
Chapter 8
Risk Measures in Multi-Horizon Scenario Trees
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and Asgeir Tomasgard

Abstract Production assurance requirements are used to ensure that the operation
of natural gas transportation networks is robust with respect to flow and production
disruptions. They also affect strategies for optimal infrastructure investments. Moti-
vated by a combined investment and operational optimization model for natural gas
transport, we describe how to address such requirements through risk measure for-
mulations such as Average Value-at-Risk. The large number of operational scenar-
ios required for a meaningful analysis of the risk measures creates a computational
challenge. A new scenario tree structure, multi-horizon scenario trees, can improve
computational tractability. We investigate properties of the risk measures such as
time consistency for such scenario trees and illustrate this discussion with a stylized
example.

8.1 Introduction

Industries with large capital investments are exposed to both long-term uncertainty
and short-term or operational variations and uncertainty. Long-term uncertainty
includes trends in demand or price developments, costs for infrastructure elements,
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and new resource discoveries. Short-term uncertainty comprises daily variations in
demand or prices and unplanned events such as production stoppages and outages.

In optimization models, this uncertainty can be handled by applying stochas-
tic programming methodology, where the uncertain parameters are represented by
discrete values in scenario trees for possible future realizations of the parameters.
Computational tractability is usually of great concern in such models, because vari-
ables and constraints are duplicated for each scenario in the scenario tree. If all daily
variations are to be included, the scenario tree and, hence, the optimization model
will become intractable. For this reason, operational details are often aggregated for
strategic models. By applying a multi-horizon scenario tree structure as described
in Sect. 8.2, relevant operational detail can be included into stochastic programming
models without sacrificing computational tractability.

We discuss the application of risk measures on stochastic programming models
with multi-horizon scenario trees and how risk measures can be applied not only
to monetary performance. Our motivation stems from investment problems for
the natural gas sector, in particular the project “Regularity and uncertainty analy-
sis and management for the Norwegian gas processing and transportation system”
(Ramona, funded by the Norwegian Research Council); see Sect. 8.3. This project
developed new methodology and tools for optimizing production assurance and
capacity utilization in natural gas production, processing, and transportation sys-
tems. During the project period, an optimization model was developed to find infras-
tructure solutions for processing and transporting natural gas from fields (reservoirs)
to the markets. Such an infrastructure must be robust and flexible, allowing reliable
and profitable operations under various, also adverse, situations. The main driving
force is profitability, and the objective is to maximize net present value.

In addition to the obvious financial benefit of being able to fulfill con-
tract obligations through delivery to the marketplaces, the producers value high
production assurance, i.e., the capability of a system with respect to production
performance or to meet the demand for deliveries. Hence, production assurance
requirements can be imposed at both the production side (fields) and the consump-
tion side (markets) of the network. The ability to deliver with high certainty is seen
as a strategic goal, and the producers believe that a good reputation in this respect
will translate to higher prices, increased sales, and better contract terms. These
benefits are not straightforward to include directly into the model objective. Instead,
we have chosen to add requirements on the deliveries using risk measures.

Risk measures (Sect. 8.4) are often applied to monetary losses where undesirable
deviations are limited or penalized in the objective. We apply risk measures to the
physical flow to ensure that the producer is able to deliver the contracted volumes
with a high degree of certainty. The target production assurance is valid both in the
short term and in the long term, and we apply the risk measures on the operational
scale. We show that our approach implies time consistency of the risk measures for
multi-horizon trees.

Moreover, problems found in the literature often consider risk aversion which
means that one seeks to minimize risk by including risk measures in the objective
function. In contrast, our application example limits the risk through constraints.
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That is, we consider risk acceptable as long as it is below a given threshold—on
the other hand, risk minimization (in the objective function) allows one to end up
with an optimal level of risk above such a threshold value. Moreover, the objective
function in our application example is a function of several decision variables and
the risk measure is another function of a subset of these. Most applications consider
a much more direct relation between the objective and risk functions, e.g., profits
and losses.

Finally, a stylized example in Sect. 8.5 illustrates the application of production
assurance requirements by way of Average Value-at-Risk constraints on a model
with a multi-horizon tree structure and shows how different modeling choices can
affect the optimal solution.

8.2 Treating Uncertainty: Multi-horizon Scenario Trees

Decisions on a long-term or strategic level often define a framework for short-
term or operational aspects. Hence, when finding strategic decisions such as in-
vestments into equipment, it is important to assess their impact on operations and
vice versa, and an optimization model should take into account both decision hori-
zons. This becomes even more relevant when these decisions must be found un-
der uncertainty. In many situations, one can distinguish between uncertainty on
a longer-term perspective (trends in the development of consumer prices or de-
mand, volumes available for production in newly discovered natural gas reservoirs,
technology development, climate change, etc.) and uncertainty on a shorter time
scale (daily price or demand variations, weather variations). Obviously, this sug-
gests that a stochastic model combining both time scales in a common scenario
tree should distinguish between scenario tree nodes dedicated to strategic uncer-
tainty and decisions and nodes dealing with the operational uncertainty and decision
process.

A straightforward combination of the two kinds of nodes in a common scenario
tree structure leads to the tree size quickly growing out of hand: To represent the
operational conditions during a strategic time period adequately, one should include
quite a number of realizations of the uncertain operational parameters and, hence,
branchings at the strategic nodes in the considered period. These nodes representing
short-term uncertainty must then be combined with the nodes representing long-
term uncertainty in the next strategic time period. In particular, if short-term and
long-term uncertainties are independent, the resulting tree may contain many dupli-
cate values.

Figure 8.1 shows an example of combining long- and short-term uncertainty in a
traditional scenario structure where © represents strategic and � operational nodes.
The tree spans just three strategic time periods with one operational period each.
Strategic uncertainty is represented by three branchings at the first strategic stage
and two at the second while there are two possible realizations of the uncertain oper-
ational parameters at each operational stage. This small example yields 48 scenarios
and, in total, 93 tree nodes (62 operational and 31 strategic).
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However, strategic decisions often depend on the overall operational
performance in the time since the previous strategic decision rather than directly
on a specific short-term scenario (and the corresponding operational decisions). For
example, decisions about investments in natural gas transport infrastructure rarely
depend on the infrastructure’s performance on a specific day but rather on how the
infrastructure is expected to perform under varying daily conditions. In this case,
a multi-horizon scenario tree structure is well suited. With such a structure, it is
sufficient to branch at the strategic nodes while the operational nodes are embed-
ded as subtrees associated with the respective strategic node. Hence, the operational
feasibility and profitability of the decisions made in the strategic nodes can be tested
on the corresponding subtrees. Moreover, testing infrastructure reliability typically
requires many operational scenarios to ensure robustness under a vast variety of sit-
uations. This indicates that a multi-horizon tree structure is particularly well suited
for such purposes; see also the discussion in Sect. 8.3.3.

