
Chapter 14
Investment in Stochastic Electricity-Production
Facilities

Luis Baringo and Antonio J. Conejo

Abstract This chapter considers a profit-oriented private investor interested in
building stochastic electricity-production facilities, such as solar and wind power
plants. This investor sells its production in a competitive pool-based electricity
market and faces uncertainties related to demand growth, its production level, and
its investment cost. Adopting a multistage approach, a stochastic complementarity
model is formulated to determine the optimal capacity to be built by the investor to
maximize its expected profit while minimizing its profit volatility. An example con-
sidering a wind power investor is presented to illustrate the working of the proposed
model.

14.1 Investment in Stochastic Electricity-Production Facilities

14.1.1 Generation Capacity Investment

Generation capacity investment constitutes a relevant problem in electricity mar-
kets. To tackle this problem two different approaches are generally considered: a
centralized framework [1] and a market framework [2].

The first of these approaches, i.e., a centralized framework [1], usually deter-
mines the generation capacity expansion plan based on a worst scenario case and
considering the whole electric energy system. This approach, although relevant for
the efficient operation of the system as a whole, is not of interest for a particular
investor aiming at maximizing its own expected profit.

The market approach represents the operation of the market in which produc-
ers and consumers participate. This approach allows representing the perspective
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of a profit-oriented investor. Within this framework, there are several approaches
for the generation capacity expansion (or investment) problem, e.g., static [3] or
dynamic [4]; strategic [2] or competitive [5]; and with [6] or without network rep-
resentation [7].

In this chapter, a market framework and a multistage approach are considered to
address a particular but important case of the generation capacity investment prob-
lem: the investment in stochastic electricity-production facilities. Stochastic units
are those units whose production is variable and uncertain, e.g., solar and wind
power units. Note that the production of stochastic units depends on the availabil-
ity of a natural resource such as solar intensity or wind speed. Thus, conventional
models have to be modified to incorporate the uncertain production characteristics
of this type of generation units [8, 9].

14.1.2 Uncertainty

There are several parameters that influence investment decisions, e.g., the future
demand growth, equipment outages, investment costs, generation costs, and the pro-
duction of stochastic units. Most of these parameters are subject to uncertainty and
thus, an adequate modeling of such uncertainty is a must to achieve effective invest-
ment decisions.

Among the parameters subject to uncertainty, those with the greatest influence in
the investment in stochastic electricity-production facilities are the demand growth,
the production of stochastic units, and the investment cost. This is so because:

1. Under a market framework, the demand in the system and its growth directly
influence the market clearing prices that in turn influence the investment deci-
sions.

2. The uncertainty in the production of stochastic units influences the required
capacity to be installed.

3. As the technology related to stochastic units matures, their future investment
costs are expected to decrease. However, the decrease rate is uncertain, which
has a significant impact on investment decisions.

The above sources of uncertainty are represented through a set of scenarios
within a stochastic programming model [10, 11], an appropriate model to address
this type of investment problems. Section 14.2 of this chapter provides the method-
ologies used for modeling of different sources of uncertainty.

14.1.3 Planning Horizon

A multistage approach is adopted by considering a planning horizon comprising a
specific number of time periods. Each time period spans a known number of years.
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This multistage approach allows making investment decisions at different points in
time and provides flexibility to adapt to changes in the conditions that influence the
investment decisions.

In order to characterize the different sources of uncertainty, each time period is
represented by a single year within the corresponding period (e.g., the last year),
which is considered the reference year of the whole time period.

The investment decisions concerning the capacities of the stochastic production
units to be built are made at the beginning of each time period.

14.1.4 Risk Management

The key objective of a private investor is maximizing its expected profit. However,
maximizing expected profit may lead to extreme cases in which the investor achieves
a very high profit in some scenarios but incurs very high losses in others. The inv-
estor may not be able to assume such losses and might prefer to reduce its profit
volatility despite having to reduce its expected profit as well. Thus, it is important
to introduce a metric to control the risk of profit volatility. To do so, we use the
conditional value-at-risk (CVaR) metric [12, 13] that can be easily implemented
through linear constraints.

In a profit maximization problem, the CVaR is defined as the expected value of
the profit smaller than the (1−α)-quantile of the profit distribution, being α a given
confidence level.

There are two manners of implementing the CVaR in a multistage model such
as the one considered in this chapter. The first one seeks to reduce the risk of profit
volatility per period. The second one seeks to reduce this risk throughout the whole
planning horizon. This second approach is used in this chapter.

14.1.5 Complementarity Model

The considered investor aims at making investment decisions to maximize its exp-
ected profit from selling its production in the market while minimizing its profit
volatility. However, these investment decisions are related to the market in which the
investor sells its production once the newly built capacity is ready to operate. Note
that the production of the newly built units influences the clearing of the market
and that the outputs of the market influence in turn the investment decisions. Thus,
the investment model must incorporate the clearing of the market as an additional
constraint.

However, note that the market clearing is itself an optimization problem that
seeks to maximize social welfare or to minimize generation cost. Thus, the invest-
ment model becomes an optimization problem constrained by other optimization
problem, i.e., a complementarity model.
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Figure 14.1 illustrates the structure of this complementarity model which
comprises an upper-level problem and a collection of lower-level problems, i.e.,
a bi-level model. On one hand, the upper-level problem is an optimization prob-
lem that aims at maximizing the investor expected profit while minimizing its profit
volatility. On the other hand, the lower-level problems represent the market clearing
under different operating conditions, scenarios, and time periods. Note that invest-
ment decisions influence the market clearing (through the production of the newly
built units), and that the investor obtains the clearing prices from the market clearing
problems, which in turn influence its investment decisions.

Fig. 14.1 Complementarity model structure

14.1.6 Chapter Organization

The remaining of this chapter is organized as follows. Section 14.2 describes the
modeling of the sources of uncertainty. Section 14.3 provides a risk-constrained
multistage bi-level model to decide the optimal investment in stochastic electricity-
production facilities, as well as a procedure to transform such bi-level model into
a mathematical program with equilibrium constraints (MPEC) and then into a
mixed-integer linear programming (MILP) model. Both Sects. 14.2 and 14.3 include
clarifying examples to illustrate the uncertainty modeling and the bi-level model,
respectively. Finally, Sect. 14.4 summarizes the chapter and provides some relevant
remarks and conclusions.
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14.2 Uncertainty Modeling

This section describes the modeling of the sources of uncertainty that affect the
investment decisions in stochastic electricity-production facilities. The explanations
below are given for the particular case of investment in wind power facilities. How-
ever, extending the analysis to consider alternative stochastic-production units is
straightforward.

14.2.1 Sources of Uncertainty

As explained in Sect. 14.1.2 of this chapter, there are three main sources of uncer-
tainty that influence wind power investment decisions, namely, the future demand
growth, the wind power production, and the future investment cost.

For the sake of simplicity and due to their high impact on investment decisions,
only these three sources of uncertainty are considered below. However, additional
sources of uncertainty (e.g., generation costs and equipment outages) can be con-
sidered in a similar manner.

