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Preface

Energy production, delivery, and trading developed from simple supply chains with
one producer, owning the entire delivery network, at the beginning of the twentieth
century to the very complex structures of today. Moden energy systems consist of
interconnected producers, huge transportation networks, managed by independent
system operators, and exchange markets on which spot products as well as futures
and other types of derivatives are traded. By complexity, such modern systems are
subject to many different risks, such as technical risk in production, transportation
and delivery, operational risk for the system operators as well as market risks for
traders and political and other long-term risks in strategical management.

This book attempts to give an overview over these types of risk, and many of
its chapters describe how modern risk management methods may be applied. All
management decisions have to be made in situations, where not all relevant data are
precisely known. Therefore decision making under uncertainty is the methodologi-
cal background and many papers of this book use multistage stochastic optimization
as a basic tool for analysis.

The book is divided into four parts. Part I is devoted to energy markets, in par-
ticular electricity markets. Chapter 1 by P. Gross, R. Kovacevic, and G. Pflug gives
a first, nontechnical, overview of energy markets and their main properties. Both
physical and financial products are discussed. R. D’Ecclesia gives an introduction to
basic price models for energy commodity prices in Chap. 2. In Chap. 3, F. Paraschiv
reviews modeling approaches for electricity price processes and also applies ex-
treme value theory to the tails of the price changes.

In energy risk management it is important to keep in mind the whole production,
storing, and distribution process with all related economic and physical restrictions.
This makes a big difference to purely financial markets. Part II therefore deals
with optimal decisions in managing energy systems. Because the resulting opti-
mization problems are typically difficult to deal with, algorithms are an important
issue. In Chap. 4, M. Densing gives a review of hydropower dispatch models and
discusses two models for pumped storage plants and related case studies in deep
detail. A. Philpott, A. Dallagi, and E. Gallet then discuss two classes of algorithms,
heuristic decomposition and cutting planes, in Chap. 5. These algorithms are again
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vi Preface

applied to hydroelectric generation planning. R. E. C. Gonçalves, M. Gendreau, and
E. C. Finardi widen the scope and analyzes combined hydrothermal production in
Chap. 6. This chapter discusses decomposition techniques for multistage stochastic
programs as far as algorithms are concerned. A. Eichhorn then extends the spectrum
of production sources in Chap. 7 and includes renewables as well as dedicated en-
ergy storages. In Chap. 8 by A. S. Werner, A. Pichler, K. T. Midthun, L. Hellemo,
and A. Tomasgard the focus changes to stochastic investment and operational opti-
mization models for natural gas transport systems. Convenient risk measures and
a new tree structure for modeling the related stochastic processes are discussed
in detail. Decision making in the operation of electricity networks is treated in
Chap. 9 by A. Grothey, W. Bukhsh, K. I. M. McKinnon, and P. A. Trodden, who
consider good islanding decisions in unstable network situations. The issue of nat-
ural gas transmission and distribution is again widened by J. P. Luna, C. Sagasti-
zabal, and M. Solodov in Chap. 10. They take into account market equilibria for
profit-maximizing agents both in deterministic and stochastic settings. In particular
the impact of market power on equilibrium prices is analyzed. Investment in the
extension of energy production systems is discussed in Chap. 11 by M. T. Vespucci
et al.

While many chapters deal with renewable energy up to some extent,
Chaps. 12–14 are completely devoted to this important issue. In Chap. 12, D. Woza-
bal, C. Graf, and D. Hirschmann give an overview of renewable energy and analyze
its impact on power markets. In particular the impacts of technological develop-
ment, wind and solar output, and subsidies for renewable energies are considered.
In Chap. 13, A. Nordveit, K. T. Watle, and S. E. Fleten use a copula-based Monte
Carlo model for hedging the risk of renewable energy sources by forward and fu-
ture contracts. Finally, L. Baringo and A. J. Conejo analyze investments in highly
stochastic sources of power production, e.g., wind production, in Chap. 14. A multi-
stage stochastic complementarity model is used to determine the optimal investment
capacity.

Part III is devoted to pricing: R. Kovacevic and G. Pflug describe several pricing
principles and especially the pricing of electricity swing options (Chap. 15) in a
unified framework. The pricing of derivatives with volume control is treated in a
classical financial setup by F. Espen-Benth and M. Erikson in Chap. 16.

The final part widens the scope of risks to long-term and political risks. V. Krey
and K. Riahi study energy systems under aspects of climate change in Chap. 17,
while P. Burgherr, S. Hirschberg, and M. Spada deal with operational risks such as
catastrophic risks, in particular risks from terrorist attacks in Chap. 18.

The editors thank all contributors for their work. Furthermore we thank F. Hillier
for having accepted this book in the “The International Series in Operations Re-
search and Management Science” and the publisher for supporting the final produc-
tion steps. P. Gross and B. Analui helped us in proofreading the manuscript.

Vienna, Austria Raimund M. Kovacevic
Vienna, Austria Georg Ch. Pflug
Bergamo, Italy Maria Teresa Vespucci
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Chapter 1
Energy Markets

Peter Gross, Raimund M. Kovacevic, and Georg Ch. Pflug

Abstract Most of the risks in energy production and trading are related to market
prices. As a consequence, this first chapter provides a short introduction to energy
markets. Products (or more precisely contracts) which are traded in energy markets
can concern either the physical delivery of energy (physical settlement) or only the
payment of the financial value of such a delivery (financial settlement). In the case
of a physical settlement, the traded quantities directly influence the whole system;
if the settlement is financial, trades are basically bets on prices. Motivated by this
distinction, we separate this chapter into two major parts: The first part considers
the physical side of markets, focusing on the physical spot markets for natural gas
and electric power. The second part serves as an introduction to the financial aspects
of the markets, describing derivatives on physical spot contracts.
In both sections our geographical focus will be on European markets. Due to the
inhomogeneities of market designs, we will focus on stylized market characteris-
tics rather than details. We mainly consider natural gas and electricity due to their
distinctively different behavior to financial markets.
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4 P. Gross et al.

1.1 Effects of Market Liberalization

Energy plays a central role in modern economies and the everyday life of people
in industrialized countries. Consequently, it is no surprise that huge amounts of oil
and coal, just as other storable and thus easily transportable commodities, have been
traded around the globe in the twentieth century.

A somewhat more recent phenomenon is the emergence of markets for electricity
and natural gas, which rely on a complex and expensive distribution network. Due
to the huge initial investments in the infrastructure necessary for distribution and
because of significant effects of scale in their production, for a long time, state-
owned monopolists were the most efficient providers. In fact, electricity and natural
gas were seen as typical cases of natural monopolies. This is still the state of affairs
in many countries with not fully liberalized energy markets.

From the last decade of the twentieth century onwards, competitive markets for
grid-based energy have been established all over the world with the hope of eco-
nomic benefits from cheaper energy supply. Competition was usually established
by unbundling the roles of network operation, production, and retailing. By opening
access to the distribution infrastructure, market entry barriers were drastically re-
duced and opportunities for sourcing and trading were generated for various market
participants, such as financial investors or large energy consumers.1

One particularity of the energy industry is the major role of uncertainty: Demand
for natural gas, for example, is usually driven by several factors like temperature
or even macroeconomic factors, which are hard to predict. As another example, the
level of electricity supply depends not only on availability of transmission networks
and power plants but also on wind, sunshine, and rainfall due to the importance of
renewable energy production. To absorb variations in supply or demand it is vital
for energy companies to secure access to short-term supply of energy.

As a consequence of matching short-term supply and demand, ideal2 spot mar-
kets also create a source of flexibility3 (i.e., short-term supply of energy) and es-
tablish the related prices. Instead of holding flexible generation assets or supply
contracts like an insurance to cover the own worst-case needs, market participants
are essentially enabled to use available flexibility to gain short-term profit in the spot
market. Essentially, this amounts to projecting the risks of energy companies onto
the spot markets, making it possible to quantify and trade them.

A side effect of the increase in market activities is an increase of exposure to
(market price) risks for both suppliers and producers of energy. Therefore energy
derivatives can be used to shape the risk profiles of energy portfolios.

Thus, with the emergence of liquid markets for energy, quantification and trading
of risks become a crucial part of daily business for the energy industry, triggering
the development of techniques tailored to energy risk management.

1 For details on the rationale behind energy market liberalization we refer to [22].
2 That is mature, liquid markets, allowing to execute trades of arbitrary size at quoted prices
(cf. p. 18).
3 cf. [8].
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Fig. 1.1 Price levels of natural gas in different regions [source: [3], cif = cost + insurance + freight
(average prices)]

1.2 The Physical Side of Markets

The main purpose of physical spot markets is the matching of supply and demand.
Accordingly, markets for natural gas and electricity are principally based on phys-
ical spot products, which also serve as the main building blocks of most energy
derivatives. We define spot prices as the prices for physical delivery of energy at a
certain location the following day. The exact delivery period varies between prod-
ucts and markets. Usually electricity can be purchased for each single hour of a day
or as a combination of several hours (peak/off-peak/base products) whereas natural
gas spot is (mostly) delivered at a constant load during the whole following day.
However, since the underlying concepts are quite similar, we will not distinguish
between them.

For grid-based energies, particularly for electricity, balancing of delivery systems
is crucial. Consequently, for each power market, there also exist balancing markets,
where short-term generation capacities of power plants can be acquired by the sys-
tem operator. We devote only a small part of our attention to balancing.

1.2.1 Natural Gas Markets

1.2.1.1 The Natural Gas Value Chain

As with oil, production of natural gas is not evenly spread over the globe. In 2011,
natural gas production was dominated by the USA (20%) and the Russian Federa-
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tion (18.5%), followed by Canada (4.9%), Iran (4.6%), Qatar (4.5%), and Norway
(3.1%). Major exporters of natural gas are the Russian Federation, Canada, Qatar,
and Norway. Similar to oil, at the moment, increasing production appears to be met
with increases in confirmed reserves. According to [3] global proved gas reserves at
the end of 2011 were sufficient to meet 63.6 years of production.

Before further transportation, natural gas has to be processed to remove contam-
ination and to generate standardized products, which are tradable and fit the con-
sumer’s needs. The major share of long-range transportation is done by pipelines,
which leads to a separation of the world into several markets for natural gas.
Figure 1.1 illustrates the different price levels of natural gas in different regions,
relying on different sources for natural gas supply.

Complementary to transport by pipeline, already in the late 1950 liquified nat-
ural gas (LNG) was used for transportation to Great Britain [8]. For this way of
transport, natural gas is cooled down until it reaches a liquid state, which reduces
its volume to a fraction of its original state. As a result, LNG is suitable for storage
and transportation per ship. LNG plays an increasing role in connecting the different
market areas for natural gas. However, the construction of the related infrastructure
is expensive and time demanding and liquification as well as regasification are en-
ergy intensive. Especially due to the last point, LNG can hardly be used for arbitrage
between continents, but price levels are coupled more indirectly due to the fact that
LNG deliveries can be (re)directed to the market with the highest price.4

At a regional level, natural gas is distributed by retailers to their customers via
distribution networks which are organized on a local level. Natural gas can be stored
by several means, differing in size of storage and speed of input and output. In
general, depleted gas fields are used for absorbing long-term fluctuations such as
seasonal demand patterns, whereas salt caverns are used to flatten short-term fluctu-
ations and to increase network stability (balancing energy).

1.2.1.2 The Development of Natural Gas Markets

In the sense of decoupling of production, transportation, and retailing, the first lib-
eralized natural gas market appeared in the USA in the 1980s, followed by the UK
in the late 1990s [11]. In pursuit of a common market for energy, several members
of the European Union started implementing natural gas spot markets in the early
2000s.

Historically, natural gas markets developed very differently in various countries.
Europe was reliant on the supply of a few big (stateowned) companies. This resulted
in a specific European supply structure based on long-term agreements: To secure
the massive investments in exploitation and transportation, producers and retailers
typically negotiated long-term bilateral delivery contracts (often exceeding a time

4 For example, the emergence of cheap USA shale gas around 2010 did not lead to significant
exports of natural gas to other continents. However, market prices outside the US still dropped, to
some extent caused by LNG transports stopping to deliver to the USA and serving the rest of the
global market instead [1].
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span of 20 years). Usually, such contracts link the price of natural gas to the price
of fuels that are competitors to natural gas in the respective market region (fuel oil5

for residential heating) or industry (oil or coal for power generation). In addition,
often volume constraints are included in the contracts. These so-called take-or-pay
(ToP) clauses constrain the cumulative amount to be delivered over certain time
periods from below and above. This structure serves two main goals: connecting
the gas price to the price of a related fuel ensures competitiveness of the price for
the redistributor, while the ToP clause mitigates volume risk from the producer to
the importer (see, e.g., [8, 11]). The long-term nature of the contracts amounts in a
sense to vertical integration, guaranteeing a stable relation between producer and gas
retailer, which simplifies long-term planning and infrastructure investments such as
pipelines.

1.2.1.3 The Organization of Natural Gas Markets

As a general prerequisite, markets for trading natural gas rely on (physical) access
to gas sources and potential trading partners.

The first market places for natural gas emerged at the so-called (physical) hubs,
i.e., the intersections of long-distance pipelines, where gas from and to various lo-
cations could be traded between shippers. The administrator of the hub arranges the
actual physical transaction and the resulting administrative actions such as trans-
port nomination and confirmation procedures. In addition, sometimes storage (or
“parking”) of natural gas is offered at hubs.

This generic method of trading natural gas is based on the exact location of de-
livery which has one central drawback: contracts refer to more than one point of
a distribution network. This may split the whole market into smaller parts with
reduced liquidity. One way to bundle and increase liquidity is the introduction of
virtual hubs: a virtual hub6 is a fictive point through which legally all gas in a region
flows. Therefore, trading for the whole region is focused at the unique virtual point.
The suppression of the physical system in the market prices can lead to problems
for the network operator in the case of congestion.

The actions of market participants, such as trading, delivery to customers etc.
result in physical inflows and outflows at a hub. To absorb eventual imbalances in
the system from imperfect matching of inflows and outflows, the transport system
operator takes balancing actions by adding or extracting gas to or from the system.
Usually system management relies on storage, short-term market purchase, or spe-
cial flexible contracts for this task and is financially compensated by the market
participants.

5 One of the major drivers behind the large-scale usage of natural gas was to diversify energy
consumption from oil in the oil crises in the 1970s, see [8].
6 For example, NBP in Great Britain or the NCG and GP in Germany.
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1.2.1.4 Stylized Facts on Natural Gas Prices

For a long time there have been strong links between natural gas prices and oil
prices (cf. [19] for a model based on this). One reason is certainly the link to oil
as a substitute. Another reason is the oil indexation of long-term supply contracts
(discussed above). However, recently some markets experienced a decoupling of oil
and gas prices (Fig. 1.1). This may be a consequence of increasing market liquidity,
notably in the USA. In Europe, at the moment, it seems that the oil indexation of
gas prices is losing importance along with the growing development of natural gas
markets, which—provided liquidity—allows flexible sourcing at a more competitive
price level but also entails more risk.

The demand for natural gas arises from electric power generation, use in energy-
intensive industries (such as paper mills, cement, chemical industry), residential
usage for heating and cooking and to a minor extent for transportation.

Especially large-scale usage for heating typically leads to a distinctive seasonal
pattern in consumption. In addition to high price levels in winter, in some mar-
kets, high prices may occur when natural gas is used for generation at electricity
peaks—for example, due to high demand in summer. This relation between natural
gas demand and seasonal temperatures is reflected in the price forward curve (which
is closely related to expected spot prices) (Fig. 1.2).

Many industrial users are able to switch from gas to oil. Together with the pos-
sibility of storage, this increases the elasticity of demand. As a consequence, nat-
ural gas prices in general exhibit a lower volatility and fewer spikes than electric-
ity prices. Still, compared to stock prices, natural gas prices are quite volatile, in
particular in periods of scarcity (cf. [20]). Their reliance on infrastructure is a big
constraint on locational arbitrage and can result in abrupt scarcity due to physical
disruptions.7 The effects of storage are dampened by the high investment and oper-
ational cost.

In (continental) Europe, a large portion of supply still relies on long-term delivery
contracts as introduced above.

1.2.1.5 Transmission Capacity Allocation in Europe

Transmission of natural gas in Europe is based on zones (largely based on member
states or market areas). Transport costs between markets arise from the number of
zones, which have to be crossed, and from the interzonal capacities, which have to
be booked in advance. Capacities are usually classified as firm or interruptible.

In April 2013, a pan-European platform8 was established to centralize the ac-
quisition of capacities from transport system operators and to offer a secondary
market for capacity trading between shippers. For details see http://www.
prisma-capacity.eu/.

7 For example, outages of the interconnector between GB and continental Europe or hurricanes
blocking the natural gas infrastructure in the gulf of Mexico.
8 At the moment consisting of Germany, France, the Netherlands, Belgium, Italy, Austria, and
Denmark.

http://www.prisma-capacity.eu/
http://www.prisma-capacity.eu/
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Fig. 1.2 Spot price at Zeebrugge natural gas hub (data source: http://www.net-connect
-germany.de)

1.2.2 Electricity Markets

1.2.2.1 The Power Value Chain

The main market players at electricity markets are generators, distributors, and net-
work operators. Generators convert different sources of energy into electrical energy
and feed it into high-voltage networks. Distributors transform electricity from high-
voltage networks into electricity with lower voltage and resell it to final consumers.
Finally, network operators (independent system operators) maintain the physical
network.

The main sources of power are thermal power plants (largely fossil-fueled power
plants), where heat is transformed into electrical energy. The transformation can ba-
sically be achieved in two ways: The first is to generate steam which drives steam
turbines. This transformation process is applicable for all fossil fuels as well as nu-
clear energy, waste, and some types of solar thermal plants. The second method is
to directly drive turbines (basically enhanced jet engines or diesel motors) by oil or
natural gas, where switching between fuels is often possible (Fig. 1.3).
The conversion factor of fuel input to electricity output is usually defined as the
heat rate, which is in general a nonlinear (concave) function of the output level,
i.e., electricity generation is most efficient when neither at minimal nor maximal
possible output level. Often, the efficiency of thermal power plants is increased by
reusing residual heat from the transformation process (cogeneration plants or com-
bined cycle gas turbines).

http://www.net-connect
-germany.de
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Fig. 1.3 Fuel shares in global electric power generation: 1973 (left) and 2010 (right) show an
increase in relative generation by the fossil fuels natural gas and coal (data source: [15])

Depending on the layout, the electricity production of power plants is restricted by
several operational characteristics (cf. [24] or [18]). The most obvious restriction
on power production is the minimum and maximum production capacity of a plant,
which is induced by its layout. To decrease the risk of component failures, in par-
ticular for coal and nuclear plants, it can be infeasible to turn a power plant off or
on unless it has already been online or offline for a certain time period. Ramp rates
specify the possible increments in power output for an online plant (due to system
“inertia” or again reliability considerations). Finally, to guarantee reliability of a
power plant, maintenance is necessary on a regular basis, which leads to scheduled
shutdowns for all plants.

As a rule of thumb, there exists a trade-off between power production cost and
system inertia, i.e., power production of plants using lignite is in general much more
inflexible than of those with gas turbines. This leads to a certain degree of special-
ization among power plants: base load plants generate a constant power output at a
low price and are sometimes turned off for maintenance only, whereas peak power
plants are used to absorb high demand at high prices which compensate for their
more expensive production.

Nonthermal power plants consist mainly of hydro generation, wind generation,
and photovoltaic generation. In the case of hydro generation, different layouts pro-
vide very different operational characteristics. Run-of-river plants provide a con-
stant output and are mainly used for base load generation; pondage power plants
use the water from a reservoir, which provides them with a certain degree of flexi-
bility, whereas pump storage plants can be used to store electric energy.

The special characteristic of wind and photovoltaic generation is that they are
very difficult to predict due to the dependence on weather conditions (i.e., wind and
sunshine) (Fig. 1.4).
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Fig. 1.4 Day-ahead forecast (dashed) and actual (shaded) production of solar power in Germany
(data source: EEX)

Spot and Adjustment Markets

Short-term electricity markets typically contain a multitude of submarkets with dif-
ferent time horizons for delivery, reaching from day-ahead spot markets—trading
power related to individual hours of the following day—to real-time markets where
prices may change within minutes. In addition, power systems need reserve-capacity
generators that can produce additional power within short time. Clearly, both loca-
tion and time of delivery are defining elements of power products due to nonstora-
bility and complexity of transportation.

The central goal of a spot market is the meeting of total generation and demand.
Details of market design differ significantly between various market places. Follow-
ing [11] (compare also [22]), we distinguish between two typical forms of power
spot markets: power pools and power exchanges (bilateral markets).

• Power pools (single-buyer market): The distinguishing feature of this system is
the central role of a system operator, who formally buys the whole generation
from producers at one price.
This can be done by collecting bids from suppliers (i.e., price for a certain gener-
ation capacity) and aggregating them from cheapest to most expensive. The result
is the so-called bid stack (or merit order curve), describing the power price as a
function of the demand. Intersection with the (usually inelastic) demand curve—
which can be estimated or also generated by bids from buyers—gives the market
price.
In some cases,9 the system operator collects bids from producers, containing also
operational characteristics of generation units. Based on this, the system operator
computes the optimal production schedule, satisfying the demand. This system

9 Such as in the PJM market area at the east coast of the USA.
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Fig. 1.5 Bid stack (schematic, rn.° = renewables). For satisfying a demand D0 (D1), an equilibrium
price P0 (P1) emerges, which (simplified) corresponds to the marginal production cost of the most
expensive plant producing

leads to prices which are close to the actual economic cost of production, in par-
ticular when used in connection with locational marginal pricing (as discussed
below).
Figure 1.5 shows a schematic bid stack and the derivation of equilibrium prices
by matching of supply and demand.

• Power exchanges (bilateral markets): All transactions are bilateral without con-
nection to other trades on the markets. Since bids do not have to be publicly
announced, a market clearing price (actually an exchange index) is computed
based on trades (or bids/offers) and published by the exchange.

Adjustment markets work in a different way: To avoid system instability, the system
operator has to maintain the target frequency in the network. Changing the real-time
price of power can be used as an incentive for producers to increase or decrease
their power production immediately. Reserve contingents differ with respect to the
speed and likelihood of their availability: The spinning reserve encompasses units
with additional capacities that are already producing, while the scheduled reserve
contains units that are offline but can be brought up quickly. Generally speaking,
operating reserve aims at correcting short-term disturbances and planning reserves
should meet annual demand peaks. As a rule of thumb, the whole reserve capacity
is held at approximately 10% of load at any time.

Besides the complex temporal distinction of different products, the location of
electricity delivery has to be considered. The root of the difficulty of this issue lies
at the differing cost of supply at different points in a network, which can emerge
due to congestion.

To reflect the true cost of supply in market prices, the principle of locational
marginal prices10 has been introduced. For this approach, power is priced at the

10 For details we refer to the webpage of the PJM system operator: www.pjm.com.

www.pjm.com
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incremental cost of generation given the current state of the system. The benefit of
being economically sensible comes at the cost of potentially unintuitive prices as
well as lower liquidity due to segmentation of a market into several markets for
different delivery points.

In the alternative concept of zonal prices, electricity delivery points are aggre-
gated to zones. Transmission is only an issue between whole zones and is managed
by contractual transmission rights. This approach promises higher liquidity at the
cost of an imprecise transfer of actual cost (i.e., physical difficulties) of delivery.

1.2.2.2 Stylized Facts on Electricity Prices

One of the principal drivers of electricity prices are the marginal production costs,
which consist largely of fuel prices and operational costs.

Some aspects of the complex interplay of electricity price, fuel prices, and de-
mand level can be analyzed by bid stacks, as in Fig. 1.5. Since the electricity price is
given by the intersection of bid stack and demand, power prices can be traced back
to movements of the demand curve and movements of the bid stack.11 If producers
bid at their marginal production cost,12 every segment of the bid stack corresponds
to a power plant (with given production efficiency) and its respective production
cost, which is basically driven by the fuel prices for power generation. In particular,
market clearing power prices are connected to the price of the fuel which drives the
generation stack at its intersection with the demand curve, the so-called marginal
fuel. As a consequence, there can exist a strong dependency between electricity
spot prices and the spot price of the marginal fuel. This connection can also hold for
futures prices of electricity and marginal fuel.

Demand for electricity is largely inelastic due to price insensitivity of many final
customers. As the demand curve can be shifted by external factors like temperature
or business activity, electricity spot prices show pronounced intraday, weekly, and
seasonal patterns. Note that in some markets, complex bidding behavior of produc-
ers may lead to seemingly elastic demand, for example, due to the so-called make
or buy bidding: at low price levels, producers may satisfy delivery obligations by
spot purchases instead of own production, leading to a price sensitive demand on
the market (Fig. 1.6).

The bid stack also illustrates potential causes for price spikes and high volatil-
ity: high demand can shift the equilibrium price to regions where the offer curve is
steep (due to dependency on expensive production units), leading to high, volatile
prices. Finally, negative prices may be induced by a coincidence of peaking renew-
able production (at low price) and low demand, for example, due to holidays. This
may result in a situation where base load plants face the decision of shutting down
(connected to high operational costs) or paying negative prices to get rid of their
production.

11 This relation is the fundament of the so-called hybrid or structural price models which merge
equilibrium and econometric models. Cf. [7] for a detailed discussion.
12 The validity of this assumption is debatable, for example, due to strategic bidding by the pro-
ducers.
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Fig. 1.6 PHELIX power spot Dec 2012 (data source: EEX)
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Fig. 1.7 Global consumption of primary energies (data source [3])

1.2.3 Oil and Coal Markets

Oil is a crucial commodity used for transportation, as primary energy, and in the
chemical industry. As of 2011, oil had the greatest share (33.1%) in global con-
sumption of primary energy, followed by coal with 30.3%. Whereas this marks the
lowest percentage for oil in history, it is the highest share in coal since 1969 [3].
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In contrast to electricity and natural gas, both oil and coal are not bound to a
fixed transportation grid (although oil can be transported by pipelines as well). As a
consequence there exist global markets for both commodities (Fig. 1.7).

Apparently, even the historically maximal oil consumption in recent years has
been matched by updates in proved reserves. BP [3] states that world proved oil
reserves at the end of 2011 were sufficient to meet 54.2 years of global production.
Although the increase in proved reserves in coal does not match its production ac-
cording to [3], coal has the largest reserves to production ratio of all fossil fuels.

The same ton of oil can be traded twice: once as crude oil, i.e., unrefined, and then
again after refinement. The properties of crude oil vary strongly between different
production locations. To achieve the grade of standardization necessary for a market,
only a small number of reference qualities of oil are liquidly traded, their quotes
providing a basis for trading other products. Since global transportation of oil is
largely achieved by ship, delivery is usually specified at port locations. Freight rates
as well as refinement capacities can have a strong influence on the prices of oil and
of some refined oil products. Similar to oil, long-distance transportation of coal is
usually seaborne, which makes freight rates a very important component of coal
prices.13

In general, the oil price has the property of leading the primary energy price, i.e.,
the price levels of other primary energies are strongly coupled to the oil price. This
is due to the frequent coupling of energy delivery contracts to oil indices as well as
oil being a major competitor to other primary energies, especially for heating and
power production.

In contrast to the liquid markets for some oil products, most coal trading is done
via bilateral OTC contracts, due to the difficulty of standardizing the quality of
coal [4].

For more detailed accounts of the oil and coal markets we refer to [4, 11].

1.3 The Financial Side of Markets: Derivatives

A derivative is a contract which can be defined as “an instrument whose price de-
pends on, or is derived from, the price of another asset” (cf. [14]).

Although actual physical demand and physical supply meet at spot markets, huge
volumes of energy are traded as derivatives on physical spot products. The main
reasons for the high amount of “paper energy” in circulation are hedging and spec-
ulation.

Hedging can be defined as the execution of trades to reduce exposure to price
risks. Risk reduction can require both sales and purchases of derivatives: Whereas
power producers may sell parts of their production in advance, large consumers may
buy parts of their demand also in advance—both to reduce their exposure to future
price variability.

13 According to [4], freight rates sometimes amount to 70% of the coal price.
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Speculation is exactly the reverse of hedging: it consists of the execution of trades
to deliberately gain exposure to price risks.

Without knowing the actual portfolios of market participants, it is impossible to
distinguish between hedging and speculation. However, the increasing liquidity in
energy markets results at least partly from increased activity of financial institutions.
This development is sometimes referred to as the “financialization of commodity
markets.”

In the following section, we will first discuss futures contracts as the most liquid
derivatives and en passant notice the features of exchange-traded contracts. Later
we investigate the link between spot and futures prices and give a short overview of
bilateral trading and nonstandard contracts.

1.3.1 Futures and Exchange Trading

Futures contracts are exchange-traded standardized contracts which specify the
price of a sequence of spot deliveries, usually stretching over weeks, months, quar-
ters, or years. For electricity there is usually a distinction between peak and off-peak
(or base) futures, specifying delivery over hours of high and low demand.

The settlement of a contract specifies the mode of delivery, which can be physical
(i.e., actual delivery) or financial (i.e., payment of the difference of the futures price
and the spot price).

Benth et al. [2] observe that, from a financial engineering point of view, energy
futures are actually swaps where a fixed payment (futures price) is swapped for a
floating payment (spot price). Note that the futures price denotes the agreed deliv-
ery price per unit, but the actual volume of the contract is given by the product
definition.14

Since futures are traded on exchanges, the exchange serves as counterparty for
both buyer and seller for every trade. Since neither buyer nor seller know who is
standing at the other side of the trade, exchange prices have the benefit of being
nondiscriminating.

As a consequence of the intermediary position of the exchange, bankruptcy of
a contract party only affects the exchange but not the participants in the trade. To
avoid the risk emanating from nonpayment of a contract party (counterparty risk),
the exchange imposes a margining system. This means that at every trading day,
the value changes of all positions (“open interest”) are financially netted among
contract holders, and the contracts are replaced by current contracts with the actual
market value. An initial deposit15 from every market participant is used to cover
the variation during a single day in case of insolvency of a contract holder. As a
consequence of the margining systems, exchange-traded contracts are practically
free of counterparty risk.

14 Usually the contract size times length of the delivery period.
15 Initial margin.
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Fig. 1.8 Margining Phelix base futures Feb 13 contract (source: EEX)

The following example illustrates the procedure:

Example 1. 16 On November 1, 2012, a market participant decides to buy a constant
load of 10 MW of power, deliverable in the month of January 2013. The corre-
sponding futures contract F(1,T ) is bought at the exchange for the current price of
50.85 EUR/MWh. On November 2, the market price of power futures contracts with
delivery period January 2013 rises, F(2,T ) being now 51.02 EUR/MWh. At the
end of the day, the contract F(1,T ) held by the market participant is replaced by
the new contract F(2,T ) (specified at a delivery price of 51.02 EUR/MWh corre-
sponding to the current market view), and the value change is compensated by a
financial payment of 1264.8 EUR,17 which amounts to the difference in value of the
two contracts. Figure 1.8 shows the whole sequence of margining payments, from
November 1 until delivery at January 1.

One consequence of margining is that the values of all open positions have to be
determined—even if there happened to be no active trades. Thus, a central role of
an exchange is the determination of settlement prices, i.e., the prices at which open
positions are valued at the end of a trading day. Weighted means of trades are often
used for determining settlement prices; in the case of too few trades, the prices are
to be estimated.

16 We assume no interest rate and ignore initial margin for the sake of simplicity.
17 = 10 MW×(24×31)h×0.17 d’/MWh.
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1.3.1.1 Usage of Futures

Futures are to a large extent used for hedging purposes. Examples include the fixing
of profit of a fossil-fueled power plant by buying fuel futures and selling power
futures for the same delivery period to lock in the margin (cf. [9]). See [23] for a
detailed account on hedging a natural gas portfolio with futures products. Note that
even perfect hedging of risks (i.e., the exact offsetting of risky positions) can lead to
losses due to margining payments.

Besides actual trading, futures provide information about the market assessment
of future prices. This information can be of tremendous value and is widely used as
“objective” evaluation of contracts and whole portfolios, a practice known as mark
to market. Essentially this is done by valuing future obligations or deliveries by the
quotes of the corresponding futures products on the market. This makes it possi-
ble to “value any contract without need to rely on the view of a trader” [11]. In
practice, some effort is put into the transformation of market quotes into forward
looking prices with daily or even hourly time resolution. These so-called price for-
ward curves are often used for the valuation of daily or hourly load patterns (cf.
[10, 21]).

It is especially the transparency and nondiscriminativity of futures prices—and
the absence of counterparty risk premia—that recommend them as benchmarks.
Note however that the concept of mark to market is theoretic to some extent: it
implicitly is assumed that a whole portfolio can be sold at market prices—no matter
what the size. This assumption may turn out not to be valid when a portfolio actually
has to be liquidated.18

Several properties of a market which are prerequisites for using market prices as
reference for valuation and risk management are subsummized in the term of market
liquidity.

1.3.1.2 Market Liquidity

Generally spoken, market liquidity describes the possibility to trade arbitrary vol-
umes in a market at quoted prices. Following [8], liquidity can be defined more
precisely by splitting it into four distinct properties:

• Depth: large volumes can be bought or sold without moving the price excessively.
• Breadth: large number of different bids and offers are present in the market.
• Immediacy: the possibility to trade large volumes in a short period of time.
• Resilience: the ability of the market to recover towards its natural supply/demand

equilibrium after having been exposed to a shock.

Note that liquidity is rather a property of single products than of markets: in many
markets, (monthly) futures close to their maturity are more liquid than futures ma-
turing far in the future.

18 A famous example is the case of the hedge fund Amaranth Advisors L.L.C., which collapsed,
unable to liquidate its huge portfolio of natural gas futures (cf. [5]).
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One means by which exchanges try to establish liquidity is to establish market
makers. Market makers provide liquidity by buying or respectively selling a certain
quantity of energy if it is quoted outside a prespecified price range, which reduces
the risk of finding no counterparty.

1.3.2 Pricing of Futures

Arbitrage-free pricing methods for futures contracts exist, both for financial and
commodity markets, and are widely used. They are based on the idea of construct-
ing a portfolio that replicates the cash flows of a derivative by borrowing money now
and buying the security or commodity under consideration in order to meet the final
demand (“cash and carry strategy”; cf. [14]). The proper strategy may involve rebal-
ancing the amount of commodity held over time and is subject to interest payments,
e.g., transport costs and storage costs.

Denote the forward price at delivery time T , agreed at time 0—that is today—by
FT and the current spot price with S0. Subsuming all related costs under the terminus
cost of carry, absence of arbitrage leads to the following relation:

FT ≤ S0 + cost o f carry (1.1)

Assume inequality (1.1) is strictly satisfied. Then, in classical finance, the “reverse
cash and carry” strategy could be applied by short selling spot and closing the po-
sition at time T via the futures contract. However, for commodities, this arbitrage
strategy may not be viable: In the first place, short selling is not possible without
having physical energy in stock. But besides this, the holder of the commodity may
not even be willing to reduce the storage level for fear of not being able to satisfy
the own demand. This line of thought is the idea behind the concept of convenience
yield (introduced by [16, 25]). This quantity is interpreted as the financial value of
having a commodity in stock and can be formally defined as the slack variable for
inequality (1.1):

FT = S0 + cost o f carry− convenience yield. (1.2)

In situations of extreme scarcity, the convenience yield outweighs the cost of carry,
thus forcing the spot above futures prices, whereas in periods of abundance cost of
carry dominates the relation.

This approach suggests that the key drivers of the forward prices of storable com-
modities are the spot price and scarcity (given for example by inventory, demand,
or production level).

Using stochastic convenience yield, Eq. (1.2) has been used as starting point for
the (widely used) two-factor spot price models [13]. Empirical results in [20] also
suggest connections between scarcity and volatility.

The derivation of the convenience yield relied on storage, which may be ques-
tionable for natural gas since storages have limited capacity and turnover rates.
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Unfortunately, given the nonstorability of electric energy, the usual no-arbitrage
arguments fully break down for power markets. A direct relation between the ac-
tual spot price and forward price is not observable for electricity. This means that
forward prices contain additional information about the future and are related to
expected prospective spot prices. Stoft [22] proposes to use the simple relation

FT = E [ST ] . (1.3)

While admitting that this relation is not exact, Stoft consists other effects as “ too
subtle and too unpredictable to be of interest.” Others have made the effort to extend
relation (1.3), which leads to

FT = E [ST ]+Risk premium(T). (1.4)

The size (and sign) of the risk premium can be explained by the hedging pressure
on producers of consumers: a positive (negative) risk premium is read as insurance
premium paid by consumers (producers) to avoid price risk. Based on real data [11]
shows that for some electricity markets the risk premium is positive if T is small,
particularly if it corresponds to a winter or summer month, and may be negative if
T is large, i.e., several years. Similar results are discussed in [12].

Equation (1.4) is the starting point for introducing risk neutral probabilities19

Q (or equivalent martingale measures), loosely speaking by incorporating the risk
premium into the probability distribution:

FT = EQ [ST ]

Note that in the context of Eq. (1.2), choosing Q corresponds to specifying the con-
venience yield [2].

Other models for the spot price and/or the forward price structure—in fact the
whole arsenals of econometrics and finance—have been used as well. Because of
long-term equilibria of demand and supply of energy, models with mean reversion
are usually preferred. See [9] for a broad overview and [2] for a rigorous modeling
approach.

Summarizing, we can state that short- and long-term prices are almost entirely
disconnected as soon as storability is not granted. In particular, information about
future events such as planned outages of power plants or a change in the market
structure affect only the prices of futures with suitable delivery period (cf. [17] for
an empirical study of the effect of information on risk premia for electricity futures).

19 Not necessarily unique; see discussion at the end of Sect. 1.3.3.



1 Energy Markets 21

Fig. 1.9 Relative volumes traded at the German virtual natural gas hub NCG (data source:
http://www.net-connect-germany.de)

1.3.3 Bilateral Trading in Energy Markets

As an alternative to trading at an exchange (mediated), there is the possibility to
trade directly (bilaterally) with counterparties, the latter being called OTC (over-
the-counter) trading. Compared to mediated markets bilateral markets are much
more flexible with respect to the exact formulation of contracts. This is probably
the reason why the major portion of energy trading still occurs bilaterally, an ex-
treme example being the German NCG market for natural gas (see Fig. 1.9). How-
ever, writing those contracts is more involved. The main complexity arises from
the tailored contractual trading agreements, which have to be negotiated. Usually
bilateral trading occurs between parties who have already established contractual
frameworks for trading, which are extended by standardized annexes20 for specific
trades.

In general, bilateral trades can be organized in two ways: by broker platforms
(such as ICE or Spectron) that “match” the bids of participants or by direct com-
munication between companies. As a result, counterparty risk exists but depends on
the specific contractual details.

Bilateral trading occurs—at least theoretically—at individual prices, which are
not published and are not necessarily connected to any other market prices. How-
ever, the data published by broker platforms show a close connection between OTC
prices and exchange prices.

20 For details see European Federation of Energy Traders, http://www.efet.org/ or Inter-
national Swaps and Derivatives Association, http://www2.isda.org/.

http://www.net-connect-germany.de
http://www.efet.org/
http://www2.isda.org/
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Table 1.1 Organization forms of energy trading (see [8])

Bilateral
Exchange

Bilateral
with broker without broker

Contracts
Agreement between Agreement with Agreement
companies exchange between companies

Trading
Through broker Electronic platform Personal contact

method
Counterparty Other company Exchange Other company
Transaction

Medium High Low
costs

Transparency
Good, publications High, information

None
on end of day prices given by exchange

Anonymity
Identity revealed

Anonymous
Identity revealed

after deal before deal

Main usage All products Most liquid products
Illiquid products
/ large volumes

Type of
Framework contract

Agreement with
Bilateral contract

agreement exchange

1.3.3.1 A Survey of Bilateral Contracts

The flexibility of bilateral contracts allows potentially arbitrary conditions. How-
ever, some contract specifications proved to be especially suitable to mitigate risks
in the energy industry, leading to some level of standardization even for OTC prod-
ucts (Table 1.1).

Probably the most common OTC products are forward contracts which are in
fact identical to futures contracts but are traded bilaterally. The difference to fu-
tures contracts of equivalent delivery period results from the absence of margining
and the presence of counterparty risk. For deterministic interest rates and absence
of counterparty risk, forward and futures prices with the same maturity are equal
([11], p. 44). Consequently, futures and forwards are often used synonymously in
literature. Note however the different behavior of forwards and futures in hedging.

As in financial markets, European call and put options are traded OTC, mostly
on futures. European options are also traded at some exchanges, such as NYMEX,
EEX, and Nordpool.

As a particularity of energy markets, swing options (also often called ToP con-
tracts for natural gas) are used by market participants to hedge price risks and vol-
ume risks. Swing options have a long history as hedging instruments against those
risks. At every day t of the runtime [0,T ] of the swing option, the holder is entitled
to obtain an amount yt of energy for a strike price K, which has been specified in
advance. Usually, constraints are put on the consumption of the holder qt , such as

et ≤ yt ≤ ēt

E≤ ∑T
t=0 yt ≤ Ē,
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bounding the single-period consumption by et and ēt and cumulative consumption
by E and Ē .
The strike price K can be dependent on price indices (such as oil prices for natural
gas delivery contracts) but usually is independent of the current spot price of the
underlying good.
Note that as a consequence of the constraints on cumulative consumption, the ex-
ercise strategy of a holder at time t depends on the whole history y0, . . . ,yt−1 of
previous decisions since they determine the remaining quantity to be taken from
the contract in the future. This makes the valuation of swing options much more
complicated than the valuation of European options.

Finally, in the context of commodity markets, a spread refers to the difference be-
tween the prices of two products. The difference can be expressed either in terms of
physical, temporal, or spatial properties. One example is the so-called spark spread,
denoting the difference between the price of electricity and the price of the quantity
of fuel required for generation. The spark spread or options on it can be used to
hedge fossil-fueled power plants.

For further details on energy derivatives we refer to [4, 6, 9, 11].
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Chapter 2
Introduction to Price Models for Energy

Rita L. D’Ecclesia

Abstract The goal of this chapter is to present models which describe the dynamics
of energy commodity spot prices and their forward curves. Recent developments
in energy markets together with the use of new technologies caused changes in the
dynamics of spot prices and there is a growing need to understand it. Given the spot
price of an exchange-traded commodity we assume the forward curve, with a large
set of liquid maturities is available. The forward curve provides information about
the market perception of future spot prices and can be easily used to describe energy
price behavior. In this chapter specific models which show to be suitable to capture
the properties of energy prices are described.

2.1 Key Features for a Price Model

Quantitative methods are important requirements in energy risk management. A res-
ponsible institution will need to assess its level of various risks and monitor its level
of price risk. Energy price risk management often involves a number of stages:

1. Analysis of energy price risk modelling.
2. Development of budget forecasts and potential exposures.
3. Identification of risk mitigation options. Typically this includes hedging expo-

sures by transacting forwards, futures, or options in order to reduce budget vari-
ance and increase predictability.

In this chapter we focus primarily on the first stage: energy price risk model-
ing introducing most of the important statistical concepts and procedures which
allow to assess and manage energy price risk. The energy marketplace is increas-
ingly complex and dynamic. Unleaded gasoline, electricity, natural gas, heating oil,
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crude oil, and emissions are exchange-traded commodities which are subject to fre-
quent price swings on a short- and long-term basis. The complex dynamics need
to be accurately modeled. Extreme levels of price volatility increase energy price
risk generating, for various companies and institutions, other types of risk. For ex-
ample, Californian electricity price spikes occurred in the summer of 1998 caused
a dramatic increase in energy price risk. The price spike was so large that a num-
ber of energy players found themselves exposed as a result of their writing (selling)
uncovered options. Therefore the possibility of a default on outstanding obligations
(i.e., credit risk) increased for their counterparties. Power plant outages are another
example of risk. The occurrence of an outage in a power plant increases the likeli-
hood of outages in other power plants (thus increasing operational risk) and leads
to price spikes (thus increasing energy price risk), which in turn can lead to some
energy players being exposed because of their derivative liabilities (and thus credit
risk is increased). Energy prices show particular features which need to be taken into
account when selecting the pricing model. Natural gas exhibits seasonality and dis-
continuous changes; electricity prices exhibit mean reversion features and sudden,
unexpected, discontinuous changes. Crude oil seems to have lost its well-known
feature of mean reversion in the last decade.

2.1.1 Statistical Features of Commodity Prices

Commodities are an under appreciated and often misunderstood asset class. The
drivers of commodity prices, particularly at an index level, are complex and some-
times harder to grasp than fixed income or equity assets. The means of accessing this
asset class are not always intuitive either. But from an asset allocation perspective
commodities have an interesting set of risk-return and correlation characteristics.

Commodities have recently become a new asset class and are more and more
used by hedge funds, banks, and investors in addition to the usual producers and
retailers. During the past 20 years, commodities and equities have shown different
performance patterns. Commodities have outperformed global equities total returns
since 1985. The reason is that the demand in energy markets has boosted commod-
ity returns, while equity markets have gone through some major market corrections.
Energy commodity prices do not generally exhibit trends over long periods; we
may want to leave aside in this statement the particular situation of oil at the present
time. If we look at the various energy markets as the UK natural gas, the European
Exchange (EEX) electricity hourly contracts, or the Brent crude oil, different be-
haviors can be identified. In Fig. 2.1 the National Balancing Point (NBP) futures
contract daily prices are reported, Fig. 2.2 reports the electricity base-load contract
traded at EEX, and the Brent futures daily prices are described in Fig. 2.3.

Even if sharp rises are observed during short periods for specific events, such
as the weather or political conditions in producing countries, energy prices tend to
revert to normal levels over a long period. If demand is constant or slightly increas-
ing over time, as it has been the case for natural gas in the European countries until
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Fig. 2.1 NBP futures contract daily prices, 2000–2012

Fig. 2.2 EEX base-load contract daily prices, 2000–2012

Fig. 2.3 Brent futures daily prices, 2000–2012

2005 (see Fig. 2.4) and if supply adjusts to this pattern, prices should present a stable
pattern on average. This means that energy prices exhibit a mean reversion feature.
In addition the occurrence of supply shocks caused by sudden unexpected change
of the weather conditions or outages generates spikes. An example of this pattern is
provided in Fig. 2.2.

These different features of energy prices are shown by their statistical features.
Table 2.1 provides the first four moments computed on an annualized basis of daily
returns for various energy commodities, where, as in finance, the return at date t is
defined by:
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Table 2.1 Statistical features of energy prices

Natural gas Electricity Brent Coal
Statistics (GBP/therm) (USD/MWh) (USD/bbl) (USD/st)

Min 8.53 0.8 9.64 5.63
Max 116.3 543.72 146.08 19.72
Mean 32.87 46.97 48.66 8.25
Variance 385.65 761.79 1027.32 8.09
Kurtosis −0.47 48.344 −0.35 3.06
Skewness 0.68 4.28 0.845 1.94
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Fig. 2.4 Natural gas consumption in the EU27, 1990–2011

Rt = ln(
St

St−1
)∼ St− St−1

St
(2.1)

and St denotes either the spot price of the commodity at date t or the price of the
first nearby futures contract. Given a time series {R1,R2, . . . ,RT} of length T , the
mean E(R) is computed as

E(R) =
1
T

T

∑
i=1

Ri (2.2)

and the variance as

σ2
T =

1
T − 1

T

∑
i=1

(Ri−E(R))2. (2.3)

The square root of σ2
T is the volatility of the rate of return. The length T of the time

interval is computed as a fraction of the year. So the volatility σT must be converted
into its annual equivalent through the formula

σ = σT

√
250
T

(2.4)

if the number of trading days is 250. In the case of electricity, however, we need to
consider 365 days given that it is traded every day of the year.
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Commodity prices show different dynamics compared to the stock prices. In gen-
eral the volatility of commodities daily returns is not comparable to the equity or
interest rate markets, for the latter annual volatility ranges between 10% and 12%,
while for commodities like natural gas annual volatility is about of 68% and in the
electricity market a it may reach 500%. In the case of the EEX electricity contract
over the period 2000–2012 an annual volatility equal to 592% is reported. In Fig. 2.5
the dynamics of the daily rate of returns of the NBP natural gas contract is reported.

Fig. 2.5 NBP daily returns, 2000–2012

2.2 The Basic Stochastic Process

We consider the case of a single commodity spot price which is represented by a
stochastic process St . If not otherwise specified, the current date is denoted as 0.
Our concern is twofold:

1. To find the most appropriate mathematical structure for St , i.e., the type of
process: Geometric Brownian Motion (GBM) versus jump diffusion or any
other structure, using the properties observed in the historical database of spot
prices with possible adjustments for economic growth or technological change.
The choice of this stochastic process St should lead to a probability distribution
for the random variable S that agrees in particular with the empirical moments
and other known features of this distribution. The statistical features have to be
consistent with the observed dynamics, i.e., the properties involved in the change
of S between two dates.

2. Once we have chosen the “backbone” of St there will be parameters attached
to this stochastic process. These parameters will be estimated from market data.
Hence, we need liquid markets and “clean” data to make the right decision.

The empirical characteristic of sudden jumps ti and ti+1 in many energy products
has been invoked to explain the discrepancies observed between actual pricing of
energy exotic options and theoretical predictions. More generally, ignoring heavy
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tails results in extreme price changes being underestimated and could lead to inef-
fective hedging strategies and/or to mispricing assets. A sensible model for energy
products should capture the consequence of temporary supply shocks which result
in price jumps. Merton [13] introduced a model which captures this idea. It describes
the evolution of the asset price by a continuous diffusion part and a discontinuous
jump part.

2.2.1 Arithmetic Brownian Motion

A process X is called a Brownian motion with drift (or an Arithmetic Brownian
Motion or the Bachelier model [1]) if it satisfies the stochastic differential equation:

dXt = μdt +σdWt (2.5)

where:

• μ and σ are real numbers, σ being strictly positive.
• dXt represents the change in X over an infinitesimal time interval dt (dt=1

day) or
dXt = X(t + dt)−X(t). (2.6)

• dWt represents the differential of Brownian motion Wt . For each t > 0 the random
variable Wt =Wt−W0 is the increment in [0;t] it is normally distributed with zero
mean, E(Wt) = 0, standard deviation

√
E(W 2

t ) =
√

t, and density

f (t,x) =
1√
2πt

e
−x2
2t . (2.7)

For p ∈ [0,1] the p-th percentile of Wt is
√

tN−1(p), where N−1 is the inverse
function of the standard normal distribution function

N(x) =
1√
2π

∫ x

−∞
e
−u2

2 du. (2.8)

An example of the density function of a Wiener process is described by Fig. 2.6.
Equation (2.6) implies that

• The expectation of the increment is E(dXt) = μdt. So μ = E(dXt )
dt represents the

expected change in X per unit of time and is called the drift of the arithmetic
Brownian motion.

• The variance of the increment is

Var(dXt) = σ2Var(dWt) = σ2dt. (2.9)

Hence, dispersion of the change in X around its mean, μ , increases with σ , the
fundamental volatility parameter. The price changes increase with the length of
the time interval dt.
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Fig. 2.6 Wiener process, density function for t = 0.25,0.5, . . .

• The price changes dXt are

– Independent, i.e., the change between Monday and Tuesday has no impact on
the change from Thursday to Friday.

– Stationary (the change in X over one day has the same distribution over time).

The distribution of the price change dXt depends on the length of the interval
(t + dt) but not on its origin Xt .

• If the drift is zero, i.e., μ = 0, then

E(dXt) = σE(dWt) = 0. (2.10)

The process (Xt) can be seen as a continuous version of a symmetric random
walk. Its expectation equals the starting point X0 for all t. This model is appro-
priate to represent the spread between two commodities whose price differences
remain constant on average over time.

Energy commodities as natural gas and electricity exhibit seasonality features which
contradict this property; however, the introduction of a seasonal deterministic com-
ponent an solve the problem. Note that (2.6) may also be written as

X(t + dt) = X(t)+ μdt+σdWt . (2.11)

According to (2.11) the price at time t + dt depends only on X(t) and it does not
depend on any preceding value of X . This means that assuming (2.6) is a valid model
for the process X(t), the distribution of X at a future date (t + dt) only depends on
the current value X(t). So X(t) satisfies the Markov property, i.e.,

P [X(tk+1) ∈ B| X(tk), . . . ,X(t0)] = P [X(tk+1) ∈ B| X(tk)] (2.12)
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Fig. 2.7 GBM for α = 0.14, σ = 0.20, S0 = 1. The (lognormal) density functions for
t = 0.25,0.5, . . .,1

and this will play a key role in the founding models of option pricing. This feature
is not present in the practice of technical analysis where the historical prices are
considered to provide buying or selling signals. Usually the current price is com-
pared to the average of the previous tki days. Trading strategies involving head and
shoulders or the comparison of short-term and long-term moving averages are very
popular among commodity trading advisors (CTAs).

Equation (2.11) is an affine function of dWt and so also X(t + dt) follows a nor-
mal distribution and this implies that the process X(t) may assume negative values.
These possible negative values for the stock price, which contradict the principle of
limited liability attached to a stock (whose market price cannot go below 0), rep-
resent the main limitation of this model. The arithmetic Brownian motion is a very
popular way of representing a quantity which may be positive as well as negative,
and so it can easily represent the behavior of spread contracts between two different
commodities or two types of crude oil, when one price has no reason to be con-
sistently higher than the other. So in the case of the valuation of an option on a
commodity spread, it will be shown that the computations of expectations involved
in this valuation are particularly simple in the case of the ABM.

2.2.2 Geometric Brownian Motion

In 1965, an alternative to Bachelier’s model was introduced by Paul Samuelson [14]
where the rates of returns, not the stock prices, follow an ABM (Fig. 2.7):

dSt

St
= αdt +σdWt (2.13)

Basically dSt
St

is the return obtained by investing in the stock for the period dt in
the case of no dividend payment, the return is solely generated by the price change.
The quantity αdt +σdWt follows a normal distribution.
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A straightforward application of Ito’s lemma to ln(S) yields the solution

St = eln(S0)+α̂t+σWt = S0eα̂t+σWt , (2.14)

where α̂ = α− 1
2σ

2. Therefore St is lognormally distributed with

• E(St) = S0eα̂t

• Var(St) = S2
0e2α̂t(eσ

2t − 1)
• Density function

f (S, t) =
1

σS
√

2πt
e
−(lnS−lnS0−α̂t)2 1

2σ2t (2.15)

For p ∈ [0,1] the p-th percentile of St is S0eα̂tN−1(p)σ
√

t . Since St is the exponen-
tial of an ABM, it is called a GBM. If we compute the expectations of both sides of
(2.13) we obtain

α =
1
dt

E(
dSt

St
), (2.16)

which is the drift of the process and measures the expected return per unit of time.
Estimating the variance of the two sides of (2.13) we obtain

1
dt

Var(
dSt

St
) = σ2. (2.17)

It measures the variance of the return per unit of time. Equation 2.13 implies that
the expression of S at t + dt is given by

St+dt − St

St
= αdt +σdWt (2.18)

or
St+dt = St [1+αdt+σdWt ], (2.19)

which shows that St+dt only involves St and no prior values of S. Like the ABM,
the GBM is also a Markov process. Finally, the assumption of constant volatility is
obviously not consistent with the behavior of commodity prices. This volatility may
be changed to a deterministic function of time at a low mathematical cost. It may be
made stochastic either through the introduction of stochastic volatility or by adding
a jump component to the model. Figures 2.8–2.10 show that natural gas volatility
exhibits seasonality and spikes, crude oil volatility presents spikes, and that there is
no particular pattern in electricity volatility.

We have to emphasize that the sign of α is typically perceived as positive since
no investor would buy a stock offering a negative expected return. The capital asset
pricing model (CAPM) states that, under some equilibrium conditions, the expected
return on a risky stock is equal to the risk-free rate, r, plus a risk premium (in-
volving the beta of the stock and the expected excess of performance of the market
portfolio over the risk-free rate). In general when we have a risky security whose
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Fig. 2.8 Volatility of NBP returns

Fig. 2.9 Volatility of EEX returns

Fig. 2.10 Volatility of Brent returns

dynamic is described by (2.13) the drift is usually higher than the risk-free rate,
and positive. This has a fundamental consequence that needs to be kept in mind:
besides normality of returns the GBM’s key mathematical assumption implies that
the stock price grows on average over time. This assumption is the building block
to derive the Black–Scholes formula. If we do not believe this property is true for
energy commodity prices, the Black–Scholes formula in its original form should not
be used to price options written on the spot prices of commodities.
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2.2.3 Modeling Seasonality

Natural gas and electricity prices exhibit seasonality in prices, due to changing con-
sumption as a result of weather patterns, as it is shown in Figs. 2.1 and 2.2. To take
into account for the seasonal feature in price dynamics a simple and popular repre-
sentation for commodity spot prices under the real probability measure P may be:

ln(St) = ft +Xt , (2.20)

where ft is a deterministic component accounting for the seasonality of prices. and
Xt represents the random component which may be described by the most adequate
process for the specific commodity price.

The use of the log price guarantees positive values for the prices. The determinis-
tic function ft can be expressed as a sin or cos function with annual or semi-annual
periodicity, as well as the parameters derived from a database of spot prices. An
alternative representation of the seasonal component is the following:

ft = μ+
12

∑
j=1

γ jD jt , (2.21)

where D jt is a dummy variable that takes value 1 if the price we are dealing with
refers to a specific month of the year and 0 otherwise. In the case of electricity we
may also include the weekly seasonal component:

ft = μ+β1D1t +β2D2t +
12

∑
j=1

γ jD jt , (2.22)

where D1t = 1 when the price refers to a Saturday and 0 otherwise and D2t = 1 when
the price refers to a Sunday and 0 otherwise.

2.2.4 The Mean Reversion Feature

An empirical property of commodity prices is the tendency toward lower levels
(higher levels), when they are too high (low). This property is called mean reversion
and can be modeled using a so-called mean-reverting (MR) process. In the case
of a GBM the variance of the distribution of the price return grows linearly with
time. In other words, the further out in time we move, the greater is our uncertainty
about the value of the factor. However, for commodities, such as natural gas coal,
and electricity, we would expect supply shocks to be reasonably short lived with
prices in general fluctuating around values determined by the cost of production and
changes in demand. So we might therefore reasonably expect energy prices to revert
back to their long-term mean.
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A Gaussian MR process is described by the following stochastic differential
equation:

dXt = α(θ −Xt)dt +σdWt (2.23)

with α > 0.
This model has been introduced in finance in 1977 by Vasicek [16] to represent

the random evolution of interest rates; according to (2.23) the term structure moves
through changes in the spot rate rt . The process described by (2.23) prevents the
large windings of the ABM described in (2.6) (which may go to infinity positively
and negatively and is inappropriate for interest rates that move in a narrow band
of the type [0,0.2]; and to avoid the growth over time contained in (2.11) unsuited
for interest rates. Equation (2.23) is also known as the Ornstein–Uhlenbeck process.
A key feature of this process is obtained by looking, from date t, at the expected
change

Et [dXt ] = α(θ −Xt)dt (2.24)

so that, assuming α > 0, Et [dXt ] > 0 when Xt < θ , i.e., we expect an increase (de-
crease) in the stochastic variable level when we are below (above) the level θ . The
higher the value of α , the faster the return toward the level θ ; α is called speed of
reversion, while θ determines the long-run mean level. The distribution of X at any
future time is Gaussian, so it allows for negative values. The solution of (2.23) is

Xt = e−αtX0 +θ (1− e−αt)+σ
∫ t

0
e−α(t−s)dWs. (2.25)

In addition, we also have that

E[Xt |X0] = e−αtX0 +θ (1− e−αt) (2.26)

Var[Xt |X0] = σ2
∫ t

0
e−2α(t−s)sd(s) =

σ2

2α
(1− e−2αt). (2.27)

An extension that guarantees positive values for X has been proposed by Cox,
Ingersoll, and Ross (CIR model) [2]:

dXt = α(μ−Xt)dt +σ
√

XtdWt . (2.28)

This model is used to describe the dynamics of the instantaneous interest rate. The
peculiar form of the diffusion coefficient has been chosen to ensure that the process
does not achieve negative values. This model shares with the Vasicek model the form
of the drift term, so that it allows for mean reversion and the values of interest rates
cannot explode. The level of absolute variance increases with increasing interest
rates. Unfortunately, this SDE does not admit an explicit solution, such as for the
Vasicek model. This model is less tractable than the Vasicek one: the stationary
distribution of the X is related to the noncentral chi-square distribution. We can obt-
ain few properties of the solution such as expected value, variance, and distribution.
In particular, the stationary expectation of Xt is the same as in the Vasicek model.
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Example: ln(St) represents the spread between the UK NBP price and the price of
natural gas at the Dutch Title Transfer Facility (TTF Hub) Netherlands. If the price
at NBP is greater than the price at TTF plus transportation costs between the two
locations then the spread ln(St) will be above the long-term level S. In this situation
market players will buy at TTF and sell at NBP. This will reduce the demand at
NBP and simultaneously drive up the demand at TTF, thereby placing a downward
pressure on the price at NBP it and therefore and the spread will move back toward
the long-term level. This reaction is represented by the drift term α(θ−Xt)dt, which
will be negative. Similarly, if the spread is below the long-term level it will gradually
move back toward drift term will be positive. The rate of adjustment back toward
the long-term level is determined by the mean-reversion parameter θ . The larger
the θ the quicker the price moves toward the mean. The mean-reversion model has
experienced considerable empirical success particularly in the natural gas market.

2.2.5 Stochastic Processes with Jumps

The Brownian motion is a process which is continuous in time and space so it cannot
capture extreme movements. The Brownian motion is Gaussian and consequently
has symmetric distribution with zero excess kurtosis. A way to consider extreme
movements, i.e., skewness and excess kurtosis, is to introduce some discontinuity
in space, i.e., jumps. Jump diffusion processes may allow to take into account these
features, for instance, the Merton Jump Diffusion (MJD) [12] or the Kou Jump Dif-
fusion (KJD) [11] as well as the time-changed Brownian motion, like the Variance
Gamma (VG) process.

The Merton jump model takes the form

dSt

St
= μdt +σdWt + Jt dqt (2.29)

where

• (dqt) is a Poisson process with intensity λ .
• The process q counts the number of jumps that have occurred and Jt represents

the magnitude of the jumps. The jumps are assumed to be independently iden-
tically log-normally distributed with parameters (α,β 2). It is also assumed that
the jump heights are independent form the jump times.

• The jump process qt is a discrete event process in the sense that only a finite
number of jumps occurs w.pr.1 in finite time intervals.

In (2.29), the increments of the return process consists of three components: a
linear drift μdt, a Brownian motion σdWt representing normal price fluctuations
that are due to normal clearing imbalances in demand and supply, and a compound
Poisson process dqt that accounts for jumps in prices due to the arrival of news. Thus
the continuous part of the stochastic differential equation μdt +σdWt accounts for
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the usual fluctuations in St , and the jump part dq, driven by a Poisson process,
accounts for the extreme events.

For every small time interval, say Δt the probability that a single jump occurs is
λδt , while the overall probability that exactly k jumps occur is

(λ t)k e−λ t

k!
(2.30)

and the average time between two jumps is equal to 1/λ . When dq = 0 the process
behaves as a GBM.

By introducing jumps, we can better capture the abrupt market price changes
driven by unpredictable events such as abnormal weather or forced capacity outages.
More formally it can be shown that the k period returns under GBM have both
skewness and relative kurtosis of zero. However, under the MJD the skewness is
given by

λα3

(σ2 +λ (β 2 +α2))1.5
√

k
(2.31)

and the relative kurtosis
λ (α4 + 3β 4)

(σ2 +λ (β 2 +α2))2k
. (2.32)

The MJD [12] model has gained considerable popularity in the finance commu-
nity because it can lead to analytical solutions for call and put options and interest
rate derivatives such as caps, floors, and swaptions. However, it does not have very
desirable properties in terms of analytical tractability in the case of path-dependent
(exotic) options or econometric estimation. In addition since there is only one jump
component good news and bad news are not distinguished by their intensity or dis-
tributional characteristics. In the case of energy price returns there appears to be an
asymmetric effect in terms of the response to good and bad news. Bad news, res-
ulting in a negative return, increases volatility by more than good news, resulting
in a positive return, of the same magnitude. One way to incorporate this would be
to have Jt drawn from a normal distribution, but with different jump volatilities for
good and bad news. Such an extension, although relatively easy to implement, leads
to a loss of analytical tractability of MJD.