Kaut et al. [9] discuss this approach in more detail and draw comparisons to
traditional scenario tree structures, also with respect to the growth in tree sizes.

An example of a multi-horizon scenario tree is given in Fig. 8.1b. The tree has the
same number of stages and of realizations of the uncertain strategic parameters as
the traditional scenario tree in Fig. 8.1a but twice as many realizations of the uncer-
tain operational parameters (i.e., a finer presentation of the short-term uncertainty).
Here, we have 40 operational and 6 strategic scenarios while the tree contains just
50 nodes (whereof 40 operational and 10 strategic).

Fig. 8.1 Examples of traditional and multi-horizon scenario trees. (a) Traditional scenario tree
structure with a combination of strategic and operational uncertainty. (b) Multi-horizon tree with
the same number of strategic branchings but double number of operational branchings as the
traditional tree

The multi-horizon scenario tree structure can be interpreted as a contingent
scenario analysis of the operational problem for each strategic node. In general, it is
a relaxation of the information structure represented by a traditional scenario tree.
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If the strategic uncertainty is independent of the operational uncertainty and the
strategic decisions do not depend on particular operational decisions at the previous
strategic stage, the information structure is exactly the same as with the traditional
approach. This condition is often satisfied quite easily. Moreover, in a multi-horizon
tree structure, there is no connection between operational scenarios of two consecu-
tive strategic nodes. Hence, the first operational decision associated with a strategic
node should not depend on the last operational decision or state from the previous
strategic period. This condition may require a careful definition of the strategic time
periods; see also the discussion in Kaut et al. [9].

In the remainder of this chapter, the notation concerning uncertainty is chosen
with a multi-horizon scenario tree structure in mind. For a strategic node i ∈N Strat,
we denote its time period by τ(i) ∈ T , relative probability by P

Strat
i , and all

operational nodes in the associated subtree by j ∈ N Op
i . The relative probability of

an operational node j ∈N Op
i is denoted by P

Op
j . Observe that a subtree representing

the operational uncertainty is always associated with a certain strategic node. Hence,
this strategic node can be interpreted as the root node of the considered subtree and
the probabilities of the operational scenarios are considered only within the context
of the respective subtree.

For the ease of notation we assume throughout this chapter that there are no bind-
ings between consecutive operational time periods (e.g., due to storage modelling).
That is, each operational node can be considered independent of other operational
nodes. Hence, each operational node in a given subtree represents a single scenario.
Consequently, we have just one operational time period in a subtree and we will,
therefore, ignore the operational time index in the subsequent discussion. Moreover,
the strategic node i is the parent node Paj of all operational nodes j ∈ N Op

i in the
associated subtree.

8.3 Application Example: The Ramona Optimization Model

The stochastic optimization model developed in the Ramona project combines both
infrastructure and operational decisions under uncertainty in a common framework.
It reflects, hence, both technological properties of the natural gas transport network
and economic and business requirements.

Pressures and flows in one part of the network may influence transportation
capacity in other infrastructure parts [14]. Such system effects must be taken into
account when deciding about new investment in order to avoid a negative impact
on the existing or future infrastructure. Hence, a portfolio perspective is advisable
rather than an evaluation of single investment options in isolation and independently
of the total system. For example, being able to address gas quality problems from
new fields through blending in already existing facilities rather than investing in
extra processing capacity can save investment costs. This means that, in addition to
economics, operational aspects (physical processes and daily gas routing decisions)
must be taken into account.
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An increased focus on production assurance and security of supply makes it
paramount to evaluate how the infrastructure will perform during daily operations
and what the financial effects (costs and revenue) will be. For example, would a new
pipeline allow to better satisfy delivery contracts in critical times or to route gas not
bound in contracts to the most profitable markets? How would it affect gas flows in
other pipelines? How does it affect operational costs and cash flow? Also the tim-
ing of investments is important for satisfying production obligations and developing
new fields in a good way, e.g., allowing to reuse infrastructure.

Obviously, both investment and routing decisions are subject to various kinds
of uncertainty. Discoveries of new reservoirs, gas composition and volumes in
undeveloped reservoirs, or long-term changes (trends) in price and demand levels
are examples of uncertainty on the strategic level. In contrast, uncertain parameters
on the operational level may concern daily nominations in long-term delivery con-
tracts or prices and demands at the markets. Also unplanned events such as network
outages represent short-term uncertainty, reducing capacity in the affected infras-
tructure parts drastically reduced for some, often short, time and, hence, affecting
production assurance. This combination of diverse kinds of long- and short-term
uncertainty suggests the utilization of multi-horizon scenario trees in order to tackle
realistically sized problem instances.

In order to further reduce the scenario tree size, one may consider only a
representative selection of operational scenarios. For example, to estimate the prof-
itability of the strategic decisions, it may be sufficient to study a few typical days
in a year (spring, summer, winter, and a few variations). To test network flexibility
and robustness, some extreme or “critical” scenarios are included. For example, this
allows to assess the network’s robustness in terms of production assurance, taking
into account also unplanned events. Assigning (near-)zero probability to these “crit-
ical” scenarios, the feasibility of the strategic decisions also for these scenarios can
be tested, but they do not affect profitability evaluations unduly.

The complete model constitutes a unified framework to analyze investment
decisions under uncertainty in a portfolio perspective, taking into account physi-
cal properties of the network and the dynamics of short-term planning as well as
long- and short-term uncertainty. Here, we present only the most important aspects
of this multistage stochastic mixed-integer programming problem. Hellemo et al. [7]
give an overview of a deterministic version of the model including a discussion of
system effects and quality aspects while Hellemo et al. [8] present a comprehensive
description of the full stochastic optimization model.