14.2.2 Demand and Wind Power Production Uncertainty

The demand and the wind power production are usually anticorrelated since low
demands (during the night) generally correspond to high wind power productions
and high demands (during the day) generally correspond to low wind power produc-
tions. Thus, the uncertain character of both parameters has to be addressed jointly
in order to account for this negative correlation.

The aim of the wind power investor is to decide the wind power units to be
built throughout an existing electric energy system at the beginning of each of the
time periods comprising the planning horizon. As explained in Sect. 14.1.3, each of
these time periods is modeled using a representative year. The demand and wind
power production uncertainties throughout the representative years are modeled as
described below.

We consider hourly historical values (throughout one or several past years) of
demand and wind speed in different locations of the electric energy system under
study. First, wind speed values are transformed into wind power capacity factors
(defined as the wind power production per MW) through appropriate wind
speed/wind power production curves. Second, demand values in each location are
divided by the peak demand in each particular location, rendering a set of values
of demand factors. We obtain hourly values of the demand factor and of the wind
power capacity factor in each location of the electric energy system under study
which represent different operating conditions.
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This set of values represents the historical demand and wind power production
profile in the electric energy system under study. This profile also accounts for the
correlation among demand and wind power capacity factors. For the sake of simplic-
ity, this demand and wind power production profile is considered fixed throughout
the whole planning horizon. Thus, these historical demand and wind power capacity
factors are considered to represent the demand and wind power production uncer-
tainty in the representative year of each time period of the planning horizon. It is
important to emphasize that wind power capacity factors do not change through-
out the years but the demand grows. However, for simplicity we assume that all
demands grow in the same proportion, i.e., the geometry remains unaltered.

Considering all historical operating conditions as input data of the investment
model may result in intractability, particularly for realistic electric energy systems.
Thus, the K-means clustering method [14, 15] is used to transform the historical
data into a reduced data set that maintains the information of and the correlation
among the demand and the wind power capacity factors of the historical data.

The working of the K-means technique to reduce the historical operating condi-
tion is summarized below.

We define a cluster as a group of observations (e.g., demand and wind power
capacity factors in different locations) that are similar among them but different
from the observations in other clusters. Additionally, we define the centroid of each
cluster as the mean value of the observations allocated to the cluster. Given these
definitions, the K-means follows the iterative algorithm below:

1. Select an appropriate number of clusters.
2. Define initial clusters and the initial centroid of each cluster, e.g., randomly allo-

cating the observations to different clusters.
3. Compute the distances (e.g., quadratic distances) between each historical obser-

vation and each cluster centroid.
4. Allocate each historical observation to the closest cluster according to the calcu-

lated distances.
5. Recalculate the centroid of each cluster.

Steps 3–5 above are repeated iteratively until there is no change in the composi-
tions of the clusters in two consecutive iterations.

Note that the output of the K-means technique is a set of clusters, each one
defined by its centroid and the number of historical observations allocated to it. The
centroids comprise the values of the demand and the wind power capacity factors in
each location of the system under study, which represent the system operating con-
dition. On the other hand, the number of historical observations allocated to each
cluster gives the weight of the cluster. As we represent each period using a refer-
ence year, we define this weight as the number of hours in the representative year of
each period that are represented by each cluster, i.e., the weight of each operating
condition in each representative year. Additional details of the K-means technique
can be found in [14].

Demand and wind power capacity factors as per unit values are considered fixed
throughout the planning horizon. However, this is not the case for the demand and
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the wind power production which generally increase. Such variations have to be
properly represented. On one hand, the wind power production depends on the ins-
talled wind power capacity which is a decision variable of the problem and, thus, its
increase is determined by the solution of the problem. On the other hand, the uncer-
tainty in the demand growth throughout the planning horizon is represented using a
set of scenarios as depicted in the scenario tree of Fig. 14.2. In this particular exam-
ple of two time periods, the scenario tree comprises two demand growth scenario
realizations in the first time period and two demand growth scenario realizations in
the second period for each scenario realization in the first one, which results in four
demand growth scenarios (D1, D2, D3, and D4) for the whole planning horizon.
In this example, there is only one possible investment decision at the beginning of
the planning horizon (i.e., at the beginning of the first period) and two alternative
investment decisions at the beginning of the second period depending on the sce-
nario realization in the first one: one investment decision for scenarios D1 and D2;
and one investment decision for scenarios D3 and D4.

Fig. 14.2 Scenario tree considering uncertainty in demand growth

As explained above, demand and wind power capacity factors are considered
fixed throughout the planning horizon. This assumption implies that all demands
grow in the same proportion. Note that this may not be the case, specially if the
system under study has (or may have in the future) a smart grid technology enabling
the implementation of demand response programs that may play a significant role
in changing the consumer behavior and thus, the geometry of the demand. However,
note that if this is the case, different demand and wind power production profiles
may be considered through additional scenarios.
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14.2.3 Investment Cost Uncertainty

As the wind power technology matures, the future wind power investment cost is
expected to decrease. However, this potential decrease is uncertain and thus, this
uncertainty has to be properly modeled. To do so, we use a set of scenarios to rep-
resent the investment cost uncertainty.

Figure 14.3 depicts an example of a scenario tree representing the investment
cost uncertainty. In this example, there are three possible investment cost scenario
realizations for the second period (IC1, IC2, and IC3). In this case, there is a single
investment decision at the beginning of the first period and three alternatives invest-
ment decisions at the beginning of the second one, depending on the investment cost
scenario realization.

Fig. 14.3 Scenario tree considering uncertainty in investment cost

The main difference in the uncertainty modeling of the investment cost and in
the demand growth is that in the first case, the wind power investor knows the actual
investment cost at the time it makes its investment decisions. The investment cost
in the first period is known at the point in time that the investment decisions for
this period are made. However, at this point in time, the investor does not know the
investment cost in the second period. Nevertheles, this investment cost is known at
the time the investor makes its investment decisions. On the other hand, the demand
growth in the first period is not known at the time the wind power investor makes its
investment decisions for this period. Thus, the uncertainty in demand growth usually
entails a higher risk than the uncertainty associated with investment costs.

The demand growth and the investment cost scenarios are generated using app-
ropriate forecasting tools [16, 17].
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14.2.4 Decision Sequence: Scenario Tree

The sources of uncertainty described in Sects. 14.2.2 and 14.2.3 above are indepen-
dent and thus, the final scenario tree includes all possible scenario combinations. For
the considered examples in Figs. 14.2 and 14.3, the final scenario tree comprises
twelve scenario realizations (four demand growth scenarios and three investment
cost scenarios) as depicted in Fig. 14.4. In this case, there is a single investment
decision at the beginning of the planning horizon which does not depend on the fut-
ure scenario realizations and six possible investment decisions at the beginning of
the second period depending on the demand growth and the investment cost scenario
realization in the first period (six alternatives).

It is important to note that each of these scenarios comprises a specific number
of clusters (those obtained using the K-means technique and representing different
system operating conditions) for each time period, which account for the demand
and wind power capacity factors variability throughout the reference year of each
period.

