
Chapter 15
Pricing of Energy Contracts: From Replication
Pricing to Swing Options

Raimund M. Kovacevic and Georg Ch. Pflug

Abstract The principle of replication or superhedging is widely used for valuat-
ing financial contracts, in particular, derivatives. In the special situation of energy
markets, this principle is not quite appropriate and might lead to unrealistic high
prices, when complete hedging is not possible, or to unrealistic low prices, when
own production is involved. Therefore we compare it to further valuation strate-
gies: acceptability pricing weakens the requirement of almost sure replication and
indifference pricing accounts for the opportunity costs of producing for a consid-
ered contract. Finally, we describe a game-theoretic approach for valuating flexible
contracts (swing options), which is based on bi-level optimization.

15.1 Introduction

This chapter deals with energy delivery contracts and their fair prices both from the
seller’s and the buyer’s points of view. A contract between two parties determines
the respective obligations of the two contracting sides to deliver or receive energy
and to pay or receive money. Typically a contract is valid for a certain period of
time and both the energy deliveries and the financial compensations are made at
several moments in time. Some energy-related contracts even do not imply deliv-
ery of energy, but only financial transfers, which are however related to observable
prices in the energy markets.

Suppose for simplicity that a contract states that payments and energy deliver-
ies are due at times t = 1,2, . . . ,T . The payments (cash flows) are denoted by Ct

(in currency units). If both parties transfer money to the other one at the same
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time, only the net amount is recorded. By convention, a positive value Ct indicates
a money inflow to the contract seller. One contract may involve several forms of
energy j ∈ J = {0, . . . ,J}, such as electricity, oil, gas, and coal. To avoid unit
conversions as much as possible amounts of energy sources are measured by their
energy content (in MWh). Energy of type j delivered in period t (in the time span
(t, t + 1]) is denoted by Dt, j . We agree that positive amounts Dt, j refer to energy
inflows, while negative amounts refer to outflows. If the contract involves only one
type of energy we will just write Dt .

Both quantities Ct and Dt may be unknown at the time of contracting and may
depend on information which is only available at the respective time of settlement
(e.g., actual market prices). However, the amounts must be determinable by this
information. A clause like “The buyer pays 1,000, if there is no extraterrestrial life”
is void, because the validity of the condition it is not determinable. Conditions which
are determinable but not known at the time of contracting are modeled as random
variables.

Pricing principles determine a reasonable price to be offered to the buyer.
The basic pricing principle is known as replication pricing: the buyer will not accept
the price for the contract, if the market offers an alternative possibility, for which
the upfront payment is lower and the cash flows or commodity flows are not smaller
than the ones contracted. Thus the maximal offered price can be determined by an
optimization problem, which is called the replication problem.

The alternative trading/hedging/production strategy belonging to the replication
price is called replication strategy, if it produces exactly the same cash or commod-
ity flows as the contract under consideration. If it produces larger flows, it is called
a superreplication strategy. These types of strategies are riskless for the seller: fol-
lowing this strategy, the seller can under no circumstances make losses since the
(super)replication must hold with probability 1. This is however a very strong req-
uirement. Quite often, replication strategies do not exist and the superreplication
leads to unrealistically high prices, which no buyer would accept. If there are con-
tracts for which replication strategies do not exist in the market, the market is called
incomplete. Electricity markets are typically incomplete, since replication strategies
must use contracts offered on the wholesale market and these few types of contracts
are quite simple compared to the possible variety of demand patterns.

As an example, consider a contract for energy delivery of amounts given by
Fig. 15.1, upper graph. The lower graph shows possible hedging contracts. Any non-
negative linear combination of them qualifies as a replication strategy, but none of
them replicates the demand shown in the upper graph.

In incomplete markets, replication pricing is not appropriate: if the seller wants
to conclude a contract, he/she has to accept a certain risk. The acceptance pricing
rule accounts for that the acceptance price is the minimal upfront payment, which
makes the risk of this contract acceptable (but typically not riskless) for the seller.
To quantify the notion of acceptable risk, measures of risk are introduced. Again
this rule leads to an optimization problem: the minimal upfront payment has to be
found under the constraint that the risk value lies below a certain prespecified value.
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Fig. 15.1 Above: a demand profile of an energy buyer for the 168 h of a week. Below: the exchange
market does only offer specific profiles, the base profile (dotted), the peak profile (dash-dotted),
and the Vattenfall GH0 profile (solid)

The acceptance price takes the risk aversion of the seller into account, however
does not depend on his/her actual risk exposure. A fine-tailored pricing instrument
would take the risk portfolio of the seller into account and would make the contract
acceptable only if the total risk exposure of the existing portfolio of contracts aug-
mented by the new contract is acceptable. Notice that this pricing principle depends
on the full knowledge of the existing portfolio of resources and contracts, which is
not always available. Notice that the same contract may be acceptable for seller A
but not acceptable for seller B. Consider for instance the situation when seller A
has a lot of baseline energy available, but his contract portfolio is much biased ver-
sus peak demand. He would accept a contract which requires delivery in the night
hours. On the other hand, if seller B has mostly solar energy to offer, then a con-
tract which delivers at night time risks to require expensive purchases from the spot
market and is not advantageous for seller B. The indifference pricing rule compares
the risk of the existing resource and contract portfolio with the portfolio augmented
with the new contract. The indifference price is the lowest price such that the risk of
the augmented portfolio is not larger than the risk of the actual portfolio.

The three pricing principles (replication, acceptance, indifference) are applicable
for rigid contracts, for which all conditions are fixed at contracting time 0. While
amounts and prices may depend on future parameters and are considered as random
variables at time 0, their way of calculation cannot be changed later by the con-
tract parties. In contrast, flexible contracts allow the specification of demands by the
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buyer at later times. Whenever a contract party has the right to exercise the contract
in his discretion, this fact has to be taken into account in the price modeling pro-
cess. While the ask price of rigid contracts are determined by a regular optimization
problem (as described above), the pricing of flexible contracts requires the solu-
tion of a bi-level problem. A bi-level problem consists of two coupled optimization
problems: an upper-level and a lower-level problem. The lower level describes the
optimal reaction of the contract buyer to the price asked by the seller. The seller has
to anticipate the reaction of the buyer when calculating the best ask price. Given
this reaction, the seller may find the price according to one of the three principles:
replication, acceptance, and indifference.