An alternative model which is becoming quite popular is the double exponential
Jump diffusion model of Kou [11].

The Kou Jump Diffusion model (KJD) assumes that the jump sizes follow a dou-
ble exponential distribution with parameters (p,η1,η2). It assumes that the sequence
of nonnegative random variables, Ji

t are i.i.d. (indipendently, identically distributed)
such that the natural logarithm given by ln(Ji

t ) has an asymmetric double exponen-
tial distribution:

Ji
t =

{
Ji+

t w.pr. p,
Ji−

t w.pr. 1− p,
(2.33)

where Ji+
t ∼ Exponential(η1) and Ji−

t ∼ Exponential (η2).
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In this case ξ u and ξ d are exponential random variables with means 1/η1 and
1/η2, respectively. This model allows the price return distributions to be asymmet-
ric and fat tailed; in addition it leads to nearly analytical solutions to many option
pricing problems.

2.2.6 Mean-Reverting with Jumps

To combine the mean-reversion feature with the jump component, a typical feature
of energy commodity prices, a natural extension of the mean-reversion model is
proposed. A jump component added to the standard mean-reverting process in order
to reproduce the spiky behavior. In its simplest formulation, the jump component
is a standard compound Poisson process similar to that proposed by Merton. The
associated stochastic differential equation can be written as follows:

dSt =−λ (ln(St)− l(t))Stdt +σtStdWt + dΠt , (2.34)

where dΠt = Jt dqt is a compound Poisson process.

Parameter estimation also requires some particular techniques, for instance,
filtering methods have to be applied in order to separate, in the original empirical
time series, jump components from diffusive components, and this operation may
have large influence on the estimate of the whole set of parameters.

2.2.7 Stochastic Volatility

The assumption of a constant volatility parameter is another unrealistic assumption
that has to be released in most of the energy pricing models. Many different theories
have been suggested to deal with the idea of nonconstant volatility, the application of
GARCH-type models is becoming increasingly popular as well as the use of mixed
distributions. GARCH models have been the most frequently applied class of time-
varying volatility models in empirical research. This is mainly due to the problems

This class of processes can be used in the electricity trading sector since it merges
together the two main features of electricity spot price dynamics: mean reversion
and jumps. Unfortunately, the ways in which this class of models merge mean re-
version and jumps cannot be considered very particularly slow. realistic, given that
the reversion intensity is constant for both normal and spike regimes, while empir-
ically we observe that the spike-reversion intensity is much more significant than
the standard mean reversion [14]. This implies that when a positive jump occurs the
reversion to the normal regime is slower. Moreover, the simple compound Poisson
process Πt is characterized by a constant jump frequency while we know also that
the probability of a spike occurrence is not constant over time, but is often cyclical,
since it depends on some price determinants which are themselves periodical.
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which arise as a consequence of the intractability of the likelihood function of the
stochastic volatility model which prohibits its direct evaluation. We suggest here
to directly specify a stochastic differential equation with a time-varying volatility
parameter. In this approach the asset price St satisfies the following stochastic dif-
ferential equation:

dSt

St
= αdt +σtdWt , (2.35)

where σt = f (Yt ) and dYt = (a+ bYt)dt + cYtdVt and dVt = ρdWt +
√

1−ρ2dZt ,
with Wt and Zt independent Brownian motions.

In this setup the model constants are given by the parameters α , a, b, and c. The
parameter ρ is the correlation between Z and V . It is assumed that random shocks
affecting the variance are correlated to the random shocks of the asset price. In this
model there are two sources of risk, namely the future path of the asset price and
the future path of volatility.

2.2.7.1 Models for Stochastic Volatility

One of the most popular model for stochastic volatility was proposed by Hull and
White [10] and assumes σt =

√
Yt .

In the Hull and White model high variance of the volatility parameter drives the
fat tails of the price distribution. Thus extreme returns of positive and negative sign
are more likely than in the GBM where the asset price follows a lognormal distri-
bution. If ρ = 0 so that shocks to returns and shocks to volatility are uncorrelated
the price distribution is symmetric and leptokurtic. In fact the sign of the correlation
determines the symmetry of the distribution; negative correlation results in the left
tail of the price distribution containing more probability mass than the right tail.

The model proposed by Scott [13] in 1987 is furnished by a pair of Ito stochastic
differential equations:

dSt

St
= μdt +meYt dW (1)

t

dYt = −αYtdt + kdW (2)
t (2.36)

where St is the asset price. The parameters α,m, and k are positive and nonrandom
quantities and are uncorrelated Wiener processes in the original formulation. Some

extension assume dW (i)
t = η(i)

t dt, i = 1,2 are correlated Wiener processes, i.e., η(i)
t

are zero-mean Gaussian white noise processes with cross correlations given by
{
η(i)

t1 ·η( j)
t2

}
= ρi jδ (t1− t2)

where ρii = 1,ρi j = ρ(i �= j,−1≤ ρ ≤ 1).
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From Eq. (2.36) we see that

Yt = Y0e−α(t−t0) + k
∫ t

t0
e−α(t−s)dW (2)

s

where we assume that the volatility process Yt starts at certain initial time t0 (which
can be set equal to 0) with a known value Yt0 = Y0. The process Yt is Gaussian with
conditional first moment and variance given by

E[Yt |Y0] = Y0e−α(t−t0)

var[Yt |Y0] =
k2

2α

(
1− e−2α(t−t0)

)
.

2.3 State Variable Models for Energy Prices

Besides improvements to the price process dynamics brought by mean reversion
or the jumps discussed in previous sections, another way to increase the quality
of modeling is not to be limited to a single-state variable (namely, the spot price),
but to enrich the representation by the introduction of one extra or several state
variables. For energy commodities these potential state variables may be the con-
venience yield, the long-term value of mean reversion, and the stochastic volatility.

2.3.1 A Stochastic Convenience Yield Model

Gibson and Schwartz [8] note that the convenience yield for crude oil has shown
to be, in theoretical and empirical research, a key factor driving the relationship
between spot and futures prices. Gabillon [6] also comments that the shapes of
backwardation (future price below expected spot price) and contango (future price
above expected spot price) successively displayed over time by oil forward curves
are inconsistent with a constant convenience yield. Hence, the following two-state
variable model for oil-contingent claim pricing was proposed:⎧⎪⎨

⎪⎩
dSt
St

= μdt +σ1dW 1
t ,

dyt = k (α− yt)dt +σ2dW 2
t ,

dW 1
t ·dW 2

t = ρdt.
(2.37)

The first equation describes a classical GBM for the oil spot price. The second
equation defines the Ornstein–Uhlenbeck process driving the convenience yield and
leading to positive and negative values: For different period and commodity, the
convenience yield may have a different sign.
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2.3.2 A Stochastic Volatility Model

Eydeland and Geman [4] propose an extension of the Heston [9] stochastic volatility
model to describe natural gas or electricity price dynamics. They introduce mean
reversion in the spot price and propose the following two-state variable model:⎧⎨

⎩
dSt = k(a− ln(St))Stdt +σtStdW 1

t ,

dΣt = b(c−Σt)+ e
√
Σt dW 2

t ,

dW 1
t ·dW 2

t = ρdt.
(2.38)

Here Σt = σ2
t . The parameters k,a,b,c, and are all positive. The correlation co-

efficient ρ is in general negative since, in contrast to stock prices, the volatility of
commodity prices tends to increase with prices, this is known as the inverse leverage
effect which leads in option prices to a volatility smile skewed to the right [5]. The
parameters in (2.38) need to be estimated under the real probability measure P by
methods, such as maximum likelihood, from a database of commodity spot prices.
We can observe that, the dynamic of the second state variable, Σt , in contrast to the
second equation in (2.37) where the convenience yield may be negative, thanks to
the presence of

√
Σt in the coefficient of dW 2

t where σ2
t = Σt , remains positive. The

parameter a represents the equilibrium/cost of production value of the commodity
under analysis. The process (Σt)t≥0 allows to introduce positivity in the MR Vasicek
model. Mathematically, it is a much more complex process, since the quantity Σt is
no longer normally distributed.

The model may be enriched adding a jump component to the first equation to
take into account for random changes in the total volatility of St due to arrival of
jumps and to random moves of σt in the diffusion component.

2.3.3 A Three-State Variable Model for Oil Prices

If we consider any commodity at the beginning of a bullish cycle, the mean-
reversion feature is no longer so clear, at least toward a fixed level as described
in the above subsection.

A valid model [7], if we do not wish to introduce jumps in trajectories, may be
the following:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dSt = k(Lt − ln(St))Stdt +σtStdW 1
t ,

dLt
Lt

= μdt +σ2dW 2
t ,

dΣt = b(c−Σt)dt + e
√
Σt dW 3

t ,

dW 1
t ·dW 3

t = ρdt.

(2.39)

where

• Σt = [σt ]
2
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• The correlation between W 1 and W 2 resp. W 2 and W 3 may be different from
zero; however, in some models independence is assumed

A positive drift in the second equation generates a rise, on average, of the value Lt

toward which the commodity spot price St tends to revert, while this spot price itself
may fluctuate significantly around Lt depending on the arrival of positive or negative
news about the situation of world- and company-specific reserves. We should note
in particular that the stochastic volatility (σt ) may take large values on some days
and be the mathematical explanation of major movements in spot price St .

2.4 Regime Switching Models

In the previous sections we have mentioned the fact that electricity spot price
dynamics is characterized by normal and spiky behaviors or regimes. Hence, a nat-
ural way of mathematically representing this feature is through the class of multiple
regime processes. According to this modeling approach, the electricity spot price is
assumed to follow two different and independent regimes. The first one, the “mean-
reverting regime,” is intended to describe the non-spiky behavior of the dynamics,
while the second is intended to replicate the “spiky regime” of the process. The
spikes in the second regime are modeled with a simple lognormal behavior whose
mean and standard deviation are much higher than those of the mean-reverting
regime process.

Formally, we have the following specification:

{
dln(St) =−λ (ln(St)− μt)dt +σtdWt ,

dln(St) = μt dt +σtdWt .
(2.40)

The first equation describes the dynamics in the stable regime, while the second
equation describes the spiky ones. The switching from one regime to the other one
is governed by a two-state Markov process Mt for each t and T > 0 with T > t,
characterized by the following transition matrix P(t,T ):

P(t,T ) =

(
Pss(t,T ) Psr(t,T )
Prs(t,T ) Prr(t,T )

)
. (2.41)

The role of the transition probability matrix is very important since it determines
the likelihood to jump from one regime to the other at every time. Conditional on the
regime state, the parameters of the two processes can be easily estimated by means
of ML estimators based on the normal distribution of the stochastic terms of the two
processes. However, in practice, parameter estimation is not that easy since we do
not know the underlying regime at each single time (the regime is a latent variable).
The Kalman filtering methodology helps us to solve estimation problems, but again
we stress the fact that filtering procedures usually have a big impact on estimation
results. Another source of complexity is represented by the fact that the regime is
not the only latent variable, prices are as well. Prices in the mean-reverting regime
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continue as a latent process during a spike regime and thus are unobservable there.
From a mathematical point of view, we have a bi-dimensional Markov process,
and this creates serious problems, when estimating the parameters. Deng (1999)
proposed a methodology to circumvent estimation problems for Markov switching
processes. Excluding estimation problems, however, this class of processes has the
important advantage of producing closed form solution both for forward and plain-
vanilla options prices, as linear combinations of prices under the two regimes and
regime probabilities. Finally, though, for this class of models, the problem of market
incompleteness arises since the source of uncertainty is multiple and not completely
avoidable.

Acknowledgement. The author thanks B. Analui, R. Kovacevic, and G. Pflug for
carefully reading and revising the manuscript.
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Chapter 3
Price Dynamics in Electricity Markets

Florentina Paraschiv

Abstract With the liberalization of global power markets, modeling of exchange-
traded electricity contracts has attracted significantly the attention of both academic
and industry. In this paper we offer an overview of the most common deseasonaliza-
tion techniques and modeling approaches in the literature. We extract the determin-
istic component of EEX Phelix hourly electricity prices and we discuss different
financial and time-series models for their stochastic component. Additionally we
apply extreme value theory (EVT) to investigate the tails of the price changes dis-
tribution. Generally our results suggest EVT to be of interest to both risk managers
and portfolio managers in the highly volatile electricity markets.

3.1 Introduction

Finding realistic models to describe electricity prices is essential for the valuation
of power grids, for the risk managers in the estimation of risk measures as well as
for portfolio managers to determine worst-case scenarios in very turbulent markets.

Electricity prices pose a particular challenge for researchers, given their main
characteristics: seasonalities, mean reversion, extremely large price movements as
well as negative prices. Seasonality represents the deterministic component of the
prices. A successful modeling approach is based on a rigorous deseasonalization
technique. Therefore the seasonal components of electricity prices are discussed
here in detail and we further offer a review of the main procedures used in the
literature to deseasonalize them.
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Beside the deterministic component, electricity prices have also a stochastic com-
ponent, given by the inefficient storing capacities for electricity or by the intense use
of renewable energy over the last years for power generation. Thus, the production
has to follow the more or less inelastic demand and traders of electricity with physi-
cal delivery are forced to balance their accounts in every single hour, independently
of the actual offers. This leads to extreme fluctuations in electricity prices, which
make them difficult to forecast. The most frequently applied models for the stochas-
tic component of electricity prices are financial and time-series models. In this paper
we offer a comparative view of three popular financial models: Brownian motion,
Ornstein–Uhlenbeck process, and the well-known Pilipovic model. From the time-
series models we selected for discussion the most popular ones: ARMA (autore-
gressive moving average) models as well as GARCH (generalized autoregressive
conditional heteroscedasticity) models. Given the extremely large price movements
in electricity prices, we model extreme tail quantiles with extreme value theory
(EVT) applied to EEX Phelix hourly electricity prices. We show that this proce-
dure describes more realistically extreme tail quantiles than the classical time-series
models.

In Sects. 3.2 and 3.3 we offer a description of the main characteristics of elec-
tricity prices and we discuss the main deseasonalization techniques. Section 3.4
classifies and discusses comparatively different modeling approaches for electric-
ity prices. Section 3.5 shows an application of EVT for modeling extremely large
electricity price changes. Section 3.6 offers a summary of the paper.

3.2 Characteristics of Electricity Prices

Electricity markets have particularities which clearly distinguish them from other
commodity markets. Given the lack of efficient storing opportunities for electric-
ity, which prevents intertemporal smoothing of the demand by holding storages,
extremely large price movements (spikes) as well as various cyclical patterns of
behavior occur. Supply and demand determine market prices which have to corre-
spond exactly at any location and at any time. Because of limited efficient storing
capacities, the grid operators have difficulties to balance out hard-to-predict varia-
tions in power production and consumption in order to cover peak loads. The main
characteristics of electricity prices are seasonalities, mean reversion, and negative
prices.

3.2.1 Seasonalities

The seasonal behavior of electricity prices is one of the most complicated ones
among all commodities. It is predominantly caused by the almost inelastic, at least
in the short term, demand for electricity, which by itself shows pronounced patterns
caused by economic and business activities.
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Electricity prices reveal three types of cyclical patterns: daily, weekly, and yearly
seasonality (see [2]). As emphasized in [24], the amount of electricity demanded
depends mostly on the level of human activity, as well as on the weather and climate
conditions. Essentially, two Off-Peaks can be observed: Off-Peak 1 and Off-Peak 2.
Off-Peak 1 is represented by the first 7h of the day, when most people sleep and
fewer businesses are operating. Off-Peak 2 are the last four hours of the day, when
most human and business activities have ceased. In between, during the Peak hours
(between 8 a.m. and 8 p.m.), electricity demand increases drastically, an intensifi-
cation that is linked to people getting ready for the day ahead and to the start of
the business activities (see [4]). Figure 3.5 summarizes the autocorrelation function
for the baseload hours (prices for the 24h of the day) versus the Off-Peak and Peak
hours. On average, electricity prices are relatively constant during the working week
(holidays have to considered separately), whereas at week ends and during holidays
electricity prices fall. In addition to this, the hourly pattern differs depending on the
season. While in winter we can observe two peaks (at noon and one evening peak,
at 7 p.m.), in summer we typically observe only one peak at noon (see Fig. 3.1).

3.2.2 Mean Reversion

In the short term electricity prices are characterized by jumps or spikes. However,
in the long run they revert to the mean-reverting level (MRL) (see [5]). The long-
term price level is characterized by the marginal costs of production. These can
be constant, periodic, or periodic with trend. This argument refers to the theory
of perfect competition, i.e., if demand for electricity is high, production capacities
with high marginal costs are implemented, whereas if demand is low, production
capacities with low marginal costs are used and consequently prices fall. The align-
ment from capacities with lowest to ones with highest marginal costs is depicted by
the so-called merit order. This notion implies that there is more than one constant
mean-reversion level, depending on the time of the day, of the week, and of the year
(see previous section). Hence, the concept of mean reversion implies that electricity
prices return to their respective usual level (see [10]).

3.2.3 Negative Prices

The limited storing capacities and the limited load change flexibility caused the neg-
ative electricity prices at EEX. From an economic perspective, negative prices can
be rational, e.g., if the costs to shut down and ramp up a power plant unit exceed
the loss for accepting negative prices (see [14]). Since September 1st 2008, negative
price bids have been allowed at the German power exchange EEX as the first energy
exchange in Europe. In our analysis we will refer to the German power exchange
EEX Phelix hourly electricity prices between September 2008 and December 2011.
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Historical spot market data over the investigated period shows a total amount of
about 100h with negative prices. Mostly, they occur in the night and morning hours
(23:00 to 08:00) as displayed in Fig. 3.6. Furthermore, they occur with higher fre-
quency on Mondays and Sundays (Fig. 3.7). As shown in the histogram in Fig. 3.8,
the absolute frequency of the prices presents clusters of 2EUR/MWh.

3.3 Deseasonalization Techniques

The electricity prices are explained by two fundamental components: a deterministic
component represented by the typical seasonality pattern and the price uncertainty
as stochastic component of the prices. The load, as one main driver of electricity
prices, shows some noticeable patterns, such as the peak at midday in summer days.
The electricity prices follow more or less typical seasonality patterns, which are
described in the literature by deterministic functions. However, as discussed in [14],
beside the deterministic impact factors, electricity spot prices are also influenced by
uncertain parameters like power plant outages and fluctuant renewable electricity
generation. These uncertainties are drivers of the stochastic component of the spot
prices. The current section offers an overview of the deseasonalization techniques
applied in the literature for electricity prices, while the next section will classify
modeling approaches for the stochastic component.

3.3.1 Preliminaries

In order to incorporate the seasonal feature while taking the property of mean re-
version into account, the spot price can be expressed as a combination of these two
components:

Pt = ft +
n

∑
i=1

Xi,t , (3.1)

where ft is the deterministic component seasonality and Xt is the stochastic part.
There is a discussion in the literature whether level or logarithmic prices should be
modeled. Accordingly to [27] or [13] the drawback of deseasonalizing day-ahead
spot prices is that the residuals of Pt − ft can become negative, which prevents the
use of logarithms on the deseasonalized spot prices. In addition, the authors mention
as well that the advantage of using the spot prices instead of their logarithms is that
on average they yield better parameter estimates. In the current paper we will look
at the level of the prices.

Demand and supply of electricity show seasonal fluctuations, which traduce into
the seasonal behavior of spot electricity prices. Figure 3.1 depicts the average price
per month (January and July) and type of day (week day and weekend day/holiday,
respectively). This chart confirms the seasonality pattern of the electricity prices.
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Over the 24h time period, prices move in a distinct hourly pattern, which follows the
demand for electricity. As we have already mentioned, prices start increasing when
people get ready for the day (around 6–7 a.m.) and decrease after 8 p.m., when
business activities are over. We observe differences in the prices between winter
and summer time as well as between workdays and weekend days (see [10]). Often
researchers look distinctively at different hours within a day, given their distinctive
patterns: they distinguish between baseload and Peak hours and even more between
Off-Peak I and Off-Peak II hours.

Fig. 3.1 Hourly and daily day-ahead price patterns for EEX Phelix

3.3.2 Overview of Deseasonalization Techniques

The aim of deseasonalization techniques is to reduce the predictable pattern of elec-
tricity prices, in order to delimitate the stochastic component of the prices. We firstly
remove the long-term trend from the hourly electricity prices:

f trend
t = atrend + btrendt. (3.2)

The constant term a of the equation may be interpreted as the fix costs of power
production. The term t represents the “long-run linear trend in the total production
cost,” which is related to macroeconomic variables like inflation and, hence, depicts
a positive trend.

Secondly, the seasonality of de-trended prices should be removed. Based on the
discussion in [10], we give an overview of the several suggestions in the literature
to describe the daily, weekly, and annual cycles of electricity prices. There are many
deseasonalizing techniques in the literature. Thus, Knittel and Roberts [15] imple-
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ment piecewise constant functions; [7, 22, 28] adopt sinusoidal functions; [17] use
a combination of both.

3.3.2.1 Yearly Seasonality

The yearly seasonality can be modeled with the classical trigonometric functions:

f season
t = a+ b1,t cos

(
2π

8,760
· (t− τ)

)
+ b2,t sin

(
2π

8,760
· (t− τ)

)
. (3.3)

The parameter τ defines the phase shift, i.e., the starting point of a seasonal osc-
illation, and 8,760 is the number of hours in one year. The use of trigonometric
functions to define the yearly season is a common method in the literature. How-
ever, this method alone does not deliver satisfactory results (see [14]). The use of
only trigonometric functions for the EEX prices is indeed not suitable, as they do
not show a strong seasonality over the year—after all, some winters have almost
spring-like temperatures, and vice versa. In order to make the explanatory power
of the trigonometric functions stronger, other variables need to be added, e.g., time
(see [27]).

Another method suggested by [14] is the use of the monthly average prices P̄m′ as
a seasonality factor over the year. The seasonality over the year in this case defines
the mean values of the hours of the respective months as a seasonality component:

f season
t =

12

∑
m′=1

P̄m′ ∗ 1(m′ | m′ = m(t)). (3.4)

3.3.2.2 Weekly Seasonality

The weekly cycle can be established using several methods. The first one is called
adjusted absolute sinus-function (aasf) (see [14]):

f weekly
t = α+ d

∣∣∣sin
(π ∗ t

168
−ϕ

)∣∣∣ . (3.5)

The phase-shift parameter ϕ is determined as the deviation from the point in
which the weekly cycle reaches its minimum in the observation set. For this purpose,
we calculate the mean values of the electricity prices for each day of the week. This
calculation delivers the seventh hour of Sunday as the minimum price. Then we
take the distance of all hours of the week from the respective Sunday’s seventh hour
(see [14]). An alternative to verify to what extent a (daily) seasonality exists within
the week is to include dummy variables. For more information about this method,
see [2] or [10].
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3.3.2.3 Daily Cycle

The daily cycle is defined as the mean over the 24h of the day and is then removed.
Different daily cycles are determined for each season: winter, spring, summer, and
autumn. Thus, we take daily average prices for each weekday d dependent on the
season:

f daily
i,season =

24
Tseason

( Tseason
24 )−1

∑
d=0

Pi+24d,season, (3.6)

where d is one of the weekdays, i is the hour of the day, and T is the maximum
number of hours overall d weekdays in one season (winter, spring, summer, or au-
tumn). There are two ways used in the literature to deseasonalize: to split the sea-
sonal decomposition into daily, weekly, and yearly seasonality and to estimate them
separately or to consider them simultaneously (see [14]):

ft = atrend + btrendt + c
24

Tseason

( Tseason
24 )−1

∑
d=0

Pi+24d,season+ d
∣∣∣sin

(π ∗ t
168

−ϕ
)∣∣∣+

+ e
12

∑
m′=1

P̄m′ ∗ 1(m′|m′ = m(t)). (3.7)

3.3.3 Application

In this section we derive the seasonality shape for EEX Phelix hourly electricity
prices quoted at the European energy exchange (EEX), between September 2008
and December 2011. The derivation of the deseasonalization shape follows the pro-
cedure described in [2]. In a first step, we identify the seasonal structure during
a year with daily prices. In the second step, the patterns during a day are analyzed
using hourly prices. Let us define two factors, the factor-to-year ( f 2y) and the factor-
to-day ( f 2d) (following the usual notation in [2]). By f 2y we denote the relative
weight of an average daily price compared to the annual base of the corresponding
year:

f 2yd =
Sday(d)

∑kεyear(d) Sday(k) 1
K(d)

. (3.8)

Sday(d) is the daily spot price in the day d, which is the average price of the hourly
electricity prices in that day. K(d) denotes the number of days in the year when
Sday(d) is observed. The denominator is thus the annual base of the year in which
S(d) is observed.
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To explain the f 2y, we use a multiple regression model (similar to [2]):

f 2yd = α0 +
6

∑
i=1

biDdi +
12

∑
i=1

ciMdi +
3

∑
i=1

diCDDdi +
3

∑
i=1

eiHDDdi + ε (3.9)

• f 2yd : factor-to-year, daily-base-price/yearly-base-price
• Ddi: six daily dummy variables (for Mo–Sat)
• Mdi: twelve monthly dummy variables (for Feb–Dec); August will be subdivided

in two parts, due to summer vacation
• CDDdi: cooling degree days for three different German cities
• HDDdi: heating degree days for three different German cities

where CDDi/HDDi are estimated based on the temperature in Berlin, Hannover,
and Munich:

• Cooling degree days (CDD) = max(T − 18.3◦C,0)
• Heating degree days (HDD) = max(18.3◦C−T,0)

We transform the series f 2yd from daily to hourly, by considering the same factor-
to-year f 2yd for each hour t observed in the day d. In this way we construct hourly
f 2yt series, which later enter the shape st . The f 2d, in contrast, indicates the weight
of the price of a particular hour compared to the daily base price:

f 2dt =
Shour(t)

∑kεday(t) Shour(k) 1
24

(3.10)

with Shour(t) being the hourly spot price at the hour t. We know that there are con-
siderable differences both in the daily profiles of workdays, Saturdays, and Sundays,
but also between daily profiles during winter and summer season. Thus, following
[2] we suggest to classify the days by weekdays and seasons and to choose the
classification scheme presented in Table 3.1. The workdays of each month are col-
lected in one class. Saturdays and Sundays are treated separately. In order to obtain
still enough observations per class, the profiles for Saturday and Sunday are held
constant during three months.

Table 3.1 Assignment of each day to 1 out of the 20 profile classes

J F M A M J J A S O N D
Week day 1 2 3 4 5 6 7 8 9 10 11 12
Sat 13 13 14 14 14 15 15 15 16 16 16 13
Sun 17 17 18 18 18 19 19 19 20 20 20 17

The regression model for each class is built quite similarly to the one for the
yearly seasonality. For each profile class c = {1, . . . ,20} defined in Table 3.1, a
model of the following type is formulated:

f 2dt = ac
o +

23

∑
i=1

bc
i Ht,i + εt for all tεc, (3.11)

where Hi = {0, . . . ,23} represents dummy variables for the hours of one day.
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The seasonality shape swt can be calculated by swt = f 2yt · f 2dt . swt is the
forecast of the relative hourly weights and it is additionally multiplied by the
yearly average prices, in order to align the shape at the prices level. This yields
the seasonality shape st which is finally used to deseasonalize the electricity prices.
Figure 3.2 shows the autocorrelation function of the hourly prices before and after
deseasonalizing.

Fig. 3.2 Autocorrelation function before and after deseasonalization

The deseasonalized series is assumed to contain only the stochastic component
of electricity prices, such as the volatility and randomly occurring jumps and peaks,
which can be simulated via different stochastic processes, as described in the fol-
lowing section.

3.4 Modeling Approaches for Electricity Prices

There are many different theoretical methods that can be applied for electricity
price simulations depending on the research question or planning tasks. Thus, the
different methods cannot be directly compared with each other as each method
has its strengths and its weaknesses. Accordingly to [26], these methods can be
classified as:

• Fundamental models
• Game theoretic models
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• Financial mathematics models
• Statistical and econometric time-series models
• Technical analysis or expert system

3.4.1 Fundamental Models and Game Theoretic Approaches

Fundamental models consider modeling of the whole electricity system with all
suppliers, whereas each single power plant or technology classes are described sep-
arately in the modeling approach. This type of models include a detailed analy-
sis about the electricity demand as well as capacity use and maintenance hours of
power plants. They are used to produce scenarios for electricity prices, which are
further integrated for middle- to long-term planning tasks and price forecasts (see
[14, 19, 25]).

Game theoretic approaches consider the strategic behavior of different mar-
ket stakeholders [14]. These models simulate competitive electricity markets and
analyze long-term equilibriums on the whole-sale market in general based on a
Cournot–Nash framework (see [12, 16]). This type of models is used to test dif-
ferent market design options and to analyze the behavior of market participants (see
discussion in [14]).

3.4.2 Financial Models

Financial and time-series models are calibrated on historical hourly or daily prices
and used for short-term price forecast in risk management. Financial mathematical
models such as geometric Brownian motions or mean-reversion processes are one
of the most applied stochastic processes for electricity prices. They deal with the
volatility of electricity prices and can be used for derivative pricing or real options
in energy markets [11]. As an example for mean-reversion processes is the Ornstein–
Uhlenbeck process which, formulated for electricity price changes, reads

dX(t) = k1(μ1−X(t))dt +σ1dW1(t). (3.12)

The first term of the mean-reversion process is the drift component. The par-
ameter k1 describes the speed of the reversion of the stochastic component of the
electricity prices to their long-term mean μ1. The economic interpretation of this
mean-reversion component is that stochastic price fluctuations around the mean and
price peaks are only temporary, caused by, e.g., power plant outages or capacity
storages [14]. The second term, the stochastic component dW1(t), corresponds to
the standard Brownian motion.

Another class of financial models is represented by two-factor models, which
distinguish between the short- and long-term dynamics of the prices. Examples in
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this sense are the Pilipovic model or the model proposed by [23] who applied it
to oil markets and expanded by [17, 18]. The Pilipovic model is well established
in commodity markets and known as long-term/short-term model. The short-term
deviations are explicitly modeled as the deviations from the long-term mean.

The two-factor [21] model under P is

dXUnd
t = k2(Lt −XUnd

t )dt +XUnd
t σ2dW2t ,

dLt = μ2Ltdt +Ltσ3dW3t ,

dW2tdW3t = 0,

(3.13)

where

X Spot price
XUnd Underlying spot price value
Lt Equilibrium price
t Time of observation
k2 Rate of price mean reversion
σ2 Volatility
μ2 Drift of the long-term equilibrium price
σ3 Volatility of the long-term equilibrium price
dW2 Random stochastic variable defining the randomness in the spot prices
dW3 Random stochastic variable defining the randomness in equilibrium prices

The drift of the second factor reflects the expectations about available production
capacities in the future, trend of demand, or political or regulatory effects. The first
factor, in contrast, models the differences between current value and a stochastic
equilibrium level. This means that the level of mean reversion is not constant, but it
depends on the time of the day, of the week, and of the year. These deviations reflect
short-term effects that result, for example, from variations in weather conditions or
intermittent supply shortages (see [2]).

To see the differences among the three popular financial models, we simulate
electricity spot prices employing a Brownian motion, an Ornstein–Uhlenbeck pro-
cess, and the Pilipovic model. Firstly, we simulate the stochastic residuals using
Eqs. (3.12) and (3.13), and in a second step, to obtain spot prices, we add the sea-
sonality shape, as derived in Sect. 3.3.3. We simulate 1,000 scenarios and we look
comparatively at the probability distribution function of the simulated prices after
1-, 6- and 12-month horizon. The parameters used for our simulation are summa-
rized in Table 3.2. Results are displayed in Fig. 3.3.

We observe that the distribution of spot electricity prices simulated by the
Pilipovic model is more skewed to the right than in the case of the prices obtained
with the other two model versions. This is actually the more realistic distribu-
tion, given the extremely large price movements observed in electricity prices.
The difference between the Pilipovic model and the other two (Brownian motion
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Fig. 3.3 Distributional information over scenarios generated with different financial models

and Ornstein–Uhlenbeck models) is given by the fact that the former distinguishes
between the short-term and the long-term dynamics of electricity prices. Further-
more, the log spot price is assumed to mean revert towards an equilibrium level,
which itself is stochastic, while in the Ornstein–Uhlenbeck process the equilibrium
level is assumed constant. All three models simulate the skewed shape of the distri-
bution of electricity prices, with an increase in the planning horizon. However, the
Pilipovic model offers more realistic short-term forecasts than the other two models.

Table 3.2 Simulation parameters per annum

Geometrical Brownian motion
σ0 0.9−1/2

Ornstein–Uhlenbeck process
k1 1.7−1

μ1 0
σ1 0.74−1/2

Pilipovic model
k2 3−1

σ2 0.74−1/2

σ3 0.25−1/2

μ2 0
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3.4.3 Time Series Models

Due to their widespread use and their comprehensibility we discuss now an impor-
tant class of time-series models—the family of ARMA models. This forecasting
method is based on the assumption that data have an internal structure such as aut-
ocorrelation. ARMA processes enable the simulation of time dependencies within
a time series and consist of two parts, the autoregressive and the moving average
part. The autoregressive component considers the lagged p-price values for com-
puting the stochastic component of the electricity price Xt in t. The moving average
component takes the weighted mean of the last q error terms into account. The cal-
culation of the price in t depends at least on a new error term εt , which can be, e.g.,
normally or Laplace distributed:

Xt =
p

∑
i=1

αiXt−i +
q

∑
j=1

β jεt− j + εt . (3.14)

The parameters αi describe the impact of the values Xt−i at the actual value Xt for all
i = 1, . . . , p. The parameters β j define the weights of the error terms (innovations) ε j

within the moving average component. For an extensive discussion and applications
concerning ARMA models for electricity prices see [14].

Typically ARMA models are used in time-series analysis to account for linear
serial dependence. They provide the possibility to condition the mean of the process
on past realizations which has often produced acceptably accurate predictions of
time series in the short term. However, the assumption of autoregressive model of
conditional homoscedasticity is too constricting, as electricity prices usually display
volatility clusters or spikes. That is, the variance is not constant within all parts of
the time series, but there are rather phases of higher and lower volatility. During
the phases of high volatility, markets are often nervous and electricity prices jump
and remain longer in the jump regime, implying a higher conditional probability for
high price changes, when such price movements have already occurred in the recent
past (see [14]).

Within the GARCH approach the assumption of homoscedasticity dropped for a
heteroscedastic variance, meaning that the variance is not constant within all parts
of the time series. The GARCH(p,q) process accordingly to [3, 9] reads:

σ2
t = φ0 +

m

∑
z=1

φ1zσ2
t−z +

n

∑
y=1

φ2yε2
t−y. (3.15)

The time-variant variance σ2
t is driven by a constant component φ0, the autoregres-

sive part of order m and a moving average part of order n. The variance at any time
t must be positive and in consequence the parameters φ0, φ1z and φ2y can take only
positive values, or equal zero at any time.

Researchers applying GARCH processes to model electricity prices assume
that these can handle the heteroscedasticity caused by jumps in the case of
electricity prices. However, besides seasonality and volatility clustering, an



60 F. Paraschiv

important characteristic to be considered is the large number of extreme price
changes. The spiking behavior is often described in the literature by regime-
switching models [2, 14] which allow electricity prices to switch between the normal
or “base” regime and the “jump regime.” Another modeling approach applies EVT
to model the extreme tails of the electricity prices [6]. We offer such an example in
the next section.

3.5 Extreme Value Theory for Tail-Quantile Estimates

One method to deal with extremely large price movements is to delimitate the
extreme tail of the distribution and to model it independently with the POT (peaks
over the threshold) method, applying EVT and GPD (generalized Pareto distribu-
tion). We show the comparison of the modeling performance of an AR-GARCH
model with normal or t-distributed innovations against the conditional GDP and
POT method applied to tail quantiles for EEX Phelix hourly electricity prices, for
the sample period August 2008–2011. Compared to typical financial assets like
stocks and bonds, the magnitude of the price changes in the EEX Phelix is extreme.
As seen in Fig. 3.9, the exchange electricity prices have some hours go as high as
496.26EUR/MWh and some hours go as low as −500EUR/MWh.

Since the price changes are so extreme in some hours and we focus on the
extreme quantiles of the distribution, we have chosen to use simple net returns
rt = (Pt − Pt−1)/Pt−1 instead of logarithmic returns. A similar methodology was
suggested by [6]. The drawback of working with simple net returns if one is inter-
ested in large price drops is that there is a lower bound of −100%. We therefore
focus in this study on the positive tail.

We model the seasonality of electricity prices in the mean equation of the
AR-GARCH specification. We therefore include AR(1) and AR(24) terms in
the model to account for the daily electricity prices seasonality. We end up with
the following specification:

rt = a0 + a1rt−1 + a2rt−24 + εt ,

σ2
t = φ0 +φ1ε2

t−1 +φ2σ2
t−1,

where σ2
t is the conditional variance of εt . εt is equal to σtηt with ηt N(0,1) or

Student’s t-distributed i.i.d. innovations (scaled to have variance one) with mean 0,
variance 1, and degree of freedom ν . The reason for including the t-distribution is
that empirical evidence strongly rejects the idea that electricity price changes are
normally distributed (see [6]).

We fit both versions of the AR-GARCH model to data by maximizing the likeli-
hood function. Results are available in Table 3.3. Likelihood ratio test results show
a better performance of the AR-GARCH model with t-innovations against the ver-
sion with normal innovations. For both AR-GARCH models (with Gaussian and
t-distributed errors) we get significant parameter estimates and “a”-parameters that
are positive; a fairly high R2 shows that the model explains successfully the data.
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The sum of the “a”-parameters is not significantly lower than one; however, an
infinite unconditional variance cannot be rejected for any of the two models. This
is not surprising considering the extremely fat-tailed data in our study and it is fur-
ther supported by the large positive tail-index estimate for the residual series and,
particularly, for the original return series.

To check how much of the autocorrelation has been removed by our AR-GARCH
volatility model, we look at the autocorrelation function of the standardized residu-
als zt . To see how much of the heteroscedasticity has been removed by the GARCH
model, we will analyze the filtered residuals εt . Figure 3.10 shows that an indepen-
dent and identical distribution (i.i.d.) series is now approximately given for the stan-
dardized residuals of EEX Phelix price returns. The standardized residuals are meant
to constitute the i.i.d. series with zero mean and unit variance that is used to esti-
mate the tails of the sample cumulative distribution function with EVT. In Fig. 3.11
one can clearly see the heteroscedasticity in the filtered residuals. Most of the het-
eroscedasticity of the original data is reflected by our GARCH variance model.

We further investigate the tails of the price change distribution and estimate
tail quantiles αt,p. We take standard quantiles of the normal distribution or of the
t-distribution, multiply them with estimates of σt , and derive conditional tail quan-
tiles αt,p calling the mean equation of our AR-GARCH model:

αt,p = a0 + a1rt−1 + a2rt−24 +σtαp. (3.16)

Table 3.3 AR-GARCH parameters

AR-GARCH parameters Normal Student’s t
Coeff. Std. errors Coeff. Std. errors

a0 ∗102 1.5 (0.00015) 0.037 (0.00008)
a1 0.0110 (0.0023) −0.0012 (0.0004)
a2 0.8640 (0.0016) 0.9817 (0.0004)
φ0 ∗104 5.1602 (0.000005) 0.0416 (0.000007)
φ1 0.5788 (0.0048) 0.4930 (0.0036)
φ2 0.4212 (0.0022) 0.5068 (0.0036)
ν 2.5407
Likelihood 35’100 54’670
R2 0.853
DW stat. 1.856

Own calculations

We further model extreme tail quantiles with EVT. That is, we focus on the obs-
ervations in the residuals ηt from the AR-GARCH model with normal innovations
applying the POT method, following the procedure in [6]. We thus collect observa-
tions in the residual series that exceed a certain high threshold u (see [8], as cited by
[6]). The excess distribution Fu(y) is given by:

Fu(y) = P(R− u≤ y|R > u) =
(FR(u+ y)−FR(u))

1−FR(u)
, 0≤ y≤,RF − u (3.17)
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where y is the excesses over u and RF is the right endpoint of FR, which is the
assumed distribution of the residuals ηt . For a high enough threshold u, [1, 20]
show that for a large class of distributions FR the excess distribution Fu(y) can be
approximated by the so-called GPD:

Gξ ,α(y) =

[
1−

(
1+

ξ
α

y

)]−1/ξ
, if ξ �= 0, (3.18)

Gξ ,α(y) = 1− e−y/α, if ξ = 0, (3.19)

for 0 ≤ y ≤ RF − u. ξ is the tail index and α > 0 is just a scaling parameter. The
parameters are determined by fitting the GDP to the actual data and by estimating
the parameters with the maximum likelihood method. In general, the threshold u
is chosen within reasonable limits of 5–13% of the data. We look at the most ext-
reme 10% upper tail of the standardized residuals and fit the GPD to the upper tail
excesses over the threshold. Thus, our upper tail “starts” at 0.9339. The maximum
likelihood estimators for the GPD are given in Table 3.4. The model fit for the upper
tail of residuals is shown in Fig. 3.4.

Table 3.4 Maximum likelihood estimators for the GPD parameters

Lower tails Upper tails
ξ α ξ α

0.5913 1.7230 0.6909 1.8377

Fig. 3.4 Generalized Pareto upper tail of residuals
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Accordingly to [6], the unconditional EVT tail quantiles αp of the residual
distribution with certain probabilities p is given by

αp = u+
α
ξ

((
n

Nu
p

)−ξ
− 1

)
, (3.20)

where n is the total number of observations and Nu is the number of observations
above the threshold u. Conditional GPD tail quantiles are further obtained by calcu-
lating Eq. (3.16) for αp.

By counting the number of returns that are larger than the estimated tail quan-
tile for each model version against the theoretical number of exceedences, we get
a number that represents the accuracy of these estimates. Our estimated sample
is extended over a period of 27,414h. In this case, we compute the theoretical
number of exceedences of a 99% tail quantile over a time period of 27,414h as
0.01 ·27,414= 274.14.

In the similar way we compute the theoretical exceedences of 95%, 99.5%,
99.9%, 99.95%, and 99.99% (extreme quantiles).

In Table 3.5 we present the number of exceedences of the AR-GARCH-based tail
quantiles for different tail probabilities. If a particular method to calculate marginal
quantiles works well, then the empirically observed number of exceedences should
be close to the theoretically expected. By comparing the AR-GARCH with normal
or t-innovations we conclude that the shape of the conditional error term distribu-
tion has an important impact on the tail-quantile estimates. Neither the conditional
normal distribution nor the conditional t-distribution captures the behavior of the
positive tail in a more realistic way. We observe that the performance of the normal
model gets worse, the higher the probability for the extreme tail is chosen, while
for the t-distributed model we observe a slightly better fit. Similar results where
found by [6] in an analysis of Nord Pool electricity prices. The interpretation is that
AR-GARCH models describe the entire distribution of returns, not only the most
extreme ones. Therefore they are not very successful in capturing extremely large
price movements in electricity prices. Similar discussions can be found in [14].

The number of exceedences obtained with the POT method (conditional GPD)
are close to the empirical ones for all quantiles. The unconditional EVT-based risk
estimator has the advantage of treating the tails separately and thus more efficiently.
Extending their analysis with out-of-sample tests and price forecasts, [6] concludes
a high performance of the POT method in fitting extreme tails of hourly electricity
prices. This is of significant importance for risk managers in determining accurate
portfolio “value-at-risk.” Additionally, a realistic approach for modeling the tails
helps power portfolio managers for the estimation of worst-case scenarios in the
context of stress testing.
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Table 3.5 In-sample evaluation of estimated tail quantiles at different probabilities (number of
exceedences)

Probability Expected AR-GARCH AR-GARCH-t Conditional GPD
0.95 1,371 1,086 1,232 1,577
0.99 274 603 509 300
0.995 137 464 370 156
0.999 27 291 167 24
0.9995 14 253 116 13
0.9999 3 193 38 1

3.6 Summary

In this paper we present different modeling approaches for electricity prices.
An overview of the main deseasonalization techniques is given. The price char-
acteristics reflected by one or another model are discussed. Additionally the perfor-
mance of some popular financial models is assessed in parallel: Brownian motions,
Ornstein–Uhlenbeck processes, and the Pilipovic model. We reveal the importance
of modeling the mean reversion and show that it makes sense to separate the short-
from the long-term dynamics of electricity prices.

We further assess the performance of EVT to model extremely large price move-
ments. This procedure gives much more realistic tail estimates than the classical
time-series models. Realistic tail-quantile estimates for the electricity prices are of
high interest for both risk managers and portfolio managers in the high volatile elec-
tricity markets.

In this respect, the choice of the modeling approach depends on the different
research questions or planning tasks.

Appendix

See Figs. 3.5–3.11.
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Fig. 3.5 Autocorrelations of day-ahead baseload, off-peak I, peak, and off-peak II hourly prices
(source [10], p. 35)

Fig. 3.6 Occurrence of negative prices Sept 2008–Dec 2011 on different hours
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Fig. 3.7 Occurrence of negative prices Sept 2008–Dec 2011 on different days

Fig. 3.8 Histogram of historical negative prices at EEX
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Fig. 3.9 EEX hourly prices

Fig. 3.10 Autocorrelation function of standardized residual



68 F. Paraschiv

Fig. 3.11 Filtered residuals and filtered conditional standard deviation
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Chapter 4
Price-Driven Hydropower Dispatch
Under Uncertainty

Martin Densing

Abstract After a review of hydropower optimization models, we focus on price-
driven hydropower dispatch models under uncertainty of the electricity price. We
present two modeling approaches for pumped-storage plants. In the first model, the
water level is constrained in expectation. We discuss the marginal price of water,
which is obtained analytically, and influences of price variances. The second model
is a multistage stochastic linear program on a scenario tree. Financial risk is con-
strained by a time-consistent extension of CVaR (conditional-value-at-risk). The
model has two time scales: The short-term dispatch decision is separated from the
long-term planning by aggregating electricity prices into occupation times at price
levels. The risk constraint is tested in a case study.

4.1 Introduction

Risk management for energy production and trading affects short- and long-term
decision making. A long-term decision is how to invest in energy generation and
transmission facilities. A shorter-term decision is how to operate facilities and to
trade energy. The decisions are linked: The expected profit of operation and trading
influences the investment decision for a facility, and the uncertainty in operation and
trading increases the uncertainty of the return of the investment.

In this chapter, we focus on the operation of hydropower plants under uncertainty.
We assume a liberalized market environment, where the flexible dispatch capability
of hydropower is used for trading (price-driven operation), rather than for meeting
a demand (demand-driven operation). Uncertainties are market prices and a nat-

M. Densing (�)
Energy Economics Group, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
e-mail: martin.densing@psi.ch

R.M. Kovacevic et al. (eds.), Handbook of Risk Management in Energy Production
and Trading, International Series in Operations Research & Management Science 199,
DOI 10.1007/978-1-4614-9035-7__4, © Springer Science+Business Media New York 2013

73

mailto:martin.densing@psi.ch


74 M. Densing

ural water inflow into a storage reservoir. The objective is to maximize expected
cumulative profit under financial risk. The goal is a mid- to long-term valuation and
dispatch planning for the plant by optimizing the short-term dispatch decision.

In the next section, we give an overview of price- and demand-driven hydropower
models under uncertainty, and we introduce concepts for the following sections.
In Sect. 4.3, we discuss price-driven hydropower models over single and multiple
time periods that are exactly solvable. In Sect. 4.4, we consider a long-term plan-
ning model. This model involves two time scales by applying occupation times
of electricity prices. The financial risk is measured by a multi-period extension of
conditional-value-at-risk (CVaR). The mean-risk model is formulated as a multi-
stage stochastic linear program on a scenario tree. We provide results of a case
study, focusing on the risk constraint. Eventually, we conclude in Sect. 4.5.

4.2 Review of Stochastic Hydropower Dispatch Models

The variety of hydropower models may be classified as follows:

• Time horizon: Short-, medium-, or long-term models (hours to several years),
single- or multi-period models.

• Technical detail: Models may include nonlinear water-head effects, turbine
start-up and shutdown costs and delays, several turbines or interconnected reser-
voirs with delays of flows (or aggregated to a single power plant or single reser-
voir), minimal discharge or minimal generation requirements, and evaporation
from the reservoir; different plant types: storage, pumped-storage, or run-of-the-
river.

• Demand or market view: The objective may be meeting of demand or profit
optimization from power trade, which may include spot, futures, or other deriva-
tives markets; the economic agent may be a price-taker or may have market
power; the auction for the market clearing price may be modeled in detail.

• Uncertainty: The water inflow, market prices, or the demand may be modeled
stochastically.

• Portfolio: The model may be for a single hydropower plant or for a portfolio of
power plants and contracts, which may include financial and physical delivery
contracts; the electricity grid with transmission constraints may be included.

• Objective: Models may maximize operational profit, for example, by financial
mean or mean-risk optimization; other objectives may include to minimize devi-
ation between generation and demand, to minimize the probability of an empty
reservoir or of a spill over, or to optimize irrigation.

The previous classification excludes solution methods; because hydropower opti-
mization problems are numerically demanding, the availability of solution methods
influences the range of possible models.In the following, we give a limited overview
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of some of the models and methods, focusing on long-term planning, demand and
market view, and on uncertainty and risk, and less on portfolio view and technical
detail.

For an overview on stochastic programming in energy with emphasis on
hydropower, we recommend [86].

4.2.1 Demand-Driven Hydropower Dispatch

In demand-driven models, the predominant source of uncertainty is usually the
stochastic water inflow into one or several basins. The objective is to maximize
hydropower generation to satisfy demand and to minimize costly alternative gener-
ation, for example, by thermal plants.

Historically, a long-term hydropower dispatch model under stochastic inflow was
first considered in [58]: An optimal policy is constructed recursively backward in
time; the risk of hitting low financial values and an extension to stochastic demand
is shortly discussed, too. The recursive method is now known as dynamic pro-
gramming (based on Bellman’s principle [6]) and was applied to hydropower with
stochastic inflow in [56]. Dynamic programming is still widely applied; for example,
see a recent extension by the dual of the stochastic dynamic programming problem
[73].

If a model has several time periods, then uncertainty is usually represented by a
scenario tree. The tree is usually non-recombining because a node of the tree should
represent a unique state which usually depends on the historical path. If such a tree
branches in each nonterminal node, then the number of nodes grows exponentially
in the number of time stages. This “curse of dimensionality” limits the number of
stages in numerically tractable models. The limitation holds for dynamic program-
ming as well as for stochastic programming, which does not require a recursive
model formulation.

For demand-driven hydropower models, decomposition methods are used to
solve models with moderate number of stages. The nested Benders’ decomposi-
tion method for multistage stochastic programs can be suitably extended to hy-
dropower problems [46, 60, 64]; a comparison of nested Benders’ decomposition
with dynamic programming for hydropower is in [2].

Nested Benders’ decomposition can be combined with sampling methods: The
widely applied stochastic dual dynamic programming (SDDP) algorithm combines
cut sharing and sampling paths over the scenario trees; see the seminal work [65]
and the overview [78]. Convergence properties of SDDP were recently addressed in
[80], and a related sampling method is in [15].

An alternative to models on a general scenario tree are models on a fan of sce-
narios, that is, a scenario tree that branches only in the root node. Such models are
numerically tractable over many stages [23, 42]; as a trade-off, a successive gain of
information over time for decision making is not possible.
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Demand-driven hydropower may be considered in a portfolio with other power
generation. Models with additional thermal units are usually formulated as a unit
commitment problem, which requires a stochastic mixed-integer formulation; for
further references—also for multistage unit commitment—see [77, p. 204]. Alter-
natively, demand-driven hydropower can be combined with wind power [49].

Hydropower models may address the technical details: For example, the varying
water level in a reservoir changes the efficiency of the turbines (head effect), and
start-up costs of turbines may be relevant. The problem usually becomes nonlinear
or includes integer variables; an example that includes also risk management is the
run-of-the-river model [14].

Future demand is usually fairly known based on historical evidence and temper-
ature forecast for the required heating and cooling energy. The demand may still be
uncertain because of forecast errors, generator failures, or uncertain dispatch from
other producers; see the model in [70], which is a short-term unit commitment prob-
lem for a chain of reservoirs, with stochastic water inflow and stochastic demand.

4.2.2 Price-Driven Hydropower Dispatch

The advent of electricity markets changed the operational environment of power
producers. Without markets, dispatch decisions were mainly demand-driven; the
producer of electricity had to cover domestic electricity demand by own production.
With markets, demand can be satisfied by buying electricity on the market, and
own surplus production can be sold on the market at the market price if we assume
the market is liquid and sufficient transmission capacity is available. Empirically,
market liberalization results in a different, more intense use of hydropower water
resources [87].

A hydropower planning tool for the early deregulated market of Norway is dis-
cussed in [35]: Short-, medium-, and long-term planning is separated into three
models with different levels of detail. Different time scales of the models allow
them to cover long-term planning as well as short-term dispatch. A long-term model
represents the aggregated hydropower system, a mid-term model is for each reser-
voir separately and incorporates trading on markets, and a short-term model, which
includes technical constraints (e.g., head effects), is for the immediate dispatch on
an hourly time scale. The output of the long-term model is target reservoir levels,
which are input to the medium-term model. The output of the medium-term model
is marginal values of water which are input to the short-term model.

More integrated dispatch models with the flexibility of a spot and futures
market include, for example, the multistage stochastic programming models in
[32, 36]. Modeling high-frequency dispatch (including trade) over long-time hori-
zons is problematic because the number of stages in the scenario tree is limited by
numerical tractability, and the assumption that market prices are constant or aver-
aged between relatively widely spaced time stages may not be sufficient. A moderate
number of stages is possible by a combination of dynamic programming with the
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SDDP algorithm, which is originally suited only for demand-driven dispatch; for a
corresponding model with trade and a demand, see [38].

Long-term market-driven hydropower models may incorporate two time scales:
The dispatch (and trade) is on a short time scale (e.g., hourly), and the long-term
reservoir management is on a long time scale (e.g., weekly or longer); the stages of
the scenario tree are on the long time scale.

Such a dual-scale model is presented in [72], where the profit optimization is
decoupled in an intra- and interstage problem: For each stage, a short-term prob-
lem optimizes the offer stack (i.e., the offered supply as a function of price; bidding
curve), whereas the long-term optimization by dynamic programming takes the un-
certainty of water inflow into account. The authors recognize that rather than the
time series of prices, the price–duration curve (i.e., the fraction of prices below
given levels) is relevant for optimizing the offer stack.

A similar dual-scale model is the stochastic multistage mixed-integer problem
in [33]: On the short time scale, the chronological order of prices is not important.
Hence, prices are divided into price segments; the reservoir balance is enforced only
on a longer time scale (at the stages). Similar load periods of the electricity price
are used in the model in [38]. The model in Sect. 4.4 uses similarly the occupation
times of the electricity price; see also [21].

Another multi-scale long-term model is in [71]. This energy system model
encompasses several energy sectors including hydro energy storage. The model
includes investment decisions on a long time scale as well as dispatch decisions
on an hourly scale.

After fixing a model, we may determine an optimal dispatch decision. For a gen-
eral class of linear control problems, optimality is achieved by a bang-bang control
[55]. The mid- to long-term hydropower optimization problem in [61] has opti-
mal bang-bang dispatch decisions, which are functions based on information from
forward contracts and inflow estimates. Similarly, the models of a pumped-storage
hydropower plant in Sect. 4.3 have optimal bang-bang solutions.

We mention shortly other research directions for price-driven dispatch. The cat-
egory of short-term models considers mainly the (one) day-ahead market; for ex-
ample, see [30, 31]. Especially, the day-ahead market bidding mechanism may be
modeled in detail; for example, see the day-ahead models in [17, 29]. An overview
of market-oriented short-term models with emphasis on hydropower and stochastic
programming methods is in [53]. Another category of models encompasses a larger
portfolio of power generation units, for example, wind power [18, 83].

4.2.3 Risk-Averse Hydropower Dispatch

In this section, we give an overview of risk measures for hydropower models. For a
general overview of risk management in energy, see [34].

Financial risk control is relevant mainly for mid- and long-term hydropower
models, because dispatch decisions over a short time horizon may not drastically
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change the cumulative profit, which is usually reported only weekly or several times
per year, and the purpose of trade on spot and derivatives markets is usually assumed
to reduce mid- and long-term risk, for example, by hedging the profit from own
production.

Financial risk can be constrained by setting a profit target for each time period
and a penalty term for not meeting the target. Penalty terms are used in the
hydropower model in [59]; this medium-term model includes trading on a mar-
ket with stochastic spot and future prices, and the contract portfolio comprises also
load factor contracts, which are modeled as hydropower plants having reservoirs
without inflow. Similar target values are used in the models in [36, 38]. Similarly, a
penalty term for each stage is considered in [32]; the model has a stochastic inflow
and includes trading with stochastic prices in spot, forward, option, and load factor
contracts.

In financial portfolio theory, a widely used mean-risk model is mean–variance
portfolio optimization. Mean–variance optimization is considered in the pumped-
storage model in [62]; the short-term model includes trading in a market with price
uncertainty represented by price variances.

Alternatively, financial risk can be constrained by a bound on the coherent risk
measure CVaR; CVaR is defined in our setting in Sect. 4.4.1. A mean-risk model
with CVaR for a power portfolio that includes pumped-storage hydropower plants
is investigated in [23]; the long-term model encompasses several reservoirs with
uncertain inflow, several markets with uncertain spot and future prices, and addi-
tional generation from thermal plants. The risk measure CVaR may also be applied
in short-term models; see [14] for a technically detailed model with stochastic prices
and deterministic inflow.

The risk measure CVaR fulfills the properties of coherency: For example, the
risk of two combined positions does not surpass the sum of the risk of the individ-
ual positions (risk reduction by a portfolio); for details, see [3]. Conveniently, the
value of CVaR can be calculated by a stochastic linear optimization problem [76].
In contrast, the risk measure value-at-risk (VaR) is not coherent and leads to non-
convex optimization problems; given a probability level, the VaR of a continuous
random variable is defined as the (sign-reversed) quantile at that level. For a multi-
stage hydropower model with trade, the risk measure VaR is compared with CVaR
and with worst-scenario values in [44]; CVaR is found conceptually and computa-
tionally superior.

CVaR is defined for a single random variable and thus suitable for single-period
models; multistage models may include multi-period risk measures that take the
gain of information in the scenario tree into account. Multi-period risk measures
that are defined backward recursively by dynamic programming are usually time
consistent. Time consistency ensures that if a decision maker will accept a random
variable in terms of risk at an arbitrary future point in time in every scenario, then
she accepts the random variable today, too; for more details, see [4].

For a hydrothermal system with stochastic demand and inflow, a time-consistent
rolling-horizon policy with risk aversion is presented in [40]. In this model, the
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risk of violating reservoir bounds and of unmet demand is confined by chance con-
straints; in a variant, the CVaR of water levels is constrained.

A storage facility for a general commodity is considered in a multi-period model
in [37]; the commodity is traded on a market with random spot and forward prices,
and satisfies a random demand. The objective is a recursive risk measure of the profit
over time.

A multi-period risk measure is also considered in the long-term hydrothermal
model in [69]. The demand-driven model encompasses several plants and a ran-
dom water inflow. A mean-risk criterion is applied recursively backward from final
time. The criterion is a convex combination of the mean and the CVaR of costs in
each node of the scenario tree, and the optimization problem can be solved by an
extension of the SDDP algorithm.

Similar to the previous models, we discuss in Sect. 4.4 a mean-risk model with a
recursively defined risk measure based on CVaR.

Risk measures may also be applied to general power portfolios that encompass
a variety of energy contracts and several generation capacities; hydropower is not
modeled in large detail. We briefly mention some examples as follows. A portfo-
lio consisting of market-traded contracts, of own generation, and of power-delivery
contracts is considered in [50]; the risk measure is a multi-period extension of VaR.
The portfolio optimization problem in [79] has a penalty term for a profit target
on each stage. The portfolio problem in [43] uses the risk measure Average-VaR,
that is, a sign-reversed CVaR. A mean–variance portfolio optimization is consid-
ered in [74].

A multi-period, polyhedral risk measure is applied in [28]; the mean-risk model
is for a combined heat-and-power plant with trade on spot and future markets.

4.3 Price-Driven Dispatch Models with Exact Solutions

In the previous section, we reviewed price- and demand-driven risk-averse
hydropower models. In this section, we present price-driven models with trading on
a spot market. We assume a risk-neutral decision maker who maximizes expected
profit without considering risk; alternatively, we assume that the probabilities of the
scenarios are changed in the model to risk-neutral probability weights. Note that a
risk constraint is considered in the more detailed mean-risk model in Sect. 4.4.

The decision maker of a hydropower plant has to decide how much water to
release immediately and how much water to keep in the reservoir for later release.
An optimal decision is given in [58, p. 63]: If the marginal utility x of immediate
release is higher than the marginal utility y of the expected remaining water, then
we release; if x ≤ y, then we keep the water (bang-bang control). In the following
models, the water level is weakly constrained in expectation, which allows us to
determine the marginal utilities.
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4.3.1 Single-Period Dispatch Model

We consider a pumped-storage hydropower plant, which has the additional dispatch
flexibility of purchasing energy to store in a reservoir when prices are low; the fol-
lowing results can be specialized to a dispatch without pumping. The plant can sell
and buy electricity in a market over a single period, for example, a month. The
objective is to maximize the expected profit at the end of the period. The model can
be viewed as a steady-state model (in expectation) over a series of time periods.

The electricity price during the period is assumed to be a random variable S; the
plant is a price-taker. A head effect of the reservoir is neglected: We assume a con-
stant efficiency of pumping c∈ (0,1) for the conversion of purchased electricity into
energy (unit of reservoir level is energy). We neglect turbine start-up and shutdown
constraints. The maximal capacities of production and pumping over a period are
constants u+max and u−max, respectively, and minimal levels are assumed to be zero.
We assume that a lower reservoir is sufficiently large to allow maximal pumping
over a period.

The dispatch decision how much to produce and to pump over a period is as-
sumed to be a function of the electricity price, S �→ u±(S), with sign convention
u± ≥ 0. The dispatch u± depends on the reservoir level only implicitly through the
bounds on the reservoir level.

We assume a lower bound on the expected reservoir level. A constraint in expec-
tation is useful in the following cases; see also [54, 62]. The bound may be a target
value, which may be an empirical average over several time periods; a constraint in
expectation allows the bound to be violated in some scenarios, such that the model
can account for statistical estimation errors or for modeling bias. A lower bound that
holds in every scenario may be too conservative, and the decision maker may take
risk by violating bounds in some scenarios.

We consider only a lower bound lmin of the reservoir level; we assume that a
violation of an upper limit has no severe consequences (apart from a spill over) or
that the reservoir is sufficiently large. For the single-period model, a water inflow is
not explicitly modeled: The initial value l0 can be interpreted as a sum of the initial
reservoir level and expected inflow during a period. To exclude trivial solutions, we
prevent selling always at full capacity over a period, and we assume there is usable
water, u+max > l := l0− lmin > 0.

The stochastic (steady-state) optimization problem maximizes the expected
profit,

max
u±

E

[
S u+(S)− 1

c
S u−(S)

]
, (P1)

s.t.

⎧⎪⎨
⎪⎩

l0−E
[
u+(S)− u−(S)

]≥ lmin,

0≤ u±(S)≤ u±max,

u± : R+→R+.
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The box constraint for the random variable u±(S) in (P1) is understood to hold
almost surely. The set of scenarios is denoted by Ω . The probability of an event
A ⊂ Ω is denoted by P[A], and 1A : Ω → {0,1} is the indicator function of A. An
optimal solution of problem (P1) can be given by a bang-bang control as follows.