Given this framework, the decision sequence is as follows:

1. At the beginning of the planning horizon, i.e., at the beginning of the first time
period, the wind power investor decides the wind power capacity to be built at
this point in time. These investment decisions are here-and-now decisions since
they do not depend on any scenario realization.

2. Once the investment decisions for the first period are made, the market is cleared
for each cluster within each scenario in the first period. From the market clearing
we obtain power productions, power flows, market clearing prices, etc.

3. The first period concludes and the wind power investor knows the actual scenario
realization in this period (i.e., it knows the demand growth in the first period and
the investment cost for the second period). Depending on the scenario realization,
the investor makes its investment decisions for the second period. These are wait-
and-see decisions with respect to the first period since they do depend on the
scenario realization in this period and here-and-now decisions with respect to
the second period (and the following ones if there are more than two) since they
do not depend on the scenario realization in the future periods.

4. Once the investment decisions for the second period are made, the market is
cleared for each cluster within each scenario in the second period.

Finally, steps 3 and 4 are repeated for each time period of the planning horizon
if there were more than two.

14.2.5 Illustrative Example

In order to illustrate the modeling of the different sources of uncertainty, we consider
the three-node electric energy system depicted in Fig. 14.5. This system comprises
three nodes, three demands, three generation units, and three transmission lines.
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Fig. 14.4 Scenario tree considering uncertainty in both demand growth and investment cost

There are two wind zones: North wind zone (comprising nodes 1 and 2) and south
wind zone (node 3).

Data of demand is obtained from aggregated historical data throughout year 2008
in the Iberian Peninsula [18]. The demand values are then divided by the peak
demand to obtain demand factors. On the other hand, historical wind speed data
of the Spanish towns of Tortosa (Northeast Spain) and Tarifa (Southwest Spain) are
considered to characterize the wind speed in the north and south zones, respectively.
These wind speed data are obtained using the databases developed by the University
of Cantabria [19, 20]. To obtain the corresponding wind power capacity factors, we
consider the wind speed/wind power production curve of a Nordex N80/2500 tur-
bine [21]. Finally, we consider a two-period planning horizon, each one comprising
6 years.

14.2.5.1 Clusters

Historical data of demand and wind power capacity factors comprise 8,760 sets of
values (demand and wind power capacity factors in each zone and for each hour
of year 2008). Each set represents a system operating condition. If we use these
historical data as input data of an investment model, we may face intractability.
Thus, we apply the K-means technique explained in Sect. 14.2.2 to reduce these
historical data into a set of clusters.

Table 14.1 provides the demand and wind power capacity factor data of the ten
clusters in which we allocate the historical data. The second column of this table
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gives the demand factors, which for the sake of simplicity are assumed to be the
same at all the nodes of the system. The third and fourth columns provide the wind
power capacity factors in the north and south wind zones, respectively. Both the
demand and wind power capacity factors within each cluster represent a system
operating condition. Finally, the fifth column gives the number of historical obser-
vations that are allocated to each cluster, which represent the weight of each cluster
in the reference year of each period.

Fig. 14.5 Three-node electric energy system

This set of ten clusters covers the information of the historical observations as
well as the correlation among demand and wind power capacity factors in different
zones.

14.2.5.2 Demand Growth Scenarios

First, we assume that the future wind power investment cost is not subject to uncer-
tainty. For this purpose, we consider the scenario depicted in Fig. 14.2 comprising
two demand growth scenario realizations in the first period and two demand growth
scenario realizations in the second period depending on the scenario realization in
the first one.

The probability that the demand in the first period is 15 % higher than the demand
prior to the beginning of the planning horizon is 0.7, while the probability of being
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Table 14.1 Cluster results: demand and wind power capacity factor data

Cluster

Demand
Capacity Number

factors
factors [p.u.] of

[p.u.]
Wind zone hours

North South [h]

1 0.8091 0.0331 0.1211 1712

2 0.7362 0.9191 0.1230 715

3 0.7158 0.7389 0.8100 216

4 0.6674 0.6152 0.0962 477

5 0.6885 0.5308 0.5028 300

6 0.7358 0.0598 0.8771 1312

7 0.7138 0.0406 0.4798 1365

8 0.6214 0.0268 0.0773 1810

9 0.8353 0.2746 0.1266 586

10 0.8286 0.4517 0.0933 267

10 % lower than this demand is 0.3. On the other hand, in the second period, the
demand may be 10 % higher and 5 % lower than the demand in the first period with
probabilities of 0.6 and 0.4, respectively. Table 14.2 summarizes the demand growth
scenario data. The total weight of each scenario is computed as the product of the
probability of occurrence of the demand variations in the first and second periods.

Table 14.2 Uncertainty in demand growth: scenario data

Scenario

Period 1 Period 2
Total

Demand
Weight

Demand
Weight weight

growth (%) growth (%)

D1
+15 0.7

+10 0.6 0.42

D2 −5 0.4 0.28

D3 −10 0.3
+10 0.6 0.18

D4 −5 0.4 0.12

14.2.5.3 Investment Cost Scenarios

In this case we assume that the uncertainty does not affect the demand growth and
we consider the scenario tree depicted in Fig. 14.3, which considers three different
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investment costs in the second period. The probability that the investment cost in
the second period is 15 % higher than that in the first one is 0.2; the probability of
being equal to the investment cost in the first period is 0.4, while the probability that
the investment cost in the second period is 25 % lower than in the first one is 0.4.
Table 14.3 summarizes the investment cost scenario data.

Table 14.3 Uncertainty in investment cost: scenario data

Scenario

Investment cost

Weightvariation in

period 2 (%)

IC1 +15 0.2

IC2 0 0.4

IC3 −25 0.4

14.2.5.4 Demand Growth and Investment Cost Scenarios

Finally, we consider that the uncertainty affects both the demand growth and the
future investment cost. We consider all the scenario combinations of Figs. 14.2
and 14.3 which result in the final scenario tree depicted in Fig. 14.4. Table 14.4
summarizes the scenario data for this case.

There are 12 scenarios for the whole planning horizon as a result of four demand
growth scenarios and three investment cost scenarios. The weight of each scenario
is computed as the weight of the demand growth scenario times the weight of the
investment cost scenario. For example, the weight of scenario D1+IC1 (0.084) is
obtained as the weight of scenario D1 (0.42) times the weight of scenario IC1 (0.2).

14.3 Risk-Constrained Multistage Wind Power Investment

In this section, a risk-constrained multistage model is formulated to determine the
wind power capacity to be built by a wind power investor to maximize its expected
profit while minimizing its profit volatility. This model is based on a bi-level model
which can be recast as a MILP problem.