8.3.1 Model Overview

In the strategic nodes i ∈ N Strat, the (binary) decision variables XStrat = {xStrat
i , i ∈

N Strat} refer to decisions about investments into network infrastructure elements
(production facilities, pipelines, processing facilities, and markets). They establish



8 Risk Measures in Multi-Horizon Scenario Trees 183

the framework for the decisions XOp = {xOp
j , j ∈N Op

i } in the associated operational

nodes j ∈ N Op
i which concern the flow fn j through each network infrastructure

element n and the pressures at its in- and outlets. These decisions, in turn, determine
the cash flow and production assurance achievable with the found network design.

The objective of the model is to maximize the expected net present value (NPV)
of investments and operations which is determined by the costs CStrat

i and revenue
RStrat

i from decisions at all strategic nodes i ∈N Strat and costs COp
j and revenue ROp

j

from operations at the associated operational nodes j ∈ N Op
i :

NPV(XStrat,XOp) (8.1)

= ∑
i∈N Strat

P
Strat
i δτ(i)

⎛
⎝RStrat

i −CStrat
i + ∑

j∈N
Op

i

P
Op
j γ j

(
ROp

j −COp
j

)⎞⎠ .

The costs CStrat
i from investment decisions xStrat

i at the node i ∈ N Strat are mainly
costs for installing new and decommissioning network infrastructure elements. In
principle, they may depend on the strategic time period τ(i) or on the age of the
element. The mathematical model uses two kinds of cost profiles to reflect this.
However, we do not go into the details of these profiles here. Decommissioned
network elements may have a positive salvage value contributing to revenue RStrat

i
directly arising from strategic decisions. The factor δτ(i) denotes the discount factor
at the time period of the strategic node i.

Operational costs COp
j are related to operating and maintaining the infrastructure.

For each network element n, they are composed of operational expenditure (depend-
ing on the element’s age), fixed (depending on calendar time), and variable costs
(depending on the flow fn j). Again, time-dependent profiles are used to express the
different dependencies. As mentioned above, the operational nodes often represent
only a selection of scenarios such that a scaling factor γ j is applied to the values

ROp
j and COp

j which represents the weight of the considered operational node. For
example, if all operational time periods have a length of one day and the strategic
time period is a year, then the weights of all operational nodes associated with a
strategic node must sum up to 365.

For a given market, the daily natural gas sales price may be stochastic, and the
revenue ROp

j achieved in an operational node j ∈ N Op
i is the sum over sales at all

markets.
Investment decisions are subject to constraints on the network elements’ start-

up (within a time window), shutdown, availability for production, and capacity.
Operational decisions concern routing gas through the network and, obviously, the
constraints on these decisions primarily model the physics of the network. The
most important constraints express flow–pressure relationships and ensure mass bal-
ances as well as limits on the flow and pressure in each network element. The latter
constraints take also care of capacity variations throughout the lifetime of an infras-
tructure element. Moreover, they can be used to model unforeseen events affecting
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network capacity. Reservoir constraints ensure that the amount of gas produced at
the single production facilities complies with yearly production plans and limits on
the totally available gas in the corresponding reservoir.

8.3.2 Multi-Horizon Scenario Trees in the Ramona Model

A typical realistic model instance comprises about 200 network elements. While
investment analysis may span a time horizon of between twenty and fifty years,
operational decisions are found with a daily time resolution. Consequently, a three-
stage stochastic model with 12 strategic periods, 10 branches per strategic node at
each stage, and 10 operational profiles over 365 days will have about 100 million
decision variables when using a multi-horizon scenario tree structure. With a tradi-
tional scenario tree structure, the model would be practically unsolvable—it would
contain about 9 billion variables.

For this application, multi-horizon scenario trees represent an approximation of
the information structure represented in a traditional scenario tree (cf. discussion
in Sect. 8.2): Obviously, while production plans made at the strategic level give
guidelines for the produced volumes to optimally deplete the reservoirs, the ac-
tual production depends on the operational scenarios. Hence, specific operational
scenarios do indeed affect the decision space for the production plans in subsequent
strategic periods to some degree. However, also the total volume in a reservoir avail-
able for production is not perfectly known, and the dependency of this volume on
operational production decisions may be considered negligible.

8.3.3 Production Assurance Requirements

At the production side, production assurance requirements refer to the flow into
the network relative to the production plan. On the other hand, at the consumption
side, they consider the deviation of actually delivered volumes from the company’s
delivery obligations agreed upon in the contract with its customers. Moreover, pro-
duction assurance may be measured at several levels: separately for each market or
field, at a cluster of or at all markets fields, or even across the whole network. For
our subsequent discussion, it is not important what exactly the notion refers to as
we focus on a discussion of this concept in the context of the time and informa-
tion structure provided by multi-horizon scenario trees. Therefore, we refrain from
a network topology index for the concerned variables and parameters.

As an example, production assurance at a market can be found by analyzing
daily deliverability over a given strategic time period. Typically, deliverability mea-
sures the deviation of the gas volume actually delivered in an operational node
j ∈ N Op

i (e.g., a day) against the demand, i.e., the nominated or contracted vol-
ume. Here, the nomination or contracted flow f Con

j represents a random parameter

while the delivered flow f Del
j is a decision variable. Depending on the definition of
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the production assurance requirement, f Del
j may refer to the flow fn j in a specific

market node n but also to the aggregated flow in a cluster of (or all) market nodes.
Obviously, a similar understanding holds for the nomination f Con

j .
Often, there is no proper incentive to perform better than required (e.g., gas

volume exceeding nominations may rather be sold in a more lucrative market).
Hence, we define deliverability with a focus on cases where the delivered volume is
insufficient compared to the nomination:

Del
(

f Del
j , f Con

j

)
= min

{
1,

f Del
j

f Con
j

}
, ∀ j ∈ N Op

i , i ∈ N Strat,

and ignore the (theoretically possible) option of delivering more than specified.
For the ease of notation, we suppress the reference to the volumes f Con

j and f Del
j

when mentioning the deliverability in an operational scenario in the following: Del j

= Del ( f Del
j , f Con

j ).
Observe that production assurance requirements apply to underdeliveries

compared to nominated gas volumes (or underproduction compared to planned gas
volumes) while the profitability evaluations included in the objective function are
based on the actually delivered (or produced) volumes and the gas price at the con-
sidered operational nodes. In other words, production assurance requirements do
not consider the value of the gas. Rather, production assurance requirements must
be satisfied no matter what the current gas price is. If the risk measure took into
account gas prices, thus focusing on the risk of lost profit, a violation of delivery
obligations would matter more when the gas price is high and less when it is low.