Proposition 1. Let the price S be nonnegative with continuous distribution function.
Then an optimal production and pumping in problem (P1) is

û+(S) = u+max1{S≥q̂} , û−(S) = u−max1{S≤cq̂} , (4.1)

where q̂≥ 0 is given by a solution of

u+maxP[S≥ q̂]− u−maxP[S≤ cq̂] = l. (4.2)

For a proof, see [21].
By the optimal bang-bang control (4.1), we produce at full capacity if the elec-

tricity price is higher or equal to q̂, and we pump at full capacity if the price is lower
or equal to cq̂, where c ∈ (0,1) is the efficiency of pumping. A related hydropower
model with bang-bang control is in [61] (see Sect. 4.2.2). In our simple model,
the production threshold q̂ is given by (4.2). The threshold q̂ corresponds to the
marginal value of water because q̂ is the optimal Lagrange multiplier of the water
constraint [21].

The marginal value q̂ of water is related to the available water l by (4.2). A nu-
merical solution of (4.2) shows that the marginal value decreases if the available
water increases; see Fig. 4.1, and for a similar result, see [35, Fig. 3].

0.5 1.0 1.5
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2

3

4

q

remaining water

5 10 15
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10

11

opt.obj.val.

umax

Fig. 4.1 Marginal value of water as a func-
tion of remaining water. Electricity price
standard deviation = 1 (dashed line), = 2
(solid line); normally distributed

Fig. 4.2 Optimal objective value as a func-
tion of maximal production capacity. Elec-
tricity price standard deviation = 1 (dashed
line), = 2 (solid line); normally distributed
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Figure 4.1 shows also that a higher volatility of the electricity price results in a
higher marginal value of water if water is scarce, but a lower marginal value if water
is more abundant. Hence, there is a water level where the volatility has no influence
on the marginal value.

The objective function of the dispatch problem (P1) is the expected value of the
operation of the plant over a period. The numerical example in Fig. 4.2 shows that
the marginal expected value decreases when the capacity of production u+max in-
creases (concave curve), and higher volatility yields higher values. Similar results
are obtained for values of swing options, which can be considered as values of sim-
plified hydropower plants [24, Fig. 3]; see also the discussion following the next
problem.

Price-driven dispatch planning can be formally related to inventory theory, which
considers a stochastic demand: A special case of the price-driven dispatch prob-
lem (P1) is a dual of the newsvendor problem, which is a demand-driven inven-
tory problem, and the stochastic price in the hydropower problem is the stochastic
demand in the newsvendor problem; for details, see [21].

As a side remark, inventory theory can also be generally related to hydropower
dispatch as follows. Inventory theory considers a stock of items for supplying a
stochastic exogenous demand. By contrast, in hydropower, power demand is usu-
ally fairly known in advance, whereas the reservoir may have a stochastic exoge-
nous inflow of water. If we neglect the sign of the inflow, then we consider in both
cases an exogenous stochastic process that changes an inventory level. The analogy
is pronounced for inventory models that allow to procure items on a market; for ex-
ample, see [9, 45]. If we neglect the sign of the procurement, then inventory theory
as well as price-driven hydropower considers the optimal trade on a market under
a lower bound on the inventory level. The analogy depends on the provided details:
If head effects are considered in hydropower, then equally sized amounts of water
can have different energy content, whereas equal items in a warehouse have equal
values.

4.3.2 Multi-Period Dispatch Model

The previous single-period model (P1) can be extended without many changes to
multiple periods, t = 0, . . . ,T . The exogenous electricity spot price is now a non-
negative stochastic process, (St)t=0,...,T . The reservoir level starts again at l0 and is
bounded from below in expectation by lmin for all t; we assume l0− lmin > 0. The
dispatch decision at time t is assumed to be a function of the prices up to time t,
u±t (S0, . . . ,St). A water inflow with expectation wt ≥ 0 increases the expected reser-
voir level at each time step. The stochastic optimization problem for the dispatch
decision is

max
(u±t )

T

∑
t=0

E

[
Stu

+
t (S0, . . . ,St)− 1

c
Stu

−
t (S0, . . . ,St)

]
, (P2)
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s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l0 +
s

∑
t=0

(
E

[
u−t (S0, . . . ,St)− u+t (S0, . . . ,St)

]
+wt

)
≥ lmin,

s = 0, . . . ,T,
0≤ u±t (S0, . . . ,St)≤ u±max, t = 0, . . . ,T,

u±t : Rt+1
+ → R+, t = 0, . . . ,T.

Similar to the single-period model (P1), an optimal solution of (P2) is a bang-bang
dispatch as follows.

Proposition 2. Let the distribution function of St be continuous for all t. Then an
optimal solution of problem (P2) is

û+t (S0, . . . ,St) = u+max1{St≥∑T
s=t q̂s}, t = 0, . . . ,T,

û−t (S0, . . . ,St) = u−max1{St≤c∑T
s=t q̂s}, t = 0, . . . ,T,

(4.3)

where q̂ = (q̂0, . . . , q̂T )
� ∈R

T+1 and v̂ = (v̂0, . . . , v̂T )
� ∈R

T+1 are given by a solu-
tion of the following equation and complementary relation:
⎧⎪⎪⎨
⎪⎪⎩

s

∑
t=0

(
u−maxP

[
St ≤ c

T

∑
s′=t

q̂s′
]−u+maxP

[
St ≥

T

∑
s′=t

q̂s′
]
+wt

)
+ l0− lmin = v̂s,

s = 0, . . . ,T,
v̂�q̂ = 0, v̂≥ 0, q̂≥ 0.

(4.4)

For a proof, see [21].
The optimal threshold for production and pumping in (4.3) decreases over time

because q̂t ≥ 0 for all t. According to (4.3), we produce at maximal capacity at time
t when ∑T

s=t q̂s is lower or equal the spot price; the sum can be interpreted as the
marginal value of remaining water at time t. If the water inflow until a time s is
sufficiently large, then v̂s > 0; hence, q̂s = 0 by (4.4), with the interpretation that the
marginal value of water at time s is zero. If this holds for all times beyond s, then
the amount of remaining water is sufficiently large such that full production at any
nonnegative price is optimal.

Let us consider problem (P2) in the case without pumping, u−max = 0, and we
neglect the intermediate constraints on water at s = 0, . . . ,T − 1. In this case, the
problem is similar to the optimization problem for a buyer of a swing option con-
tract: At each time step, the buyer can draw energy in the range [0,u+max], and the
cumulative drawn amount is limited, too. More precisely, problem (P2) is in this
case a relaxation of the problem for a swing option, because the constraint on water
(cumulative amount) holds merely in expectation. The optimal exercise policy of
a swing option is under some circumstances also a bang-bang control [5]. For an
overview on swing options, see [52] and Chap. 14 in this book.

Generally, formulating decisions using option theory is appropriate if the option-
ality in the decision model can be clearly identified, which may not be possible
for more detailed hydropower models (e.g., for the following multistage mean-risk
model). Indeed, the following multistage stochastic programming approach takes by
its decision variables over time all implicit options automatically into account; see
also [85].
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4.4 Multistage Mean-Risk Model

Exact solutions as for the previous problems are not known for feature-rich
hydropower models. In this section, a price-driven long-term model is formulated
as a stochastic multistage linear program (MSLP) on a scenario tree; for MSLPs in
general, see the monographs [10, 48]. In stochastic programming, the scenario tree
is fixed and determined by realizations of the exogenous random variables (obser-
vations). By contrast, in optimal control theory, the control (decision) can in general
influence the random observations. The fixed probability structure of stochastic pro-
gramming facilitates numerical tractability.

We present a mean-risk model where the financial risk is measured by a mul-
tiperiod extension of the coherent risk measure CVaR. To overcome the curse of
dimensionality, the model has two time scales and uses the occupation times of the
electricity prices; see Sect. 4.2.2 for similar approaches. In a case study, we discuss
the influence of risk on model results.

4.4.1 Time-Consistent Coherent Risk Measurement

We may define the acceptability of an uncertain financial position in terms of risk
by a threshold on a so-called coherent risk measure [3]. Coherent risk measurement
ensures for example that a portfolio is accepted in terms of risk if the individual
positions are accepted, and adding an amount of cash to a portfolio reduces its risk
by the same amount.

A widely applied coherent risk measure is CVaR [66, 75]. CVaR can be calcu-
lated by a stochastic linear program [76]. The dual problem is known as TailVaR [3],
and similar notions (having different sign convention) are AVaR [67] and Expected
Shortfall [1]. We define CVaR as a risk-adjusted value, which is a sign-reversed risk
measure [4], as follows.

Let X be a real-valued random variable that represents an uncertain financial
position. We assume a finite scenario space, Ω = {ω1, . . . ,ωk}, k < ∞. The proba-
bility of scenario ωi is pi, i = 1, . . . ,k, and the realizations of X are denoted by xi,
i = 1, . . . ,k. Let α ∈ (0,1). The risk-adjusted value CVaR is defined as

CVaRα [X ] = min
(qi)

k

∑
i=1

qixi s.t.
{

qi : 0≤ qi ≤ 1
α

pi,
k

∑
i=1

qi = 1
}
. (4.5)

The objective function of (4.5) is the expectation of X under probability weights
q1, . . . ,qk. A feasible weight qi is higher than the original weight pi at most by a
factor 1/α . The minimization shifts feasible weights to low values of X as much as
allowed by the constraints. If X had a continuous distribution function, then CVaR is
the expectation of X conditional on values below or equal the α-quantile of X [66].
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The risk-adjusted value CVaR can be extended to multiple time periods t =
0, . . . ,T ; see the extensions in [27, 67]. Our extension is based on [4], which is
suitable for a sequence of random values over time, X0, . . . ,XT .

In a finite scenario space, realizations of random values over time are represented
by a scenario tree. The set of nodes of the tree at time t = 0, . . . ,T is denoted by Nt .
The root node represents all scenarios (first stage); the terminal nodes at final time
T represent single scenarios. The realization of Xt in node n ∈Nt is denoted by xtn.
The transition probability pnm is the probability of the set of scenarios going through
node m conditional on those going through node n.

The following definition of a multi-period risk-adjusted value is based on the
assumption that (i) in each scenario, the risk-adjusted value is lower or equal to
the value itself, and (ii) the acceptability increases over time because information
increases: The risk-adjusted value at time t is lower or equal to the expected risk-
adjusted value at time t + 1 for all feasible probability weights.

The risk-adjusted value rtn at time t in node n ∈Nt is defined recursively back-
ward in time,

rtn =

⎧⎪⎨
⎪⎩

xtn, t = T,

xtn∧
(

min
(qnm)

∑
m∈Nt+1

qnmrtm

)
, t = 0, . . . ,T − 1, (4.6)

s.t.
{

qnm : 0≤ qnm ≤ 1
α

pnm, ∑
m∈Nt+1

qnm = 1
}
,

where y∧ z := min(y,z) for numbers y, z. Given a nonterminal node n, the set of
feasible probabilities qnm in (4.6) is the feasible set in (4.5) for CVaR. It can be
shown that the recursive risk-adjusted value (4.6) is coherent and time consistent
[4, 22].

In a mean-risk model, the acceptability of a sequence of values X0, . . . ,XT can be
represented by a constraint on the risk-adjusted value (4.6) in root node n0 at t = 0,
r0n0 ≥ ρmin. The stringency of the risk constraint is given by ρmin and the level α .
Because the recursion (4.6) has a multiplicative effect, the stringency of a level α is
comparable to a level αT of a risk constraint with CVaR (4.5) [22].

4.4.2 Dual-Scale Modeling by Occupation Times

We want to model the high-frequency dispatch of a hydropower plant over a long-
time horizon by a stochastic program on a scenario tree. Because the number of
stages is numerically limited, we formulate the model with two time scales (dual-
scale model). In particular, the price process on the short time scale will be converted
to occupation times at price levels on the long time scale, and a subsequent principal
component analysis reduces the dimensionality. The model is based on [21]; see
Sect. 4.2.2 for a discussion of similar approaches [33, 38, 72].
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In the dual-scale model, we assume that the seasonal variations of water inflow
and of prices are relevant for the state of the plant, whereas the short-term variations
are relevant for the immediate dispatch decision and do not drastically change the
state.

Short time scale (e.g., hourly):

• Dispatch decision of production
and pumping

• Short-term variation of prices
• Water inflow rate depending on

weather

Long time scale (e.g., monthly):

• State of the plant: variations of

– Cumulative profit
– Water level of reservoir

• Seasonal variation of prices
• Seasonal water inflow (e.g., sum-

mer/winter)

The separation of time scales is applicable, for example, to water reservoirs that
can not be emptied quickly.

The long time scale of the state variables is denoted by t = 0,1, . . . ,T with time
horizon T . The dispatch decision is on a short time scale t + h

H , h = 0,1, . . . ,H− 1,
t = 0, . . . ,T − 1. For simplicity, we assume that the constant H is the number of
hours in [t, t + 1] for all t.

For a pumped-storage hydropower plant, the change in cumulative profit-and-
loss between t and t + 1 is

Pt+1−Pt =
H

∑
h=1

St+ h
H

(
U+

t+ h
H
− 1

c
U−

t+ h
H

)
, (4.7)

where the random variable St+h/H is the electricity spot price in the hth hour in
[t, t + 1], the U±

t+h/H are the dispatch amounts of production and pumping, and
c is the pumping efficiency. The dispatch should take advantage of hourly price
changes, that is, the dispatch as a control function should depend on the current
price, U±

t+h/H = u±t (St+h/H , . . . ).
Let us generalize (4.7) to continuous time by replacing the sum by an integral.

By taking into account that the dispatch depends on the current price, the right-hand
side of (4.7) is for a suitable f : R→ R the left-hand-side of

∫ t+1

t
f (St′)dt ′ =

∫ ∞

0
f (s)dF̃t+1(s), F̃t+1(s) :=

∫ t+1

t
1{St′≤s}dt ′, (4.8)

where we applied in (4.8) a transformation to a Stieltjes integral with respect to F̃t+1.
A formal proof of (4.8) is in [21, Appendix], or see [11, (4.1)]. In our discrete time
setting, the transformation (4.8) is an approximation

H

∑
h=1

f
(
St+ h

H

)≈ H
N

∑
i=1

f (s̄i)
(

Ft+1(si)−Ft+1(si−1)
)
, (4.9)
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where s0 < s1 < · · ·< sN are given price levels with intermediate levels s̄i ∈ (si−1,si),
i = 1, . . . ,N, and we define for the electricity price process in interval [t, t + 1] the
occupation time at level s as

Ft+1(s) :=
1
H

H

∑
h=1

1{S
t+ h

H
≤s}

(
= fraction of hours where

price ≤ s

)
. (4.10)
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Fig. 4.3 Occupation times of the electricity
price at s0, . . . , sN (occupation time at si �
time when price is below si during [t, t + 1]).
Three-day time step, EEX spot price data
(Oct 2010)

Fig. 4.4 Quantile–quantile plot of occupa-
tion time at 46 EUR/MWh. Monthly time
steps; EEX spot price data, Jan 2008–Oct
2011, 46 EUR/MWh � 50 % price quantile;
95 % confidence envelope

The occupation times are visualized in Fig. 4.3. Given a level s, the occupation
time Ft+1(s) is a random variable. In contrast, the so-called price–duration curve
is usually deterministic, see for example [81, Sect. 4.5], and may be defined as an
expected occupation time [82, (1)].

If the electricity prices over time were independent and identically distributed,
then Ft+1(s) in (4.10) is the empirical distribution function, which is asymptotically
normally distributed by the central limit theorem. Empirically, the occupation times
are similar to a normal distribution; see the quantile–quantile plot in Fig. 4.4.

For a dual-scale model, we apply the transformation (4.9) to the state equation
(4.7) of profit and also to similar state equations of the hydropower plant, for exam-
ple, of the water level. The transformation removes the short time scale of hourly
price variations, and the dynamics is captured by a time series of occupation times
at different price levels, Ft = (Ft(s0), . . . ,Ft(sN))

�, t = 1, . . . ,T . For the time series
of occupation times we assume a linear principal-component factor model:

Ft = μ+BGt + εt , t = 1,2 . . . , (4.11)
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where μ ∈ R
N+1 is an intercept, Gt is a vector of independent factors with dimen-

sion K � N + 1, B ∈ R
(N+1)×K , and εt is the residual [88]. Eventually, we choose

suitable models for the time series of factors (Gt)t=1,2,..., for example, autoregres-
sive processes.
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Fig. 4.5 Eigenvalues (variances) of the first
5 principal components of weekly occupation
times. Nord Pool spot price data, year 2008–
2010

Fig. 4.6 Coefficients of the first 3 princi-
pal components of weekly occupation times.
Nord Pool spot price data, year 2008–2010

The factor model (4.11) was estimated for different time periods, for dif-
ferent sets of spot price levels, and for the Nord Pool and EEX market
places [26, 63]. For example, principal components of occupation times over
weekly time steps from Nord Pool prices are in Figs. 4.5 and 4.6. A com-
mon empirical result is that the first few principal components of the oc-
cupation times explain most of the variance. Hence, we may consider K ≤
3 in (4.11) as sufficient, which is usually much smaller than the dimension
N + 1 of Ft .

Note that occupation times of Ornstein–Uhlenbeck processes have a similar
pattern of principal components [20]; Ornstein–Uhlenbeck processes are mean-
reverting Gaussian processes which are used for electricity price models [8, 57].

4.4.3 Stochastic Program on the Scenario Tree

For the mean-risk model of a hydropower plant, we presented two modeling parts:
a constraint on multi-period risk (Sect. 4.4.1) and the dual-scale modeling with oc-
cupation times (Sect. 4.4.2). We proceed with the objective function, then we give
the linear programming formulation.

The objective function is assumed to be the expected final value, E[XT ]. At time
t = 0, . . . ,T , the retrospective part of the value Xt is the cumulative profit Pt at time t,
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and the prospective part is assumed—as perceived by a decision maker—to be in-
dependent of future dispatch decisions and values the expected usable water by a
salvage parameter v:

Xt := Pt + v
(
E
[ T

∑
s=t+1

Ws
∣∣Ft

]
+Lt − lmin

)
, t = 0, . . . ,T, (4.12)

where Lt is the reservoir level at time t, lmin is the lower bound on the level, and
Wt is the random inflow of water into the reservoir during [t− 1, t]. The expectation
E[·|Ft ] is conditional on the information which node in the scenario tree is attained
at time t (σ -algebra Ft ). Discounting of values is neglected for simplicity.

The salvage value v for future water may be determined by historical estimation
[59]. Alternatively, the problem is iteratively solved until numerical convergence:
The marginal value of the water constraint at final time is used to update v for the
next iteration [35, p. 78]. A salvage value can be avoided if the bounds on the reser-
voir level at final time match recurring seasonal initial conditions [23, 33, 61], or
the time horizon is extended to diminish the influence of a finite horizon [40, 58].
A comparison of methods to deal with end-of-horizon effects is in [39].

The scenario tree is generated by realizations of the water inflow (Wt)t=1,...,T and
of the factors (Gt)t=1,...,T in the factor model (4.11) of the occupation times of the
electricity prices. More precisely, the discretized innovations of the factor model
and of the inflow model generate the scenario tree. The innovations are assumed
to be normally distributed and are discretized by binomial distributions [47]. For
simplicity, we assume that the inflow is stochastically independent from prices; if
electricity supply is mainly by hydropower, then inflow and price can be correlated
[32]. Inflow distributions are idiosyncratic to each reservoir; several models are pre-
sented in [84, Chap. 3]. In our model, the inflow is a sum of a deterministic time
series with seasonal variation and of a normally distributed i.i.d. innovation. For
more details on the scenario tree generation method, see [21]. For simplicity, we do
not use additional scenario tree reduction methods; see [41] and references within.

The mean-risk model of the pumped-storage hydropower plant is formulated as
a multistage stochastic linear program as follows (explanations are below):

max ∑
n∈NT

pn0nxTn s.t. (P3)

xtn = ptn + v
(

ltn− lT +
T

∑
s=t+1

∑
m∈Ns

pnmwsm

)
, t = 0, . . . ,T, ∀n ∈Nt ,

(I)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ptn = H
t

∑
s=1

N

∑
i=1

s̄i

(
u+i(s−1)n−

1
c

u−i(s−1)n

)(
fisn− f(i−1)sn

)
,

ltn ≤ l0 +H
t

∑
s=1

N

∑
i=1

(
u−i(s−1)n− u+i(s−1)n

)(
fisn− f(i−1)sn

)

+
t

∑
s=1

wsn, t = 1, . . . ,T, ∀n ∈Nt ,



90 M. Densing

(II)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lmin ≤ ltn ≤ lmax, t = 0, . . . ,T, ∀n ∈Nt ,

0≤ u±itn ≤ u±max, i = 1, . . . ,N, t = 0, . . . ,T − 1, ∀n ∈Nt ,

u+itn ≤ u+(i+1)tn, i = 1, . . . ,N− 1, t = 0, . . . ,T − 1, ∀n ∈Nt ,

u−itn ≥ u−(i+1)tn, i = 1, . . . ,N− 1, t = 0, . . . ,T − 1, ∀n ∈Nt ,

(III)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r0n0 ≥ ρmin,

rtn ≤ xtn, t = 0, . . . ,T, ∀n ∈Nt ,

rtn ≤ qtn +
1
α ∑

m∈Nt+1

pnmz(t+1)m, t = 0, . . . ,T − 1, ∀n ∈Nt ,

ztn ≥ 0, t = 1, . . . ,T, ∀n ∈Nt ,

ztn ≥ q(t−1)n−− rtn, t = 1, . . . ,T, ∀n ∈Nt ,

Variables (time t, node n ∈Nt):
ptn, ltn: cumulative profit-and-loss (zero at t = 0), water level
xtn, rtn: value of the plant, risk-adjusted value (lower bound)
r0n0 : risk-adjusted value in root n0 (if risk constraint is binding)
qtn, ztn: auxiliary variables for the risk-adjusted value
u+itn: production rate in spot price interval [si−1,si]

u−itn: pumping rate in spot price interval [si−1,si]

Scenario tree, exogenous variables (time t, node n ∈Nt ):

n ∈Nt : node in set of nodes Nt at stage t
n0, n−: root node, parent node
pnm: transition probability from n to node m (= 0 if n not in history of m)
s0, . . . ,sN : price levels; s̄i ∈ (si−1,si) intermediate levels
fitn: occupation time of spot price at level si during [t− 1, t] in node n
wtn: water inflow during [t− 1, t] in node n
H: number of hours in time interval [t− 1, t]

Parameters:
l0, lmin, lmax: initial, minimal, and maximal allowed water level
u±max: maximal production and pumping capacity
v: salvage value of remaining water
c ∈ (0,1): efficiency of pumping
α ∈ (0,1): confidence level of the risk constraint
ρmin: lower bound of risk-adjusted value

Constraints (I) represent the state equations of profit and of water inflow; for
example, the original equation (4.7) of cumulative profit is transformed by (4.9) into
a sum of dispatch decisions over price levels s0, . . . ,sN . The water level is given by
an inequality because of a possible spill-over. Constraints (II) enforce minimal and
maximal reservoir levels, and minimal and maximal technical dispatch capacities.
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Production and pumping are monotonously increasing and decreasing in the elec-
tricity price level, respectively. Constraints (III) represent the risk constraint on the
risk-adjusted value r0n0 at time t = 0. The recursive formula (4.6) is reformulated as
a set of linear constraints; for details, see [22].

The dispatch decision u±itn at time t depends on the exogenous electricity price
level i and on the node n in the scenario tree; the scenario tree is generated by
the exogenous variables of occupation times and of water inflow. Therefore, the
dispatch decision is not explicitly depending on the state of the plant at time t (i.e.,
the cumulative profit-and-loss and the water level). However, a node n determines
a path (a set of scenarios) from time zero to t. The path determines the realizations
of the exogenous variables and of the dispatch decisions up to time t. Therefore, a
node determines a state.

4.4.4 Futures and Demand in a Dual-Scale Model

Electricity is dispatched in the model (P3) only in the spot market. The set of
decisions can be extended by buying and selling electricity futures contracts; see
also the discussion in [86]. Usually, electricity futures exchange a fixed price against
a floating price; hence, they are similar to financial swaps [7].

In our multistage model, the floating price is the spot price during consecutive
time stages, and the futures are cash settled: The payoff is the hourly difference
between the fixed futures price and the spot price. Comparable futures at the EEX
market place are so-called base-month futures, which are monthly futures on the
hourly spot price [25].

We assume that the futures are used for static hedging, such that the position
amount pt (MW) of futures for time period [t, t +1], t = 0, . . . ,T −1, is fixed at time
zero. The profit-and-loss of the futures (receive fix, play float) from t to t + 1 is

Pfut
t+1−Pfut

t = pt

H

∑
h=1

(
yt − St+ h

H

)
, (4.13)

where yt is the fixed futures price (EUR/MWh) contracted at time zero, and H is the
number of hours in a time period; we neglect discounting and some details of the
cash flow exchange, for example, the so-called margin calls.

Applying to (4.13) the transformation (4.9) into occupation times at price levels,
we get for the profit-and-loss of futures:

Pfut
t+1−Pfut

t = ptH
(

yt −
N

∑
i=1

s̄i
(
Ft+1(si)−Ft+1(si−1)

))
, (4.14)

which can be added to the profit-and-loss of model (P3).
The model (P3) can also be extended by a demand of electricity. Let the de-

mand be given by an exogenous hourly stochastic process (Dt+ h
H
), h= 0, . . . ,H−1,
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t = 0, . . . ,T − 1. We assume that the demand can be supplied from a liquid market
with sufficient transmission capacity. In this case, the demand is merely an addi-
tional profit-and-loss term in the objective function. The profit-and-loss from t to
t + 1 is

Pdem
t+1 −Pdem

t =
H

∑
h=1

Dt+ h
H

(
dt − St+ h

H

)
, (4.15)

where dt is the fixed retail selling price in period [t, t + 1]; we neglect discounting.
Empirically, demand may be correlated with the electricity spot price; a possible
dependency is Dt = f (St), where the function f : R → R is empirically esti-
mated [12]. Applying to (4.15) the transformation (4.9) into occupation times at
price levels, we get

Pdem
t+1 −Pdem

t = H
N

∑
i=1

f (s̄i)(dt − s̄i)
(

Ft+1(si)−Ft+1(si−1)
)
.

Alternatively, we may use the same approach as for the electricity price in (4.9) as
follows. We consider levels of demand, d0 < d1 < · · ·< dM, and the approximation

Dt+ h
H
≈ D̃t+ h

H
:=

M

∑
i=1

d̄i1{di−1<D
t+ h

H
≤di} , (4.16)

with intermediate levels d̄i ∈ (di−1,di). Substituting (4.16) in (4.15) and using (4.9),
we get after some calculation

Pdem
t+1 −Pdem

t = H
N, M

∑
i, j = 1

d̄ j(dt − s̄i)
(

Ft+1(si+1,d j+1)−Ft+1(si+1,d j)

−Ft+1(si,d j+1)+Ft+1(si,d j)
)
,

where

Ft+1(s,d) :=
1
H

H

∑
h=1

1{S
t+ h

H
≤s, D

t+ h
H
≤d}

is the joint price-demand occupation time at levels of price s and demand d during
interval [t, t + 1]. The principal component factor model (4.11) for the occupation
times of price may be extended to the joint occupation times.

4.4.5 Case Study: Risk Constraint and Futures

In this case study, we consider a pumped-storage plant in Switzerland. The water
reservoir is sized such that it can be emptied in approximately one month by full
production with no pumping and no natural water inflow; the reservoir is chosen
initially nearly full (95 %). The pumping capacity is 25 % of the production capacity.
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Electricity spot prices are from the EEX market place (year 2008–2010) [26]. For
more details on parameters, see [19].

The mean-risk model (P3) is solved over four time periods of one month (T = 4).
As discussed in Sect. 4.4.3, the scenario tree is generated by monthly innovations
of occupation times of electricity prices and of water inflows. By numerical experi-
ments, a sufficient discretization of the innovations is 4, 2, and 2 for the first factor
in the principal-component model (4.11) of occupation times, for the second factor,
and for the inflow, respectively. Hence, the tree branches in every nonterminal node
into 4×2×2= 16 child nodes (we used in the case study even 4×1×2 for reasons
of speed). A 2-point distribution for inflow is sufficient because the reservoir buffers
the water; influences of higher moments of the inflow distribution on the operability
of the plant are small.

Futures are added to the model (P3) by the additional profit-and-loss (4.14). For
each stage, a different hedging position in futures can be entered at initial time. The
fixed side of the futures is chosen to be the same for all maturities and equals the
averaged historical spot price. In the next section, some of the base assumptions are
temporarily altered (e.g., futures are not allowed).

The model with four time steps leads to relatively small problem sizes. The prob-
lems are solved by the commercial CPLEX simplex solver on a personal computer
(1 GB RAM) in several minutes.

4.4.5.1 Mean-Risk Frontier

The mean-risk frontier of model (P3) is the optimal objective value as a function of
the bound ρmin of the risk constraint. The function is continuous piecewise linear
and concave because the lower bound ρmin is on the right-hand-side of a linear
maximization problem; see for example [16, Theorem 6.6]. Figure 4.7 shows the
mean-risk frontier in four cases: with futures, without futures, with stochastic inflow,
and with deterministic inflow. If we can trade electricity only on the spot market,
then the possibility to reduce risk is limited; either the risk constraint is relaxed
(flat curve) or the model becomes quickly infeasible. Given a level of risk, futures
enable higher means (expected value of the plant), and some further risk reduction
is possible; see Fig. 4.7. Even with futures the risk reduction is limited because the
only underlying asset is electricity. In contrast, a portfolio in finance depends on
several underlyings, and one of them is usually an (uncorrelated) risk-free asset.

Contrary to risk reduction, Fig. 4.7 also shows that futures enable high expected
values if we continuously relax the risk constraint. Correspondingly, positions in fu-
tures were growing as observed in the numerical experiments. The ability of futures
to increase or to decrease risk is also discussed in [86, Sect. 3.5].

Furthermore, Fig. 4.7 shows the effect of a stochastic water inflow: If we assume
a deterministic inflow, then the mean-risk frontiers improve considerably.



94 M. Densing

1.0 1.2 1.4 1.6 1.8 2.0 2.2

2
.4

6
2

.4
7

2
.4

8
2

.4
9

2
.5

0
2

.5
1

risk−adjusted value (mio EUR)

e
x
p
e
c
te

d
 v

a
lu

e
 (
m

io
 E

U
R

)

2.00 2.05 2.10 2.15 2.20 2.25 2.30

2
.5

0
2

.5
5

2
.6

0
2

.6
5

risk−adjusted value (mio EUR)

e
x
p
e
c
te

d
 v

a
lu

e
 (
m

io
 E

U
R

)

Fig. 4.7 Mean-risk frontier. Vertical axis: expected final value of the hydropower plant; horizontal
axis: risk-adjusted value. Deterministic inflow (dashed line); stochastic inflow (solid line). Left
without futures. Right with futures

4.4.5.2 Optimal Dispatch Decision

Figure 4.8 shows the optimal dispatch (decision rule) of the mean-risk hydropower
model (P3): We pump and produce either at zero or at full capacity, while interme-
diate pumping and production is restricted to a narrow band of adjacent electricity
price levels, which points to a price threshold at a level in between. We have already
encountered such bang-bang controls for the models (P1) and (P2) (Sect. 4.3).

Furthermore, Fig. 4.8 shows that if the risk constraint becomes tighter, then the
threshold for pumping is lowered, and the threshold for production is elevated. The
decision to pump less under risk at initial time t = 0 depends on the model parame-
ters of water inflow and initial water level; for example, for a model without natural
water inflow, the optimal decision may be to initially pump more under risk [62,
Fig. 6].

4.4.5.3 Optimal Profit-and-Loss

To test the effect of multi-period risk measurement, we replaced in the mean-
risk model (P3) the multi-period risk measure by the single-period risk measure
CVaR (4.5); the risk constraint bounds the CVaR of the values of the plant at final
stage. Figure 4.9 shows corresponding distributions of profit-and-loss at the time
stages: The multi-period risk constraint can enforce higher intermediate profits,
while not deteriorating profits at final stage. Similar results for multi-period risk
constraints are in [28, 37].
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ρmin ≤ 2 mio EUR:

Dispatch Capacity

EUR/MWh

Pumping Production

100%

36.8522.68

ρmin = 2.13 mio EUR:

36.85

79.9%

42.25
22.68

19.5%

19.06

ρmin = 2.14 mio EUR:

36.85

19.5%

42.25
19.06

11.8%

16.13

Fig. 4.8 Optimal decision rule for pumping and production at t = 0 (root node of scenario tree).
Top loose bound on risk. Center medium bound on risk. Bottom tight bound on risk
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Fig. 4.9 Distribution function of cumulative profit at 2nd, 3rd, and 4th (final) stage. CVaR risk
constraint on final values (dashed line); multi-period risk constraint (solid line)

4.4.5.4 Futures in Dependence of the Risk Constraint

So far, the price of the fixed side of the futures was assumed to be the average of his-
torical spot prices. At what price should the decision maker of the hydropower plant
purchase futures positions? The decision for which price, how many, and which
kind of new assets to purchase depends on the randomness in the already existing
portfolio of assets and on the attitude of the decision maker against risk. If the new
asset (minus the purchase price) can increase the acceptability of the portfolio in
terms of profit and of risk, then the decision maker should buy [24].

Figure 4.10 shows for the mean-risk model (P3) [with futures (4.14)] the optimal
futures amounts (receive fix, pay float) in dependence on price; for simplicity, we
enforced in this example equal amounts over the stages. Obviously, optimal amounts
decline when the fixed price, which we receive, is lowered. The lowest acceptable
price depends on the risk constraint: If the risk constraint is moderate, then the
minimal accepted price is in our example approximately 48 EUR/MWh (below this
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Fig. 4.10 Optimal positions
of futures as a function
of receiving price. Tight
bound on risk (solid line);
medium and relaxed bound
(dashed and dotted line).
Tight bound: prices below
approx. 52 EUR/MWh cause
model infeasibility. Medium
and relaxed bound: prices
below approx. 48 EUR/MWh
yield negative positions
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threshold, amounts are negative); if the risk constraint is tight, then the amounts
of futures are smaller, and the minimal accepted price is higher at 52 EUR/MWh
(below this threshold, the mean-risk model is infeasible).

The method to value assets by an acceptance criterion can be generalized: We
may evaluate the possible range of prices for purchasing a whole hydropower plant
by an acceptance criterion; for example, the criterion may be a threshold on the
coherent risk measure CVaR [24]. An accepted price can be considered as the (sub-
jective) value of the plant.

A related notion is the indifference price: Given a position amount of a contract,
the indifference price is the minimal price for which the contract is accepted; see
[13, 51] and Chap. 14 in this book.

4.4.5.5 Wait-and-See and Scenario-Independent Solutions

In model (P3), the dispatch decisions u±itn at time t depend on the price level si and
on the node n ∈Nt at time t in the scenario tree. The decision is non-anticipative
because it depends on a node at current time, that is, it depends on past and on
present information (here-and-now solution).

In contrast, an anticipative decision at time t < T is ũ±itm, where the node m ∈
NT is at final time T (perfect foresight, wait-and-see solution). The difference in
objective value between the wait-and-see and here-and-now solution is the expected-
value-of-perfect-information (EVPI) [48]. In model (P3) on the scenario tree, the
EVPI is the value a decision maker gains in return for knowledge of the future
values of water inflow and of the occupation times of spot prices.

To calculate the EVPI of our model, we assume that positions in futures are not
allowed; if the future is known, futures give unlimited profit (unless positions are
bounded). For simplicity, we relax also the risk constraint. The resulting EVPI is
strongly influenced by the constraints on the state, for example, the water level: If
we introduce an additional constraint that forces the reservoir at the time horizon
to be nearly full (initial level), then the EVPI relative to the here-and-now objective



4 Price-Driven Hydropower Dispatch 97

value is 80 %, whereas it is merely 7 % with no additional constraint (the reservoir
can be emptied).

The opposite of a wait-and-see solution is a scenario-independent solution,
where a feasible decision at time t > 0 does not depend on the node: u±itn = u±itm,
for all nodes n,m ∈Nt . Scenario-independent decisions (as well as the foregoing
wait-and-see decisions) allow a simpler, path-wise problem formulation on a fan of
scenarios; for example, see [23].

We test the effect of a scenario-independent solution first under a relaxed risk
constraint. If the reservoir can be emptied, then the here-and-now optimal objec-
tive value is approximately 10 % higher than with scenario-independent decisions.
In contrast, if the reservoir is forced at the time horizon to be nearly full (initial
level), then the optimal objective value is approximately 40 times higher. Tighten-
ing bounds of risk aggravates the differences: There are levels of the risk constraint
where the model on the full scenario tree is still feasible, whereas the model on the
fan is already infeasible. Hence, flexibility of decisions is important if constraints
are restrictive; see also the discussion of stochastic versus deterministic hydropower
modeling in [68].

4.5 Conclusion

After an extensive review of stochastic hydropower optimization, we considered
price-driven dispatch models for a pumped-storage hydropower plant, that is, the
operation of the plant is optimized against an electricity market. We obtained ex-
act solutions for single- and for multi-period problems that have constraints on the
water level in expectation. The marginal value of water is given by relatively simple,
implicit equations.

A second price-driven dispatch model was formulated as a multistage stochas-
tic program on a scenario tree. The model is a mean-risk optimization problem,
where the risk constraint is given by a time-consistent extension of the coherent risk
measure CVaR. Modeling on two time scales (dual-scale model) allows to obtain
numerical solutions for a moderate number of time stages: The short time scale for
trading is removed by using the occupation times of the electricity price at different
price levels. Subsequently, a principal component analysis of the occupation times
allows to reduce the dimension of the scenario tree. The dual-scale approach was
tested with empirical data from spot markets. We evaluated the influence of the risk
constraint on the optimal dispatch and the mean-risk frontier.

The dual-scale model allows to incorporate electricity futures and evaluate their
optimal contract sizes; an electricity demand can in principle be incorporated, too.

Hydropower optimization is explored by several research communities; we high-
lighted the relation to the bang-bang solutions of optimal control theory, and pointed
to similarities with swing options and inventory theory.

Acknowledgements I thank H. Turton for valuable suggestions on a draft version.
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Chapter 5
On Cutting Plane Algorithms and Dynamic
Programming for Hydroelectricity Generation

Andy Philpott, Anes Dallagi, and Emmanuel Gallet

Abstract We consider dynamic programming (DP) approximations to hydro-
electric reservoir scheduling problems. The first class of approximate DP methods
uses decomposition and multi-modeling heuristics to produce policies that can be
expressed as the sum of one-dimensional Bellman functions. This heuristic allows
us to take into account non-convexities (appearing in models with head effect) by
solving a MIP at each time stage. The second class of methods uses cutting planes
and sampling. It is able to provide multidimensional policies. We show that the cut-
ting plane methods will produce better policies than the first DP approximation on
two convex problem formulations of different types. Modifying the cutting plane
method to approximate the effect of reservoir head level on generation also yields
better results on problems including these effects. The results are illustrated using
tests on two river valley systems.

5.1 Introduction

The mid-term hydrothermal scheduling problem involves determining a policy of
releasing water from reservoirs for hydroelectricity generation and generating from
thermal plant over some planning horizon of months or years so as to meet the future
demand for electricity at the lowest expected fuel cost. The first models (dating back
to [8, 9]) for these problems used dynamic programming, a tool that was confined
to systems with one or two reservoirs, unless reservoir aggregation heuristics (see,
e.g., [2, 13]) are used.
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An effort to model systems with multiple reservoirs led to the development in
the 1980s and 1990s of various multi-stage stochastic linear programming models
(see, e.g., [7]) using scenario trees. Stochastic dual dynamic programming (SDDP)
[10] was developed as a response to the problem of dealing with a rapidly growing
scenario tree. This method approximates the future cost function of dynamic pro-
gramming using a piecewise linear outer approximation, defined by cutting planes
or cuts computed by solving linear programs. This avoids the curse of dimension-
ality that arises from discretizing the state variables. The intractability arising from
a branching scenario tree is avoided by essentially assuming stagewise independent
uncertainty. This allows cuts to be shared between different states, effectively col-
lapsing the scenario tree.

There has been little published work comparing the SDDP methodology with
classical dynamic programming. A relatively old paper by Archibald et al. [1] shows
that nested Benders decomposition outperforms classical dynamic programming in
some computational tests on models with a small number of stages and scenarios,
but becomes intractable as these grow. Our contribution is to demonstrate some adv-
antages of SDDP-type algorithms in comparison with dynamic programming when
the problem has many stages, so that nested Benders decomposition is computation-
ally intractable, at least in its standard scenario-tree form.

In some electricity systems hydrothermal scheduling problems are solved using
price decomposition (see, e.g., [6]). In a deterministic setting this method gives a
subproblem to be solved for each thermal unit and each hydro river-chain. These
subproblems can in principle be coordinated by price to yield an overall generation
plan that meets demand in every period at minimum total cost. The coordination
problem has been less well studied under inflow uncertainty (although see, e.g., [3]).
Here subproblems must be coordinated by a random price process to yield an overall
generation plan that meets the demand at minimum expected cost. A similar set of
(sub)problems arises when river-chains are operated by different agents in a compet-
itive electricity pool market, where the prices over time come from the pool. In both
these settings the river-chain optimization subproblem is a challenging problem to
solve, since it must handle uncertainties in prices and inflows. Indeed it is a variant
of the hydrothermal scheduling problem in which the electricity price is modeled as
the (random) marginal cost of an infinitely large thermal unit.

In this paper we compare two approaches to solving this problem and ana-
lyze their differences. The first approach uses a stochastic dynamic programming
heuristic applied to a low-dimensional approximation of the state space. We dis-
cuss the form of the approximation and demonstrate biases in the marginal values
of water. The second method is the dynamic outer approximation sampling algo-
rithm (DOASA) described in [11], which is a special version of SDDP. We describe
how the DOASA algorithm overcomes some of the biases of the former. The opt-
imal value functions derived from the two methods are tested numerically on two
river-chains.

The paper is laid out as follows. In the next section we describe the stochastic
control problem that we wish to solve. This problem is illustrated in the following
section by two example river-chains (RC1 and RC2) operated by EDF in France.
The networks describing these river-chains have different topologies and so one
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can use different heuristics to compute approximately optimal release policies for
the reservoir control problem, with a view to computing estimates of water values
for short-term optimization.1 The heuristics (called MORGANE) are described in
Sect. 5.3. In Sect. 5.4 we give a brief description of the DOASA algorithm and then
describe how the forward simulation step of this method can be used to evaluate both
the DOASA release policy and the corresponding release policies that arise by app-
lying MORGANE. In Sect. 5.5 we present the results of applying the MORGANE
heuristics to the example systems and compare this with the results of applying
DOASA.

5.2 The Hydroelectric River-Chain Model

We consider a river-chain represented by a network of n nodes (reservoirs and junc-
tions) and m arcs (canals or river reaches). The topology of the network can be
represented by the n×m incidence matrix A, where

ai j =

⎧⎨
⎩

1, if node i is the tail of arc j,
−1, if node i is the head of arc j,

0, otherwise.
(5.1)

By adding dummy nodes if necessary, we can ensure that every pair of nodes is
joined by at most one arc. Let x(t) denote a vector of reservoir storages in each
node at the beginning of week t and ω(t) a vector of uncontrolled reservoir inflows
(in cubic meters) that have occurred in week t. We let h(t) be a vector of flow rates
(cubic meters per hour) in the arcs in the network and p(t) a vector of electricity
prices at time t. Here we adopt the convention that these prices are applied to each
flow in the network and are adjusted to account for conversion factors. Thus if arc
j does not represent a generating station then p j(t) ≡ 0, and if j is a station then
p j(t) is the spot price of electricity multiplied by a scale factor η j for that station
(converting cubic meters of water passing though the station into MWh). Some flows
represent spill (with η j = 0) from reservoirs to the river reach below a station.

We also need to allow for more than one price period within a week. In our
experiments we use B = 21 blocks in a week, each of duration (db)b=1,...,B hours.
These account for variations in price between peak and off-peak times. To model this
we assume that p(t) and h(t) are of dimension mB, where the first B components of
each vector correspond to arc 1, and so on. We then define the m×mB matrix

D =

⎡
⎢⎢⎢⎢⎣

d1 d2 . . . dB 0 0 . . . 0 . . . . . . 0 0 . . . 0

0 0 . . . 0 d1 d2 . . . dB . . . . . .
...

...
...

...
... . . . . . . 0 0 . . . 0
0 0 . . . 0 d1 d2 . . . dB

⎤
⎥⎥⎥⎥⎦ (5.2)

1 A deterministic optimization is operated on the short-term (within a day) using a more accurate
model in order to provide the actual feasible releases to be performed.
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so that the total quantity of flow through arc j in week t is Dh(t), and the revenue
earned is p(t)�h(t), where component B( j−1)+k of p(t) now equals the electricity
price/MWh in block k in week t multiplied by both db and ηb.

The hydroelectric river-chain problem we wish to solve seeks to construct a pol-
icy for generating electricity from the river-chain so as to maximize the expected
revenue. We assume in this paper that the uncontrolled reservoir inflows are the
only uncertain parameters and that these are stagewise independent. In each realiza-
tion of uncertainty, the policy we seek will give a set of reservoir releases defined
by h(t) that generate electricity. The policy is defined in terms of a dynamic pro-
gramming Bellman function E[Vt(x,ω(t))] where Vt(x,ω(t)) gives the maximum
expected revenue that can be earned in weeks t, t + 1, . . . when reservoir storage
x(t) = x and week t’s inflow is known to be ω(t). Here

Vt(x,ω(t)) = max p(t)�h(t)+E[Vt+1(x(t + 1),ω(t + 1))]

s.t. x(t + 1) = x−ADh(t)+ω(t),

0≤ h(t)≤ b, 0≤ x(t + 1)≤ r.

(5.3)

We place a limit on the time horizon of t = T and specify a future value function
VT+1(x(T + 1),ω(T + 1)) to give a bounded problem.

5.3 River-Chain Optimization and Multi-modeling

In this section we present the MORGANE dynamic programming heuristics as
applied to two river-chains. These heuristics are applied in order to keep some adv-
antages of the stochastic dynamic programming method. In fact, they allow us to
model non-convexities in the problem without, as far as the stage problems are
solved, losing the theoretical validity of the method. Nevertheless dynamic pro-
gramming is faced with the curse of dimensionality, and so the heuristics seek to
avoid this by reducing the dynamic programming calculations to a sequence of one-
dimensional problems.

The river-chains are called the RC1 Valley and the RC2 river-chain. Due to
confidentiality issues the names of the river-chains and reservoirs are anonymized.
Schematic representations of these are shown in Figs. 5.1 and 5.2. The RC1 system
has three main reservoirs feeding a chain of two essentially run-of-the-river gener-
ating stations. The RC2 system is a chain of stations some of which have headpond
reservoirs with significant storage capacity.

The MORGANE model treats these river-chains slightly differently. For the RC1
system, MORGANE computes marginal water values for each of the three main
reservoirs by performing a stochastic dynamic programming algorithm for each of
these reservoirs considering that the storage levels of the other reservoirs are con-
strained to be at given levels at the end of each week. In the RC2 system, MOR-
GANE applies a different heuristic that consists of decomposing the river-chains
into two parts: an upstream one and a downstream one. Applying the first heuristic
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Fig. 5.1 The RC1 river system

Fig. 5.2 The RC2 river system

to the upstream part generates a controlled flow feeding the downstream part. Again
the first heuristic is applied to the downstream section in order to compute water
values for the reservoir at the top of this section.

5.3.1 Heuristic 1: Constrained Multi-modeling

The curse of dimensionality means that computing multidimensional policies using
dynamic programming is numerically intractable. The idea of heuristic 1 is to com-
pute a multidimensional policy as the sum of one-dimensional ones. In this app-
roach, each reservoir present in the considered river-chain is operated as if the other
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reservoirs have storage level targets to reach at the start and end of each stage. This
target is an a priori fixed proportion of the maximum storage capacity.

Solving a hydroelectric river-chain model, composed of n interconnected reser-
voirs, thus amounts to solving n subproblems. Each subproblem is solved using
dynamic programming, resulting in n revenue-to-go functions.

We denote by V [i]
t (xi,ω(t)) the maximum expected revenue that can be earned in

weeks t, t+1, . . . ,T , when reservoir i storage is xi(t) = xi and reservoir j �= i storage
is x j(t) = x j(t+1) =α jr j, α j ∈ [0,1] at the start and end of each time stage. Week
t’s inflow is known to be ω(t). Here

V [i]
t (xi,ω(t)) = max p(t)�h(t)+E[V [i]

t+1(xi(t + 1),ω(t + 1))]

s.t. xi(t) = xi,

x(t + 1) = x(t)−ADh(t)+ω(t),

x j(t) = α jr j , ∀ j �= i

x j(t + 1) = α jr j , ∀ j �= i

0≤ h(t)≤ b, 0≤ xi(t + 1)≤ ri.

(5.4)

The multidimensional Bellman function that will allow us to recompute an overall
policy will be the sum of one-dimensional Bellman functions:

Vt(x(t),ω(t)) =
n

∑
i=1

V [i]
t (xi(t),ω(t)). (5.5)

It is obvious that this heuristic is suboptimal in the sense that the subproblems
have less flexibility than the original problem formulation. Nevertheless, this heuris-
tic allows us to maintain the advantages of classical dynamic programming. In par-
ticular, no convexity assumptions are needed in order to perform this heuristic as
long as we can solve the (MIP) subproblems with a reasonable amount of computa-
tional effort.

5.3.2 Heuristic 2: Geographical Decomposition

The previous heuristic is adapted to parallel reservoirs feeding into the same turbine
or run-of-the-river installations. In fact in that kind of configuration the strategies
of the different reservoirs defined by the heuristic are optimal if the downstream
constraints are never binding. We discuss this issue in more depth in the Appendix.
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For a cascade-type river-chain this decoupling is typically not possible, and
a geographical decomposition can be applied between downstream and upstream
using the special structure of the river network.

For the RC2 river-chain the matrices describing the network can be decomposed
as an upstream part containing p = 2 reservoirs and a downstream part containing
n− p = 3 reservoirs, so

A =

[
A[1] B[1]

B[2] A[2]

]
=

⎡
⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎦

(5.6)

and
D =

[
D[1] D[2]

]
. (5.7)

Heuristic 2 looks for strategies depending only on two reservoir levels: the topmost
one (reservoir 1) and the most valuable2 one in the middle of the chain (reservoir
p+ 1).

First, we use heuristic 1 in order to compute a policy for the topmost reservoir
while fixing the releases of the other reservoirs in order to meet an a priori fixed

target at the start and end of each time stage. We denote by V [1]
t (x1,ω(t)) the maxi-

mum expected revenue that can be earned in weeks t, t +1, . . . ,T , when the topmost
reservoir storage is x1(t) = x1 and reservoir j �= 1 storage is x j(t) = x j(t + 1) =
α jr j, α j ∈ [0,1]. Week t’s inflow is known to be ω(t). Here

V [1]
t (x1,ω(t)) = max p(t)�h(t)+E[V [1]

t+1(x1(t + 1),ω(t + 1))]

s.t. x1(t) = x1,

x(t + 1) = x(t)−ADh(t)+ω(t),

x j(t) = α jr j, ∀ j �= 1

x j(t + 1) = α jr j , ∀ j �= 1

0≤ h(t)≤ b, 0≤ x1(t + 1)≤ r1.

(5.8)

Second, we use the previously computed releases h[1](t) ∈ R
p feeding the

downstream part, in order to optimize the second part of the river-chain. Hence,

we denote by V [2]
t (xp+1,ω(t)) the maximum expected revenue that can be earned in

weeks t, t + 1, . . . ,T , when the storage of the topmost reservoir (in the downstream
section) is xp+1(t) = xp+1 and reservoir j > p storage is x j(t) = x j(t + 1) =
α jr j, α j ∈ [0,1]. Week t’s inflow in the downstream part of the river is denoted by
ω [2](t). Here

2 It could be the biggest one or the most valuable one from the operator’s point of view.
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V [2]
t (xp+1,ω(t)) = max p[2](t)�h[2](t)+E[V [2]

t+1(xp+1(t + 1),ω [2](t + 1))]

s.t. xp+1(t) = xp+1,

x[2](t + 1) = x[2](t)−A[2]D[2]h[2](t)
−B[2]D[1]h[1](t)+ω [2](t),

x j(t) = α jr j , ∀ j > p

x j(t + 1) = α jr j , ∀ j > p

0≤ h[2](t)≤ b, 0≤ xp+1(t)≤ r.

(5.9)

The Bellman function that defines our policy will then be the sum of the one-
dimensional Bellman functions:

Vt(x(t),ω(t)) =V [1]
t (x1(t),ω(t))+V [2]

t (xp+1(t),ω(t)). (5.10)

While simulating the generated policy for the remaining reservoirs, we add to the
simulator the target constraints at the beginning and end of each stage.

As in the previous case, this heuristic is suboptimal in the sense that the subprob-
lems have less flexibility than the original problem. But, as in the previous heuristic,
we are able to keep some of the dynamic programming advantages (dealing with
non-convexities).

5.4 Dynamic Outer Approximation Sampling Algorithm

The DOASA code [11] is based on the SDDP technique of Pereira and Pinto [10].
To solve a maximization problem, DOASA approximates E[Vt(x,ω(t))] using a
piecewise linear outer approximation that is updated using samples of the inflow
process. Of course, this approximation is available only if convexity assumptions
are made on the considered problem. Weekly prices are represented by a price dura-
tion curve with 21 blocks, and ω(t) is sampled from historical inflow observations.

The DOASA code yields an outer approximation to E[Vt(x,ω(t))] at each stage
t by solving the single-stage approximating problem:

SP(x,ω(t)): max p(t)�h(t)+θt+1

s.t. x(t + 1) = x−ADh(t)+ω(t), [πt ]

0≤ h(t)≤ b, 0≤ x(t + 1)≤ r,

αk
t+1 +

(
β k

t+1

)�
x(t + 1)≥ θt+1, k ∈ C (t + 1).

(5.11)
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The flow balance constraints at each node i have dual variables πt . These are used
to compute the inequality constraints

αk
t +

(
β k

t

)�
x(t)≥ θt , k ∈ C (t) (5.12)

which are the cuts defining an outer approximation of the future value function.
For simplicity of notation, we have represented this construction as applying to all
nodes i, but in practice we compute cuts only for the reservoirs with positive storage
capacity.

At iteration k of the algorithm the cut coefficients are computed as follows:

1. Solve the stage problem SP(xk(1),ω(1)) for the known realization ω(1), giving
optimal solution xk(2) and optimal value V1(xk(1),ω(1)).

2. For t = 2,3, . . . ,T , solve the stage problem SP(xk(t),ω(t)) for a sample realiza-
tion of ω , recording the solution xk(t + 1).

3. For t = T,T − 1, . . . ,2, solve the stage problem SP(xk(t),ω(t)) for every
realization of ω(t), recording the solution value Vt(xk(t),ω(t)) and duals
πt(xk(t),ω(t)), and adding the cut

θt ≤ αt +β�t x(t), (5.13)

to every problem at stage t− 1, where

βt = E[πt(x
k(t),ω(t))], (5.14)

and
αt = E[Vt(x

k(t),ω(t))]−β�t (xk(t)). (5.15)

The algorithm terminates after little progress is observed in the upper bound
estimate V1(xk(1),ω(1)). The policy defined by the cuts can then be simulated, and
its expected revenue estimated by a sample average. This gives an estimate of a
lower bound on the optimal value that can be checked against the upper bound.

In contrast to SDDP that runs many forward passes simultaneously, DOASA
performs a single forward pass in each iteration. This can be shown to be more
effective at delivering good solutions when stopping the algorithm early [4].

5.5 Experiments

DOASA and MORGANE were applied to data from the two valley systems RC1
and RC2. In both systems, MORGANE was applied subject to the following
restrictions3:

1. There are no constraints on reservoir levels apart from them ranging between 0
and their full capacity.

3 These restrictions are not in favor of the MORGANE heuristics. In fact the heuristics are able to
take into account stochasticity and time dependency on the prices, end non-convexity constraints.
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2. All generating plant are assumed to be available at full capacity throughout the
year. Real problems include randomness on the availability of these plants.

3. Electricity prices were assumed to be known in advance, and set to their average
over all the scenarios that had been generated. Each river-chain used a different
set of average prices. Prices were for 21 blocks of time during the week repre-
senting peak, off-peak, and shoulder periods. The number of hours in each block
varies with the day of week and the river valley.

4. A set of 41 weekly inflow sequences was used to represent the reservoir inflow
distribution, assumed to be stagewise independent.

5. The factors for converting flow to electricity in each station were set to be con-
stant (i.e., we assume that they do not vary with reservoir head level) in a first
experiment and vary in a second one.

Under these restrictions MORGANE was solved over a 104-week horizon and
marginal water values were computed for each reservoir at the end of each week.
The marginal water values for week 52 were then converted into cuts and provided
to DOASA as end conditions. DOASA was then applied over the first 52 weeks of
the planning horizon.

5.5.1 Converting Marginal Water Values to Cuts

Upon terminating, MORGANE provides marginal water values for each reservoir
as a function of their level. This function for reservoir i = 1, . . . ,n is represented as
a list of reservoir levels and marginal water values denoted (xik,βik), k = 0,1, . . . ,K.
This can be converted into cuts by choosing an arbitrary future value αi0 from an
empty reservoir at time t and then computing αik recursively using

αik = αik−1 +(βik−1−βik)xik, k = 1,2, . . . ,K, (5.16)

as shown in Fig. 5.3.
The future value function E[VT+1(x(t + 1),ω(t + 1))] is then represented as the

sum of the individual reservoir value functions. Thus

E[Vt+1(x(t + 1),ω(t + 1))] =
n

∑
i=1

max
k=0,1,...,K

{αik +βikxi(t + 1)}. (5.17)

We model this in DOASA using a multi-cut representation

θt+1 =
n

∑
i=1

θt+1(i) (5.18)

αik +βikxi(t + 1) ≥ θt+1(i), k = 0,1, . . . ,K, i = 1,2, . . . ,n. (5.19)

Depending on the choice of αi0 this representation gives a different level for
E[Vt+1(x(t +1),ω(t +1))], but accurately reproduces the marginal water values for
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Fig. 5.3 Converting marginal water values to cuts

each storage level at which they are recorded by MORGANE, under the assumption
that the MORGANE files of marginal water values give these values at the low-
est possible storage level that they apply (i.e., the step function is continuous from
the right). We remark that the above construction can be used for representing the
MORGANE policy at any stage t ≤ T . We thus use this both for providing a future
cost function to DOASA at t = 52 and for simulating the MORGANE policies in
our experiments, so that the same code is used to simulate both MORGANE and
DOASA policies.

5.5.2 Modeling Variations in Head

Recall that for generating stations p j(t) denotes the spot price of electricity multi-
plied by a scale factor η j for that station (converting cubic meters of water passing
through the station into MWh). In practice the scale factor η j is a function of net
head, namely the difference in height of the headwater and tailwater of the turbine
generating electricity. A common model (see [12]) assumes that η j is net head times
some efficiency term that depends on flow rate. If we assume that the tailwater height
and flow rate is constant then η j is linear with head level. The headwater height then
depends on the volume of water x stored in the reservoir upstream of the station as
a concave function since the area of the reservoir increases with head height.
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In MORGANE the relationship between conversion factor and head is expressed
using a finite set of hydro production functions that depend on reservoir level x.
Each production function is modeled using two linear pieces defined by the most
efficient flow rate he and the maximum flow rate hm, both of which depend on x.
When the reservoir volume is x, the power generated by flow rate h is

E(h,x) = maxh1,h2 ηe(x)h1 +ηm(x)h2,

s.t. h1 + h2 = h,
h1 ≤ he(x), h2 ≤ hm(x)− he(x).

(5.20)

If values of ηe(x) and ηm(x) are specified for a range of reservoir volumes then we
may compute E(h,x) by linearly interpolating these values and solving the maxi-
mization problem above.

The term p(t)�h(t) in the objective function of our stage problem becomes
p(t)�E(t), where p(t) and E(t) are of dimension mK and have components that
correspond, respectively, to spot price at time t in each time block and network arc
and to E(h,x), where h is the station flow in that time block and network arc, and x
is the storage in the upstream reservoir at time t.

The DOASA code now yields an outer approximation to E[Vt(x,ω(t))] at each
stage t by solving the approximating problem:

SP(x,ω(t)): max p(t)�E(t)+θ ,t+1

s.t. x(t + 1) = x−ADh(t)+ω(t), [πt ]

0≤ h(t)≤ b, 0≤ x(t + 1)≤ r,

E(t) = ηe(x)h1 +ηm(x)h2,

h1 + h2 = h(t),

h1 ≤ he(x), [ρt ]

h2 ≤ hm(x)− he(x), [σt ]

αk
t+1 +

(
β k

t+1

)�
x(t + 1)≥ θt+1, k ∈ C (t + 1).

(5.21)

Even though SP(x,ω(t)) is a convex problem for fixed x, this does not guarantee that
the optimal value function Vt(x,ω(t)) is concave as a function of x, even if ηe(x) and
ηm(x) are concave. Indeed it is conceivable that the marginal value of water might
increase as reservoirs fill up if the increase in head makes each cubic meter of water
more valuable for generation.
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A valid outer approximation of Vt(x,ω(t)) by cutting planes requires that it is
concave. If we apply the DOASA algorithm to this model then the value of the first-
stage problem can no longer be guaranteed to be an upper bound on the value of
an optimal policy. Of course it is possible to construct a concave approximation of
each production function (see [5]) and use this. However we simply assume that the
lack of concavity of these functions is not too severe, so that the cuts computed by
DOASA give a reasonably good policy even if the value function is not concave.

To account for head effects in stage 3 of DOASA we now solve SP(x,ω(t))
giving hk

1(ω(t)) and hk
2(ω(t)) and duals πt(xk(t),ω(t)). We can then add the cut

θt ≤ αt +β�t x(t), (5.22)

to every problem at stage t− 1, where

βt = E[πt(x
k(t),ω(t))+ p(t)�g(xk(t),ω(t))], (5.23)

and

g(x,ω) = η ′e(x)h
k
1(ω)+η ′m(x)h

k
2(ω). (5.24)

This calculation ignores the dependence of he and hm on x which could be included
as extra terms in βt , namely

E[
(
ρt(x

k(t),ω(t))−σt(x
k(t),ω(t))

)�
h′e(x

k(t))+σt(x
k(t),ω(t))�(h′m(x

k(t)))],

(5.25)

where ρt and σt are the dual variables corresponding to the bounds on h1 and h2 as
shown in the formulation above.

When head effects are modeled, the forward pass in DOASA must also be
changed so as to use the appropriate interpolated production functions correspond-
ing to the state variable that is visited in the forward simulation.

The policies obtained by computing 100 of these cuts in DOASA were simulated
against the policies obtained from MORGANE to give the plots shown in Fig. 5.7
for the RC1 and Fig. 5.8 for RC2 systems.

5.6 Numerical Results

We present in this section two different experiments over the two river-chains (RC1
and RC2). In the first experiment we assume that the head is a fixed constant in the
production functions. The results concerning this first experiment will allow us to
study the proposed MORGANE heuristics versus DOASA. The other experiments
are presented to illustrate Sect. 5.5.2 where we take into account head variations.
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5.6.1 Experiment 1: Fixed Head

In this experiment DOASA was run for 100 iterations, giving 100 cuts at each stage.
Since MORGANE has approximately 40 marginal water values for each of three
reservoirs, we claim that this gives a commensurate level of discretization. DOASA
takes about one minute per iteration, and so it must be run for nearly two hours on
this problem, while MORGANE takes about 10 min. The progress of the DOASA
upper bound for a fixed head level model is shown in Fig. 5.4.
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Fig. 5.4 Upper bound for revenue plus true value for RC1 DOASA policy assuming fixed head
(RC1 above, RC2 below)
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• For the RC1 system, the minimum (scaled4) upper bound is 434.740. The
DOASA policy when simulated over 100 out-of-sample stagewise independent
inflow sequences gives an expected value of 434.600 with a standard error of
0.139, which indicates that the DOASA policy is close to optimal.