14.3.1 Notation

The notation of the proposed model is provided below for quick reference.
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Table 14.4 Uncertainty in both demand growth and investment cost: scenario data

Scenario

Period 1 Period 2
Total

Demand Investment cost Demand
weight

growth (%) variation (%) growth (%)

D1+IC1

+15

+15
+10 0.084

D2+IC1 −5 0.056

D1+IC2
0

+10 0.168

D2+IC2 −5 0.112

D1+IC3 −25
+10 0.168

D2+IC3 −5 0.112

D3+IC1

−10

+15
+10 0.036

D4+IC1 −5 0.024

D3+IC2
0

+10 0.072

D4+IC2 −5 0.048

D3+IC3 −25
+10 0.072

D4+IC3 −5 0.048

14.3.1.1 Indices

c Index for clusters
d Index for demands
g Index for generation units (other than candidate wind power units)
l Index for transmission lines
n Index for nodes
r(l) Index of the receiving-end node of line l
s(l) Index of the sending-end node of line l
t Index for time periods
ω Index for scenarios

14.3.1.2 Constants

at Amortization factor in the tth time period
cG

g Marginal cost of the gth generation unit
cinv

t (ω) Wind power investment cost in the tth time period and scenario ω
cmax

t Investment budget in the tth time period
kD

d,c Demand factor of the dth demand in the cth cluster

kW
n,c Wind power capacity factor at node n in the cth cluster

NH
c Number of hours comprising the cth cluster

PD
d,t (ω) Peak load of the dth demand in the tth time period and scenario ω

PG,max
g Capacity of the gth generation unit



14 Investment in Stochastic Electricity 367

PL,max
l Transmission capacity of the lth transmission line

xl Reactance of line l
XW,max

n Maximum wind power capacity that can be built at node n throughout
the planning horizon

α Confidence level used to compute the CVaR
β Weighting parameter used to model the trade-off between expected

profit and CVaR
γ (ω) Weight of scenario ω

14.3.1.3 Variables

PG
g,c,t (ω) Power produced by the gth generation unit in the cth cluster, the tth time

period, and scenario ω
PL

l,c,t (ω) Power flow through the lth transmission line in the cth cluster, the tth
time period, and scenario ω

PW
n,c,t (ω) Wind power production at node n in the cth cluster, the tth time period,

and scenario ω
XW

n,t (ω) Wind power capacity to be built at node n at the beginning of the tth
time period, and scenario ω

δn,c,t (ω) Voltage angle at node n in the cth cluster, the tth time period, and sce-
nario ω

ϑn,c,t (ω) LMP at node n in the cth cluster, the tth time period, and scenario ω
η (ω) ,ζ Auxiliary variables used to compute the CVaR

14.3.1.4 Dual Variables

The dual variables below are associated with the following constraints:

χn,c,t (ω) Zero voltage angle at the reference node in the cth cluster, the tth time
period, and scenario ω

λn,c,t (ω) Generation-demand balance at node n in the cth cluster, the tth time
period, and scenario ω

φl,c,t (ω) Power flow through transmission line l in the cth cluster, the tth time
period, and scenario ω

φmax
l,c,t (ω) Capacity of transmission line l in direction s(l)-r(l) in the cth cluster,

the tth time period, and scenario ω
φmin

l,c,t (ω) Capacity of transmission line l in direction r(l)-s(l) in the cth cluster,
the tth time period, and scenario ω

ϕmax
g,c,t (ω) Capacity of generation unit g in the cth cluster, the tth time period, and

scenario ω
ϕmin

g,c,t (ω) Nonnegativity of the production of generation unit g in the cth cluster,
the tth time period, and scenario ω

ξ max
n,c,t (ω) Upper limit of voltage angle at node n in the cth cluster, the tth time

period, and scenario ω
ξ min

n,c,t (ω) Lower limit of voltage angle at node n in the cth cluster, the tth time
period, and scenario ω
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14.3.1.5 Sets

Δ C Set of indices of clusters
Δ G Set of indices of generation units (other than candidate wind power

units)
Δ N Set of indices of nodes
Δ T Set of indices of time periods
Δ ω Set of indices of scenarios
Λ D

n Set of indices of demands located at node n
Λ G

n Set of indices of generation units (other than candidate wind power
units) located at node n

Ψt (ω) Set of parameters defining scenario ω in the tth time period

14.3.2 Bi-level Formulation

The considered risk-constrained multistage wind power investment model is formu-
lated below [9]:

Maximize
ΩU∪ΩL

c,t(ω)

∑
ω∈Δ ω

γ (ω)

{
∑

t∈Δ T

[
∑

c∈Δ C

NH
c ∑

n∈Δ N

ϑn,c,t (ω)PW
n,c,t (ω) −at ∑

n∈Δ N

cinv
t (ω)XW

n,t (ω)

]}

+β

(
ζ − 1

1−α ∑
ω∈Δ ω

γ (ω)η (ω)

)
(14.1a)

subject to

0 ≤ PW
n,c,t (ω)≤ kW

n,c ∑
b≤t

XW
n,t (ω) , ∀n,∀c,∀t,∀ω (14.1b)

∑
n∈Δ N

cinv
t (ω)XW

n,t (ω)≤ cmax
t , ∀t,∀ω (14.1c)

0 ≤ ∑
t∈Δ T

XW
n,t (ω)≤ XW,max

n , ∀n,∀ω (14.1d)

ϑn,c,t (ω) = λn,c,t (ω) , ∀n,∀c,∀t,∀ω (14.1e)

XW
n,t (ωi) = XW

n,t (ωĩ) , ∀n,∀t,∀ωi,∀ωĩ : Ψb (ωi) =Ψb (ωĩ) ,∀b < t (14.1f)

ζ − ∑
t∈Δ T

[
∑

c∈Δ C

NH
c ∑

n∈Δ N

ϑn,c,t (ω)PW
n,c,t (ω)

−at ∑
n∈Δ N

cinv
t (ω)XW

n,t (ω)

]
≤ η (ω) , ∀ω (14.1g)

η (ω)≥ 0, ∀ω , (14.1h)
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where λn,c,t (ω) ,∀n,∈ arg

{
Minimize

ΩL
c,t(ω)

∑
g∈Δ G

cG
g PG

g,c,t (ω) (14.2a)

subject to

∑
g∈ΛG

n

PG
g,c,t (ω)+PW

n,c,t (ω)− ∑
l|s(l)=n

PL
l,c,t (ω)+ ∑

l|r(l)=n

PL
l,c,t (ω)

= ∑
d∈ΛD

n

PD
d,t (ω)kD

d,c : λn,c,t (ω) , ∀n (14.2b)

PL
l,c,t (ω) =

1
xl

(
δs(l),c,t (ω)− δr(l),c,t (ω)

)
: φl,c,t (ω) , ∀l (14.2c)

−PL,max
l ≤ PL

l,c,t (ω)≤ PL,max
l : φmin

l,c,t (ω) ,φmax
l,c,t (ω) , ∀l (14.2d)

0 ≤ PG
g,c,t (ω)≤ PG,max

g : ϕmin
g,c,t (ω) ,ϕmax

g,c,t (ω) , ∀g (14.2e)

−π ≤ δn,c,t (ω)≤ π : ξ min
n,c,t (ω) ,ξ max

n,c,t (ω) , ∀n \ n: ref. (14.2f)

δn,c,t (ω) = 0 : χn,c,t (ω) , n: ref. (14.2g)}
,∀c,∀t,∀ω ,

where

Ω U =
{

XW
n,t (ω) ,∀n,∀t,∀ω ;PW

n,c,t (ω) ,ϑn,c,t (ω) ,∀n,∀c,∀t,∀ω ;η (ω) ,∀ω ; ζ
}
,

(14.3)

and

Ω L
c,t (ω) =

{
PG

g,c,t (ω) ,∀g;PL
l,c,t (ω) ,∀l;δn,c,t (ω) ,∀n;λn,c,t (ω) ,∀n;φl,c,t (ω) ,

φmin
l,c,t (ω) ,φmax

l,c,t (ω) ,∀l;ϕmin
g,c,t (ω) ,ϕmax

g,c,t (ω) ,∀g;ξ min
n,c,t (ω) ,ξ max

n,c,t (ω) ,

∀n \ n: ref.; χn,c,t (ω) , n: ref.
}
,∀c,∀t,∀ω . (14.4)

The bi-level model (14.1) and (14.2) comprises an upper-level problem (14.1)
and a set of lower-level problems (14.2), one for each cluster c, time period t, and
scenario ω . The dual variable associated with each constraint of the lower-level
problems is indicated after a colon.

