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Medium-Term Operational Planning
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Raphael E.C. Gonçalves, Michel Gendreau, and Erlon Cristian Finardi

Abstract The planning of operations of hydrothermal systems is, in general, divided
into coordinated steps which focus on distinct modeling details of the system for dif-
ferent planning horizons. The medium-term operation planning (MTOP) problem,
one of the operation planning steps and the focus of this chapter, aims at defining
weekly generation for each power plant with the minimum expected operational cost
over a specific planning horizon, with regard especially to the uncertainties related
to reservoir inflows. Consequently, it is modeled as a stochastic problem and solving
it requires the use of multistage stochastic optimization algorithms. In this sense, the
objective of this chapter is to discuss the problem features, its particularities, and its
importance in the overall operational planning. The stochastic methods usually used
to solve this problem and some applications are also presented.
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6.1 Introduction

The operation of electric power systems1 covers a broad spectrum of activities or
studies, among which the planning/scheduling of operations stands out (Test, 1797)
[1, 2]. In general, this problem [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21] is divided into several steps (long term, medium term, and short term),
which have different planning horizons and which, consequently, each prioritize
distinct details of the problem modeling. Briefly, the global problem involves the
analysis of the important operational aspects of the system to define the optimal
level of energy production to meet demand in an economical and reliable manner.

The medium-term operation planning (MTOP) problem, the focus of this chapter,
aims to set weekly generation for each power plant with the minimum expected ope-
ration cost over a specific planning horizon, which can vary from months to a year or
two, especially taking into account the uncertainties associated with some problem
data (inflows and demand, among others). In addition, results from the MTOP can
be used to set the spot energy price, depending on the regulatory framework.

Considering the importance of the MTOP, the credibility of the results is essential
for the System Operator (SO), which is responsible for settling generation targets,
and for the Energy Market (EM) agents, given the economic impacts of the transac-
tions in the market energy environment. In this sense, constant improvements in the
MTOP optimization model are required in order to satisfy or update the system and
EM participants’ requirements. This is the reason why a lot of work has focused on
this step of the operation planning problem [6, 15, 22, 23, 24, 25, 26].

As the MTOP is part of a scheduling chain, it can be tightly linked with other
steps in this chain in order to obtain the global solution of the operation planning
problem, as occurs, for instance, in Brazil. The purpose is to maintain a temporal
connection between scheduling chain steps. Briefly, the idea is to exchange infor-
mation concerning the operational policies, which aim to propitiate coherent global
decisions, as illustrated in Fig. 6.1, avoiding, for example, the inefficient use of the
generation resources.

Given some problem features, especially those related to data uncertainties, the
MTOP is quite complex to solve. As a consequence, solutions obtained by models
that do not recognize the uncertainties can produce unsatisfactory results. In other
words, the MTOP problem is essentially a stochastic optimization problem [27, 28].
In general, these uncertainties are associated with future inflows into the reservoirs
for hydro or hydrothermal systems. Demand and future fuel or energy spot prices
can also be modeled as random data, according to the predominance of generation
resources of the system or the main objective of the problem.

Like most practical stochastic optimization problems, solving the MTOP
problem requires a very significant computational effort, given that the size of the
problem increases substantially with the representation of the uncertainties, with
the number of stages and with the level of detail in system modeling. Therefore, it

1 It is important to remark that the systems can be composed of hydro, thermal, or both power
plants.
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Fig. 6.1 Scheduling chain

is important to balance the level of detail used in modeling uncertainties and system
operations by introducing some simplifications to allow the resolution of the prob-
lem in reasonable CPU times. For instance, hydro [16, 29] and thermal production
and cost functions, which are typically nonlinear and non-convex [1], are usually
modeled as linear or a piecewise linear functions to overcome their nonlinearity
features. In this way, the resulting optimization problem can be approximated by a
linear model.

One therefore ends up normally with a large multistage linear stochastic (MLS)
problem [30], for which the use of stochastic decomposition algorithms [31] is ess-
ential to reduce the computational burden (in fact, attacking this problem directly
keeping its standard structure, known as the deterministic equivalent problem, DEP,
is often computationally infeasible). In this context, one must highlight the algo-
rithms based on the Benders Decomposition (BD) principle [32], which display an
excellent computational performance when dealing with problem instances with a
representative number of scenarios, as shown in [33].

BD-based algorithms, such as the nested decomposition algorithm (NDA) [27]
or stochastic dual dynamic programming (SDDP) [4], are broadly used to solve
large-scale operation planning problems. The idea underlying NDA is to decompose
the DEP into smaller subproblems with a restricted set of variables and constraints,
which are easier to solve. These subproblems are solved individually and the coordi-
nation among them is performed by means of optimality constraints, which are built
and updated iteratively. Although this is an efficient method, some disadvantages are
often highlighted for this class of methods [27], as the difficulty to improve the qual-
ity of the solution when the iterative process is close to the optimal value. A similar
idea can be found behind SDDP, which, however, is more suited to large-scale prob-
lems with many stages and scenarios. In this algorithm, scenario sampling, based on
the original probability distributions of the random variables [2, 34, 35, 36, 37], is
used to reduce the size of the problem, as discussed in another chapter of this book.

