both achieve them, although with quite different production plans.
The reason both are able to achieve their plans to a large extent is the low sensitivity
of demand to prices and lead times.

High utilization level: u= 0.95, L= 4, LG = 5 In this case, again the difference
between the two models is closer than before (Figs. 3.12–3.14). The primary reason
for this is the high WIP level imposed at the beginning of the horizon for both models.
Both models behave similarly, choosing not to make any releases into the system
in the first few periods and consuming the initial WIP. This allows lead times to be
low for both the CF and the realized FLT decisions in this initial part of the horizon.
The FLT model again loads the system to capacity in the following periods, due to
which the realized lead times gradually rise over the horizon. This is the only case
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Fig. 3.9 Price comparison for u= 0.9

Fig. 3.10 Lead time comparison for u= 0.9

where we impose the ending WIP conditions on the simulated decisions of the FLT
model, because otherwise the ending WIP does not rise to a value high enough to
satisfy the ending conditions. This is again due to the fact that there are no releases
early in the horizon, resulting in low WIP levels that do not rise fast enough during
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Fig. 3.11 Revenue comparison for u= 0.9

Fig. 3.12 Shipment decision comparisons for FLT model with changing ν

the course of the horizon. The detailed results of this experiment are omitted for the
sake of brevity.

Objective function values The discussion to this point has demonstrated that the
production and pricing plans developed by the CF and FLT models result in quite
different plans over the planning horizon. When the planned lead time substantially
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Fig. 3.14 Release decision comparisons for FLT model with changing ν

underestimates the manufacturing lead time that can actually be realized, severe
discrepancies between the plans and actual deliveries to customers can result, as
was the case for our experiment with u= 0.8. Table 3.4 presents a comparison of
the realized objective function values planned by the FLT model, and those realized
when the FLT plans are simulated in the presence of congestion. All quantities are
expressed as a ratio to the objective function value obtained by the CF model for the
same cost combination.

When u= 0.8, we find that even though the FLT model predicts an objective
function value higher than the CF model, the realized objective (Fixed Lead Time-
Simulated FLT-SIM) is significantly lower than both FLT and CF models. This is
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Table 3.4 Comparison of
planned and realized
objective function values

(u, L, LG) Cost scenario (ct , ft , ht , wt ) FLT FLT-SIM

(0.8, 1,2) (1,1,1,1) 1.065 0.930
(0.5, 1,1,1) 1.065 0.930
(1,1,0.5,1) 1.064 0.930
(0.5,1,0.125,0.25) 1.062 0.930

(0.9, 2,3) (1,1,1,1) 0.999 0.978
(0.5, 1,1,1) 0.999 0.978
(1,1,0.5,1) 1.000 0.978
(0.5,1,0.125,0.25) 0.999 0.977

(0.95, 4, 5) (1,1,1,1) 0.987 0.993
(0.5, 1,1,1) 0.988 0.993
(1,1,0.5,1) 0.990 0.993
(0.5,1,0.125,0.25) 0.991 0.994

due to the release decisions proposed by the FLT model that result in high WIP
levels, high lead times and product shortages, all of which lead to lower revenue and
profit margin. When the discrepancy between planned and realized lead times is less
severe, when u= 0.9, the same effect is observed although at a much smaller level.
When u = 0.95, the FLT-SIM is very slightly higher than the planned FLT objective,
because the realized lead time is shorter than the planned lead time for most of the
planning horizon. It is notable that the CF model gives the highest objective function
value in all scenarios considered, most markedly when the discrepancy between
planned and realized FLT lead time is most severe.