We summarize the mentioned approaches in the following overview:

(1) (Super)replication is based on the nonexistence of a better investment strategy
for all scenarios.

(2) Acceptance pricing is based on the nonexistence of a better investment strategy
with an acceptable risk. Superreplication is the special case if only zero risk is
acceptable.

(3) Indifference pricing considers the actual risk exposure of the seller and accepts
only if the additional contract does not increase the risk exposure. It requires
to consider and model the full portfolio of all existing contracts and goes far
beyond case (2) as there only the contract under consideration has to be consid-
ered.

(4) For the pricing of flexible contracts the anticipated behavior of the counterparty
is taken into account when the price is calculated.

In principle, also the pricing for flexible contracts may be based on (1) repli-
cation, (2) acceptance, or (3) indifference. The superreplication principle is quite
unrealistic since it is practically impossible to hedge the risk away simultaneously
for all reactions of the buyer. We will concentrate on the acceptance principle and
the related model structure for flexible contracts in this chapter. However, indiffer-
ence pricing for flexible contracts can be easily introduced along the lines of the
general indifference pricing approach, analyzed in Sect. 15.4.3.

The chapter is organized as follows: in Sect. 15.2 the concept of replication
for financial contracts is presented. This concept is adapted to energy contracts in
Sect. 15.3. Section 15.4 deals with the more general notion of acceptance pricing
and the next Sect. 15.4.3 with the even more powerful notion of indifference pric-
ing. Finally, bi-level acceptance pricing for electricity swing options is presented in
Sect. 15.5.

15.2 Replication Pricing of Financial Contracts

As a starting point, we consider financial contracts, which generate for the con-
tract holder a discrete-time sequence of random cash flows (c1, . . . ,cT ). Unlike for
energy contracts, these cash flows are payments from the contract seller to the con-
tract holder (think of the purchase of a share, which requires the initial payment by
the buyer but gives him later the benefits of cash flows ct as dividend payments).
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Later, in the context of energy contracts, we set Ct = −ct . We assume that the cash
flows are—if necessary—already discounted to the present day by an appropriate
discounting scheme [e.g., using a deterministic or stochastic interest rate process
(Rt)]. We further assume that the cash-flow process (ct) is adapted to a filtration
F= (F0,F1, . . . ,FT−1), which models the information available at the respective
time t.

At time zero money flows only from the buyer to the seller, as the price of the
contract is payable at the beginning. From the contract buyer’s side, the cash-flow
structure is the same, but the signs are opposite. The main questions in contract
pricing are what is the maximal price, which is acceptable for the buyer, and what is
the minimal price which is acceptable for the seller and are these prices the same?

To answer these questions, alternative investments have to be taken into account:
suppose that m+ 1 investment possibilities are given by a stochastic column price
vector St = (St,0, . . . ,St,m)

� (where St,0 relates to the riskless investment), adapted to
the filtration F. Typically F will be modeled as the filtration generated by the price
process St .

Within our setup a hedging strategy is a nonanticipative row vector process
x = (x0, . . . ,xT−1) on R

m+1, where xt = (xt,0, . . . ,xt,m) denotes the holdings of the
m+ 1 investment possibilities during the time interval [t, t + 1]. Nonanticipativity
means that also the decision process x is adapted to the filtration F. While we prefer
intervals with length 1 for notational simplicity, it is easily possible to extend the
notation to include periods with different lengths.

With initial capital w and a trading strategy x, let Y w,x
t be the wealth at time t

resulting from this strategy. To be more precise, let Y w,x
t− be the wealth just before

time t. At time t the portfolio may be restructured and Y w,x
t denotes the wealth just

after these transactions are made.

15.2.1 The Upper Price

Given investment opportunities as above, a market price π for a contract is accept-
able for the buyer only if there is no better investment for the same or a lower
price, i.e., there is no initial payment w and trading strategy x, such that w < π and
Y w,x

t− −Y w,x
t ≥ ct (the cash flows can be paid) for all t and Y w,x

T ≥ 0 (the terminal
wealth is nonnegative).

The upper price πu is the highest price a potential buyer is willing to pay for the
contract with the given cash-flow structure ct . It is given as the minimal value of the
following optimization problem:

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Minimize (in x and w): w
subject to

Y w,x
0 = w,

Y w,x
t− −Y w,x

t ≥ ct t = 1, . . . ,T,
Y w,x

T ≥ 0,
xt is nonanticipative.

(15.1)
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Notice that in case that the minimal value in (15.1) is attained by a trading
strategy x, then the contract seller may execute this strategy to completely hedge
the risk away. He/she would take the price w to invest in such a way that the cash-
flows ct are covered by the earnings of the invested portfolio and the final financial
position is nonnegative, i.e., at the end the seller is free of debts out of this contract.
The optimal x = (x0, . . . ,xT−1) in (15.1) describes the superreplication strategy.

15.2.2 The Lower Price

The seller receives an initial amount w and has to pay the cash flows ct at later times.
The price π of the contract is acceptable for the seller only if there is no alternative
strategy, which receives more at the beginning and has lower liabilities later, i.e.,
there is no initial liability w and a strategy x, such that w > π and Y w,x

t− −Y w,x
t ≤ ct

a.s., where Y w,x
t denotes now the liability process. At the end of the trading period,

the liabilities Y w,x
T must be nonpositive.1 That is, the lower price π� of this contract

is the maximal value of the following optimization problem for liabilities Y w,x
t :

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Maximize (in x and w): w
subject to

Y w,x
0 ≥ w,

Y w,x
t− −Y w,x

t ≤ ct t = 1, . . . ,T − 1,
Y w,x

T ≤ 0,
xt is nonanticipative.

(15.2)

We call a strategy x which is feasible for this problem a subreplication strategy.
All prices greater than π� are in principle acceptable for the seller, although he/she
would prefer to get the upper price πu.

15.2.3 The Linear Setup

In the simplest case with proportional transaction costs and volume-independent
prices, the determination of the upper and lower prices amounts to solving a linear
(stochastic) program.

If the transaction costs are neglected, the upper price πu can be calculated by the
following linear program2:

1 Negative liabilities are profits.
2 We denote by x ·S the inner product of the vectors x and S.
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∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Minimize (in x and w): w
subject to

x0 S0 −w ≤ 0,
xt−1 St ≥ xt St + ct t = 1, . . . ,T,
xT−1 ST ≥ 0,
xt is nonanticipative.