Algorithms with different characteristics in relation to the BD-based approach,
such as the augmented Lagrangian (AL)-based algorithm [30, 38], have been suc-
cessfully used to solve MLS problems. In this sense, it is possible to highlight the
progressive hedging algorithm (PHA), which has been applied in several fields:
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financial market [39], network flow problems [40] and, more recently, operation
planning problems [22, 23, 26].

Like other AL-based algorithms, the PHA proceeds by relaxing the nonantici-
pativity constraints2 [27, 41] providing an independent set of quadratic subprob-
lems, which are linked via Lagrangian multipliers and penalized by a positive scalar
parameter. In this class of methods, the aforementioned disadvantage of BD-based
methods can be mitigated because the resulting subproblems are quadratic and they
are still sensitive to the use of warm start techniques [25]. Nevertheless, its main
disadvantages are associated with the penalty parameter adjustment, which is crucial
to algorithm success. Otherwise, it can take a long time to converge.

Based on the aspects mentioned before, the remainder of this chapter aims to des-
cribe in detail the main features of the MTOP problem, the mathematical structure
of the methods usually used to solve this kind of problem, some application, and
important remarks concerning the problem resolution. More precisely, in Sect. 6.2,
the stochastic optimization aspects are pointed out, emphasizing the challenges of
the MTOP problem resolution. The general problem formulation is presented in
Sect. 6.3. In Sect. 6.4, a brief idea of the algorithms and some application results are
discussed. Finally, conclusions are presented in Sect. 6.5.

6.2 Stochastic Optimization Aspects

Unlike deterministic problems in which there are no uncertainties with respect to
the future data, in stochastic programming problems it is necessary to optimize tak-
ing into account the data unpredictability. In order to make the problem resolution
computationally viable, it is essential to ensure that the problem horizon has a finite
number of stages and, additionally, knowing beforehand the probability distribution
of the random variables.

In this context, some important aspects are often addressed in the literature [42],
such as the modeling of random variables, the quality solution analysis based on the
set of random variables, the problem resolution, solution algorithms, among other
aspects.

Once the MTOP problem is essentially a stochastic problem, this section focuses
on presenting a brief review associated with the stochastic programming, highlight-
ing some important features which can make the MTOP formulation and challenges
more understandable.

2 The algorithm details and the stochastic theoretical aspects will be discussed in the next sections.
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6.2.1 Problem Description

Assuming that the discrete probability distribution of the random variable is known,
the classical two-stage linear stochastic programming problem or two-stage equiva-
lent stochastic problem can be defined as follows:

mincT
1 x1 + ∑

ω∈Ω2

pω
2 cT

2 xω
2

s.t : A1x1 = b1,

Aω
2 xω

2 +Bω
2 x1 = bω

2 ,

x1 ≥ 0, xω
2 ≥ 0.

(6.1)

where:

T Total of stages
t Index of stage, so that t = 1,T
Ω t Set of realizations (nodes) on stage t
ωt Index associated with a specific realization (node) in the stage t, so that

ω ∈ Ω t

ct Cost vector related to stage t;
xt Vector decision of stage t, x ∈ ℜn

pω
t

Probability associated to the each node ω , such that ∑ω∈Ωt pω
t = 1

Aω
t Coefficient matrix in stage t (mt x nt)

Bω
t The technology matrix at stage t (mt x nt )

bω
t Right-hand side for a specific realization ω at stage t

Based on this formulation, as called Deterministic Equivalent (ED) [43] of the
stochastic problem, notice that uncertainties can be related to A or B matrices, as
well as the vector b. Nevertheless, in the MTOP problem, the randomness is usually
associated with the vector b, given that the inflows or the demand are the most future
unpredictable data.

Solving this stochastic problem requires the use of methods that exploit the
matrices structure of the problem, such as simplex method and interior point
method [44].

Notice that the uncertainties ω are addressed to the second stage. The objective
of problem (6.1) aims to minimize the cost over two stages, being composed by the
costs associated with the decisions x1 plus the expected future value of the second
stage decisions. The remaining equations of (6.1) correspond to sets of constraints
related to the first and second stages, interconnected by the technology matrix, B2,
beyond the variable bounds.

As it will be discussed later, this is the same idea of the MTOP problem for-
mulation, i.e., an objective function composed of the total operational cost over the
planning horizon and a set of constraints that are associated with the operational
features or particularities of the system.
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6.2.2 Scenario Tree

Considering the beforehand aspects with respect to the discrete probability distribu-
tion, the problem uncertainties are represented by means of a scenario tree. Thus, for
a finite number of second stage realization Ω2, the scenario tree can be represented
as illustrated in Fig. 6.2.

Fig. 6.2 Scenario tree

It is possible to say that the uncertainties representation by means of graphs aims
to show the set of the problem realizations in each stage and the link (transition)
among the each node decision. Thus, each node of the scenarios tree is associated
with a specific realization or a set of random variables. In this context, a specific
scenario can be defined as a path from the initial stage to the last stage, regarding a
single realization at each stage or, simply, a set of realization from stage 1 onwards.
In Fig. 6.2, for instance, a scenario 1 is composed of the realization ω1 and ω2a, the
scenario 2 composed of the realization ω1 and ω2b, and the scenario 3 composed of
ω1 and ω2c.

