
Chapter 5
On Cutting Plane Algorithms and Dynamic
Programming for Hydroelectricity Generation

Andy Philpott, Anes Dallagi, and Emmanuel Gallet

Abstract We consider dynamic programming (DP) approximations to hydro-
electric reservoir scheduling problems. The first class of approximate DP methods
uses decomposition and multi-modeling heuristics to produce policies that can be
expressed as the sum of one-dimensional Bellman functions. This heuristic allows
us to take into account non-convexities (appearing in models with head effect) by
solving a MIP at each time stage. The second class of methods uses cutting planes
and sampling. It is able to provide multidimensional policies. We show that the cut-
ting plane methods will produce better policies than the first DP approximation on
two convex problem formulations of different types. Modifying the cutting plane
method to approximate the effect of reservoir head level on generation also yields
better results on problems including these effects. The results are illustrated using
tests on two river valley systems.

5.1 Introduction

The mid-term hydrothermal scheduling problem involves determining a policy of
releasing water from reservoirs for hydroelectricity generation and generating from
thermal plant over some planning horizon of months or years so as to meet the future
demand for electricity at the lowest expected fuel cost. The first models (dating back
to [8, 9]) for these problems used dynamic programming, a tool that was confined
to systems with one or two reservoirs, unless reservoir aggregation heuristics (see,
e.g., [2, 13]) are used.
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An effort to model systems with multiple reservoirs led to the development in
the 1980s and 1990s of various multi-stage stochastic linear programming models
(see, e.g., [7]) using scenario trees. Stochastic dual dynamic programming (SDDP)
[10] was developed as a response to the problem of dealing with a rapidly growing
scenario tree. This method approximates the future cost function of dynamic pro-
gramming using a piecewise linear outer approximation, defined by cutting planes
or cuts computed by solving linear programs. This avoids the curse of dimension-
ality that arises from discretizing the state variables. The intractability arising from
a branching scenario tree is avoided by essentially assuming stagewise independent
uncertainty. This allows cuts to be shared between different states, effectively col-
lapsing the scenario tree.

There has been little published work comparing the SDDP methodology with
classical dynamic programming. A relatively old paper by Archibald et al. [1] shows
that nested Benders decomposition outperforms classical dynamic programming in
some computational tests on models with a small number of stages and scenarios,
but becomes intractable as these grow. Our contribution is to demonstrate some adv-
antages of SDDP-type algorithms in comparison with dynamic programming when
the problem has many stages, so that nested Benders decomposition is computation-
ally intractable, at least in its standard scenario-tree form.

In some electricity systems hydrothermal scheduling problems are solved using
price decomposition (see, e.g., [6]). In a deterministic setting this method gives a
subproblem to be solved for each thermal unit and each hydro river-chain. These
subproblems can in principle be coordinated by price to yield an overall generation
plan that meets demand in every period at minimum total cost. The coordination
problem has been less well studied under inflow uncertainty (although see, e.g., [3]).
Here subproblems must be coordinated by a random price process to yield an overall
generation plan that meets the demand at minimum expected cost. A similar set of
(sub)problems arises when river-chains are operated by different agents in a compet-
itive electricity pool market, where the prices over time come from the pool. In both
these settings the river-chain optimization subproblem is a challenging problem to
solve, since it must handle uncertainties in prices and inflows. Indeed it is a variant
of the hydrothermal scheduling problem in which the electricity price is modeled as
the (random) marginal cost of an infinitely large thermal unit.

In this paper we compare two approaches to solving this problem and ana-
lyze their differences. The first approach uses a stochastic dynamic programming
heuristic applied to a low-dimensional approximation of the state space. We dis-
cuss the form of the approximation and demonstrate biases in the marginal values
of water. The second method is the dynamic outer approximation sampling algo-
rithm (DOASA) described in [11], which is a special version of SDDP. We describe
how the DOASA algorithm overcomes some of the biases of the former. The opt-
imal value functions derived from the two methods are tested numerically on two
river-chains.

The paper is laid out as follows. In the next section we describe the stochastic
control problem that we wish to solve. This problem is illustrated in the following
section by two example river-chains (RC1 and RC2) operated by EDF in France.
The networks describing these river-chains have different topologies and so one
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can use different heuristics to compute approximately optimal release policies for
the reservoir control problem, with a view to computing estimates of water values
for short-term optimization.1 The heuristics (called MORGANE) are described in
Sect. 5.3. In Sect. 5.4 we give a brief description of the DOASA algorithm and then
describe how the forward simulation step of this method can be used to evaluate both
the DOASA release policy and the corresponding release policies that arise by app-
lying MORGANE. In Sect. 5.5 we present the results of applying the MORGANE
heuristics to the example systems and compare this with the results of applying
DOASA.