(15.3)

In similar manner it is possible to formulate the lower price problem as a linear
program:

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Maximize (in x and w): w
subject to

x0 S0 −w ≥ 0,
xt−1 St ≤ xt St + ct t = 1, . . . ,T,
xT ST ≤ 0,
xt is nonanticipative.

(15.4)

Dualization of these linear programs then entails the following well-known
result: let c̃t = ct/St,0 and S̃t = St/St,0, where St,0 denotes the price of the riskless
investment. Then

πu = max{
T

∑
t=1

EQ(c̃t) : (S̃t) is a martingale under Q }, (15.5)

π� = min{
T

∑
t=1

EQ(c̃t) : (S̃t) is a martingale under Q }. (15.6)

Here EQ is the expectation w.r.t. the probability measure Q. The upper and the
lower price are equal if there is a unique martingale measure Q. In this (rather exc-
eptional) case Q is called the risk neutral measure and πu = π� for all contracts.
If there are several martingale measures, then the model is called an incomplete
market model. In incomplete markets, typically π� < πu and we speak of an ask-bid
interval. If the price is within the interval [π�,πu], then it is acceptable for both par-
ties and none of them may have an arbitrage opportunity.3 However, even in incom-
plete markets, there may be contracts for which the inequalities in (15.1) and (15.2)
are satisfied as equalities, meaning that the cash-flow ct can be completely repli-
cated and the optimal superreplication and subreplication strategies coincide. In this
case π� = πu even in incomplete markets.

On the other hand, for unbounded processes St , it may happen that πu = ∞
[infeasibility in (15.1)] and/or that π� = −∞ [infeasibility in (15.2)]. It is unreal-
istic to assume that the buyer will pay any arbitrary price if πu = ∞. To the contrary,
he/she will not conclude the contract at all. That is why we consider acceptance
pricing as a realistic alternative.

3 The ask-bid interval has to be clearly distinguished to the bid-ask spread (bid-price < ask-price)
appearing in stock exchanges, when no deal can be made.
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Transaction costs lead to an increased ask-bid interval. Furthermore, non-
proportional transaction costs result in nonlinear and/or integer programs to be
solved for pricing. For a comprehensive overview of convex models see, e.g., [16].
If the hedging process is nonconvex, a duality gap may occur and the notion of
martingale measure makes no sense.

15.3 Replication for Energy Contracts

So far we have considered the valuation of pure financial contracts, which leads to
classical results of derivative pricing. In the context of energy risk management we
have to extend the analysis to deal with energy-related commodities in the following.
There is a fundamental difference between pricing in financial markets and pricing
in energy markets: while in financial markets the set of feasible trading strategies is
considered to be the same for the seller and for the buyer, it is different in energy
markets. The seller has a much larger spectrum of possible actions; he/she may
use his/her own energy production, buy energy futures, and trade on the wholesale
markets; and the buyer typically has no access to these possibilities, maybe for the
exception of access to the spot markets. For this reason, the seller may determine
the upper price by including all his/her assets in a replication model and may offer
this price to the buyer.

15.3.1 Scope and Basic Model Setup

A key difference between financial and commodity derivatives results from the crit-
ical role of physical quantities and physical restrictions for the latter. The number
of basic financial securities on which derivatives are written (i.e., the market capi-
talization, number of shares, etc.) is fixed. It is not necessary to produce securities
and the market participants can hold arbitrary amounts without physical restrictions
at negligible costs. It is also possible to go short in securities to a huge extent. Fur-
thermore constraints on traded amounts and on the speed of trading are almost not
existent.

Some energy-related contracts (usually futures) are settled financially and can
therefore be viewed as financial contracts. However the picture is completely dif-
ferent for the physical commodities: they are produced and transported, and storage
is costly and restricted. In particular negative storage is not possible. Commodities
like electricity cannot even be stored. Therefore the usual relation between direct
and future financial contracts is in general not valid for commodities and valuation
concepts from finance cannot be applied to over-the-counter (OTC) contracts, which
are settled physically.

Nevertheless, also for energy contracts we may seek for the smallest amount of
cash necessary, at time zero to finance all feasible actions, in particular both physical
and financial contractual cash flows. However, but the model has to be extended to
capture all peculiarities of energy markets.
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In the extended model it is possible to invest in different forms of energies: let
J = {0, . . . ,J} denote the set of available energy commodities, e.g., gas, heating
oil, and electricity, measured by their energy content (MWh). The related spot prices
are Se

t, j ∈R
J+1, and xe

t, j denotes the stored amount of the jth commodities at time t.
Throughout this paper the index j = 0 is reserved for (physical) electricity delivered
at time t.

With minimum storage level zero and maximum levels x̄e = (x̄e
0, . . . , x̄

e
J) ≥ 0 we

have to consider constraints
0 ≤ xe

t ≤ x̄e. (15.7)

For electricity no storage is available and we have x̄e
t,0 = 0. We assume proportional

storage costs ζ e
j for each storage j.

Moreover, ye
t = (ye

t,0, . . . ,yt,J) denotes the amounts of energy bought (ye
t, j ≥ 0)

or sold (ye
t, j ≤ 0) at prices Se

t, j at time t, and matrices Ze
t with elements ze

t,i j model
the amount of energy i used to produce energy j during period (t, t + 1]. Energy
conversion leads to variable operating costs, which we assume to be proportional
to input energy. The cost factors can be time dependent and are denoted by γt,i j

(currency unit per MWh).
Related to the conversion from energy i to energy j are efficiencies ηi j. In this

way it is, e.g., possible to model electricity production from different fuels. Con-
version between different forms of energy is restricted by lower and upper bounds
zt , z̄t , i.e.,

0 ≤ zt,i j ≤ ze
t,i j ≤ z̄t,i j , (15.8)

which reflects physical constraints on production. On the other hand, trading of
energy is not restricted in the basic superhedging setup.

For certain energy sources (e.g., stored water in a certain reservoir) one may
also consider random inflows, denoted by dt, j ≥ 0. Further inflows can result from
intermittent electricity production by renewable sources like wind or solar power.