According to scenario assumptions, all scenarios share the same first stage
realization/decision regardless of the second stage realization (the set of random
variables of the first stage is identical in all of them). In this sense, it is possible to
define an important concept in stochastic optimization: the nonanticipativity condi-
tion [41]. It means that the decisions are not made regarding future expectations,
but based on past and current realizations of the random variables. In other words,
if two different scenarios have identical path up to stage t, they must have the same
decisions until this stage t regardless the next realizations.

Therefore, the scenario tree shown in Fig. 6.2 can also be represented as it is
illustrated in Fig. 6.3.

It is possible to say that the nonanticipativity condition is modeled in an implicit
way in (6.2) [43], i.e., the first stage decision, equal in all scenarios, is only repre-
sented by a unique vector x1. On the other hand, in Fig. 6.3, the nonanticipativity
condition is represented in an explicit way, given that there are nodes associates
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Fig. 6.3 Scenario tree representation—another possibility

with each stage for all scenarios. Therefore, the problem formulation (6.2) can be
rewritten as follows:

f= min
S

∑
s=1

ps(cs
1xs

1 + cs
2xs

2)

s.t. : As
1xs

1 = bs
1,

As
2xs

2 +Bs
2xs

1 = bs
2,

xs
1 − xs̄

1 = 0, ∀ s̄ ∈Ψ s
1 ,

xs
1 ≥ 0, xs

2 ≥ 0,

(6.2)

where:

S Total number of scenarios
s Index of scenario, so that, s=1,. . . ,S

Ψ s
t

Set of all scenarios related to scenario s at stage t by the nonanticipativity
condition, including itself

s̄ Index associated with Ψ s
t

ps Probability associated with the scenario s

Observe that, in this case, the nonanticipativity condition becomes a set of addi-
tional constraints explicit written which aims to ensure the same decision at stage
1. Thus, in short, there are two ways to model a stochastic optimization problem,
depending on the nonanticipativity constraints management.

6.2.3 Data Structure

Based on the aspects aforementioned, the nonanticipativity constraints impacts into
the problem formulation are pointed out. Initially, observe the matrix structure of
problem (6.2) highlighted in Fig. 6.4.
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Fig. 6.4 Structure of the DE implicit

According to Fig. 6.4, it is easy to see that the structure of stochastic program-
ming problems is substantially sparse. Thus, solving a stochastic problem consid-
ering this formulation, the ED implicit of stochastic problem, can require a high
computational effort, especially in a multistage case.

For this reason, decomposition algorithms [45] are most often used to overcome
the computational burden. By this structure, the decomposition idea is to solve
each node subproblem individually, maintaining the link among them by means
of some mathematical strategies. It is possible since for a feasible decision x1, the
remaining node subproblems can be solved recursively with a specific set of con-
straints and variables. For instance, methods based on BD principle “attack” this ED
representation.

In turn, problem (6.2) matrix structure is shown in Fig. 6.5.

Fig. 6.5 Data structure of the DE explicit

Notice that the number of variables and constraints of the problem increases
when compared to Fig. 6.4. Thus, the computation burden tends to be higher than
the ED implicit modeling and, thereby, the ED explicit is basically used by some
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kind of specific decomposition algorithm. It means that, in case of solving the ED
of the stochastic problem, the implicit structure is more indicated.

By this approach, only the nonanticipativity constraints, Ws, connect the scenar-
ios decisions. Thus, the ED explicit decomposition algorithm aims to decompose
the problem into scenario subproblems in order to obtain smaller subproblems with
variables and constraints that belong to a particular scenario s. In general, algorithms
based on AL-based methods, such as PHA, use this formulation to decompose the
original stochastic problem.

Finally, it is important to remark that there are algorithms that reduce the problem
size by means of exploring the sparse structure of the problem without decomposing
it [46, 47].

6.3 MTOP Problem

The MTOP problem presents many particularities, which make it a complex prob-
lem to be solved. It is possible to highlight the uncertainties related to some data,
such as the inflows, besides other operating characteristics intrinsic to each sys-
tem. In this sense, the purpose of this section is to discuss some operational aspects
related to the majority of MTOP problems with predominance of hydro resources
and its consequence into the problem modeling. Additionally, an idea of the problem
formulation is presented.

6.3.1 Problem Features

As aforementioned, the MTOP problem usually takes part of a scheduling chain
which aims to define the optimal dispatch of all system power plants and, depend-
ing on the system regulatory framework, it can also be responsible for giving an
economic sign of the energy price. For this reason, besides the stochastic aspects,
the modeling of the operational characteristic can be crucial to provide a satisfactory
operation of the system, making the MTOP model an important tool for all system
agents (operator, generator, regulator, among others).

6.3.1.1 Stochastic Aspects

Although there are other uncertainties in the MTOP problem with hydro power plant
predominance, the inflows into the reservoirs modeling has received special atten-
tion. In recent years, the studies focusing on the representation of the stochastic
issues into the MTOP problem are, in general, only associated with this random
variable.

The modeling of these uncertainties is, in general, based in the discrete
probability distribution of a historical data. Therefore, one of the most important
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challenges concerning the MTOP problem is to find a way to represent rightly this
original information. In other words, it is necessary to study the best strategy to
represent the original infinite scenario tree by means of a representative discrete
scenario tree [48], as illustrated in Sect. 6.2.