• For the RC2 system,5 the minimum (scaled) upper bound is 716.785. The
DOASA policy when simulated over 100 out-of-sample stagewise independent
inflow sequences gives an expected value of 716.454 with a standard error of
0.834, which indicates that the DOASA policy is close to optimal.6

The DOASA policy was then simulated over the 41 inflow sequences that were
used to construct the policy. Since these sequences display some stagewise depen-
dence, this is a sterner test of DOASA which assumes that inflows are stagewise
independent.

• For the RC1 river system, the average optimal value over these scenarios was
434.161 with a standard error of 0.521 for the RC1 river system. This is lower
than the out-of-sample expected value of 434.600 but very close. Recall that the
upper bound of 434.740 is an upper bound on the value of the DOASA policy
that assumes independence, so we cannot deduce that this is a bound on the best
policy that took advantage of information about possible persistence in inflows.
The policy from MORGANE was also simulated over the same inflow sequences.
In 95 % of scenarios the values from DOASA were larger (see Fig. 5.5).

• For the RC2 river system, the average optimal value over these scenarios was
714.068 with a standard error of 3.451. The policy from MORGANE was also
simulated over the same inflow sequences. This required some care as MOR-
GANE provides water values only for reservoir R’1 and reservoir R’2. We there-
fore assumed in computing each week’s releases that the terminal values of the
reservoir levels of the other reservoirs are set at 50 % of their capacities. The sim-
ulation of the MORGANE policy then gives an average optimal value of 712.543
with a standard error of 3.389. In 85 % of scenarios the values from DOASA were
larger (see Fig. 5.5).

Some insights into the reason for the difference between the policies can be seen
by examining the marginal water values. Since both policies share the same value
function at stage T , their stage T optimization problems should deliver the same
water value functions at stage T − 1. The actual values of these are shown for two
sets of reservoir storage levels in Tables 5.1 and 5.2.

• For RC1, the marginal values computed by DOASA are lower than those com-
puted by MORGANE. This can be explained by observing that MORGANE

4 For confidentiality purposes, the units of measurement are omitted.
5 This has a different network topology, and so it provides a useful comparison of the effect of
river-chain topology on the policies from the two methodologies. As before, DOASA was run for
100 iterations, giving 100 cuts at each stage.
6 An experiment with 200 cuts gave a smaller upper bound of 716.700 and an estimated value of
716.467 with a standard error of 0.833.



120 A. Philpott et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25

Difference in revenue

P
ro

b
a

b
ili

ty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-1.0e+006 -5.0e+005 0.0e+000 5.0e+005 1.0e+006 1.5e+006 2.0e+006 2.5e+006 3.0e+006

Difference in revenue

P
ro

b
a

b
ili

ty

Fig. 5.5 Cumulative plot of the difference in value between the DOASA solution and the MOR-
GANE solution for RC1 (above) and RC2 (below) over 41 scenarios assuming fixed head

assumes that all other reservoirs terminate at 50 % of capacity when comput-
ing marginal values for the reservoir in question. This adds an extra constraint
on releases from these reservoirs over the week. Suppose that these constraints
result in no other capacity constraints being binding. Then the marginal value
of extra water in reservoir R1 (serving the most efficient station) will be the
revenue earned by passing this down the river-chain through generating stations.
If however the optimal policy means that river reach capacity constraints below
the run-of-the-river RoR1 station are binding then the marginal value of extra
water in reservoir R1 will be the revenue earned by it minus the loss in revenue
from reducing the flow in the other stations that are less efficient, so as to satisfy
the constraint. In this way the marginal water values for each reservoir can de-
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Table 5.1 Marginal water values (euros per cubic meter) computed from DOASA and MORGANE
for end of stage 51 for each of the storage reservoirs assuming fixed head

Reservoir R1 Reservoir R2 Reservoir R3

Storage (m3) 13,818,000 3,577,000 14,520,000
DOASA (e/m3) 0.151 0.176 0.150
MORGANE (e/m3) 0.159 0.190 0.155

Storage (m3) 13,818,000 7,114,000 14,520,000
DOASA (e/m3) 0.154 0.161 0.148
MORGANE (e/m3) 0.159 0.163 0.155

Table 5.2 Marginal water values (euros per cubic meter) computed from DOASA and MORGANE
for end of stage 51 for each of the storage reservoirs assuming fixed head

Reservoir R’1 Reservoir R’2

Storage (m3) 203,500,000 79,000,000
DOASA (e/m3) 0.0359 0.0167
MORGANE (e/m3) 0.0344 0.0159

pend on the water levels in other reservoirs, as well as on the level of their own.
In other words, if the other reservoirs are full it is more likely that the capacity
constraints will bind and so the water value in reservoir R1 will be lower than the
value obtained when the other reservoirs are empty. We examine this nonsepara-
bility of the value function in more detail in the Appendix.

• In the RC2 system, the water values for reservoir R’1 under the DOASA policy
are higher than those for MORGANE, since if reservoir R’2 is constrained to be
at 50 % of its value at the end of the current week, then this precludes transferring
water through reservoir R’2 to later weeks. Thus if prices are high now and reser-
voir R’2 is constrained downstream, then we cannot generate in period 1 without
spilling, which could be avoided if water can be transferred by storing it till a
later period. We examine the separability of the value function for the cascaded
system in the Appendix.

Despite the differences in marginal water values, the policies of DOASA and
MORGANE perform similarly. The average storage levels over the 41 scenarios are
shown in Fig. 5.6.

5.6.2 Experiment 2: Variation in Head

In this experiment DOASA was run for 100 iterations, giving 100 cuts at each stage
on the same reference as the previous section. Head effect was taken into account
while optimizing the river-chains and while simulating the obtained policies as
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Fig. 5.6 Comparison of average stock levels in each reservoir (over 41 scenarios) for the DOASA
and MORGANE policies (RC1 above and RC2 below) assuming fixed head

described in Sect. 5.5.2. For the RC2, cuts using DOASA are computed assuming
that the three smallest reservoirs (i.e., those without storage) can vary their level
between bounds. The MORGANE policy assumes that these reservoirs are fixed at
their midpoint levels at the end of each week. So for comparison we conducted two
computational experiments on the RC2 as follows:

1. We simulate the MORGANE policy, first with free endpoints on the three small
reservoirs, and then with fixed weekly endpoints.
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Fig. 5.7 Cumulative plot of the difference in value between the DOASA solution and the MOR-
GANE solution for RC1 with head effect over 41 scenarios

2. We simulate the DOASA policy, first with free endpoints on the three small reser-
voirs, and then with fixed weekly endpoints.

In these experiments, DOASA behaves better than the MORGANE heuristics,
especially if allowed more flexibility in the small reservoirs. However even if this is
restricted, the DOASA policy is better than MORGANE showing on average:

• DOASA constrained saves 2M over MORGANE constrained
• DOASA unconstrained saves 3M over MORGANE unconstrained
• DOASA unconstrained saves 3.79M over MORGANE constrained

5.7 Conclusions

The aim of this paper is to compare a stochastic dynamic programming-based
heuristic that can handle non-convexities appearing in real problems (MORGANE)
to an outer approximation method that needs some convexity assumptions. The set
of experiments chosen in this paper demonstrates that constructing DP policies us-
ing multivariate Bellman functions gives better results than methods that ignore the
cross terms. The source of DOASA’s advantage is from using a polyhedral surface
that is not a separable sum of one-dimensional curves. When this feature is ab-
sent, for example when downstream constraints are never binding, the policies are
equivalent. In practice, however there are always periods when these constraints are
significant, and these periods cause the policies to diverge. We still need to conduct
experiments in order to confirm these results while prices are stochastic and while
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Fig. 5.8 Cumulative plot of the difference in value between the DOASA solution and the MOR-
GANE solution for RC2 with free endpoints (above) and constrained endpoints (below) over 41
scenarios

the time dependency is taken into account (MORGANE can handle this dependency
but not DOASA due to convexity issues). Experiments while we have more compli-
cated constraints (storage constraints, solid water, etc.) are still to be made.

5.8 Appendix: Approximations Made by the Multi-modeling
Heuristic

In this appendix we examine the implications of the approximations used by MOR-
GANE for computing marginal water values. The analysis is different for each sys-
tem, so we discuss each in turn.
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5.8.1 RC1 River Chain

The MORGANE approximation of the RC1 system assumes that Vt(x1,x2,x3) is
additively separable. To examine the separability of Vt(x1,x2,x3), consider a simpli-
fied version of RC1 with two reservoirs having capacity a1 and a2 and releases y1

and y2 through stations with price per unit of water flow of p1 and p2. Like RC1,
the tailwater shares a common channel with capacity k. We wish to investigate the
form of Vt(x1,x2) when

Vt+1(x1,x2) =−(x1− a1)
2− (x2− a2)

2 . (5.26)

This gives

Vt(x1,x2) = maxy1,y2 p1y1 + p2y2− (x1− y1− a1)
2− (x2− y2− a2)

2

s.t. y1 ≤ x1

y2 ≤ x2

y1 + y2 ≤ k
y≥ 0

(5.27)

After some algebra, it can be shown that Vt(x1,x2) can be separated into a sum
V 1

t (x1) +V 2
t (x2) for all values of x1,x2 except for those satisfying the following

three conditions:
⎡
⎣
(
x2−

(
a2− 1

2 p2
))

+
(
x1−

(
a1− 1

2 p1
))

> k(
x1−

(
a1− 1

2 p1
))

,
(
x2−

(
a2− 1

2 p2
))

> 0∣∣(x2−
(
a2− 1

2 p2
))− (x1−

(
a1− 1

2 p1
))∣∣< k

⎤
⎦ . (5.28)

In this exceptional case,

Vt(x1,x2) = −1
2
(x1 + x2)

2 (5.29)

+

(
k+ a1+ a2 +

1
2

p1− 1
2

p2

)
x1 +

(
k+ a1 + a2− 1

2
p1 +

1
2

p2

)
x2

+

( 1
2 kp1− ka1− ka2− 1

2 k2 + 1
2 kp2− 1

2 a2
1− a1a2− 1

2 a1 p1

+ 1
2 a1 p2− 1

2 a2
2 +

1
2 a2 p1− 1

2 a2 p2 +
1
8 p2

1− 1
4 p1 p2 +

1
8 p2

2

)

which contains the cross term −x1x2, and so is not separable.

5.8.2 RC2 River Chain

We now look at the water value calculations that MORGANE makes for a system
like the RC2. We show by example that fixing the final water levels of other reser-
voirs (as MORGANE does) in order to compute the marginal water value of a given
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reservoir can lead to a smaller number than the true value. Consider a system of two
reservoirs in cascade as shown in Fig. 5.2.

Let x(t) ∈R2 be the stock level at the start of period t in each reservoir (having
capacity a ∈R2 )and let u(t) ∈R2 denote the release from each reservoir, h(t) ∈R2

the stochastic inflow and s(t) ∈R2 the spill. All of these depend on time. Suppose
that we control this system using a value of water for reservoir 1 only and setting
a target in each stage on the level in reservoir 2. Given an expected future value
function Vt+1(x1), the releases u(ω) are chosen to solve

max p1u1 + p2u2 +Vt+1(x1− u1− s1 + h1(ω))

s.t. a2/2+ h2(ω)+ u1− u2− s2 = a2/2
0≤ ui ≤ bi

0≤ si ≤ di

(5.30)

We then compute

Vt(x1) = E(p1u1(ω)+ p2u2(ω)+Vt+1(x1− u1(ω)− s1(ω)+ h1(ω)) (5.31)

We will test this approximation in a deterministic framework and study the
marginal water value of reservoir 1. To do this consider two periods t = 1,2 with
no residual water value, and consider the additional value of an extra amount δ of
water in reservoir 1 at the start of period 1. This can be computed by finding

Q(δ )= max ∑2
t=1 ∑2

i=1 p(t)ui(t)
s.t. x1 + δ + h1(1)− u1(1)− s1(1) = x1(2)

x2 + h2(1)+ u1(1)− u2(1)− s2(1) = x2(2)
x1(1)+ h1(2)− u1(2)− s1(2) = x1(3)
x2(1)+ h2(2)+ u1(2)− u2(2)− s2(2) = x2(3)
0≤ xi(t)≤ ai

0≤ ui(t)≤ bi

0≤ si(t)≤ di

(5.32)

Suppose the problem data are given as

p(t) x1(t) x2(t) h1(t) h2(t)
t = 1 2 1 0 0 0
t = 2 1 – – 0 2

(5.33)

Then
Q(0)= max 2u1(1)+ 2u2(1)+ u1(2)+ u2(2)
s.t. 1− u1(1) = x1(2)+ s1(1)

0+ 1+ u1(1)− u2(1) = x2(2)+ s2(1)
x1(1)− u1(2) = x1(3)+ s1(2)
x2(1)+ u1(2)− u2(2) = x2(3)+ s2(2)
0≤ xi(t)≤ 1
0≤ u1(t)≤ 1, 0≤ u2(t)≤ 2
0≤ si(t)≤ 3

(5.34)
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This has solution

u1(t) u2(t) x1(t + 1) x2(t + 1) s1(t) s2(t)
t = 1 1 2 0 1 0 0
t = 2 0 1 0 0 0 0

(5.35)

with return 7. Now if we increase x1 to x1 +δ , then Q(δ ) = 7+3δ , so the marginal
water value at reservoir 1 is 3. However, if we constrain the storage to be one-half
capacity at the end of period 1, then we have Q(δ ) = 7+ 2δ , so the marginal water
value at reservoir 1 is 2, which is less than its value in the unconstrained case.
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Chapter 6
Medium-Term Operational Planning
for Hydrothermal Systems

Raphael E.C. Gonçalves, Michel Gendreau, and Erlon Cristian Finardi

Abstract The planning of operations of hydrothermal systems is, in general, divided
into coordinated steps which focus on distinct modeling details of the system for dif-
ferent planning horizons. The medium-term operation planning (MTOP) problem,
one of the operation planning steps and the focus of this chapter, aims at defining
weekly generation for each power plant with the minimum expected operational cost
over a specific planning horizon, with regard especially to the uncertainties related
to reservoir inflows. Consequently, it is modeled as a stochastic problem and solving
it requires the use of multistage stochastic optimization algorithms. In this sense, the
objective of this chapter is to discuss the problem features, its particularities, and its
importance in the overall operational planning. The stochastic methods usually used
to solve this problem and some applications are also presented.
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6.1 Introduction

The operation of electric power systems1 covers a broad spectrum of activities or
studies, among which the planning/scheduling of operations stands out (Test, 1797)
[1, 2]. In general, this problem [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21] is divided into several steps (long term, medium term, and short term),
which have different planning horizons and which, consequently, each prioritize
distinct details of the problem modeling. Briefly, the global problem involves the
analysis of the important operational aspects of the system to define the optimal
level of energy production to meet demand in an economical and reliable manner.

The medium-term operation planning (MTOP) problem, the focus of this chapter,
aims to set weekly generation for each power plant with the minimum expected ope-
ration cost over a specific planning horizon, which can vary from months to a year or
two, especially taking into account the uncertainties associated with some problem
data (inflows and demand, among others). In addition, results from the MTOP can
be used to set the spot energy price, depending on the regulatory framework.

Considering the importance of the MTOP, the credibility of the results is essential
for the System Operator (SO), which is responsible for settling generation targets,
and for the Energy Market (EM) agents, given the economic impacts of the transac-
tions in the market energy environment. In this sense, constant improvements in the
MTOP optimization model are required in order to satisfy or update the system and
EM participants’ requirements. This is the reason why a lot of work has focused on
this step of the operation planning problem [6, 15, 22, 23, 24, 25, 26].

As the MTOP is part of a scheduling chain, it can be tightly linked with other
steps in this chain in order to obtain the global solution of the operation planning
problem, as occurs, for instance, in Brazil. The purpose is to maintain a temporal
connection between scheduling chain steps. Briefly, the idea is to exchange infor-
mation concerning the operational policies, which aim to propitiate coherent global
decisions, as illustrated in Fig. 6.1, avoiding, for example, the inefficient use of the
generation resources.

Given some problem features, especially those related to data uncertainties, the
MTOP is quite complex to solve. As a consequence, solutions obtained by models
that do not recognize the uncertainties can produce unsatisfactory results. In other
words, the MTOP problem is essentially a stochastic optimization problem [27, 28].
In general, these uncertainties are associated with future inflows into the reservoirs
for hydro or hydrothermal systems. Demand and future fuel or energy spot prices
can also be modeled as random data, according to the predominance of generation
resources of the system or the main objective of the problem.

Like most practical stochastic optimization problems, solving the MTOP
problem requires a very significant computational effort, given that the size of the
problem increases substantially with the representation of the uncertainties, with
the number of stages and with the level of detail in system modeling. Therefore, it

1 It is important to remark that the systems can be composed of hydro, thermal, or both power
plants.
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Fig. 6.1 Scheduling chain

is important to balance the level of detail used in modeling uncertainties and system
operations by introducing some simplifications to allow the resolution of the prob-
lem in reasonable CPU times. For instance, hydro [16, 29] and thermal production
and cost functions, which are typically nonlinear and non-convex [1], are usually
modeled as linear or a piecewise linear functions to overcome their nonlinearity
features. In this way, the resulting optimization problem can be approximated by a
linear model.

One therefore ends up normally with a large multistage linear stochastic (MLS)
problem [30], for which the use of stochastic decomposition algorithms [31] is ess-
ential to reduce the computational burden (in fact, attacking this problem directly
keeping its standard structure, known as the deterministic equivalent problem, DEP,
is often computationally infeasible). In this context, one must highlight the algo-
rithms based on the Benders Decomposition (BD) principle [32], which display an
excellent computational performance when dealing with problem instances with a
representative number of scenarios, as shown in [33].

BD-based algorithms, such as the nested decomposition algorithm (NDA) [27]
or stochastic dual dynamic programming (SDDP) [4], are broadly used to solve
large-scale operation planning problems. The idea underlying NDA is to decompose
the DEP into smaller subproblems with a restricted set of variables and constraints,
which are easier to solve. These subproblems are solved individually and the coordi-
nation among them is performed by means of optimality constraints, which are built
and updated iteratively. Although this is an efficient method, some disadvantages are
often highlighted for this class of methods [27], as the difficulty to improve the qual-
ity of the solution when the iterative process is close to the optimal value. A similar
idea can be found behind SDDP, which, however, is more suited to large-scale prob-
lems with many stages and scenarios. In this algorithm, scenario sampling, based on
the original probability distributions of the random variables [2, 34, 35, 36, 37], is
used to reduce the size of the problem, as discussed in another chapter of this book.

Algorithms with different characteristics in relation to the BD-based approach,
such as the augmented Lagrangian (AL)-based algorithm [30, 38], have been suc-
cessfully used to solve MLS problems. In this sense, it is possible to highlight the
progressive hedging algorithm (PHA), which has been applied in several fields:
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financial market [39], network flow problems [40] and, more recently, operation
planning problems [22, 23, 26].

Like other AL-based algorithms, the PHA proceeds by relaxing the nonantici-
pativity constraints2 [27, 41] providing an independent set of quadratic subprob-
lems, which are linked via Lagrangian multipliers and penalized by a positive scalar
parameter. In this class of methods, the aforementioned disadvantage of BD-based
methods can be mitigated because the resulting subproblems are quadratic and they
are still sensitive to the use of warm start techniques [25]. Nevertheless, its main
disadvantages are associated with the penalty parameter adjustment, which is crucial
to algorithm success. Otherwise, it can take a long time to converge.

Based on the aspects mentioned before, the remainder of this chapter aims to des-
cribe in detail the main features of the MTOP problem, the mathematical structure
of the methods usually used to solve this kind of problem, some application, and
important remarks concerning the problem resolution. More precisely, in Sect. 6.2,
the stochastic optimization aspects are pointed out, emphasizing the challenges of
the MTOP problem resolution. The general problem formulation is presented in
Sect. 6.3. In Sect. 6.4, a brief idea of the algorithms and some application results are
discussed. Finally, conclusions are presented in Sect. 6.5.

6.2 Stochastic Optimization Aspects

Unlike deterministic problems in which there are no uncertainties with respect to
the future data, in stochastic programming problems it is necessary to optimize tak-
ing into account the data unpredictability. In order to make the problem resolution
computationally viable, it is essential to ensure that the problem horizon has a finite
number of stages and, additionally, knowing beforehand the probability distribution
of the random variables.

In this context, some important aspects are often addressed in the literature [42],
such as the modeling of random variables, the quality solution analysis based on the
set of random variables, the problem resolution, solution algorithms, among other
aspects.

Once the MTOP problem is essentially a stochastic problem, this section focuses
on presenting a brief review associated with the stochastic programming, highlight-
ing some important features which can make the MTOP formulation and challenges
more understandable.

2 The algorithm details and the stochastic theoretical aspects will be discussed in the next sections.
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6.2.1 Problem Description

Assuming that the discrete probability distribution of the random variable is known,
the classical two-stage linear stochastic programming problem or two-stage equiva-
lent stochastic problem can be defined as follows:

mincT
1 x1 + ∑

ω∈Ω2

pω2 cT
2 xω2

s.t : A1x1 = b1,

Aω
2 xω2 +Bω

2 x1 = bω2 ,

x1 ≥ 0, xω2 ≥ 0.

(6.1)

where:

T Total of stages
t Index of stage, so that t = 1,T
Ω t Set of realizations (nodes) on stage t
ωt Index associated with a specific realization (node) in the stage t, so that

ω ∈ Ω t

ct Cost vector related to stage t;
xt Vector decision of stage t, x ∈ ℜn

pωt Probability associated to the each node ω , such that ∑ω∈Ωt pωt = 1
Aω

t Coefficient matrix in stage t (mt x nt)
Bω

t The technology matrix at stage t (mt x nt )
bωt Right-hand side for a specific realization ω at stage t

Based on this formulation, as called Deterministic Equivalent (ED) [43] of the
stochastic problem, notice that uncertainties can be related to A or B matrices, as
well as the vector b. Nevertheless, in the MTOP problem, the randomness is usually
associated with the vector b, given that the inflows or the demand are the most future
unpredictable data.

Solving this stochastic problem requires the use of methods that exploit the
matrices structure of the problem, such as simplex method and interior point
method [44].

Notice that the uncertainties ω are addressed to the second stage. The objective
of problem (6.1) aims to minimize the cost over two stages, being composed by the
costs associated with the decisions x1 plus the expected future value of the second
stage decisions. The remaining equations of (6.1) correspond to sets of constraints
related to the first and second stages, interconnected by the technology matrix, B2,
beyond the variable bounds.

As it will be discussed later, this is the same idea of the MTOP problem for-
mulation, i.e., an objective function composed of the total operational cost over the
planning horizon and a set of constraints that are associated with the operational
features or particularities of the system.
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6.2.2 Scenario Tree

Considering the beforehand aspects with respect to the discrete probability distribu-
tion, the problem uncertainties are represented by means of a scenario tree. Thus, for
a finite number of second stage realization Ω2, the scenario tree can be represented
as illustrated in Fig. 6.2.

Fig. 6.2 Scenario tree

It is possible to say that the uncertainties representation by means of graphs aims
to show the set of the problem realizations in each stage and the link (transition)
among the each node decision. Thus, each node of the scenarios tree is associated
with a specific realization or a set of random variables. In this context, a specific
scenario can be defined as a path from the initial stage to the last stage, regarding a
single realization at each stage or, simply, a set of realization from stage 1 onwards.
In Fig. 6.2, for instance, a scenario 1 is composed of the realization ω1 and ω2a, the
scenario 2 composed of the realization ω1 and ω2b, and the scenario 3 composed of
ω1 and ω2c.

According to scenario assumptions, all scenarios share the same first stage
realization/decision regardless of the second stage realization (the set of random
variables of the first stage is identical in all of them). In this sense, it is possible to
define an important concept in stochastic optimization: the nonanticipativity condi-
tion [41]. It means that the decisions are not made regarding future expectations,
but based on past and current realizations of the random variables. In other words,
if two different scenarios have identical path up to stage t, they must have the same
decisions until this stage t regardless the next realizations.

Therefore, the scenario tree shown in Fig. 6.2 can also be represented as it is
illustrated in Fig. 6.3.

It is possible to say that the nonanticipativity condition is modeled in an implicit
way in (6.2) [43], i.e., the first stage decision, equal in all scenarios, is only repre-
sented by a unique vector x1. On the other hand, in Fig. 6.3, the nonanticipativity
condition is represented in an explicit way, given that there are nodes associates



6 Medium-Term Operational Planning for Hydrothermal Systems 135

Fig. 6.3 Scenario tree representation—another possibility

with each stage for all scenarios. Therefore, the problem formulation (6.2) can be
rewritten as follows:

f= min
S

∑
s=1

ps(cs
1xs

1 + cs
2xs

2)

s.t. : As
1xs

1 = bs
1,

As
2xs

2 +Bs
2xs

1 = bs
2,

xs
1− xs̄

1 = 0, ∀ s̄ ∈Ψ s
1 ,

xs
1 ≥ 0, xs

2 ≥ 0,

(6.2)

where:

S Total number of scenarios
s Index of scenario, so that, s=1,. . . ,S

Ψ s
t

Set of all scenarios related to scenario s at stage t by the nonanticipativity
condition, including itself

s̄ Index associated withΨ s
t

ps Probability associated with the scenario s

Observe that, in this case, the nonanticipativity condition becomes a set of addi-
tional constraints explicit written which aims to ensure the same decision at stage
1. Thus, in short, there are two ways to model a stochastic optimization problem,
depending on the nonanticipativity constraints management.

6.2.3 Data Structure

Based on the aspects aforementioned, the nonanticipativity constraints impacts into
the problem formulation are pointed out. Initially, observe the matrix structure of
problem (6.2) highlighted in Fig. 6.4.
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Fig. 6.4 Structure of the DE implicit

According to Fig. 6.4, it is easy to see that the structure of stochastic program-
ming problems is substantially sparse. Thus, solving a stochastic problem consid-
ering this formulation, the ED implicit of stochastic problem, can require a high
computational effort, especially in a multistage case.

For this reason, decomposition algorithms [45] are most often used to overcome
the computational burden. By this structure, the decomposition idea is to solve
each node subproblem individually, maintaining the link among them by means
of some mathematical strategies. It is possible since for a feasible decision x1, the
remaining node subproblems can be solved recursively with a specific set of con-
straints and variables. For instance, methods based on BD principle “attack” this ED
representation.

In turn, problem (6.2) matrix structure is shown in Fig. 6.5.

Fig. 6.5 Data structure of the DE explicit

Notice that the number of variables and constraints of the problem increases
when compared to Fig. 6.4. Thus, the computation burden tends to be higher than
the ED implicit modeling and, thereby, the ED explicit is basically used by some
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kind of specific decomposition algorithm. It means that, in case of solving the ED
of the stochastic problem, the implicit structure is more indicated.

By this approach, only the nonanticipativity constraints, Ws, connect the scenar-
ios decisions. Thus, the ED explicit decomposition algorithm aims to decompose
the problem into scenario subproblems in order to obtain smaller subproblems with
variables and constraints that belong to a particular scenario s. In general, algorithms
based on AL-based methods, such as PHA, use this formulation to decompose the
original stochastic problem.

Finally, it is important to remark that there are algorithms that reduce the problem
size by means of exploring the sparse structure of the problem without decomposing
it [46, 47].

6.3 MTOP Problem

The MTOP problem presents many particularities, which make it a complex prob-
lem to be solved. It is possible to highlight the uncertainties related to some data,
such as the inflows, besides other operating characteristics intrinsic to each sys-
tem. In this sense, the purpose of this section is to discuss some operational aspects
related to the majority of MTOP problems with predominance of hydro resources
and its consequence into the problem modeling. Additionally, an idea of the problem
formulation is presented.

6.3.1 Problem Features

As aforementioned, the MTOP problem usually takes part of a scheduling chain
which aims to define the optimal dispatch of all system power plants and, depend-
ing on the system regulatory framework, it can also be responsible for giving an
economic sign of the energy price. For this reason, besides the stochastic aspects,
the modeling of the operational characteristic can be crucial to provide a satisfactory
operation of the system, making the MTOP model an important tool for all system
agents (operator, generator, regulator, among others).

6.3.1.1 Stochastic Aspects

Although there are other uncertainties in the MTOP problem with hydro power plant
predominance, the inflows into the reservoirs modeling has received special atten-
tion. In recent years, the studies focusing on the representation of the stochastic
issues into the MTOP problem are, in general, only associated with this random
variable.

The modeling of these uncertainties is, in general, based in the discrete
probability distribution of a historical data. Therefore, one of the most important
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challenges concerning the MTOP problem is to find a way to represent rightly this
original information. In other words, it is necessary to study the best strategy to
represent the original infinite scenario tree by means of a representative discrete
scenario tree [48], as illustrated in Sect. 6.2.

For that, some issues are extremely important, such as the number of realization
in each stage, the precise representation of statistic aspects of the original probability
distribution, and the quality solution of the related scenario tree [42].

As introduced before, the demand, the future fuel thermal price and the inflows
into the reservoirs can be modeled as a random data in the operation planning prob-
lem context. Depending on the MTOP problem features or its main purpose, some
of them can be concerned stochastic or simply represented as a deterministic data.
For instance, in problems with the hydro power plant predominance, the inflow un-
certainties modeling have received special attention in recent years.

6.3.1.2 General Aspects

In addition to the stochastic factors, the MTOP problem has other operational impor-
tant features which must be modeled in order to represent the physics characteristics
and the dynamic of the system. Among them, it is possible to highlight the stream-
flow balance for each reservoir, the hydro production function [16, 49], the future
cost-go function, the load levels, the bounds of the exchange power flow among
subsystems or zones, and water travel time among hydro plant located on the same
cascade, among others.

Given that the general idea of MTOP problem formulation is detailed in the next
subsection, some of these model aspects should be emphasized to make understand-
ing of the modeling easier. For example, the hydro production function and the
thermal cost function must be linearized, given that they are essentially nonlinear
functions and the MTOP problem must be modeled as a linear programming prob-
lem in order to propitiate a computational resolution feasible. It is possible to say
that it is not a trivial task, especially in systems where there are many power plants,
such as in Brazil, Canada, Colombia, and Norway [17, 18].

Concerning the hydro power plant, the challenge is to obtain a linear function
with the same operative characteristics when compared to the original nonlinear
function. It can require a high effort, considering that there are hydro plants with
production functions neither concave nor convex [50].

Another aspect that adds complexities into the problem formulation is represen-
tation of load levels. These levels emulate the load variation over a specific stage.
In other words, the purpose consists in divide the demand into the different stage
levels, in order to represent the peaks and valleys of the demand. For this reason, the
number of variables increases substantially.

Obviously that the modeling depends on the system characteristics and thereby
the idea in this section is to show some general features. For instance, in Brazil, the
future cost-go function used in the MTOP problem, it is a result from LTOP, which
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is not currently used in Canada. Moreover, aspects as evaporation and operational
particularities of power plants should be represented to propitiate real-life results.

6.3.2 MTOP Problem Formulation

According to the assumptions presented in the previous subsection, it is possible to
present the general idea of the problem formulation highlighting the most important
constraints and variables based on the Brazilian and Canadian systems. For that, the
ED implicit modeling is used and thereby can be written as follows.

6.3.2.1 Objective Function

The objective function aims to minimize the expected operational cost over a spe-
cific horizon. It is composed of the fuel thermal cost over the total MTOP horizon in
case of hydrothermal system, the penalty associated with the slack of energy (deficit
level cost), and the expected future cost, which depends on the reservoir level at the
end of the MTOP horizon, T:

Min F =
T

∑
t=1

∑
ω∈Ωt

pωt
t ∑

u∈U
∑
e∈E

(
∑
i∈Ie

ctiugtωt
iut +

Δ

∑
δ=1

cdδeudωt
δuet

)
+αT , (6.3)

where:

F Objective function ($)
E Energy subsystems or operative zones
e Index of subsystems or operative zones, so that, e=1,. . . ,E
U Total number of load levels
u Index of load levels, u=1,. . . ,U
Δ Total number of deficit levels
δ Index of deficit level, δ=1,. . . , Δ
I Total number of thermal plants
i Index related to thermal plants, i=1,. . . ,I
ctiu Thermal incremental cost of the ith thermal plant ($/MWh)
gtiut Generation of thermal plant i, load level u, and stage t (MWh)
cdδ eu Deficit incremental cost in δ th deficit level, uth load level, and subsystem

e ($/MWh)
dδ eut Deficit in the δ th deficit level, uth load level, subsystem e, and stage t

(MWh)
αT Expected value of operation cost from state T+1 onwards, i.e., a future

cost-go function which can be a result from LTOP ($)
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6.3.2.2 Supply the Demand

These constraints aim to ensure that the sum of all generation resources is equal
to the system demand for all stages, subsystems, and load levels, respecting the
operational power plant bounds:

I

∑
i=1

gtωt
iut +

R

∑
r=1

ghωt
rut + ∑

l∈Γe

Intωt
leut +

Δ

∑
δ=1

dωt
δuet = Luet , (6.4)

where:

R Total number of hydro plants
r Index of hydro plants, r=1,. . . ,R
ghrut Generation of hydro plant r, load level u, and stage t (MWh)
Int Power interchange from subsystem l to subsystem e, load level u, and

stage t (MWh)
Luet System demand of the uth load level, eth subsystem, and stage t (MWh)
Γ e Set of subsystems linked to the subsystem e

6.3.2.3 Stream-Flow Balance

The stream-flow balance constraint ensures that the final volume at the end of a
specific stage must be equal to the initial volume plus inflows and minus the total
released outflow, regardless casual losses or evaporations:

vωt
rt − vωt−1

r,t−1 +C
U

∑
u

[
qωt

rut + spωt
rut − ∑

m∈Mi

(
qωt

mu,t−τmr
+ spωt

mu,t−τmr

)]
=Cyωt

rt , (6.5)

where

vωt
rt Volume of rth hydro plant reservoir at the end of stage t (hm3) consider-

ing a specific node ω
qωt

rut Discharge outflow of hydro plant r, load level u, and stage t (m3/s)
spωt

rut Spillage of hydro plant r, load level u, and stage t (m3/s)
yωt

rt Incremental inflow of rth hydro plant reservoir and stage t (m3/s)
C Conversion factor of water discharge unit (m3/s) in volume units (hm3)
Mr Set of upstream reservoirs from hydro plant r
m Index of upstream reservoirs, m=1,. . . ,M
τmr Number of stages that the total outflow of a hydro plant m takes to reach

the downstream hydro plant r
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6.3.2.4 Hydro Piecewise Linear Function

ghωt
rut =Θ

(
vωt

rt ,q
ωt
rut ,spωt

rut

)
. (6.6)

The hydro production function is a nonlinear function which related the net head,
the generator units efficiency, and the release of the power plant [51]. Nevertheless,
in the MTOP problem context, the hydro production is, in general, modeled as piece-
wise linear function which can depend on the released outflow, the volume, and the
spillage, as detailed in [50], or simply depend on the release outflow and the net
head. In literature, alternatives approaches are also broadly used to represent the hy-
dro production function, as discussed in [16, 52], because it is definitely not a trivial
task to obtain a good hydro production function linearization.

6.3.2.5 Future Cost-Go Function

This function can be given by the LTOP problem, if there is a scheduling chain
models or built taking into the future level of the reservoirs. Thus, it estimates the
expected future cost. In short, it is a piecewise linear function depending on the
volume of water in the reservoirs at the end of the planning horizon, T. In other
words, it represents the expected future cost from T + 1:

αT − ∑
ω∈ΩT

∑
r∈R

γr jv
ωT
rt ≥ α0

r , (6.7)

where:

J Number of linear constraints used in the piecewise future cost-go func-
tion

j Index related to the piecewise future cost function, with j=1,. . . ,J
γr j Slope associated with jth linear segment of the future cost-go function

associated with hydro plant r (MW/hm3)

6.3.2.6 Bounds

The individual variable limits must be also considered which aims to determine the
physic operational of the system and its generator resources, such as the exchange
bounds, released outflow, and reservoir volumes:

Intmin
leut ≤ Intωt

leut ≤ Intmax
leut ,

vmin
r ≤ vωt

rt ≤ vmax
r

0≤ qωt
rut ≤ qmax

r ,

0≤ spωt
rut ≤ spmax

r ,

0≤ gtωt
iut ≤ gtmax

i ,

0 ≤ ghωt
rut ≤ ghmax

r .

(6.8)
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Thus, the (6.3)–(6.8) formulation summarizes the MTOP problem formulation.
Obviously that in case of a pure hydro systems or other system peculiarities, some
variable considered above must be disregarded or adapted to the system reality.

6.4 Decomposition Algorithms

Based on the features and challenges associated with the MTOP problem resolu-
tion presented so far, the study of the stochastic decomposition algorithms bec-
omes mandatory [53, 54]. Depending on the planning horizon and the operational
features which are directly related to the problem size, some decomposition alg-
orithms are more appropriated. It is possible to highlight the algorithm based on BD
[14, 27, 55, 56, 57, 58], AL [23, 24, 38, 40, 41, 59, 60, 61, 62], and its particulari-
ties [63], among others [64].

Thus, in this section, a simplified MTOP problem example is used to show the
main features of the two algorithms broadly used to solve this kind of problem. The
idea is to discuss the main differences between the algorithms and its properties.

For that, consider the simple hydrothermal system and the inflow scenario tree
of the problem illustrated in Fig. 6.6.

R1 I2I1

L 2 3

1

Fig. 6.6 Hydrothermal system and scenario tree

Notice that the hydrothermal system has only one hydro plant, R, and two thermal
plants, I1 and I2. In this example, the hydro production function is represented by
a simple linear function depending on the reservoir released outflow as it is shown
in (6.9). With these generator system resources, the objective is to supply a con-
stant demand L with the minimum expected cost over two-stage planning horizon,
considering only the inflow uncertainties:

gh = q. (6.9)

The inflow scenario tree has two possible inflow realizations in the second stage.
As a consequence, there are three nodes and two scenarios, given that a scenario can
be defined as a complete path from node 1 in the first stage to a specific node in the
last (second) stage. The inflows scenario tree data and additional information con-
cerning the hydrothermal system are presented in Tables 6.1 and 6.2, respectively.
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Table 6.1 Data of scenario tree?

Stage (t) Node (ω) Probability (p) Inflow [y (hm3)] Demand [L (MW)]
1 1 1 300 450
2 2 0.5 100 450
2 3 0.5 400 450

Table 6.2 Additional information of the hydrothermal system

Power
plant

Incremental cost [c
($/MW)]

Maximum generation
[gt or gh (MW)]

Initial volume [v0
(hm3)]

I1 50 60 –
I2 200 450 –
H1 – 450 150

According to the data shown, it is possible to write the general stochastic opti-
mization problem formulation by means of the implicit ED modeling, (6.10)–(6.13),
where, for sake of simplification, the variable bounds are omitted:

min F = 50gt1
11+ 200gt1

21+ 0.5(50gt2
12+ 200gt2

22)

+0.5(50gt3
12+ 200gt3

22) (6.10)

s.t.: gt1
11 + gt1

21 + q1
11 = 450 (node1)

v1
11 + q1

11 = 150+ 300 (node1)
(6.11)

gt2
12 + gt2

22 + q2
12 = 450 (node2)

v2
12 + q2

12− v1
11 = 100 (node2)

(6.12)

gt3
12 + gt3

22 + q3
12 = 450 (node3)

v3
12 + q3

12− v1
11 = 400 (node3)

(6.13)

The objective function (6.10) aims to minimize the expected value of thermal
production over the horizon taking into account the node probabilities. Addition-
ally, there are set of constraints and variables associated with each node, given by
(6.11)–(6.13). The constraints represent the demand supply and the stream-flow bal-
ance of the reservoir R1.

Notice that, in the MTOP problem context, the link between different stages is
performed by the reservoir volume, i.e., the initial volume for all nodes in the sec-
ond stage corresponds to the final volume in the first node. For this reason, it is
possible to conclude that the reservoir storage is a state variable of the problem. It is
an important MTOP characteristic given that the optimal decision is related to the
reservoir storage levels. In other words, once defined the volume storage in each
stage, the other variable are consequently determined.
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As already mentioned, the (6.10)–(6.13) formulation is the simplest way to rep-
resent a stochastic optimization problem. According to Sect. 6.2, it is also possible
to write the variables and constraints with respect to scenarios, the explicit ED, as
follows:

min F = 0.5(50gt1
11+ 200gt1

21+ 50gt1
12+ 200gt1

22)

+0.5(50gt2
11+ 200gt2

21+ 50gt2
12+ 200gt2

22) (6.14)

s.t. :

scenario1 :

gt1
11 + gt1

21+ q1
11 = 450,

v1
11 + q1

11 = 150+ 300,

gt1
12 + gt1

22+ q1
12 = 450,

v1
12 + q1

12− v1
11 = 100,

(6.15)

scenario2 :

gt2
11 + gt2

21+ q2
11 = 450,

v2
11 + q2

11 = 150+ 300,

gt2
12 + gt2

22+ q2
12 = 450,

v2
12 + q2

12− v2
11 = 400,

(6.16)

v111− v112 = 0. (6.17)

As discussed in the formulation (6.2), the nonanticipativity constraints are added
to the problem formulation in order to guarantee the same decision in all scenarios
that share the same nodes until stage T-1. In this case, the purpose is to ensure the
unique decision for both scenarios that share the same realizations in stage 1. Due
to the reservoir volume is a unique state variable of the MTOP problem, using it to
represent the nonanticipativity constraints can be an interesting approach to reduce
the problem size, as discussed in [22].

It is important to remark that the differences between the formulations are es-
sential for better understanding of the decomposition algorithm strategies presented
later in this chapter. In summary, the BD-based algorithm uses the (6.10)–(6.13) rep-
resentation in order to get node subproblems and, in turn, the AL-based algorithm
explores (6.14)–(6.17) structure to obtain scenario subproblems linked by nonantic-
ipativity constraints.

Before discussing the decomposition algorithms, it is convenient to mention that
once the MTOP is modeled as a convex optimization problem [65], both formula-
tions of the MTOP problem present the same optimal objective function value, as it
is shown in Table 6.3.
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Table 6.3 ED solution

Stages Node gt1 gt2 gh v
1 1 60 0 390 60
2 2 60 230 160 0

3 0 0 450 10
Objective function($)27,500

6.4.1 Benders Decomposition Algorithm

In this subsection, the idea is to present some basic notion of the BD-based algo-
rithms. Given that the test problem illustrated in Fig. 6.6 is a two-stage stochastic
problem, the L-shaped algorithm [27, 66] is detailed. Nevertheless, the theoretical
concept can be extended to the multistage algorithm, called NDA, which is, for ins-
tance, currently used to solve the Brazilian MTOP problem.

In summary, this algorithm solves the first stage subproblem and manages the
remaining stages as other subproblems, solving them recursively. Thus, it moves
down and up the scenario tree, also called forward and backward recursions, by
means of solving each node subproblem passing forward information to immediate
successors to form the right-hand side and passing backward to its ancestors in the
form of feasibility cuts (cutting planes) [56].

Thus, the L-shaped resulting subproblems can be written to each node as follows:

min f1 = 50gt1
11 + 200gt1

21+α
s.t. : gt1

11 + gt1
21 + q1

11 = 450 (6.18)

v1
11 + q1

11 = 150+ 300.

min f2 = 50gt2
12 + 200gt2

22

s.t. : gt2
12 + gt2

22 + q2
12 = 450 (6.19)

v2
12 + q2

12 = v2
11 + 100.

min f3 = 50gt3
12 + 200gt3

22

s.t. : gt3
12 + gt3

22 + q3
12 = 450 (6.20)

v3
12 + q3

12 = v1
11 + 400.

Notice that the objective function of subproblem (6.18) has a new variable α ,
which aims to represent the expected value of the second stage according to the first
stage decisions. Consequently, it is updated in each algorithms iteration, as detailed
below.

Then, once writing the node subproblems, the L-shaped decisions are sequential.
It means that the first stage subproblem (6.18) must be solved to obtain the value
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of the reservoir volume and, therefore, it uses this information to solve the second
stage subproblems: (6.19) and (6.20). This step is called forward and it is briefly
illustrated in Fig. 6.7, where the Lagrangian multiplier π associated with the stream-
flow balance constraint is also highlighted.

gt122=60 gt222=290
q122=100 v122=0

v111=0 y122=100

f2=61000 π2=-200

gt111=0 gt211=0
q111=450 v111=0

v0=150 y111=300

f1= 0 α2= 0

gt123=50 gt223=0
q123=400 v123=0

v111=0 y123=400

f3=2500 π3=-50

v111

Fig. 6.7 First forward step

After finishing the forward step, by the L-shaped algorithm, it is necessary to
compare the total cost of the first stage, the Lower Cost (LC), with the sum of
individual cost of each stage f disregarding the future cost, the Upper Cost (UC),
as it is detailed in (6.21). If the future cost α accurately represents the second stage
cost taking into account a stopping criterion υ , the algorithm is stopped. Based on
the results presented in Fig. 6.7, it is easy to notice that the LC, equal to first node
cost f 1, is different when compared to the UC showed in (6.21) (in the first iteration,
there is no second stage approximation; i.e., α equal to zero):

UC = p1 ( f1−α)+ p2 f2 + p3 f3,

∴ UC = 31,750.
(6.21)

Thus, the algorithms’ next step, called backward, aims to build the expected cost
of the second stage. For this, the expected value of the Lagrange multipliers related
to the stream-flow balance constraints3 are used to obtain a Benders cut, which
represents the lower bound approximation of the second stage expected cost. In this
context, it is possible to write the feasibility cut as follows:

α−α∗ ≥ π̄ (v111− v∗111) ,

α− (p2 f2 + p3 f3) ≥ (p2 pi2 + p3pi3)(v111− 0), (6.22)

∴ α+ 125v111 ≥ 31,750.

This constraint is thereby added in the first stage problem (6.18) and, afterwards,
a new forward recursion must be initialized. The backward and forward steps should

3 More precisely, it represents the derivative of dual cost function in relation to volume variable
v111, in (R$/hm3).



6 Medium-Term Operational Planning for Hydrothermal Systems 147

be continued until the stopping criterion is reached. It is an important remark that the
size of the first stage subproblem is increased iteratively, which can cause eventually
some impact to the algorithm efficiency.

The convergence process evolution is shown in Fig. 6.8 and the second stage
expected cost function α , also called the future cost-go function, is illustrated in
Fig. 6.9.
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Fig. 6.8 Iterative process
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Fig. 6.9 First stage future cost-go function with two linear approximations resulting from two
backward steps

Considering that the results are equal to those presented in Table 6.3, two
L-shaped aspects should be highlighted: (i) the convergence was attained when the
UC and LC were equal (it is an academic example and thereby the stopping crite-
rion υ is equal to zero); (ii) given that three iterations were necessary to reach the
stopping criterion (three forward steps), two future cost-go function approximations
were built (two backward steps).
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6.4.2 Augmented Lagrangian-Based Algorithm

Unlike BD-based algorithms, the AL-based algorithms applied to solve the mul-
tistage stochastic problem, such as the PHA, aim to explore the structure of the
explicit ED (6.14)–(6.17) in order to decompose it into scenario subproblems.
The purpose is to relax the nonanticipativity constraint such that each subproblem
presents only variables that belong to a particular scenario.

Thus, following the PHA idea recently applied to solve the Brazilian MTOP
problem [22, 23, 24], to obtain the independent scenario subproblems, the first
algorithm step is to make the nonanticipativity decisions equal to a constant value
corresponding to the expected value of nonanticipativity variables which must
be updated iteratively. Thus, regarding the nonanticipativity constraint (6.17), in
the PHA, it becomes

v111− v̄ = 0, v112− v̄ = 0. (6.23)

Consequently, problems (6.14)–(6.17) can be rewritten, replacing (6.17) by
(6.23), as follows:

min F = 0.5(50gt111+ 200gt211+ 50gt121+ 200gt221)

+0.5(50gt112+ 200gt212+ 50gt122+ 200gt222) (6.24)

s.t. : scenario1 :

gt111 + gt211 + q111 = 450,

v111 + q111 = 150+ 300, (6.25)

gt121 + gt221 + q121 = 450,

v121 + q121− v111 = 100,

scenario2 :
gt112 + gt212+ q112 = 450,

v112 + q112 = 150+ 300,

gt122 + gt222+ q122 = 450,

v122 + q122− v112 = 400,

(6.26)

v111− v̄ = 0,

v112− v̄ = 0.
(6.27)

By the PHA, the next step is to relax (6.28) taking into account the AL concept in
order to obtain the following separable problem:

Θ = min 0.5(50gt111+ 200gt211+ 50gt121+ 200gt221)

+0.5(50gt112+ 200gt212+ 50gt122+ 200gt222)

+π1(v111− v̄)+π1(v112− v̄) (6.28)

+
μ
2
‖v111− v̄‖2 +

μ
2
‖v112− v̄‖2

s.t. : gt111 + gt211+ q111 = 450,
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v111 + q111 = 150+ 300, (6.29)

gt121 + gt221+ q121 = 450,

v121 + q121− v111 = 100,

gt112 + gt212+ q112 = 450,

v112 + q112 = 150+ 300, (6.30)

gt122 + gt222+ q122 = 450,

v122 + q122− v112 = 400.

Therefore, considering fixed values for v̄, π1, π2, and μ , it is possible to solve
problems (6.28)–(6.30) by means of the resolution of each scenario subproblem
individually:

Θ = θ1 +θ2. (6.31)

where each scenario subproblem θ can be written as follows:

θ1 =min 50gt111 + 200gt211+ 50gt121+ 200gt221

+π1(v111− v̄)+
μ
2
‖v111− v̄‖ (6.32)

s.t. : gt111 + gt211 + q111 = 450,

v111 + q111 = 150+ 300,

gt121 + gt221 + q121 = 450,

v121 + q121− v111 = 100.

(6.33)

θ2 =min 50gt112 + 200gt212+ 50gt122+ 200gt222

+π2(v112− v̄)+
μ
2
‖v112− v̄‖2 (6.34)

s.t. : gt112 + gt212 + q112 = 450,

v112 + q112 = 150+ 300,

gt122 + gt222 + q122 = 450,

v122 + q122− v112 = 400.

(6.35)

The first iteration solution, considering μ equal to 1, the initial target v̄ equal to
0 and the Lagrangian multipliers also equal to 0, is presented in Table 6.4.

Table 6.4 Scenario subproblems solution—first iteration

Stages Scenario gt1 gt2 gh v

1
1 60 0 390 60
2 60 230 160 0

2
1 0 0 450 0
2 50 0 400 0

Objective function(R$) 27,250
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After solving both scenario subproblems, the next algorithm step consists in
calculating the new value of the nonanticipativity condition (6.23), the volume aver-
age, and update the Lagrangian multipliers using, for instance, the gradient method
[5], as described by (6.36):

π iter+1
s = π iter

s + μ(v11s− v̄). (6.36)

Therefore, the new values of the Lagrangian multipliers are shown in Table 6.5.

Table 6.5 Lagrangian multipliers—first iteration

Scenario π
1 30
2 -30

Finally, the stopping criterion must be assessed by Diter, as proposed by [22].
It means that while Diter is bigger than error ε , the algorithm process should be
continued:

Diter = E

[
S=2

∑
s=1

(
‖vr1s− v̄‖2 +

1
μ2

∥∥πs,iter+1−πs,iter

∥∥2
)]

< ε, (6.37)

where E[·] represents the expected value.
Figure 6.10 illustrates the “Diter track” iteration after iteration until the stop-

ping criterion is satisfied (in this example problem, Diter is less than 0.1). As the
L-shaped algorithm, PHA presented the same optimal results described in Table 6.3
after seven iterations.
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Diter

Fig. 6.10 Over the iterative process

Although not mentioned so far, one aspect is essential for the AL-based algorithm
success: the choice of the suitable penalty parameter μ . Therefore, instead of using
a fixed penalty parameter value during the optimization process as done in this test
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example, the following update iteratively strategy (6.38) [24] seems more interesting
for large-scale cases:

μiter+1 = μiter

⎧⎨
⎩E

⎡
⎣ S

∑
s

T−1

∑
t=1

⎛
⎝ ‖vrts− v̄‖2(

vmax
rt,iter− vmin

rt,iter + 1
)
⎞
⎠
⎤
⎦σ + 1

⎫⎬
⎭ . (6.38)

According to the algorithm features described above, it is possible to notice the
differences between both algorithms presented here . Both algorithms present its
particularities as well as advantages and disadvantages. With respect to the PHA,
it can mitigate some BD-based algorithms or cutting planes method disadvantages
[27] (initial iteration is often inefficient and iterations may become degenerate at
the end of the process), given that it provides quadratic subproblems and it is still
sensitive to the use of warm start techniques [25], though some other heuristics are
required, such as the choice of the penalty parameter.

Finally, it is possible to say that the scenario decomposition algorithms are easily
implemented using parallel processing, once it has a weak link between scenario
subproblems.

6.5 Conclusions

This chapter focused on the MTOP problem of hydrothermal systems. In summary,
this problem aims to define the dispatch of the power plants and the spot energy price
depending on system framework, taking into account the uncertainties associates
with some problems data.

Given that it is a stochastic problem, important aspects related to the stochastic
programming were addressed in this chapter, such as the random variable represen-
tation, the solution algorithms, and other theoretical aspects especially associated
with the MTOP problem.

With respect to the random variables, the impact of the scenario tree represen-
tation into the problem data structure was emphasized, which makes the solution
algorithms steps presentation easier. In addition, the stochastic problem formulation
related to each scenario tree structure was discussed.

The MTOP problem formulation was also stressed, highlighting some
operational features and its particularities. In this context, the current and future
challenges taking into account the MTOP modeling were also discussed.

Finally, an academic example was used to help the description of two differ-
ent solution algorithms with distinct characteristics: L-shaped and an augmented
Lagrangian-based algorithm. Both are broadly used in literature to solve these kinds
of problems.
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Chapter 7
Stochastic Optimization of Power Generation
and Storage Management in a Market
Environment

Andreas Eichhorn

Abstract This chapter provides an overview of practically applying mathematical
optimization techniques to short-term and medium-term planning of a power gen-
eration system in a market environment. The considered power generating system
may contain thermal plants (gas or coal fired), hydro power plants, new renewables,
as well as dedicated energy storages (e.g., gas storages, hydro reservoirs). We argue
that stochastic optimization is an appropriate modeling framework in order to take
into account the uncertainty of input data (such as natural hydrologic inflows and
energy market prices), market decision structures, as well as the optional character
of power generating units and energy storages.

7.1 Introduction

In this chapter we take the perspective of a power producer, i.e., a company running
a power generation system consisting of assets such as thermal power plants (gas or
coal fired), hydro power plants, new renewables (e.g., wind and solar power), as well
as dedicated energy storages (e.g., gas storages, hydro reservoirs). We are particu-
larly interested in controllable assets, i.e., assets featuring some degree of flexibility.
We consider the case that all these assets are located in an area with a liquid elec-
tricity market such as the common market area of Germany and Austria. We assume
that this electricity market is big and liquid enough and that there is no monopolist
who has much more market power than all the other market participants. We do not
take into account aspects of power transmission, i.e., we assume a fully unbundled
market where the problems of transmission and distribution are completely left to
the system operator.
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Running power generating assets includes the important task of planning and
scheduling them, i.e., to make use of their flexibility. The company can and has to
decide permanently which power plant shall generate how much electricity in the
respective present and in the future, and how much energy shall be stored into or
released from the available energy storages. The flexibility of storages, however,
links together decisions for different time periods: stored energy can be used in the
present (here and now) or at some time in the future. Clearly, since companies typi-
cally aim at maximizing revenues and contribution margins, optimization techniques
are interesting for all these scheduling decisions.

In a market environment, the major amount of electricity is scheduled according
to market prices. In a typical market environment there are several markets where
electricity can be traded at; probably the most important ones are the day-ahead
and intraday spot markets; in addition there are forward and futures markets for the
delivery of electricity in bundles of hours in the future, such as all hours (base) or
selected (e.g., peak) hours within a week, month, years, etc.; and there is also a mar-
ket for options (e.g., options on forwards or on spot) where in addition to electricity
some kinds of flexibility are traded. Moreover, there may be reserve markets (ancil-
lary service markets) for short-term flexibility; and there is of course the possibility
to sell (buy) future electricity (and possibly also flexibility) in any nonstandardized
form to (from) other market participants or customers. Typically, the physically dis-
patch of the assets is mainly driven by the spot markets (for combined heat and
power plants it may also be driven by a heat load that must be satisfied), whereas
the financial results for the company are also strongly determined by its hedging,
i.e., by its market activity with respect to forwards, futures, options, etc. For ther-
mal power plants there is also a reverse side: markets for gas, coal, CO2 emission
allowances, etc.

Thus, a power generating company has to make decisions again and again, not
only with respect to the scheduling of all available assets but also with respect to
all possible activities on various markets. Of course, it would be desirable to have a
model at hand that always calculates the optimal decisions such that the (expected)
total contribution margin is at maximum. However, many of these decisions are in-
terdependent; physical assets (e.g., storages, plants with minimum up/down times)
link together electricity generation in different time periods; the existence of for-
ward and spot markets (where the latter is typically based on an auction) makes
it necessary to decide on which market the possible power generation should be
sold. Thus, any optimization model in this context should not only take into account
the present but also anticipate the future. However, future market prices as well as
other important determining factors (such as plant availabilities, natural hydrologic
inflows, wind, solar, run-of-river generation) are uncertain, i.e., not exactly known
when decisions have to be made. Therefore, the evolution of different possibilities
has to be anticipated, e.g., via branching scenarios; moreover, it is desirable not
only to maximize the expected total contribution margin but also to minimize or
bound its downside risk in order to prevent a too high capital requirement. Thus,
technical and financial (stochastic) modeling come together here and make things
highly complex. On the other hand, this decision making process is often very time
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Fig. 7.1 Modeling of asset scheduling and market activities leads to a canonical time structure.
If uncertainty shall be anticipated, branching of scenarios has to be introduced; each node carries
input data, the arcs represent transition probabilities. (a) Discrete time line (typically hours) used in
all kinds of (deterministic) power generation planning models; (b) scenario tree (non-recombining)
for classical Stochastic Programming; cf. Sect. 7.3.1; (c) recombining scenario tree representing a
Markov input data process for stochastic (dual) dynamic programming; cf. Sects. 7.3.3 and 7.3.4;
(d) recombining scenario tree with dispersing branches

critical. Therefore, there is no all-in-one model that can cope with all aspects of this
decision making process; some simplifications as well as intersections into several
models are necessary.

7.2 Modeling the Planning and Scheduling Process

7.2.1 Basic Modeling Aspects

Electricity is a commodity which is not (directly) storable; electricity for a certain
time period has nothing to do with electricity in another time period (unless the two
time periods overlap). Therefore, market prices exist for consuming or delivering
electricity in prescribed time periods in the future, e.g., (day-ahead or intraday) spot
market prices for all hours within a day (or even for shorter periods, e.g., quarters of
hours). Thus, for optimization models in this context, there is a canonical time struc-
ture according to the market with the shortest delivery periods (typically hours); cf.
Fig. 7.1a.

Time periods will be denoted by t = 1, . . . ,T in the sequel; t = 1 represents here
and now, i.e., the present; important parameters such as hydrologic inflows and (spot
market) prices for electricity in future time periods t > 1 are mostly uncertain, i.e.,
here and now they can only be estimated statistically. However, at the beginning
of each time period t, decisions can be made that do not only affect the electricity
delivery in this single time period but also in future time periods; as mentioned
above, both physics and markets link together decisions for different time periods.
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Fig. 7.2 For practical reasons, the optimization in this context is split into (at least) two models

As time proceeds (what was t = 2,3, . . . becomes t = 1), the estimations of uncertain
parameters in the future may change according to new available information. Thus,
any optimization model in this context should be recalculated on the basis of the
latest available information as often as possible (rolling horizon).

However, optimization models that take into account the whole medium-term
time horizon of one up to, say, five years often require a computation time that
is too long for time-critical short-term decisions. Therefore, in practice, the opti-
mization process is often divided into (at least) two models, one for the short term
and one for the medium term; see Fig. 7.2. The former focuses on physical dis-
patch and short-term market activities and should be very accurate (e.g., with an
underlying quarter-hourly time grid), but with fast computation time due to a short
time horizon (typically 1 up to 7 days); the latter focuses on medium-term resources
such as storage energy and hedging positions (i.e., forwards, futures, options, etc.);
longer computation times (e.g., overnight) as well as more simplifications are typ-
ically necessary and acceptable here; however, the future short-term operation has
to be anticipated in a consistent way in order to balance the usage of medium-term
resources between here and now and the future in an optimal way. Vice versa, in
order to achieve a consistent overall optimization process, the short-term model has
to follow the guidelines from the medium-term model, e.g., via shadow prices for
medium-term resources.

7.2.2 Technical Modeling

Within most optimization models in practice, it is assumed that there is one hourly
(deterministic) price curve for power delivery in the future (as well as one price
curve for gas, coal, CO2); cf. Fig. 7.1a. Even under this simplification, models can
become very complicated due to technical aspects of power generation that require
nonlinearity, such that the limits of computational power are reached (e.g., thermal
plants with minimum power, start-up costs and minimum up and downtimes, or
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hydro storage plants where the generation coefficients (MWh power per cubic meter
of water) depend nonlinearly on the levels of the upper and the lower reservoirs).

In this chapter, we focus on markets and their decisions structures, thus we do
not go further into these technical details. We only mention that most nonlinearities
can be approximated reasonably by piecewise linear modeling; if these nonlineari-
ties are even non-convexities, integer decision variables become necessary. Integer
variables cause high computation times (theoretically, the computation time of an
optimization problem grows exponentially with the number of integer variable to be
considered), but in practice this has turned out to be the most efficient way.

In most cases it is also the technical side that forces to have several power plants
in one optimization model, e.g., hydro storage plants may be coupled by com-
mon underlying run-of-river plants, thermal power plants may be coupled by a heat
demand curve that has to be covered due to existing contracts. Clearly, if there is no
reason for optimizing two power plants jointly, they should be optimized separately
due to gains with respect to computation time.

7.2.3 Various Electricity Markets

As mentioned above, electricity (as well as gas) can be traded on various markets
(such as forward and futures markets, day-ahead and intraday spot markets) that dif-
fer mainly in the amount of time between trade date and delivery date; cf. Figs. 7.3
and 7.4. The electricity market as a whole is incomplete in the following sense: elec-
tricity for the elementary time periods (hours) are not effectively traded before the
day preceding them; trading before that day is basically restricted to block products,
i.e., forwards for standardized bundles of hours (of course, it is possible to sell or
buy hourly nonstandard products from other market participants but extra premiums
will have to be paid for that). Only on a day-ahead basis it is then possible to adjust
the portfolio in order to end up with the intended hourly profile. On the intraday
market you can then go down even to quarters of hours.

7.2.3.1 Forwards and Futures Versus Spot

In most countries, forwards (with physical delivery) and futures (with financial set-
tlement1 on the basis of the day-ahead spot market) for standardized delivery per-
iods can be traded continuously in both directions some months/years before the
respective delivery period [6], cf. Fig. 7.3; however, there might be bid-ask-spreads
and price elasticity since these markets are sometimes not very liquid. A rather liq-
uid market is the day-ahead spot market because many market participants want to

1 This financial settlement is such that, if the holder of a future buys the energy for all the delivery
hours on the day-ahead market, the resulting net costs in the end are the same as for the holder of
a forward for the same delivery period; however, the intermediate payments before the end of the
delivery period can be very different.
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Fig. 7.3 Prices for EEX futures versus EPEX Spot for delivery in May 2012 at the market area
Germany/Austria [6, 9];
Top: futures prices (peak and off-peak) for delivery month May 2012 at different trade dates;
Bottom: futures prices (from different trade dates) and spot prices for each delivery hour

readjust their positions to hourly varying schedules. In most European countries, this
market is set up as an auction with a unique clearing price for each hour of the fol-
lowing day [9, 23]. Price dependent bidding allows to include price limits for each
hour or for blocks of hours. The subsequent intraday spot market is typically based
on continuous trading; it is less liquid and rather volatile (due to short-term varia-
tions of demand and noncontrollable generation such as run-of-river hydro power
and new renewables) and, thus, offers additional opportunities for controllable gen-
eration, but it would be rather risky to rely on this market only; cf. Fig. 7.4.