The optimization variables of the lower-level problems are the variables in sets
Ω L

c,t (ω), ∀c, ∀t, ∀ω . The lower-level problems constraint the upper-level one and
thus, the optimization variables of the upper-level problem include variables in sets
Ω L

c,t (ω), ∀c, ∀t, ∀ω and additional variables in set Ω U.
The upper-level problem (14.1) aims at maximizing the expected profit achieved

by the wind power investor plus a coefficient times the CVaR. The CVaR is the
metric used to control the risk of profit volatility [12, 13].
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The objective function (14.1a) of the upper-level problem comprises three terms:

1. Each term ϑn,c,t (ω)PW
n,c,t (ω) is the revenue achieved by the wind power investor

for selling its wind power production in the pool per cluster, time period, and
scenario. The wind power investor is paid the locational marginal price (LMP)
of the node at which wind power is produced times the wind power production.
Since each time period is represented by a reference year, these revenues are
multiplied by the number of hours within each cluster to obtain annual revenues
in each time period and for each scenario.

2. Each term cinv
t (ω)XW

n,t (ω) is the investment cost incurred by the wind power inv-
estor per time period and scenario for building new wind power capacity. These
terms are multiplied in each period by an amortization rate at to make investment
costs and revenues comparable across time periods.

Terms in items 1 and 2 are multiplied in each scenario by the weight of the
corresponding scenario to obtain expected profits.

3. Term β

(
ζ − 1

1−α ∑
ω∈Δ ω

γ (ω)η (ω)

)
is a coefficient β times the CVaR. Coef-

ficient β is a weighting factor that models the trade-off between expected profit
and CVaR.

For the sake of simplicity, we consider that all the monetary values are referred
to a single point in time and thus, it is not necessary to multiply them by discount
rates.

Constraints (14.1b)–(14.1e) represent the wind power operation and investment
limits and conditions for all clusters, periods, and scenarios. Constraints (14.1b)
limit the wind power production to the wind power availability at each node and for
each cluster, time period, and scenario. Note that the wind power capacity built at the
beginning of any time period is available during this and the remaining periods of the
planning horizon. Constraints (14.1c) impose a cap on investment budget for each
time period and scenario. Equations (14.1d) enforce the nonnegativity of the wind
power capacity to be built and limit it to a maximum throughout the planning hori-
zon. Finally, constraints (14.1e) state that the price paid to the wind power investor
for its production is the LMP of the node at which wind power is produced. These
LMPs are obtained as the dual variables associated with the balance constraints in
the lower-level problems for each node, cluster, time period, and scenario.

Constraints (14.1f) are non-anticipativity constraints that avoid anticipating inf-
ormation. They impose that the wind power capacity to be built at the beginning
of a time period depends on the scenario realization of the previous periods, but
it is unique for all the possible scenario realizations in the current and future peri-
ods [22].

Finally, constraints (14.1g) and (14.1h) allow computing the CVaR metric
through linear expressions. Further information on the CVaR is available in [12, 13].

Additionally, the upper-level problem is also constrained by a set of lower-level
problems (14.2) which represent the clearing of the pool for each cluster, time
period, and scenario.
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The objective function (14.2a) to be maximized is the social welfare, which
is equivalent to minimizing generation costs since demands are considered fixed
within each cluster, time period, and scenario; wind power investor offers its pro-
duction at zero price; and producers other than the wind power investor offer their
productions at their marginal costs.

Constraints of these lower-level problems include equalities (14.2b) that repre-
sent the generation-demand balance at each node of the system; equalities (14.2c)
that define the power flows through transmission lines, limited to the transmission
capacity of the corresponding lines by constraints (14.2d); constraints (14.2e) that
impose upper and lower bounds on the power produced by generation units other
than the wind power units; and finally constraints (14.2f) and (14.2g) that limit the
voltage angles and fix equal to zero the voltage angle at the reference node, re-
spectively. Note that the network topology is explicitly modeled by (14.2b)–(14.2d)
using a direct current (dc) representation and disregarding losses [23].

14.3.3 MPEC Formulation

Bi-level model (14.1) and (14.2) is transformed into an MPEC following the proce-
dure explained below.

Lower-level problems (14.2) represent the market clearing under different clus-
ters, time periods, and scenarios and constraint the upper-level problem (14.1). Since
each of these lower-level problems is linear and thus convex, the Karush–Kuhn–
Tucker (KKT) conditions are necessary and sufficient optimality conditions [24].
Thus, each lower-level problem can be replaced by its KKT optimality conditions,
which are in turn included as additional constraints of the upper-level problem ren-
dering an MPEC, whose formulation is provided below:

Maximize
ΩU∪ΩL

c,t(ω)

(14.1a) (14.5a)

subject to

Constraints (14.1b)–(14.1h) (14.5b){
Constraints (14.2b)–(14.2g) (14.5c)

cG
g,t −λn(g),c,t (ω)+ϕmax

g,c,t (ω)−ϕmin
g,c,t (ω) = 0, ∀g (14.5d)

λs(l),c,t (ω)−λr(l),c,t (ω)−φl,c,t (ω)+φmax
l,c,t (ω)−φmin

l,c,t (ω) = 0, ∀l (14.5e)

∑
l|s(l)=n

1
xl

φl,c,t (ω)− ∑
l|r(l)=n

1
xl

φl,c,t (ω)+ ξ max
n,c,t (ω)− ξ min

n,c,t (ω) = 0,

∀n \ n: ref. (14.5f)
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∑
l|s(l)=n

1
xl

φl,c,t (ω)− ∑
l|r(l)=n

1
xl

φl,c,t (ω)− χn,c,t (ω) = 0, n: ref. (14.5g)

0 ≤ φmax
l,c,t (ω)⊥ PL,max

l − fl,c,t (ω)≥ 0, ∀l (14.5h)

0 ≤ φmin
l,c,t (ω)⊥ fl,c,t (ω)+PL,max

l ≥ 0, ∀l (14.5i)

0 ≤ ϕmax
g,c,t (ω)⊥ PG,max

g −PG
g,c,t (ω)≥ 0, ∀g (14.5j)

0 ≤ ϕmin
g,c,t (ω)⊥ PG

g,c,t (ω)≥ 0, ∀g (14.5k)

0 ≤ ξ max
n,c,t (ω)⊥ π − δn,c,t (ω)≥ 0, ∀n \ n: ref. (14.5l)

0 ≤ ξ min
n,c,t (ω)⊥ δn,c,t (ω)+π ≥ 0, ∀n \ n: ref. (14.5m)}

,∀c,∀t,∀ω .