For that, some issues are extremely important, such as the number of realization
in each stage, the precise representation of statistic aspects of the original probability
distribution, and the quality solution of the related scenario tree [42].

As introduced before, the demand, the future fuel thermal price and the inflows
into the reservoirs can be modeled as a random data in the operation planning prob-
lem context. Depending on the MTOP problem features or its main purpose, some
of them can be concerned stochastic or simply represented as a deterministic data.
For instance, in problems with the hydro power plant predominance, the inflow un-
certainties modeling have received special attention in recent years.

6.3.1.2 General Aspects

In addition to the stochastic factors, the MTOP problem has other operational impor-
tant features which must be modeled in order to represent the physics characteristics
and the dynamic of the system. Among them, it is possible to highlight the stream-
flow balance for each reservoir, the hydro production function [16, 49], the future
cost-go function, the load levels, the bounds of the exchange power flow among
subsystems or zones, and water travel time among hydro plant located on the same
cascade, among others.

Given that the general idea of MTOP problem formulation is detailed in the next
subsection, some of these model aspects should be emphasized to make understand-
ing of the modeling easier. For example, the hydro production function and the
thermal cost function must be linearized, given that they are essentially nonlinear
functions and the MTOP problem must be modeled as a linear programming prob-
lem in order to propitiate a computational resolution feasible. It is possible to say
that it is not a trivial task, especially in systems where there are many power plants,
such as in Brazil, Canada, Colombia, and Norway [17, 18].

Concerning the hydro power plant, the challenge is to obtain a linear function
with the same operative characteristics when compared to the original nonlinear
function. It can require a high effort, considering that there are hydro plants with
production functions neither concave nor convex [50].

Another aspect that adds complexities into the problem formulation is represen-
tation of load levels. These levels emulate the load variation over a specific stage.
In other words, the purpose consists in divide the demand into the different stage
levels, in order to represent the peaks and valleys of the demand. For this reason, the
number of variables increases substantially.

Obviously that the modeling depends on the system characteristics and thereby
the idea in this section is to show some general features. For instance, in Brazil, the
future cost-go function used in the MTOP problem, it is a result from LTOP, which
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is not currently used in Canada. Moreover, aspects as evaporation and operational
particularities of power plants should be represented to propitiate real-life results.

6.3.2 MTOP Problem Formulation

According to the assumptions presented in the previous subsection, it is possible to
present the general idea of the problem formulation highlighting the most important
constraints and variables based on the Brazilian and Canadian systems. For that, the
ED implicit modeling is used and thereby can be written as follows.

6.3.2.1 Objective Function

The objective function aims to minimize the expected operational cost over a spe-
cific horizon. It is composed of the fuel thermal cost over the total MTOP horizon in
case of hydrothermal system, the penalty associated with the slack of energy (deficit
level cost), and the expected future cost, which depends on the reservoir level at the
end of the MTOP horizon, T:

Min F =
T

∑
t=1

∑
ω∈Ωt

pωt
t ∑

u∈U
∑
e∈E

(
∑
i∈Ie

ctiugtωt
iut +

Δ

∑
δ=1

cdδeudωt
δuet

)
+αT , (6.3)

where:

F Objective function ($)
E Energy subsystems or operative zones
e Index of subsystems or operative zones, so that, e=1,. . . ,E
U Total number of load levels
u Index of load levels, u=1,. . . ,U
Δ Total number of deficit levels
δ Index of deficit level, δ=1,. . . , Δ
I Total number of thermal plants
i Index related to thermal plants, i=1,. . . ,I
ctiu Thermal incremental cost of the ith thermal plant ($/MWh)
gtiut Generation of thermal plant i, load level u, and stage t (MWh)
cdδ eu Deficit incremental cost in δ th deficit level, uth load level, and subsystem

e ($/MWh)
dδ eut Deficit in the δ th deficit level, uth load level, subsystem e, and stage t

(MWh)
αT Expected value of operation cost from state T+1 onwards, i.e., a future

cost-go function which can be a result from LTOP ($)
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6.3.2.2 Supply the Demand

These constraints aim to ensure that the sum of all generation resources is equal
to the system demand for all stages, subsystems, and load levels, respecting the
operational power plant bounds:

I

∑
i=1

gtωt
iut +

R

∑
r=1

ghωt
rut + ∑

l∈Γe

Intωt
leut +

Δ

∑
δ=1

dωt
δuet = Luet , (6.4)

where:

R Total number of hydro plants
r Index of hydro plants, r=1,. . . ,R
ghrut Generation of hydro plant r, load level u, and stage t (MWh)
Int Power interchange from subsystem l to subsystem e, load level u, and

stage t (MWh)
Luet System demand of the uth load level, eth subsystem, and stage t (MWh)
Γ e Set of subsystems linked to the subsystem e