There is no clear-cut and unified way to specify production assurance
requirements, and we discuss some ways to specify such requirements in the
following.

One may state a threshold value PAt below which the daily deliverability should
not fall in all strategic nodes i in a time period t (i.e., for all nodes i ∈ N Strat

with τ(i) = t). For example, one may require a deliverability of at least 99%.
Due to the uncertainty about operational parameters—which also affects the daily
deliverability—it may not be wise to formulate this requirement as a constraint to
be satisfied under all circumstances:

Del j ≥ PAτ(i), ∀ j ∈ N Op
i , i ∈ N Strat.

This would result in a network infrastructure with a high degree of redundancy and,
consequently, unduly high investment costs to ensure that this constraint is satisfied
at any time. Instead one may allow a violation of the requirement, but encourage
solutions ensuring a high degree of production assurance. For example, a penalty M
may be imposed for each day j ∈ N Op

i with insufficient deliverability:

M max{0,PAτ(i)−Delj},
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which is then summed up in the objective function over the whole optimization
horizon, taking into account the probabilities of the strategic scenarios and of the
operational nodes within each subtree:

∑
i∈N Strat

P
Strat
i ∑

j∈N Op
i

P
Op
j M max{0,PAτ(i)−Delj}. (8.2)

This corresponds to penalizing the expected insufficient deliverability
max{0,PAτ(i) − Del j} over the whole horizon. Hence, the variability of this
random variable cannot be taken into account properly and such a penalty term
cannot control how the target values are satisfied over the operational nodes
j ∈ N Op

i associated with a strategic node i ∈ N Strat. In other words, a very low
deliverability on one day and good performance else are considered comparable to
a constant slight underperformance. Moreover, the penalty factor M must be chosen
very carefully to achieve the desired results, weighting production assurance
against expected net present value of investments and operations. As it is difficult
to quantify such quality-oriented aspects, this is a rather daunting task.

The former challenge can be addressed by the following formulation: Given the
threshold value PAt for acceptable deliverability, set a limit on the percentage (or
number) of days in the strategic node i ∈ N Strat (with τ(i) = t) where this threshold
is not reached. This can be formulated by way of chance constraints. The threshold
ατ(i) specifies the minimum percentage of operational scenarios (days) in strategic
period i with sufficient deliverability:

P

{
Del j ≥ PAτ(i), j ∈ N Op

i

}
≥ ατ(i), ∀i ∈ N Strat. (8.3)

Such a formulation avoids the difficulty of quantifying the company’s deliverability
record. Since the operational scenarios represent a discretization of the distribution
of the uncertain operational parameters, this constraint can be expressed by an LP
formulation by introducing auxiliary binary and continuous variables [22, 27].

If, for example, it is required that “deliverability at a market node shall be over
0.99 on, at least, 97% of all days in a year” in all years during the optimization
horizon (and, consequently, in all strategic tree nodes), constraint (8.3) would read

P

{
Del j ≥ 0.99, j ∈ N Op

i

}
≥ 97%, ∀i ∈ N Strat.

In other words, this formulation ensures that the percentage of days with
insufficient deliverability is not too high—but it also allows to underperform quite
drastically in all those days.

The thread of excessive underperformance may be taken care of by setting a
lower limit on the average performance in the worst outcomes. This way, some
really low deliverability is still allowed, but only occasionally. However, it is diffi-
cult to define the “worst outcomes”: If all days with a deliverability below PAt are
considered unacceptable, the requirement just leads to a lower average deliverability
as there is no limit on the number of these days. Consequently, there is no incentive
to perform better than PAt .
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Alternatively, one may sort all days j ∈ N Op
i associated with a strategic node

i ∈ N Strat according to their deliverability and consider a given percentage α̃τ(i) of
these days as the worst outcomes, no matter how “bad” they actually are. Then, the
average deliverability on these days may be limited from below by a limit D̃elτ(i):

E{Del j|Del j ≤ VaRα̃τ(i)(Del), j ∈ N Op
i } ≥ D̃elτ(i), ∀i ∈ N Strat. (8.4)

For example, one may require that the average deliverability on the 15% days
with lowest deliverability in a strategic node i still shall be above 0.9:

E{Delj|Del j ≤ VaR15%(Del), j ∈ N Op
i } ≥ 90%, ∀i ∈ N Strat.

Also this requirement can be reformulated to a set of linear constraints by
introducing auxiliary continuous variables [22, 27].

Clearly, the deliverability targets PAt (and threshold probabilities αt ) should be
the same for all strategic nodes in a given time period t: The production assurance
requirement should not depend on the gas network configuration or realizations of
the uncertain strategic parameters. Moreover, they may also be the same for several
or all strategic time periods t. The same holds for the lower limits D̃elt and for the
percentages α̃t of the days with lowest deliverability within the time period t.

However, in general, there is no direct relationship between the target value PAt

and the limit D̃elt or between the threshold αt and the percentage α̃t (although it
might be more natural to assume a relationship between the latter than between the
first). Intuitively, one may set α̃t somewhat higher than αt and / or D̃elt somewhat
lower than PAt .

Evidently, production assurance is an operational concept and confined to a
certain (strategic) time period, e.g., year or month. It is determined for a given in-
frastructure configuration (existing network and potential investment decisions) and
requires, in order to give meaningful results, many operational scenarios associated
with each strategic decision point. Hence, to compare or decide between several
investment options under similar operational conditions, a traditional scenario tree
structure would require a large degree of duplicate values. Consequently, one can
solve only relatively small examples rather than realistic-sized cases.

Observe, however, that formulations (8.3) and (8.4) of production assurance
requirements do not span several strategic time periods—they are considered
independently for each strategic period. Hence, this aspect is well suited a model
with a multi-horizon scenario tree structure. This tree structure allows many more
operational scenarios for each strategic decision point than a traditional structure
interspersing operational and strategic tree nodes in each scenario.