Experiments with Early Delivery Flexibility: ν > 0 The combinations with early
delivery flexibility ν provide more interesting insights. Early delivery flexibility
allows both plans to shift production away from periods with high-delivery-time
sensitivity to those with low-delivery-time sensitivity without the need to carry all
the production as finished goods inventory. This should result in an increase in profit
margins as flexibility increases, due to reduction in cost of carrying finished goods
inventory. The two models use this flexibility differently. The shipment decisions
made by the FLT model for different values of ν and cost Combination 4 when
LG = 2 are seen in Fig. 3.12 and those for the CF model in Fig. 3.13. The FLT model
applies all of its flexibility in the early part of the horizon, choosing to make zero
shipments in period 2. The model also chooses to increase the load in the system
as ν increases by releasing more orders, which has a detrimental effect on the profit
margin when its decisions are subjected to congestion.

Table 3.5 summarizes the planned and realized objective function values of the
models, again using the objective function value of the CF model as a base. We
observe that the profit margin for FLT-SIM decreases as ν increases from 125 to 500.
The CF model also uses its flexibility early on for lower values of ν, but for ν= 500
and 1,000, it spreads this flexibility over the horizon. It is interesting to note that the
realized objective function value FLT-SIM first decreases and then increases with
ν, suggesting that the choice of an optimal value for ν may improve the realized
performance of the FLT model. However, it is again striking that the CF model
produces higher objective function values consistently across all scenarios.
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Table 3.5 Objective function
comparison for experiments
with early delivery

(u, L, LG) n FLT FLT-SIM

(0.8, 1,2) 0 1.062 0.930
125 1.062 0.938
250 1.062 0.935
500 1.062 0.934
1,000 1.062 0.962

(0.9, 2,3) 0 0.999 0.977
125 0.999 0.984
250 0.999 0.977
500 0.998 0.993
1,000 0.998 0.997

(0.95, 4, 5) 0 0.991 0.994
125 0.991 0.996
250 0.990 0.995
500 0.990 0.995
1,000 0.990 0.995

Conclusions and Future Directions

In this chapter we have used the concept of CFs developed in the production planning
literature to develop an integrated model for jointly planning production and pricing
over time for a manufacturing firm whose resources are subject to congestion. Our
analytical results show that the interplay between lead times and prices in the demand
function requires careful consideration of the implications of pricing decisions for
lead times. Pricing decisions made under a naı̈ve capacity model that assumes any
level of demand up to the theoretical capacity of the system can be met within a fixed
lead time independent of workload have the potential to lead to significant difficulties
when low prices and optimistic lead time estimates lead to the system being unable
to meet demand within a reasonable time, causing lost sales and possibly loss of
customer goodwill. It is interesting that noticeable effects can be observed even
when the demand is not very sensitive to prices or lead times.

The critical issue is the difference between the lead times assumed in the planning
model and the realized lead times. A FLT model may perform satisfactorily in terms
of achieving its planned revenue even at high utilization if the planned lead time is
set consistently with the realized utilization levels and remains within the maximum
lead time the market will bear. However, such a model will have difficulties when
lead times are underestimated or when sensitivity to lead times changes abruptly,
since it has no ability to modulate the lead times quoted based on system state and
market sensitivities. It is also noteworthy that the CF model consistently sets higher
prices than the FLT model, which upon reflection is intuitive; the price set by the
CF model considers the costs incurred due to congestion such as WIP accumulation,
whereas the FLT model does not. When solved at an aggregate level considering
product families and planning horizons of 18–24 months, the models can be solved
sufficiently rapidly to permit extensive what-if analysis to provide decision makers
with intuition as to the likely results of their decisions.
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The CF model is, as far as we are aware, the first model to integrate dynamic
pricing and production planning over time in a manner that represents the effects of
congestion due to queuing. Most queuing-based models provide steady-state results,
while most prior models that plan prices and production over time have adopted
conventional models of capacity that do not capture the effect of workload on lead
times, and do not permit the joint manipulation of lead times and prices to maximize
profit.