6.3.2.3 Stream-Flow Balance

The stream-flow balance constraint ensures that the final volume at the end of a
specific stage must be equal to the initial volume plus inflows and minus the total
released outflow, regardless casual losses or evaporations:

vωt
rt − vωt−1

r,t−1 +C
U

∑
u

[
qωt

rut + spωt
rut − ∑

m∈Mi

(
qωt

mu,t−τmr
+ spωt

mu,t−τmr

)]
=Cyωt

rt , (6.5)

where

vωt
rt Volume of rth hydro plant reservoir at the end of stage t (hm3) consider-

ing a specific node ω
qωt

rut Discharge outflow of hydro plant r, load level u, and stage t (m3/s)
spωt

rut Spillage of hydro plant r, load level u, and stage t (m3/s)
yωt

rt Incremental inflow of rth hydro plant reservoir and stage t (m3/s)
C Conversion factor of water discharge unit (m3/s) in volume units (hm3)
Mr Set of upstream reservoirs from hydro plant r
m Index of upstream reservoirs, m=1,. . . ,M
τmr Number of stages that the total outflow of a hydro plant m takes to reach

the downstream hydro plant r
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6.3.2.4 Hydro Piecewise Linear Function

ghωt
rut =Θ

(
vωt

rt ,q
ωt
rut ,spωt

rut

)
. (6.6)

The hydro production function is a nonlinear function which related the net head,
the generator units efficiency, and the release of the power plant [51]. Nevertheless,
in the MTOP problem context, the hydro production is, in general, modeled as piece-
wise linear function which can depend on the released outflow, the volume, and the
spillage, as detailed in [50], or simply depend on the release outflow and the net
head. In literature, alternatives approaches are also broadly used to represent the hy-
dro production function, as discussed in [16, 52], because it is definitely not a trivial
task to obtain a good hydro production function linearization.

6.3.2.5 Future Cost-Go Function

This function can be given by the LTOP problem, if there is a scheduling chain
models or built taking into the future level of the reservoirs. Thus, it estimates the
expected future cost. In short, it is a piecewise linear function depending on the
volume of water in the reservoirs at the end of the planning horizon, T. In other
words, it represents the expected future cost from T + 1:

αT − ∑
ω∈ΩT

∑
r∈R

γr jv
ωT
rt ≥ α0

r , (6.7)

where:

J Number of linear constraints used in the piecewise future cost-go func-
tion

j Index related to the piecewise future cost function, with j=1,. . . ,J
γr j Slope associated with jth linear segment of the future cost-go function

associated with hydro plant r (MW/hm3)

6.3.2.6 Bounds

The individual variable limits must be also considered which aims to determine the
physic operational of the system and its generator resources, such as the exchange
bounds, released outflow, and reservoir volumes:

Intmin
leut ≤ Intωt

leut ≤ Intmax
leut ,

vmin
r ≤ vωt

rt ≤ vmax
r

0 ≤ qωt
rut ≤ qmax

r ,

0 ≤ spωt
rut ≤ spmax

r ,

0 ≤ gtωt
iut ≤ gtmax

i ,

0 ≤ ghωt
rut ≤ ghmax

r .

(6.8)
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Thus, the (6.3)–(6.8) formulation summarizes the MTOP problem formulation.
Obviously that in case of a pure hydro systems or other system peculiarities, some
variable considered above must be disregarded or adapted to the system reality.

6.4 Decomposition Algorithms

Based on the features and challenges associated with the MTOP problem resolu-
tion presented so far, the study of the stochastic decomposition algorithms bec-
omes mandatory [53, 54]. Depending on the planning horizon and the operational
features which are directly related to the problem size, some decomposition alg-
orithms are more appropriated. It is possible to highlight the algorithm based on BD
[14, 27, 55, 56, 57, 58], AL [23, 24, 38, 40, 41, 59, 60, 61, 62], and its particulari-
ties [63], among others [64].

Thus, in this section, a simplified MTOP problem example is used to show the
main features of the two algorithms broadly used to solve this kind of problem. The
idea is to discuss the main differences between the algorithms and its properties.

For that, consider the simple hydrothermal system and the inflow scenario tree
of the problem illustrated in Fig. 6.6.

R1 I2I1

L 2 3

1

Fig. 6.6 Hydrothermal system and scenario tree

Notice that the hydrothermal system has only one hydro plant, R, and two thermal
plants, I1 and I2. In this example, the hydro production function is represented by
a simple linear function depending on the reservoir released outflow as it is shown
in (6.9). With these generator system resources, the objective is to supply a con-
stant demand L with the minimum expected cost over two-stage planning horizon,
considering only the inflow uncertainties:

gh = q. (6.9)

The inflow scenario tree has two possible inflow realizations in the second stage.
As a consequence, there are three nodes and two scenarios, given that a scenario can
be defined as a complete path from node 1 in the first stage to a specific node in the
last (second) stage. The inflows scenario tree data and additional information con-
cerning the hydrothermal system are presented in Tables 6.1 and 6.2, respectively.
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Table 6.1 Data of scenario tree?