In the following section, we briefly introduce static and dynamic risk measures
before we relate them to the multi-horizon scenario tree structure and the production
assurance concepts discussed in Sect. 8.3.3. In particular, we turn our attention to
the question of time consistency in a multistage setting.



188 A.S. Werner et al.

8.4 Risk Measures

Section 8.3.3 outlined several approaches to model risk aversion when making
decisions under uncertainty. On a more general level, risk measures as functionals on
random variables have been studied intensely over the past decade and have become
popular in particular in finance. The seminal paper by Artzner et al. [1] addresses
axioms that are considered natural when quantifying risk by assigning a single num-
ber to the random variable representing potential outcomes. Krokhmal et al. [13]
provide an overview over risk-modeling concepts in a static (single-period) setting.

The expectation operator E(·) employed in formulation (8.2) represents the
simplest form of a risk measure; it assigns the single number EY to the possible out-
comes represented by a random variable Y . For the example of production assurance
described, the random parameter may be the daily nominations f Con

j (and other un-

certainties not discussed closer here), while the flow f Del
j is the considered decision

variable such that the random variable Y corresponds to the deliverability Del j. The
respective probabilities are modeled through a probability measure involved when
calculating the expectation.

As mentioned above, this measure does not take into account properties of the
considered random variable such as its variability, i.e., the distribution of the single
values over all outcomes. Risk measures exploiting more properties of the random
variable are, for example, chance constraints [exemplified by (8.3)] or the Average
Value-at-Risk (AV@R) as formulated in (8.4).

Chance constraints (8.3) ensure that the deliverability targets PAt are satisfied
with a certain probability as specified in the contract with the company’s customers.
However, this formulation treats any underdeliveries equally, no matter how large
the shortfall is.

The AV@R illustrated in (8.4) reflects another important risk measure which
is also known as expected shortfall or Conditional Value-at-Risk (CVaR). This
measure does not only take into account at which probability the demand is
satisfied but also the level of demand satisfaction. This constraint is sometimes more
conservative than a chance constraint. On the other hand, it is a convex constraint
and certainly easier to handle computationally than, say, chance constraints. Our
subsequent discussion will focus on this risk measure.

With our application in mind, the AV@R of a random variable Y at the
confidence level α can be defined generally as the expectation of all outcomes in
the lower α-quantile of the probability distribution of Y :

AV@Rα(Y ) = E{Y |Y ≤ V@Rα(Y )}. (8.5)

However, in the case that the probability space contains atoms, this formulation has
a drawback. In this case, the event {Y |Y ≤ V@Rα(Y )} may have a probability other
than α despite V@Rα(Y ) being involved in the definition of this event. Exactly
this situation occurs in the Ramona model involving finitely many (operational)
scenarios of deliverability values as each has a (strictly) positive probability and,
hence, is an atom.
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Using the Fenchel–Moreau Theorem (cf. [26]), the AV@R can be expressed by
its dual formula:

AV@Rα(Y ) = inf

{
EY Z|0 ≤ Z ≤ 1

α
, EZ = 1

}
. (8.6)

This representation outlines that the mapping Y �→AV@Rα(Y ) is concave.
Alternatively, the AV@R can be expressed as

AV@Rα(Y ) = max
q∈R

q− 1
α
E(q−Y)+,

where x+ is the positive part, x+ := max{0, x}. This expression has been introduced
by Rockafellar and Uryasev [19] while the general formulation is stated in Pflug
[15]. It replaces the infimum in (8.6) by a maximum and has become popular in
stochastic optimization (cf., e.g., [4]) and appears to be tailor-made for the model
discussed here.

A risk constraint similar to the production assurance requirements presented in
Sect. 8.3.3 may require that the Average Value-at-Risk of the random variable Y at
the level α is above a given threshold q̃:

AV@Rα(Y )≥ q̃.

8.4.1 Risk Measures in Multistage Optimization Problems

Intuitively, the static concept may be extended easily to a dynamic or multi-
stage situation. However, due to relations between the decisions and parameters at
the different stages affecting the properties of the risk measures, this is not quite
straightforward and has spawned increased research interest in the recent years.
For example, Kozmík and Morton [12] consider a stochastic programming problem
structure with multiple recourse stages. They consider risk aversion, i.e., minimize
risk and study stage-wise independent uncertain parameters and a risk measure as a
function of the recourse value at each stage.

Risk measures may be applied separately at each stage of the underlying scenario
tree or as a nested measure spanning several or all stages. We focus here on the for-
mer, conceptually simpler approach. More formally, we consider R-valued random
variables dependent on some previous decisions x ∈ X and a random parameter
ξ ∈ Ξ , that is, Y = Y (x,ξ ) ∈ R for the objective and (possibly different) random
variables Y c

t = Y c
t (x,ξ ) ∈ R for the constraints, which are observed at the times

t ∈ {0, . . . ,T}. The vector x = (x0, . . . ,xT ) collects all decisions made at T + 1
subsequent instants of time t ∈ {0, . . . ,T}. We use the notation Y (x) also for the
random variables Y (x) : ξ �→ Y (x,ξ ) (and Y c

t (x) for Y c
t (x) : ξ �→ Yt(x,ξ ), respec-

tively). Importantly, the decisions up to time t are x0, . . . ,xt , and a random variable
Y c

t observed at that time t is determined by x0, . . . ,xt . Expressed in mathematical
terms, it holds that
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Y c
t (x) = Y c

t (x
′) (8.7)

whenever (x0, . . . ,xt) = (x′0, . . . ,x
′
t), where x = (x0, . . . ,xT ) and x′ = (x′0, . . . ,x

′
T ).

Similar to the static formulation (8.5), an AV@R measure with a (potentially
different) level αt can be applied to the random variable Yt at each stage t ∈
{0, . . . ,T} of the underlying scenario tree. Constraints may require that any AV@R
at a given stage t shall exceed a given threshold value qt (recall that AV@R is
concave). Observe that, if this constraint is required to hold separately at each tree
node at this stage, the AV@R is considered conditionally on realizations of Y up
to this stage. (Obviously, if there is only one AV@R constraint involving all Yt for
given t, this measure does not depend on previous realizations.) This is made evi-
dent through the filtration Ft of the tree: the increasing sigma algebras Ft ⊂ Ft+1

represent the information available at time t [17].
Hence, a multistage stochastic optimization problem with risk constraints at each

time period t can be formulated as

maximize EY (x) (8.8a)

subject to AV@Rαt (Y
c

t (x)|Ft)≥ qt , ∀t ∈ {0, . . . ,T}, (8.8b)

x ∈ X0 ×·· ·×XT , (8.8c)

where all xt , t ∈ {0, . . . ,T} are measurable with respect to the sigma algebra Ft .
The latter condition expresses the nonanticipativity constraints on the decisions xt .