5.2 The Hydroelectric River-Chain Model

We consider a river-chain represented by a network of n nodes (reservoirs and junc-
tions) and m arcs (canals or river reaches). The topology of the network can be
represented by the n×m incidence matrix A, where

ai j =

⎧
⎨

⎩

1, if node i is the tail of arc j,
−1, if node i is the head of arc j,

0, otherwise.
(5.1)

By adding dummy nodes if necessary, we can ensure that every pair of nodes is
joined by at most one arc. Let x(t) denote a vector of reservoir storages in each
node at the beginning of week t and ω(t) a vector of uncontrolled reservoir inflows
(in cubic meters) that have occurred in week t. We let h(t) be a vector of flow rates
(cubic meters per hour) in the arcs in the network and p(t) a vector of electricity
prices at time t. Here we adopt the convention that these prices are applied to each
flow in the network and are adjusted to account for conversion factors. Thus if arc
j does not represent a generating station then p j(t) ≡ 0, and if j is a station then
p j(t) is the spot price of electricity multiplied by a scale factor η j for that station
(converting cubic meters of water passing though the station into MWh). Some flows
represent spill (with η j = 0) from reservoirs to the river reach below a station.

We also need to allow for more than one price period within a week. In our
experiments we use B = 21 blocks in a week, each of duration (db)b=1,...,B hours.
These account for variations in price between peak and off-peak times. To model this
we assume that p(t) and h(t) are of dimension mB, where the first B components of
each vector correspond to arc 1, and so on. We then define the m×mB matrix

D =

⎡

⎢
⎢
⎢
⎢
⎣

d1 d2 . . . dB 0 0 . . . 0 . . . . . . 0 0 . . . 0

0 0 . . . 0 d1 d2 . . . dB . . . . . .
...

...
...

...
... . . . . . . 0 0 . . . 0
0 0 . . . 0 d1 d2 . . . dB

⎤

⎥
⎥
⎥
⎥
⎦

(5.2)

1 A deterministic optimization is operated on the short-term (within a day) using a more accurate
model in order to provide the actual feasible releases to be performed.
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so that the total quantity of flow through arc j in week t is Dh(t), and the revenue
earned is p(t)�h(t), where component B( j−1)+k of p(t) now equals the electricity
price/MWh in block k in week t multiplied by both db and ηb.

The hydroelectric river-chain problem we wish to solve seeks to construct a pol-
icy for generating electricity from the river-chain so as to maximize the expected
revenue. We assume in this paper that the uncontrolled reservoir inflows are the
only uncertain parameters and that these are stagewise independent. In each realiza-
tion of uncertainty, the policy we seek will give a set of reservoir releases defined
by h(t) that generate electricity. The policy is defined in terms of a dynamic pro-
gramming Bellman function E[Vt(x,ω(t))] where Vt(x,ω(t)) gives the maximum
expected revenue that can be earned in weeks t, t + 1, . . . when reservoir storage
x(t) = x and week t’s inflow is known to be ω(t). Here

Vt(x,ω(t)) = max p(t)�h(t)+E[Vt+1(x(t + 1),ω(t + 1))]

s.t. x(t + 1) = x−ADh(t)+ω(t),

0 ≤ h(t)≤ b, 0 ≤ x(t + 1)≤ r.

(5.3)

We place a limit on the time horizon of t = T and specify a future value function
VT+1(x(T + 1),ω(T + 1)) to give a bounded problem.

5.3 River-Chain Optimization and Multi-modeling

In this section we present the MORGANE dynamic programming heuristics as
applied to two river-chains. These heuristics are applied in order to keep some adv-
antages of the stochastic dynamic programming method. In fact, they allow us to
model non-convexities in the problem without, as far as the stage problems are
solved, losing the theoretical validity of the method. Nevertheless dynamic pro-
gramming is faced with the curse of dimensionality, and so the heuristics seek to
avoid this by reducing the dynamic programming calculations to a sequence of one-
dimensional problems.

The river-chains are called the RC1 Valley and the RC2 river-chain. Due to
confidentiality issues the names of the river-chains and reservoirs are anonymized.
Schematic representations of these are shown in Figs. 5.1 and 5.2. The RC1 system
has three main reservoirs feeding a chain of two essentially run-of-the-river gener-
ating stations. The RC2 system is a chain of stations some of which have headpond
reservoirs with significant storage capacity.

The MORGANE model treats these river-chains slightly differently. For the RC1
system, MORGANE computes marginal water values for each of the three main
reservoirs by performing a stochastic dynamic programming algorithm for each of
these reservoirs considering that the storage levels of the other reservoirs are con-
strained to be at given levels at the end of each week. In the RC2 system, MOR-
GANE applies a different heuristic that consists of decomposing the river-chains
into two parts: an upstream one and a downstream one. Applying the first heuristic
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Fig. 5.1 The RC1 river system

Fig. 5.2 The RC2 river system

to the upstream part generates a controlled flow feeding the downstream part. Again
the first heuristic is applied to the downstream section in order to compute water
values for the reservoir at the top of this section.

5.3.1 Heuristic 1: Constrained Multi-modeling

The curse of dimensionality means that computing multidimensional policies using
dynamic programming is numerically intractable. The idea of heuristic 1 is to com-
pute a multidimensional policy as the sum of one-dimensional ones. In this app-
roach, each reservoir present in the considered river-chain is operated as if the other



110 A. Philpott et al.

reservoirs have storage level targets to reach at the start and end of each stage. This
target is an a priori fixed proportion of the maximum storage capacity.