Stage (t) Node (ω) Probability (p) Inflow [y (hm3)] Demand [L (MW)]
1 1 1 300 450
2 2 0.5 100 450
2 3 0.5 400 450

Table 6.2 Additional information of the hydrothermal system

Power
plant

Incremental cost [c
($/MW)]

Maximum generation
[gt or gh (MW)]

Initial volume [v0
(hm3)]

I1 50 60 –
I2 200 450 –
H1 – 450 150

According to the data shown, it is possible to write the general stochastic opti-
mization problem formulation by means of the implicit ED modeling, (6.10)–(6.13),
where, for sake of simplification, the variable bounds are omitted:

min F = 50gt1
11+ 200gt1

21+ 0.5(50gt2
12+ 200gt2

22)

+0.5(50gt3
12+ 200gt3

22) (6.10)

s.t.: gt1
11 + gt1

21 + q1
11 = 450 (node1)

v1
11 + q1

11 = 150+ 300 (node1)
(6.11)

gt2
12 + gt2

22 + q2
12 = 450 (node2)

v2
12 + q2

12 − v1
11 = 100 (node2)

(6.12)

gt3
12 + gt3

22 + q3
12 = 450 (node3)

v3
12 + q3

12 − v1
11 = 400 (node3)

(6.13)

The objective function (6.10) aims to minimize the expected value of thermal
production over the horizon taking into account the node probabilities. Addition-
ally, there are set of constraints and variables associated with each node, given by
(6.11)–(6.13). The constraints represent the demand supply and the stream-flow bal-
ance of the reservoir R1.

Notice that, in the MTOP problem context, the link between different stages is
performed by the reservoir volume, i.e., the initial volume for all nodes in the sec-
ond stage corresponds to the final volume in the first node. For this reason, it is
possible to conclude that the reservoir storage is a state variable of the problem. It is
an important MTOP characteristic given that the optimal decision is related to the
reservoir storage levels. In other words, once defined the volume storage in each
stage, the other variable are consequently determined.
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As already mentioned, the (6.10)–(6.13) formulation is the simplest way to rep-
resent a stochastic optimization problem. According to Sect. 6.2, it is also possible
to write the variables and constraints with respect to scenarios, the explicit ED, as
follows:

min F = 0.5(50gt1
11+ 200gt1

21+ 50gt1
12+ 200gt1

22)

+0.5(50gt2
11+ 200gt2

21+ 50gt2
12+ 200gt2

22) (6.14)

s.t. :

scenario1 :

gt1
11 + gt1

21+ q1
11 = 450,

v1
11 + q1

11 = 150+ 300,

gt1
12 + gt1

22+ q1
12 = 450,

v1
12 + q1

12 − v1
11 = 100,

(6.15)

scenario2 :

gt2
11 + gt2

21+ q2
11 = 450,

v2
11 + q2

11 = 150+ 300,

gt2
12 + gt2

22+ q2
12 = 450,

v2
12 + q2

12 − v2
11 = 400,

(6.16)

v111 − v112 = 0. (6.17)

As discussed in the formulation (6.2), the nonanticipativity constraints are added
to the problem formulation in order to guarantee the same decision in all scenarios
that share the same nodes until stage T-1. In this case, the purpose is to ensure the
unique decision for both scenarios that share the same realizations in stage 1. Due
to the reservoir volume is a unique state variable of the MTOP problem, using it to
represent the nonanticipativity constraints can be an interesting approach to reduce
the problem size, as discussed in [22].

It is important to remark that the differences between the formulations are es-
sential for better understanding of the decomposition algorithm strategies presented
later in this chapter. In summary, the BD-based algorithm uses the (6.10)–(6.13) rep-
resentation in order to get node subproblems and, in turn, the AL-based algorithm
explores (6.14)–(6.17) structure to obtain scenario subproblems linked by nonantic-
ipativity constraints.

Before discussing the decomposition algorithms, it is convenient to mention that
once the MTOP is modeled as a convex optimization problem [65], both formula-
tions of the MTOP problem present the same optimal objective function value, as it
is shown in Table 6.3.
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Table 6.3 ED solution

Stages Node gt1 gt2 gh v
1 1 60 0 390 60
2 2 60 230 160 0

3 0 0 450 10
Objective function($)27,500

6.4.1 Benders Decomposition Algorithm

In this subsection, the idea is to present some basic notion of the BD-based algo-
rithms. Given that the test problem illustrated in Fig. 6.6 is a two-stage stochastic
problem, the L-shaped algorithm [27, 66] is detailed. Nevertheless, the theoretical
concept can be extended to the multistage algorithm, called NDA, which is, for ins-
tance, currently used to solve the Brazilian MTOP problem.

In summary, this algorithm solves the first stage subproblem and manages the
remaining stages as other subproblems, solving them recursively. Thus, it moves
down and up the scenario tree, also called forward and backward recursions, by
means of solving each node subproblem passing forward information to immediate
successors to form the right-hand side and passing backward to its ancestors in the
form of feasibility cuts (cutting planes) [56].

Thus, the L-shaped resulting subproblems can be written to each node as follows:

min f1 = 50gt1
11 + 200gt1

21+α
s.t. : gt1

11 + gt1
21 + q1

11 = 450 (6.18)

v1
11 + q1

11 = 150+ 300.

min f2 = 50gt2
12 + 200gt2

22

s.t. : gt2
12 + gt2

22 + q2
12 = 450 (6.19)

v2
12 + q2

12 = v2
11 + 100.

min f3 = 50gt3
12 + 200gt3

22

s.t. : gt3
12 + gt3

22 + q3
12 = 450 (6.20)

v3
12 + q3

12 = v1
11 + 400.

Notice that the objective function of subproblem (6.18) has a new variable α ,
which aims to represent the expected value of the second stage according to the first
stage decisions. Consequently, it is updated in each algorithms iteration, as detailed
below.