Observe that the risk measure applies to the random variables Y c
t while the ran-

dom variable Y employed in the objective function may be a different function of the
decisions x. For example, the Ramona model comprises risk constraints involving
natural gas volumes delivered to the markets while maximizing the expected profit
from these deliveries. Only the latter involves current market prices.

A sufficiently large sample size is necessary to get acceptable approximations,
particularly as a non-biased estimator for the Average Value-at-Risk does not exist
([10]) in general. More specific, the number of considered realizations of Y should
be of order 1

α ≈ 1
P(Y≤VaRα(Y ))

. As a consequence, the size of multistage stochastic
programming problems relying on a traditional scenario tree structure quickly grows
out of hand if risk measures are applied not only to the leaf nodes at the final stage.
Also Kozmík and Morton [12] point out the need for many scenarios at each stage
and the resulting computational challenges when considering risk in a multistage
setting: As only a small number of the realizations of the random parameter at each
stage contribute to calculating the risk, a large number of nodes would be required.
They suggest SDDP, i.e., sampling during the solution process, relying on stage-
independent scenario trees. Note that this requirement of stage-wise independent
random parameters excludes time-series models.

Alternatively, the scenario tree size may be reduced drastically without sacrific-
ing model quality by utilizing the properties of the model at hand. For the Ramona
model, we can distinguish clearly between operational and strategic decisions, and
the risk measures apply only to all operational outcomes associated with a given
strategic node. This indicates that the subtrees associated with each strategic node
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at any stage can be of the required size and, consequently, risk constraints can be
applied at “any” strategic stage throughout the optimization horizon.

With a multi-horizon scenario tree structure, one can calculate a risk measure at
each strategic node i, spanning all operational outcomes (i.e., all operational nodes
j representing days) associated with this node i. For all strategic nodes in a given
strategic period t, that is, {i ∈ N Strat : τ(i) = t}, the requirements are the same,
i.e., they are characterized by the same parameters αt and qt . Consequently, de-
cisions in any strategic node should be found such that (a) the risk requirement
covering all operational nodes associated with this strategic node is satisfied, and
(b) they allow to make decisions in all subsequent strategic nodes such that the
corresponding risk requirements in these nodes are satisfied. In general, the opera-
tional scenarios associated with a strategic node are considered to be independent of
the operational scenarios associated with other strategic nodes. However, due to b),
operational scenarios associated with later strategic nodes in the same strategic sce-
nario may affect earlier strategic decisions—in particular, if the strategic decision
space in these later nodes is quite confined. We will resume these considerations in
Sect. 8.4.2 discussing time consistency of dynamic risk measures.

Fig. 8.2 Different scopes of risk measures. (a) Risk measure on a traditional scenario tree spanning
all nodes at a stage. (b) Risk measures on a multi-horizon scenario tree spanning all operational
nodes associated with a strategic node

8.4.2 Time Consistency

The principle of time consistency for multistage optimization problems derives from
dynamic optimization [5] and has been analyzed from many perspectives in the lit-
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erature; see, e.g., [2, 11, 24]. Although its meaning is intuitively evident, a common
and widely accepted definition does, apparently, not exist yet. A common consen-
sus, however, is that it means that decisions which are made at a certain stage of
time should not be withdrawn at a later stage of time. That is, contradictions that
may occur during the decision process should be excluded.

Carpentier et al. [3] informally formulate this principle as follows:

The principle of time (or dynamic) consistency. The sequence of optimization
problems is said to be dynamically consistent if the optimal strategies obtained
when solving the original problem at time t0 remain optimal for all subsequent
problems. In other words, dynamic consistency means that strategies obtained by
solving the problem at the very first stage do not have to be questioned later on.

When discussing time consistency, one often distinguishes between optimization
problems which involve a risk functional in the objective and which are solved at
multiple, subsequent stages in time and problems which involve a risk functional in
the constraints.

We will follow this distinction here and discuss time consistency for risk
measures in the objective and the constraints separately. Then, we address time
consistency on multi-horizon scenario trees.

8.4.2.1 Risk Measures in the Objective

Typically, multistage stochastic optimization problems with a risk measure in the
objective employ a composition of risk measures at subsequent stages. Several
results are known about such compositions of risk measures which often gener-
alize initial properties of one-period risk measures ([6, 20, 21]). Schachermayer and
Kupper [23] show that the only risk measure that is closed under time-consistent
compositions is the functional

Y �→ u−1 (E(u(Y )|Ft )) .

Moreover, Shapiro [25] states that the composition of risk functionals is not
necessarily a law-invariant risk measure anymore, except for the expectation

AV@R1(·) = E(·) (8.9)

and the min-risk functional

AV@R0(·) = lim
α↘0

AV@Rα(·) = essinf(·). (8.10)

Moreover, the composition lacks a natural interpretation: it is not clear what the
Average Value-at-Risk of an Average Value-at-Risk could be. However, a compo-
sition of risk measures can be easily applied and it is convenient in computations.
Often it is considered a—rather conservative—alternative to a single-period AV@R
measure in the objective.
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A possible way to overcome these challenges is by changing the level of the
Average Value-at-Risk according to the representation

AV@Rα(Y ) = infE Zt ·AV@Rα ·Zt (Y |Ft) , (8.11)

where the infimum is taken over all random variables Zt , measurable with respect
to Ft , satisfying E Zt = 1 and 0 ≤ Zt ≤ 1

α . The essential difference to (8.6) is that
the dual variable Zt is measurable with respect to Ft and the level α ·Zt in (8.11) is
random itself [16].

This demonstrates that the level of the Average Value-at-Risk has to be changed
in order to allow a combination of conditional Average Value-at-Risk measures.
Equation (8.11) does not represent a composition but a change of measure instead
(change of numéraire, cf. [18]).