Solving a hydroelectric river-chain model, composed of n interconnected reser-
voirs, thus amounts to solving n subproblems. Each subproblem is solved using
dynamic programming, resulting in n revenue-to-go functions.

We denote by V [i]
t (xi,ω(t)) the maximum expected revenue that can be earned in

weeks t, t+1, . . . ,T , when reservoir i storage is xi(t) = xi and reservoir j �= i storage
is x j(t) = x j(t+1) =α jr j, α j ∈ [0,1] at the start and end of each time stage. Week
t’s inflow is known to be ω(t). Here

V [i]
t (xi,ω(t)) = max p(t)�h(t)+E[V [i]

t+1(xi(t + 1),ω(t + 1))]

s.t. xi(t) = xi,

x(t + 1) = x(t)−ADh(t)+ω(t),

x j(t) = α jr j , ∀ j �= i

x j(t + 1) = α jr j , ∀ j �= i

0 ≤ h(t)≤ b, 0 ≤ xi(t + 1)≤ ri.

(5.4)

The multidimensional Bellman function that will allow us to recompute an overall
policy will be the sum of one-dimensional Bellman functions:

Vt(x(t),ω(t)) =
n

∑
i=1

V [i]
t (xi(t),ω(t)). (5.5)

It is obvious that this heuristic is suboptimal in the sense that the subproblems
have less flexibility than the original problem formulation. Nevertheless, this heuris-
tic allows us to maintain the advantages of classical dynamic programming. In par-
ticular, no convexity assumptions are needed in order to perform this heuristic as
long as we can solve the (MIP) subproblems with a reasonable amount of computa-
tional effort.

5.3.2 Heuristic 2: Geographical Decomposition

The previous heuristic is adapted to parallel reservoirs feeding into the same turbine
or run-of-the-river installations. In fact in that kind of configuration the strategies
of the different reservoirs defined by the heuristic are optimal if the downstream
constraints are never binding. We discuss this issue in more depth in the Appendix.
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For a cascade-type river-chain this decoupling is typically not possible, and
a geographical decomposition can be applied between downstream and upstream
using the special structure of the river network.

For the RC2 river-chain the matrices describing the network can be decomposed
as an upstream part containing p = 2 reservoirs and a downstream part containing
n− p = 3 reservoirs, so

A =

[
A[1] B[1]

B[2] A[2]

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(5.6)

and
D =

[
D[1] D[2]

]
. (5.7)

Heuristic 2 looks for strategies depending only on two reservoir levels: the topmost
one (reservoir 1) and the most valuable2 one in the middle of the chain (reservoir
p+ 1).

First, we use heuristic 1 in order to compute a policy for the topmost reservoir
while fixing the releases of the other reservoirs in order to meet an a priori fixed

target at the start and end of each time stage. We denote by V [1]
t (x1,ω(t)) the maxi-

mum expected revenue that can be earned in weeks t, t +1, . . . ,T , when the topmost
reservoir storage is x1(t) = x1 and reservoir j �= 1 storage is x j(t) = x j(t + 1) =
α jr j, α j ∈ [0,1]. Week t’s inflow is known to be ω(t). Here

V [1]
t (x1,ω(t)) = max p(t)�h(t)+E[V [1]

t+1(x1(t + 1),ω(t + 1))]

s.t. x1(t) = x1,

x(t + 1) = x(t)−ADh(t)+ω(t),

x j(t) = α jr j, ∀ j �= 1

x j(t + 1) = α jr j , ∀ j �= 1

0 ≤ h(t)≤ b, 0 ≤ x1(t + 1)≤ r1.

(5.8)

Second, we use the previously computed releases h[1](t) ∈ R
p feeding the

downstream part, in order to optimize the second part of the river-chain. Hence,

we denote by V [2]
t (xp+1,ω(t)) the maximum expected revenue that can be earned in

weeks t, t + 1, . . . ,T , when the storage of the topmost reservoir (in the downstream
section) is xp+1(t) = xp+1 and reservoir j > p storage is x j(t) = x j(t + 1) =
α jr j, α j ∈ [0,1]. Week t’s inflow in the downstream part of the river is denoted by
ω [2](t). Here

2 It could be the biggest one or the most valuable one from the operator’s point of view.
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V [2]
t (xp+1,ω(t)) = max p[2](t)�h[2](t)+E[V [2]

t+1(xp+1(t + 1),ω [2](t + 1))]

s.t. xp+1(t) = xp+1,

x[2](t + 1) = x[2](t)−A[2]D[2]h[2](t)
−B[2]D[1]h[1](t)+ω [2](t),

x j(t) = α jr j , ∀ j > p

x j(t + 1) = α jr j , ∀ j > p

0 ≤ h[2](t)≤ b, 0 ≤ xp+1(t)≤ r.

(5.9)

The Bellman function that defines our policy will then be the sum of the one-
dimensional Bellman functions:

Vt(x(t),ω(t)) =V [1]
t (x1(t),ω(t))+V [2]

t (xp+1(t),ω(t)). (5.10)

While simulating the generated policy for the remaining reservoirs, we add to the
simulator the target constraints at the beginning and end of each stage.