MPEC (14.5) above is a single-level problem but includes different sources of
nonlinearities, namely, the objective function (14.5a), constraints (14.1g), and the
complementarity constraints (14.5h)–(14.5m). The following subsection explains
how to transform this MPEC into an MILP problem that can be solved using tradi-
tional branch-and-cut techniques.

14.3.4 MILP Formulation

The MPEC (14.5) above has the following nonlinearities:

1. Each term ∑
n∈ΩN

ϑn,c,t (ω)PW
n,c,t (ω) in the objective function (14.5a) and in con-

straints (14.1g).
2. The complementarity constraints of the KKT conditions (14.5h)–(14.5m).

Each term ∑
n∈ΩN

ϑn,c,t (ω)PW
n,c,t (ω) can be replaced by an exact equivalent linear

expression using the strong duality equality (SDE) as explained below [25]. The
SDE states that if a problem is convex (as it is the case of each of the lower-level
problems), the objective functions of the primal and dual problems have the same
value at the optimum:

∑
g∈ΩG

cG
g,tP

G
g,c,t (ω) = ∑

n∈ΩN

λn,c,t (ω)

⎡
⎣ ∑

d∈ΛD
n

PD
d,t (ω)kD

d,c −PW
n,c,t (ω)

⎤
⎦

− ∑
l∈ΩL

⎡
⎣φmax

l,c,t (ω)+φmin
l,c,t (ω)

⎤
⎦PL,max

l − ∑
g∈ΩG

ϕmax
g,c,t P

G,max
g

− ∑
n∈ΩN\n: ref.

⎡
⎣ξ max

n,c,t (ω)+ ξ min
n,c,t (ω)

⎤
⎦π , ∀c,∀t,∀ω . (14.6)
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Since ϑn,c,t (ω)= λn,c,t (ω), ∀n, ∀c, ∀t, ∀ω , as stated in constraints (14.1e), (14.6)
allows reformulating each term ∑

n∈ΩN

ϑn,c,t (ω)PW
n,c,t (ω) as a function of exclusively

linear terms:

∑
n∈ΩN

ϑn,c,t (ω)PW
n,c,t (ω) = ∑

n∈ΩN

λn,c,t (ω) ∑
d∈ΛD

n

PD
d,t (ω)kD

d,c

− ∑
l∈ΩL

⎡
⎣φmax

l,c,t (ω)+φmin
l,c,t (ω)

⎤
⎦PL,max

l − ∑
g∈ΩG

ϕmax
g,c,t P

G,max
g

− ∑
n∈ΩN\n: ref.

⎡
⎣ξ max

n,c,t (ω)+ ξ min
n,c,t (ω)

⎤
⎦π − ∑

g∈ΩG

cG
g,tP

G
g,c,t (ω) , ∀c,∀t,∀ω .

(14.7)

On the other hand, the complementarity constraints of the KKT optimality con-
ditions (14.5h)–(14.5m) have the form 0 ≤ e ⊥ h ≥ 0. These terms can be replaced
by the following exact equivalent linear expressions based on the Fortuny-Amat
transformation [26]:

e ≤ Mu (14.8a)

h ≤ M (1− u) (14.8b)

e,h ≥ 0 (14.8c)

u ∈ {0,1} , (14.8d)

where M is a sufficiently large positive constant [26].
Using (14.7) and (14.8), the risk-constrained multistage wind power investment

problem can be finally formulated as the MILP problem below:
Maximize

ΩU∪ΩL
c,t(ω)∪ΩA

c,t (ω)

∑
ω∈Δ ω

γ (ω)

{
∑

t∈Δ T

[
∑

c∈Δ C

NH
c

⎛
⎝ ∑

n∈ΩN

λn,c,t (ω) ∑
d∈ΛD

n

PD
d,t (ω)kD

d,c

− ∑
l∈ΩL

⎛
⎝φmax

l,c,t (ω)+φmin
l,c,t (ω)

⎞
⎠PL,max

l − ∑
g∈ΩG

ϕmax
g,c,t P

G,max
g

− ∑
n∈ΩN\n: ref.

⎛
⎝ξ max

n,c,t (ω)+ ξ min
n,c,t (ω)

⎞
⎠π − ∑

g∈ΩG

cG
g,tP

G
g,c,t (ω)

⎞
⎠

− at ∑
n∈Δ N

cinv
t (ω)XW

n,t (ω)

]}
+β

(
ζ − 1

1−α ∑
ω∈Δ ω

γ (ω)η (ω)

)
(14.9a)
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subject to

Constraints (14.1b)–(14.1f) and (14.1h) (14.9b)

ζ − ∑
t∈Δ T

⎡
⎣ ∑

c∈Δ C

NH
c

⎛
⎝ ∑

n∈ΩN

λn,c,t (ω) ∑
d∈ΛD

n

PD
d,t (ω)kD

d,c

− ∑
l∈ΩL

⎛
⎝φmax

l,c,t (ω)+φmin
l,c,t (ω)

⎞
⎠PL,max

l − ∑
g∈ΩG

ϕmax
g,c,t P

G,max
g

− ∑
n∈ΩN\n: ref.

⎛
⎝ξ max

n,c,t (ω)+ ξ min
n,c,t (ω)

⎞
⎠π − ∑

g∈ΩG

cG
g,tP

G
g,c,t (ω)

⎞
⎠

−at ∑
n∈Δ N

cinv
t (ω)XW

n,t (ω)

⎤
⎦≤ η (ω) , ∀ω (14.9c)

{
Constraints (14.2b)–(14.2g) and (14.5d)–(14.5g) (14.9d)

φmax
l,c,t (ω)≤ Mφ ,maxuφ ,max

l,c,t (ω) , ∀l (14.9e)

PL,max
l − fl,c,t (ω)≤ Mφ ,max

(
1− uφ ,max

l,c,t (ω)
)
, ∀l (14.9f)

φmin
l,c,t (ω)≤ Mφ ,minuφ ,min

l,c,t (ω) , ∀l (14.9g)

fl,c,t (ω)+PL,max
l ≤ Mφ ,min

(
1− uφ ,min

l,c,t (ω)
)
, ∀l (14.9h)

ϕmax
g,c,t (ω)≤ Mϕ,maxuϕ,max

g,c,t (ω) , ∀g (14.9i)

PG,max
g −PG

g,c,t (ω)≤ Mϕ,max (1− uϕ,max
g,c,t (ω)

)
, ∀g (14.9j)

ϕmin
g,c,t (ω)≤ Mϕ,maxuϕ,min

g,c,t (ω) , ∀g (14.9k)