Note that in this framework it is also possible to model energy-related contracts
with physical delivery, if the lower and upper bounds for conversion and the related
conversion costs are modeled time dependent or depending on other variables of the
system. As an example consider an electricity future j: conversion between elec-
tricity deliverable by the future contract and actual electricity happens during the
delivery period. The related conversion factors are described by η j0 = 1. For the
seller of the delivery contract we have during delivery z̄t = zt = −xt, j/nt , where
nt is the number of remaining exercise dates. Outside the delivery period we have
z̄t = zt = 0. Finally, the delivery price is modeled by using the operating cost factors
γt, j0.

In addition to forms of energy and physically settled contracts we use a cash pos-
ition xt,0 with an interest yield of r f > 0 and include financial assets and contracts

I = {1, . . . , I} with prices S f
t,i, paying cash flows C f

t,i at time t. While typical finan-
cial assets are not in the focus for pure energy-related valuation problems, energy
derivatives with financial settlement can be modeled in this way. As an example,
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an electricity future contract i for fuel j with strike price Ki pays Se
t, j −Ki during

delivery. Holdings of financial contracts are denoted by x f
t,i and are not restricted; in

particular there are no shortselling constraints.
In the extended model we use physical and financial contracts to hedge an OTC

contract that is defined by cash flows Ct and physical flows of energy Bt , with Bt, j

denoting the flow of energy j at time t in MWh. Inflows are reflected by positive
and outflows by negative values. Both Ct and Dt can be random and can depend on
other variables of the system.

For a simple delivery contract, Dt (delivery of one commodity) and Ct are con-
stant during the whole time of delivery. A swap contract for different forms of en-
ergy i, j can be modeled by setting Dt,i ≥ 0 and Dt, j ≤ 0.

Table 15.1 gives an overview of the possible conversions within the proposed
framework.

Table 15.1 Possible conversions, including cash

1. 2. 3. 4. 5. 6. 7.

1. Cash x x x x x
2. Energy commodities x x x
3. Phys. en. contracts x x
4. (Stored water) x
5. Electricity x x
6. Phys. el. contracts x x
7. Financial contracts x

15.3.2 Formulation of the Extended Valuation Model

Using the outlined notation we can now formally describe the financial sellers’ prob-
lem to energy markets. We do not consider transaction costs on energy related and
financial markets. Hence it is possible to give an LP formulation.

Stored energy starts with an initial storage x0. In the subsequent periods storages
are changed by buying and selling energy, by conversion between energy forms
and contractual deliveries of the physical contracts in the portfolio and of the OTC
contract under consideration. For all energy contracts except electricity ( j �= 0) we
formulate this as

xe
0, j ≤ x0 + ye

0, j + d0, j (15.9)

and

xe
t, j ≤ xe

t−1, j + ye
t, j +

J

∑
i=0

ηi jz
e
t−1,i j −

J

∑
i=1

zt−1, ji + dt, j +Dt, j. (15.10)

Note that the index in the first sum begins at i = 0. This allows for pumping, if
energy j refers to water, stored in a reservoir.
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Optimization will lead to boundary solutions in (15.9) and (15.10). For electricity
(which is not storable) we require

0 = ye
0,0 + d0,0 (15.11)

0 = ye
t,0 +

J

∑
i=1

ηi0ze
t−1,i0 + dt,0 +Dt,0. (15.12)

Note that (15.9)–(15.12) refer to the point in time immediately before the
next production period [t, t + 1) begins and recall that storage is also constrained
by (15.8), which models physical restrictions as well as contractual limits for phys-
ical contracts.

In a model with discrete time, only energy stored at the beginning of a period
can be used for conversion during the period. Therefore we introduce the following
constraints:

J

∑
j=1

ze
t,i j ≤ xe

t,i. (15.13)

The cash account is x f
t,0. Cash is considered after buying and selling energy and

settling all types of contract but before actually converting between energies. Hence
with an initial amount w of cash just before the transactions at time zero to be effec-
tuated, x f

0,0 must fulfill

x f
0,0 ≤ w−

J

∑
j=0

Se
0, jy

e
0, j −

I

∑
i=0

S f
0,ix

f
0,i. (15.14)

In the subsequent periods t > 0 the cash position accumulates gains and subtracts
costs from buying and selling energy and financial contracts and the cash flows from
the OTC contract under consideration. Furthermore, it has to account for interest on
cash, costs for energy conversion, storage costs, and all cash flows from financial
contracts. This results in

x f
t,0 ≤ (1+ r f )x

f
t−1,0 (15.15)

−
J

∑
j=0

Se
t, jy

e
t, j −

I

∑
i=1

S f
t,i(x

f
t,i − x f

t−1,i)+
I

∑
i=1

C f
t,i +Ct

−
J

∑
i=0

J

∑
j=0

γt,i jzt,i j

−
J

∑
j=1

ζ j
(xe

t, j + xe
t−1, j)

2
.

Note that we do not use a nonnegativity constraint on the cash position, that is,
borrowing money is allowed.
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Finally the inequality

x f
T,0 +

J

∑
j=1

Se
T, jx

e
t, j +

I

∑
i=1

S f
T,ix

f
T,i ≥ 0 (15.16)

ensures that we search for the smallest initial payment w and a related hedging
strategy, such that the asset value—consisting of the final cash position x f

T,0 and all
physical and financial contracts—is nonnegative after handling the OTC contract
under consideration.

Based on the previous considerations and using the hedging approach, the valu-
ation problem can be formulated as the following optimization problem:

∥
∥
∥
∥
∥
∥
∥
∥
∥

Minimize (in xe, x f , y, z and w): w
subject to

constraints (15.7)–(15.16),

xe
t ,x

f
t ,yt ,zt are nonanticipative.

(15.17)

In principle, both the seller’s and the buyer’s hedging problem have the same
form (15.17). However, the typical situation in energy markets, the buyer’s set of
possibilities in producing, trading, or hedging is usually restricted. Thus a natural
asymmetry between the contracting partners occurs.

Another key difference lies in the fact that the streams Ct and Dt have different
signs for the two participants, e.g., for a simple delivery contract for one commodity,
the physical flow Dt is negative for the seller and positive for the buyer, while the
opposite holds for the cash flow Ct . Hence even if the buyer would have access
to all types of financial and commodity contracts, there is still another source of
asymmetry: it is impossible to just change the signs of the flows of commodities
to get the picture of the other contractor: usually efficiencies are not symmetric,
i.e., ηi j �= η ji. Consider e.g., the production of electricity: for pumped turbines it is
possible to use electricity for storing it in higher reservoirs, but with low efficiency,
compared to the efficiency of producing electricity from stored water. As an extreme
example of asymmetry it is not possible to produce fuel from electricity delivered by
a contract, while fuel clearly can be used to produce electricity with some positive
efficiency. Moreover, by the existence of bounds in production the problem does not
scalarize.