As in the previous case, this heuristic is suboptimal in the sense that the subprob-
lems have less flexibility than the original problem. But, as in the previous heuristic,
we are able to keep some of the dynamic programming advantages (dealing with
non-convexities).

5.4 Dynamic Outer Approximation Sampling Algorithm

The DOASA code [11] is based on the SDDP technique of Pereira and Pinto [10].
To solve a maximization problem, DOASA approximates E[Vt(x,ω(t))] using a
piecewise linear outer approximation that is updated using samples of the inflow
process. Of course, this approximation is available only if convexity assumptions
are made on the considered problem. Weekly prices are represented by a price dura-
tion curve with 21 blocks, and ω(t) is sampled from historical inflow observations.

The DOASA code yields an outer approximation to E[Vt(x,ω(t))] at each stage
t by solving the single-stage approximating problem:

SP(x,ω(t)): max p(t)�h(t)+θt+1

s.t. x(t + 1) = x−ADh(t)+ω(t), [πt ]

0 ≤ h(t)≤ b, 0 ≤ x(t + 1)≤ r,

αk
t+1 +

(
β k

t+1

)�
x(t + 1)≥ θt+1, k ∈ C (t + 1).

(5.11)
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The flow balance constraints at each node i have dual variables πt . These are used
to compute the inequality constraints

αk
t +

(
β k

t

)�
x(t)≥ θt , k ∈ C (t) (5.12)

which are the cuts defining an outer approximation of the future value function.
For simplicity of notation, we have represented this construction as applying to all
nodes i, but in practice we compute cuts only for the reservoirs with positive storage
capacity.

At iteration k of the algorithm the cut coefficients are computed as follows:

1. Solve the stage problem SP(xk(1),ω(1)) for the known realization ω(1), giving
optimal solution xk(2) and optimal value V1(xk(1),ω(1)).

2. For t = 2,3, . . . ,T , solve the stage problem SP(xk(t),ω(t)) for a sample realiza-
tion of ω , recording the solution xk(t + 1).

3. For t = T,T − 1, . . . ,2, solve the stage problem SP(xk(t),ω(t)) for every
realization of ω(t), recording the solution value Vt(xk(t),ω(t)) and duals
πt(xk(t),ω(t)), and adding the cut

θt ≤ αt +β�
t x(t), (5.13)

to every problem at stage t − 1, where

βt = E[πt(x
k(t),ω(t))], (5.14)

and
αt = E[Vt(x

k(t),ω(t))]−β�
t (xk(t)). (5.15)

The algorithm terminates after little progress is observed in the upper bound
estimate V1(xk(1),ω(1)). The policy defined by the cuts can then be simulated, and
its expected revenue estimated by a sample average. This gives an estimate of a
lower bound on the optimal value that can be checked against the upper bound.

In contrast to SDDP that runs many forward passes simultaneously, DOASA
performs a single forward pass in each iteration. This can be shown to be more
effective at delivering good solutions when stopping the algorithm early [4].

5.5 Experiments

DOASA and MORGANE were applied to data from the two valley systems RC1
and RC2. In both systems, MORGANE was applied subject to the following
restrictions3:

1. There are no constraints on reservoir levels apart from them ranging between 0
and their full capacity.

3 These restrictions are not in favor of the MORGANE heuristics. In fact the heuristics are able to
take into account stochasticity and time dependency on the prices, end non-convexity constraints.
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2. All generating plant are assumed to be available at full capacity throughout the
year. Real problems include randomness on the availability of these plants.

3. Electricity prices were assumed to be known in advance, and set to their average
over all the scenarios that had been generated. Each river-chain used a different
set of average prices. Prices were for 21 blocks of time during the week repre-
senting peak, off-peak, and shoulder periods. The number of hours in each block
varies with the day of week and the river valley.

4. A set of 41 weekly inflow sequences was used to represent the reservoir inflow
distribution, assumed to be stagewise independent.

5. The factors for converting flow to electricity in each station were set to be con-
stant (i.e., we assume that they do not vary with reservoir head level) in a first
experiment and vary in a second one.

Under these restrictions MORGANE was solved over a 104-week horizon and
marginal water values were computed for each reservoir at the end of each week.
The marginal water values for week 52 were then converted into cuts and provided
to DOASA as end conditions. DOASA was then applied over the first 52 weeks of
the planning horizon.