PG
g,c,t (ω)≤ Mϕ,min

(
1− uϕ,min

g,c,t (ω)
)
, ∀g (14.9l)

ξ max
n,c,t (ω)≤ Mξ ,maxuξ ,max

n,c,t (ω) , ∀n \ n: ref. (14.9m)

π − δn,c,t (ω)≤ Mξ ,max
(

1− uξ ,max
n,c,t (ω)

)
, ∀n \ n: ref. (14.9n)

ξ min
n,c,t (ω)≤ Mξ ,minuξ ,min

n,c,t (ω) , ∀n \ n: ref. (14.9o)

δn,c,t (ω)+π ≤ Mξ ,min
(

1− uξ ,min
n,c,t (ω)

)
, ∀n \ n: ref. (14.9p)

φmax
l,c,t (ω) ,φmin

l,c,t (ω)≥ 0, ∀l (14.9q)

ϕmax
g,c,t (ω) ,ϕmin

g,c,t (ω)≥ 0, ∀g (14.9r)

ξ max
n,c,t (ω) ,ξ min

n,c,t (ω)≥ 0, ∀n \ n: ref. (14.9s)

uφ ,max
l,c,t (ω) ,uφ ,min

l,c,t (ω) ∈ {0,1} , ∀l (14.9t)
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uϕ,max
g,c,t (ω) ,uϕ,min

g,c,t (ω) ∈ {0,1} , ∀g (14.9u)

uξ ,max
n,c,t (ω) ,uξ ,min

n,c,t (ω) ∈ {0,1} , ∀n \ n: ref. (14.9v)}
,∀c,∀t,∀ω ,

where Mφ ,max, Mφ ,min, Mϕ,max, Mϕ,min, Mξ ,max, and Mξ ,min are large enough con-
stants [26], and

Ω A
c,t (ωs) =

{
uφ ,max

l,c,t (ω) ,uφ ,min
l,c,t (ω) ,∀l;uϕ,max

g,c,t (ω) ,uϕ,min
g,c,t (ω) ,∀g;uξ ,max

n,c,t (ω) ,

uξ ,min
n,c,t (ω) , ∀n \ n: ref.

}
,∀c,∀t,∀ω , (14.10)

are sets of auxiliary binary variables.

14.3.5 Illustrative Example

14.3.5.1 Data

MILP problem (14.9) is applied to the three-node system depicted in Fig. 14.5. This
system comprises three nodes, one generation unit per node, one demand per node,
and three transmission lines. Node 1 is the reference node.

Table 14.5 provides the generation unit and demand data. The first column gives
the nodes at which generation units and demands are located. The second and
third columns provide the capacity of each generation unit and the correspond-
ing marginal cost, respectively. For the sake of simplicity, both the capacities and
marginal costs are considered fixed throughout the planning horizon. Finally, the
fourth column provides the peak demand at each node of the system prior to the beg-
inning of the planning horizon. These peak demands multiplied by the correspond-
ing demand factors give the demands for each operating condition, time period, and
scenario.

Table 14.5 Generation unit and demand data

Node

Generation units Peak

PG,max
g cG

g demand

[MW] [$/MWh] [MW]

1 150 76 150

2 150 58 120

3 120 65 120
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All transmission lines are considered to have identical parameters with a reac-
tance equal to 0.2 p.u. and a transmission capacity of 100 MW.

Wind power capacity can be built at nodes 2 and 3 up to 300 MW at each node
throughout the planning horizon. Investment costs at the beginning of the planning
horizon are $1,000,000 per MW. The investment budget is considered unlimited.

The planning horizon comprises two time periods of 6 years each. The demand
and wind power capacity factors throughout the reference year of each period are
represented using the ten clusters whose data are provided in Table 14.1. The amor-
tization rates are considered equal to 0.26 and 0.13 in the first and second periods,
respectively.

Regarding the uncertainty in the demand growth and investment costs, we con-
sider the three cases below:

1. Uncertainty only affects demand growth. This case corresponds to the scenario
data provided in Fig. 14.2 and Table 14.2.

2. Uncertainty only affects investment cost. This case corresponds to the scenario
data provided in Fig. 14.3 and Table 14.3.

3. Uncertainty affects both demand growth and investment cost. This case corre-
sponds to the scenario data provided in Fig. 14.4 and Table 14.4.

The subsections below provide the results for the three above cases. MILP prob-
lem (14.9) is solved for two different values of parameter β that realizes the trade-off
between expected profit and risk of profit volatility:

1. β = 0: this case corresponds to a risk-neutral investor. This investor aims at max-
imizing its expected profit regardless of its profit volatility.

2. β = 10: this case corresponds to a risk-averse investor. This investor prefers to
reduce its profit volatility despite the subsequent decrease in its expected profit.

In all cases a confidence level α = 0.95 is considered.
Problem (14.9) is solved using CPLEX 12.2.0.1 [27] under GAMS [28] on a

Linux-based server with four processors clocking at 2.9 GHz and 250 GB of RAM.

14.3.5.2 Results: Uncertainty in Demand Growth

Results corresponding to the scenario data of Fig. 14.2 and Table 14.2 (uncertainty
in demands growth) and for risk-neutral and risk-averse investors are provided in
Table 14.6. The first column provides the value of weighting parameter β . The sec-
ond column indicates the scenarios. The third/fourth and fifth/sixth columns give
the wind power capacity to be built at the beginning of the first/second period at
nodes 2 and 3, respectively.

Note that in this case there are two demand growth scenario realizations in the
first period and two scenario realizations in the second period depending on the sce-
nario realization in the first one. This results in a single investment decision at the
beginning of the planning horizon, which does not depend on any scenario realiza-
tion (i.e., it is a here-and-know investment decision) and two alternative investment
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Table 14.6 Results: uncertainty in demand growth

Case Scenario

Wind power capacity

to be installed [MW]

Node 2 Node 3

Period 1 Period 2 Period 1 Period 2

Risk-neutral
D1

0

0

300

0
D2

(β = 0)
D3

0 0
D4

Risk-averse
D1

0

0

279.7

20.3
D2

(β = 10)
D3

0 0
D4

decisions for the second period, one for scenarios D1 and D2 and other one for sce-
narios D3 and D4 (i.e., they are wait-and-see investment decisions with respect to
the first period and here-and-know with respect to the second one).

Node 3 located in the south zone has better wind power conditions than node
2, located in the north zone. Thus, the wind power investor prefers to build wind
power capacity at node 3 and does not build any wind power capacity at node 2 in
any scenario and time period.

Regarding the differences between the investment decisions of a risk-neutral and
a risk-averse investor, note that the first one builds 300 MW at the beginning of the
planning horizon (which is the maximum wind power capacity that can be installed
at each node for the whole planning horizon) while the risk-averse investor prefers to
build a smaller wind power capacity at the beginning of the first period (279.7 MW)
and wait until the beginning of the second period to decide on further investment:
if the demand in the first period has increased (i.e., scenarios D1 and D2), it builds
20.3 MW that complete the 300 MW capacity; however, if the demand in the first
period has decreased (i.e., scenarios D3 and D4), the wind power investor builds no
additional capacity. This way, the wind power investor reduces its profit volatility.