15.4 Acceptability Replaces Non-replicability

Clearly, the principle of (super)replication is one of the cornerstones of modern
finance. On the other hand it might be too strong under some circumstances. As was
already said, it may lead to very large (even infinite) upper prices in incomplete
markets.
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This is especially true in the case of electricity markets: generating companies
have the equipment to buy, store, and use fuel to generate electricity in order to
satisfy even very complicated contractual terms. Physical constraints are present
but only mildly affect the ability to hedge the flows related to the contract. On the
other hand other market participants do not own the same equipment. Pure traders
have access to electricity exchanges or pools, and hence to the full spectrum of
financially settled contracts, but are not able to produce electricity. End consumers
do not even have access to exchange markets. While contractual energy flows can
be very complicated for OTC contracts, electricity is not storable and there are only
very few instruments (i.e., contracts such as base and peak futures) available to
partially hedge a specific contract. So even for a trader with access to an electricity
exchange, hedging is difficult and will in general work only approximately—there
will always remain residual electricity flows that have to be settled by buying spot
electricity without protection from future contracts.

For these reasons we analyze the pricing problem by the notion of acceptability:
it is wanted that the difference between the optimal hedge and the cash-flow pro-
cess is acceptable for the seller, which—in the most basic formulation—means that
inequality (15.16) is replaced by

A (CT +
J

∑
j=1

Se
T, jx

e
t, j +

I

∑
i=1

S f
T,ix

f
T,i)≥ 0, (16′)

where A is an acceptability functional (see below). In this way, unfavorable sce-
narios are not avoided completely at the end. Instead, the loss distribution is res-
tricted by the acceptability functional, such that only unfavorable outcomes with
small probability are acceptable.

The resulting optimization problem for acceptability pricing is a modification
of (15.17) and can be written as

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Minimize (in xe,x f ,y,z and w): w
subject to
constraints (15.7)–(15.15),

A (CT +∑J
j=1 Se

T, jx
e
t, j +∑I

i=1 S f
T,ix

f
T,i)≥ 0,

xe
t ,x

f
t ,yt ,zt are nonanticipative.

(18)

15.4.1 Acceptability Functionals

A probability functional is an extended real-valued function defined on some ran-
dom space or on a suitable subset of a random space. Examples are well-known
functionals like the expectation, the median, value-at-risk, average (or “condi-
tional”) value-at-risk, and variance. If the value of a probability functional depends
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only on the distribution of the random variable under consideration, it is called
version independent. If a functional is interpreted in the sense that higher values
are preferable to lower values, we call it an acceptability-type functional.

Acceptability functionals are probability functionals A , defined on a linear Y
space of random variables on (Ω ,F ,P), such that the following properties are true
for all X ,Y ∈ Y :

(A1) Concavity. A (λ ·X +(1−λ ) ·Y) ≥ λ ·A (X)+ (1− λ ) ·A (Y ) holds for
λ ∈ [0,1].

(A2) Monotonicity. X ≤ Y a.s.⇒ A (X)≤ A (Y ).

Often (see, e.g., [17]), acceptability functionals are defined by including the
translation equivariance property:

(A3) Translation equivariance. A (Y + c) = A (Y )+ c holds for all constants c.

An acceptability functional is called positively homogeneous, if it satisfies the
condition A (λY ) = λ ·A (Y ) for all λ ≥ 0. It is called strict, if A (Y )≤E(Y ) holds.
Recall that for an acceptability functional A and a random loss Y the valuation
−A (−Y ) is a coherent risk measure in the sense of [1].

Throughout this paper we will consider only acceptability functionals with
A (0) = 0. If necessary, this can be achieved easily by relocating the functional.
Under rather mild conditions (upper semicontinuity) an acceptability functional At

has a dual representation

A (Y ) = inf{E(Y Z)−A +(Z) : Z ∈ Y ∗},

where Z is an element of the dual space Y ∗ and A + is the concave conjugate
(in the sense of Fenchel–Moreau–Rockafellar, see [20]) of the functional A . If the
functional is positively homogeneous, then the dual representation simplifies to

A (Y ) = inf{E(Y Z) : Z ∈ Z }, (19)

where Z is a convex subset of Y ∗.
An important, but simple, example for a positively homogeneous acceptability

functional is the average value-at-risk. For a random variable Y with distribution
function GY it is defined by AV@Rα(Y ) = 1

α
∫ α

0 G−1
Y (u)du and is also known as

conditional value-at-risk or tail value-at-risk. Its conjugate representation is given
as follows [see [17], Theorem 2.34 (ii)]:

AV@Rα(Y ) = inf

{

E(Y ·Z) : E(Z) = 1, 0 ≤ Z ≤ 1
α

}

. (20)

In our examples we will use the average value-at-risk, because it is closely related
to the notion of value-at-risk, the most important risk measure in practice. The value-
at-risk of a random variable X at confidence level 0 ≤ α ≤ 1 is basically defined
as the value-at-risk of the related distribution (see, e.g., [14]), which is given by
V@Rα(Y ) = inf{v : P{Y ≤ v} ≥ α}.
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Fig. 15.2 Acceptability pricing: delivery pattern Dt over the 52 weeks of a year

Using the value-at-risk in (16′) is called quantile hedging/pricing; see, e.g., [8].
In this case V@Rα(Y ) ≥ q is equivalent to P{Y < q} ≤ α . V@R is monotone,
but unfortunately the mapping Y 
→ V@Rα(Y ) is not convex and nonsmooth. This
makes the usage of constraint (16′) in an optimization problem very difficult.

On the other hand AV@R is an acceptability functional and is a concave mino-
rant of the V@R. As an alternative to using quantiles or acceptability functionals,
one may also consider utility functions U and accept a contract, if E[U(Y )] ≥ q.
However, the price will then depend on the choice of the entire utility function
while in quantile pricing only two parameters, the threshold q and the confidence
level 1−α , have to be set by the management.

The following example illustrates acceptability pricing, using the average
value-at-risk.