5.5.1 Converting Marginal Water Values to Cuts

Upon terminating, MORGANE provides marginal water values for each reservoir
as a function of their level. This function for reservoir i = 1, . . . ,n is represented as
a list of reservoir levels and marginal water values denoted (xik,βik), k = 0,1, . . . ,K.
This can be converted into cuts by choosing an arbitrary future value αi0 from an
empty reservoir at time t and then computing αik recursively using

αik = αik−1 +(βik−1 −βik)xik, k = 1,2, . . . ,K, (5.16)

as shown in Fig. 5.3.
The future value function E[VT+1(x(t + 1),ω(t + 1))] is then represented as the

sum of the individual reservoir value functions. Thus

E[Vt+1(x(t + 1),ω(t + 1))] =
n

∑
i=1

max
k=0,1,...,K

{αik +βikxi(t + 1)}. (5.17)

We model this in DOASA using a multi-cut representation

θt+1 =
n

∑
i=1

θt+1(i) (5.18)

αik +βikxi(t + 1) ≥ θt+1(i), k = 0,1, . . . ,K, i = 1,2, . . . ,n. (5.19)

Depending on the choice of αi0 this representation gives a different level for
E[Vt+1(x(t +1),ω(t +1))], but accurately reproduces the marginal water values for
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Fig. 5.3 Converting marginal water values to cuts

each storage level at which they are recorded by MORGANE, under the assumption
that the MORGANE files of marginal water values give these values at the low-
est possible storage level that they apply (i.e., the step function is continuous from
the right). We remark that the above construction can be used for representing the
MORGANE policy at any stage t ≤ T . We thus use this both for providing a future
cost function to DOASA at t = 52 and for simulating the MORGANE policies in
our experiments, so that the same code is used to simulate both MORGANE and
DOASA policies.

5.5.2 Modeling Variations in Head

Recall that for generating stations p j(t) denotes the spot price of electricity multi-
plied by a scale factor η j for that station (converting cubic meters of water passing
through the station into MWh). In practice the scale factor η j is a function of net
head, namely the difference in height of the headwater and tailwater of the turbine
generating electricity. A common model (see [12]) assumes that η j is net head times
some efficiency term that depends on flow rate. If we assume that the tailwater height
and flow rate is constant then η j is linear with head level. The headwater height then
depends on the volume of water x stored in the reservoir upstream of the station as
a concave function since the area of the reservoir increases with head height.
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In MORGANE the relationship between conversion factor and head is expressed
using a finite set of hydro production functions that depend on reservoir level x.
Each production function is modeled using two linear pieces defined by the most
efficient flow rate he and the maximum flow rate hm, both of which depend on x.
When the reservoir volume is x, the power generated by flow rate h is

E(h,x) = maxh1,h2 ηe(x)h1 +ηm(x)h2,

s.t. h1 + h2 = h,
h1 ≤ he(x), h2 ≤ hm(x)− he(x).

(5.20)

If values of ηe(x) and ηm(x) are specified for a range of reservoir volumes then we
may compute E(h,x) by linearly interpolating these values and solving the maxi-
mization problem above.

The term p(t)�h(t) in the objective function of our stage problem becomes
p(t)�E(t), where p(t) and E(t) are of dimension mK and have components that
correspond, respectively, to spot price at time t in each time block and network arc
and to E(h,x), where h is the station flow in that time block and network arc, and x
is the storage in the upstream reservoir at time t.

The DOASA code now yields an outer approximation to E[Vt(x,ω(t))] at each
stage t by solving the approximating problem:

SP(x,ω(t)): max p(t)�E(t)+θ ,t+1

s.t. x(t + 1) = x−ADh(t)+ω(t), [πt ]

0 ≤ h(t)≤ b, 0 ≤ x(t + 1)≤ r,

E(t) = ηe(x)h1 +ηm(x)h2,

h1 + h2 = h(t),

h1 ≤ he(x), [ρt ]

h2 ≤ hm(x)− he(x), [σt ]

αk
t+1 +

(
β k

t+1

)�
x(t + 1)≥ θt+1, k ∈ C (t + 1).

(5.21)

Even though SP(x,ω(t)) is a convex problem for fixed x, this does not guarantee that
the optimal value function Vt(x,ω(t)) is concave as a function of x, even if ηe(x) and
ηm(x) are concave. Indeed it is conceivable that the marginal value of water might
increase as reservoirs fill up if the increase in head makes each cubic meter of water
more valuable for generation.
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A valid outer approximation of Vt(x,ω(t)) by cutting planes requires that it is
concave. If we apply the DOASA algorithm to this model then the value of the first-
stage problem can no longer be guaranteed to be an upper bound on the value of
an optimal policy. Of course it is possible to construct a concave approximation of
each production function (see [5]) and use this. However we simply assume that the
lack of concavity of these functions is not too severe, so that the cuts computed by
DOASA give a reasonably good policy even if the value function is not concave.

To account for head effects in stage 3 of DOASA we now solve SP(x,ω(t))
giving hk

1(ω(t)) and hk
2(ω(t)) and duals πt(xk(t),ω(t)). We can then add the cut

θt ≤ αt +β�
t x(t), (5.22)

to every problem at stage t − 1, where

βt = E[πt(x
k(t),ω(t))+ p(t)�g(xk(t),ω(t))], (5.23)

and

g(x,ω) = η ′
e(x)h

k
1(ω)+η ′

m(x)h
k
2(ω). (5.24)

This calculation ignores the dependence of he and hm on x which could be included
as extra terms in βt , namely

E[
(

ρt(x
k(t),ω(t))−σt(x

k(t),ω(t))
)�

h′e(x
k(t))+σt(x

k(t),ω(t))�(h′m(x
k(t)))],

(5.25)

where ρt and σt are the dual variables corresponding to the bounds on h1 and h2 as
shown in the formulation above.