Then, once writing the node subproblems, the L-shaped decisions are sequential.
It means that the first stage subproblem (6.18) must be solved to obtain the value
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of the reservoir volume and, therefore, it uses this information to solve the second
stage subproblems: (6.19) and (6.20). This step is called forward and it is briefly
illustrated in Fig. 6.7, where the Lagrangian multiplier π associated with the stream-
flow balance constraint is also highlighted.

gt122=60 gt222=290
q122=100 v122=0

v111=0 y122=100

f2=61000 π2=-200

gt111=0 gt211=0
q111=450 v111=0

v0=150 y111=300

f1= 0 α2= 0

gt123=50 gt223=0
q123=400 v123=0

v111=0 y123=400

f3=2500 π3=-50

v111

Fig. 6.7 First forward step

After finishing the forward step, by the L-shaped algorithm, it is necessary to
compare the total cost of the first stage, the Lower Cost (LC), with the sum of
individual cost of each stage f disregarding the future cost, the Upper Cost (UC),
as it is detailed in (6.21). If the future cost α accurately represents the second stage
cost taking into account a stopping criterion υ , the algorithm is stopped. Based on
the results presented in Fig. 6.7, it is easy to notice that the LC, equal to first node
cost f 1, is different when compared to the UC showed in (6.21) (in the first iteration,
there is no second stage approximation; i.e., α equal to zero):

UC = p1 ( f1 −α)+ p2 f2 + p3 f3,

∴ UC = 31,750.
(6.21)

Thus, the algorithms’ next step, called backward, aims to build the expected cost
of the second stage. For this, the expected value of the Lagrange multipliers related
to the stream-flow balance constraints3 are used to obtain a Benders cut, which
represents the lower bound approximation of the second stage expected cost. In this
context, it is possible to write the feasibility cut as follows:

α −α∗ ≥ π̄ (v111 − v∗111) ,

α − (p2 f2 + p3 f3) ≥ (p2 pi2 + p3pi3)(v111 − 0), (6.22)

∴ α + 125v111 ≥ 31,750.

This constraint is thereby added in the first stage problem (6.18) and, afterwards,
a new forward recursion must be initialized. The backward and forward steps should

3 More precisely, it represents the derivative of dual cost function in relation to volume variable
v111, in (R$/hm3).
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be continued until the stopping criterion is reached. It is an important remark that the
size of the first stage subproblem is increased iteratively, which can cause eventually
some impact to the algorithm efficiency.

The convergence process evolution is shown in Fig. 6.8 and the second stage
expected cost function α , also called the future cost-go function, is illustrated in
Fig. 6.9.
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Fig. 6.8 Iterative process
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Fig. 6.9 First stage future cost-go function with two linear approximations resulting from two
backward steps

Considering that the results are equal to those presented in Table 6.3, two
L-shaped aspects should be highlighted: (i) the convergence was attained when the
UC and LC were equal (it is an academic example and thereby the stopping crite-
rion υ is equal to zero); (ii) given that three iterations were necessary to reach the
stopping criterion (three forward steps), two future cost-go function approximations
were built (two backward steps).
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6.4.2 Augmented Lagrangian-Based Algorithm

Unlike BD-based algorithms, the AL-based algorithms applied to solve the mul-
tistage stochastic problem, such as the PHA, aim to explore the structure of the
explicit ED (6.14)–(6.17) in order to decompose it into scenario subproblems.
The purpose is to relax the nonanticipativity constraint such that each subproblem
presents only variables that belong to a particular scenario.

Thus, following the PHA idea recently applied to solve the Brazilian MTOP
problem [22, 23, 24], to obtain the independent scenario subproblems, the first
algorithm step is to make the nonanticipativity decisions equal to a constant value
corresponding to the expected value of nonanticipativity variables which must
be updated iteratively. Thus, regarding the nonanticipativity constraint (6.17), in
the PHA, it becomes

v111 − v̄ = 0, v112 − v̄ = 0. (6.23)

Consequently, problems (6.14)–(6.17) can be rewritten, replacing (6.17) by
(6.23), as follows:

min F = 0.5(50gt111+ 200gt211+ 50gt121+ 200gt221)

+0.5(50gt112+ 200gt212+ 50gt122+ 200gt222) (6.24)

s.t. : scenario1 :

gt111 + gt211 + q111 = 450,

v111 + q111 = 150+ 300, (6.25)

gt121 + gt221 + q121 = 450,

v121 + q121− v111 = 100,

scenario2 :
gt112 + gt212+ q112 = 450,

v112 + q112 = 150+ 300,

gt122 + gt222+ q122 = 450,

v122 + q122− v112 = 400,

(6.26)

v111 − v̄ = 0,

v112 − v̄ = 0.
(6.27)

By the PHA, the next step is to relax (6.28) taking into account the AL concept in
order to obtain the following separable problem:

Θ = min 0.5(50gt111+ 200gt211+ 50gt121+ 200gt221)

+0.5(50gt112+ 200gt212+ 50gt122+ 200gt222)

+π1(v111 − v̄)+π1(v112 − v̄) (6.28)

+
μ
2
‖v111 − v̄‖2 +

μ
2
‖v112 − v̄‖2

s.t. : gt111 + gt211+ q111 = 450,
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v111 + q111 = 150+ 300, (6.29)

gt121 + gt221+ q121 = 450,

v121 + q121 − v111 = 100,

gt112 + gt212+ q112 = 450,

v112 + q112 = 150+ 300, (6.30)

gt122 + gt222+ q122 = 450,

v122 + q122 − v112 = 400.