Example 1. We consider a planning horizon of 1 year (52 weeks). Electricity spot
prices are modeled by geometric Brownian motion with jumps (GBMJ), estimated
from EEX Phelix hourly electricity prices (hourly, 09/2008–12/2011, Bloomberg).
The pricing model was reformulated and solved on a stochastic tree, generated from
the GBMJ model.

The hedging opportunities are represented by four future contracts, related to the
quarters of the year, i.e., each of the futures delivers a constant amount of electric
energy during one of the quarters. The delivery pattern of the contract to be valued
is shown in Fig. 15.2.

Using problem (18) the acceptability price is calculated for a pure trader mean-
ing that only wholesale base quarter future contracts can be used for hedging for
different values of the AV@R-parameter α , shown in Fig. 15.3. The related optimal
hedging strategies can be seen in Fig. 15.4. Finally, Fig. 15.5 shows the density of
the optimized distribution of profits and the value-at-risk at level α = 0.1.
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Fig. 15.3 Acceptability pricing: the price of 1 MWh as a function of the acceptance level α
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Fig. 15.4 Acceptability pricing: optimal hedges as a function of the acceptance level α

15.4.2 Acceptability Pricing for Financial Contracts

For purely financial contracts, the acceptability upper pricing problem can be inves-
tigated in more detail: it is the following variant of the replication problem (15.1).
The upper price πu is the minimal value of

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Minimize (in x and w): w
subject to

Y w,x
0 = w,

Y w,x
t− −Y w,x

t ≥ ct t = 1, . . . ,T,
A (Y w,x

T )≥ 0,
xt is nonanticipative,

(21)
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Fig. 15.5 Acceptability pricing: density of the profit variable

which takes the following form in the linear setup:
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Minimize (in x and w): w
subject to

x0 S0 ≤ 0,
xt−1 St − xt St − ct ≥ 0;t = 1, . . . ,T,
AT (xT ST )≥ 0.

(22)

If the functional A is given by representation (19), then problem (22) has a dual
given by

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Maximize (in Zt ) ∑T
t=1E(ct Zt)

subject to
E(St+1Zt+1|Ft) = ZtSt ,

Zt ≥ 0; t = 1, . . . ,T − 1,
ZT ∈ Z .

(23)

The latter problem can be reformulated in an analogous way as in (15.5): Let c̃t =
ct/St,0 and S̃t = St/St,0, where St,0 is the riskless investment. Then the acceptability
upper price πu is given by

max{
T

∑
t=1

EQ(c̃t) : (S̃t) is an (equivalent) martingale under Q s. t. dQ
dP ∈ Z }. (24)

Similarly, the lower price π� is

min{
T

∑
t=1

EQ(c̃t) : (S̃t) is an (equivalent) martingale under Q s. t. dQ
dP ∈ Z }. (25)

Denote by πu(Z ) the upper price in dependency of the considered acceptability
functional A with dual set Z . Notice that

Z1 ⊆ Z2 implies that πu(Z1)≤ πu(Z2).
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The largest price is gotten when full (super)replication is required, meaning that Z
must be equal to all nonnegative random variables, compare (15.5). A smaller and
more realistic price is obtained, if the acceptability functional is, e.g., the average
value-at-riskAV@Rα , with Z = {Z : 0≤ Z ≤ 1

α }. The smallest price is given by the
choice Z = {1}, which corresponds to the acceptability requirement E(Y w,x

T )≥ 0.
This simple pricing rule is related to the concept of expected net present value
(ENPV) of a contract and can be seen as the absolute minimum price for avoid-
ing bankruptcy. However no seller will be willing to contract on this basis.

15.4.3 From Acceptability Pricing to Indifference Pricing

Acceptability pricing allows a meaningful valuation of contracts, even if full repli-
cation of the related flows is not possible or too expensive. However there is ano-
ther difficulty remaining: the equipment of, e.g., a producer of electricity is never
dedicated just to the production of the OTC contract under consideration. From
the standpoint of production, delivering new contractual cash and energy flows is
always an addendum to previously planned decisions. This means that the value of
a contract should be valuated relative to the optimal management of all the other
contracts which are already in the portfolio of the seller.

This idea leads to the notion of indifference pricing: the indifference principle
states that the seller of a product compares his optimal decisions with and without
the contract and then requests a price such that he is at least not worse off when
closing the contract. This idea goes back to insurance mathematics (see [4]) but has
been used for pricing a wide diversity of financial contracts in recent years, e.g., [5]
for an overview.

In order to model the indifference price approach, assume that the total energy
deliveries of the actual portfolio are Dold

t and the total cash flows out of this port-
folio are Cold

t . These cash flows must include also the upfront payments at time
0. The additional contract, for which a price is not yet determined, is given by Dt

respectively Ct . Indifference pricing happens in two steps:

• Determination of the acceptability of the actual portfolio. To this end, the follow-
ing problem is solved:

∥
∥
∥
∥
∥
∥
∥
∥
∥

Maximize (in x,y,z and w): A (Cold
T +∑J

j=1 Se
T, jx

e
t, j +∑I

i=1 S f
T,ix

f
T,i)

subject to
constraints (15.7)–(15.16),
xt ,yt ,zt are nonanticipative.

(26)

Here the equations are based on Dold
t respectively Cold

t . The optimal value of this
optimization problem, that is, the acceptability level of the actual (old) portfolio,
is denoted by a0.
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• Determination of the indifference price of the additional contract. Let the new
total deliveries be Dnew

t = Dold
t +Dt and the new cash flows (without the upf-

ront payment for the additional contract) be Cnew
t = Cold

t +Ct . The price of the
additional contract is denoted by x0,0. It is determined by the following problem:

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Minimize (in x,y,z and w): w
subject to

A (Cnew
T +∑J

j=1 Se
T, jx

e
t, j +∑I

i=1 S f
T,ix

f
T,i)≥ a0

and constraints (15.7)–(15.15),
xt ,yt ,zt are nonanticipative.

(27)

Of course, here the equations are based on Dnew
t respectively Cnew

t .

The following example compares indifference pricing with acceptability pricing
for a simple setup with one thermal generation unit and a fixed delivery contract to
be valuated.