These results highlight the importance of a well-designed and functional
manufacturing-marketing interface for firms operating in markets where price and
lead-time sensitivity may change over time. The problem is aggravated by the fact
that lead times are generally the responsibility of the supply chain organization, while
pricing is determined by sales and marketing groups. A common solution to this issue
we have observed in industry, and which has been advocated by a number of authors
(Graves 1986; de Kok and Fransoo 2003) is to simplify the situation by requiring
the supply chain organization to maintain a constant lead time which is agreeable
to marketing. However, in capital intensive industries where resources must be run
at high utilization for the firm to be profitable, small changes in utilization make
maintaining a constant lead time a very challenging task. The CF model proposed
here in fact addresses exactly this—modulating prices and releases to optimize profit
within the constraints of the lead time imposed by the market’s “reservation” lead
time LG. In addition, the ability to change both prices and lead times in response
to changing market sensitivity may result in higher revenues and profits relative to
using price as the only control variable.

Several directions for future work present themselves. A natural direction is the
extension of the models developed in this chapter to environments with multiple
product families that may serve quite different markets but share capacity. Many
semiconductor wafer fabs operating as foundries produce circuits for quite different
markets, such as controllers and communication devices, in the same fab using largely
the same technology and equipment. Another natural extension is to embed these
models in a multistage stochastic programming framework where scenarios would
consider different price sensitivities for different products over time. This model
presents a number of challenges due to the rapid growth of the scenario tree, but may
still be practical for the aggregate models of the type suggested in this chapter, and
considered by Allison et al. (1997).

Appendix 3.1: Concavity of Revenue Function for the FLT Model

Our revenue function has the form R=PD=P(M − aP− bL)=MP− aP2 − bLP.
Thus there is only one variable, P. Taking the second derivative of the revenue
function w.r.t P, we obtain

d2R

dP 2
= −2a ≤ 0
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Since we assume a≥ 1,we have − 2a < 0. Hence the revenue function is strictly
concave.

Appendix 3.2: Nature of Demand and Revenue Function for the
CF Model

The demand function has the form. Dt = M−atPt−bt

(
Ŵt

Xt

)
. Under very reasonable

conditions (see Proposition 3), we can show that the capacity constraint is tight, i.e.,

Xt = f (Ŵt ) = K1Ŵt

K2+Ŵt
. Under these conditions, the demand function takes the form

Dt=M− atPt− bt
K1

(K2+Ŵt ). Thus, the demand function has a linear form. The CF constraint
(3.8) is convex, hence the constraint set is also convex.

Then, revenue function has the form gt=PtDt=Pt (M−atPt− bt
K1

(K2+Ŵt )). We have:

∂gt

∂Ŵt

= − bt

K1
Pt ;

∂2gt

∂Ŵ 2
t

= 0

∂gt

∂Pt

= M − 2atPt − bt

K1
(K2 + Ŵt );

∂2gt

∂Pt
2 = −2at

∂2gt

∂Pt∂Ŵt

= − bt

K1

In order to have quasi-concavity, we require that

−
(

∂gt

∂Ŵt

)2

= −
(
− bt

K1
Pt

)2

= −bt
2

K2
1

P 2
t (3.36)

and

2
∂2gt

∂Ŵt∂Pt

.
∂gt

∂Ŵt

.
∂gt

∂Pt

− ∂2gt

∂Ŵ 2
t

(
∂gt

∂Ŵt

)2

− ∂2gt

∂P 2
t

(
∂gt

∂Ŵt

)
> 0

After some algebra the expression above reduces to 2
b2
t

K2
1

Pt

(
M− atPt− bt

K1
(K2+Ŵt )

)
. If sales

Dt=M− atPt− bt
K1

(K2+Ŵt )〉0, it is clear that this expression is nonnegative. Thus from (3.36)
and this expression we conclude that the revenue function is quasi-concave.