We assume that the day-ahead spot market is liquid enough so that the follow-
ing assumption is justified: the short-term physical dispatch of the assets of a power
producer can be optimized on the basis of the spot market prices only, i.e., indepen-
dently of existing forward positions and other (retail) delivery contracts (however,
existing reserve market positions have to be taken into account; see Sect. 7.2.3.3).
Of course, in the end the resulting asset schedules should be matched with all other
existing positions/schedules and only the differences have to be traded on the spot
market (netting).

Whereas the physical dispatch is primarily determined by spot market prices,
the financial result of the assets is strongly determined by the hedging, i.e., by the
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Fig. 7.4 Different market prices for electricity delivery at Austria in various hours of May 2012

question if and when power that can be generated should be sold on the forward
market. Hedging of physical production is popular, because the financial results
of the assets are much better foreseeable; moreover, in the last years, on average
forward prices have been significantly higher than equivalent spot prices. This can
be a sign that buyers are more risk-averse than power producers.

7.2.3.2 Optionality and Options

A power producer with flexible assets can make use of this flexibility in various
ways. He/she can sell power for some delivery period on the forward market when
the price is high (above fuel and other variable costs, fuel costs should be hedged at
the same time); he/she then has further opportunities without any market risk: he/she
has the possibility to generate this power in this period or to buy it back before the
delivery period, e.g., if prices have fallen; in the latter case he/she has generated
income without having used his/her assets physically. This sort of flexibility can
also be hedged by selling call options on forwards for which an option premium can
be charged (without taking a market risk).

Moreover, flexible assets also provide the possibility to sell power at the day-
ahead spot market only at high price hours (and to buy back at low price hours
if forwards have been sold before). Last but not least, the resulting schedule after
the day-ahead market can additionally be adapted by trading in the intraday market
which, despite a lower market depth compared to the day-ahead market, may pro-
vide further considerable opportunities due to high volatility; cf. Fig. 7.4. This kind
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Fig. 7.5 Weekly decision structure for a power producer induced by the German electricity mar-
kets: primary control reserve and secondary control reserve are auctioned week-ahead, tertiary
control reserve and spot are auctioned day-ahead (DA); and there is a continuous forward and
intraday trading

of optionality can only be hedged (i.e., sold in advance) on the basis of bilateral,
nonstandardized contracts, e.g., fixed hourly schedule deliveries, full supply con-
tracts, swing options, etc.; of course, for such contracts a substantial premium will
be charged.

Thus, a flexible asset such as a power plant can be understood as a bundle of
call options on (quarter-) hourly power prices where the strike price is given by
the variable generation costs (including fuel and CO2 emission costs in the case of
thermal power plants2).

7.2.3.3 Balancing Energy and Reserve Market

If the net physical delivery of a market participant does not exactly match his/her
final quarter-hourly net schedule (which is equal to the sum of all positions on
all markets for a certain area), the differences are billed by the system operator
(ISO/TSO) according to a balancing energy regime. The prices for balancing en-
ergy depend on regulatory settings and on the mismatch of energy in the whole
(or in zones of the) market area in different time periods3; they are typically highly
volatile (cf. Fig. 7.4) and published only ex post, so it is wise to meet your net sched-
ule as accurately as possible in order to avoid unforeseeable balancing energy costs.
Thus, for a power producer with controllable assets, there is an incentive to use the
flexibility of these assets to better match his/her final net schedule.

2 If there is a liquid gas spot market, a gas fired plant (e.g., a CCGT) can also be understood as a
bundle of call options on the clean spark spread, i.e., on the difference between hourly power price
minus appropriately scaled gas and CO2 prices.
3 In this chapter we do not consider nodal pricing systems which are applied, e.g., in the USA [28].



7 Stochastic Optimization of Power Generation and Storage Management 165

An additional market, which differs fundamentally from the previous ones, is the
reserve market (ancillary service market); this is where the system operator gets the
energy and the short-term flexibility for compensating the above-mentioned mis-
matches in the system or in some parts of it. Here, power producers running assets
with flexibility (or large consumers with flexible demand) can sell some of their
generation capacity for certain time periods and receive a capacity price for that; in
these time periods, they have to be ready to increase (positive reserve) or decrease
(negative reserve) their production (or consume additional energy, e.g., by pump-
ing into hydro reservoirs) on (very) short notice from the system operator. If some
power producer has sold some capacity on the reserve market, he/she may be called
to actually change his/her production; in this case, there is an energy price as a com-
pensation for the delivered energy (additionally to the capacity price). In Germany
and Austria these markets are set up as an auction (with pay-as-bid prices) that takes
place before the day-ahead spot market auction [1, 29] (cf. Fig. 7.5), whereas in Italy
[14] and France [31] reserve is scheduled thereafter. Note that in this market a power
producer can only sell reserve capacity to the system operator; it is not possible to
buy it back once it is sold. Since the reserve market prices usually include a pre-
mium for the flexibility, the overall revenues (capacity price and expected energy
price) are typically above the (expected) revenues for this capacity put on the spot
market instead.

7.3 Stochastic Optimization

In the previous section we have illustrated that the electricity market as a whole has
a complicated, sequential decision structure with stochastic prices. It has become
clear that, in this environment, the flexibility of assets has a value by itself; flexi-
ble assets can be understood as bundles of options. However, physical assets have
technical, time-spanning restrictions such as minimum uptimes and storage bal-
ances; therefore, methods from Mathematical Finance cannot directly be applied
here. Stochastic optimization can take into account both stochastic decision struc-
tures and technical aspects.

. . .

Observation Observation Observation

Decision Decision Decision Decision

Time

Fig. 7.6 Multistage Stochastic Programming is based on a finite alternating sequence of decisions
and observations of previously uncertain data (e.g., energy market prices, hydrologic inflows); thus,
this framework covers the situation of a power producer in a market environment (cf. Fig. 7.5)
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7.3.1 Multistage Stochastic Programming

Multistage Stochastic Programming is a framework for stochastic optimization that
takes into account the real decision structure of planning and scheduling in power
generation (which is the same as in many other application areas). This framework
is based on a finite alternating sequence of decisions and observations of previously
uncertain data [2, 33]; see Fig. 7.6. The uncertain data is represented by random
variables. Each random variable is assigned to a time step t ∈ {2, . . . ,T} at which
its actual outcome can be observed. Before that time step, stochastic information is
available. It is assumed that the outcomes of the random variables are not affected
by the decisions.

For the (mixed-integer) linear case such a multistage stochastic program can be
formally stated, e.g., as follows:

min
x1,...xT

⎧⎨
⎩E

[
∑T

t=1 ct · xt
]
∣∣∣∣∣∣
xt ∈ Xt (t = 1, . . . ,T ),
At,0xt +At,1xt−1 = ht (t = 2, . . . ,T ),
xt = xt((cτ ,Aτ,0,Aτ,1,hτ)τ=2,...,t) (t = 2, . . . ,T )

⎫⎬
⎭ (7.1)

with

• decision vectors xt to be chosen optimally;
• cost vectors ct ∈ R

n, for t ≥ 2 some components can be random variables;
• the expected value functional E that maps the (random) total costs to a real num-

ber (note that E is a linear functional);
• sets Xt ⊆R

n defining constraints for respectively one time step only; typically Xt

are polyhedrons, e.g., Xt = {x ∈ R
n : Atxt ≤ bt} or {x ∈ Z

k×R
n−k : Atxt ≤ bt},

if some decisions have to be restricted to integer numbers;
• dynamic constraints At,0xt + At,1xt−1 = ht that link together consecutive time

steps (e.g., balance constraints for energy storages, constraints for minimum up-
and down-times of power plants), some components of the matrices At,0,At,1 and
the right-hand side vectors ht can be random for t ≥ 2;

• non-anticipativity constraints xt = xt((cτ ,Aτ,0,Aτ,1,hτ)τ=1,...,t) which ensure that
each decision vector xt can only depend on the actual outcomes of the random
variables observed until time t (however, xt may depend on the conditional distri-
bution of (cτ ,Aτ,0,Aτ,1,hτ)τ=t+1,...,T given the outcomes until time t); note that,
formally, the decision vectors x2, . . . ,xT are also random vectors, whereas x1 rep-
resents the here and now decisions that have to be chosen uniquely for all possible
outcomes.

The sequence (ct ,At,0,At,1,ht)t=1,...,T can be understood as a multivariate,
discrete-time stochastic process. In order to be able to solve (7.1), we assume in
the following that this process is discrete (not only in time) with only finitely many
possible outcomes for each random variable4. Then, clearly, also the stochastic pro-
cess of decision vectors x1, . . . ,xT is discrete and finite. Since random components

4 With regard to (7.1), process with infinitely many possible outcomes can in many cases be suit-
ably approximated by finite ones, e.g., by Monte Carlo sampling and clustering on the basis of
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at different time stages may be autocorrelated and since each xt is allowed to depend
not only on the information revealed at time t but on the complete respective history
1, . . . , t, the resulting decision structure is a tree which is called the scenario tree; see
Fig. 7.1b. Thus, by introducing copies of the decision vectors xt for each scenario
tree node belonging to the time step t, (7.1) can be computed numerically by stan-
dard optimization solvers such as Xpress or CPLEX (or by special decomposition
approaches for special instances of (7.1) [32]).

However, the size of the scenario tree and thus the dimension of (7.1) grows
rapidly with the number of branches; if we assume a systematic branching at certain
points in time where all scenarios split, then, clearly, the tree size depends expo-
nentially on the number of such branching points (curse of dimensionality). Stan-
dard solvers (as well as decomposition approaches) will reach their limits. Thus,
such non-recombining scenario trees can only be used for short-term models or for
medium-term models that focus only on medium-term uncertainty (such as general
price trend or inflows for large hydro reservoirs) but not on short-term (day-to-day)
uncertainty.

7.3.1.1 Statistical Modeling of Uncertainty

To set up a complete Stochastic Programming model for asset scheduling and plan-
ning, a statistical discrete-time model for all the relevant uncertain input parameters
is required, e.g., for

• all kind of power market prices (cf. Sect. 7.2.3) including price elasticity5;
• fuel market prices and market prices for CO2 emission allowances;
• heat demand (if combined heat and power generation is considered);
• electricity demand (if that has to be considered for some reason);
• generation of noncontrollable generators (run-of-river hydro power, new renew-

ables);
• natural inflows into hydro storages on the basis of rainfall, snowmelt, evapora-

tion;
• reserve calls (if ancillary services are considered);
• unexpected outages of any sort of asset.

Because all these uncertainty factors (except unexpected outages) are correlated in
general, a joint model is desirable. The traditional approaches are classical time
series models such as AR(I)MA, (G)ARCH, as well as discretized SDEs with
jumps, mean reversion, regime switching, etc., inspired from Mathematical Finance

stability theory (cf., e.g., [16, 17, 25]) or via other (Quasi) Monte Carlo methods. Thereby, the
discrete approximation of the stochastic process is separated from the solution process; however,
there is also work on integrated sampling and solution algorithms. Note that, without any sampling,
(7.1) would have to be solved analytically and that is possible only in very special cases.
5 Note that price elasticity, if it is approximated in a piecewise linear way, can easily be incorpo-
rated into (7.1) without inducing additional integer variables.
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[4, 20, 37]. To get correlated price curves, often only a subset of price curves is
modeled as a time series model; the other ones are deduced therefrom by regression
models.

Recently, also so-called fundamental models have become very popular, cf., e.g.,
[3] and [5, Chap. 4]. These models carry out a (simplified) optimization of all phys-
ical assets within a market area on the basis of an electricity demand curve and
fuel prices; electricity prices are given by the marginal costs of the demand satisfac-
tion constraints. This approach has the advantage that there is typically a reasonable
correlation between the uncertainty factors and that there is also information about
market depth and price elasticity.

In this chapter we cannot go into further details about statistical modeling; we
only mention at this point that for a stochastic program such as (7.1) a tree struc-
ture with transition probabilities is required; cf. Fig 7.1b. This might be achieved by
conditional sampling. If the output of a statistical model consists of individual (mul-
tivariate) sample paths only, then it is possible to generate reasonable tree structures
out of them by applying special clustering methods on the basis of stability theory
(cf., e.g., [16, 17, 25]).

Recall that we assume that there is no monopolist in the electricity market.
We also assume that big market participants do not use their market power in a way
that would make it necessary to consider game theoretic aspects. If such aspects
have to be taken into account, then not only the price model but also the optimiza-
tion model can become much more complex than (7.1), cf., e.g., [19].

7.3.2 Risk Functionals

Optimization in general tends to go to the limits (given by the constraints) and
may thereby produce rather radical solutions which might cause trouble in practice.
Using Stochastic Programming counteracts this tendency to some degree, because
each decision vector xt is chosen such that it is good not just for one set of data but
for everything that can happen at time t+1, . . . ,T within the scenario tree. However,
if the expected total costs E[∑T

t=1 ct · xt ] are minimized, there is no incentive for the
dispersion of these costs; it is then not unlikely that, after the random data has been
revealed, one might end up with a cash flow that is significantly below what was
expected.

Stochastic Programming allows to reduce this downside risk by including a risk
functional ρ (risk measure) or a deviation functional in the objective6 of (7.1), as it
is known from Mathematical Finance [12, 18, 22]:

min
x1,...xT

{
γ ·ρ(c1 · x1, . . . ,cT · xT )

+(1− γ) ·E[∑T
t=1 ct · xt ]

∣∣∣∣ xt ∈ Xt , At,0xt +At,1xt−1 = ht ,

xt = xt((cτ ,Aτ,0,Aτ,1,hτ)τ=2,...,t)

}
(7.2)

with some fixed number γ ∈ [0,1].

6 Alternatively, it is possible to include a risk constraint of the form ρ(c1 · x1, . . . ,cT · xT )≤ β into
(7.1) with some fixed real number β .



7 Stochastic Optimization of Power Generation and Storage Management 169

If a risk functional ρ is incorporated into (7.1), it should be chosen carefully such
that

• it represents reasonably the attitude towards financial risk of the power producer
or is consistent with it;

• it does not destroy the efficient numerical resolvability of (7.1).

To satisfy the latter point, a minimum requirement for ρ is convexity; a polyhe-
dral risk functional [7] such as Conditional-Value-at-Risk [30] can be even more
advantageous in this regard since it maintains linearity structures of (7.1) (note
that risk functionals are naturally nonlinear). Going into details with respect to
the former point is beyond the scope of this chapter; we refer to the monographs
[12, 26] for that. We only mention that there are not only one-period risk function-
als ρ(∑T

t=1 ct · xt) (such as the well-known Value-at-Risk, which is not convex, or
the variance that has been used as a risk functional some decades ago [22]) but also
multi-period risk functionals ρ(c1 · x1, . . . ,cT · xT ) that take into account the evolu-
tion of the costs over time (note that very high accumulated cost at some time t < T
can mean that the company will not survive until time T ). Such approaches have
been demonstrated, e.g., in [8].

7.3.3 Stochastic Dynamic Programming

Since the optimization problems (7.1) and (7.2) have a fundamental time structure,
it appears attractive to tackle it in a recursive way, in particular for medium- and
long-term time horizons. Formally, under some mild regularity assumptions, the
(mixed-integer) linear7 problem (7.1) can equivalently be stated recursively as

min
x1
{c1 · x1 +C2(x1,d1) | x1 ∈ X1} ,

Ct(xt−1,dt−1) = Edt |dt−1

[
min

xt

{
ct · xt +Ct+1(xt ,dt)

∣∣∣∣ xt ∈ Xt ,

At,0xt +At,1xt−1 = ht

}]

(t = 2, . . . ,T )
(7.3)

and CT+1 ≡ 0. Here, the short notations dt = (ct ,At,0,At,1,ht) for the random data
at time t and dt = (d1, . . . ,dt) = (dt−1,dt) for the whole respective history have
been used. Edt |dt−1 denotes the conditional expectation which is just a weighted

sum if everything is discrete. The functions Ct(xt−1,dt−1) are called the future cost
functions. Note that the minimizations in (7.3) are separate with respect to the time
steps and with respect to the scenario realizations dt , i.e., xt are no longer random
vectors here. Thus, problem (7.1) has been separated into many smaller problems
and that appears to be favorable for the solution procedure.

7 For the risk-averse problem (7.2) such a decomposition is also possible but only for special risk
functional such as recursive [34] or polyhedral ones [7].
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Fig. 7.7 In SDP/SDDP it is not always necessary to consider branching at every time step t (hour);
e.g., allowing branching only every day or once every week may be a compromise with regard to
computation time. Subproblems in (7.3) will cover 24 or 168 time steps, respectively, instead of
just one

But in general, unless there are no time-spanning or dynamic constraints, the
decisions xt are all interdependent and a solution by a simple forward recursion
is not possible since at time t the future cost function Ct+1( . , .) is required but
unknown. The dynamic programming principle is therefore a backward recursion in
which, starting at t = T , the function values Ct(xt−1,dt−1) are calculated according
to (7.3) for all scenarios dt−1 in the scenario tree at time t − 1 and, if possible,
for all possible solutions xt−1 ∈ Xt−1 (since the optimal xt−1(dt−1) is yet unknown).
If some or all components of xt−1 have to be chosen from a continuous region (which
is typically the case), it is impossible to calculate anything for all xt−1 since there
are infinitely many possibilities. In this case, the admissible set Xt−1 for xt−1 has to
be discretized finely.

Therefore, the dynamic programming principle can only be applied if the sets
Xt−1 are bounded for t = 1, . . . ,T and if the dimension n = dim(xt−1) is not too
high or, as it is the case in many practical applications, if at least Ct(xt−1,dt−1)
does in fact not depend on all components of xt−1 but only on some (state vari-
ables) as many columns of At,1 are zero. For example, for a hydro storage system,
Ct(xt−1,dt−1) only depends on the storage volumes but is independent of the other
components of xt−1 such as turbined outflow and spill.

After all Ct( . , .) have been (approximately) calculated in a backward recursion,
a forward pass through the scenario tree starting at t = 1 can be carried out in which
the solutions xt(dt) for all respective scenarios dt can be calculated; Ct+1( . ,dt ) has
to be interpolated between the discretization points for xt .

The advantage of solving smaller problems in (7.3) than in (7.1) may however
be (over)compensated by the fact that, within the backward pass, Ct(xt−1,dt−1) has
to be calculated for all discretization points of the state space; the number of dis-
cretization points and thus the number of (small) problems in (7.3) to be solved (for
each t and each scenario) grows exponentially with the number of state components
of xt (curse of dimensionality). Thus, only application problems with few state vari-
ables (e.g., hydro power systems with not more than, say, four reservoirs) can be
solved in this way.

The real advantage of stochastic dynamic programming (SDP) (if it can be practi-
cally applied due to a moderate number of state variables) comes out if the stochastic
input data is given by a discrete Markov process (i.e., each dt depends directly only
on dt−1 such that Edt |dt−1 =Edt |dt−1

, respectively); such a process can be represented
by a recombining scenario tree, cf. Fig. 7.1c. In this case, the future cost functions
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Fig. 7.8 In SDP/SDDP the subproblems in (7.3) for the intraday or intra-week can also be
stochastic

Ct do not depend on the complete data history d1, . . . ,dt−1; it suffices to calculate
them for each node of the recombining tree only (but of course for all possible states
xt−1). Thus, the computation time is linear in the number of time steps, i.e., much
lower than for a general scenario tree (cf. Fig. 7.1b), and much more branching can
be incorporated; the representation of the real-world uncertainty is much finer.

On the other hand, being restricted to Markov processes for the input data might
appear discouraging for many practitioners since ordinary Markov processes have a
short memory only and power prices and hydrologic inflow processes are therefore
usually modeled in a non-Markovian way. However, there are possibilities to loosen
this restriction to some extent. Firstly, since the process may be multivariate, regime
switching can be included (e.g., for power prices switching between a normal regime
and spike regime). Furthermore, it is possible to let the number of nodes of the rec-
ombining tree increase with t and establish independent branches by setting some
transition probabilities to 0; these independent branches may disperse in completely
different directions with respect to some data (e.g., power and gas prices). Last but
not least we note that the branching of the scenario tree (state transition) does not
necessarily need to occur on every time step t (which typically refers to a single
hour of the planning horizon) but on some selected time steps only, e.g., once a day
or once a week, cf. Fig. 7.7. Thereby, the Markov process can integrate longer time
periods; this may also be advantageous with respect to the overall computation time
as the number of (sub)problems in (7.3) is reduced substantially. This approach also
provides the possibility to make even the intraday or intra-week problems stochastic,
e.g., to cover the decision structure of day-ahead auction and intraday trading [21].

7.3.4 SDDP

Stochastic dual dynamic programming (SDDP) is, like SDP, based on the recur-
sive formulation (7.3) with d1, . . . ,dT being a Markov process [24]; it is assumed
that there are no integer requirements for the decisions xt . In this case, it is known
from optimization theory, that the future cost function Ct(xt−1,dt−1) is convex with
respect to8 xt−1. Therefore, the idea of SDDP is, instead of calculating the values

8 For certain data processes d1, . . . ,dT , it can be shown that Ct (xt−1,dt−1) is also convex with
respect to the right-hand sides ht−1 (e.g., hydrologic inflows) and this can be used to save further
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Fig. 7.9 In SDDP, for t = 2, . . . ,T and for all possible dt−1, the future cost functions Ct( . ,dt−1)
are approximated from below by cutting planes (dashed lines) in the space of state variables xt−1
(e.g., storage levels)

of each Ct( . ,dt−1) for all xt−1, to approximate these functions successively via
collections of hyperplanes (cutting planes, or cuts) in R

n which are all located below
but at some point close to Ct( . ,dt−1); cf. Fig. 7.9.

The solution procedure of SDDP is a loop over

1. A forward pass:

(a) Sample a number of paths d1, . . . ,dT from the Markov model/scenario tree;
(b) For each sample path calculate xt(dt) for t = 1,2, . . . as the solution of the

problem minxt{ct ·xt +Ct+1(xt ,dt)|xt ∈Xt , At,0xt +At,1xt−1 = ht } on the basis
of the currently available cutting plane approximation of Ct+1( . ,dt);

(c) Store the pairs dt ,xt(dt);
(d) For each sample path sum up the values ct · xt(dt) and calculate the average

over all sample path� upper bound (since the decisions xt(dt) are not per-
fectly optimal); and

2. A backward pass:

(a) Go through the sample paths from the forward pass starting at t = T ;
(b) For all the pairs (dt−1,xt−1) stored within the forward pass calculate

Ct(dt−1,xt−1) according to (7.3) and obtain the dual multipliers (shadow
prices) for the dynamic constraints At,0xt +At,1xt−1 = ht ; together with the
sampling point xt−1, the associated dual multipliers define a cutting plane,
i.e., a hyperplane below but close to Ct( . ,dt−1);

(c) Add the new cutting planes to the respective collection for Ct( . ,dt−1);
(d) Sum up the optimal values for each sample path and store the average� lower

bound (since the cutting plane approximation is always below Ct( . ,dt−1)).

The procedure stops when lower and upper bounds are close enough. It can be
shown that it converges in a finite number of time steps [27, 35]. In practice, satis-
factory convergence speed can be achieved for much higher dimensional problems
compared to SDP, because in SDDP Ct( . ,dt−1) does not need to be calculated for all

computation time by calculating cutting planes jointly for both arguments xt−1 and ht−1; cf. [24].
We here restrict the presentation to the more general case.
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xt−1 as in SDP. Furthermore, the algorithm is such that cutting planes are added only
at points xt−1 which are on the way to the optimal solution; thus, the approximation
of Ct( . ,dt−1) is only accurate where it is needed.

Since in each iteration of SDDP new cutting planes are added to the collection,
significant additional speedup can be achieved by intelligently eliminating old cut-
ting planes which are redundant or no longer interesting [21]. For efficiently deter-
mining whether a cut is redundant, heuristic methods are helpful.

7.4 Conclusion

Methods from Mathematical Finance [12, 18] often cannot be applied for power
generation planning due to complex technical restrictions of power generating
assets. Conventional deterministic optimization models, widely used in practice, can
handle these technical aspects but cannot take into account stochastic decision struc-
tures induced by the electricity markets. In theory, stochastic optimization can take
into account both stochastic decision structures and technical restrictions of assets.
In practice, there are computational limits, simplifications may become necessary
at some point. Stochastic optimization provides the flexibility with regard to which
details should be included and which ones can be simplified. A power producer has
to determine precisely to what purpose he/she wants to run this model; typically it
makes sense to have different models for different purposes. In particular, there is
the choice between classical multistage Stochastic Programming based on a non-
recombining scenario tree (cf. Fig. 7.1b) and SDP/SDDP based on a recombining
scenario tree (cf. Fig. 7.1c, d as well as Figs. 7.7 and 7.8).

For the short-term, a classical multistage stochastic program seems to be the
natural choice since it can very well model the decision structure of day-ahead and
intraday spot as well as the reserve market (cf. Fig. 7.5); moreover, time-spanning
constraints such as storage balance equations as well as minimum up and downtimes
can be modeled without limitation; see, e.g., [10, 13]. In case there are medium-
term resources such as gas or seasonal hydro storages there has to be a coupling to
a medium-term model as illustrated in Fig. 7.2.

For the medium-term, the answer is much more difficult; an SDP/SDDP model
seems to be more attractive since obviously the representation of uncertainty can
be much richer and short-term decision structures can be anticipated. However, this
approach is limited with respect to the following issues:

• The stochastic input process must be Markov (cf. end of Sect. 7.3.3);
• The number of time-spanning, or dynamic, constraints is limited: even in SDDP

it becomes difficult to handle more than, say, 20 state variables in practice (how-
ever, for some dynamic constraints such as minimum up and downtimes it may
be acceptable to consider them only within the states and neglect them at the state
transition time steps);

• The faster method SDDP cannot handle integer decision variables;
• The incorporation of a risk functional might be difficult in practice (though at

least in theory it is possible [15, 36]).
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On the other hand, a classical non-recombining scenario tree (cf. Fig 7.1b) can only
cope with few branching points only. On the way from the root node t = 1 to the
leave, a scenario of tree with, say, 1,000 scenarios, encounters only approx. 10
branching points on average; this seems to be not much for a medium-term time
horizon of several years. Integer decision variables or risk functionals will make
this issue even more serious. However, it can make sense to work with such mod-
els if only medium-term price trends and medium-term resources (such as seasonal
hydro storages) are under consideration as, e.g., in [11].
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Chapter 8
Risk Measures in Multi-Horizon Scenario Trees

Adrian S. Werner, Alois Pichler, Kjetil T. Midthun, Lars Hellemo,
and Asgeir Tomasgard

Abstract Production assurance requirements are used to ensure that the operation
of natural gas transportation networks is robust with respect to flow and production
disruptions. They also affect strategies for optimal infrastructure investments. Moti-
vated by a combined investment and operational optimization model for natural gas
transport, we describe how to address such requirements through risk measure for-
mulations such as Average Value-at-Risk. The large number of operational scenar-
ios required for a meaningful analysis of the risk measures creates a computational
challenge. A new scenario tree structure, multi-horizon scenario trees, can improve
computational tractability. We investigate properties of the risk measures such as
time consistency for such scenario trees and illustrate this discussion with a stylized
example.

8.1 Introduction

Industries with large capital investments are exposed to both long-term uncertainty
and short-term or operational variations and uncertainty. Long-term uncertainty
includes trends in demand or price developments, costs for infrastructure elements,
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and new resource discoveries. Short-term uncertainty comprises daily variations in
demand or prices and unplanned events such as production stoppages and outages.

In optimization models, this uncertainty can be handled by applying stochas-
tic programming methodology, where the uncertain parameters are represented by
discrete values in scenario trees for possible future realizations of the parameters.
Computational tractability is usually of great concern in such models, because vari-
ables and constraints are duplicated for each scenario in the scenario tree. If all daily
variations are to be included, the scenario tree and, hence, the optimization model
will become intractable. For this reason, operational details are often aggregated for
strategic models. By applying a multi-horizon scenario tree structure as described
in Sect. 8.2, relevant operational detail can be included into stochastic programming
models without sacrificing computational tractability.

We discuss the application of risk measures on stochastic programming models
with multi-horizon scenario trees and how risk measures can be applied not only
to monetary performance. Our motivation stems from investment problems for
the natural gas sector, in particular the project “Regularity and uncertainty analy-
sis and management for the Norwegian gas processing and transportation system”
(Ramona, funded by the Norwegian Research Council); see Sect. 8.3. This project
developed new methodology and tools for optimizing production assurance and
capacity utilization in natural gas production, processing, and transportation sys-
tems. During the project period, an optimization model was developed to find infras-
tructure solutions for processing and transporting natural gas from fields (reservoirs)
to the markets. Such an infrastructure must be robust and flexible, allowing reliable
and profitable operations under various, also adverse, situations. The main driving
force is profitability, and the objective is to maximize net present value.

In addition to the obvious financial benefit of being able to fulfill con-
tract obligations through delivery to the marketplaces, the producers value high
production assurance, i.e., the capability of a system with respect to production
performance or to meet the demand for deliveries. Hence, production assurance
requirements can be imposed at both the production side (fields) and the consump-
tion side (markets) of the network. The ability to deliver with high certainty is seen
as a strategic goal, and the producers believe that a good reputation in this respect
will translate to higher prices, increased sales, and better contract terms. These
benefits are not straightforward to include directly into the model objective. Instead,
we have chosen to add requirements on the deliveries using risk measures.

Risk measures (Sect. 8.4) are often applied to monetary losses where undesirable
deviations are limited or penalized in the objective. We apply risk measures to the
physical flow to ensure that the producer is able to deliver the contracted volumes
with a high degree of certainty. The target production assurance is valid both in the
short term and in the long term, and we apply the risk measures on the operational
scale. We show that our approach implies time consistency of the risk measures for
multi-horizon trees.

Moreover, problems found in the literature often consider risk aversion which
means that one seeks to minimize risk by including risk measures in the objective
function. In contrast, our application example limits the risk through constraints.
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That is, we consider risk acceptable as long as it is below a given threshold—on
the other hand, risk minimization (in the objective function) allows one to end up
with an optimal level of risk above such a threshold value. Moreover, the objective
function in our application example is a function of several decision variables and
the risk measure is another function of a subset of these. Most applications consider
a much more direct relation between the objective and risk functions, e.g., profits
and losses.

Finally, a stylized example in Sect. 8.5 illustrates the application of production
assurance requirements by way of Average Value-at-Risk constraints on a model
with a multi-horizon tree structure and shows how different modeling choices can
affect the optimal solution.

8.2 Treating Uncertainty: Multi-horizon Scenario Trees

Decisions on a long-term or strategic level often define a framework for short-
term or operational aspects. Hence, when finding strategic decisions such as in-
vestments into equipment, it is important to assess their impact on operations and
vice versa, and an optimization model should take into account both decision hori-
zons. This becomes even more relevant when these decisions must be found un-
der uncertainty. In many situations, one can distinguish between uncertainty on
a longer-term perspective (trends in the development of consumer prices or de-
mand, volumes available for production in newly discovered natural gas reservoirs,
technology development, climate change, etc.) and uncertainty on a shorter time
scale (daily price or demand variations, weather variations). Obviously, this sug-
gests that a stochastic model combining both time scales in a common scenario
tree should distinguish between scenario tree nodes dedicated to strategic uncer-
tainty and decisions and nodes dealing with the operational uncertainty and decision
process.

A straightforward combination of the two kinds of nodes in a common scenario
tree structure leads to the tree size quickly growing out of hand: To represent the
operational conditions during a strategic time period adequately, one should include
quite a number of realizations of the uncertain operational parameters and, hence,
branchings at the strategic nodes in the considered period. These nodes representing
short-term uncertainty must then be combined with the nodes representing long-
term uncertainty in the next strategic time period. In particular, if short-term and
long-term uncertainties are independent, the resulting tree may contain many dupli-
cate values.

Figure 8.1 shows an example of combining long- and short-term uncertainty in a
traditional scenario structure where© represents strategic and� operational nodes.
The tree spans just three strategic time periods with one operational period each.
Strategic uncertainty is represented by three branchings at the first strategic stage
and two at the second while there are two possible realizations of the uncertain oper-
ational parameters at each operational stage. This small example yields 48 scenarios
and, in total, 93 tree nodes (62 operational and 31 strategic).
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However, strategic decisions often depend on the overall operational
performance in the time since the previous strategic decision rather than directly
on a specific short-term scenario (and the corresponding operational decisions). For
example, decisions about investments in natural gas transport infrastructure rarely
depend on the infrastructure’s performance on a specific day but rather on how the
infrastructure is expected to perform under varying daily conditions. In this case,
a multi-horizon scenario tree structure is well suited. With such a structure, it is
sufficient to branch at the strategic nodes while the operational nodes are embed-
ded as subtrees associated with the respective strategic node. Hence, the operational
feasibility and profitability of the decisions made in the strategic nodes can be tested
on the corresponding subtrees. Moreover, testing infrastructure reliability typically
requires many operational scenarios to ensure robustness under a vast variety of sit-
uations. This indicates that a multi-horizon tree structure is particularly well suited
for such purposes; see also the discussion in Sect. 8.3.3.

Kaut et al. [9] discuss this approach in more detail and draw comparisons to
traditional scenario tree structures, also with respect to the growth in tree sizes.

An example of a multi-horizon scenario tree is given in Fig. 8.1b. The tree has the
same number of stages and of realizations of the uncertain strategic parameters as
the traditional scenario tree in Fig. 8.1a but twice as many realizations of the uncer-
tain operational parameters (i.e., a finer presentation of the short-term uncertainty).
Here, we have 40 operational and 6 strategic scenarios while the tree contains just
50 nodes (whereof 40 operational and 10 strategic).

Fig. 8.1 Examples of traditional and multi-horizon scenario trees. (a) Traditional scenario tree
structure with a combination of strategic and operational uncertainty. (b) Multi-horizon tree with
the same number of strategic branchings but double number of operational branchings as the
traditional tree

The multi-horizon scenario tree structure can be interpreted as a contingent
scenario analysis of the operational problem for each strategic node. In general, it is
a relaxation of the information structure represented by a traditional scenario tree.
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If the strategic uncertainty is independent of the operational uncertainty and the
strategic decisions do not depend on particular operational decisions at the previous
strategic stage, the information structure is exactly the same as with the traditional
approach. This condition is often satisfied quite easily. Moreover, in a multi-horizon
tree structure, there is no connection between operational scenarios of two consecu-
tive strategic nodes. Hence, the first operational decision associated with a strategic
node should not depend on the last operational decision or state from the previous
strategic period. This condition may require a careful definition of the strategic time
periods; see also the discussion in Kaut et al. [9].

In the remainder of this chapter, the notation concerning uncertainty is chosen
with a multi-horizon scenario tree structure in mind. For a strategic node i∈N Strat,
we denote its time period by τ(i) ∈ T , relative probability by P

Strat
i , and all

operational nodes in the associated subtree by j ∈N Op
i . The relative probability of

an operational node j ∈N Op
i is denoted by P

Op
j . Observe that a subtree representing

the operational uncertainty is always associated with a certain strategic node. Hence,
this strategic node can be interpreted as the root node of the considered subtree and
the probabilities of the operational scenarios are considered only within the context
of the respective subtree.

For the ease of notation we assume throughout this chapter that there are no bind-
ings between consecutive operational time periods (e.g., due to storage modelling).
That is, each operational node can be considered independent of other operational
nodes. Hence, each operational node in a given subtree represents a single scenario.
Consequently, we have just one operational time period in a subtree and we will,
therefore, ignore the operational time index in the subsequent discussion. Moreover,
the strategic node i is the parent node Paj of all operational nodes j ∈N Op

i in the
associated subtree.

8.3 Application Example: The Ramona Optimization Model

The stochastic optimization model developed in the Ramona project combines both
infrastructure and operational decisions under uncertainty in a common framework.
It reflects, hence, both technological properties of the natural gas transport network
and economic and business requirements.

Pressures and flows in one part of the network may influence transportation
capacity in other infrastructure parts [14]. Such system effects must be taken into
account when deciding about new investment in order to avoid a negative impact
on the existing or future infrastructure. Hence, a portfolio perspective is advisable
rather than an evaluation of single investment options in isolation and independently
of the total system. For example, being able to address gas quality problems from
new fields through blending in already existing facilities rather than investing in
extra processing capacity can save investment costs. This means that, in addition to
economics, operational aspects (physical processes and daily gas routing decisions)
must be taken into account.
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An increased focus on production assurance and security of supply makes it
paramount to evaluate how the infrastructure will perform during daily operations
and what the financial effects (costs and revenue) will be. For example, would a new
pipeline allow to better satisfy delivery contracts in critical times or to route gas not
bound in contracts to the most profitable markets? How would it affect gas flows in
other pipelines? How does it affect operational costs and cash flow? Also the tim-
ing of investments is important for satisfying production obligations and developing
new fields in a good way, e.g., allowing to reuse infrastructure.

Obviously, both investment and routing decisions are subject to various kinds
of uncertainty. Discoveries of new reservoirs, gas composition and volumes in
undeveloped reservoirs, or long-term changes (trends) in price and demand levels
are examples of uncertainty on the strategic level. In contrast, uncertain parameters
on the operational level may concern daily nominations in long-term delivery con-
tracts or prices and demands at the markets. Also unplanned events such as network
outages represent short-term uncertainty, reducing capacity in the affected infras-
tructure parts drastically reduced for some, often short, time and, hence, affecting
production assurance. This combination of diverse kinds of long- and short-term
uncertainty suggests the utilization of multi-horizon scenario trees in order to tackle
realistically sized problem instances.

In order to further reduce the scenario tree size, one may consider only a
representative selection of operational scenarios. For example, to estimate the prof-
itability of the strategic decisions, it may be sufficient to study a few typical days
in a year (spring, summer, winter, and a few variations). To test network flexibility
and robustness, some extreme or “critical” scenarios are included. For example, this
allows to assess the network’s robustness in terms of production assurance, taking
into account also unplanned events. Assigning (near-)zero probability to these “crit-
ical” scenarios, the feasibility of the strategic decisions also for these scenarios can
be tested, but they do not affect profitability evaluations unduly.

The complete model constitutes a unified framework to analyze investment
decisions under uncertainty in a portfolio perspective, taking into account physi-
cal properties of the network and the dynamics of short-term planning as well as
long- and short-term uncertainty. Here, we present only the most important aspects
of this multistage stochastic mixed-integer programming problem. Hellemo et al. [7]
give an overview of a deterministic version of the model including a discussion of
system effects and quality aspects while Hellemo et al. [8] present a comprehensive
description of the full stochastic optimization model.

8.3.1 Model Overview

In the strategic nodes i ∈N Strat, the (binary) decision variables XStrat = {xStrat
i , i ∈

N Strat} refer to decisions about investments into network infrastructure elements
(production facilities, pipelines, processing facilities, and markets). They establish
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the framework for the decisions XOp = {xOp
j , j ∈N Op

i } in the associated operational

nodes j ∈ N Op
i which concern the flow fn j through each network infrastructure

element n and the pressures at its in- and outlets. These decisions, in turn, determine
the cash flow and production assurance achievable with the found network design.

The objective of the model is to maximize the expected net present value (NPV)
of investments and operations which is determined by the costs CStrat

i and revenue
RStrat

i from decisions at all strategic nodes i∈N Strat and costs COp
j and revenue ROp

j

from operations at the associated operational nodes j ∈N Op
i :

NPV(XStrat,XOp) (8.1)

= ∑
i∈N Strat

P
Strat
i δτ(i)

⎛
⎝RStrat

i −CStrat
i + ∑

j∈N
Op

i

P
Op
j γ j

(
ROp

j −COp
j

)⎞⎠ .

The costs CStrat
i from investment decisions xStrat

i at the node i ∈N Strat are mainly
costs for installing new and decommissioning network infrastructure elements. In
principle, they may depend on the strategic time period τ(i) or on the age of the
element. The mathematical model uses two kinds of cost profiles to reflect this.
However, we do not go into the details of these profiles here. Decommissioned
network elements may have a positive salvage value contributing to revenue RStrat

i
directly arising from strategic decisions. The factor δτ(i) denotes the discount factor
at the time period of the strategic node i.

Operational costs COp
j are related to operating and maintaining the infrastructure.

For each network element n, they are composed of operational expenditure (depend-
ing on the element’s age), fixed (depending on calendar time), and variable costs
(depending on the flow fn j). Again, time-dependent profiles are used to express the
different dependencies. As mentioned above, the operational nodes often represent
only a selection of scenarios such that a scaling factor γ j is applied to the values

ROp
j and COp

j which represents the weight of the considered operational node. For
example, if all operational time periods have a length of one day and the strategic
time period is a year, then the weights of all operational nodes associated with a
strategic node must sum up to 365.

For a given market, the daily natural gas sales price may be stochastic, and the
revenue ROp

j achieved in an operational node j ∈N Op
i is the sum over sales at all

markets.
Investment decisions are subject to constraints on the network elements’ start-

up (within a time window), shutdown, availability for production, and capacity.
Operational decisions concern routing gas through the network and, obviously, the
constraints on these decisions primarily model the physics of the network. The
most important constraints express flow–pressure relationships and ensure mass bal-
ances as well as limits on the flow and pressure in each network element. The latter
constraints take also care of capacity variations throughout the lifetime of an infras-
tructure element. Moreover, they can be used to model unforeseen events affecting
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network capacity. Reservoir constraints ensure that the amount of gas produced at
the single production facilities complies with yearly production plans and limits on
the totally available gas in the corresponding reservoir.

8.3.2 Multi-Horizon Scenario Trees in the Ramona Model

A typical realistic model instance comprises about 200 network elements. While
investment analysis may span a time horizon of between twenty and fifty years,
operational decisions are found with a daily time resolution. Consequently, a three-
stage stochastic model with 12 strategic periods, 10 branches per strategic node at
each stage, and 10 operational profiles over 365 days will have about 100 million
decision variables when using a multi-horizon scenario tree structure. With a tradi-
tional scenario tree structure, the model would be practically unsolvable—it would
contain about 9 billion variables.

For this application, multi-horizon scenario trees represent an approximation of
the information structure represented in a traditional scenario tree (cf. discussion
in Sect. 8.2): Obviously, while production plans made at the strategic level give
guidelines for the produced volumes to optimally deplete the reservoirs, the ac-
tual production depends on the operational scenarios. Hence, specific operational
scenarios do indeed affect the decision space for the production plans in subsequent
strategic periods to some degree. However, also the total volume in a reservoir avail-
able for production is not perfectly known, and the dependency of this volume on
operational production decisions may be considered negligible.

8.3.3 Production Assurance Requirements

At the production side, production assurance requirements refer to the flow into
the network relative to the production plan. On the other hand, at the consumption
side, they consider the deviation of actually delivered volumes from the company’s
delivery obligations agreed upon in the contract with its customers. Moreover, pro-
duction assurance may be measured at several levels: separately for each market or
field, at a cluster of or at all markets fields, or even across the whole network. For
our subsequent discussion, it is not important what exactly the notion refers to as
we focus on a discussion of this concept in the context of the time and informa-
tion structure provided by multi-horizon scenario trees. Therefore, we refrain from
a network topology index for the concerned variables and parameters.

As an example, production assurance at a market can be found by analyzing
daily deliverability over a given strategic time period. Typically, deliverability mea-
sures the deviation of the gas volume actually delivered in an operational node
j ∈ N Op

i (e.g., a day) against the demand, i.e., the nominated or contracted vol-
ume. Here, the nomination or contracted flow f Con

j represents a random parameter

while the delivered flow f Del
j is a decision variable. Depending on the definition of
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the production assurance requirement, f Del
j may refer to the flow fn j in a specific

market node n but also to the aggregated flow in a cluster of (or all) market nodes.
Obviously, a similar understanding holds for the nomination f Con

j .
Often, there is no proper incentive to perform better than required (e.g., gas

volume exceeding nominations may rather be sold in a more lucrative market).
Hence, we define deliverability with a focus on cases where the delivered volume is
insufficient compared to the nomination:

Del
(

f Del
j , f Con

j

)
= min

{
1,

f Del
j

f Con
j

}
, ∀ j ∈N Op

i , i ∈N Strat,

and ignore the (theoretically possible) option of delivering more than specified.
For the ease of notation, we suppress the reference to the volumes f Con

j and f Del
j

when mentioning the deliverability in an operational scenario in the following: Del j

= Del ( f Del
j , f Con

j ).
Observe that production assurance requirements apply to underdeliveries

compared to nominated gas volumes (or underproduction compared to planned gas
volumes) while the profitability evaluations included in the objective function are
based on the actually delivered (or produced) volumes and the gas price at the con-
sidered operational nodes. In other words, production assurance requirements do
not consider the value of the gas. Rather, production assurance requirements must
be satisfied no matter what the current gas price is. If the risk measure took into
account gas prices, thus focusing on the risk of lost profit, a violation of delivery
obligations would matter more when the gas price is high and less when it is low.

There is no clear-cut and unified way to specify production assurance
requirements, and we discuss some ways to specify such requirements in the
following.

One may state a threshold value PAt below which the daily deliverability should
not fall in all strategic nodes i in a time period t (i.e., for all nodes i ∈ N Strat

with τ(i) = t). For example, one may require a deliverability of at least 99%.
Due to the uncertainty about operational parameters—which also affects the daily
deliverability—it may not be wise to formulate this requirement as a constraint to
be satisfied under all circumstances:

Del j ≥ PAτ(i), ∀ j ∈N Op
i , i ∈N Strat.

This would result in a network infrastructure with a high degree of redundancy and,
consequently, unduly high investment costs to ensure that this constraint is satisfied
at any time. Instead one may allow a violation of the requirement, but encourage
solutions ensuring a high degree of production assurance. For example, a penalty M
may be imposed for each day j ∈N Op

i with insufficient deliverability:

M max{0,PAτ(i)−Delj},
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which is then summed up in the objective function over the whole optimization
horizon, taking into account the probabilities of the strategic scenarios and of the
operational nodes within each subtree:

∑
i∈N Strat

P
Strat
i ∑

j∈N Op
i

P
Op
j M max{0,PAτ(i)−Delj}. (8.2)

This corresponds to penalizing the expected insufficient deliverability
max{0,PAτ(i) − Del j} over the whole horizon. Hence, the variability of this
random variable cannot be taken into account properly and such a penalty term
cannot control how the target values are satisfied over the operational nodes
j ∈ N Op

i associated with a strategic node i ∈ N Strat. In other words, a very low
deliverability on one day and good performance else are considered comparable to
a constant slight underperformance. Moreover, the penalty factor M must be chosen
very carefully to achieve the desired results, weighting production assurance
against expected net present value of investments and operations. As it is difficult
to quantify such quality-oriented aspects, this is a rather daunting task.

The former challenge can be addressed by the following formulation: Given the
threshold value PAt for acceptable deliverability, set a limit on the percentage (or
number) of days in the strategic node i ∈N Strat (with τ(i) = t) where this threshold
is not reached. This can be formulated by way of chance constraints. The threshold
ατ(i) specifies the minimum percentage of operational scenarios (days) in strategic
period i with sufficient deliverability:

P

{
Del j ≥ PAτ(i), j ∈N Op

i

}
≥ ατ(i), ∀i ∈N Strat. (8.3)

Such a formulation avoids the difficulty of quantifying the company’s deliverability
record. Since the operational scenarios represent a discretization of the distribution
of the uncertain operational parameters, this constraint can be expressed by an LP
formulation by introducing auxiliary binary and continuous variables [22, 27].

If, for example, it is required that “deliverability at a market node shall be over
0.99 on, at least, 97% of all days in a year” in all years during the optimization
horizon (and, consequently, in all strategic tree nodes), constraint (8.3) would read

P

{
Del j ≥ 0.99, j ∈N Op

i

}
≥ 97%, ∀i ∈N Strat.

In other words, this formulation ensures that the percentage of days with
insufficient deliverability is not too high—but it also allows to underperform quite
drastically in all those days.

The thread of excessive underperformance may be taken care of by setting a
lower limit on the average performance in the worst outcomes. This way, some
really low deliverability is still allowed, but only occasionally. However, it is diffi-
cult to define the “worst outcomes”: If all days with a deliverability below PAt are
considered unacceptable, the requirement just leads to a lower average deliverability
as there is no limit on the number of these days. Consequently, there is no incentive
to perform better than PAt .



8 Risk Measures in Multi-Horizon Scenario Trees 187

Alternatively, one may sort all days j ∈N Op
i associated with a strategic node

i ∈N Strat according to their deliverability and consider a given percentage α̃τ(i) of
these days as the worst outcomes, no matter how “bad” they actually are. Then, the
average deliverability on these days may be limited from below by a limit D̃elτ(i):

E{Del j|Del j ≤ VaRα̃τ(i)(Del), j ∈N Op
i } ≥ D̃elτ(i), ∀i ∈N Strat. (8.4)

For example, one may require that the average deliverability on the 15% days
with lowest deliverability in a strategic node i still shall be above 0.9:

E{Delj|Del j ≤ VaR15%(Del), j ∈N Op
i } ≥ 90%, ∀i ∈N Strat.

Also this requirement can be reformulated to a set of linear constraints by
introducing auxiliary continuous variables [22, 27].

Clearly, the deliverability targets PAt (and threshold probabilities αt ) should be
the same for all strategic nodes in a given time period t: The production assurance
requirement should not depend on the gas network configuration or realizations of
the uncertain strategic parameters. Moreover, they may also be the same for several
or all strategic time periods t. The same holds for the lower limits D̃elt and for the
percentages α̃t of the days with lowest deliverability within the time period t.

However, in general, there is no direct relationship between the target value PAt

and the limit D̃elt or between the threshold αt and the percentage α̃t (although it
might be more natural to assume a relationship between the latter than between the
first). Intuitively, one may set α̃t somewhat higher than αt and / or D̃elt somewhat
lower than PAt .

Evidently, production assurance is an operational concept and confined to a
certain (strategic) time period, e.g., year or month. It is determined for a given in-
frastructure configuration (existing network and potential investment decisions) and
requires, in order to give meaningful results, many operational scenarios associated
with each strategic decision point. Hence, to compare or decide between several
investment options under similar operational conditions, a traditional scenario tree
structure would require a large degree of duplicate values. Consequently, one can
solve only relatively small examples rather than realistic-sized cases.

Observe, however, that formulations (8.3) and (8.4) of production assurance
requirements do not span several strategic time periods—they are considered
independently for each strategic period. Hence, this aspect is well suited a model
with a multi-horizon scenario tree structure. This tree structure allows many more
operational scenarios for each strategic decision point than a traditional structure
interspersing operational and strategic tree nodes in each scenario.

In the following section, we briefly introduce static and dynamic risk measures
before we relate them to the multi-horizon scenario tree structure and the production
assurance concepts discussed in Sect. 8.3.3. In particular, we turn our attention to
the question of time consistency in a multistage setting.
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8.4 Risk Measures

Section 8.3.3 outlined several approaches to model risk aversion when making
decisions under uncertainty. On a more general level, risk measures as functionals on
random variables have been studied intensely over the past decade and have become
popular in particular in finance. The seminal paper by Artzner et al. [1] addresses
axioms that are considered natural when quantifying risk by assigning a single num-
ber to the random variable representing potential outcomes. Krokhmal et al. [13]
provide an overview over risk-modeling concepts in a static (single-period) setting.

The expectation operator E(·) employed in formulation (8.2) represents the
simplest form of a risk measure; it assigns the single number EY to the possible out-
comes represented by a random variable Y . For the example of production assurance
described, the random parameter may be the daily nominations f Con

j (and other un-

certainties not discussed closer here), while the flow f Del
j is the considered decision

variable such that the random variable Y corresponds to the deliverability Del j. The
respective probabilities are modeled through a probability measure involved when
calculating the expectation.

As mentioned above, this measure does not take into account properties of the
considered random variable such as its variability, i.e., the distribution of the single
values over all outcomes. Risk measures exploiting more properties of the random
variable are, for example, chance constraints [exemplified by (8.3)] or the Average
Value-at-Risk (AV@R) as formulated in (8.4).

Chance constraints (8.3) ensure that the deliverability targets PAt are satisfied
with a certain probability as specified in the contract with the company’s customers.
However, this formulation treats any underdeliveries equally, no matter how large
the shortfall is.

The AV@R illustrated in (8.4) reflects another important risk measure which
is also known as expected shortfall or Conditional Value-at-Risk (CVaR). This
measure does not only take into account at which probability the demand is
satisfied but also the level of demand satisfaction. This constraint is sometimes more
conservative than a chance constraint. On the other hand, it is a convex constraint
and certainly easier to handle computationally than, say, chance constraints. Our
subsequent discussion will focus on this risk measure.

With our application in mind, the AV@R of a random variable Y at the
confidence level α can be defined generally as the expectation of all outcomes in
the lower α-quantile of the probability distribution of Y :

AV@Rα(Y ) = E{Y |Y ≤ V@Rα(Y )}. (8.5)

However, in the case that the probability space contains atoms, this formulation has
a drawback. In this case, the event {Y |Y ≤ V@Rα(Y )}may have a probability other
than α despite V@Rα(Y ) being involved in the definition of this event. Exactly
this situation occurs in the Ramona model involving finitely many (operational)
scenarios of deliverability values as each has a (strictly) positive probability and,
hence, is an atom.
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Using the Fenchel–Moreau Theorem (cf. [26]), the AV@R can be expressed by
its dual formula:

AV@Rα(Y ) = inf

{
EY Z|0≤ Z ≤ 1

α
, EZ = 1

}
. (8.6)

This representation outlines that the mapping Y �→AV@Rα(Y ) is concave.
Alternatively, the AV@R can be expressed as

AV@Rα(Y ) = max
q∈R

q− 1
α
E(q−Y)+,

where x+ is the positive part, x+ := max{0, x}. This expression has been introduced
by Rockafellar and Uryasev [19] while the general formulation is stated in Pflug
[15]. It replaces the infimum in (8.6) by a maximum and has become popular in
stochastic optimization (cf., e.g., [4]) and appears to be tailor-made for the model
discussed here.

A risk constraint similar to the production assurance requirements presented in
Sect. 8.3.3 may require that the Average Value-at-Risk of the random variable Y at
the level α is above a given threshold q̃:

AV@Rα(Y )≥ q̃.

8.4.1 Risk Measures in Multistage Optimization Problems

Intuitively, the static concept may be extended easily to a dynamic or multi-
stage situation. However, due to relations between the decisions and parameters at
the different stages affecting the properties of the risk measures, this is not quite
straightforward and has spawned increased research interest in the recent years.
For example, Kozmík and Morton [12] consider a stochastic programming problem
structure with multiple recourse stages. They consider risk aversion, i.e., minimize
risk and study stage-wise independent uncertain parameters and a risk measure as a
function of the recourse value at each stage.

Risk measures may be applied separately at each stage of the underlying scenario
tree or as a nested measure spanning several or all stages. We focus here on the for-
mer, conceptually simpler approach. More formally, we consider R-valued random
variables dependent on some previous decisions x ∈ X and a random parameter
ξ ∈ Ξ , that is, Y = Y (x,ξ ) ∈ R for the objective and (possibly different) random
variables Y c

t = Y c
t (x,ξ ) ∈ R for the constraints, which are observed at the times

t ∈ {0, . . . ,T}. The vector x = (x0, . . . ,xT ) collects all decisions made at T + 1
subsequent instants of time t ∈ {0, . . . ,T}. We use the notation Y (x) also for the
random variables Y (x) : ξ �→ Y (x,ξ ) (and Y c

t (x) for Y c
t (x) : ξ �→ Yt(x,ξ ), respec-

tively). Importantly, the decisions up to time t are x0, . . . ,xt , and a random variable
Y c

t observed at that time t is determined by x0, . . . ,xt . Expressed in mathematical
terms, it holds that
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Y c
t (x) = Y c

t (x
′) (8.7)

whenever (x0, . . . ,xt) = (x′0, . . . ,x
′
t), where x = (x0, . . . ,xT ) and x′ = (x′0, . . . ,x

′
T ).

Similar to the static formulation (8.5), an AV@R measure with a (potentially
different) level αt can be applied to the random variable Yt at each stage t ∈
{0, . . . ,T} of the underlying scenario tree. Constraints may require that any AV@R
at a given stage t shall exceed a given threshold value qt (recall that AV@R is
concave). Observe that, if this constraint is required to hold separately at each tree
node at this stage, the AV@R is considered conditionally on realizations of Y up
to this stage. (Obviously, if there is only one AV@R constraint involving all Yt for
given t, this measure does not depend on previous realizations.) This is made evi-
dent through the filtration Ft of the tree: the increasing sigma algebras Ft ⊂Ft+1

represent the information available at time t [17].
Hence, a multistage stochastic optimization problem with risk constraints at each

time period t can be formulated as

maximize EY (x) (8.8a)

subject to AV@Rαt (Y
c

t (x)|Ft)≥ qt , ∀t ∈ {0, . . . ,T}, (8.8b)

x ∈ X0×·· ·×XT , (8.8c)

where all xt , t ∈ {0, . . . ,T} are measurable with respect to the sigma algebra Ft .
The latter condition expresses the nonanticipativity constraints on the decisions xt .

Observe that the risk measure applies to the random variables Y c
t while the ran-

dom variable Y employed in the objective function may be a different function of the
decisions x. For example, the Ramona model comprises risk constraints involving
natural gas volumes delivered to the markets while maximizing the expected profit
from these deliveries. Only the latter involves current market prices.

A sufficiently large sample size is necessary to get acceptable approximations,
particularly as a non-biased estimator for the Average Value-at-Risk does not exist
([10]) in general. More specific, the number of considered realizations of Y should
be of order 1

α ≈ 1
P(Y≤VaRα(Y ))

. As a consequence, the size of multistage stochastic
programming problems relying on a traditional scenario tree structure quickly grows
out of hand if risk measures are applied not only to the leaf nodes at the final stage.
Also Kozmík and Morton [12] point out the need for many scenarios at each stage
and the resulting computational challenges when considering risk in a multistage
setting: As only a small number of the realizations of the random parameter at each
stage contribute to calculating the risk, a large number of nodes would be required.
They suggest SDDP, i.e., sampling during the solution process, relying on stage-
independent scenario trees. Note that this requirement of stage-wise independent
random parameters excludes time-series models.

Alternatively, the scenario tree size may be reduced drastically without sacrific-
ing model quality by utilizing the properties of the model at hand. For the Ramona
model, we can distinguish clearly between operational and strategic decisions, and
the risk measures apply only to all operational outcomes associated with a given
strategic node. This indicates that the subtrees associated with each strategic node
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at any stage can be of the required size and, consequently, risk constraints can be
applied at “any” strategic stage throughout the optimization horizon.

With a multi-horizon scenario tree structure, one can calculate a risk measure at
each strategic node i, spanning all operational outcomes (i.e., all operational nodes
j representing days) associated with this node i. For all strategic nodes in a given
strategic period t, that is, {i ∈ N Strat : τ(i) = t}, the requirements are the same,
i.e., they are characterized by the same parameters αt and qt . Consequently, de-
cisions in any strategic node should be found such that (a) the risk requirement
covering all operational nodes associated with this strategic node is satisfied, and
(b) they allow to make decisions in all subsequent strategic nodes such that the
corresponding risk requirements in these nodes are satisfied. In general, the opera-
tional scenarios associated with a strategic node are considered to be independent of
the operational scenarios associated with other strategic nodes. However, due to b),
operational scenarios associated with later strategic nodes in the same strategic sce-
nario may affect earlier strategic decisions—in particular, if the strategic decision
space in these later nodes is quite confined. We will resume these considerations in
Sect. 8.4.2 discussing time consistency of dynamic risk measures.

Fig. 8.2 Different scopes of risk measures. (a) Risk measure on a traditional scenario tree spanning
all nodes at a stage. (b) Risk measures on a multi-horizon scenario tree spanning all operational
nodes associated with a strategic node

8.4.2 Time Consistency

The principle of time consistency for multistage optimization problems derives from
dynamic optimization [5] and has been analyzed from many perspectives in the lit-
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erature; see, e.g., [2, 11, 24]. Although its meaning is intuitively evident, a common
and widely accepted definition does, apparently, not exist yet. A common consen-
sus, however, is that it means that decisions which are made at a certain stage of
time should not be withdrawn at a later stage of time. That is, contradictions that
may occur during the decision process should be excluded.

Carpentier et al. [3] informally formulate this principle as follows:

The principle of time (or dynamic) consistency. The sequence of optimization
problems is said to be dynamically consistent if the optimal strategies obtained
when solving the original problem at time t0 remain optimal for all subsequent
problems. In other words, dynamic consistency means that strategies obtained by
solving the problem at the very first stage do not have to be questioned later on.

When discussing time consistency, one often distinguishes between optimization
problems which involve a risk functional in the objective and which are solved at
multiple, subsequent stages in time and problems which involve a risk functional in
the constraints.

We will follow this distinction here and discuss time consistency for risk
measures in the objective and the constraints separately. Then, we address time
consistency on multi-horizon scenario trees.

8.4.2.1 Risk Measures in the Objective

Typically, multistage stochastic optimization problems with a risk measure in the
objective employ a composition of risk measures at subsequent stages. Several
results are known about such compositions of risk measures which often gener-
alize initial properties of one-period risk measures ([6, 20, 21]). Schachermayer and
Kupper [23] show that the only risk measure that is closed under time-consistent
compositions is the functional

Y �→ u−1 (E(u(Y )|Ft )) .

Moreover, Shapiro [25] states that the composition of risk functionals is not
necessarily a law-invariant risk measure anymore, except for the expectation

AV@R1(·) = E(·) (8.9)

and the min-risk functional

AV@R0(·) = lim
α↘0

AV@Rα(·) = essinf(·). (8.10)

Moreover, the composition lacks a natural interpretation: it is not clear what the
Average Value-at-Risk of an Average Value-at-Risk could be. However, a compo-
sition of risk measures can be easily applied and it is convenient in computations.
Often it is considered a—rather conservative—alternative to a single-period AV@R
measure in the objective.
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A possible way to overcome these challenges is by changing the level of the
Average Value-at-Risk according to the representation

AV@Rα(Y ) = infE Zt ·AV@Rα ·Zt (Y |Ft) , (8.11)

where the infimum is taken over all random variables Zt , measurable with respect
to Ft , satisfying E Zt = 1 and 0 ≤ Zt ≤ 1

α . The essential difference to (8.6) is that
the dual variable Zt is measurable with respect to Ft and the level α ·Zt in (8.11) is
random itself [16].

This demonstrates that the level of the Average Value-at-Risk has to be changed
in order to allow a combination of conditional Average Value-at-Risk measures.
Equation (8.11) does not represent a composition but a change of measure instead
(change of numéraire, cf. [18]).

Notably, the level of the Average Value-at-Risk represents the risk which the
decision maker should accept in order to handle the optimization problem. Hence,
one may conclude that the perception of risk may vary in different situations which,
indeed, reflects a natural situation: Having observed a comfortable past which makes
the initial objective more likely to achieve, a decision maker may be more relaxed
in the future. Conversely, having observed a difficult past making the initial goal
unlikely to be achieved, a decision maker may impose tougher conditions to ensure
that the initial goal can still be achieved.

This is especially important in the case of rolling-horizon solution approaches.

8.4.2.2 Risk Measures in Constraints

The problem formulation (8.8) considers risk measures in the constraints at different
levels. Studying time consistency of such risk measures, it appears natural to ask if
AV@Rα(Y |Ft )≥ q means that also AV@Rα(Y )≥ q. More generally, if a random
variable Y1 is preferred over a variable Y2 at a stage t, can it then be concluded that
this random variable is preferable at an earlier stage as well; that is,

AV@Rα(Y1|Ft)≥ AV@Rα(Y2|Ft) =⇒AV@Rα(Y1)≥ AV@Rα(Y2).