Example 2. We consider an electricity producer, who has available a single com-
bined cycle plant that is able to use both oil and gas. The machine has maxi-
mum power production of 410 MW and efficiencies of 0.575 (gas) and 0.57 (oil).
Both fuels can be stored up to some amount (1.5 · 106 MWh) at storage costs 0.2
Euro/MWh/h. We do not consider future contracts in this setup; hence hedging is
possible only by buying fuel at appropriate points in time. Again we use electricity
prices and weekly decision periods as described in Example 1. Gas prices are esti-
mated (following [12]) by GBMJ from GPL spot prices (hourly, 04/2007–12/2011,
Bloomberg) and oil spot prices for Brent Crude prices (daily, 05/2003–12/2011,
Bloomberg).

We valuate a simple delivery contract, which binds the producer to supply a fixed
amount of energy, the contract size in MWh, during each stage of the planning
problem. The producer is free to buy and store fuel and to produce electric energy
for the contract and also for selling it at the spot market. The value of the contract per
MWh contains variable operating costs. From this we calculate a contract value per
MWh that also includes an amount of coverage for fixed cost, which is proportional
to the mean workload of the production unit during the planning horizon.

Within this setup we compare the superhedging approach to indifference pricing.
Superhedging is possible for a producer, if the contract size does not exceed the
capacity of the combined cycle turbine. For indifference pricing, we use the average
value-at-risk at level α = 0.05 as the related acceptability functional.

See Fig. 15.6 for the main results. As described above, superhedging leads to
contractual deliveries, but does not account for alternative usages of the machine,
whereas indifference pricing does. This is the reason why the superhedging price
might be considered as too low in this case. Superhedging and indifference pricing
also show different amounts of fixed cost, because the related strategies use non-
contractual electricity production at different levels.
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15.5 Flexible Contracts: Swing Option Pricing

Electricity swing options give their buyers the right to obtain electricity at a fixed
price K per MWh during some delivery period. The price is set by the seller at
contract formation, while the actual purchase quantities can be chosen (within some
contractual range) by the buyer during the whole delivery period. Swing options are
also known as flexible nomination contracts, take-or-pay contracts, or virtual power
plants. See, e.g., [2, 11, 18, 19].

So far, we considered delivery contracts with delivered quantities that were either
fixed in advance or depending on some observable (possibly stochastic) variables.
Swing options are different, because the delivered quantities are decisions of the
option buyer, and the seller has to account for this fact, when making the pricing
decision. Hence, two questions are important, when considering swing options:

Fig. 15.6 Superhedging and indifference pricing

• The buyer’s view: given the exercise price K, what is the optimal demand strategy
of the buyer, and what is the resulting value of a swing option?

• The seller’s view: what exercise price K should be offered by the seller, in view
of the related optimal decision of the buyer?

Clearly the second question goes beyond the pure valuation issues raised and
analyzed in the previous sections. While different approaches have been used to
answer the first question, we remain in the framework of stochastic optimization
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and base our elaboration of the buyer’s problem on the method proposed first in [9],
which was developed further in [10]. For the second question we build on these
results and follow the approach in [3], which was extended in several directions
by [13].

15.5.1 The Buyer’s View

Again, we consider points in time t ∈ {0,1,2, . . . ,T}. The delivery price K is fixed
at t = 0 and delivery (for a single commodity) is possible during some periods t ∈
{tD, . . . ,T}. The buyer specifies the actual consumption from the contract, Dt , one
period before delivery. The quantities bought for the tth period are denoted by yt ,
where t ∈ T = {0,1, . . . ,T − 1}.

The exact strategy of the buyer clearly depends on his own liabilities (e.g., a
producer of aluminum will behave differently from a pure trader) and his access
to electricity spot markets and other parts of energy markets. We follow [3, 10]
and [13], and model a trader with access to the electricity spot market, which is in
some sense the worst case from the standpoint of a swing option seller, because the
trader is not restricted by own liabilities: the basic problem lies in the fact that the
buyer buys swing electricity at the delivery price if he thinks that spot prices will
be high and does not buy if he thinks that spot prices will be low. If the buyer is
right, this means for the seller that he will have to deliver when prices are high,
which clearly is inconvenient.

In this framework, the trader solves the following optimization problem to find
an optimal strategy—a consumption pattern D = (D0, · · · ,DT−1) such that Dt is
deliverable during period (t, t +1]—for a swing option contract with given exercise
price K. It is assumed that both the consumption in each period (base line schedule)
and the accumulated consumption over the whole delivery period are restricted by
lower and upper bounds and that the trader sells any consumption from the contract
at the electricity spot market. By Se

t,0 we denote the electricity spot prices; et and et

represent lower and upper bounds for consumption in each period and E , E refer to
lower and upper bounds for the cumulated consumption.

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

maxD ∑T−1
t=0 E

[

Dt

(

Se
t+1,0 −K

)]

subject to et ≤ Dt ≤ et , ∀t ∈ {0, . . . ,T − 1} ,
E ≤ ∑T−1

t=0 Dt ≤ E,
Dt ≥ 0, ∀t ∈ T ,

∑T−1
t=0 E

[

Dt

(

Se
t+1,0 −K

)]

≥ 0,

Dt is nonanticipative.

(28)

As pointed out in [10] the optimal value of this problem can be seen as the value
of the swing option from the buyer’s perspective, as long as it is not negative. If
the optimal value is negative, the contract will not be concluded, which justifies the
second to last constraint.
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The formulation (28) is used in [3, 13] and can be extended in various directions.
In particular, ramping constraints with ratchets ρt can be modeled by

−ρt ·Δ ≤ yt − yt−1 ≤ ρt ·Δ , (29)

where Δ is the length of the time periods.

15.5.2 The Seller’s View

While the buyer’s decision problem (28) does not make use of the hedging or
acceptability concepts discussed before, the sellers decision is again modeled by
acceptability pricing: the seller searches for the minimal delivery price and related
hedging and production decisions such that the resulting profit and loss distribution
remains acceptable.

The seller’s decision problem is similar to (18): the decision variables are aug-
mented by the strike price K and the contractual cashflows Ct are redefined by
Ct = Dt ·K. In particular this means that (15.15) is replaced by

x f
t,0 ≤ (1+ r f )x

f
t−1,0 (30)

−
J

∑
j=0

Se
t, jy

e
t, j −

I

∑
i=1

S f
t,i(x

f
t,i − x f

t−1,i)+
I

∑
i=1

C f
t,i +Dt ·K

−
J

∑
i=0

J

∑
j=0

γt,i jzt,i j

−
J

∑
j=1

ζ j
(xe

t, j + xe
t−1, j)

2
.