Therefore, considering fixed values for v̄, π1, π2, and μ , it is possible to solve
problems (6.28)–(6.30) by means of the resolution of each scenario subproblem
individually:

Θ = θ1 +θ2. (6.31)

where each scenario subproblem θ can be written as follows:

θ1 =min 50gt111 + 200gt211+ 50gt121+ 200gt221

+π1(v111 − v̄)+
μ
2
‖v111 − v̄‖ (6.32)

s.t. : gt111 + gt211 + q111 = 450,

v111 + q111 = 150+ 300,

gt121 + gt221 + q121 = 450,

v121 + q121− v111 = 100.

(6.33)

θ2 =min 50gt112 + 200gt212+ 50gt122+ 200gt222

+π2(v112 − v̄)+
μ
2
‖v112 − v̄‖2 (6.34)

s.t. : gt112 + gt212 + q112 = 450,

v112 + q112 = 150+ 300,

gt122 + gt222 + q122 = 450,

v122 + q122− v112 = 400.

(6.35)

The first iteration solution, considering μ equal to 1, the initial target v̄ equal to
0 and the Lagrangian multipliers also equal to 0, is presented in Table 6.4.

Table 6.4 Scenario subproblems solution—first iteration

Stages Scenario gt1 gt2 gh v

1
1 60 0 390 60
2 60 230 160 0

2
1 0 0 450 0
2 50 0 400 0

Objective function(R$) 27,250
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After solving both scenario subproblems, the next algorithm step consists in
calculating the new value of the nonanticipativity condition (6.23), the volume aver-
age, and update the Lagrangian multipliers using, for instance, the gradient method
[5], as described by (6.36):

π iter+1
s = π iter

s + μ(v11s− v̄). (6.36)

Therefore, the new values of the Lagrangian multipliers are shown in Table 6.5.

Table 6.5 Lagrangian multipliers—first iteration

Scenario π
1 30
2 -30

Finally, the stopping criterion must be assessed by Diter, as proposed by [22].
It means that while Diter is bigger than error ε , the algorithm process should be
continued:

Diter = E

[
S=2

∑
s=1

(
‖vr1s − v̄‖2 +

1
μ2

∥∥πs,iter+1 −πs,iter

∥∥2
)]

< ε, (6.37)

where E[·] represents the expected value.
Figure 6.10 illustrates the “Diter track” iteration after iteration until the stop-

ping criterion is satisfied (in this example problem, Diter is less than 0.1). As the
L-shaped algorithm, PHA presented the same optimal results described in Table 6.3
after seven iterations.

0

10
20

30
40

50
60

70

1 2 3 4 5 6 7
Iterations

Diter

Fig. 6.10 Over the iterative process

Although not mentioned so far, one aspect is essential for the AL-based algorithm
success: the choice of the suitable penalty parameter μ . Therefore, instead of using
a fixed penalty parameter value during the optimization process as done in this test



6 Medium-Term Operational Planning for Hydrothermal Systems 151

example, the following update iteratively strategy (6.38) [24] seems more interesting
for large-scale cases:

μiter+1 = μiter

⎧⎨
⎩E

⎡
⎣ S

∑
s

T−1

∑
t=1

⎛
⎝ ‖vrts − v̄‖2(

vmax
rt,iter − vmin

rt,iter + 1
)
⎞
⎠
⎤
⎦σ + 1

⎫⎬
⎭ . (6.38)

According to the algorithm features described above, it is possible to notice the
differences between both algorithms presented here . Both algorithms present its
particularities as well as advantages and disadvantages. With respect to the PHA,
it can mitigate some BD-based algorithms or cutting planes method disadvantages
[27] (initial iteration is often inefficient and iterations may become degenerate at
the end of the process), given that it provides quadratic subproblems and it is still
sensitive to the use of warm start techniques [25], though some other heuristics are
required, such as the choice of the penalty parameter.

Finally, it is possible to say that the scenario decomposition algorithms are easily
implemented using parallel processing, once it has a weak link between scenario
subproblems.

6.5 Conclusions

This chapter focused on the MTOP problem of hydrothermal systems. In summary,
this problem aims to define the dispatch of the power plants and the spot energy price
depending on system framework, taking into account the uncertainties associates
with some problems data.

Given that it is a stochastic problem, important aspects related to the stochastic
programming were addressed in this chapter, such as the random variable represen-
tation, the solution algorithms, and other theoretical aspects especially associated
with the MTOP problem.

With respect to the random variables, the impact of the scenario tree represen-
tation into the problem data structure was emphasized, which makes the solution
algorithms steps presentation easier. In addition, the stochastic problem formulation
related to each scenario tree structure was discussed.

The MTOP problem formulation was also stressed, highlighting some
operational features and its particularities. In this context, the current and future
challenges taking into account the MTOP modeling were also discussed.

Finally, an academic example was used to help the description of two differ-
ent solution algorithms with distinct characteristics: L-shaped and an augmented
Lagrangian-based algorithm. Both are broadly used in literature to solve these kinds
of problems.
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