Similar to the case of risk measures in the objective, this holds obviously for
α = 1 (the expectation) and α = 0 (the min-risk functional).

Figure 8.3 illustrates that time consistency of the Average Value-at-Risk measure
cannot be guaranteed for values of α other than 0 and 1: Assuming an Average
Value-at-Risk at the level α = 2

3 at both stages, the example demonstrates that Y is
acceptable when employing the criterion AV@R 2

3
> 13 at every subtree. However,

applying the same criterionAV@R 2
3
> 13 to the complete problem, the variable Y is

not acceptable. The simple Average Value-at-Risk is, therefore, not a time-consistent
risk functional in this specified sense whenever α ∈ (0,1).
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Fig. 8.3 This random variable Y satisfies AV@R2/3 > 13 for every partial observation in the
subtree (specified by F1). However, the combined observation does not satisfy AV@R2/3 > 13. It
is, however, correct, that AV@Rα ≤minAV@Rα(·|F1)

8.4.3 Consistency of Risk Measures in a Multi-horizon
Tree Formulation

This section addresses time consistency of the multi-horizon problem (8.8). Note
that its objective is an expectation and, moreover, the constraints in this problem
are not compositions of risk measures as discussed in the previous section. The way
the problem is formulated ensures its time consistency according to the principle
formulated on page 192.

Proposition (Time consistency of the multi-horizon problem). Let

x∗ := (x∗0, . . . ,x
∗
T )

be an optimal solution of the multi-horizon problem (8.8). Then x∗ solves also the
problem with respect to the conditional probability measure Pi, where i ∈N Strat

t is
an arbitrary (strategic) node at stage t and Pi(·) = P(·|i) is the conditional proba-
bility satisfying Pi(i) = 1.

Hence, the problem is time consistent in the sense of the principle given on
page 192.

Remark. Incorporating the measure Pi—that is, conditioning on the node i—
ensures that the tree process will move through the node i with probability one.
The latter preposition ensures, therefore, that the problem can be reconsidered at a
certain stage, and the initial solution will remain optimal even for the new subprob-
lem which is reconsidered at a later time t (i ∈N Strat

t ). Hence, the problem is time
consistent in the described sense and the initial solution does not have to be changed
retrospectively.
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Proof. Without loss of generality, we assume P(i)> 0.
Let x∗ denote the optimal (minimal) solution, and assume that x∗ is not optimal

for the subproblem conditional on Pi. Denote the optimal solution of the subproblem
with respect to Pi by (x∗0, . . . ,x

∗
t−1, x̃

∗
t , . . . , x̃

∗
T ), and define the new decision as

x̃ :=

{
(x∗0, . . . ,x

∗
t−1, x̃

∗
t , . . . , x̃

∗
T ) if i is contained in the path,

(x∗0, . . . ,x
∗
t−1,x

∗
t , . . . ,x

∗
T ) else,

which we apply to the initial problem.
The new strategy x̃ is a potential solution of the initial problem as X=X0×X1×

. . .XT . Moreover, x̃ is feasible for the initial problem: Indeed, if t ′ ≤ t, then, from
(8.7), Yt′(x) = Yt′(x̃) as xt′ = x̃t′ for all t ′ ≤ t. Further, if t ′ > t, then

AV@R(Yt(x)|Ft )≥ qt

in both cases, that is, no matter whether i is in the path or not.
Finally, the objective EY (x̃) of the new strategy x is superior as

EY (x̃) = EE(Y (x̃)|Ft)

< EE(Y (x)|Ft) = EY (x)

due to the assumption Pi(i)> 0 and since x̃ is better than x on the node i.
Summarizing, x̃∗ is a better strategy than x∗ on the entire tree. This, however,

contradicts the assumption that x∗ is optimal. Hence, the strategy x∗ is also optimal
for the subproblem conditioned on Pi. This proves the assertion. ��

Observe that the argument is valid also for operational nodes j ∈N Op
i associated

with any strategic node i ∈N Strat.

8.5 Illustrative Example

To illustrate the implementation of AV@R on multi-horizon trees we use a stylized
example. We show in the example that different ways of modeling risk aversion
can change the optimal decisions in the optimization model. As a case study, we
consider a network that consists of a field connected to a market through a single
pipeline. This is illustrated in Fig. 8.4. The production capacity in the field node is
assumed to not constrain our solution, but the pipeline that connects the two nodes
has a capacity limit of 100 units. Furthermore, we assume that the market price is
fixed at 1 million per unit, while the demand is stochastic. The scenario tree that we
use in our example consists of two strategic periods and three strategic nodes (i.e.,
i ∈ {1,2,3}; see Fig. 8.5), each with an associated operational subtree.

We represent the demand uncertainty by 100 equiprobable scenarios in each of
the operational subtrees. The demand uncertainty in the subtrees in strategic nodes
1 and 2 is identical and uniformly distributed between 50.5 and 100 units (plot to
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Fig. 8.4 The simple network used in our example, consisting of a single field that supplies a market
through a pipeline

Fig. 8.5 Strategic nodes in the tree

the left in Fig. 8.6), while the demand uncertainty in the subtrees in strategic node
3 is uniformly distributed between 52.5 and 102 units (plot to the right in Fig. 8.6).
The probability of strategic nodes 2 and 3 is equal (0.5).

Fig. 8.6 Demand scenarios. The left plot shows the demand realizations in the operational subtree
linked to the strategic nodes 1 and 2 (uniformly distributed between 50.5 and 100), while the right
plot shows the slightly higher demand realizations for the subtree in strategic node 3

The company has an investment opportunity that will increase the pipeline
capacity from 100 units to 110 units. The cost of this capacity increase is 0.1
million. To simplify our model we assume that the network is operated only in
the two strategic periods considered in our example. This means that there are no
end-of-horizon effects in our model. We also disregard discount rates and, as there
is only a single field, pipeline, and market, we ignore network element indices. This
simplified investment model can then be formulated as

max
λi, f j

i∈N Strat , j∈N Op
i

∑
i∈N Strat

P
Strat
i ∑

j∈N Op
i

P
Op
j p f j− ∑

i∈N Strat

P
Strat
i λiI, (8.12)

where p is the price in the market, f j is the volume sold in the market in operational
scenario j, λi is the (binary) investment decision, and I is the investment cost.
The production, flow in the pipeline, and sale in the market are constrained by the
pipeline capacity K and the market demand Fj. The company can invest in additional
capacity L. The set N Strat

A(i) contains all ancestor nodes for node i as well as the node



8 Risk Measures in Multi-Horizon Scenario Trees 197

i itself (i.e., all the nodes on the path from the root node to node i):

f j ≤ K + ∑
i′∈N Strat

A(i)

λi′L, j ∈N Op
i , i ∈N Strat, (8.13a)

f j ≤ Fj, j ∈N Op
i , i ∈N Strat. (8.13b)

The company can make the investment only once in each scenario:

∑
i′∈N Strat

A(i)

λi′ ≤ 1, i ∈N Strat. (8.14)

We can then solve the profit-maximizing model (8.12)–(8.14) to find the optimal
investment decision. The solution to this problem is trivial since the only node where
the capacity extension would influence the revenue is strategic node 3 (the demand
associated with strategic nodes 1 and 2 is already covered by the capacity of the
pipeline without the investment). The additional expected revenues from having a
capacity of 110 units in node 3 are 0.05 million (additional sales in the four scenarios
where demand exceeds 100). Since these revenues are smaller than the investment
cost, the investment will not be made in any of the strategic nodes.

Let us now consider how risk measures may influence this solution. We assume
that the company that operates the field has an obligation to deliver according to
the demand level in the market node. The performance is regulated with an AV@R
constraint enforcing that the expected delivery rate in the worst 5% of the scenar-
ios should be at least 0.995 (meaning that the expectation of the actually delivered
volumes divided by the demand in the 5% worst scenarios should be at least 0.995).
Figures 8.7 and 8.8 show two different ways of implementing this AV@R con-
straint. Figure 8.7 illustrates the traditional approach where the AV@R constraint
is based on all operational observations within a given time period while Fig. 8.8
illustrates the approach used in the Ramona model. In this case, a separate AV@R
constraint refers to all operational subtrees associated with a strategic node. In the
following, we show that these different AV@R calculations can indeed influence
the investment decision in the model.

Fig. 8.7 Stage-wise constraints on AV@R, involving all operational nodes in a strategic period.
With this implementation of AV@R, the optimal investment decision in our model is to not invest
in capacity extension in any of the strategic nodes
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Fig. 8.8 Node-wise constraints, involving all operational nodes associated with a strategic node.
With this implementation of the AV@R constraints, the optimal decision in our example is to
invest in additional pipeline capacity in strategic node 3

The mathematical formulation of the AV@R constraints that include all
operational observations within a given time period can be given as

E{Del j|Del j ≤ VaRα̃t (Del), j ∈ ˜
N Op

t } ≥ D̃elt , ∀t ∈ T , (8.15)

where the set ˜N Op
t includes all operational nodes linked to a strategic time period t.

The mathematical formulation used in the Ramona model can be given as

E{Del j|Del j ≤ VaRα̃τ(i)(Del), j ∈N Op
i } ≥ D̃elτ(i), ∀i ∈N Strat. (8.16)

For more explanation on this AV@R formulation, see the discussion linked to
Equation 8.4 on page 187.

In our example, D̃elt and D̃elτ(i) are equal to 0.995 while α̃t and α̃τ(i) are equal
to 5%.

First, let us consider the AV@R constraints that are based on all observations
in a time period. We already know that the investment project is not profitable, so
to solve the model we only need to check if the AV@R constraint holds. For the
subtree linked to the first strategic node, this constraint is clearly satisfied, since the
demand is met in all scenarios (the expected delivery rate in the 5% worst scenarios
is 1). Considering the operational subtrees linked to the second strategic period, we
find that the 5% worst scenarios have an expected delivery rate of 0.995 without
any investments (calculated as the expected delivery rate in the 10 scenarios with
highest demand). This means that including the AV@R constraint on the model
will not alter the optimal decisions.

Now, let us study how AV@R constraints on all operational subtrees linked to a
strategic node will influence the optimal solution from the model. Again, we know
that the investment option alone is not profitable and we only need to check the
AV@R constraints. Obviously, in the operational subtrees linked to strategic nodes
1 and 2, these constraints are satisfied even without the investment (the demand will
not exceed the original capacity of the pipeline). In the operational subtree linked
to strategic node 3, however, the expected delivery rate of the 5% worst scenar-
ios (the 5 scenarios with highest demand) is 0.990 without the investment. If the
pipeline capacity is increased to 110, the AV@R constraint is also satisfied in these
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operational scenarios (the new expected delivery rate is 1). This means that the in-
clusion of AV@R constraints in every subtree will force an investment in additional
pipeline capacity in strategic node 3.

Obviously, this example is simplified and rather far removed from real investment
decisions. The influence of the modeling choice of AV@R constraints on the deci-
sion space and, hence, the optimal decisions found by the model is, however, a
general result. We chose a simple example to transparently illustrate this effect. We
can also note that while the first approach to modelingAV@R is not time consistent,
the second approach is. It can be easily seen that the optimal decisions on a rolling
horizon will change when using the first approach: it will be necessary to change
the original decision of not investing in strategic node 3. The second approach to
modeling AV@R is, however, time consistent, and the decisions will not change if
we consider a rolling-horizon solution approach.
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Chapter 9
Controlled Islanding as Robust Operator
Response Under Uncertainty

A. Grothey, W. Bukhsh, K.I.M. McKinnon, and P.A. Trodden

Abstract In the past decade there have been multiple high-profile cases of cascading
blackouts, often resulting in the disconnection of tens of millions of consumers
in large areas. It appears that in hindsight many of these disturbances could have
been prevented by timely interventive action. In the actual cases, however, lack of
complete knowledge about the state of the system undergoing a blackout event has
prevented such action. This chapter reviews approaches to the problem of finding
optimal interventions for a power system in the early stages of a cascading black-
out. Conceptually the problem is one of optimization under uncertainty or robust
optimization: the goal is to find a set of corrective actions that will guarantee power
supply to as many customers as possible, in all, or at least most, of the possible states
that the system may be in. To tackle the problem directly as a stochastic or robust
optimization problem is intractable due to the complexities involved, foremost the
number of possible states that would have to be considered. We argue, guided by
example, that a robust response is to disconnect lines in such a manner as to create
an island containing the affected part of the network. We give an overview of such
approaches, notably those involving mixed-integer programming to directly design
islands that admit a stable steady-state operating point.
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9.1 Introduction

The last decade has seen a number of notable cases of wide-area blackouts as
a consequence of severe disturbances and cascading failures. In 2003, separate
blackouts in Italy [13], Sweden/Denmark [19] and USA/Canada [31] affected
millions of customers. The August 2003 blackout in Northeastern America alone
disconnected 50 million people and 62 GW to an area spanning eight states and two
provinces. The wide-area disturbance in 2006 to the European system caused the
system to split in an uncontrollable way [14], forming three islands.

While the exact causes of wide-area blackouts differ from case to case, some
common driving factors emerge. Modern power systems are being operated closer
to limits: liberalization of the markets, and the subsequent increased commercial
pressures and change in expenditure priorities, has led to a reduction in security
margins [3, 7, 9]. A more recently occurring factor is increased penetration of
variable distributed generation, notably from wind power, which brings significant
challenges to secure system operation [23]. In addition power systems in developing
countries are typically operating close to their operating limits, contributing to their
vulnerability to cascading blackouts [2].

Although automated preventive and corrective systems exist to ameliorate the
effects of system faults, aversion of a cascading blackout in severe disturbance
events often requires active intervention of the system operator to manually ad-
just generation output, open or close lines or shed some load on the system. The
correct response, however, is dependent on the exact state of the system and being
able to pinpoint the exact nature and extent of the disturbance. Studies of historical
blackout events however show that in many cases control room staff were unaware
of the exact state of the system and the nature of the disturbance. Causes include fail-
ure of monitoring and protection equipment, software failures, lack of adherence to
protocol, human error and even unawareness that there is a problem with the security
systems at all. If, as in these cases, the system state is unknown, it becomes increas-
ingly difficult to take controlled action to avert the impeding cascading blackout.

Our aim in this chapter is to investigate possible ways to find a robust operator
response to avert an impeding cascading blackout given that there is significant un-
certainty about the current state of the system. Conceptually the problem is one of
optimization under uncertainty: Given a set of scenarios that describe the possible
states the system could be in, the operator seeks a set of actions that guarantee that
the system survives in each of these states or, since that is likely not possible, mini-
mizes the expected loss (in terms of load shed or any other socioeconomic measure)
of the system disturbance. Such an approach would naturally lead to a robust or
stochastic optimization model.

Indeed we present such a conceptual model in Sect. 9.5. However, there are a
number of problems associated, starting from the difficulty of obtaining input data:
what are the possible system scenarios and their respective probabilities, to the
sheer complexity of such a problem (which would be mixed integer, nonlinear and
stochastic, potentially with a huge number of scenarios). We therefore concentrate
on alternative, computationally tractable ways of optimizing the operator response.
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Typically the initial system disturbance is limited to a relatively small geographic
area. A possible robust solution is to electrically isolate the affected area from the
remaining system, thus forming an at-risk island. We argue that such an islanding
solution is often the optimal solution to the problem of finding a robust response to
the system emergency. Indeed for several large disturbance events, e.g. [31], studies
have shown that a wide-area blackout could have been prevented by intentionally
splitting the system into islands [36]. Thus we tackle the uncertainty by splitting the
at-risk area from the remainder of the network instead of dealing with every possible
system state separately, decreasing the complexity of the model.

In the second half of this chapter we will focus on several concrete models that
have been suggested to deal with the conceptual and computational complexity of
islanding for blackout prevention.

The models primary target is to design islands such that one of the islands will
isolate the system disturbance; it will contain all the lines and generators which are
either known to be faulty or whose state is uncertain. This is the at-risk section.
The remaining islands should contain only those parts of the network whose state
is certain. Islands are required not only to be load–generation balanced but also to
admit a feasible steady-state transmission solution that respects physical network
operation constraints. Typically this requires the shedding of loads in some or all of
the islands; the objective is to find such an islanding scheme that minimizes a com-
bination of load assigned to the risky island and load shed in the remaining islands.

Due to the nonlinear nature of the physical network constraints the resulting
model is a mixed-integer nonlinear programming (MINLP) problem. To make it
computational tractable, two schemes are suggested. In the first, a standard linear ap-
proximation to the physical power transmission equations (the “DC” model) is used,
resulting in a mixed-integer linear programming (MILP) formulation. A disadvan-
tage of the DC power flow model is that reactive power flows and bus voltages are
not considered. As a result it may not be possible to operate islands produced by this
model, even if some corrective post-islanding action, such as load shedding, is taken.
In the second approach a piecewise linear (PWL) approximation to the full AC
power flow equations is developed. Again this model leads to an MILP formulation,
although now with a larger number of binary variables. Results obtained for test net-
works demonstrate the advantage of considering voltage and reactive power when
deciding how to island, since instances of AC-infeasible islands are eliminated.

The organization of the paper is as follows. In the following section we review
previous work on the islanding of power systems. In Sect. 9.3 we review some nec-
essary background of power system operation and their reaction to contingencies
and review the standard power flow models. An analysis of the events leading to
some of the prominent blackouts from the last decade is given in Sect. 9.4 and we
discuss lessons that can be learnt in order to actively prevent cascading blackouts.
A conceptual nonlinear mixed-integer stochastic programming model is derived in
Sect. 9.5 and a case study to shed light on the possible solution space of such a
model is presented in Sect. 9.6. In Sect. 9.7 we present an islanding model that is still
nonlinear and mixed integer, but has now removed the stochastic aspect. Section 9.8
presents two linear approximations of this model: first a “DC”-based approximation
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that includes line losses and then a piecewise linear SOS-set approximation. We
give a brief summary of the computational performance of the models in Sect. 9.9
and discuss possible extensions in Sect. 9.10.

9.2 Islanding of Power Systems

Controlled islanding or network splitting of power system is not a new concept.
In the traditional sense islanding is used to protect small self-contained load-
generator pairs from system disturbances [26] or to isolate subcomponents of the
network that are prone to known problems in order to create a safe fall back state
from which it is easy to reconnect the network [4]. While systems of this kind
are usually small scale, islanding along pre-determined break lines is used in Japan
to prevent the spread of system disturbances into the Tokyo metropolitan area and
has been successful in preventing at least one potential blackout event [1].

In cases where islanding is done to protect fundamentally self-sufficient parts of
the network, the splitting is done along pre-determined breaks, and the system is
specifically designed to survive these network splitting events. Dynamic network
splitting of a relatively tightly connected network has been initially studied as a
tool to ease power flow computations ([22] and references therein). Islanding used
as a dynamic protection mechanism to limit the spread of system disturbances is
more recent. The challenge is that, if an island is to be feasible, it must satisfy both
static constraints—load–generation balance, network constraints, system limits—
and dynamic constraints, i.e. for electromechanical and voltage stability. Moreover,
the act of islanding must not cause a loss of synchronism or voltage collapse. It is
not computationally practical to tackle all these aspects of the problem simultane-
ously within a single optimization, and approaches in the literature differ according
to which aspect is treated as the primary objective. Additionally different search
methods have been proposed for identifying the island boundaries.

Most approaches concentrate on identifying sections of the network that are
in some sense weakly linked and then employ a graph partitioning or clustering
algorithm to create the islands. Wang et al. [33] and Peiravi and Ildarabadi [24]
use weighted multilevel k-means where the weights are obtained by the power flow
along the lines in the pre-disturbance steady-state solution. In [22, 25] the network
is clustered according to electrical distances (measure by line susceptances) using
centroid sorting. Buses that are electrically close to each other are placed into the
same cluster. Wang et al. [34] employed a power flow tracing algorithm to first
determine the domain of each generator, i.e. the set of load buses that “belong” to
each generator. Subsequently, the network is coarsely split along domain intersec-
tions before refinement of boundaries to minimize imbalances.

Spectral methods [16, 20, 36] guide the partitioning by using the eigenvector cor-
responding to the smallest nonzero eigenvalue of the weighted graph Laplacian (the
Fiedler vector), where edge weights are chosen to represent the strength of the link.

In other approaches the primary objective is to split the network into
electromechanically stable islands, commonly by splitting so that generators with
coherent oscillatory modes are grouped. If the system can be split along boundaries
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of coherent generator groups while not causing excessive imbalance between
load and generation, then the system is less likely to lose stability. Determining
the required cutset of lines involves, as a secondary objective, considerations
of load–generation balance and other constraints; algorithms include exhaustive
search [37], minimal-flow minimal-cutset determination using breadth-/depth-first
search [32], and graph simplification and partitioning [35]. The authors of [18] pro-
pose a framework that, iteratively, identifies the controlling group of machines and
the contingencies that most severely impact system stability and uses a heuristic
method to search for a splitting strategy that maintains a desired stability margin.
A review of different (graph theoretic) approaches to use islanding to prevent black-
outs is given in [21].

In most approaches the creation of islands that allow a feasible power flow, or
are even just load–generation balanced, is not a primary objective of the islanding
algorithm. In some cases power flow analysis is performed on the considered islands
to exclude strategies that violate operating constraints, e.g. line limits [28].

An alternative to graph partitioning methods are methods based on mixed-integer
programming. Integer programming has many applications in power systems, but
its use in network splitting and blackout prevention is limited. Bienstock and Mattia
[10] propose an IP-based approach to the problem of designing networks that are
robust to sets of cascading failures and thus avoid blackouts; the binary decision
is whether to upgrade a line’s capacity. The authors of [15] propose a method for
optimal transmission switching for the problem of minimizing the cost of genera-
tion dispatch by selecting a network topology to suit a particular load. In common
with the formulation presented here, binary variables represent switches that open or
close each line and the DC power flow model is used, resulting in an MILP problem.
Finally Fan et al. [12] propose model for controlled islanding where binary variables
indicate islanding decisions and a linear “DC” network model is used.

9.3 Power System Operation

Consider a network N that comprises a set of buses B = {1,2, . . . ,nB} and a set of
lines L . The two vectors F and T describe the connection topology of the network:
a line l ∈L connects bus Fl to bus Tl . There exists a set of generators G and a set of
loads D . A subset Gb of generators is attached to bus b ∈B; similarly, Db contains
the subset of loads present at bus b ∈B.

Power is distributed through the network by alternating current. Unlike other
utility networks such as gas, water or telecommunication, for power networks the
operator has no direct influence over the routing of the power; rather the network
will arrange itself into a steady state that is governed by Kirchhoff’s laws. The state
of the network can be described by the voltage level vb and phase angle δb at each
bus b ∈B in the network. Voltages are measure in per units (p.u.) against the nomi-
nal bus voltage whereas phase angles are measured against some arbitrary reference
bus. Current is driven through lines by differences of voltages and phase angles at
each end of the line. It is convenient to decompose an AC power flow into its real
(i.e. the net energy flow over a cycle) and reactive components. The characteristics
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of a line l are described by its conductance gl (the reciprocal of its resistance) and
its susceptance bl .

The real and reactive power injections into a line l from bus b to b′ at bus b are
given by the power injection equations

pbb′ = glv
2
b− vbvb′

(
gl cosθl + bl sinθl

)
, (9.1a)

qbb′ =−blv
2
b− vbvb′

(
gl sinθl− bl cosθl

)
, (9.1b)

where θl = δb−δb′ is the phase angle difference across line l. Note that these are not
symmetric: the power injection at bus b is not the negative of the power injections at
the opposite bus b′, representing the effect of line losses. Here and in the following
we interchangeably use the index l or bb′ for a line; the latter is used where we want
to make the index of its start and end bus explicit. We also use the notation v to refer
to the vector of all bus voltages or vG for the voltages at generator buses only. Real
and reactive power balances are imposed at each bus b ∈B giving

∑
g∈Gb

pG
g − ∑

l∈L :Fl=b

pbb′ − ∑
l∈L :Tl=b

pbb′ − gB
b v2

b,= ∑
d∈Db

pD
d , (9.2a)

∑
g∈Gb

qG
g − ∑

l∈L :Fl=b

qbb′ − ∑
l∈L :Tl=b

qbb′+ bB
b v2

b,= ∑
d∈Db

qD
d . (9.2b)

Here gB
b and bB

b are the shunt conductance and susceptance at bus b, representing
the fact that equipment installed at the bus itself may absorb real and reactive power.
Further pG

g and qG
g are the real and reactive generation at generator g, while pD

d and
qD

d are the real and reactive power demand of load d.
In operating the network real and reactive demands pD

d and qD
d at each bus are

given and the operator decides on real generation pG
g and voltage vg at all generator

buses. The real and reactive power flow through the lines is thus fully determined
by the network topology, demand and generation and voltage at the generators.

For later discussion it will be convenient to partition the variables describing the
network into controls (pG

G ,vG ) and state variables x = (qG
G ,vB\G ,δ , pbb′ ,qbb′) and

summarize the power flow equations (9.1) and (9.2) with a slight abuse of notation as

PFN (pG
G ,vG ;x) = (pD,qD)�, (9.3)

where the subscript N indicates that the form of the constraints depends on the
network topology.

Not all levels of generation are feasible. A typical network will impose
operational constraints on the state variables. Voltages are typically required to be
within a specified range of the nominal voltage

V min ≤ vb ≤V max, ∀b ∈B, (9.4)

where V min = 0.94p.u.,V min = 1.06 p.u. are commonly used, while heating limits
impose a bound on line flows
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p2
bb′+ q2

bb′ ≤ (Smax
l )2, ∀l = (b,b′) ∈L , (9.5)

further generator reactive power output must be within the operating limits

QG,min
g ≤ qG

g ≤ QG,max
g , ∀g ∈ G . (9.6)

Again it will be convenient to express the state constraints (9.4)–(9.6) short as

x ∈H .

Since the power flow equations are nonlinear, the state of the power system is not
necessarily unique and there may be several feasible solutions to (9.3). Indeed, so
called “spurious” solutions to the power flow equations are well documented [17].
It is unclear what their prominence in real-life power systems is.

9.3.1 The DC Model

Under normal system operating conditions it is reasonable to make the simplifying
assumptions that the reactance of each line is much larger than its resistance (bl �
gl ≈ 0), all voltages are close to the nominal system voltage 1 p.u. and the phase
angle difference θl across all lines is small. The standard “DC” approximation to
AC power flow linearizes the power flow equations around this operating point: if
we substitute vb = 1 and gl = 0 into the power injection equation, we obtain

pbb′ =−bl sinθl , qbb′ =−bl + bl cosθl .

If we in addition use the small-angle approximations

cosθ ≈ 1, sinθ ≈ θ ,

we get
pbb′ =−blθl , qbb′ = 0, (9.7)

thus eliminating all reactive power flows and voltage magnitudes from the model. If
we further neglect the shunt term in (9.2a), it becomes

∑
g∈Gb

pG
g = ∑

d∈Db

pD
d + ∑

l∈L :Fl=bb′
pL

l + ∑
l∈L :Tl=bb′

pL
l . (9.8)

The resulting model which only uses the real power flow balance (9.8) and the
approximation (9.7) to the power injection equation is known as the DC model.
Its advantage is that it is a linear model. It is a good approximation under normal
operating conditions but has a number of disadvantages, principally that the model
does not include either reactive power or bus voltages and, because there are no
resistances, it does not model line losses.
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9.3.2 Contingency Response

We are interested in the response of the network to an unforeseen contingency, such
as equipment failure. In the case of a line or bus failure the power flows through
the network will rearrange themselves instantaneously according to the power flow
equations in the remaining network. In this short-term response it is usually assumed
that the real and reactive loads imposed on the network as well as real power gen-
eration at the generating buses stay constant. Generators are equipped with voltage
regulators that will automatically adjust the generators reactive power output (within
the generators design limits) in order to maintain constant voltage. Generator buses
are thus assumed to have constant real power and voltage post-contingency (PV-
buses), while all other buses are assumed to have constant real and reactive load
(PQ-buses).

Naturally, a contingency may isolate a load or generator from the remainder
of the network, or it may directly impact a generator bus, leading to over- or
undersupply of power in the network (and thus to an infeasible post-contingency
load-flow problem). In a real network such a situation is handled through auto-
matic frequency-driven generation and load shedding response: an AC power sys-
tem has a system frequency (50 or 60 Hz) which is the same throughout the system.
In a generation-starved system, the system frequency will drop (since some of the
energy stored as rotational energy will be converted to electrical energy). This drop
in system frequency is automatically detected by regulators who will attempt to in-
crease the generator outputs. This can be successfully done for small disturbances
(such as changes in load arising in standard network operation); however, it may be
insufficient to deal with large disturbances such as the loss of a generator due to a
contingency. In that case the next automated response would be a pre-determined
load shedding program that starts to intentionally disconnect loads from the net-
work driven solely by a severe drop in system frequency. Power systems are usually
operating in an (n−1) secure state, that is after the failure of any one line or bus the
system is guaranteed to still be in a safe operating state.

All these responses are automatic and do not involve active intervention by the
system operator. It is important to note that each response is triggered by information
available in the locality without awareness of the full state of the system. In the type
of major system disturbances under discussion in this chapter such full knowledge
of the system state may not be available.

9.3.2.1 Dynamic System Stability

The solution given by the power flow equations describes the steady state of the
system, that is the state that the system will settle to once any oscillations have died
down due to damping. The discussion of the system response to a contingency in
the previous section has assumed that the system operating point will move instan-
taneously from the old steady state to the new one. In reality power systems show
dynamic behaviour: a power system includes a significant amount of mechanical
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inertia (e.g. rotors in generators); thus as a result of a contingency the system state
will start oscillating about the new steady-state point. While there is usually enough
damping for those oscillations to die down rapidly, occasionally they may be vio-
lent enough to trigger protection mechanisms that switch off some of the equipment.
Thus although there is a feasible steady state in the contingency the system may col-
lapse in the attempt to reach it.

The dynamic behaviour is governed by differential equations, so is difficult
to include in an optimization model. Instead surrogates such as slow-coherency
analysis have been suggested. We come back to this point in Sect. 9.10.

9.4 Causes of Recent Blackouts

A review of recent power system blackouts and a discussion of their possible causes
can be found in [8]. We give here a brief summary of the sequence of events that
has led to two of the major blackouts in the last decade.

The August 2003 blackout in the Northeastern USA and Canada started as a
localized fault in a small region of northern Ohio, but spread quickly to blackout
the entire American Northeast. The disturbance started shortly after 3 pm on Au-
gust 14 with the tripping of three local transmission lines due to sagging into trees.
All three lines were well within their rated capacity (48%, 88% and 93%, respec-
tively). The line trips were mainly due to the environmental conditions (hot, still
day), thus reducing ambient cooling of the line. The trips were largely independent,
although the failure of the first line did increase the loading and hence the sagging
of the other two lines. After the first trip the system was outside its (n−1) operating
limits; therefore, intervention by the system operator would have been necessary.
However due to a software fault, the control centre was unaware of the line faults.
As a result of these faults between 3.39 pm and 4.05 pm further 16 local (138 kV)
lines were disconnected automatically due to exceeding their safe operating load. At
this point local load shedding would likely have still been able to avert further con-
sequences. However at 4.05 pm a crucial regional (345 kV) line tripped due to being
overloaded. At this point the cascade was unavoidable. As the power flows tried
to circumvent the downed lines to keep supplying northern Ohio, more and more
lines were first overloaded and then automatically tripped, escalating the problem.
By 4.13 pm, within 8 min of the start of the cascade the fault had spread to the entire
US Northeast and Canada, and 50 million customers were without power. Figure 9.1
shows the progress of the blackout over those 8 min. While the initial cause of the
fault was inadequate tree maintenance, the reason for the cascade was lack of situa-
tional awareness on behalf of the control centre.

A second example is the Italian blackout [13, 27] in the early morning of 28
September 2003 that isolated Italy from the rest of the European network and, due
to severe generation shortage in Italy, resulted in power loss in the majority of Italy.
Fifty-six million people were left without power. At the time of the blackout Italy
was importing 6.7 GW (or 25% of its total load) from other European countries.
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Fig. 9.1 Progress of the 2003 US blackout: cumulative number of lines and generators lost over
time (plot taken from [31])

This was 300 MW over the agreed limit. As a result several lines in Switzerland
were close to their operational limit. At 3.11 am a major transmission line from
Switzerland to Italy failed due to tree contact. The system was then operating out-
side the planned contingency state and required manual intervention. While some
load was reduced, again due to lack of situational awareness, too little was done
too late and by 3.25 two more lines from Switzerland to Italy tripped. The result-
ing instability of the network caused all remaining transalpine connections to trip
within seconds, isolating Italy from the rest of Europe. Due to the severe generation
shortage in Italy, frequency dropped and automatic load shedding started. However,
the frequency drop was so severe that automatic protection mechanism of several
generators took them off the grid, escalating the problem. Three minutes after the
separation of Italy all power generators in Italy were switched off.

In both cases the power system has been driven by external events to a state
outside its normal operating regime in which operator intervention would have to
be taken. However, due to insufficient or wrong assumptions about the state of the
network on behalf of the operators, they were unable to take the appropriate action
to prevent the cascading of the network fault.

The occurrence of these situations is our motivation to use optimization to find
a robust response that can be used by the operator to return the system to a safe
operating state, even if there is uncertainty about the current state of the network.

9.5 Stochastic Network Defence Model

A common observation of recent wide-area blackouts has been the lack of com-
plete information about the actual state of the system. Commonly the fault was
more widespread that initially assumed with more lines and or generators having
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been lost. Although operators did take deliberate or automatic action to prevent a
spreading of the fault, these actions were based on incomplete knowledge of the
system state and hence failed in resolving the problem.

In fact the problem faced by the system operator in such a situation is one of
optimization under uncertainty: one would like to take the best corrective action
given uncertainties about the actual state of the system. Typical actions available
to the operator are the (partial) disconnection of loads, the adjustment of genera-
tor voltages and real power outputs (within short-term ramping limits) and the rear-
rangement of the network topology—in the extreme case isolating the fault from the
remainder of the network. While the first two can (and are) employed in a largely
automatic fashion on detection of a fault, the rearrangement of the network topol-
ogy is a more drastic action whose effects are more difficult to predict in a simple
manner. We will therefore concentrate on this action.

Our conceptual setup is as follows: the system operator is faced with a
disturbance that affects a certain region of the network. While some equipment
(lines, buses, generators) are known to work or not to work, for others there may
be an uncertainty about their current state (given by a probability). The operator has
a number of possible remedial actions that he can take; once the action has been
taken, the system should be stable, independent of which of the uncertain states the
network is actually in. This situation can be modelled in a stochastic programming
setup: First-stage decisions (the active decisions taken by the system operator in re-
sponse to the system emergency) are adjustments to the real power generation Δ pG

g ,
load shedding for individual demandsαd ∈ [0,1] and line disconnection decisions yl .
We assume that loads can be shed individually and that real and reactive load of a
given demand d will be scaled uniformly by the factor αd .

The scenarios are the possible states of the network topology. Let B0 ⊆B and
L 0 ⊆L be the set of buses and lines, respectively, whose state is uncertain. Let
E 0 = B0 ∪L 0 and for every piece of equipment e ∈ E 0. Then the set of possible
network topologies Ns is given by the power set P(E 0) of E 0. We denote by S the
scenario set and for every s ∈S let Ns be the network topology corresponding to
scenario s where scenario probabilities πs could be estimated from historical data of
equipment failures. In this setup the number of scenarios would be exponential in
the number of uncertain pieces of equipment. The recourse problem would ensure
that the system has a stable operating state xs for every contingency scenario s, i.e.
there is a feasible point for

PFNs(pG,vG ,xs) = (pD,qD)�, xs ∈H .

The recourse problem would further model the automatic system response to the
contingency. Since we assume that the system operator is never aware of the actual
state of the system, no active decisions are possible. Rather we assume that auto-
matic generation adjustment and load shedding are taking place in the following
manner.

For every generator there is a frequency response curve αg(σ) that, for a
given contingency severeness σ , would adjust the generator output Δ pG

g within the
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generators short-term ramping limits |Δ pG
g | ≤ rg. In the real system σ would be

measured by the system frequency; the standard AC power flow model presented
above, however, does not model system frequency. Nevertheless automated network
response driven by system frequency can be modelled by an automatic response
driven by real power load–generation mismatch. Note that σ is a single system
wide parameter, modelling a uniform system wide response. This reflects the fact
that any response is automatic with no opportunity for individual generator decisions
by the operator. Once all generators are at the short-term adjustment limit any fur-
ther system response will be by automated load shedding. This again is modelled
by a prescribed load shedding curve αd(σ) for every demand d which determines
the proportion of the demand (pD

d ,q
D
d ) that is to be shed. There is thus a unique σ

for each contingency case that will ensure real power load–generation balance in
the contingent system. In our conceptual model this σ will be set by the recourse
problem. Note that in the discussion so far we have assume that since the system
frequency is used as a feedback mechanism, there is a single parameter σ to control
the system response. This is correct as long as the post-contingency system remains
connected. If this is not the case there will be a separate frequency (and hence the
need for a separate σ ) in each connected component. In order not to overburden the
notation we use a single σ in the presented model.

The system operator would thus be faced with the following stochastic
programming problem (variables are Δ pG,vG ,α,y, p̂D

D , q̂D
D ):

max
Δ pG,vG ,α ,y

∑
s∈S

πsQs(N (y),vG , p̂G
G , p̂D

D , q̂
D
D)

s.t. |Δ pG
g | ≤ rg, ∀g ∈ G

(p̂D
d , q̂

D
d ) = αd(pD

d ,q
D
d ), ∀d ∈D

p̂G
G = pG

G +Δ pG
G

(9.9)

where Qs( ˆN ,vG , p̂G
G , p̂D

D , q̂
D
D) is the amount of load that can be supplied after

possible automatic load shedding in scenario s, given that as a result of the first-
stage decisions the network topology is ˆN and the intended loads are given by
(p̂D

D , q̂
D
D):

Qs( ˆN ,vG , p̂G
G , p̂D

D , q̂D
D) = max

σs,xs,vG ,s
∑

d∈D
pD

d,s

s.t. PF ˆN ∩Ns
(pG

s ,vG ,s,xs) = (pD
D ,s,q

D
D ,s)

�

pG
g,s = αg(σs)p̂G

g , ∀g ∈ G

(pD
d,s,q

D
d,s) = αd(σs)(p̂D

d , q̂
D
d ), ∀d ∈D

xs ∈H .
(9.10)

Note that there are no degrees of freedom in this formulation: per the discussion
above, the recourse problem does not model any active intervention of the system
operator but solely the automatic response which is driven by the single parameter
σ . We use the convention that the maximum over an empty set evaluates to −∞
to capture the event that there is no feasible operating state (for any amount of
automatic load shed) in any one of the scenarios.
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The main objections to this model are its large size if all possible network
situations should be considered as individual scenarios and the impossibility to
obtain much of the necessary input data (e.g. equipment outage probabilities πe).

It has been observed (e.g., in [36]) that a wide-area blackout could have been
prevented by intentionally splitting the system into islands in such a way that the
fault is contained in one of the islands and the remaining islands are viable [36].
We use this observation to derive a tractable approximation to the stochastic net-
work defence problem presented above: Rather than leaving it to the optimization
model to find a network topology that will survive in all considered disturbance
scenarios, we make the assumption that such a topology will have to isolate the
fault, by creating firebreaks that limit the spread of the fault into the remainder of
the network. In other words we seek to break the network into electrically isolated
islands, one of which will contain the faults. By this assumption we avoid having to
explicitly model every possible combination of affected equipment, such are able to
reduce the model complexity significantly.

9.6 A Case Study

In order to investigate the spread of cascading blackouts and the effects of possible
interventions we have set up the following experiments: at the heart is a simulator
that simulates the spread of a cascading blackout. It is designed to simulate the
effects of normal control actions (such as frequency-driven load shed and generation
adjustment), but not active intervention by system operators. Following the failure of
some of the operating equipment (lines, buses, generators), the simulation performs
the following steps:

1. Evaluate the load–generation mismatch in each connected component of the
network as a proxy for system frequency and uniformly shed load and (within the
ramping constraints) adjust generator output to achieve load–generation balance.

2. Perform a load-flow calculation to identify overloaded lines and voltage
problems.

(a) Any line that is overloaded at more than 115% of its emergency rating, is
deemed to trip at this iteration and is removed from the network.

(b) If no voltage feasible solution to a connected component exists, the whole
connected component is deemed to have failed due to voltage collapse.

3. The whole analysis is repeated until no more lines are tripped or the complete
network has collapsed.

We have investigated the following scenario: in the 118-bus system (see Fig. 9.2 for
a part of this network) we start from an (n−1) secure operating point, that is, the
system is designed to survive any one line failure. We now consider a scenario where
a disturbance event impacts the neighbourhood of bus 61. In fact lines 59–61, 60–61
and 61–62 are all down, but we are also unsure about the state of bus 60 and the line
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61–64. We assume that the system operator only knows that the state of these four
lines and the bus is uncertain, but not which ones are operating. Pre-disturbance the
situation of the network is such that there is a large load of 277 MW at bus 59 and
some smaller loads of 63, 84 and 78 MW at buses 55, 56 and 60, respectively. The
generators at buses 55 and 56 are not operating; instead much of the load is supplied
from the generators at buses 59 and 61 which are supplying 123.4 and 121.3 MW,
respectively.
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Fig. 9.2 A part of the 118 bus test network

According to the simulation the following sequence of events unfolds: The power
generated at bus 61 is now routed via bus 64. The line from 61 to 64 can cope with
this increased flow, but the lines 63–64 and 63–59 are overloaded and trip in the
first stage of the simulation. Power is now routed through bus 56 and first the lines
58–51 and then 54–56 and 56–57 fail. There are still connections that supply bus 59
through bus 54 and now lines supplying bus 54 (namely 49–54 and 52–53) fail. At
this point several buses in the remaining network are not able to maintain voltage
within operating bounds and the system collapses.

This case is instructive since the sequence of events is similar to that of the North
American blackout of August 2003 in that a small localized fault spreads to affect
most of the network by sequentially overloading and tripping lines as power flows
take increasingly complex routes to supply loads.

The correct operator response in this case is not obvious, partly because of the
uncertainty of the state of the lines around bus 60. From the sequence of events that
unfolds it would seem advisable to shed all or part of the load at bus 59.
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In fact the problem is caused by the fact that the generator at bus 61 is still
operational and connected to the network through line 61–64. While this line itself
has enough capacity, there is insufficient transmission capacity away from bus 64,
leading to the system collapse by successive overloading of lines. The optimal op-
erator response is to isolate the problem area by islanding buses 60 and 61. The
generation lost from bus 61 can be compensated by increasing generation at other
buses throughout the network without overloading lines. Islanding of the two buses
is thus a safe solution for all possible combinations of failures at buses 60 and 61
and the lines adjacent to them.

9.7 MINLP Islanding Formulation

9.7.1 Motivation

The analysis above suggests a robust approach in which the optimal solution should
physically separate the faulty area from the remainder of the network. We thus limit
the possible impact of the uncertainty about the network state.

The model presented here aims to physically separate all lines and buses into two
sections: a “healthy” Section 1 that only includes equipment that is certain to work
and an “unhealthy” Section 0 that includes all doubtful equipment. This is done
subject to the constraint that the remaining network in the healthy section must have
an AC feasible steady state, i.e. feasible power flows that respect the power flow
equations and operational constraints must exist. In particular this means that the
islands have to be load–generation balanced. As in the stochastic network defence
model, it may be necessary to shed load or adjust generator output to achieve this
target. The objective of the model is to minimize the necessary load shed.

Figure 9.3a illustrates the situation: uncertain lines and buses are indicated by a
“?”. Figure 9.3b shows a possible islanding solution for this network: all uncertain
buses have been placed in Section 0 and all lines connecting Sections 0 and 1 as
well as all uncertain lines with at least one end in Section 1 are disconnected. Thus
the fault is electrically isolated from the remainder of the network. Note that neither
section is required to be connected so may contain more than one island: in Fig. 9.3b,
Section 1 comprises islands 1, 3 and 4, and Section 0 is a single island.

Loads may be placed in the unhealthy Section 0. If so, there is a certain prob-
ability that the load cannot be supplied, namely if the unhealthy section collapses.
The optimization will minimize the amount of load placed in Section 0 as well as
the planned load shed.
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Fig. 9.3 (a) Above: illustration of a network with uncertain buses and lines. (b) Below: the island-
ing of that network by disconnecting lines

9.7.2 The Model

9.7.2.1 Sectioning Constraints

As before let B0 ⊆ B and L 0 ⊆ L be the subset of buses and lines that are
suspected to be faulty or at risk. To place buses into sections a binary variable γb

is defined for each bus b ∈B; γb is set equal to 0 if b is placed in Section 0 and
γb = 1 otherwise:

γb = 0, ∀b ∈B0. (9.11a)

A binary variable ρl is defined for each l ∈L ; ρl = 0 if line l is disconnected and
ρl = 1 otherwise. Lines are not placed into sections: rather any line that connects
buses in different sections and uncertain lines whose two buses are in the healthy
section are required to be disconnected. In our model this is enforced by constraints
(9.11b) and (9.11c) below. The first set of constraints (9.11b) applies to lines in
L \L 0 and expresses that a line has to be cut if its two end buses are in different
sections (i.e. |γFl = |γFl− γT1|= 1):

ρl ≤ 1+ γFl − γTl , ρl ≤ 1− γFl + γTl , ∀l ∈L \L 0. (9.11b)

Constraints (9.11c) apply to lines assigned to L 0 and disconnect any at-risk line
if at least one of the ends is in Sect. 9.1. Thus, an uncertain line either (a) shall be
disconnected if entirely in Section 1, (b) shall be disconnected if between Sections
0 and 1 or (c) may remain connected if entirely in Section 0:

ρl ≤ 1− γFl , ρl ≤ 1− γTl , ∀l ∈L 0. (9.11c)
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Given some assignments to B0 and L 0, the optimization will disconnect lines
and place buses, hence partitioning the network into Sections 0 and 1. What else
is placed in Section 0, what other lines are cut and which loads and generators
are adjusted are degrees of freedom for the optimization and will depend on the
objective function.

9.7.2.2 The Power Flow Equations

Power transmission within each island has to satisfy the power flow equations. The
power balance equation can be imposed in its original form (9.2), while the power
injection equation needs to be modified so that for a cut line:

• The real and reactive flow injected into the line at both ends is zero,
• Bus voltages and phase angles at either end are free to move independently.

This is achieved by using the following modification of the power injection
equation:

pbb′ = glv̂
2
b− v̂Ibv̂Ib′

(
gl cosθl + bl sinθl

)
, (9.12a)

qbb′ =−blv̂
2
b− v̂lbv̂lb′

(
gl sinθl− bl cosθl

)
. (9.12b)

Here v̂Ib are auxiliary variables that are required to equal the bus voltages when the
line is connected and are forced to V min otherwise:1

−(V max−V min)(1−ρl)≤ v̂Ib− vIb ≤ (V max−V min)(1−ρl), (9.13a)

−(V max−V min)ρl ≤ v̂lb−V min ≤ (V max−V min)ρl . (9.13b)

In addition

−Θρl ≤ θl ≤Θρl , (9.14a)

−M(1−ρl)≤ θl− δFl + δTl ≤M(1−ρl). (9.14b)

Here,Θ is the maximal permissible angle difference across a connected line (usually
Θ = π/2), while M is a “big-M” constant. If line l is connected, (9.14b) will impose
θl to be equal to the angle difference across a line, while for a disconnected line
(9.14a) will force θl = 0 without imposing equality of the corresponding bus phase
angles. For a disconnected line l, θl = 0 and v̂Ib = v̂Ib′ =V min and thus by (9.12) we
have pbb′ = qbb′ = 0.

1 The value of V min is somewhat arbitrary, and any other value (notably v̂ = 1) could be used for
the auxiliary variables v̂Ib for disconnected lines. It is important that both ends of the disconnected
line are set to the same value, so that the expressions in (9.12) cancel for θl = 0. Using V min allows
(9.13a) to be modelled with a single set of inequalities each.
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9.7.2.3 Generation Constraints

In the short time available when islanding in response to a contingency it is not
possible to start up generators. Generators that are operating can have either their in-
put power disconnected, in which case their real output power drops to zero, or their
output can be changed to a value within a small interval,

[
PG,min

g ,PG,max
g

]
say for

generator g, around their pre-islanded value. The limits will depend on the ramp and
output limits of the generator, and the amount of immediate or short-term reserve
capacity available to the generator. This alternative operating regime is modelled by
the constraint

ζgPG,min
g ≤ pG

g ≤ ζgPG,max
g , (9.15)

where ζg is a binary variable. If ζg = 0, then generator g is switched off and pG
g = 0;

otherwise ζg = 1 and the generator output is pG
g ∈

[
PG,min

g ,PG,max
g

]
.

9.7.2.4 Load Shedding

Because of the limits on generator power outputs and network constraints it may
not be possible to fully supply all loads after islanding. It is therefore necessary
to permit some shedding of loads. Note that this is intentional load shedding, not
automatic shedding as a result of low frequency. As in Sect. 9.5 we assume that load
can be shed individually at each bus, in which case real and reactive demand at that
bus are scaled by the same factor αd :

p̂D
d = αd pD

d , q̂D
d = αdqD

d . (9.16)

9.7.2.5 Objective Function

The overall goal in islanding is to split the network and leave it in a secure steady
state while maximizing the expected value of the load supplied. However, if a certain
load is placed in Section 0, then because this section is vulnerable, it is assumed
there is a risk of not being able to supply power to that load. Accordingly, a load loss
penalty 0 ≤ β < 1 is defined, which may be interpreted as the probability of being
able to supply a load if placed in Section 0. With this interpretation the expected
value of the load supplied is J:

J = ∑
d∈D

pD
d

(
βα0d +α1d

)
,

where

αd = α0d +α1d, ∀d ∈D , (9.17a)

0≤ α0d ≤ 1, ∀d ∈D , (9.17b)

0≤ α1d ≤ γb, ∀b ∈B,d ∈Db. (9.17c)
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Here a new variable αsd is introduced for the load d delivered in section s ∈ {0,1}.
If γb = 0 (and so the load at bus b is in Section 0), then α1d = 0,α0d = αd and the
expected load delivered is β pD

d αd . On the other hand, if γb = 1, then α1d = αd and
α0d = 0, giving a larger expected load delivered of pD

d αd . Thus maximizing J gives
a preference for γb = 1 and a smaller Section 0.

9.7.2.6 The Complete Model

The complete MINLP islanding model is thus to maximize the expected load
supplied

maxJ = ∑
d∈D

pD
d (βα0d +α1d) (9.18)

subject to sectioning constraints (9.11), modified power flow equations (9.2), (9.12)
together with the line cutting constraint (9.13) and (9.14), load shedding (9.16),
(9.17) and operating limits on line heating (9.5) and generator real (9.15) and reac-
tive (9.6) output.

The presented conceptual islanding model is a MINLP problem. In addition the
nonlinear constraints are nonconvex and even for a fixed setting of binary variables
there is a possibility of local solutions to the resulting optimal power flow problem.
Such a model is very difficult to solve. Indeed attempts to solve it with a general
MINLP solver such as Couenne [6] exceed the time and memory limits even for
small problems with 9 and 14 buses.

If the (debatable) assumption is made that the continuous NLP subproblems that
result from relaxing the integrality requirements can be solved to global optimality
by a local NLP solver, then a convex MINLP solver such as Bonmin [11] can be
used. However, Bonmin still requires an excessive amount of computational time,
frequently more than 10 h for a problem with 14 buses.

9.8 MILP Islanding Formulation

To overcome the computational complexity of the conceptual MINLP formulation
of the previous chapter we present two simplifications that were developed in [29,
30] to provide tractable approximations to the MINLP formulation presented in the
previous section.

9.8.1 DC Power Flow Model with Line Losses

An appealing idea is to use the DC OPF model instead of the AC OPF model within
the islanding model (as is done in [12]), since this would lead to a linear prob-
lem. The derivation of the DC model assumes that the system is close to normal
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operation conditions, something that is unlikely to be the case in the situation we
are interested in. Two shortcomings of the DC model in particular are relevant to
our application: the neglectance of line losses and reactive power. If line losses are
neglected the model may choose islands that appear to have sufficient power gener-
ation, but in fact have not. This effect can be somewhat mitigated by including an
approximation of line losses in a DC-based islanding model.

Such an islanding model is suggested in [29]. It employs a power flow model
that is a variant of the “DC” model with the only difference from the standard DC
load-flow model being that line losses are approximated by constant terms. Indeed
the power balance equation (9.8) is replaced by

∑
g∈Gb

pG
g = ∑

d∈Db

pD
d + ∑

l∈L :Fl=b

pL
l − ∑

l∈L :Tl=b

(pL
l − h̄L

l ), (9.19)

where h̄L
l is a (constant) estimate of the real power line loss along the line. We

can use
h̄L

l = ρlh
L0
l , (9.20)

where hL0
l is the loss immediately before islanding. The inclusion of ρl ensures

the modelled loss is zero if the line is cut. The rest of the model is the same as
the MINLP islanding model of Sect. 9.7, resulting in a mixed-integer linear (MILP)
formulation.

The issues related to reactive power however are more subtle: lack or surplus
of reactive power may result in the system not being able to support bus voltages
within their operating limits. Note that reactive power needs to be available locally,
so it is not sufficient to ensure that each island has sufficient reactive power gener-
ation to supply all loads. Indeed Trodden et al. [29] report on an example where a
shunt reactor used to compensate reactive power on an underground cable depresses
voltages after that cable has been cut. The “DC” model is blind to such issues.

9.8.2 Piecewise Linear AC Power Flow Approximation

Motivated by this, in [30], this model is extended to include a PWL approximation
to AC power flow, in which voltage and reactive power are modelled. This is done
by using a PWL model of the cosine term in the power injection equation that would
be the dominant source of error in a standard linear formulation. Depending on the
number of pieces used in the PWL approximation, this model of the cosine can be
of arbitrary precision.

Its starting point is to linearize the power flow equations around unit voltages and
zero-phase angle differences (v = 1 and θ = 0) to obtain

∑
g∈Gb

pG
g = ∑

d∈Db

PD
d + ∑

(b,b′)∈L

pbb′+ ∑
(b′,b)∈L

pbb′+ gB
b (2vb− 1), (9.21a)
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∑
g∈Gb

qG
g = ∑

d∈Db

QD
d + ∑

(b,b′)∈L

qbb′+ ∑
(b′,b)∈L

qbb′ − bB
b (2vb− 1), (9.21b)

and

pbb′ = gl(2vb− 1)− gl
(
vb + vb′+ cl− 2

)− blsl , (9.22a)

qbb′ = bl(1− 2vb)+ bl
(
vb + vb′+ cl− 2

)− glsl , (9.22b)

where cl = cosθl and sl = sinθl . As a next step it would be natural to use the
small-angle approximations cl ≈ 1,sl ≈ θl , which incur an error of order θ 2

l and θ 3
l ,

respectively. Table 9.1 gives the maximum absolute errors for each of the constituent

Table 9.1 Approximation errors in line flow terms

Term Approximation Max abs error on X

v2
b 2vb−1 0.0025

vbvb′cl vb + vb′ + cl −2 0.0253
vbvb′ sl sl 0.0659

cl 1 0.2340
sl θl 0.0553

terms in the thus approximated flows, over a typical range of operating voltages
and angles (i.e. the domain X =

{
(vb,vb′ ,θl) : 0.95≤ vb,vb′ ≤ 1.05, |θl| ≤ 40 ◦

}
).

As can be seen the small-angle cosine approximation incurs the largest error.
To overcome this instead of the small-angle approximation an N-piece piecewise
linear PWL approximation to the cosine is used:

cl = cl,iθl + dl,i,∀θl ∈ [xl,i,xl,i+1], i ∈ {0, . . . ,N− 1}, (9.23)

where cl,i and dl,i are obtained by evaluating cosx at breakpoints {xl,0, . . . ,xl,N}.
Note that the modelling of (9.23) requires the use of integer variables. This can
however be done by using special ordered sets (SOS) of type 2, which some solvers
(e.g., CPLEX) can handle directly and efficiently.

9.8.3 Post-Islanding AC Optimal Load Shedding

Both the DC and PWL islanding model use an approximation to Kirchhoff’s laws.
Thus neither can guarantee that an islanding solution obtained from the models has
a feasible steady-state operating point. In order to evaluate the quality of the islands
returned by each of the above scheme a standard AC optimal flow problem has been
solved for each of the islands generated. Load shedding and adjusting generator real
outputs within ramping limits (9.15) are allowed; however, all binary variables are
fixed to the solution from the islanding models.
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9.9 Computational Results

This section presents computational results using the above islanding formulations.
First the construction of the test problems is described, then the quality of the
islanding solutions returned by the two MILP-based models is evaluated and finally
we comment on the necessary solution times. We only give a summary of results
here; a fuller set is available from [29, 30].

9.9.1 Islanding Test Cases

A set of islanding test cases was built based on IEEE systems with between 9 and
300 buses. For a network with nB buses, nB scenarios were generated by assigning
in turn each single bus to B0.

Voltage limits were set to 0.94p.u.≤ vb ≤ 1.06 p.u. for all buses. The lower and
upper bounds on real power output for generator g, PG,min

g and PG,max
g , were defined

as ±5% of the pre-islanding output, PG∗
g , obtained by solving an AC OPF on the

intact network prior to islanding. Reactive power outputs were allowed to vary over
their full range. In the objective function, a value of 0.75 is used for the load loss
penalty β . For the PWL approximation for a line l12 pieces are used to cover a range
of 10 ◦ either side of ±|θ ∗l |, where θ ∗l is the pre-islanding phase difference across
the line.

All the test are performed on a 64-bit Linux machine with Intel i7-2600 processor
and 8 GiB RAM, using CPLEX 12.4 as the solver.

9.9.2 AC Feasibility and Solution Accuracy

We first investigate the quality of the solutions obtained by the two MILP-based
islanding models. Table 9.2 gives the percentage of test cases for various network
sizes for which the post-islanding optimal load shedding problem (AC-OLS) could
not find a feasible solution, i.e. the solution produced by the islanding model is
not operationally feasible. On this measure the islands created by the DC model
are infeasible in 10–20% of cases across all network sizes. In all these cases the
infeasibilities were caused by bus voltages exceeding their limits: if voltage bounds
are relaxed by a further 0.06 p.u., i.e. to 0.88p.u.≤ vb≤ 1.12 p.u., then the islanding
solution is AC feasible in all cases. This may represent an acceptable solution in an
emergency, but such voltages would leave the system in a weakened state which is
undesirable.

The PWL-based islanding model on the other hand is able to produce islands that
allow AC feasible solutions in all cases. This is due to the fact that, as intended,
the PWL model is able to approximate reactive power and voltages. Figure 9.4
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compares the voltages at all buses and reactive flow in all lines as predicted by the
PWL approximation and the full AC model for the 24-bus test network. It demon-
strates a good matching of the predicted with the actual values.
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Fig. 9.4 Comparison of AC PWL and AC solutions for 24-bus network

Table 9.2 Percentage of AC-infeasible solutions

nB 9 14 24 30 39 57 118 300

DC 0 13 21 23 17 10 12 18
PWL-AC 0 0 0 0 0 0 0 0

9.9.3 Computation Times and Optimality

Table 9.3 reports the mean time over all test cases to solve the models to 1%
optimality gap. Results are encouraging in that all problems can be solved within
30 s on average with the PWL model taking slightly longer, but not prohibitively
so. It can also be seen that islands in some systems are much harder to find than in
others, irrespective of network size. However, a few remarks are in order:

• The solution of an MILP problem often makes fast progress in finding a solution
and then takes a long time to prove that there are no possible better solutions.
In practice, since islanding is a measure of last resort, proven optimality is not
a priority, and being able to provide good, feasible islands quickly is more
important. We therefore report on times to achieve a solution that is proven to
be within 1% of the true optimal. The analysis of the AC feasibility of the islands
discussed earlier in Table 9.2 was based on these solutions.

• We report average solution times over all test cases, when in fact the times are
highly variable. Indeed the median for all cases is below 1 s. On the other hand
there are a small number of cases where 1% optimality gap cannot be reached
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within the time limit of 500 s. In all cases feasible islanding solutions are found
very fast and the actual MIP gap of the best solutions found after the time limit
is reached is always acceptable (see Table 9.4).

Nevertheless we wish to comment on how an islanding scheme based on the
presented models could be used in practice. We assume that a decision if and how
to island has to be taken very quickly, probably within 5 min. We would suggest to
run the islanding model as soon as a fault is suspected. Any integer feasible solution
found by the solver (even if not optimal) should be returned immediately

Table 9.3 Mean times (s) to solve models to 1% MIP gaps

nB 9 14 24 30 39 57 118 300

DC 0.03 0.08 0.13 0.10 0.15 25.4 4.66 0.61
PWL 0.0 0.6 0.5 0.9 0.6 28.8 16.5 14.5

Table 9.4 MIP gaps (%) of solutions returned at 500 s

nB 39 57 118 300
Number 2 4 4 3

Min 0.34 0.21 0.61 0.11
Mean 0.37 2.37 1.22 0.89
Max 0.41 5.12 1.69 2.37

and checked (on a different processor) for AC feasibility. In this way a record of
the best found AC feasible islanding solution would be kept and our experiments
suggest that the first implementable solution would be found very quickly. In order
to speed the process up further and to cover against cases where the problem is
very difficult the islanding model could be run as a matter of course under normal
network operation periodically to have access to an islanding plan when the need
arises. If typical patterns of uncertain regions can be identified, islanding solutions
for these patterns can be computed off-line. Finally, to provide a backup, one of
schemes based on graph partitioning could be run in parallel to our model—these
would be expected to find a partitioning very fast, however without any guarantee
that this partitioning leads to an AC feasible operating point of the islands.

9.10 Extensions: Dynamic Stability

We have concentrated on islanding schemes whose primary focus is to create islands
that pose an AC feasible steady-state operating point at a minimum level of ex-
pected load lost. This disregards the issue of dynamic stability, namely whether
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such an operating point will be reached in practice or whether the shock to the
system created by the cutting of lines may cause uncontrollable oscillations.

The optimal islanding problem with objective J often has multiple feasible
solutions with objectives close to the optimal value. This flexibility can be exploited
by including penalty terms ε ∑l∈L Wlρl , with appropriately chosen weights Wl , in
the objective that for example discourages the disconnection of lines with large pre-
islanding power flow. This will minimize the disruption caused to the system by the
act of islanding and thus increase the likelihood of dynamic stability.

Indeed as reported in [29] we have tested the islanding solutions found by the
DC model in a time-domain simulation and have found that 14 out of a total of
452 test runs led to dynamically unstable solutions. In all cases, however, resolv-
ing the model with penalties on cutting high-flow lines resulted in dynamically
stable islands. In addition coherent groups of generators can be determined by
slow-coherency analysis pre-islanding [5] and the placing of generators in the same
coherent group into different islands can be discouraged by penalties in the islanding
objective. This approach is described in more detail in [30].

9.11 Conclusions

In this chapter the problem of finding a robust operator response to prevent an
imminent cascading blackout when the exact state of some parts of the system is
uncertain has been studied.

We have cast the problem within a conceptual stochastic programming setup.
However due to the number of possible system states that need to be considered
such a model is intractable. Instead we argue that a possible (and quite likely the
only) robust operator intervention is to island the system, i.e. to electrically isolate
the area affected by the disturbance.

An optimization-based approach for intentional or controlled islanding has been
presented. Starting from a (still very difficult) MINLP formulation that takes into
account nonlinear network constraints, we have presented two possible mixed-
integer linear models based on different approximations of the network model. The
approach is flexible with respect to the aims and objectives of islanding and finds
islands that are balanced and satisfy real and reactive power flow and operating
constraints.

The simpler DC-based approach, while faster to solve, has been observed to
occasional lead to islands with out-of-bound voltages. The more refined PWL model
has been able to overcome these problems in all cases at the expense of a moderate
increase in computation time. Both proposed models find good feasible islanding
solutions very quickly in almost all cases. We have suggested how such a scheme
can be used in practice.