When head effects are modeled, the forward pass in DOASA must also be
changed so as to use the appropriate interpolated production functions correspond-
ing to the state variable that is visited in the forward simulation.

The policies obtained by computing 100 of these cuts in DOASA were simulated
against the policies obtained from MORGANE to give the plots shown in Fig. 5.7
for the RC1 and Fig. 5.8 for RC2 systems.

5.6 Numerical Results

We present in this section two different experiments over the two river-chains (RC1
and RC2). In the first experiment we assume that the head is a fixed constant in the
production functions. The results concerning this first experiment will allow us to
study the proposed MORGANE heuristics versus DOASA. The other experiments
are presented to illustrate Sect. 5.5.2 where we take into account head variations.
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5.6.1 Experiment 1: Fixed Head

In this experiment DOASA was run for 100 iterations, giving 100 cuts at each stage.
Since MORGANE has approximately 40 marginal water values for each of three
reservoirs, we claim that this gives a commensurate level of discretization. DOASA
takes about one minute per iteration, and so it must be run for nearly two hours on
this problem, while MORGANE takes about 10 min. The progress of the DOASA
upper bound for a fixed head level model is shown in Fig. 5.4.
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Fig. 5.4 Upper bound for revenue plus true value for RC1 DOASA policy assuming fixed head
(RC1 above, RC2 below)
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• For the RC1 system, the minimum (scaled4) upper bound is 434.740. The
DOASA policy when simulated over 100 out-of-sample stagewise independent
inflow sequences gives an expected value of 434.600 with a standard error of
0.139, which indicates that the DOASA policy is close to optimal.

• For the RC2 system,5 the minimum (scaled) upper bound is 716.785. The
DOASA policy when simulated over 100 out-of-sample stagewise independent
inflow sequences gives an expected value of 716.454 with a standard error of
0.834, which indicates that the DOASA policy is close to optimal.6

The DOASA policy was then simulated over the 41 inflow sequences that were
used to construct the policy. Since these sequences display some stagewise depen-
dence, this is a sterner test of DOASA which assumes that inflows are stagewise
independent.

• For the RC1 river system, the average optimal value over these scenarios was
434.161 with a standard error of 0.521 for the RC1 river system. This is lower
than the out-of-sample expected value of 434.600 but very close. Recall that the
upper bound of 434.740 is an upper bound on the value of the DOASA policy
that assumes independence, so we cannot deduce that this is a bound on the best
policy that took advantage of information about possible persistence in inflows.
The policy from MORGANE was also simulated over the same inflow sequences.
In 95 % of scenarios the values from DOASA were larger (see Fig. 5.5).

• For the RC2 river system, the average optimal value over these scenarios was
714.068 with a standard error of 3.451. The policy from MORGANE was also
simulated over the same inflow sequences. This required some care as MOR-
GANE provides water values only for reservoir R’1 and reservoir R’2. We there-
fore assumed in computing each week’s releases that the terminal values of the
reservoir levels of the other reservoirs are set at 50 % of their capacities. The sim-
ulation of the MORGANE policy then gives an average optimal value of 712.543
with a standard error of 3.389. In 85 % of scenarios the values from DOASA were
larger (see Fig. 5.5).

Some insights into the reason for the difference between the policies can be seen
by examining the marginal water values. Since both policies share the same value
function at stage T , their stage T optimization problems should deliver the same
water value functions at stage T − 1. The actual values of these are shown for two
sets of reservoir storage levels in Tables 5.1 and 5.2.

• For RC1, the marginal values computed by DOASA are lower than those com-
puted by MORGANE. This can be explained by observing that MORGANE

4 For confidentiality purposes, the units of measurement are omitted.
5 This has a different network topology, and so it provides a useful comparison of the effect of
river-chain topology on the policies from the two methodologies. As before, DOASA was run for
100 iterations, giving 100 cuts at each stage.
6 An experiment with 200 cuts gave a smaller upper bound of 716.700 and an estimated value of
716.467 with a standard error of 0.833.
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Fig. 5.5 Cumulative plot of the difference in value between the DOASA solution and the MOR-
GANE solution for RC1 (above) and RC2 (below) over 41 scenarios assuming fixed head

assumes that all other reservoirs terminate at 50 % of capacity when comput-
ing marginal values for the reservoir in question. This adds an extra constraint
on releases from these reservoirs over the week. Suppose that these constraints
result in no other capacity constraints being binding. Then the marginal value
of extra water in reservoir R1 (serving the most efficient station) will be the
revenue earned by passing this down the river-chain through generating stations.
If however the optimal policy means that river reach capacity constraints below
the run-of-the-river RoR1 station are binding then the marginal value of extra
water in reservoir R1 will be the revenue earned by it minus the loss in revenue
from reducing the flow in the other stations that are less efficient, so as to satisfy
the constraint. In this way the marginal water values for each reservoir can de-
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Table 5.1 Marginal water values (euros per cubic meter) computed from DOASA and MORGANE
for end of stage 51 for each of the storage reservoirs assuming fixed head