Appendix 3.3: KKT Conditions for CF and FLT Models

KKT conditions for CF model The Lagrangian for this planning model is as below:

L = −
T∑

t=1

[

MPt − atP
2 − btPt

(
Ŵt

Xt

)

− ctRt − φtXt − htIt − ωtWt

]



60 A. Upasani and R. Uzsoy

+
T∑

t=1

λt (Wt −Wt−1 +Xt − Rt ) +
T∑

t=1

πt (It − It−1 −Xt + Yt )

+
T∑

t=1

θt (K2Xt +XtŴt ) +
T∑

t=1

μt

(

−M + atPt + bt

(
Ŵt

Xt

))

+
T∑

t=1

πt

(

−
t∑

τ=1

Yτ+
τ=t−LG∑

τ=1

(

−M + aτPτ + bτ

(
Ŵτ

Xτ

)))

+
T∑

t=1

ρt

(
t∑

τ=1

Yτ −
τ=t−LG∑

τ=1

(

−M + aτPτ + bτ

(
Ŵτ

Xτ

))

− υ

)

+
T∑

t=1

χt

(
Ŵt − 1

2
(Wt−1 +Wt )

)

The first order optimality conditions and complementary slackness conditions follow:

First Order Optimality Conditions

∂L

∂It

= ht + πt − πt−1 ≥ 0

(3.37)
∂L

∂It

= hT + πT

It

∂L

∂It

= IT (hT + πt − πt−1) = 0

(3.38)

It

∂L

∂It

= IT (hT + πT )

∂L

∂Rt

= cT − λt ≥ 0 (3.39)

Rt

∂L

∂Rt

= RT (cT − λT ) = 0 (3.40)

∂L

∂Wt

= ωt + λt − λt+1 − 1

2
(χt + χt+1) ≥ 0 (3.41)

Wt

∂L

∂Wt

= 0 (3.42)

∂L

∂Xt

= φt + λt − πt + θt (K2 + Ŵt )

− btŴt

X2
t

⎛

⎝Pt + μt−
T∑

τ=t+LG

στ+
T∑

τ=t+LG

ρτ

⎞

⎠ (3.43)
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Xt

∂L

∂Xt

= 0 (3.44)

∂L

∂Pt

= −M + atPt + bt

(
Ŵt

Xt

)

+ at

⎛

⎝Pt + μt−
T∑

τ=t+LG

στ+
T∑

τ=t+LG

ρτ

⎞

⎠≥ 0

(3.45)

Pt

∂L

∂Pt

= 0 (3.46)

∂L

∂Yt

= πt−
T∑

τ=t

στ+
T∑

τ=t

ρτ≥ 0 (3.47)

Yt

∂L

∂Yt

= 0 (3.48)

∂L

∂Ŵt

= θt (Xt −K1) + χt + bt

Xt

⎛

⎝Pt + μt−
T∑

τ=t+LG

στ+
T∑

τ=t+LG

ρτ

⎞

⎠≥ 0 (3.49)

Ŵt

∂L

∂Ŵt

= 0 (3.50)

Complementary Slackness Conditions

θt (K2Xt +XtŴt −KtŴt ) (3.51)

μt

(

−M + atPt + bt

(
Ŵt

Xt

))

= 0 (3.52)

σt

(

−
t∑

τ=1

Yτ+
t−LG∑

τ=1

(

M − aτPτ − bτ

(
Ŵτ

Xτ

)))

= 0 (3.53)

ρt

(
t∑

τ=1

Yτ−
t−LG∑

τ=1

(

M − aτPτ − bτ

(
Ŵτ

Xτ

))

− v

)

= 0 (3.54)

χt

(
Ŵt − 1

2
(Wt−1 +Wt )

)
= 0 (3.55)

Nonnegativity conditions �t , πt : unrestricted, θt , μt , σt , ρt , χt ≥ 0

KKT conditions for FLT model The Lagrangian for this planning model is as below:

L = −
t∑

τ=1

[
MP̂t − at P̂

2
t − bt P̂tLG −ct X̂t − ht Ît

]

+
t∑

τ=1

γt

(
Ît − Ît−1 − X̂t−LG

+ Ŷt

)
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+
T∑

t=1

δt (X̂t −K1) +
T∑

t=1

μ̂t ( −M + at P̂t + btLG)

+
T∑

t=1

σ̂t

(

−
t∑

τ=1

Ŷt +
t−LG∑

T=1

(M − aτ P̂τ − bτLG)

)

+
T∑

t=1

ρ̂t

(
t∑

τ=1

Ŷτ −
t−LG∑

T=1

(M − aτ P̂τ − bτLG)−v

)

The first order optimality conditions and complementary slackness conditions follow.