Notably, the level of the Average Value-at-Risk represents the risk which the
decision maker should accept in order to handle the optimization problem. Hence,
one may conclude that the perception of risk may vary in different situations which,
indeed, reflects a natural situation: Having observed a comfortable past which makes
the initial objective more likely to achieve, a decision maker may be more relaxed
in the future. Conversely, having observed a difficult past making the initial goal
unlikely to be achieved, a decision maker may impose tougher conditions to ensure
that the initial goal can still be achieved.

This is especially important in the case of rolling-horizon solution approaches.

8.4.2.2 Risk Measures in Constraints

The problem formulation (8.8) considers risk measures in the constraints at different
levels. Studying time consistency of such risk measures, it appears natural to ask if
AV@Rα(Y |Ft )≥ q means that also AV@Rα(Y )≥ q. More generally, if a random
variable Y1 is preferred over a variable Y2 at a stage t, can it then be concluded that
this random variable is preferable at an earlier stage as well; that is,

AV@Rα(Y1|Ft)≥ AV@Rα(Y2|Ft) =⇒AV@Rα(Y1)≥ AV@Rα(Y2).

Similar to the case of risk measures in the objective, this holds obviously for
α = 1 (the expectation) and α = 0 (the min-risk functional).

Figure 8.3 illustrates that time consistency of the Average Value-at-Risk measure
cannot be guaranteed for values of α other than 0 and 1: Assuming an Average
Value-at-Risk at the level α = 2

3 at both stages, the example demonstrates that Y is
acceptable when employing the criterion AV@R 2

3
> 13 at every subtree. However,

applying the same criterionAV@R 2
3
> 13 to the complete problem, the variable Y is

not acceptable. The simple Average Value-at-Risk is, therefore, not a time-consistent
risk functional in this specified sense whenever α ∈ (0,1).
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Fig. 8.3 This random variable Y satisfies AV@R2/3 > 13 for every partial observation in the
subtree (specified by F1). However, the combined observation does not satisfy AV@R2/3 > 13. It
is, however, correct, that AV@Rα ≤ minAV@Rα(·|F1)

8.4.3 Consistency of Risk Measures in a Multi-horizon
Tree Formulation

This section addresses time consistency of the multi-horizon problem (8.8). Note
that its objective is an expectation and, moreover, the constraints in this problem
are not compositions of risk measures as discussed in the previous section. The way
the problem is formulated ensures its time consistency according to the principle
formulated on page 192.

Proposition (Time consistency of the multi-horizon problem). Let

x∗ := (x∗0, . . . ,x
∗
T )

be an optimal solution of the multi-horizon problem (8.8). Then x∗ solves also the
problem with respect to the conditional probability measure Pi, where i ∈ N Strat

t is
an arbitrary (strategic) node at stage t and Pi(·) = P(·|i) is the conditional proba-
bility satisfying Pi(i) = 1.

Hence, the problem is time consistent in the sense of the principle given on
page 192.

Remark. Incorporating the measure Pi—that is, conditioning on the node i—
ensures that the tree process will move through the node i with probability one.
The latter preposition ensures, therefore, that the problem can be reconsidered at a
certain stage, and the initial solution will remain optimal even for the new subprob-
lem which is reconsidered at a later time t (i ∈ N Strat

t ). Hence, the problem is time
consistent in the described sense and the initial solution does not have to be changed
retrospectively.
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Proof. Without loss of generality, we assume P(i)> 0.
Let x∗ denote the optimal (minimal) solution, and assume that x∗ is not optimal

for the subproblem conditional on Pi. Denote the optimal solution of the subproblem
with respect to Pi by (x∗0, . . . ,x

∗
t−1, x̃

∗
t , . . . , x̃

∗
T ), and define the new decision as

x̃ :=

{
(x∗0, . . . ,x

∗
t−1, x̃

∗
t , . . . , x̃

∗
T ) if i is contained in the path,

(x∗0, . . . ,x
∗
t−1,x

∗
t , . . . ,x

∗
T ) else,

which we apply to the initial problem.
The new strategy x̃ is a potential solution of the initial problem as X=X0×X1×

. . .XT . Moreover, x̃ is feasible for the initial problem: Indeed, if t ′ ≤ t, then, from
(8.7), Yt′(x) = Yt′(x̃) as xt′ = x̃t′ for all t ′ ≤ t. Further, if t ′ > t, then

AV@R(Yt(x)|Ft )≥ qt

in both cases, that is, no matter whether i is in the path or not.
Finally, the objective EY (x̃) of the new strategy x is superior as

EY (x̃) = EE(Y (x̃)|Ft)

< EE(Y (x)|Ft) = EY (x)

due to the assumption Pi(i)> 0 and since x̃ is better than x on the node i.
Summarizing, x̃∗ is a better strategy than x∗ on the entire tree. This, however,

contradicts the assumption that x∗ is optimal. Hence, the strategy x∗ is also optimal
for the subproblem conditioned on Pi. This proves the assertion. ��

Observe that the argument is valid also for operational nodes j ∈N Op
i associated

with any strategic node i ∈ N Strat.

8.5 Illustrative Example

To illustrate the implementation of AV@R on multi-horizon trees we use a stylized
example. We show in the example that different ways of modeling risk aversion
can change the optimal decisions in the optimization model. As a case study, we
consider a network that consists of a field connected to a market through a single
pipeline. This is illustrated in Fig. 8.4. The production capacity in the field node is
assumed to not constrain our solution, but the pipeline that connects the two nodes
has a capacity limit of 100 units. Furthermore, we assume that the market price is
fixed at 1 million per unit, while the demand is stochastic. The scenario tree that we
use in our example consists of two strategic periods and three strategic nodes (i.e.,
i ∈ {1,2,3}; see Fig. 8.5), each with an associated operational subtree.

We represent the demand uncertainty by 100 equiprobable scenarios in each of
the operational subtrees. The demand uncertainty in the subtrees in strategic nodes
1 and 2 is identical and uniformly distributed between 50.5 and 100 units (plot to
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Fig. 8.4 The simple network used in our example, consisting of a single field that supplies a market
through a pipeline

Fig. 8.5 Strategic nodes in the tree

the left in Fig. 8.6), while the demand uncertainty in the subtrees in strategic node
3 is uniformly distributed between 52.5 and 102 units (plot to the right in Fig. 8.6).
The probability of strategic nodes 2 and 3 is equal (0.5).