While the dynamic response is not explicitly modelled in the optimizations,
time-domain simulations of the islanding solutions have indicated that instability
is avoided by appropriate choices of penalties on cuts to high-flow lines and discon-
nections of generating units, both of which discourage disruption to the network.
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Chapter 10
Complementarity and Game-Theoretical Models
for Equilibria in Energy Markets: Deterministic
and Risk-Averse Formulations

Juan Pablo Luna, Claudia Sagastizábal∗, and Mikhail Solodov

Abstract Electricity and natural gas transmission and distribution networks are
subject to regulation in price, service quality, and emission limits. The interaction
of competing agents in an energy market subject to various regulatory interventions
is usually modeled through equilibrium problems that ensure profit maximization
for all the agents. These types of models can be written in different manners, for
example, by means of mixed complementarity problems, variational inequalities,
and game-theoretical formulations. More generally, we consider energy markets
both in deterministic and stochastic settings and explore theoretical relations be-
tween the various formulations found in the literature and in practice. Our analysis
shows that the profit-maximization complementarity model is equivalent to a game
with agents minimizing costs if the setting is deterministic or risk neutral. On the
other hand, when the agents exhibit risk aversion which is natural in this type of
markets, the equivalence no longer holds. This gives rise to an interesting econom-
ical interpretation. As a complement to our theoretical study, and for the European
natural gas market with deterministic data, we present some numerical results show-
ing the impact of market power on equilibrium prices.

10.1 Introduction

In spite of an undeniable worldwide trend of liberalization, industries dealing with
energy networks (and to a lesser extent with water supply) continue to be subject to
regulation in price, entry, and service quality of the network. Regarding electricity
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and natural gas transmission and distribution, the specific mechanism chosen for
regulation impacts significantly competition and affects the network prices, invest-
ment, and reliability.

In general, good performance of the regulatory framework results in lower
operation and transmission costs, better service quality, and investment to expand
the network and face future changes in demand and supply. Regulation plays an
important role also with respect to environmental concerns, for example, encourag-
ing carbon trading to reduce CO2 emissions.

In a market of energy that is subject to various regulatory interventions it is
very important to fully understand the interaction of competing agents. Due to the
presence of relatively few companies generating power in a given region, electric-
ity markets are naturally set in an oligopolistic competition framework. A similar
situation arises in the natural gas industry.

In a centralized environment the paradigm of cost minimization defines energy
prices based on marginal costs or shadow prices obtained by optimization. In a
liberalized setting, by contrast, prices are computed through equilibrium models
aimed at ensuring profit maximization for all the agents. These types of models can
be formulated in different ways, for example, by means of mixed complementarity
problems (MCP), bi-level programming, and mathematical programs with equilib-
rium constraints. We mention [1, 2, 4, 5, 8, 17, 18, 19, 26, 34], without the claim of
being exhaustive.

In this work we explore the relations between mixed complementarity,
variational inequality, and game-theoretical formulations of energy markets both
in deterministic and stochastic settings. Our analysis shows that the profit-
maximization complementarity formulation is equivalent to a game with agents
minimizing costs if the setting is deterministic or risk neutral. On the other hand,
when the agents in the market exhibit risk aversion, which is natural in this type
of markets, the equivalence no longer holds. More precisely, the risk-averse game
becomes equivalent to a complementarity model where agents maximize the ex-
pected remuneration and hedge risk only in the cost.

In the development that follows, we consider a stylized energy market that is
general enough to cover the generation capacity expansion model [9] as well as the
European natural gas market model in [14]. For the latter market and in a determin-
istic setting, we also present some numerical results showing the impact of market
power on equilibrium prices.

Some comments about our notation and terminology are in order. For x,y in any
given space, we denote by 〈x,y〉 the usual (Euclidean) inner product, and we write
x⊥ y to say that 〈x,y〉 = 0. By ND(x) we denote the normal cone to the convex set
D at x, that is, ND(x) = {w : 〈w,y− x〉 ≤ 0, for all y ∈ D} if x ∈ D and ND(x) = /0
otherwise.

The variational inequality (VI) [11] associated to a mapping F and a convex set
D consists in determining a point x̄ ∈ D such that the following inequality holds,
for every y ∈ D: 〈F(x̄),y− x̄〉 ≥ 0. In terms of the normal cone, this means that
0 ∈ F(x̄)+ND(x̄). The latter inclusion is called a generalized equation (GE). The
MCP is a VI (equivalently, GE) with the set D defined by box constraints (where
some bounds can be infinite).
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10.2 A Simple Network of Agents

Our initial market is composed of producers, traders, and one end-consumption
sector like in Fig. 10.1. Producers generate some kind of good (electricity, natu-
ral gas) that is sold to traders in an amount Si

Pqi
p for the ith producer. The jth trader

buys from the producers an amount B j
T q j

T and sells to consumers the product, after
transporting and possibly modifying it, in an amount S j

T q j
T .

Fig. 10.1 A simple market

We shall see in Sect. 10.5.1 that the model can easily incorporate pipeline and
storage operators, marketers, and other outsourcing agents like in [14]. For simplic-
ity, and without loss of generality, in our presentation we analyze a network with
only producers and traders that captures the main properties of the market model.
Differently from [14], we consider a setup suitable for [9], in which decision vari-
ables are separated in two stages. For producers, for instance, some investment to
increase capacity has to be decided at stage 0, in order to decide how much produce
at stage 1. Another example is, in the presence of uncertainty, when the second-
stage variables are a recourse to correct first-stage decisions, taken before knowing
the realization of uncertainty [6].

In what follows, at equilibrium, all variables are denoted with a bar; for instance,
π̄ stands for an equilibrium price.

10.2.1 Producers, Traders, and Market Clearing

There are NP producers, each one with decision variable (zi
P,q

i
P). As mentioned,

the variable zi
P could refer to decisions concerning capacity or technological

investments with a smooth convex cost Ii
P(z

i
P). The variable qi

P is related to
operational activities involving a smooth convex cost cPi(q

i
P). All the producer deci-

sion variables are taken in some set Xi
P which represents technological and resource

constraints. After transformation of the raw materials, expressed by a matrix Si
P of

suitable dimensions, the producer has the quantity Si
Pqi

P for sale. In our model, we
assume that producers are of the price taker type: there exists a market price that
they cannot influence directly. So, for a given price πP (exogenous to the players),
each producer tries to maximize profit by solving the following problem:
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{
max

〈
Si

Pqi
P,πP

〉− ci
P(q

i
P)− Ii

P(z
i
P)

s.t. (zi
P,q

i
P) ∈ Xi

P .
(10.1)

The trader’s model is similar; for j = 1, . . . ,NT , the jth trader has decision variable
(z j

P,q
j
T ). Given a transformation matrix B j

T of suitable size, the trader buys B j
T q j

T
from the producers at price πP. After modifying and/or transporting the product via a
matrix S j

T of suitable dimensions, the quantity S j
T q j

T is sold to consumers at price πT .
The trader may have some additional (smooth convex) operational expenses c j

T (q
j
T )

along the process and maximizes revenue by solving the following problem:

{
max

〈
S j

T q j
T ,πT

〉
−
〈

B j
T q j

T ,πP

〉
− c j

T (q
j
T )− I j

T (z
j
T )

s.t. (z j
T ,q

j
T ) ∈ X j

T .
(10.2)

We shall see below that, as in [14], traders have a special role in the market and can
exert market power by withholding supply from end costumers.

When the market is at equilibrium, there is no excess of generation and the
producers’ supply meets the traders’ demand:

NP

∑
i=1

Si
Pq̄i

P−
NT

∑
j=1

B j
T q̄ j

T = 0 (mult. π̄P). (10.3)

The rightmost notation means that the producers are remunerated at a price that
clears the market: π̄P is the multiplier corresponding to (10.3) at an equilibrium.

An environmentally responsible regulator can also impose a CO2 clearing
condition, similar to (10.3), but involving different emission factors, depending on
the technology employed to generate energy; see for instance [22, 31]. The essential
feature of such constraints is that they couple the actions of different agents and in
this sense (10.3) suffices for our development.

10.2.2 Consumer Modeling

The representation of the end-consumption sector can be done in different ways,
depending on the manner price-taking producers operate in an imperfectly competi-
tive market. Market imperfections can originate in regulatory measures such as price
caps and emission limits and/or in traders exerting market power. We now review
some alternatives that fit our general modeling.

10.2.2.1 Consumer Via Inverse-Demand Function

When a price-sensitive demand curve is available, the consumers’ needs are repre-
sented implicitly by their inverse-demand function. Following [14], we model the
demand curve by an affine function P ·+d0, depending on given intercept d0 and
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matrix P. The dimension of d0 is the same as of the traders’ selling price [πT in
(10.2)]; the matrix P is of order |πT |× |S j

T q j
T |. At equilibrium the constraint

NT

∑
j=1

PS j
T q̄ j

T + d0− π̄T = 0 (10.4)

must be satisfied.
The inverse-demand function is useful to model the influence that the traders may

exert on the market, a typical phenomenon in oligopolies. Instead of selling all the
goods at price πT (exogenous, hence not controllable), the trader sells a portion δ j

at price ∑NT
k=1 PSk

T qk
T +d0 (that depends on the amount of product the trader offers to

the market). The factor δ j ∈ [0,1] determines the strength of the influence the trader
can have on the market. Accordingly, now the trader’s problem (10.2) is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
〈

S j
T q j

T ,πT

〉
−
〈

B j
T q j

T ,πP

〉
− c j

T (q
j
T )− I j

T (z
j
T )

+δ j

〈
S j

T q j
T ,

NT

∑
k=1

PSk
T qk

T + d0−πT

〉

s.t. (z j
T ,q

j
T ) ∈ X j

T .

(10.2)δ j

For future use, note that the initial problem (10.2) amounts to setting δ j = 0 for all
the traders. Like for (10.2), both prices πP and πT are exogenous for the traders.

10.2.2.2 Consumer Via Explicit Demand Constraint

Sometimes instead of inverse-demand function there is a load duration curve
segmented into blocks defining a vector D, which represents the consumers’
demand. Accordingly, letting q0 denote a nonnegative variable, at the equilibrium
the constraint

NT

∑
j=1

S j
T q̄ j

T + q̄0−D = 0 (mult. π̄T ) (10.5)

should be satisfied. To prevent traders from exerting market power, and following
[9], the deficit variable is related in a dual manner to a price cap imposed by the
regulating agency:

π̄T ≤ PC (mult. q̄0)

with PC being the maximal allowed price. Note that, in view of their definitions, the
variables q0 and πT have the same dimension.

In what follows, we refer to (10.1), (10.2)δ j , (10.3), (10.4) as implicit model,
while (10.1)–(10.3), (10.5) and the price-cap condition define the explicit model.
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10.3 Equilibrium: Mixed Complementarity Formulation

For both consumer models, the equilibrium problem consists in computing prices π̄
and decision variables (z̄, q̄) such that:

• For the ith producer, problem (10.1) written with price πP := π̄P is solved by
(z̄i

P, q̄
i
P).

• For the jth trader, problem (10.2)δ j written with prices (πP,πT ) := (π̄P, π̄T ) is
solved by (z̄i

T , q̄
i
T ), keeping in mind that if the explicit model is used, then δ j = 0

for all the traders.
• The market is cleared and (10.3) holds.
• Regarding the price at which the traders sell the final product:

– If the implicit model is used, the relation (10.4) holds.
– If the explicit model is used, both (10.5) and the price-cap conditions (cf.

(10.8) below) hold.

For the sake of clarity we derive first the MCP when the consumers model is ex-
plicit, i.e., the trader’s problem is (10.2) and both (10.5) and the price-cap condition
hold.

10.3.1 MCP in the Presence of Explicit Demand Constraint

We start by writing down the Karush–Kuhn–Tucker (KKT) optimality conditions for
the profit-maximization problems of the producers and traders. Typically, in (10.1)
and (10.2), the feasible sets Xi

P and X j
T are polyhedra, say, of the form

Zi
Pzi

P +Qi
Pqi

P ≥ bi
P and Z j

T z j
T +Q j

T q j
T ≥ b j

T ,

respectively. Let μ i
P and μ j

T denote the corresponding Lagrange multipliers. The
KKT conditions for the producers’ problems (10.1), dropping the super-indices i to
alleviate notation, are

0 = I′P(zP)−Z�PμP,

0 = c′P(qP)−Q�
PμP− S�PπP,

0 ≤ ZPzP +QPqP− bP ⊥ μP ≥ 0 .
(10.6)

Similarly for the traders, dropping the super-indices j, we write

0 = I′T (zT )−Z�TμT ,

0 = c′T (qT )−Q�
TμT +B�TπP− S�TπT ,

0 ≤ ZT zT +QT qT − bT ⊥ μT ≥ 0 .
(10.7)

The system is completed with (10.3), (10.5), and the price cap, written in the form:

0≤ PC−πT ⊥ q0 ≥ 0 . (10.8)
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To write the associated GE in a compact form, we use the primal and dual variables
defined by

p :=
(
(zi

P)
NP
i=1,(q

i
P)

NP
i=1 ,(z

j
T )

NT
j=1,(q

j
T )

NT
i=1 ,q

0
)

and d :=
(
(μ i

P)
NP
i=1 ,(μ

j
T )

NT
j=1 ,πP,πT

)

over the sets P := R
∑

NP
i=1(|zi

P|+|qi
P|)+∑

NT
j=1(|z

j
T |+|q j

T |)×R
m0

≥0 (10.9)

and D := R
∑

NP
i=1 |μ i

P|+∑
NT
j=1 |μ

j
T |

≥0 ×R
|πP|+|πT |, (10.10)

where |q0| = |πT |, by construction. For convenience, we introduce the operations
diag(·), col(·), and row(·) for matrices Mk ,k = 1, . . . ,K:

diag(Mk) :=

⎛
⎜⎝

M1

. . .

MK

⎞
⎟⎠ , col(Mk) :=

⎛
⎜⎝

M1

...
MK

⎞
⎟⎠ , row(Mk) :=

[
M1 . . . MK] .

With this notation, the matrix below has |D| rows and |P| columns:

B :=

⎛
⎜⎜⎜⎝
diag(Zi

P) diag(Q
i
P) 0 0 0

0 0 diag(Z j
T ) diag(Q

j
T ) 0

0 row(Si
P) 0 −row(B j

T ) 0
0 0 0 row(S j

T ) I

⎞
⎟⎟⎟⎠ , (10.11)

where I is an identity matrix of order |πT | = |q0|. Finally, we define the following
operator acting on primal variables only and the following dual vector:

F(p) :=

⎛
⎜⎜⎜⎜⎜⎝

(Ii ′
P (zi

P))
NP
i=1

(ci ′
P (qi

P))
NP
i=1

(I j ′
T (z j

T ))
NT
j=1

(c j ′
T (q j

T ))
NT
j=1

PC

⎞
⎟⎟⎟⎟⎟⎠

and b :=

⎛
⎜⎜⎜⎝

(bi
P)

NP
i=1

(b j
T )

NT
j=1

0
D

⎞
⎟⎟⎟⎠ . (10.12)

The GE that results from putting together the relations in (10.6), (10.7), (10.3),
(10.5), and (10.8) is

0 ∈
[

0 −B�

B 0

](
p

d

)
+

(
F(p)

−b

)
+NP×D(p,d). (10.13)

10.3.2 MCP in the Presence of Inverse-Demand Function

As the traders’ conditions are more involved when there is market power, we shall
keep the super-indices j (as otherwise there might be some confusion); the optimal-
ity system for the traders then reads as follows:
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0 = I j ′
T (z j

T )−Z j
T
�μ j

T ,

0 = c j ′
T (q j

T )−Q j
T
�μ j

T +B j
T
�πP− (1− δ j)S j

T
�πT

−δ jS j
T
�(

NT

∑
k=1

PSk
T qk

T + d0)− δ jS j
T
�P�S j

T q j
T ,

0 ≤ Z j
T z j

T +Q j
T q j

T − b j
T ⊥ μ j

T ≥ 0 .

(10.14)

As before, the KKT conditions (10.6) and (10.14), together with the market clearing
condition (10.3) and the implicit representation of consumers via (10.4), give a GE
on both primal and dual variables. There are a few differences with (10.13), though:

• There is no deficit q0, so the primal variables and primal feasible set are now

p̃ :=
(
(zi

P)
NP
i=1,(q

i
P)

NP
i=1 ,(z

j
T )

NT
j=1,(q

j
T )

NT
j=1

)
and P̃ := R

∑
NP
i=1(|zi

P|+|qi
P|)+∑

NT
j=1(|z j

T |+|q j
T |) .

Accordingly, instead of the matrix B from (10.11), we consider the sub-matrix B̃
obtained by eliminating from B the last row and column. Dual variables remain
unchanged, so the GE uses B̃ and an additional row to represent (10.4).

• The market-power terms in the third line in (10.14) enter the primal operator

F̃(p̃) :=

⎛
⎜⎜⎜⎝

Ii ′
P (zi

P)

ci ′
P (qi

P)

I j ′
T (z j

T )

c j ′
T (q j

T )

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎜⎝

0
0
0

δ jS j
T
�(

NT

∑
k=1

PSk
T qk

T + d0)+ δ jS j
T
�P�S j

T q j
T

⎞
⎟⎟⎟⎟⎟⎠

.

To alleviate the writing we omitted the super-indices ranges: i = 1, . . . ,NP and
j = 1, . . . ,NT , which are clear from the context; see (10.12).

• Replacing (10.5) by (10.4) modifies the dual vector as follows: b̃ :=(
bi

P ,b
j
T ,0 ,−d0

)�
, where, once again, i and j run in their respective ranges, as

in (10.12).

Finally, the GE with the implicit model is

0 ∈ Ã

(
p̃

d

)
+

(
F̃(p̃)

−b̃

)
+NP̃×D(p,d) , (10.15)

for a matrix Ã that, unlike the one in (10.13), is not skew-symmetric (and, moreover,
has a last line relating primal and dual elements):

Ã :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −B̃�

⎛
⎜⎜⎜⎝

0
0
0

−col((1− δ j)S j
T
�)

⎞
⎟⎟⎟⎠

B̃ 0[
0 0 row(PS j

T ) 0
]

0 − I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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We shall see in Sect. 10.4 that GEs of the form (10.13) can be reduced to VI in
smaller dimensions, which can in turn be interpreted in terms of a Nash game with
shared constraints. By contrast, the GE (10.15) cannot be reformulated the same way
directly. We next rewrite (10.15) in an equivalent form that does have the desired
properties.

10.3.3 Inverse-Demand Function and an Extra Variable

Taking inspiration from the explicit model, we introduce a new primal variable p0,
gathering the portion of supply that the traders cannot influence by exerting market
power. Thus, we require the relation

NT

∑
j=1

(1− δ j)S j
T q̄ j

T − p̄0 = 0 (10.16)

to be satisfied when the market is at an equilibrium point. In view of its definition,
this new variable has the same dimension as the deficit variable q0 from (10.5) in
the explicit model (and, hence, |p0|= |πT |).

The GE gathering (10.6), (10.14), (10.3), (10.4), and (10.16) now employs the
primal objects

p̂ :=
(
p̃ , p0

)
and P̂ := R

∑
NP
i=1(|zi

P|+|qi
P|)+∑

NT
j=1(|z j

T |+|q j
T |)+|p0|

, (10.17)

noting that the dual variables remain the same from the explicit model, given in
(10.10). The primal sets in the implicit and explicit models, from (10.17) and (10.9),
respectively, only differ in their last component (q0 and p0, respectively). While in
the explicit model the deficit is nonnegative [as a multiplier of the price cap (10.8)],
in the implicit model the new primal variable is unconstrained. So the normal cone
to q0 will be the null vector and we can require satisfaction of the inverse-demand
relation (10.4) in the corresponding new component of the GE. This eliminates the
primal–dual coupling in the last line of matrix Ã in (10.15). Similarly for ensuring
(10.16), recalling that the πT -component of the dual set is the whole space.

The resulting GE is

0 ∈
[

0 −B̂�

B̂ 0

](
p̂

d

)
+

(
F̂(p̂)

−b̂

)
+NP̂×D(p,d) , (10.18)

where we defined a matrix B̂ of order |P̂| and |D|:

B̂ :=

(
B̃ 0[

0 0 0 row((1− δ j)S j
T )
]
−Î

)
, (10.19)
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using an identity Î of order |πT |= |p0| and the primal operator and dual vector

F̂(p̂) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ii ′
P (zi

P)

ci ′
P (qi

P)

I j ′
T (z j

T )

c j ′
T (q j

T )− δ jS j
T
�(

NT

∑
k=1

PSk
T qk

T + d0)− δ jS j
T
�P�S j

T q j
T

−
NT

∑
k=1

PSk
T qk

T − d0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

b̂ :=

⎛
⎜⎜⎜⎝

bi
P

b j
T

0
0

⎞
⎟⎟⎟⎠ .

(10.20)

Like for (10.12), in both vectors i = 1, . . . ,NP and j = 1, . . . ,NT .

10.4 Equivalent Mixed Complementarity Formulations

Both GEs (10.13) and (10.18) are defined using very simple normal cones and have a
very specific primal–dual structure. The size of both GEs is the same: the respective
primal and dual sets only differ in their last primal component; q0 ≥ 0 in the explicit
model and unconstrained p0 in the implicit one.

To establish the relation of the MCP models with a game-theoretical formulation,
we state a result from [27]; see also [15]. Our GEs are a particular case of the setting
covered by the reduction method in [27], as the primal sets P are cones in both
models. Here, the relation with a game could actually be also shown directly, by
comparing the KKT conditions of the MCP model with those for a game. We prefer
to state the more general result, because it includes a nice characterization of dual
variables as solutions to a certain linear programming problem, defined a posteriori,
once the primal solution is available. As dual variables have economical meaning as
prices, this is an interesting feature; see Remark 1.

Theorem 1. The following statements are equivalent:

Primal–dual GE: the primal–dual pair (p̄, d̄) satisfies (10.13).
Primal GE + dual LP: the primal variable p̄ solves the generalized equation

0 ∈ F(p)+NP0(p), (10.21)

where P0 :=P∩S and

S :=
{
p : b−Bp∈ R

∑
NP
i=1 |μ i

P|+∑
NT
j=1 |μ

j
T |

≤0 ×{0∈ R
|πP|+|πT |}

}
.
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As for the dual variable, d̄ solves the linear programming problem

⎧⎨
⎩

min 〈Bp̄− b,d〉
s.t. B�d−F(p̄) ∈NP(p̄)

d ∈D .

(10.22)

Proof. The statement is just a rewriting of Propositions 1 and 2 in [27] in
our notation. Specifically, the respective correspondence for primal elements is
(p,d(p),P) = (p,−F(p),P), for the dual ones (y,Y ) = (d,D), and for the ma-
trix and vector (A, f ) = −(B�,b). Our set S corresponds to Z in Proposition 2,
using the fact that in our setting the polar cone therein, Y 0 =D0, has a very simple
expression. ��

Existence of solutions to the GE (10.21) can be guaranteed under mild assump-
tions, such as continuity of F and convexity and compactness of P0, [11, Corol-
lary 2.2.5]. These conditions are natural in our context: components of F consist of
derivatives of smooth convex functions and the feasible set P0 represents limited
resources. Furthermore, the existence of solutions of (10.21) implies the existence
of solutions of the (bounded) linear program (10.22), whose optimal value is zero.

The interest of Theorem 1 is twofold. First, the GE (10.21) is in primal vari-
ables only, stated over a set that (for both of our models) is a simple polyhedron.
It is therefore a VI with linear constraints. We shall see that in some cases the
multipliers corresponding to the constraints provide the equilibrium prices. Once
a primal solution is at hand, the dual component of the MCP solution can be found
by solving an easy linear program. This feature is attractive to identify (undesirable)
situations in which equilibrium prices are not unique, even if the primal part of the
equilibrium points is unique (the linear program solution will not be unique in this
case; see Remark 1 below). A second advantage of the equivalent formulation is
that, in addition to providing a mechanism for ensuring existence of solutions of
the game, the reformulation reveals the particular structure of the set P0, amenable
to decomposition. More precisely, without the coupling constraints (some compo-
nents in b−Bp, hence in S ), the feasible set is decomposable [like P from (10.9),
(10.17)]. This decomposable structure can be exploited by decomposition methods,
like the Dantzig–Wolfe algorithms developed in [20]; see also [3, 13].

10.4.1 Game for the Explicit Model

For the market in Sect. 10.2, instead of viewing the agents as maximizing revenue
like in the complementarity model, we consider a generalized Nash equilibrium
problem (GNEP) [10] with players minimizing costs. The coupling constraints in
the game are (10.3) and (10.5). In addition to the traders and producers, there is an
additional player, indexed by number “0,” in charge of capping prices. Specifically,

the purpose of the game is to find p̃ =
(
(z̃i

P)
NP
i=1,(q̃

i
P)

NP
i=1 ,(z̃

j
T )

NT
j=1,(q̃

j
T )

NT
i=1 , q̃

0
)

such

that the following minimization problems are solved by p̃:



242 J.P. Luna et al.

Producers

⎧⎪⎨
⎪⎩

min(zi
P,q

i
P)∈Xi

P
Ii
P(z

i
P)+ ci

P(q
i
P)

s.t. Si
Pqi

P +
NP

∑
i�=k=1

Sk
Pq̃k

P−
NT

∑
j=1

B j
T q̃ j

T = 0,
(10.23)

Traders

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
(z j

T ,q
j
T )∈X j

T
I j
T (z

j
T )+ c j

T (q
j
T )

s.t. −B j
T q̃ j

T +
NP

∑
i=1

Si
Pq̃i

P−
NT

∑
j �=k=1

Bk
T q̃k

T = 0,

S j
T q j

T +
NT

∑
j �=k=1

Sk
T q̃k

T + q̃0−D = 0,

(10.24)

Consumer
representative

⎧⎪⎨
⎪⎩

minq0≥0

〈
PC,q0−D

〉
s.t.

NT

∑
j=1

S j
T q̃ j

T + q0−D = 0.
(10.25)

In the GNEP (10.23)–(10.25), the market between producers and traders is cleared,
and demand is satisfied up to certain deficit, q0. The deficit is minimized by the ac-
tion of the additional player, who tries to reduce the impact of imposing a price cap.
In Corollary 1 below it is shown that (the negative of) the multiplier of the coupling
constraint (10.5) is precisely the traders’ remuneration in (10.2). We shall also see
that in the game formulation, the price cap is maintained in an indirect manner, via
(10.25).

In the game, the solution of each individual problem depends on the decisions of
the other agents in the market: for instance (10.24) is an optimization problem on the
jth trader variables (say, p j) which depends on actions of other traders (say, on p− j).
A primal point p̄ is a Nash equilibrium for the game (10.23)–(10.25) when each
player’s optimal decision (say, p̄ j) is obtained by solving the individual problem
[say, (10.24)] after fixing the other players’ decisions to the corresponding entries
on p̄ (say p̄− j).

As this notion is so general that it includes points contradicting the natural
intuition of what an equilibrium must be, it is further specialized to the notion of
variational equilibrium, as follows. Note that the value function for the producers

vi
P(x) :=

⎧⎪⎨
⎪⎩

min(zi
P,q

i
P)∈Xi

P
Ii
P(z

i
P)+ ci

P(q
i
P)

s.t. Si
Pqi

P +
NP

∑
i�=k=1

Sk
Pq̃k

P−
NT

∑
j=1

B j
T q̃ j

T = x ,

is convex. Furthermore, because in (10.23) all constraints are linear and the objective
function is differentiable, there exists a Lagrange multiplier π̌ i

P associated to the
equality constraint. This multiplier represents a marginal cost, since it satisfies
the inclusion −π̌ i

P ∈ ∂vi
P(0) [16, Theorem VII.3.3.2]. The issue with a generic

Nash equilibrium like p̄ above is that it may have multipliers associated to cou-
pling constraints of the players’ problems that are different for different players. In
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economical terms, this means that the equilibrium is “unfair,” because it benefits
some players more than others. To avoid this undesirable feature, we shall solve
a VI derived from the game and find a variational equilibrium (VE) [10] of the
GNEP (10.23)–(10.25), ensuring that the multipliers associated with the coupling
constraints are the same.

By Theorem 1, the GE (10.13) is equivalent to solving the GE (10.21), written
with the data from Sect. 10.2.2.2. Putting together (10.11), (10.9), and (10.12) yields
for (10.21) the following:

0 ∈ F(p)+NP0(p),

where the feasible set P0 :=
NP

∏
i=1

Xi
P×

NT

∏
j=1

X j
T ×R

m0

≥0∩S depends on the coupling set

S := {p= (zi
P,q

i
P,z

j
T ,q

j
P,q

0) : (10.3) and (10.5) hold}.
The equivalence between the MCP formulation and the generalized Nash game

results from Theorem 1.

Corollary 1 (Game Formulation for the Explicit Model). The MCP in
Sect. 10.2.2.2 and the game (10.23)–(10.25) are equivalent in the following sense.
Suppose the game has a variational equilibrium

p̄ :=
(
(ži

P)
NP
i=1,(q̌

i
P)

NP
i=1 ,(ž

j
T )

NT
j=1,(q̌

j
T )

NT
i=1 , q̌

0
)
,

with (μ̌ i
P)

NP
i=1 ,(μ̌

j
T )

NT
j=1 being the corresponding multipliers for the constraints in

(10.23) and (10.24), and let π̌P and π̌T be the multipliers associated to the coupling
constraints (10.3) and (10.5).

Then the primal–dual pair (p̄, d̄) with d̄ := (μ̌P, μ̌T ,−π̌P,−π̌T ) solves the MCP
given by (10.1)–(10.3), (10.5), and (10.8).

Proof. By Theorem 1, for the result to hold, d̄ needs to solve the linear program
therein. For the objects in (10.13), and for the normal cone to the primal set P from
(10.9), this linear program is
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
μP ,μT ≥ 0
any πP ,πT

NP

∑
i=1

〈
Zi

Pži
P +Qi

Pq̌i
P− bi

P,μ
i
P

〉
+

NT

∑
j=1

〈
Z j

T ž j
T +Q j

T q̌ j
T − b j

T ,μ
j

T

〉

s.t. Zi
P
�μ i

P = Ii ′
P
(ži

P) , Z j
T
�μ j

T = I j ′
T
(ž j

T ),

Qi
P
�μ i

P + Si
P
�πP = ci ′

P (q̌
i
P),

Q j
T
�μ j

T −B j
T
�πP + S j

T
�πT = c j ′

T (q̌
j
T ),

πT ≤ PC and πk
T = PCk whenever q̌0k > 0 .

(10.26)

The optimality conditions for problems (10.23) and (10.24) amount to
μ̌P , μ̌T ,−π̌P, and −π̌T to satisfy the first four equalities in the feasible set of
(10.26). Note also that, by complementarity, the (nonnegative) objective function
attains its minimum value at μ̌P , μ̌T . The last line in (10.26), written with −π̌T , is
q̌0⊥PC+ π̌T ≥ 0. As these relations result from the optimality condition of (10.25),
the desired result follows. ��
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10.4.2 Game for the Implicit Model

We now apply Theorem 1 to the GE (10.18). Writing (10.21) with the data from
Sect. 10.2.2.1, that is, using (10.19), (10.17) and (10.20), we have

0 ∈ F̂(p̂)+NP0(p̂) where P0 :=∏NP
i=1 Xi

P×∏NT
j=1 X j

T ×R
|p0| ∩S ,

for S := {(zi
P,q

i
P,z

j
T ,q

j
P, p0) : (10.3) and (10.16) hold}.

The MCP formulation of (10.1), (10.2)δ j , (10.3), and (10.4) is now equivalent to
finding a variational equilibrium of the following GNEP:

the point p̃=
(
(z̃i

P)
NP
i=1,(q̃

i
P)

NP
i=1 ,(z̃

j
T )

NT
j=1, (q̃

j
T )

NT
i=1 , q̃

0
)

solves the problems

Producers same as (10.23),

Traders

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(z j

T ,q
j
T )∈X j

T

I j
T (z

j
T )+ c j

T (q
j
T )

−δ j

〈
NT

∑
k=1

PSk
T qk

T + d0,S
j
T q j

T

〉

s.t.
NP

∑
i=1

Si
Pqi

P−
NT

∑
k=1

Bk
T qk

T = 0,

NT

∑
k=1

(1− δ k)Sk
T qk

T − p0 = 0 ,

(10.27)

Consumer
representative

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
p0

〈
NT

∑
k=1

PSk
T qk

T + d0, p0

〉

s.t.
NT

∑
j=1

(1− δ j)S j
T q j

T − p0 = 0 .

(10.28)

The game (10.23) and (10.27)–(10.28) can be interpreted as follows. The additional
player tries to maximize the traders’ revenue that is market-power-free (given in
terms of the inverse-demand function). The traders see their influence on the market
as a way of reducing costs or of increasing their income [the negative δ j term in
the objective function from (10.27)]. Transactions between producers and traders
are cleared, as before. Regarding the traders remuneration πT [i.e., the multiplier of
constraint (10.16)], we now show that the additional player controls it in a manner
ensuring satisfaction of (10.4).

Corollary 2 (Game Formulation for the Implicit Model). The MCPs in
Sects. 10.2.2.1 and 10.3.3 and the game (10.23) and (10.27)–(10.28) are equiva-
lent in the following sense. Suppose the game has a variational equilibrium

p̄ :=
(
(ži

P)
NP
i=1,(q̌

i
P)

NP
i=1 ,(ž

j
T )

NT
j=1,(q̌

j
T )

NT
i=1 , p̌0

)
,
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with (μ̌ i
P)

NP
i=1 ,(μ̌

j
T )

NT
j=1 being the corresponding multipliers for the constraints in

(10.23) and (10.27), and let π̌P and π̌T be the multipliers associated to the coupling
constraints (10.3) and (10.16).

Then the primal–dual pair (p̄, d̄) with d̄ := (μ̌P, μ̌T ,−π̌P,−π̌T ) solves the MCP
(10.18), which is equivalent to (10.15).

Proof. Like for Corollary 1, we only need to show that d̄ solves the linear program
in Theorem 1. In this case, the normal cone to the primal set P̂ from (10.17) is just
the null vector and, hence, the linear program is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
μP ,μT ≥ 0
any πP ,πT

NP

∑
i=1

〈
Zi

Pži
P +Qi

Pq̌i
P− bi

P,μ
i
P

〉
+

NT

∑
j=1

〈
Z j

T ž j
T +Q j

T q̌ j
T − b j

T ,μ
j

T

〉

s.t. Zi
P
�μ i

P = Ii ′
P
(ži

P) , Z j
T
�μ j

T = I j ′
T
(ž j

T ),

Qi
P
�μ i

P + Si
P
�πP = ci ′

P (q̌
i
P),

Q j
T
�μ j

T −B j
T
�πP +(1− δ j)S j

T
�πT = c j ′

T (q̌
j
T )

−δ jS j
T
�(

NT

∑
k=1

PSk
T q̌k

T + d0)− δ jS j
T
�P�S j

T q̌ j
T

πT =
NT

∑
k=1

PSk
T q̌k

T + d0 .

(10.29)

It is easy to see that all the relations in KKT conditions of this problem are verified
by d̄, except for the last equality, corresponding to (10.4). For the latter, observe that
since π̌T is the multiplier of the coupling constraint (10.16), and the variable p0 is
unconstrained in the problem of the extra player (10.28), the p0-component of the
optimality conditions for the game gives that 0 =−∑NT

k=1 PSk
T q̌k

T − d0− π̌T . ��
Remark 1 (Uniqueness of Prices). With the explicit model, equilibrium prices will
be unique if the linear program (10.26) has the unique solution. Likewise for the
implicit model, which depends on the linear program (10.29). This problem can be
further simplified, by eliminating the variable πT , as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
μP ,μT ≥ 0

anyπP

NP

∑
i=1

〈
Zi

Pži
P +Qi

Pq̌i
P− bi

P,μ
i
P

〉
+

NT

∑
j=1

〈
Z j

T ž j
T +Q j

T q̌ j
T − b j

T ,μ
j

T

〉

s.t. Zi
P
�μ i

P = Ii ′
P
(ži

P) , Z j
T
�μ j

T = I j ′
T
(ž j

T ),

Qi
P
�μ i

P + Si
P
�πP = ci ′

P (q̌
i
P),

Q j
T
�μ j

T −B j
T
�πP + S j

T
�(

NT

∑
k=1

PSk
T q̌k

T + d0) = c j ′
T (q̌

j
T )− δ jS j

T
�P�S j

T q̌ j
T .
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10.5 The European Network of Natural Gas

We now consider a network with a third kind of player, called outsourcer, in charge
of modifying or transporting the product before the traders supply it to the end
consumers.

Like before, producers only deal with traders and, therefore, solve problems
(10.1). By contrast, traders now deal also with the outsourcer players, who charge
a unitary price πO for their activity. The exchange between the trader and the our-
sourcer player involves transformation of the product, represented by matrices S j

T→O,

B j
T←O, Sk

O, Bk
O as schematically represented in Fig. 10.2, with the product flow.

Consumer Trader

Outsourcer

Producer
S qT

j j
T

S qO
k k

O

S qP
i i

PB qT
j j

T

B qO
k k

O

B O¨ qT
j j

T ÆS O qT
j j

T

Fig. 10.2 Market flow

The jth trader problem (10.2) is modified accordingly:

{
max

〈
S j

T q j
T ,πT

〉
−
〈

B j
T q j

T ,πP

〉
−
〈

S j
T→Oq j

T ,πO

〉
− c j

T (q
j
T )− I j

T (z
j
T )

s.t. (z j
T ,q

j
T ) ∈ X j

T .

As for the outsourcing players, denoting once more the investment-operational
decision variables of the kth agent by (zk

O,q
k
O) and similarly for the costs and feasible

set, the corresponding maximization problem is

{
max

〈
Bk

Oqk
O,πO

〉− ck
O(q

k
O)− Ik

O(z
k
O)

s.t. (zk
O,q

k
O) ∈ Xk

O .
(10.30)
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To clear the market, in addition to (10.3) and (10.4), the exchange between traders
and outsourcing players should be balanced and, hence,

NT

∑
j=1

S j
T→Oq̄ j

T −
NO

∑
k=1

Bk
Oq̄k

O = 0 .

The additional balance ∑NO
k=1 Sk

Oq̄k
O−∑NT

j=1 B j
T←Oq̄ j

T = 0 is omitted, because it is
often automatic from the condition above.

Our previous framework, starting in Sect. 10.2, covers the new network. This
network, considered in [14] to analyze the market of natural gas in Europe (using an
MCP formulation corresponding to the model in Sect. 10.2.2.1), is now considered
as a test case in the numerical experience that follows.

10.5.1 Numerical Assessment

The full European gas network described in [14] covers 54 countries and 36 markets;
the market has seven types of players representing producers, traders, and five dif-
ferent outsourcing activities. Specifically, there are 28 producers, 22 traders, 10
liquefiers, 15 re-gasifiers, 22 storage operators, 74 pipeline operators, and 36 mar-
keters.

To illustrate the analysis that can be derived from the models presented above,
we coded the MCP and game implicit models in Matlab (R2012a), using PATH
[7, 12] to solve the variational problems. The runs were performed on a PC operating
under Ubuntu 12.04–64 bit with a processor Intel Atom 1.80 GHz × 4 and 2 GB of
memory.

The data in [14] gives a game problem with 4,620 variables and 488 constraints.
We solved the equilibrium problem of the implicit model, with and without market
power. In the first instance, the trader’s problem (10.2)δ j has δ j ≡ 0. In the second,
δ j = 0.75 for Russia, Norway, the Netherlands, and Algeria; and δ j = 0.25 for the
Caspian Sea, Denmark, and the UK.

To ensure that the implementation is error-free, we first ran both formulations,
that is, the game (10.23), (10.27), (10.28) and the MCP (10.15), and checked
whether the corresponding output was alike. Table 10.1 summarizes the results.

Table 10.1 Output for the implicit model

Formulation Market
power

PATH residual CPU (s)

Game No 2E−08 36.7
MCP No 7E−08 47.3
Game Yes 7E−11 77.1
MCP Yes 2.5E−11 201.5
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The ∞-norms of the differences of the primal solutions obtained with both
approaches were very small in all the cases. We observed larger differences in the
dual components, in percentages ranging up to 6 % (for the competitive case, with-
out market power). However, this is still an insignificant difference in this context,
which allows us to conclude that the output of both formulations is indeed “the
same” and the implementations are correct.
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Fig. 10.3 Comparison of the primal and dual output

An interesting information in Table 10.1 is the CPU times. In general PATH
was very fast, but solving time increased significantly for the MCP formulation
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when there is market power. At this point, one could ask why this increase is
of importance, given that the solution times were still within some minutes. The
answer is that this increase, still significant in percentage terms, would blow up
once stochasticity is introduced to the model. According to PATH final convergence
report, when there is market power, the solver needed much more inner iterations
to converge. We observed that when decreasing the solver precision from 10−8 to
10−6, both formulations were again solved in about seventies.

A comparison of the results obtained with and without market power can be
found in Fig. 10.3, whose top and bottom graphs correspond to the primal and dual
output, respectively. The impact of market power is especially noticeable in the dual
variables, corresponding to prices: in the bottom graph in Fig. 10.3 the red circles
(competitive prices) are systematically lower than the blue crosses (market power).
The graphs also show that the largest price increase is in the last components of the
dual output, corresponding to the variable π̄T , i.e., to the remuneration of the traders.

10.6 Equilibrium for Stochastic Models

Realistic models for the energy industry often include uncertainty: for instance in
(10.5), the actual electrical load may deviate from the predicted one due to random
variations of temperature, switch off/on of local consumers, or daylight and simi-
larly in (10.1), for the generation costs ci

P(·) or the available resources defining the
feasible sets Xi

P. To reflect such variations, a stochastic model of uncertainty must
be built and the risk-averse decision process must be put in a suitable setting.

In what follows we no longer distinguish between producers, traders, and out-
sourcer players. Instead, we analyze a market with agents trying to maximize profit
on a market regulated by coupling constraints or by a price cap. Accordingly, we
unify the notation for problems (10.1)–(10.2) and consider that the agents solve
max

〈
π ,Siqi

〉− Ii(zi)− ci(qi), which is equivalent to min Ii(zi)+ ci(qi)− 〈π ,Siqi
〉
.

10.6.1 Hedging Risk: The Setting

Consider the probability space defined by a measure P on a sample space Ω
equipped with a sigma-algebra F . Decision variables are now random functions
in the space Lp(Ω ,F ,P) for p ∈ [1,+∞), with dual Lp∗(Ω ,F ,P) for p∗ ∈ (1,+∞]
such that 1/p+ 1/p∗ = 1. We sometimes use the shorter notation Lp and Lp∗ for
these spaces, which are paired by the duality product

〈x∗,x〉
P
=

∫
Ω 〈x∗(ω),x(ω)〉dP(ω) .

In the presence of uncertainty, a natural reaction of agents in the market is to hedge
against undesirable events. For the ith agent, aversion to volatility is expressed by
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a coherent (convex) risk measure ρ i(·), assumed to be a proper function, as in [6,
Chap. 6]. One possibility in the space L1(Ω ,F ,P) is to take the Average Value-
at-Risk of level 1− εi, a recent renaming of the Conditional Value-at-Risk [28].
Namely, given a confidence level 0 < 1− ε < 1, if the random outcome X ∈ L1

represents a loss (lower values are preferred), the measure is given by the expression

AV@R ε (X) := min
u

{
u+

1
1− ε

E[X(ω)− u]+
}
,

where [·]+ := max{0, ·} is the positive-part function and E(·) denotes the expected-
value function taken with respect to dP. We consider the more general functions

ρ i(X) := (1−κi)E(X)+κi AV@R εi(X) , (10.31)

depending on a given risk-aversion parameter κi ∈ [0,1].
It is shown in [6, Theorem 6.4] that any proper coherent risk measure is in fact

the support function of the domain of its conjugate; see also [24]. In particular (see
[6, Theorem 6.4, and (6.69) in Exercise 6.16]), (10.31) has the dual representation

ρ i(X) = sup
x∗∈X∗

〈x∗,X〉
P
, where (10.32)

X∗ :=

{
x∗ ∈ L∞(Ω ,F ,P) :

1−κi ≤ x∗(ω)≤ 1−κi+κi/εi a.e. ω ∈Ω
E(x∗) = 1

}
.

10.6.2 Stochastic Mixed Complementarity Formulation

For convenience, from now on, we make two simplifying assumptions:

• The concept of stochastic equilibrium and its connections with a game formula-
tion is examined for a market with agents maximizing profit as in (10.1), drop-
ping sub-indices P throughout, using an explicit model (the analysis below re-
mains valid for the implicit model too). Accordingly, the market-clearing relation
(10.3) disappears; only a stochastic variant of (10.4) is in order. Incidentally, this
is the framework considered in [9].

• The stochastic counterparts of the agents’ problems are set in a two-stage
framework. For example, in (10.23) the “investment” variables zi

P are of the
“here-and-now” type, to be decided before the uncertainty realizes. By contrast
the “generation” variables qi

P are of the type “wait and see”: they are decided at
a second stage, once ω becomes known, so qi

P depends on ω . So, dropping the

sub-index, the random vectors qi belong to the space Lp(Ω ,F ,P;Rmi
), that is,

q(ω) ∈R
mi

for all ω ∈Ω , while the prices are in the dual space Lp∗(Ω ,F ,P).

Given a price cap PC ∈ Lp∗(Ω ,F ,P;Rm0
), the complementarity formulation of

stochastic equilibrium with risk aversion (considered also in [9]) is given below.

Find
(
(z̄i ∈R

ni
)N

i=1,(q̄
i ∈ Lp)

N
i=1, q̄

0 ∈ Lp, π̄ ∈ Lp∗
)

such that
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Risk-averse
agents

{
min Ii(zi)+ρ i

(
ci(qi(ω),ω)− 〈π(ω),Siqi(ω)

〉)
s.t. (zi,qi(ω)) ∈ Xi(ω) a.e. ω ∈Ω ,

(10.33)

Coupling
constraints

N

∑
i=1

Siqi(ω)+ q0(ω) = D(ω) a.e. ω ∈Ω (mult.π(ω)),

Price cap 0≤ q0(ω)⊥ PC(ω)−π(ω)≥ 0 a.e. ω ∈Ω . (10.34)

When compared to (10.1), the agent’s problem is now set as a minimization, because
the risk-averse measure controls losses and not incomes. The objective function in
(10.33) is in fact equivalent to the one considered in [9], taking into account that the
investment functions Ii and the first-stage variables zi are deterministic, recalling
that risk measures are equivariant to translations.

10.6.3 Stochastic Variational Equilibria: Definition

Consider the following stochastic game.

Find p̃=
(
(z̃i ∈R

ni
)N

i=1,(q̃
i ∈ Lp)

N
i=1 , q̃

0 ∈ Lp∗
)

solving the problems:

Risk-averse
agents

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min Ii(zi)+ρ i
(

ci(qi(ω),ω)
)

s.t. (zi,qi(ω)) ∈ Xi(ω) a.e. ω ∈Ω ,

Siqi(ω)+
N

∑
i�=k=1

Skq̃k(ω)+ q̃0(ω) = D(ω) a.e. ω ∈Ω .

(10.35)

Risk-averse player
representing consumers

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min ρ0
(〈

PC(ω),q0(ω)−D(ω)
〉)

s.t. q0(ω)≥ 0 a.e. ω ∈Ω ,
N

∑
i=1

Siq̃i(ω)+ q0(ω) = D(ω) a.e. ω ∈Ω .

(10.36)

We define next the concept of variational equilibrium for this stochastic game.
Recall that one is generally not interested in arbitrary Nash equilibria, but rather
in VE defined as solutions to VIs derived from the game. In the general stochastic
context like the one under consideration, instead of going via an explicit VI, we
characterize VE using the Lagrange multipliers of the game coupling constraints.

Definition 1 (Stochastic VE). For a stochastic GNEP (10.35)–(10.36), the point

p̄ =
(
(z̄i)N

i=1,(q̄
i)N

i=1 , q̄
0
)

is a variational equilibrium if there exists a Lagrange

multiplier π̄ ∈ Lp∗ associated to the coupling constraint,
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N

∑
i=1

Siqi(ω)+ q0(ω) = D(ω) a.e. ω ∈Ω , (10.37)

the same for all the players, such that p̄ still solves the agents’ problems after
relaxing the coupling constraints (as in Proposition 1 below).

We now show that, under mild conditions, the concept is well defined.

Proposition 1 (Existence of Stochastic Multipliers). For the game
(10.35)–(10.36), the following holds:

1. There exists π̄0 ∈ Lp∗(Ω ,F ,P;Rm0
) such that whenever q̄0 solves (10.36), it also

solves the relaxed problem

min
q0(ω)≥0 a.e. ω

ρ0
(〈

PC(ω),q0(ω)−D(ω)
〉)− 〈q0(ω), π̄0(ω)

〉
P
.

2. Suppose for each problem (10.35) the functions Ii : Rni →R are smooth and con-
vex, while ci : Rmi×Ω →R are random finite valued, lower semicontinuous, and
convex for almost every ω ∈Ω . Assume, in addition, that the sets Xi(ω)⊂R

ni+mi

are nonempty, closed, and convex, and some constraint qualification condition
holds. If the function Ci : Rni×Lp(Ω ,F ,P;Rmi

)→ Lp(Ω ,F ,P;R) given by

[Ci(zi,qi)](ω) := ci(zi,qi(ω),ω) is continuous and well defined, (10.38)

then there exists π̄ i ∈ Lp∗(Ω ,F ,P;Rm0
) such that whenever (z̄i, q̄i) solves

(10.35), it also solves the relaxed problem
⎧⎪⎨
⎪⎩

min Ii(zi)+ρ i(C(zi,qi(ω),ω))− 〈Siqi(ω), π̄ i(ω)
〉
P

s.t. zi ∈ R
ni
,qi ∈ Lp(Ω ,F ,P;Rmi

) ,

(zi,qi(ω)) ∈ Xi(ω) a.e. ω ∈Ω .

(10.39)

Proof. Since the objective function in (10.36) satisfies (10.38) and a constraint qual-
ification condition holds automatically for the feasible set, the first item is just a par-
ticular case of the second one. Accordingly, we prove the assertion for the problem

⎧⎪⎪⎨
⎪⎪⎩

min I(z)+ρ(c(z,q(ω),ω))

s.t. z ∈R
n ,q ∈ Lp(Ω ,F ,P;Rm),

(z,q(ω)) ∈ X(ω) a.e. ω ∈Ω ,

Sq(ω) = D̃0(ω) a.e. ω ∈Ω ,

(10.40)

corresponding to (10.35) without super-indices i (setting D̃0 := D0−∑i�=k Skq̃k).
This problem is equivalent to

min I(z)+ρ(C(z,q))+ ιC (z,q)+ ιRn×S (z,q) ,
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where ιX (·) denotes the indicator function of a set X (i.e., it returns zero for
points in X and +∞ otherwise) and where we defined the closed convex sets
C := {(z,q) ∈ R

n× Lp(Ω ,F ,P;Rm) : (z,q(ω)) ∈ X(ω) a.e. ω ∈ Ω} and S =
{q∈ Lp(Ω ,F ,P;Rm) : Sq(ω) = D̃0(ω)a.e.ω ∈Ω}. By (10.38) the objective func-
tion is well defined and, with our assumptions, it is convex. Therefore, (z̄, q̄) solves
the GE

0 ∈ ∂ (I +ρ ◦C+ ιC + ιRn×S ) (z̄, q̄) ,

and the constraint qualification assumption yields that

∂ (I +ρ ◦C+ ιC + ιRn×S ) (z̄, q̄) = ∂ (I +ρ ◦C+ ιC )(z̄, q̄)+ ∂ιRn×S (z̄, q̄) .

Since ∂ιRn×S (z̄, q̄) = {0}×NS (q̄), we have that

0 ∈ ∂ (I+ρ ◦C+ ιC )(z̄, q̄)+ {0}×NS (q̄). (10.41)

We claim that for any q̄ ∈S the normal cone is given by

NS (q̄) = {ν : ν(ω) = S�π(ω) a.e. ω ∈Ω ,π ∈ Lp∗(Ω ,F ,P;Rm0
)} .

The ⊃ inclusion is straightforward. To see the converse one, first note that for any
q∈S the identity S(q(ω)− q̄(ω)) = 0 holds for a.e. ω ∈Ω (for simplicity, we omit
the symbol a.e. ω ∈ Ω below, noting that relations hold almost everywhere when
appropriate.) Thus, q̄+θ (q− q̄) ∈S for any θ ∈ L∞(Ω ,F ,P;R). By the definition
of normal cone,

〈ν(ω),θ (ω)(q(ω)− q̄(ω))〉
P
≤ 0,

and by [29, Corollary 1.9(e)], there exists θ ∈ L∞(Ω ,F ,P;R) such that |θ (ω)|= 1
and 〈ν(ω),θ (ω)(q(ω)− q̄(ω))〉= |〈ν(ω),q(ω)− q̄(ω)〉|. Therefore,

∫
Ω
| 〈ν(ω),q(ω)− q̄(ω)〉 |dP(ω)≤ 0 =⇒ 〈ν(ω),q(ω)− q̄(ω)〉= 0 .

In particular, for any u ∈ Ker(S) and q(ω) := q̄(ω) + u ∈ S , we have that
〈ν(ω),u〉= 0, which means that ν(ω) ∈ [Ker(S)]⊥ = Im(S�).

As a result, there exists a function η : Ω → R
m0

such that ν(ω) = S�η(ω),
and since ν ∈ Lp∗(Ω ,F ,P;Rm), the multiplier π : Ω → R

m0
in Lp∗(Ω ,F ,P;Rm0

)
exists and is defined by π(ω) := [S+]�ν(ω), where S+ is the Moore–Penrose pseudo
inverse. This establishes the claim, since

S�π(ω) = S�[S+]�ν(ω) = S�[S+]�S�η(ω) = S�η(ω) = ν(ω) .

In view of our claim, the inclusion (10.41) can be rewritten in the form

0 ∈ ∂ (I+ρ ◦C+ ιC ) (z̄, q̄)− (0,S�π̄)

for some π̄ ∈ Lp∗(Ω ,F ,P;Rm0
), and the result follows. ��
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10.6.4 Relation Between Risk-Averse Games and MCP

We now are in a position to give the equivalent mixed complementarity counterpart
of our risk-averse game.

Theorem 2 (MCP Formulation for the Risk-Averse Game). In the setting of
Proposition 1, suppose the risk-averse GNEP (10.35)–(10.36) has a variational

equilibrium p̄ :=
(
(z̄i)N

i=1,(q̄
i)N

i=1 , q̄
0
)

, and let (μ̄ i)N
i=1 and π̄ denote the respec-

tive Lp∗-multipliers for the endogenous constraints in (10.35) and the coupling con-
straints (10.37).

Then the primal–dual pair (p̄, d̄) with d̄ := (μ̄ , π̄) solves the risk-averse MCP
derived from the following problems:

Risk-averse
agents

{
min Ii(zi)+ρ i

(
ci(qi(ω),ω)

)
− 〈π ,Siqi

〉
P

s.t. (zi,qi(ω)) ∈ Xi(ω) a.e. ω ∈Ω ,
(10.42)

Coupling constraints as in (10.37)

Risk-averse price cap 0≤ q0(ω)⊥ x∗0(ω)PC(ω)−π(ω)≥ 0 a.e. ω ∈Ω
for x∗0 solving⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
N

∑
i=1

〈〈
x∗0(ω)PC(ω),Siq̄i(ω)

〉〉
P

s.t. E(x∗0) = 1

1−κ0 ≤ x∗0(ω)≤ 1−κ0+
κ0

ε0
a.e. ω ∈Ω .

(10.43)

Proof. To derive a complementarity formulation, we first consider (10.35). By
Proposition 1, (z̄i, q̄i) solves the relaxed problem (10.39) with π̄ = π̄ i, by Defini-
tion 1. Since the optimality conditions of the relaxed problem coincide with those
of problem (10.42), the stated result for the agents follows.

In the case of consumers’ representative, by Proposition 1 and Definition 1, q̄0

solves problem (10.36) as well as the relaxed problem

min
q0≥0

ρ0
(〈

PC(ω),q0(ω)−D(ω)
〉)−〈〈q0(ω), π̄(ω)

〉〉
P

.

We now show that the optimality conditions of the relaxed problem coincide with
those of (10.43), together with the risk-averse price-cap condition. Since PC ∈ Lp∗
and D ∈ Lp, the affine operator A : Lp → Lp defined by

[A(q0)](ω) :=
〈
PC(ω),q0(ω)−D(ω)

〉

is continuous and, hence, the optimality condition for the relaxed problem is

0 ∈ ∂
(
ρ0 ◦A+ i≥0

)
(q̄0)− π̄ = ∂ (ρ0 ◦A)(q̄0)+N≥0(q̄

0)− π̄.

By the normal cone definition, there exist g ∈ ∂ (ρ0 ◦A)(q̄0) and ν ∈ Lp∗ such that
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0≤ q̄0(ω)⊥−ν̄(ω)≥ 0 and 0 = g(ω)+ ν̄(ω)− π̄(ω),

almost everywhere in Ω . To get an explicit expression for g above, we apply [35,
Theorem 2.83] to compute the subdifferential ∂ (ρ0 ◦A)(q̄0), recalling that the map-
ping A is affine and continuous, and the risk measure is increasing and finite-valued:

g ∈ ∂ (ρ0 ◦A)(q̄0) ⇐⇒ g(ω) = PC(ω)s(ω) for s ∈ ∂ρ0
(

A(q̄0)
)
.

The definitions of the subdifferential and of the conjugate function give the equiva-
lence s ∈ ∂ρ0(A(q̄0)) ⇐⇒ A(q̄0) ∈ ∂ρ0∗(s). By the dual representation (10.32),
the conjugate of ρ0 is the indicator function of the (convex and bounded) dual
set X∗, that is, ρ0 = ι∗X∗ . Then, ρ0∗ = ι∗∗X∗ = iX∗ . Since the subdifferential of the
indicator function of a closed convex set is the normal cone of the set, by the
definition of the normal cone, the subgradient g ∈ ∂ (ρ0 ◦A)(q̄0) has components
g(ω) = PC(ω)s(ω) for s ∈ X∗ satisfying

〈
A(q̄0),x∗ − s

〉
P
≤ 0 for all x∗ ∈ X∗. So s

maximizes
〈
A(q̄0),x∗

〉
P

over X∗, and in view of (10.37), s = x̄∗0 from (10.43). The
risk-averse price-cap condition follows from plugging g(ω) = PC(ω)x̄∗0(ω) in the
optimality condition. ��

Theorem 2 shows that, like in the deterministic framework, the stochastic game is
equivalent to a complementarity model with risk aversion. Nevertheless, the stochas-
tic MCP model is not of the form (10.33), where agents hedge individually their
profit. Instead, a VE for the game (10.35)–(10.37) gives a stochastic equilibrium for
a market that is cleared because (10.37) is satisfied and where the risk-averse agents
are remunerated in mean at a price that is controlled by a risk-averse price cap.

In the game, aversion to risk is peculiar in the sense that agents hedge volatil-
ity by controlling only variations in the generation costs. In the game problem
(10.42), the remuneration is taken in mean without hedging risk, while in the MCP
(10.33)–(10.34) each agent tries to control the risk in their individual revenue. In
the game the control of volatile prices is “delegated” to some higher instance. This
is the same instance that caps the remunerations, only that now the cap is chosen
adaptively, in a manner that is optimal for the market, in the sense of (10.43). By
contrast, in the risk-averse MCP, the instance limiting prices only takes into account
stochasticity but does not perceive the fact of capping prices as a risky action, per-
turbing the market.

Our final result shows that the three models become equivalent in a risk-neutral
market.

Corollary 3 (Equivalence for Risk-Neutral Agents). Suppose that for all the
agents ρ i = E, the expected-value function. Then finding a variational equilibrium
for the GNEP (10.35), (10.36)–(10.37) is equivalent to solving the MCP (10.33)–
(10.34) which is in turn equivalent to the MCP (10.42)–(10.43).

Proof. Straightforward from Theorem 2, as the expected-value function is recovered
by setting κi = 0 in (10.31), with the singleton dual set X∗ = {x∗ ≡ 1} in (10.32).
In particular, a risk-neutral representative of the consumers can only take x̄∗0 ≡ 1,
which yields the stochastic price cap from (10.34). The equivalence with the last
MCP results from the linearity of the expected-value function. ��
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Concluding Remarks

Like it has been done in the deterministic case in Sect. 10.5.1, it would be interesting
to analyze and compare the performances of the risk-averse game versus the risk-
averse MCP on a numerical example. However, due to the positive-part function in
(10.31), risk measures are not differentiable and for both models the GE mapping
has multi-valued components. In this context, a direct application of a solver like
PATH is no longer possible (and there is currently no other established software that
can do the job). In [9], the MCP (10.33)–(10.34) is “solved” ignoring nondifferen-
tiability issues and treating the mapping as if it were single-valued. This heuristic
seems to produce sound results for the considered example, but cannot be regarded
as a reliable solution method, of course. In order to handle nonsmoothness, some
special technique should be used, for example, the approximation procedure in [21].

Finally, instead of handling uncertainty in two stages, a multistage setting can
also be of interest. This, keeping in mind that multistage risk-averse models remain
a delicate subject and involves intricate issues such as time consistency and infor-
mation monotonicity; see [23]. Last but not least, and as discussed in [32, Sect. 5],
risk-averse variants of sampling approaches like [25, 33] lack implementable stop-
ping criteria. Multistage risk-averse models present numerous challenges already in
an optimization framework; we refer to [30] and references therein for more details.
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Chapter 11
Optimal Planning and Economic Evaluation
of Trigeneration Districts

Maria Teresa Vespucci, Stefano Zigrino, Francesca Bazzocchi,
and Alberto Gelmini

Abstract Trigeneration, or combined cooling, heat and power (CCHP), is the
process by which electricity, heating and cooling are simultaneously generated from
the combustion of a fuel. Trigeneration systems for serving the electricity, heating
and cooling loads in residential districts are a possible solution to enhance energy
efficiency, reduce fossil fuel consumption and increase the use of renewable energy
sources in the residential sector. Technical, economical and financial issues have to
be taken into account when planning a trigeneration system or when expanding an
existing generation system. In this chapter a two-step decision support procedure is
presented for analysing alternative system configurations. The first step is based on
a mixed integer linear programming model that allows to describe the system com-
ponents in great detail and computes the annual optimal dispatch of the distributed
generation system with a hourly discretization, taking into account load profiles, fuel
costs and technical constraints. The optimal dispatch is then used for the economic
evaluation of the investment, taking into account prices of commodities, taxation,
incentives and financial aspects. The procedure allows to compare alternative plant
configurations and can be used as a simulation tool, for assessing the system sensi-
tivity to variations of model parameters (e.g. incentives and ratio debt/equity).

11.1 Introduction

Trigeneration systems for serving the electricity, thermal and cooling loads in
residential districts are a possible solution to enhance energy efficiency and to
reduce fossil fuel consumption. They may include different kinds of generators
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(e.g. cogeneration units, boilers, electric heat pumps, gas absorption heat pumps,
absorption chillers ), as well as hot storages and ice storages. In particular, combined
heat and power (CHP) plants, or cogeneration units, allow to recover the combus-
tion heat generated during the production of electricity, obtaining a saving of primal
energy, a decrease in production costs of the total energy required and a reduction
of CO2 emissions. The systems are connected to the national electric grid, in order
to purchase and sell electricity when needed. Trigeneration systems also represent
a chance to increase the use of renewable energy sources in the residential sector:
indeed cogeneration units can benefit from the Green Certificate for the produced
electricity, if biofuels are used instead of fossil fuel; they are moreover supported
with the energy efficiency certificate (White Certificate), if they are qualified as
high-efficiency systems.