Reservoir R1 Reservoir R2 Reservoir R3

Storage (m3) 13,818,000 3,577,000 14,520,000
DOASA (e/m3) 0.151 0.176 0.150
MORGANE (e/m3) 0.159 0.190 0.155

Storage (m3) 13,818,000 7,114,000 14,520,000
DOASA (e/m3) 0.154 0.161 0.148
MORGANE (e/m3) 0.159 0.163 0.155

Table 5.2 Marginal water values (euros per cubic meter) computed from DOASA and MORGANE
for end of stage 51 for each of the storage reservoirs assuming fixed head

Reservoir R’1 Reservoir R’2

Storage (m3) 203,500,000 79,000,000
DOASA (e/m3) 0.0359 0.0167
MORGANE (e/m3) 0.0344 0.0159

pend on the water levels in other reservoirs, as well as on the level of their own.
In other words, if the other reservoirs are full it is more likely that the capacity
constraints will bind and so the water value in reservoir R1 will be lower than the
value obtained when the other reservoirs are empty. We examine this nonsepara-
bility of the value function in more detail in the Appendix.

• In the RC2 system, the water values for reservoir R’1 under the DOASA policy
are higher than those for MORGANE, since if reservoir R’2 is constrained to be
at 50 % of its value at the end of the current week, then this precludes transferring
water through reservoir R’2 to later weeks. Thus if prices are high now and reser-
voir R’2 is constrained downstream, then we cannot generate in period 1 without
spilling, which could be avoided if water can be transferred by storing it till a
later period. We examine the separability of the value function for the cascaded
system in the Appendix.

Despite the differences in marginal water values, the policies of DOASA and
MORGANE perform similarly. The average storage levels over the 41 scenarios are
shown in Fig. 5.6.

5.6.2 Experiment 2: Variation in Head

In this experiment DOASA was run for 100 iterations, giving 100 cuts at each stage
on the same reference as the previous section. Head effect was taken into account
while optimizing the river-chains and while simulating the obtained policies as
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Fig. 5.6 Comparison of average stock levels in each reservoir (over 41 scenarios) for the DOASA
and MORGANE policies (RC1 above and RC2 below) assuming fixed head

described in Sect. 5.5.2. For the RC2, cuts using DOASA are computed assuming
that the three smallest reservoirs (i.e., those without storage) can vary their level
between bounds. The MORGANE policy assumes that these reservoirs are fixed at
their midpoint levels at the end of each week. So for comparison we conducted two
computational experiments on the RC2 as follows:

1. We simulate the MORGANE policy, first with free endpoints on the three small
reservoirs, and then with fixed weekly endpoints.
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Fig. 5.7 Cumulative plot of the difference in value between the DOASA solution and the MOR-
GANE solution for RC1 with head effect over 41 scenarios

2. We simulate the DOASA policy, first with free endpoints on the three small reser-
voirs, and then with fixed weekly endpoints.

In these experiments, DOASA behaves better than the MORGANE heuristics,
especially if allowed more flexibility in the small reservoirs. However even if this is
restricted, the DOASA policy is better than MORGANE showing on average:

• DOASA constrained saves 2M over MORGANE constrained
• DOASA unconstrained saves 3M over MORGANE unconstrained
• DOASA unconstrained saves 3.79M over MORGANE constrained

5.7 Conclusions

The aim of this paper is to compare a stochastic dynamic programming-based
heuristic that can handle non-convexities appearing in real problems (MORGANE)
to an outer approximation method that needs some convexity assumptions. The set
of experiments chosen in this paper demonstrates that constructing DP policies us-
ing multivariate Bellman functions gives better results than methods that ignore the
cross terms. The source of DOASA’s advantage is from using a polyhedral surface
that is not a separable sum of one-dimensional curves. When this feature is ab-
sent, for example when downstream constraints are never binding, the policies are
equivalent. In practice, however there are always periods when these constraints are
significant, and these periods cause the policies to diverge. We still need to conduct
experiments in order to confirm these results while prices are stochastic and while
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Fig. 5.8 Cumulative plot of the difference in value between the DOASA solution and the MOR-
GANE solution for RC2 with free endpoints (above) and constrained endpoints (below) over 41
scenarios

the time dependency is taken into account (MORGANE can handle this dependency
but not DOASA due to convexity issues). Experiments while we have more compli-
cated constraints (storage constraints, solid water, etc.) are still to be made.

5.8 Appendix: Approximations Made by the Multi-modeling
Heuristic

In this appendix we examine the implications of the approximations used by MOR-
GANE for computing marginal water values. The analysis is different for each sys-
tem, so we discuss each in turn.
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5.8.1 RC1 River Chain

The MORGANE approximation of the RC1 system assumes that Vt(x1,x2,x3) is
additively separable. To examine the separability of Vt(x1,x2,x3), consider a simpli-
fied version of RC1 with two reservoirs having capacity a1 and a2 and releases y1

and y2 through stations with price per unit of water flow of p1 and p2. Like RC1,
the tailwater shares a common channel with capacity k. We wish to investigate the
form of Vt(x1,x2) when

Vt+1(x1,x2) =−(x1 − a1)
2 − (x2 − a2)