Fig. 8.6 Demand scenarios. The left plot shows the demand realizations in the operational subtree
linked to the strategic nodes 1 and 2 (uniformly distributed between 50.5 and 100), while the right
plot shows the slightly higher demand realizations for the subtree in strategic node 3

The company has an investment opportunity that will increase the pipeline
capacity from 100 units to 110 units. The cost of this capacity increase is 0.1
million. To simplify our model we assume that the network is operated only in
the two strategic periods considered in our example. This means that there are no
end-of-horizon effects in our model. We also disregard discount rates and, as there
is only a single field, pipeline, and market, we ignore network element indices. This
simplified investment model can then be formulated as

max
λi, f j

i∈N Strat , j∈N Op
i

∑
i∈N Strat

P
Strat
i ∑

j∈N Op
i

P
Op
j p f j − ∑

i∈N Strat

P
Strat
i λiI, (8.12)

where p is the price in the market, f j is the volume sold in the market in operational
scenario j, λi is the (binary) investment decision, and I is the investment cost.
The production, flow in the pipeline, and sale in the market are constrained by the
pipeline capacity K and the market demand Fj. The company can invest in additional
capacity L. The set N Strat

A(i) contains all ancestor nodes for node i as well as the node
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i itself (i.e., all the nodes on the path from the root node to node i):

f j ≤ K + ∑
i′∈N Strat

A(i)

λi′L, j ∈ N Op
i , i ∈ N Strat, (8.13a)

f j ≤ Fj, j ∈ N Op
i , i ∈ N Strat. (8.13b)

The company can make the investment only once in each scenario:

∑
i′∈N Strat

A(i)

λi′ ≤ 1, i ∈ N Strat. (8.14)

We can then solve the profit-maximizing model (8.12)–(8.14) to find the optimal
investment decision. The solution to this problem is trivial since the only node where
the capacity extension would influence the revenue is strategic node 3 (the demand
associated with strategic nodes 1 and 2 is already covered by the capacity of the
pipeline without the investment). The additional expected revenues from having a
capacity of 110 units in node 3 are 0.05 million (additional sales in the four scenarios
where demand exceeds 100). Since these revenues are smaller than the investment
cost, the investment will not be made in any of the strategic nodes.

Let us now consider how risk measures may influence this solution. We assume
that the company that operates the field has an obligation to deliver according to
the demand level in the market node. The performance is regulated with an AV@R
constraint enforcing that the expected delivery rate in the worst 5% of the scenar-
ios should be at least 0.995 (meaning that the expectation of the actually delivered
volumes divided by the demand in the 5% worst scenarios should be at least 0.995).
Figures 8.7 and 8.8 show two different ways of implementing this AV@R con-
straint. Figure 8.7 illustrates the traditional approach where the AV@R constraint
is based on all operational observations within a given time period while Fig. 8.8
illustrates the approach used in the Ramona model. In this case, a separate AV@R
constraint refers to all operational subtrees associated with a strategic node. In the
following, we show that these different AV@R calculations can indeed influence
the investment decision in the model.

Fig. 8.7 Stage-wise constraints on AV@R, involving all operational nodes in a strategic period.
With this implementation of AV@R, the optimal investment decision in our model is to not invest
in capacity extension in any of the strategic nodes
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Fig. 8.8 Node-wise constraints, involving all operational nodes associated with a strategic node.
With this implementation of the AV@R constraints, the optimal decision in our example is to
invest in additional pipeline capacity in strategic node 3

The mathematical formulation of the AV@R constraints that include all
operational observations within a given time period can be given as

E{Del j|Del j ≤ VaRα̃t (Del), j ∈ ˜
N Op

t } ≥ D̃elt , ∀t ∈ T , (8.15)

where the set ˜N Op
t includes all operational nodes linked to a strategic time period t.

The mathematical formulation used in the Ramona model can be given as

E{Del j|Del j ≤ VaRα̃τ(i)(Del), j ∈ N Op
i } ≥ D̃elτ(i), ∀i ∈ N Strat. (8.16)

For more explanation on this AV@R formulation, see the discussion linked to
Equation 8.4 on page 187.

In our example, D̃elt and D̃elτ(i) are equal to 0.995 while α̃t and α̃τ(i) are equal
to 5%.

First, let us consider the AV@R constraints that are based on all observations
in a time period. We already know that the investment project is not profitable, so
to solve the model we only need to check if the AV@R constraint holds. For the
subtree linked to the first strategic node, this constraint is clearly satisfied, since the
demand is met in all scenarios (the expected delivery rate in the 5% worst scenarios
is 1). Considering the operational subtrees linked to the second strategic period, we
find that the 5% worst scenarios have an expected delivery rate of 0.995 without
any investments (calculated as the expected delivery rate in the 10 scenarios with
highest demand). This means that including the AV@R constraint on the model
will not alter the optimal decisions.

Now, let us study how AV@R constraints on all operational subtrees linked to a
strategic node will influence the optimal solution from the model. Again, we know
that the investment option alone is not profitable and we only need to check the
AV@R constraints. Obviously, in the operational subtrees linked to strategic nodes
1 and 2, these constraints are satisfied even without the investment (the demand will
not exceed the original capacity of the pipeline). In the operational subtree linked
to strategic node 3, however, the expected delivery rate of the 5% worst scenar-
ios (the 5 scenarios with highest demand) is 0.990 without the investment. If the
pipeline capacity is increased to 110, the AV@R constraint is also satisfied in these
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operational scenarios (the new expected delivery rate is 1). This means that the in-
clusion of AV@R constraints in every subtree will force an investment in additional
pipeline capacity in strategic node 3.

Obviously, this example is simplified and rather far removed from real investment
decisions. The influence of the modeling choice of AV@R constraints on the deci-
sion space and, hence, the optimal decisions found by the model is, however, a
general result. We chose a simple example to transparently illustrate this effect. We
can also note that while the first approach to modelingAV@R is not time consistent,
the second approach is. It can be easily seen that the optimal decisions on a rolling
horizon will change when using the first approach: it will be necessary to change
the original decision of not investing in strategic node 3. The second approach to
modeling AV@R is, however, time consistent, and the decisions will not change if
we consider a rolling-horizon solution approach.
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