14.3.5.3 Results: Uncertainty in Investment Cost

Results corresponding to the scenario data of Fig. 14.3 and Table 14.3 (uncertainty
in investment cost) and for risk-neutral and risk-averse investors are provided in
Table 14.7. The first column provides the value of weighting parameter β . The
second column indicates the different scenarios. The third/fourth and fifth/sixth
columns give the wind power capacity to be built at the beginning of the first/second
period at nodes 2 and 3, respectively.
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Table 14.7 Results: uncertainty in investment cost

Case Scenario

Wind power capacity

to be installed [MW]

Node 2 Node 3

Period 1 Period 2 Period 1 Period 2

Risk-neutral
IC1

0

0

267.6

0

(β = 0)
IC2 0 0

IC3 109 32.4

Risk-averse
IC1

0

0

267.6

0

(β = 10)
IC2 0 0

IC3 109 32.4

In this case, there is a single investment decision at the beginning of the first per-
iod and three different investment decisions at the beginning of the second period
depending on the investment cost in the second period with respect to that in the
first one: higher than (scenario IC1), equal to (scenario IC2), or lower than (sce-
nario IC3).

The optimal solution consists of installing 267.6 MW at node 3 at the beginning
of the planning horizon, and then, if the investment cost in the second period has
decreased (i.e., scenario IC3), the wind power investor decides to install 109 and
32.4 MW of additional wind power capacity at nodes 2 and 3, respectively. As in
the case of uncertainty in demand growth, the wind power investor prefers to install
wind power capacity at node 3, which has better wind power conditions than node 2.

In this case, there are no differences between the optimal solutions of the
risk-neutral and the risk-averse investors. This is so because at the time the wind
power investor makes its investment decisions, it knows the actual investment costs.

14.3.5.4 Results: Uncertainty in Both Demand Growth and Investment Cost

Results corresponding to the scenario data of Fig. 14.4 and Table 14.4 (uncertainty
in both demand growth and investment cost) and for risk-neutral and risk-averse
investors are provided in Table 14.8. The first column provides the value of the
weighting parameter β . The second column indicates the different scenarios. The
third/fourth and fifth/sixth columns give the wind power capacity to be built at
the beginning of the first/second period at nodes 2 and 3, respectively.

This case is a combination of the two previous cases since it considers all possible
scenario combinations. The results show that, for the risk-neutral case, the wind
power investor decides to build the whole 300 MW at node 3 at the beginning of
the planning horizon and to build 132.9 and 63.7 MW at node 2 at the beginning of
the second period in scenarios D1+IC3/D2+IC3 and D3+IC3/D4+IC3, respectively.
That is, it only builds wind power capacity at node 2 if the investment cost in the
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Table 14.8 Results: uncertainty in both demand growth and investment cost

Case Scenario

Wind power capacity

to be installed [MW]

Node 2 Node 3

Period 1 Period 2 Period 1 Period 2

D1+IC1

0

0

300

0
D2+IC1

D1+IC2
0 0

D2+IC2

Risk-neutral D1+IC3
132.9 0

D2+IC3

D3+IC1
0 0

(β = 0) D4+IC1

D3+IC2
0 0

D4+IC2

D3+IC3
63.7 0

D4+IC3

D1+IC1

0

0

279.7

20.3
D2+IC1

D1+IC2
0 20.3

D2+IC2

Risk-averse D1+IC3
132.9 20.3

D2+IC3

D3+IC1
0 0

(β = 10) D4+IC1

D3+IC2
0 0

D4+IC2

D3+IC3
63.7 20.3

D4+IC3

second period has decreased with respect to that in period 1. Moreover, the investor
builds higher wind power capacity if the demand in the first period has increased
(i.e., scenarios D1 and D2) than if the demand in the first period has decreased (i.e.,
scenarios D3 and D4).

Regarding risk-averse results, the wind power investor prefers in this case to build
lower wind power capacity at node 3 at the beginning of the planning horizon than
in the risk-neutral case and to wait until it knows the scenario realization in period 1.
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Depending on this scenario realization it decides whether or not to build additional
capacity.

Finally, Fig. 14.6 depicts the efficient frontier in this case. The efficient frontier
shows how the expected profit decreases as the CVaR increases, as a consequence
of changes in the weighting parameter β . Note that as parameter β increases, the
wind power investor reduces its profit. However, it also reduces its profit volatility,
i.e., it increases its CVaR.
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Fig. 14.6 Efficient frontier for the case of uncertainty in both demand growth and investment cost

14.3.5.5 Computational Issues

The computational time required for solving MILP problem (14.9) for the case stud-
ies analyzed in the previous subsections is less than 5 s in all cases. However, if
problem (14.9) is considered for systems of realistic size and a large number of
scenarios are considered as well, it is expected that the computational time drasti-
cally increases due mainly to the number of binary variables required to linearize
the complementarity constraints.

Nevertheless, note that if investment decisions Xn,t (ω), ∀n, ∀t, ∀ω , and auxiliary
variable ζ are fixed to given values, MILP problem (14.9) decomposes by scenario
ω , and Benders’ decomposition can be applied [29] to reduce the computational
burden.
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14.4 Summary and Conclusions

In this chapter we provide a risk-constrained multistage decision-making model
to determine the optimal generation investment in stochastic electricity-production
facilities. This model is a stochastic bi-level problem that incorporates the clear-
ing of a pool-based electricity market in which the investor sells the production of
the newly built capacity. This investor aims at maximizing its expected profit while
minimizing its profit volatility.

The multistage approach allows making investment decisions in different points
in time to adapt to eventual changes in market and investment cost conditions. In this
sense, we consider a planning horizon comprising a number of time periods, each
one spanning a specific number of years. Investment decisions, involving stochastic
capacity to be built in different locations, can be made at the beginning of each of
these time periods.

The risk-constrained approach allows controlling the risk of profit volatility.
To do so, the CVaR metric is used to quantify the risk. A weighting parameter in the
objective function of the problem allows modeling the trade-off between expected
profit and profit volatility and allows obtaining different investment strategies for
different risk levels.

The stochastic approach allows incorporating in the model different sources of
uncertainty though appropriate scenario trees that represent different realizations of
the uncertain parameters.

A study pertaining to wind power investment is presented. In this study, three
sources of uncertainty affect the investment decisions: the demand growth, the wind
power production, and the investment cost.

Finally, from the theoretical modeling and the study carried out, the conclusions
below are in order:

1. A risk-constrained framework is an appropriate approach for investment
decision-making since it allows controlling the risk of profit volatility and gener-
ally prevents the investor to incur losses.

2. A multistage approach is necessary since demand growth and investment cost
are subject to variations in the future and having the possibility of investing in
different points in time is advantageous.

3. The resulting bi-level model can be formulated as an MILP problem, which can
be solved using available branch-and-cut techniques.

4. The model is computationally tractable provided that the size of the system under
study and the number of scenarios are moderate. For large systems and a large
number of scenarios, decomposition techniques can be applied to reduce the
computational burden.
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