2 . (5.26)

This gives

Vt(x1,x2) = maxy1,y2 p1y1 + p2y2 − (x1 − y1 − a1)
2 − (x2 − y2 − a2)

2

s.t. y1 ≤ x1

y2 ≤ x2

y1 + y2 ≤ k
y ≥ 0

(5.27)

After some algebra, it can be shown that Vt(x1,x2) can be separated into a sum
V 1

t (x1) +V 2
t (x2) for all values of x1,x2 except for those satisfying the following

three conditions:
⎡

⎣

(
x2 −

(
a2 − 1

2 p2
))

+
(
x1 −

(
a1 − 1

2 p1
))

> k
(
x1 −

(
a1 − 1

2 p1
))

,
(
x2 −

(
a2 − 1

2 p2
))

> 0
∣
∣
(
x2 −

(
a2 − 1

2 p2
))− (

x1 −
(
a1 − 1

2 p1
))∣
∣< k

⎤

⎦ . (5.28)

In this exceptional case,

Vt(x1,x2) = −1
2
(x1 + x2)

2 (5.29)

+

(

k+ a1+ a2 +
1
2

p1 − 1
2

p2

)

x1 +

(

k+ a1 + a2 − 1
2

p1 +
1
2

p2

)

x2

+

( 1
2 kp1 − ka1 − ka2 − 1

2 k2 + 1
2 kp2 − 1

2 a2
1 − a1a2 − 1

2 a1 p1

+ 1
2 a1 p2 − 1

2 a2
2 +

1
2 a2 p1 − 1

2 a2 p2 +
1
8 p2

1 − 1
4 p1 p2 +

1
8 p2

2

)

which contains the cross term −x1x2, and so is not separable.

5.8.2 RC2 River Chain

We now look at the water value calculations that MORGANE makes for a system
like the RC2. We show by example that fixing the final water levels of other reser-
voirs (as MORGANE does) in order to compute the marginal water value of a given
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reservoir can lead to a smaller number than the true value. Consider a system of two
reservoirs in cascade as shown in Fig. 5.2.

Let x(t) ∈R2 be the stock level at the start of period t in each reservoir (having
capacity a ∈R2 )and let u(t) ∈R2 denote the release from each reservoir, h(t) ∈R2

the stochastic inflow and s(t) ∈R2 the spill. All of these depend on time. Suppose
that we control this system using a value of water for reservoir 1 only and setting
a target in each stage on the level in reservoir 2. Given an expected future value
function Vt+1(x1), the releases u(ω) are chosen to solve

max p1u1 + p2u2 +Vt+1(x1 − u1 − s1 + h1(ω))

s.t. a2/2+ h2(ω)+ u1 − u2 − s2 = a2/2
0 ≤ ui ≤ bi

0 ≤ si ≤ di

(5.30)

We then compute

Vt(x1) = E(p1u1(ω)+ p2u2(ω)+Vt+1(x1 − u1(ω)− s1(ω)+ h1(ω)) (5.31)

We will test this approximation in a deterministic framework and study the
marginal water value of reservoir 1. To do this consider two periods t = 1,2 with
no residual water value, and consider the additional value of an extra amount δ of
water in reservoir 1 at the start of period 1. This can be computed by finding

Q(δ )= max ∑2
t=1 ∑2

i=1 p(t)ui(t)
s.t. x1 + δ + h1(1)− u1(1)− s1(1) = x1(2)

x2 + h2(1)+ u1(1)− u2(1)− s2(1) = x2(2)
x1(1)+ h1(2)− u1(2)− s1(2) = x1(3)
x2(1)+ h2(2)+ u1(2)− u2(2)− s2(2) = x2(3)
0 ≤ xi(t)≤ ai

0 ≤ ui(t)≤ bi

0 ≤ si(t)≤ di

(5.32)

Suppose the problem data are given as

p(t) x1(t) x2(t) h1(t) h2(t)
t = 1 2 1 0 0 0
t = 2 1 – – 0 2

(5.33)

Then
Q(0)= max 2u1(1)+ 2u2(1)+ u1(2)+ u2(2)
s.t. 1− u1(1) = x1(2)+ s1(1)

0+ 1+ u1(1)− u2(1) = x2(2)+ s2(1)
x1(1)− u1(2) = x1(3)+ s1(2)
x2(1)+ u1(2)− u2(2) = x2(3)+ s2(2)
0 ≤ xi(t)≤ 1
0 ≤ u1(t)≤ 1, 0 ≤ u2(t)≤ 2
0 ≤ si(t)≤ 3

(5.34)
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This has solution

u1(t) u2(t) x1(t + 1) x2(t + 1) s1(t) s2(t)
t = 1 1 2 0 1 0 0
t = 2 0 1 0 0 0 0

(5.35)

with return 7. Now if we increase x1 to x1 +δ , then Q(δ ) = 7+3δ , so the marginal
water value at reservoir 1 is 3. However, if we constrain the storage to be one-half
capacity at the end of period 1, then we have Q(δ ) = 7+ 2δ , so the marginal water
value at reservoir 1 is 2, which is less than its value in the unconstrained case.
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