Unfortunately, acceptability pricing by an extended version of (15.15) cannot be
used directly, because the formulation would include the buyer’s decisions Dt which
are not decision variables of the seller. Instead, the problem has to be reformulated
in the framework of bi-level optimization. The papers [3, 13] propose this approach
but use simplified versions of this problem, both simplifying production decisions:
the first does not model production, while the second uses an internal price for acc-
ounting between a production and a trading department as a proxy. The latter paper
also gives a broad survey of related models and methods.

The basic problem in bi-level optimization lies in the fact that given a strike
price K the buyer’s problem (28) may have non-unique optimal decisions. Using
the optimistic approach of bi-level optimization and assuming that the lower level
chooses among its optimal decisions the best one from the seller’s point of view (see,
e.g., [7], also for the alternative—the pessimistic approach) the decision problem
can be formulated as
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∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Minimize (in K,xe,x f ,y,z, w and D): w
subject to

constraints (15.7)–(15.14) and (30),

A (CT +∑J
j=1 Se

T, jx
e
t, j +∑I

i=1 S f
T,ix

f
T,i)≥ 0,

D ∈ D∗
K ,

xe
t ,x

f
t ,yt ,zt are nonanticipative,

(31)

where D∗
K denotes the argmin-set (i.e., the set of optimal solutions), given the strike

price K, of the buyer’s problem (28).
Even in the simplest case bi-level problems like (31) are nonconvex, and strongly

NP-hard. See, e.g., [6, 15] for necessary optimality conditions. A specific intricacy
of bi-level problems lies in the fact that their feasible set can be disconnected.

Typical standard approaches for stochastic bi-level optimization are stochastic
quasi-(sub)gradient methods and the MPEC approach. The first one is applicable
only if the argmin-set of the buyer’s problem is guaranteed to be a singleton for all
relevant prices K. The latter approach consists in formulating the KKT conditions
for the buyer’s problem and to include them into the upper-level problem in order to
code the argmin-set of the buyer’s problem. This is very common but hard to use for
multistage problems like (28), because complementarity conditions for each node
have to be included, which makes the resulting formulation hard to solve. Kovacevic
and Pflug [13] give an overview and propose some new algorithms, building on the
fact that the optimistic bi-level problem can be approximated by an LP if polyhedral
acceptability functionals like the average value-at-risk are used for A and that all
decisions of both the buyer and the seller are dominated by the seller’s decision
regarding the strike price K.

The following example illustrates the bargaining situations between buyer and
seller.

Example 3. We set et ≡ 5, E ≡ 50. The AV@R-parameter is α = 0.15 and the min-
imum AV@Rα -requirement q = −20. The spot price process St is modeled by a
stochastic tree with 6 (monthly) stages. The generating unit and the fuels are as
in the previous examples. In addition, we use three futures products (with exercise
periods of length 2) for hedging. Three scenarios for lower bounds are considered:
e = 0, e = 0.4e, and e = 0.8e. Furthermore we use E = 0 and E = 5e.

Figure 15.7 shows effects of these scenarios. In particular increasing lower
bounds reduces the value of the contract for the buyer, while it increases the value for
the seller. However, the drawback of increasing lower bounds is that also the largest
feasible strike price decreases. Note that the feasible prices in this example are com-
parably small, because they refer to summer months, and the AV@R-requirements
are relatively mild.
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15.6 Conclusions

We have shown that fair pricing of energy contracts is a difficult task, which can be
accomplished by solving various multistage optimization problems. While (super)
replication requires the solution of a deterministic program, acceptance and indiffer-
ence pricing are based on stochastic programs. These programs can be quite com-
plex, especially if the full available portfolio of the contract seller is modeled. For
flexible contracts, it is even necessary to solve a stochastic bi-level program, since
in this case the optimal pricing must be embedded into a game-theoretic model of
the leader-follower type.
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Fig. 15.7 Swing option pricing—the bargaining situation: the left part shows the buyer’s expec-
tation (dashed) versus the seller’s average value-at-risk (solid). The right part shows the buyer’s
expectation (dashed) versus the seller’s expectation

References

1. Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk.
Math Financ 9:203–228

2. Barbieri A, Garman M (2002) Understanding the valuation of swing contracts.
Energy Power Risk Manag, FEA, Tech. Rep.

3. Broussev N, Pflug G (2009) Electricity swing options: behavioral models and
pricing. Eur J Oper Res 197(39):1041–1050

4. Bühlmann H (1972) Mathematical risk theory. Die Grundlehren der mathema-
tischen Wissenschaften, Band 172. Springer, New York

5. Carmona R (2009) Indifference pricing: theory and applications. Princeton
series in financial engineering. Princeton University Press, Princeton



15 Pricing of Energy Contracts 411

6. Dempe S (1992) A necessary and a sufficient optimality condition for bilevel
programming problems. Optimization 25:341–354

7. Dempe S (2002) Foundations of bilevel programming. Kluwer Academic Pub-
lishers, Dordrecht

8. Föllmer H, Leukert P (1999) Quantile hedging. Financ Stoch 3:251–273
9. Frauendorfer K, Güssow J, Haarbrücker G, Kuhn D (2005) Stochastische opti-

mierung im energiehandel: entscheidungsunterstützung und bewertung für das
portfoliomanagement. Zeitschrift für Energie, Markt, Wettbewerb 1:59–66

10. Haarbrücker G, Kuhn D (2009) Valuation of electricity swing options by mul-
tistage stochastic programming. Automatica 45:889–899

11. Kaminski V, Gibner S (1995) Exotic options. In: Kaminski V (ed) Managing
energy price risk. Risk Publications, London, pp 117–148

12. Kovacevic R, Paraschiv F (2012) Medium-term planning for thermal electricity
production, OR Spectrum, Doi:10.1007/500291-013-0340-9

13. Kovacevic RM, Pflug GC (2013) Electricity swing option pricing by stochastic
bilevel optimization: a survey and new approaches, available ref www.speps.
org

14. McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management - con-
cepts, techniques and tools. Princeton series in finance. Princeton University
Press, Princeton

15. Outrata J (1993) Necessary optimality conditions for Stackelberg problems.
J Optim 76:305–320

16. Pennanen T (2012) Introduction to convex optimization in financial markets.
Math Program 134:157–186

17. Pflug G, Römisch W (2007) Modeling, measuring and managing risk. World
Scientific, Singapore
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