First Order Optimality Conditions

∂L

∂Ît

= ht + γt − γt+1 ≥ 0 (3.56)

Î t
∂L

∂Ît

= 0 (3.57)

∂L

∂X̂t

= ct − γt+LG
+ δt ≥ 0 (3.58)

X̂t

∂L

∂X̂t

= 0 (3.59)

∂L

∂P̂t

= −M + at P̂t + btL+ at

(

P̂t + μ̂t −
T∑

τ=t+L

σ̂τ +
T∑

τ=t+L

σ̂τ

)

≥ 0 (3.60)

P̂t

∂L

∂P̂t

= 0 (3.61)

∂L

∂Yt

= γt −
T∑

l=t

σ̂l +
T∑

l=t

P̂l ≥ 0 (3.62)

Ŷt

∂L

∂Ŷt

= 0 (3.63)

Complementary Slackness Conditions

δt (X̂t −K) = 0 (3.64)

μ̂t ( −M + at P̂t + btLG) = 0 (3.65)

P̂ (
t∑

l=1

Ŷl +
t−LG∑

l=1

(M − alP̂l − blLG)) = 0 (3.66)

P̂t (
t∑

l=1

Ŷl −
t−LG∑

l=1

(M − alP̂ − blLG) − v) = 0 (3.67)
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Nonnegativity conditions γt : unrestricted, δt , μ̂t , σ̂t , ρ̂t ≥ 0

Appendix 3.4: Proof of Proposition 1

From equation (3.50), we have Ŵt
∂L

∂Ŵt
= 0.

From Ŵt > 0, we have

∂L

∂Ŵt

= θt (Xt −K1) + χt + bt

Xt

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ = 0

⇒ θt = 1

(K1 −Xt )

⎛

⎝χt + bt

Xt

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠

⎞

⎠ (3.68)

From equation (3.46), we have Pt
∂L
∂Pt

= 0.
From Pt > 0,

∂L

∂Pt

= −M + atPt + bt

(
Ŵt

Xt

)

+ at

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ = 0

⇒
⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ = 1

at

(

M − atPt − bt

(
Ŵt

Xt

))

≥ 0

Since sales Dt > 0, we have

1

at

(

M − atPt − bt (
Ŵt

Xt

)

)

> 0 (3.69)

For the CF model, we have K1 > Xt . This statement can be inferred from Fig. 3.1,
where K1 refers to the theoretical capacity indicated by the “fixed capacity” line and
Xt is the output of the concave CF. Using this fact and Eq. (3.69) in (3.68), we have
θt > 0. From complementary slackness condition (3.51), if θt > 0, K2Xt + XtŴt −
K1Ŵt = 0, implying that the capacity constraint is tight. QED.

Appendix 3.5: Proof of Proposition 2

From equation (3.44), we have Xt
∂L
∂Xt

= 0.
From Xt > 0, we have

∂L

∂Xt

= φt + λt − πt + θt (K2 + Ŵt ) − btŴt

X2
t

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠= 0



64 A. Upasani and R. Uzsoy

yielding

πt = φt + λt + θt (K2 + Ŵt ) − btŴt

X2
t

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ .

From equation (3.40), we have Rt (ct−λt )= 0. From Rt > 0, we have λt = ct. Thus

πt = ct + θt (K2 + Ŵt ) − btŴt

X2
t

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ .

From (3.68), we have

θt = 1

(K1 −Xt )

⎛

⎝χt + bt

Xt

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠

⎞

⎠

⇒ bt

Xt

⎛

⎝Pt + μt −
T∑

τ=t+LG

στ +
T∑

τ=t+LG

ρτ

⎞

⎠ = θt (K1 −Xt ) − χt

Using this relation in the expression for πt , we have

πt = φt + ct + θt (K2 + Ŵt ) + Ŵt

Xt

(χt − θt (K1 −Xt )) (3.70)

Since θt > 0, we have K2Xt + XtŴt − K1Ŵt = 0 from complementary slackness

condition (3.51). Rewriting, we obtain K2 + Ŵt = K1Ŵt

Xt
. Using this in (3.70), we

have

πt =φt + ct + θtK1Ŵt

Xt

+ Ŵtχt

Xt

− θtK1Ŵt

Xt

+ Ŵt θt =φt + ct + Ŵtχt

Xt

+ Ŵt θt > 0

QED.

Appendix 3.6: Proof of Proposition 3

We have two cases. Shipments can be made from the production quantity in the
current period or from ending inventory from the previous period.
Case 1: X̂t > 0
In this case, sales are fulfilled from production in that period.

From equation (3.59),

X̂t−LG

∂L

∂X̂t−LG

= X̂t−LG
(ct−LG

− γt + δt−LG
) = 0
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Since X̂t > 0 the expression in brackets equals zero. Rearranging the terms in the
bracket, we obtain γt = ct−LG

+ δt−LG
> 0, which implies that γt > 0 for any period

with positive production.

Case 2: Ît > 0
In this case, shipments take place from ending inventory of previous period.

From equation (3.57) for period t− 1, we have

γt = ht−1 + γt−1 (3.71)

Let the last positive production have taken place t-τ periods before and sales in all
subsequent periods be met from inventory resulting from this production. In other
words, X̂t−LG−τ > 0 and X̂t−LG−τ+1 = ... = X̂t−LG

= 0. Then from Case (1) we
have γt-τ > 0.

In addition, we have Ît−τ , Ît−τ+1, ..., Ît−1 > 0. Writing equation (3.71) for periods
t-τ + 1 to t, we have

γt−τ+1 = ht−τ + γt−τ

γt−τ+2 = ht−τ+1 + γt−τ+1
...

γt = ht−1 + γt−1

Adding the above expressions, we get

γt =
t−1∑

i=t−τ

hi + γt−τ

Since both terms on the right hand side are positive, we have γt > 0. QED.

Appendix 3.7

By Little’s Law we have L= Ŵt
Xt

, implying that Ŵt = LXt . Noting that the capacity
constraints will be tight, we have Xt= K1Ŵt

K2+Ŵt
. The utilization ut in period t can thus be

calculated as ut= Xt
K1

= LXt
LXt+K2

. Solving for K2, we obtain K2 = L(1− ut )K1. Choosing
K1 =M/2, for M = 1,000 we obtain K1 = 500. For L= 1 and ut = 0.8, we obtain
K2 = 100.

Appendix 3.8

From WIP Balance constraint of CF model, we have:

Wt = Wt−1 −Xt + Rt
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Writing the constraint for WIP level as an equality, we have Ŵt=Wt−1+Wt
2 , implying

Wt=2Ŵt−Wt−1. Setting the two expressions for Wt equal to each other, we find that
Xt=Rt−2Ŵt+2Wt−1

Writing the CF constraint as an equality,

Xt = f (Ŵt ) = K1Ŵt

K2 + Ŵt

Comparing both equations for Xt , we have

Rt − 2Ŵt + 2Wt−1 = K1Ŵt

K2 + Ŵt

Solving the resulting quadratic in Ŵt

Ŵt = (Rt − 2K2 + 2Wt − 1 −K1)±
√

(Rt − 2K2 + 2Wt −1 −K1)2 + 8K2(Rt +Wt − 1)

4

We use the positive root for calculating WIP level in a period when simulating FLT
decisions under congestion.
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