In this chapter a decision support procedure is introduced for the configuration of
distributed generation systems in residential districts, where various types of energy
demands (electrical load, thermal loads at various temperatures, cooling load) have
to be served. In the configuration process alternative solutions have to be compared,
both from a technical and an economical point of view, taking into account the
energy consumption profiles that vary along the day and along the year, due to the
weather conditions. The decision support procedure consists of two steps, see [1]
and [5]. In the first step, by solving the mixed integer linear programming model
introduced in Sect. 11.2, the annual optimal dispatch of the distributed generation
system is determined with an hourly discretization, taking into account technical
constraints, load profiles and fuel costs. The optimal dispatch is then used for the
economic evaluation of the investment, taking into account prices of commodities,
taxation and financial aspects. Starting from EBITDA (Earnings Before Interest,
Taxes, Depreciation and Amortization) and from investment and financial param-
eters, the net present value (NPV) of the investment, the payback time (PBT) and
the internal rate of return (IRR) (see [6]) are computed. The decision support pro-
cedure allows to compare alternative plant configurations; it can also be used as a
simulation tool, for assessing the system sensitivity to variations of parameter val-
ues. The decision support system is available as a web application (called GDPint)
and can be freely accessed at www.rds-web.it. An interface allows the user to
define the characteristics of the system components, the load profiles and the prices
of the commodities.

A similar application is the “Distributed Energy Resources Customer Adoption
Model” (DER-CAM) (see [10]), an economic and environmental model of customer-
distributed energy resources adoption. The objective of this model is to minimize the
cost of operating on-site generation and combined heat and power systems, either
for individual customer sites or a micro-grid. To this aim DER-CAM addresses the
following issues:

1. What is the lowest cost combination of distributed generation technologies that
a specific customer can install?

2. What is the level of installed capacity of these technologies that minimizes cost?
3. How should the installed capacity be operated so as to minimize the total

customer energy bill?

www.rds-web.it
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It is assumed that the customer wishes to install distributed generation so as to
minimize the cost of the energy consumed on site. Consequently, it is possible to de-
termine the technologies and the capacity the customer is likely to install and to
predict when the customer will be self-generating electricity and/or transacting with
the power grid and, likewise, when he will be purchasing fuel or using recovered
heat. DER-CAM does not allow the user to describe the actual components of the
system to be evaluated, as it requires the user to choose the system elements from
a given database. GDPint instead allows the user either to select the components
from a database or to define the characteristics of the actual elements in the system:
for example, for cogeneration units the actual minimum uptime and downtime can
be taken into account and efficiency can be defined as a function of load and air
temperature. Also the economic evaluation is more detailed in GDPint and allows
taking into account how the investment is financed (e.g. the debt/equity ratio and
incentives).

In software DCogEN [2, 3, 4] the evaluation of cogeneration districts is based on
a much simpler system optimization model, as only one single period is considered
at a time; as a consequence, however, intertemporal constraints for modelling the
energy levels of electric storages and the minimum uptime and downtime constraints
of cogeneration units cannot be included in the system optimization model.

The chapter is organized as follows. In Sect. 11.2 the mixed integer linear
programming model is introduced for determining the hourly dispatch of a
distributed generation system that minimizes the total generation cost over the time
horizon. In Sect. 11.3 the heuristic procedure is described for approximating the
optimal solution of large dimensional instances. In Sect. 11.4 a case study is dis-
cussed in which decisions on investment in a trigeneration system for a residential
district are supported by an extensive analysis, both from a technical and a financial
point of view, of five different configurations; in Sect. 11.5 references to investment
problems analysed by GDPint are given and future work is outlined.

11.2 The Model for the Optimal Hourly Dispatch
of a Trigeneration System

In this section we introduce the mixed integer linear programming model for
determining the annual optimal dispatch, with an hourly discretization, of all the re-
sources in a trigeneration system. The economic optimization of the power dispatch
takes into account the technical constraints of the system components, the time pro-
files of the loads and the prices of fuel and electricity. The trigeneration system may
include different kind of generators (cogeneration units, boilers, electric heat pumps,
gas absorption heat pumps, absorption chillers, etc.) for serving different kinds of
loads (electrical load, thermal loads at various temperatures, cooling load). A set of
binary parameters describes the system topology, i.e. the power flows from genera-
tors to storages and loads. The thermal loads may be served by different generators,
such as boilers, electric heat pumps, gas absorption heat pumps, cogeneration units
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and hot storages. The cooling load may be served by absorption chillers, reversible
electric heat pumps, reversible gas absorption heat pumps and ice storages. The
electrical load, which includes the electricity used by heat pumps and absorption
chillers, may be generated by cogeneration units and/or purchased on the market,
the system being connected to the national grid. Excess electricity production can
be sold on the market.

A detailed model of each system component is considered. Each absorption
chiller is characterized by capacity, electric coefficient of performance and ther-
mal coefficient of performance. Each boiler is characterized by maximum heat-
ing rate and fuel consumption function. Each electric heat pump is characterized
by heating capacity, cooling capacity (if reversible), energy efficiency ratio and
coefficient of performance, both dependent on the air temperature. Each gas absorp-
tion heat pump is characterized by heating capacity, cooling capacity (if reversible),
electric coefficient of performance and fuel consumption rate. Each cogeneration
unit is characterized by its minimum and maximum electrical power outputs, mini-
mum uptime and downtime, heat recovery function and fuel consumption function.
For all generators operation and maintenance cost per output unit are given. Hot
storages and ice storages are characterized by maximum stored energy, energy rate
from source to load and loss coefficients. The hourly dispatch is computed so as to
minimize the total costs minus the revenues from the sale of electricity to the grid.

The notation of the proposed model is provided below for quick reference.

11.2.1 Sets

H Set of temperature levels of thermal loads, indexed by h
R Set of absorption chillers, indexed by r
B Set of boilers, indexed by b
P Set of electric heat pumps, indexed by p
G Set of gas absorption heat pumps, indexed by g
M Set of cogeneration units, indexed by m
K Set of ice storages, indexed by k
J Set of hot storages, indexed by j
T Set of hours, indexed by t

11.2.2 Parameters

• For absorption chiller r ∈ R:

CO
r Operation and maintenance cost per unit of thermal output

Q̇
C
r Capacity

UE
r Electric coefficient of performance
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UH
r,h Thermal coefficient of performance

αr,h Binary parameter set to 1 if absorption chiller r can use h-temperature
thermal power

• For boiler b ∈ B:

CO
b Operation and maintenance cost per unit of thermal output

CF
b Fuel specific cost

Q̇
H
b Maximum heating rate

Fb Fuel consumption per unit of thermal output
αb,h Binary parameter set to 1 if boiler b generates h-temperature thermal

power

• For electric heat pump p ∈ P:

CO
p Operation and maintenance cost per unit of thermal output

Q̇
H

p Heating capacity

Q̇
C
p Cooling capacity (if electric heat pump is reversible)

EERp,t Energy efficiency ratio (depends on the air temperature in hour t)
COPp,t Coefficient of performance (depends on the air temperature in hour t)
ρp Binary parameter set to 1 if electric heat pump p can generate cold
αp,h Binary parameter set to 1 if electric heat pump p generates

h-temperature thermal power

• For gas absorption heat pump g ∈ G:

CO
g Operating and maintenance cost per unit of thermal output

CF
g Fuel-specific cost

FC
g Fuel consumption per unit of cooling output

FH
g Fuel consumption per unit of thermal output

UE
g Electric coefficient of performance

Q̇
H
g Heating capacity

Q̇
C
g Cooling capacity (if gas absorption heat pump is reversible)

ρg Binary parameter set to 1 if gas absorption heat pump g can generate
cold

αg,h Binary parameter set to 1 if gas absorption heat pump g generates
h-temperature thermal power

• For cogeneration unit m ∈M:

CO
m Operation and maintenance cost per unit of power output

CF
m Fuel-specific cost

W m Minimum power
W m Maximum power
tU
m Minimum uptime



264 M.T. Vespucci et al.

tD
m Minimum downtime

q(1)m Slope of the heat recovery function

q(0)m Intercept of the heat recovery function

F (1)
m Slope of the fuel consumption function

F (0)
m,t Intercept of the fuel consumption function

αm,h Binary parameter set to 1 if cogeneration unit m generates
h-temperature thermal power

• For ice storage k ∈ K:

Q
C
k Maximum stored energy

QC
k,0 Energy stored at the beginning of the first hour

Q̇
C,in
i Energy rate from source

Q̇
C,out
k Energy rate to load

lC,ink Input loss coefficient (0≤ lC,ink ≤ 1)

lC,out
k Output loss coefficient (lC,out

k ≥ 1)
lCk Tank loss coefficient (0≤ lCk ≤ 1)

• For hot storage j ∈ J:

Q
H
j Maximum stored energy

QH
j,0 Energy stored at the beginning of the first hour

Q̇
H,in
j Maximum thermal input

Q̇
H,out
j Maximum thermal output

lH,in
j Input loss coefficient (0≤ lH,in

j ≤ 1)

lH,out
j Output loss coefficient (lH,out

j ≥ 1)

lH
j Tank loss coefficient (0≤ lH

j ≤ 1)
α in

j,h Binary parameter set to 1 if the input of hot storage j is h-temperature
thermal power

αout
j,h Binary parameter set to 1 if the output of hot storage j is h-temperature

thermal power

• Loads, outputs of non-dispatchable power plants and electricity prices in hour
t ∈ T :

LE
t Electrical load

LC
t Cooling load

LH
h,t h-temperature thermal load

LP
t Photovoltaic production

LS
t Solar thermal production

αS
h Binary parameter set to 1 if the solar thermal plant generates

h-temperature thermal power
μt Purchase price of electricity
λt Sale price of electricity
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• Data related to the electricity market:

W
A

Maximum power that can be purchased from the grid
W

V Maximum power that can be sold to the grid

Finally, let T̂ denote the subset of hours in which the electricity purchase price μt

is less than the electricity sale price λt : for these hours constraints are introduced in
the model so as to avoid arbitrage.

11.2.3 Decision Variables

The following symbols denote the decision variables pertaining to hour t ∈ T :

• For absorption chiller r ∈ R:

Q̇C
r,t Cooling power production of absorption chiller r

• For boiler b ∈ B:

Q̇H
b,h,t h-temperature thermal power production of boiler b

• For electric heat pump p ∈ P:

Q̇C
p,t Cooling power production of electric heat pump p

Q̇H
p,h,t h-temperature thermal power production of electric heat pump p

• For gas absorption heat pump g ∈ G:

Q̇C
g,t Cooling power production of gas absorption heat pump g

Q̇H
g,h,t h-temperature thermal power production of gas absorption heat pump g

• For cogeneration unit m ∈M:

Q̇H
m,h,t h-temperature thermal power production of cogeneration unit m

Wm,t Power output of cogeneration unit m
γm,t Status of cogeneration unit m (on, if γm,t = 1; off, if γm,t = 0)

• For ice storage k ∈ K:

QC
k,t Energy stored in ice storage k at the end of the hour

Q̇C,in
k,t Energy rate from source of ice storage k

Q̇C,out
k,t Energy rate to load of ice storage k

• For hot storage j ∈ J:

QH
j,t Energy stored in hot storage j at the end of the hour

Q̇H,in
j,h,t h-temperature power output of hot storage j

Q̇H,out
j,h,t h-temperature power input of hot storage j

• Variables related to exchanges on the electricity market in hour t ∈ T :
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W A
t Electricity purchased on the market

WV
t Electricity sold on the market

θt Binary variable used in “no-arbitrage” constraints (11.4) and (11.5)

11.2.4 The Mixed Integer Linear Programming Model

The optimal scheduling of the trigeneration plant is determined by solving the mixed
integer linear programming model

min∑
t∈T

{
∑
r∈R

(
CO

r Q̇C
r,t

)
+∑

b∈B

[(
CF

b Fb +CO
b

)(
∑

h∈H

Q̇H
b,h,t

)]
+

+ ∑
p∈P

[
CO

p

(
Q̇C

p,t + ∑
h∈H

Q̇H
p,h,t

)]
+

+ ∑
g∈G

[(
CF

g FC
g +CO

g

)
Q̇C

g,t +
(
CF

g FH
g +CO

g

)(
∑

h∈H

Q̇H
g,h,t

)]
+

+ ∑
m∈M

[
CF

m

(
F (0)

m,t γm,t +F(1)
m Wm,t

)
+CO

mWm,t

]
+ μtW

A
t −λtW

V
t

}

(11.1)

subject to the following constraints:

• For t ∈ T

∑
m∈M

Wm,t +LP
t +W A

t = LE
t +∑

r∈R
UE

r Q̇C
r,t + ∑

p∈P

(
Q̇C

p,t

EERp,t
+

∑h∈H Q̇H
g,h,t

COPp,t

)
+

+ ∑
g∈G

[
UE

g

(
Q̇C

g,t + ∑
h∈H

Q̇H
p,h,t

)]
+WV

t

(11.2)

• For t ∈ T̂
θt ∈ {0,1} (11.3)

0 ≤W A
t ≤ W

A
(1−θt) (11.4)

0 ≤WV
t ≤ W

Vθt (11.5)

• For t ∈ T

∑
r∈R

Q̇C
r,t + ∑

p∈P

ρpQ̇C
p,t + ∑

g∈G

ρgQ̇C
g,t +∑

i∈I

Q̇C,out
i,t ≥ LC

t +∑
i∈I

Q̇C,in
i,t (11.6)

• For h ∈ H and t ∈ T
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αS
h LS

t +∑
b∈B

αb,hQ̇H
b,h,t + ∑

p∈P
αp,hQ̇H

p,h,t + ∑
g∈G

αg,hQ̇H
g,h,t + ∑

m∈M
αm,hQ̇H

m,h,t+

+∑
j∈J

αout
j,h Q̇H,out

j,h,t ≥ LH
h,t +∑

r∈R
αr,hUH

r,hQ̇C
r,t +∑

j∈J
α in
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(11.7)

• For r ∈ R and t ∈ T

0 ≤ Q̇C
r,t ≤ Q̇

C
r (11.8)

• For b ∈ B and t ∈ T

0 ≤ ∑
h∈H

Q̇H
b,h,t ≤ Q̇

H
b (11.9)

• For p ∈ P and t ∈ T

0 ≤ Q̇C
p,t ≤ Q̇

C
p (11.10)

0 ≤ ∑
h∈H

Q̇H
p,h,t ≤ Q̇

H

p (11.11)

Q̇C
p,t

Q̇
C
p

+
∑h∈H Q̇H

p,h,t

Q̇
H

p

≤ 1 (11.12)

• For g ∈ G and t ∈ T

0 ≤ Q̇C
g,t ≤ Q̇

C
g (11.13)

0 ≤ ∑
h∈H

Q̇H
g,h,t ≤ Q̇

H
g (11.14)

Q̇C
g,t

Q̇
C

g

+
∑h∈H Q̇H

g,h,t

Q̇
H
g

≤ 1 (11.15)

• For m ∈M and t ∈ T
γm,t ∈ {0,1} (11.16)

min(t+tUm−1,|T |)
∑

τ=t+1

γm,τ ≥min
(
tU
m − 1, |T |− t

)
(γm,t − γm,t−1) (11.17)

min(t+tD
m−1,|T |)
∑

τ=t+1

(1− γm,τ)≥min
(
tD
m − 1, |T |− t

)
(γm,t−1− γm,t) (11.18)

W mγm,t ≤ Wm,t ≤ W mγm,t (11.19)

0 ≤ ∑
h∈H

Q̇H
m,h,t ≤ q(0)m γm,t + q(1)m Wm,t (11.20)

• For k ∈ K and t ∈ T

QC
k,t =

(
1− lCk

)
QC

k,t−1 + lC,ink Q̇C,in
k,t − lC,out

k Q̇C,out
k,t (11.21)
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0 ≤ QC
k,t ≤ Q

C
k (11.22)

0 ≤ Q̇C,in
k,t ≤ Q̇

C,in
k (11.23)

0 ≤ Q̇C,out
k,t ≤ Q̇

C,out
k (11.24)

• For j ∈ J and t ∈ T

QH
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1− lH

j

)
QH

j,t−1 + lH,in
j ∑

h∈H

α in
j,hQ̇H,in
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j,h Q̇H,out

j,h,t (11.25)

0 ≤ QH
j,t ≤ Q

H
j (11.26)

0 ≤ ∑
h∈H

α in
j,hQ̇H,in

j,h,t ≤ Q̇
H,in

j (11.27)

0 ≤ ∑
h∈H

αout
j,h Q̇H,out

j,h,t ≤ Q̇
H,out

j (11.28)

The objective function (11.1), to be minimized, represents the total cost, in a
typical year, for satisfying the electrical, cooling and thermal loads, minus the rev-
enues from the sold electricity. The net costs related to hour t consist of seven
terms: the first term represents the operation and maintenance costs of the absorption
chillers; the second term expresses the fuel cost and the operation and maintenance
costs of the boilers; the third term represents the operation and maintenance costs
for generating cooling and thermal power by electric heat pumps; the fourth term
represents the fuel costs and the operation and maintenance costs of the gas ab-
sorption heat pumps; the fifth term expresses the fuel costs and the operation and
maintenance costs of the cogeneration units; the sixth term represents the cost for
purchasing electricity from the market; and the seventh term represents the revenues
from electricity sold into the market. In the fifth term the fuel-specific cost CF

m of
cogeneration unit m is multiplied by the fuel consumption in hour t, given by the
affine function FMI

m of power output Wm,t

FMI
m (Wm,t ) =

⎧⎪⎨
⎪⎩

F (0)
m,t +F(1)

m Wm,t if W m ≤Wm,t ≤W m

0 if Wm,t = 0,

(11.29)

where the intercept F (0)
m,t > 0 depends on the air temperature in hour t.

Constraint (11.2) imposes the electric balance in every hour t. The total electric-
ity supply is given by the production of cogeneration units and the output of pho-
tovoltaic plants. The electricity demand consists of four terms: the first term is the
electrical load; the second term represents the electricity required by the absorption
chillers for generating cooling power; the third and fourth terms express the electric-
ity required by the electric heat pumps and by the gas absorption heat pumps. This
constraint determines the amount W A

t of electricity to be purchased from the mar-
ket, if production is not sufficient to satisfy the hourly demand, or the amount WV

t
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of electricity to be sold into the market, if production exceeds the hourly demand.
Constraints (11.3), (11.4) and (11.5) state that in every hour t ∈ T̂ , in which the pur-
chase price μt is smaller than the sale price λt , electricity cannot be simultaneously
purchased and sold (“no-arbitrage” constraints).

Constraint (11.6) guarantees that the cooling load is served in hour t, i.e.
the cooling power generated by absorption chillers, electric heat pumps and gas
absorption heat pumps, plus the output of ice storages, is required not to be less
than the sum of the cooling load and of the input of ice storages.

Constraint (11.7) requires the h-temperature thermal load to be served in hour
t. The binary parameters αS

h , αr,h, αb,h, αp,h, αg,h, αm,h, αout
j,h and α in

j,h identify
the devices (absorption chillers, boilers, electric heat pumps, gas absorption heat
pumps, cogeneration units, solar thermal plants and hot storages, respectively) used
for serving the h-temperature thermal load. The total production plus the output of
hot storages cannot be less than the sum of the load, of the thermal power used by
the absorption chillers and of the input of hot storages.

Constraint (11.8) imposes that the cooling power generated by absorption chiller
r in hour t is nonnegative and bounded above by its capacity. Analogous restriction
is expressed by constraints (11.10) and (11.13) for electric heat pump p and gas
absorption heat pump g, respectively.

Constraint (11.9) states that the total thermal power generated by boiler b in
hour t is nonnegative and bounded above by its capacity. Constraints (11.11) and
(11.14) express analogous restrictions for electric heat pump p and gas absorption
heat pump g, respectively.

Constraint (11.12) guarantees that electric heat pump p cannot simultaneously
generate both cooling and thermal powers. Analogous restriction is expressed by
constraint (11.15) for the gas absorption heat pump g.

The status of cogeneration unit m is represented by the binary variable γm,t de-
fined in constraint (11.16). Constraint (11.17) imposes that if cogeneration unit m is
started up in hour t, it must be on either for the minimum uptime, if t + tU

m −1< |T |,
or until the last hour |T |, otherwise. Analogously, constraint (11.18) imposes that if
cogeneration unit m is shut down in hour t, it must be off either for the minimum
downtime, if t+tD

m−1< |T |, or until the last hour |T |, otherwise. Constraint (11.19)
states that in hour t the power production is between the minimum and the maxi-
mum power output, if its status is on, otherwise is 0. The associated thermal output
is guaranteed by constraint (11.20) to be nonnegative and bounded above by the
maximum thermal output, if its status is on, otherwise is 0. The maximum thermal
output in hour t is given by the heat recovery function of cogeneration unit m, which
is the affine function QMI

m of power output Wm,t

QMI
m (Wm,t) =

⎧⎪⎨
⎪⎩

q(0)m + q(1)m Wm,t if W m ≤Wm,t ≤W m

0 if Wm,t = 0,

(11.30)

with q(0)m > 0.
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The energy stored in ice storage k at the end of hour t, which is required by
constraint (11.22) to be nonnegative and bounded above by the maximum storable
energy, must satisfy the balance constraint (11.21). Constraints (11.23) and (11.24)
impose that the input energy rate and the output energy rate of ice storage k in every
hour t are nonnegative and bounded above by their maximum values, respectively.
Analogously, the energy stored in hot storage j at the end of hour t, which is re-
quired by constraint (11.26) to be nonnegative and bounded above by the maximum
storable energy, must satisfy the balance constraint (11.25). Constraints (11.27) and
(11.28) guarantee that the thermal input and the thermal output of the hot storage
j in every hour t are nonnegative and bounded above by their maximum values,
respectively.

11.3 A Heuristic Procedure for Large Instances

The solution of the mixed integer linear programming model for the optimal annual
dispatch requires to consider the set T of cardinality |T | = 8760, because of the
hourly discretization. The computational effort may therefore become a substantial
issue, as the cardinality of the sets H, R, B, P, G, M, K, J and T̂ increases. In this
section a heuristic procedure is introduced for approximating the optimal solution.
The procedure consists of the three steps, A, B and C, described below.

In step A the following mixed integer linear programming model is solved:

min∑
t∈T

{
∑
r∈R

(
CO

r Q̇C
r,t

)
+∑

b∈B

[(
CF

b Fb +CO
b

)(
∑

h∈H

Q̇H
b,h,t

)]
+

+ ∑
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[
CO

p

(
Q̇C

p,t + ∑
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Q̇H
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[(
CF

g FC
g +CO

g

)
Q̇C

g,t +
(
CF

g FH
g +CO

g

)(
∑

h∈H

Q̇H
g,h,t
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+

+ ∑
m∈M

[
CF

m

(
F (1)

m +
F (0)

m,t

W m

)
Wm,t +CO

mWm,t

]
+ μtW

A
t −λtW

V
t

}

(11.31)

subject to

• For m ∈M and t ∈ T
0 ≤ Wm,t ≤ W m (11.32)

0 ≤ ∑
h∈H

Q̇H
m,h,t ≤

(
q(1)m +

q(0)m

W m

)
Wm,t (11.33)

• Constraints (11.2) to (11.15) and (11.21) to (11.28)
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The mixed integer linear programming model (11.31), (11.32), (11.33), (11.2) to
(11.15) and (11.21) to (11.28) is based on the following assumptions:

1. The fuel consumption of cogeneration unit m ∈M is proportional to the power
produced; therefore, in the fifth term of (11.31) the linear fuel consumption func-
tion (

F (1)
m +

F (0)
m,t

W m

)
Wm,t (11.34)

is used.
2. The cogenerator heat recovery is proportional to the power produced; therefore,

in constraint (11.33) the upper bound to thermal output is expressed by the linear
heat recovery function (

q(1)m +
q(0)m

W m

)
Wm,t . (11.35)

3. The minimum power output of cogeneration unit m ∈M is zero, as expressed by
constraint (11.32).

4. The cogeneration units are not subject to minimum up time and minimum
downtime constraints; therefore, constraints (11.17) and (11.18) are neglected.

The four hypotheses above imply that the binary variables γm,t are no longer needed,
which allow definition (11.16) to be neglected. Let W ∗

m,t denote the optimal power
production of cogeneration unit m in hour t determined by the approximated model.

In step B the binary parameter γ∗m,t , for m ∈ M and t ∈ T , is first assigned the
value γ∗m,t = 1, if W ∗

m,t ≥W m, or γ∗m,t = 0, otherwise. The values of parameters γ∗m,t
are then suitably redefined, if necessary, in order to satisfy minimum up time and
minimum downtime constraints.

In step C the objective function (11.1) is minimized subject to constraints (11.2)
to (11.15) and (11.21) to (11.28), where variables γm,t , for m ∈ M and t ∈ T , are
assigned the values γ∗m,t computed in step B.

11.4 The Economic Evaluation of the Trigeneration System

After the simulation of one year of optimized operation of the trigeneration district,
the procedure computes the EBITDA (Earnings Before Interest, Taxes, Depreciation
and Amortization) that depends on the optimal values of the decision variables W A

t ,
WV

t , γm,t , Wm,t , Q̇H
b,h,t , Q̇C

g,t and Q̇H
g,h,t resulting from the optimization model
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EBITDA = ∑
t∈T
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(11.36)

The first term of EBITDA in (11.36) is the value of total energy load:

• The electrical load is evaluated at the electricity purchase price.
• The value of the cooling load is the cost of the electricity needed to satisfy it by

an electric heat pump of coefficient of performance COPri f .
• The value of the total thermal load is the cost of the fuel needed to satisfy it by a

boiler of efficiency EERri f .

The reference values COPri f and EERri f are chosen by the user. If the expansion
of an existing plant is under evaluation, the parameters COPri f and EERri f may
be assigned the values characterizing the corresponding components in the exist-
ing plant: this allows the expanded plant to be compared, in terms of reduction of
generation costs, with respect to the existing one. The second term of EBITDA in
(11.36) represents the net revenues from selling electricity to the grid. The third and
fourth terms represent the fixed and variable costs of cogeneration units and boil-
ers, respectively. The fifth and sixth terms represent fixed and variable costs of gas
absorption heat pumps. The last four terms are the fixed costs of absorption chillers,
electric heat pumps, ice storages and hot storages, respectively.

Cooling and thermal loads, LC
t and LH

h,t , as well as the intercept F(0)
m,t of the fuel

consumption function of cogeneration unit m, depend on the air temperature in hour
t, which is not known with certainty when investment decisions have to be taken.
Further uncertainties are related to fuel prices and market electricity prices. For
these uncertainties to be taken into account explicitly, a stochastic programming
model should be solved, with uncertainties of the above-mentioned model param-
eters represented by a scenario tree. In real instances, however, the solution of the
stochastic optimization problem corresponding to the problem under study requires
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a computational time not compatible with an on-line use of the decision support
procedure. Planned future work will be concerned with computing lower and up-
per bounds of the optimal objective function value of the stochastic model: this will
be done by solving a set of stochastic subproblems, each one with a very small
number of scenarios (e.g. two or three), and by evaluating, at different levels of
information, how the deterministic solution performs in the stochastic framework,
following [7] and [8], respectively. In the current version of the decision support pro-
cedure the user can introduce information related to the variability of weather con-
ditions, which influences load and efficiency, by assigning up to three sets of yearly
data for air temperatures (in order to represent three possible situations: warm, cold
and average) with the associated probability of occurrence. Analogously, the user
can introduce information related to the variability of prices by assigning up to three
sets of yearly data and the associated probability of occurrence. An average EBITDA
is computed if variability of input parameters is taken into account. Also, in order
to better describe the expansion of a trigeneration system, the evolution in time of
the system configuration may be taken into account and the optimal annual dispatch
is determined for each configuration of the system, e.g. a transitional configuration
in the first year, in which a reduced energy load is served, and a final configuration.
For each configuration the corresponding average EBITDA is computed.

The methodology used to assess the profitability of the trigeneration system is
based on the analysis of annual cash flows, in accordance with the instructions
contained in [6].

11.5 Case Studies

In [11] the decision support system has been used for assessing the profitability of a
new investment in a CHP system fed by biofuel and for comparing it with a natural
gas boiler. In such a comparison several aspects have been taken into account, like
incentives, volatility of biofuel prices, higher investment costs of CHP plants and a
low load factor (i.e. concentration in few hours) of the thermal load in the residential
district. The optimal dispatch of the system has therefore to be determined consid-
ering the irregular profiles of space heating and domestic hot water demands, the
technical features of different generators (boilers and CHPs), like minimum power
output, flexibility constraints and efficiency, and the variability of commodity prices
(for electric energy) every hour. The use of a biofuel in distributed power plant, with
capacity not greater than 1 MW , allows to apply for either the all-inclusive feed-in
tariff or the Green Certificates (see [9]). The sensitivity of the investment profitabil-
ity has been analysed under different hypotheses of biofuel price. The evaluation has
been performed using both community and extra-community bio-oils, which have
different prices and benefit from different incentive mechanisms.

In this chapter we consider a residential district of typical dimensions in Northern
Italy, consisting of 359 flats of small size (50 m2 on average), with a total surface
of 18 000 m2 and volume 52 000 m3, to be served by a trigeneration system for
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providing space heating, cooling and domestic hot water (DHW ). The annual energy
loads and their peaks are shown in Table 11.1. The total thermal load consists of two
parts: demand of district heating and demand of domestic hot water.

Table 11.1 Data of electrical, cooling and thermal load

[kW h]

Total annual electrical load 298 546 ∑t∈T LE
t

Electrical load peak 255 maxt LE
t

Total annual cooling load 188 387 ∑t∈T LC
t

Cooling load peak 253 maxt LC
t

Total annual thermal load (district heating + DHW ) 2 118 456 ∑t∈T ∑h∈H LH
h,t

Thermal load peak (district heating + DHW ) 1 301 maxt ∑h∈H LH
h,t

The system configurations to be compared, which are defined in Table 11.2, are
subsets of the following set of components:

• Turbec T100 gas microturbine, with rated electrical power 105 kW and rated
thermal power 167 kW

• Condensing boiler, with rated thermal power 978 kW
• Condensing boiler, with rated thermal power 300 kW
• Condensing boiler, with rated thermal power 600 kW
• 4000 L tank, with thermal power 250 kW (input/output) and capacity 200 kWh,

for hot storage
• Array of 15 non-reversible gas absorption heat pumps GAHP-A-LT, each of

41.7 kW rated thermal power, with total thermal power 625.5 kW
• Array of 15 reversible gas absorption heat pumps GAHP-AR-LT, with total ther-

mal power 562.5 kW and total cooling power 253.5 kW
• Array of reversible electric heat pumps, with total thermal power 550 kW and

total cooling power 400 kW
• Ammonia-water absorption chiller, with cooling power 88.6 kW
• 5370 L ice storage, with cooling power 250 kW and capacity 500 kWh

In Case 1 the thermal load for space heating and domestic hot water is satisfied
by the reversible electric heat pumps, which also supply the cooling load, and by
two condensing boilers (boilers 1 and 2, with total power 1278 kW ). The hot water
for the DHW demand is stored in the tank. Electricity is purchased on the market.
The optimization model determines which source of heat will serve the thermal load
in each hour, taking into account the hourly electricity price, the air temperature and
the load levels. Table 11.3 shows that in the optimal solution about 25% of the
thermal load is supplied by the electric heat pumps, which are more convenient than
boilers when the electricity price is low and the thermodynamic cycle that depends
on the air temperature is efficient. In this solution the total cost for providing space
heating and DHW is less than the total cost of producing the required thermal power
by a small boiler located in each flat (Fig. 11.1).
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Table 11.2 System configurations

Electric Heating Cooling
power rate rate
(kW) (kW) (kW) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Hot storage 250 x x x x x x
Boiler 1 978 x x x x x x
Boiler 2 300 x x x x x
Boiler 3 600 x
Reversible electric HP 550 400 x x x x
Cogeneration unit 105 167 x x x
GAHP 625.5 x x
Ice storage 250 x x
Absorption chiller 88.6 x
Reversible GAHP 562.5 253.5 x

Electrical
Load

National
Grid

Boilers

Heat
pumps

Hot
Storage

Space
heating

Domestic
hot water

Cooling
load

Fig. 11.1 System configuration in Case 1

In Case 2 the cogeneration unit is added to the system considered in Case 1.
The cooling load is served by the reversible electric heat pumps. Electricity may
be either purchased on the market or produced by the cogeneration unit. Reversible
electric heat pumps, condensing boilers and the cogeneration unit satisfy the thermal
load for space heating and domestic hot water. In the optimal solution the reversible
electric heat pumps supply the thermal load in hours in which the electricity price
is low and the thermodynamic cycle that depends on the air temperature is efficient.
The electricity load, as well as the electricity used by the electric heat pumps, is sup-
plied by the market when the price is low, otherwise by the cogeneration unit: this
happens in many hours during the summer, as well as in hours with high electricity
prices—in these cases the cogeneration unit satisfies a portion of the electrical load
and the thermal power output is either used for serving the DHW demand or stored
in the tank for use in subsequent hours, if it exceeds the thermal load. In some hours
it is convenient to generate electrical power by the cogeneration unit, even if the
recovered thermal power is wasted: this corresponds to the thermal surplus reported
in Table 11.3, which is about 0.75% of the total cogenerated heat. In the optimal
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solution the cogeneration unit works for 4,751 equivalent hours per year, yielding
an expected life of 14 years for the microturbine, the total number of working hours
being 66,000 h (Fig. 11.2).
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Fig. 11.2 System configuration in Case 2

In Case 3 the array of non-reversible gas absorption heat pumps is added to the
system considered in Case 1. Table 11.3 shows that the thermal load is mainly sat-
isfied by gas absorption heat pumps, as they use less natural gas than boilers: this is
due to the fact that gas absorption heat pumps have a much higher Gas Utilization
Efficiency than boilers (up to 150%), because a part of the thermal energy is taken
from the air. The electric heat pumps are used almost exclusively for the cooling
load (see Table 11.4) (Fig. 11.3).
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Fig. 11.3 System configuration in Case 3

In Case 4 both the cogeneration unit and the array of non-reversible gas absorp-
tion heat pumps are added to the system considered in Case 1. The model suggests
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that the reversible electric heat pumps satisfy the thermal load in hours when the
electricity price is low and the air temperature allows an efficient thermodynamic
cycle. The electricity load, as well as the electricity used by the electric heat pumps,
is supplied by the market when the price is low, otherwise by the cogeneration unit,
which produces the required electricity, while the recovered heat is used for satis-
fying the thermal load. As shown in Table 11.3 most of the thermal power demand
is satisfied by gas absorption heat pumps, which use less natural gas than boilers;
a small amount is supplied by the most convenient source among heat pumps and
boilers (depending on hourly electricity price, air temperature and load levels) and
the remaining part by the cogeneration unit. Table 11.5 shows that most of the elec-
tricity is provided by the cogeneration unit. High volumes of purchased and sold
electricity are due to the hourly market prices that in some hours make it convenient
to either sell or purchase electricity. In the optimal solution the cogeneration unit
works only for 3,465 hours per year, yielding an expected life of about 20 years for
the microturbine. This system configuration requires the highest investment among
the six considered, but yields the highest EBITDA (see Table 11.7) (Fig. 11.4).
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Fig. 11.4 System configuration in Case 4

In Case 5 the trigeneration system consists of the cogeneration unit, two
condensing boilers (boilers 1 and 3, with total power 1578 kW), the hot water tank
for supplying DHW demand and the absorption chiller coupled with the ice storage,
as absorption chillers (unlike electrical heat pumps) can produce very low temper-
atures (e.g. −33°C). In the absence of electric heat pumps, boiler 3, with 600 kW
maximum heating rate, is used instead of boiler 2, with 300 kW maximum heat-
ing rate, in order to guarantee satisfying the peak demand of thermal power. This
configuration is useful when it is preferred to reduce the amount of electricity pur-
chased from the market (see Table 11.5). In the optimal solution the cogeneration
unit works for 6 055 equivalent hours per year, yielding an expected life of 11 years
for the microturbine (Fig. 11.5).
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Fig. 11.5 System configuration in Case 5

In Case 6 the configuration differs from the one in Case 3 as the array of
reversible electric heat pumps is no longer included in the system and the cooling
load is served by the array of reversible gas absorption heat pumps, coupled with the
ice storage. In this configuration reversible gas absorption heat pumps serve both
the thermal and the cooling loads, obtaining a decrease of the electrical load and
requiring much lower investment cost with respect to Case 3. On the other hand, the
cooling power production by reversible gas absorption heat pumps is less convenient
than by reversible electric heat pumps (see the annual consumption of natural gas
and electricity in Table 11.6); therefore, a lower EBITDA than in Case 3 is obtained,
as shown in Table 11.7.

Electrical
Load

National
Grid

Boilers

Gas Absorption
Heat Pumps

Hot
Storage

Cold
Storage

Chilled Water

Space
heating

Domestic
hot water

Cooling
load

Fig. 11.6 System configuration in Case 6

In Tables 11.3, 11.4 and 11.5 the results obtained by the optimal dispatch model
in the six configurations are reported in aggregated form. The total energy supplied
by every generator and the total energy of every usage in the year is reported for
every case. A generator is not included in the trigeneration system if the sign “−”
appears in the corresponding column (Fig. 11.6).
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Table 11.3 Thermal power: total annual supplies and uses

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Supplies:
Boilers 1578.7 1079.3 217.1 104.7 1477.1 385.6
Electric heat pumps 563.0 302.9 38.6 17.9 − −
Cogeneration unit − 766.8 − 559.3 976.9 −

Gas absorption heat pumps − − 1885.3 1465.6 − 1775.4

Uses:
Thermal load 2118.5 2118.5 2118.5 2118.5 2118.5 2118.5
Hot storage losses 23.2 24.8 22.5 23.6 24.6 22.5
Absorption chiller − − − − 279.3 −
Thermal surplus 0.0 5.8 0.0 5.5 1.7 0.0

All values are in MWh and refer to a year of operation

Table 11.4 Cooling power: total annual supplies and uses

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Supplies:
Reversible electric heat pumps 188.4 188.4 188.4 188.4 − −
Reversible gas absorption heat pumps − − − − − 190.0
Absorption chiller − − − − 195.7 −

Uses:
Cooling load 188.4 188.4 188.4 188.4 188.4 188.4
Ice storage losses − − − − 7.3 1.6

All values are in MWh and refer to a year of operation

Table 11.5 Electricity: total annual supplies and uses

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Supplies:
Electricity market (purchase) 489.6 123.3 415.4 165.7 43.8 348.2
Cogeneration unit − 498.9 − 363.9 635.7 −

Uses:
Electrical load 298.5 298.5 298.5 298.5 298.5 298.5
Electricity market (sale) 0.0 189.6 0.0 127.8 372.0 0.0
Electric heat pumps 191.0 134.1 76.1 71.5 − −
Gas absorption heat pumps − − 40.7 31.7 − 49.6
Absorption chiller − − − − 9.1 −

All values are in MWh and refer to a year of operation

Based on [6], the analysis of annual cash flows is performed in order to assess
the profitability of the different configurations of the trigeneration district. An in-
dustrial life of 20 years is considered, assuming that the worn parts of the cogen-
eration plant are replaced in Cases 2 and 5. In Table 11.7 the equity C0, assumed
to cover 50% of the total investment, the EBITDA of the reference year, the net



280 M.T. Vespucci et al.

Table 11.6 Annual consumption of natural gas and electricity and sold electricity

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Natural gas consumption 1714.6 2776.8 1397.5 2175.2 3624.4 1708.9
Electricity consumption 489.5 432.6 415.4 401.7 307.6 342.5

Sold electricity 0.0 189.6 0.0 127.8 372.0 0.0

All values are in MWh and refer to a year of operation

present value (NPV), the internal rate of return (IRR), the payback time (PBT) and
the average debt service coverage ratio (DSCR) are reported for each configuration
and in Fig. 11.7 the actualized cash flows in the time horizon are shown for the six
configurations.

Table 11.7 Economic indicators

C0 EBIT DA NPV IRR PBT DSCR
(ke) (ke) (ke) (-) (years) (-)

Case 1 55.9 58.9 357.4 0.748 1.5 9.36
Case 2 110.9 73.2 306.5 0.490 2.3 5.86
Case 3 145.9 84.9 427.3 0.409 2.9 5.17
Case 4 200.9 92.3 416.5 0.327 3.6 4.08
Case 5 98.9 22.5 48.0 0.157 9.7 2.02
Case 6 11.9 70.6 358.4 0.418 2.8 5.27

Fig. 11.7 Cash flows comparison for the six configurations
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In configuration 1 the use of more efficient boilers and electric heat pumps than
those installed in the reference system yields a reduction of generation costs that
allows the investment to be paid in about 2 years, as shown in Fig. 11.7 by the
intersection of the blue line with the abscissa line. In configuration 2 the addition of
the cogeneration unit requires higher investment costs; on the other hand generation
costs are further reduced, which yields a payback time of 2.5 years. In this case,
moreover, a much lower electrical load is satisfied by the national grid. In configu-
ration 3 the investment cost is higher than in Case 2, as gas absorption heat pumps
are more costly than the cogeneration unit. Gas absorption heat pumps allow large
reductions in consumption of natural gas and electricity (see Table 11.6). In this case
the largest net present value is also achieved. Furthermore this solution also allows
satisfying national and European regulations that require a prescribed fraction of
production from renewable energy sources in satisfying thermal loads. Configura-
tion 4 combines the advantages of configurations 2 and 3, as it allows achieving
the largest energetic and economical savings, with an investment of 800ï£¡ per flat.
Configuration 5 has the highest payback time; however, it can be of interest when
the proposed configuration is an expansion of an existing system, in which some
components are already available (for instance the cogeneration unit) and new ele-
ments need to be added, in order to increase the energy load served. In this case the
reduced investment cost would result in the light-blue line in Fig. 11.7 to be trans-
lated above and therefore in a shorter payback time. In configuration 6 a good level
of profitability is achieved, while limiting the electrical consumption. If there are
limitation on the maximum electric power to be purchase from the grid, this is the
appropriate solution. In the absence of such limitation, configurations 3 or 4 appear
to be the best. Configuration 4 requires a higher investment, but it allows to satisfy
the energy loads with a lower fuel consumption and is therefore preferable if fuel
prices increase.

11.6 Conclusions

In this chapter we have presented the procedure GDPint for the evaluation of
investments in new trigeneration systems or in the expansion of an existing dis-
tributed generation system, taking into account both technical and financial aspects.
The optimal dispatch model allows describing the system components in great de-
tail and the economic evaluation allows the users to compare several financial struc-
tures. A case study is discussed in which six alternative configurations are com-
pared. The software tool, which can be freely accessed at www.rds-web.it, has
been extensively used by different kinds of stakeholders (power producers, banks,
investors, etc.) as well as power plant engineers and regulation authority, providing a
very useful feedback regarding the details to be taken into account in the procedure,
as well as the information to be provided to the user for evaluating the investment
decisions. Maintenance work is required to keep the tool up to date, with particu-
lar reference to the legislation on incentives and taxation. Further work is planned
towards a more sophisticated representation of uncertainty, although limited by the
quite large dimension of the problem to be solved.

www.rds-web.it
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Chapter 12
Renewable Energy and Its Impact
on Power Markets

David Wozabal, Christoph Graf, and David Hirschmann

Abstract The widespread introduction of renewable energy production is
transforming electricity markets all around the globe. The changes are often hard to
anticipate for market participants and the resulting uncertainty about future market
conditions, policy regimes, technologies, and prices makes participation in these
markets risky. In this article, we focus on changes induced by the growing capacities
of wind power and photovoltaic electricity production. We highlight some aspects
of power markets that are currently changing fundamentally due to increased ca-
pacities in these technologies. In particular, we discuss technological development,
predictability and stochastic modeling of wind and solar output, policy issues per-
taining to subsidies for renewable energies, and effects on the electricity prices on
spot markets. We illustrate our findings using data from Germany and the Califor-
nian electricity market.

12.1 Introduction

Like players in any other industry, firms operating in the commodity market face
a range of uncertainties about future developments which influence profits and
thereby introduce risk in the planning process. In the energy sector, structural change
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is mainly driven by the concern about the emission of climate active gases and the
resulting global warming with its possible adverse effects. Another driver is the
geostrategic concern about oil dependence of many industrialized nations.

The result is a global move towards renewable energies in its various forms which
concerns all the major fields of energy consumption including electricity, heat-
ing/cooling, and transport. According to [60], in 2011, 71% of the newly installed
power generation capacities in the EU are renewables, while in the USA this number
is at 39%. Furthermore, from 2009 to 2011 the global amount of produced biodiesel
and ethanol increased by 18% and 20%, respectively, and capacities for solar heat-
ing increased by 52% in the same time. In most industrialized countries this change
is heavily supported by policy schemes: currently 92 countries/states support re-
newable power generation with feed-in tariffs and 72 countries/states introduced
quota systems for renewable power generation (see [60]), and the EU countries
adopted a cap and trade emission trading system to limit the amount of carbon diox-
ide emissions.

In this article, we focus on liberalized electricity markets which in many
countries fundamentally changed due to the increased deployment of renewable
generation capacities as well as regulatory frameworks intended to promote invest-
ment in clean generation technology. To narrow down the scope of the article, we
mostly take the view of electricity producers. This choice is motivated by the fact
that the expansion of renewable power generation affects the decision problem of
producers more than that of consumers, whose decision space with regard to the
purchase of electricity is most often fairly limited.

We do not consider specific risk management models but rather try to give
an overview of the different ways the promotion of renewable energy production
introduces uncertainty into the decision of electricity producers and retailers on all
levels of planning. In particular, the impact of increased deployment of renewables
induces short-run as well as long-run uncertainty in the electricity markets:

• Short-run (several hours to several months): Most renewable sources of electric-
ity have in common that they are intermittent, i.e., their electric output at any
given point in time depends on environmental factors that are outside the control
of the owner of the plant and therefore have to be considered random. Typical
examples are wind farms producing electricity dependent on wind speed, solar
panels whose output depends on the cloud cover, or hydro plants which are de-
pendent on the amount of precipitation. As is evident from the examples, this
uncertainty is mainly pertaining to the output of already existing plants and is
driven by weather-related factors. While accurate weather models are available,
prediction of intermittent infeed based on these models is always subject to un-
certainty and thereby introduces risk in the short-term planning of electricity
generators. We investigate this topic in more detail in Sect. 12.2.2.

• Long-run (one year to several years): Long-term uncertainty in the electricity
price induced by renewables stems mainly from uncertain political conditions
and regulatory frameworks on the one hand and technological development on
the other hand. Political uncertainties include direct measures to disincentive
the emission of carbon dioxide as well as schemes to support different types



12 Renewable Energy 285

of renewable energy in the form of feed-in tariffs, tax incentives, or fixed quotas
for renewable energy production. Technological developments change the rela-
tive prices and therefore the attractiveness of certain technologies, either through
innovations in the technology itself or through cost savings in the production.
Both of these factors influence the long-term appeal of a particular technol-
ogy and thereby the investment decisions in the electricity market. This in turn
introduces long-term uncertainty about the production mix and therefore about
average electricity prices as well as other characteristics of the price process such
as price variability and seasonality.

Short-run uncertainties mostly affect operational and tactical decisions of plant
usage, i.e., how much energy is produced on a given day, how to bid on vari-
ous markets, or how much water to withhold in hydroelectric storages. Long-run
uncertainties, on the other hand, affect investment decisions in power plants and
infrastructure. For these decisions changing price levels as well as shifts in the price
patterns play a crucial role as long-run price levels and volatility influences invest-
ment decisions for peak technology, storage devices, and the grid. It is crucial that
firms understand these changes and the associated risks.

The aim of this paper is to discuss several of the abovementioned aspects includ-
ing different drivers for long-term developments and their impact on the electricity
market and the short-term stochastics of intermittent technologies. For this purpose,
we focus on the technologies which, as we argue in Sect. 12.2, will be the most
disruptive to the power markets in the coming years, namely wind power and solar
power.

We leave out some important topics to keep the length of the paper at bay:

• The electric grid: The extensive buildup of renewable generation resources leads
to challenges for the electric grid in some countries. The reason for this is that
the location of renewable energy production often does not coincide with the
regions where electricity is consumed, which may lead to considerable stress for
existing transmission lines. This is, for example, the case in Germany, where
the majority of the wind energy is produced in the coastal regions of the north
sea and the Baltic sea while consumption is centered in the south of Germany.
Another challenge is that grids are not designed to receive feed-in in low-voltage
subgrids, which leads to problems in case of large-scale decentralized production
by wind turbines or solar panels not connected to high-voltage lines; see [6].

• Storages, smart grid with demand response: To achieve a high penetration of
intermittent renewable energy, it is necessary to be able to control the demand
for energy either by promoting technologies that make a demand response by
consumers possible (smart grid) or by the buildup of large capacities of electricity
storages.

This paper is organized as follows: In Sect. 12.2, we outline the recent
development of the most promising renewable technologies and discuss the cost
of different technologies as well as predictability of solar and wind power output
and statistical models for these quantities. Since most technologies for renewable
power generation are currently not profitable, we discuss various subsidy schemes
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Fig. 12.1 Renewable electricity production in (a) Germany and (b) California in the years
2001–2012. Sources: [2, 11, 16, 23]

in Sect. 12.3. We also contrast the programs in California and Germany as examples
of two fundamentally different approaches encouraging the expansion of renewable
generation capacities. Sect. 12.4 is devoted to the effects of renewables on the power
price. Section 12.5 concludes the paper.

12.2 Technologies

The most promising technologies for renewable electricity production are
hydropower, burning of biogas and biomass, photovoltaics, wind energy, and, in
some areas, geothermal production. See Fig. 12.1 for the development of energy
production from renewable sources in Germany and California in the last 12 years.

As opposed to the other listed technologies, hydropower is a mature and well-
understood technology which is extensively used for many decades. As a result the
overall potential for further projects is rather low in most countries and therefore the
impact of hydropower on the electricity markets of the future is limited.

Biogas is generated by anaerobic digestion of either residential or agricultural
waste, wood, or plants that are grown solely for this purpose. While plants that
burn biogas or biomass to produce electricity operate largely carbon dioxide neutral,
they otherwise work on the same basis as conventional gas plants. In particular,
generation is fully controllable and the plant has significantly positive marginal costs
of production.

In this article, we focus on technologies that have the most disruptive and
transformative potential for electricity markets, namely, wind and solar power. Both
technologies are known for decades but were not employed on a mass scale for pro-
duction of power until recently. Concerns about climate active gases lead to inten-
sified efforts to produce clean, i.e., carbon neutral, electricity. The resulting subsidy



12 Renewable Energy 287

schemes (see Sect. 12.3) lead to an increase in the amount of installed capacity in
the USA as well as in some European countries, as is illustrated in Fig. 12.1 for
Germany and the state of California.

Wind power and solar power both combine three distinctive features that make
them relevant for risk management:

1. There is a large potential for further growth.
2. The marginal costs for production are essentially zero.
3. Production is intermittent, i.e., dependent on random weather conditions that can-

not be influenced by the owner of the plant.

From a technical standpoint, the capacity of solar power as well as wind power is
quite large; see for an assessment of worldwide potential [37, 45, 46]. Clearly, the
future growth potential is dependent on many factors such as subsidy schemes, tech-
nological progress, and the price of fossil fuels. All these long-term developments
influence investment decisions of companies and private individuals and therefore
induce uncertainty that has to be considered in the strategic planning of electricity-
producing companies.

Note that the combination of the points 2 and 3 above adds a certain degree of un-
predictability to electricity markets with a high penetration of wind and solar power:
2 implies that electricity produced will always be fed into the grid whenever prices
are positive and 3 implies that it is not known when exactly how much electricity
will be produced. Hence, these characteristics introduce risk in short-term planning.
We will discuss these aspects in more detail in Sect. 12.2.2 and in Sect. 12.4.

12.2.1 Cost Structure of Solar and Wind Power

The main driving factor for the success of a specific power generation technology
is its cost of production. Hence, while many countries subsidize renewable power
generation, the hope is that after some time the respective technologies mature in a
way that they can compete with traditional technologies. However, calculating pro-
duction costs is not straightforward, since the total costs of building and operating
a plant over a long time horizon has to be compared with the amount of power that
can be produced during the lifetime of the plant. The cost per MWh of produced
electricity obtained this way is usually called levelized cost of electricity (LCOE) .
LCOE is a frequently reported figure, since it serves as the basis for many arguments
and policy decisions for example about the subsidies for renewable energies.

As hinted above, the calculation of LCOE is usually based on strong assumptions
including specifications for the following inputs:

1. The overnight capital costs of a plant, i.e., the cost of construction not taking into
account any interest rates during construction. These costs heavily depend on the
corresponding legal and environmental requirements, as well as on the cost of
land, labor, and construction material.
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2. The capacity factor, which indicates how many hours a year the plant can
produce at peak capacity. While quantifying the capacity factor is less of a prob-
lem for conventional plants, it poses a challenge for intermittent technologies for
which the capacity factors vary with environmental conditions like average wind
speeds or the amount of sunlight in a specific region.

3. The discount rate, which is used to make costs that occur at different times com-
parable. Usually the discount rate is calculated as a weighted average cost of
capital, requiring assumptions on the equity to debt ratio, the internal rate of
return of the investor, and the interest rates for loans over a long period of time.

4. Variable costs of production like variable operations and maintenance (O&M)
costs and, for conventional plants, the price of coal, gas, or uranium required to
produce one MWh of electricity.

5. The lifetime of the project, possibly a yearly loss of efficiency (as is the case with
solar panels) as well as a salvage value (possibly negative) for the components of
the plant after the end of operation.

Different studies use different assumptions regarding the above variables and there-
fore come to widely varying LCOE estimates—especially for renewable source of
electricity, for which reliable long-term figures are often not available and techno-
logical progress leads to rapidly varying prices. See for example [8, 13] for a critical
review of the LCOE literature regarding photovoltaics.

For the purpose of this paper, we calculate the LCOE of wind and solar power
and compare it to figures of a combined cycle gas turbine (CCGT) and an advanced
pulverized coal plant (APC). We use the LCOE calculator provided by the National
Renewable Energy Laboratory 1 and input parameters from the recent study by the
[74]. The results are summarized in Table 12.1. Note that the calculation routine
was augmented to include a yearly degeneration rate, i.e., a decrease in maximum
capacity, to accurately reflect the technical specifications of photovoltaic panels.

At the time of writing, gas as well as coal prices were rather low; hence, there is a
considerable input price risk and the costs of these technologies might very well rise
during the lifetime of the plant, making energy produced from coal or gas potentially
more expensive. To keep our results independent of policy schemes, possible costs
for CO2 emission rights, a factor that raises the LCOE of conventional production, as
well as measures that make renewables more attractive like tax credits or subsidized
loans are not taken into account.

As the name suggests, the calculation is purely cost based and does not consider
the revenue that can be made by different technologies. The revenue that can be
made for 1 MWh of produced electricity varies between technologies mainly be-
cause of the different flexibility and thereby the ability to react to changing prices
on electricity exchanges. Typically this flexibility is the highest for gas-fired plants,
followed by coal plants and nuclear power stations. Intermittent technologies, which
cannot control output at all, can be considered as entirely inflexible. Note that the
cost advantage of the CCGT plant over the APC plant is due to the high capacity
factor of the former. A capacity factor of 0.85 for a CCGT plant is technologically
feasible but not economical in most markets, because of the high marginal cost of
production (see Sect. 12.4.1).

1 See http://www.nrel.gov/analysis/tech_lcoe.html.

http://www.nrel.gov/analysis/tech_lcoe.html.
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As can be seen from the results in Table 12.1, conventional production has a clear
cost advantage over utility-scale solar production and offshore wind power, which
is not yet a mature technology. However, the most advanced renewable technology,
onshore wind production, seems to be competitive at current prices.

Utility-scale solar power is clearly the most expensive way to produce electricity
and cannot compete with other technologies in terms yet. However, we also calcu-
lated the LCOE of a classical rooftop installation which is nowadays very popular
in some countries due to generous subsidies. The results show that due to a lower
cost of capital for private investors, which we assume to be 5%, and lower overnight
capital cost, the LCOE for rooftop installations of photovoltaic panels is substan-
tially more competitive than utility-scale installations and comes close to the costs
of conventional technologies.

Table 12.1 LCOE estimates for wind power, solar power, a combined cycle gas turbine (CCGT),
and an advanced pulverized coal plant (APC) in EUR

Solar Wind Fossil fuel

Rooftop Utility Onshore Offshore CCGT APC

Lifetime 30 30 30 30 30 30
Interest 5% 9%a 9%a 9%a 9%a 9%a

Overnight capital cost 1,770,000b 3,735,000 1,593,893 3,812,214 651,145 2,064,885
Capacity factor 0.25c 0.25c 0.34c 0.37c 0.85c 0.87c

Fixed O&M costs 21,183 21,183 30,191 56,489 11,733 28,855
Variable O&M costs 0 0 0 0 0.00252d 0.0034d

Heat rate (Btu / KWh) 0 0 0 0 6,430 8,800
Fuel cost (EUR/MMBtu) 0 0 0 0 7.73e 3.51 f

Degeneration (per a) 1%g 1%g 0 0 0 0

LCOE (EUR / MWh) 69.97 193.07 62.23 131.91 62.34 64.50

All data that is not discussed in the footnote above is taken from [74]
a See [79]
b http://www.solaranlagen-portal.com/, roof installation in Bavaria, 50m2

panels, south-east facing roof, output of 6.16 Wp (13.05.2013)
c IEA 2018 projections; see http://www.eia.gov/forecasts/aeo/er/
electricity_generation.cfm.

d National Renewable Energy Laboratory: median of estimates for 2012 from studies in
2008–2012

e NCG Natural Gas Futures 2014, Source: EEX (13.05.2013)
f BP Statistical Review of World Energy 2011, prices for 2011
g See [13]

Another advantage of small rooftop solar installations is that the reference price
for competitiveness is not the wholesale price for electricity but rather the retail price
paid by household customers, which in most countries amounts to more than double
the wholesale price because of grid fees, taxes, and, in some countries, subsidies for
renewables. If the cost for production is lower than the retail price for electricity, it

http://www.solaranlagen-portal.com/
http://www.eia.gov/forecasts/aeo/er/electricity
http://www.eia.gov/forecasts/aeo/er/electricity
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pays off for households to consume their own production and thereby a photovoltaic
installation might be competitive even if the costs exceed the production costs of
other technologies.

The point in time where the LCOE from a technology equals the price of electric-
ity in the grid is called grid parity. Breyer and Gerlach [14] project that in 2020 grid
parity for photovoltaic production will be reached in most industrialized countries
and [63] estimate that in 2016 it would be profitable for a typical German household
to install photovoltaic panels for own consumption without any subsidies, even if
only 25% of the energy can be directly consumed and the rest is sold for whole-
sale prices to the grid. This, combined with the fact that the price for solar panels
is rapidly decreasing, makes growth of the installed capacities in the coming years
very likely—even in countries with less generous subsidy schemes.
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Fig. 12.2 (a) History of daily photovoltaic generation in Germany for the years 2011–2012 and
trigonometric trend. (b) Daily infeed pattern from German production for the years 2011–2012
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12.2.2 Trend, Stochastics, and Predictability

Since wind and solar power are intermittent technologies, it is important to have
predictive models for electricity production from these technologies. Such a model
optimally consists of two parts: predictors as well as a stochastic model for the fore-
casting error. Both of these components are essential when planning plant dispatch
and we will discuss them separately in this section.

We start with predictive models and an investigation of trends and seasonality
for wind and solar power using data provided by the four German Transmission
System Operators (TSO). The energy output of these technologies is mainly depen-
dent on weather conditions and as such is subject to yearly seasonality. Figure 12.2
(a) shows the daily quantities of produced solar power over the last two years in
Germany. Clearly, there is a pronounced seasonality with nearly no production in
midwinter and peak production in midsummer. The trend is represented by a simple
trigonometric model with installed capacities as an additional variable and an in-
teraction term between capacity and seasonality, whose coefficients were estimated
by least squares. As can be seen from the plot, the model captures the seasonality
and the impact of additional capacity quite well, which is also reflected by the rela-
tively high R2 of 74%. The daily variations for summers and winters are depicted in
Fig. 12.2b.

Figure 12.3 shows a similar analysis for wind power production. Figure 12.3a
depicts the trend in wind infeed from 2009 till 2012. It can be seen from the trend
analysis that the yearly seasonality is much less pronounced than in the case of solar
energy with slightly higher production during winters than in summers. However,
this yearly seasonality is superimposed by large daily variations in wind output.
Looking at Fig. 12.3b, we can see that also daily seasonality is much flatter for wind
energy than for solar power. Moreover, we remark that the pattern for wind and solar
energy production might vary considerably between different regions of the world.

Summarizing, we can say that solar production follows a much more regular
trend than wind energy production and hence it is easier to incorporate into medium-
term planning models. Another interesting finding is that wind power also fluctuates
strongly at a yearly level, i.e., there seem to be more and less windy years. This is
illustrated by Fig. 12.5, where it can be seen that in Germany, production in the years
2007 to 2010 stagnated although there was a large increase in capacities. Likewise
in California wind energy production constantly rose in the years 2004 to 2010,
although capacities stayed constant.

Table 12.2 MAPE and RMSE (in MWh) of wind and solar forecasts for the year 2012 in Germany

MAPE RMSE

15 min 60 min Daily 15 min 60 min Daily
Wind power 0.29 0.28 0.18 281 1,112 18,488

Photovoltaics 0.40 0.46 0.17 276 1,069 10,625
Wind + photovoltaics 0.20 0.19 0.12 350 1,388 21,804
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Seasonality captures medium-term trends and expected output weeks or months
ahead. Equally important is the forecasting of the output for the next 24 h to several
days. For these short horizons accurate models are available that take forecast wind
speeds and cloud cover as well as the specifics of the plant into account. A review of
these rather technical meteorological models is beyond the scope of this paper and
we refer to [25] for a survey.

To assess the quality of short-term predictions, we use the 24-hour-ahead
forecasts for wind and solar power published by the four German TSOs for theirs
respective grid zones and compare them with the actual values for the year 2012. We
calculate the root mean squared error (RMSE) and the mean absolute percentage
error (MAPE), defined as

RMSE =

√
n−1

n

∑
i=1

(yi− ŷi)2, MAPE = n−1
n

∑
i=1

∣∣∣∣yi− ŷi

yi

∣∣∣∣
where (ŷi)

n
i=1 are the forecast and (yi)

n
i=1 are the actual values. To avoid numerical

problems with the computation of MAPE for the solar power forecasts, we excluded
observations with a solar power output of less than 1 MWh.

The results summarized in Table 12.2 show that the absolute error, expressed by
RMSE, is on average slightly above 1 GW on an hourly level for both technologies
summing up to a daily forecasting error of 18.5 GWh and 10.6 GWh for wind and
solar, respectively. The relative error, measured by the MAPE, suggests that pre-
dictions for both wind and solar power are prone to rather large errors on shorter
time scales, whereby predictions for solar power are much worse in this respect
with an average percentage error of 46% on an hourly scale. However, it also has
to be remarked that the MAPE of the solar power output drops to similar levels as
the MAPE for wind power if hours with less than 10 MW are excluded from the
calculation of the MAPE.

Before the large-scale introduction of renewable energy, the uncertainty about
the residual demand, i.e., the load that has to be covered by controllable plants,
basically resulted from uncertainties about the exact demand. Since the total de-
mand for electricity can be forecast with a MAPE of about 2% (see for example
[68]), the electricity networks were much more predictable. Systems with a high
penetration of renewables require large capacities for balancing energy, which typ-
ically is provided by storage plants, fast gas or oil turbines, or changes in output
of already-running base-load plants. We, therefore, also calculate the errors in the
prediction of the sum of wind and solar power, since this quantity is important when
calculating the residual demand which in turn influences the power price on compet-
itive markets (see Sect. 12.4): the sum of solar and wind output can be forecast with
lower relative error than any of the two individual time series. However, using Spear-
man’s rank-order coefficient, we cannot reject the null hypothesis of independence
of the forecast errors of the two technologies at any reasonable level of confidence.
Hence, we conclude that forecast errors do not seem to cancel out to a greater ex-
tent than what would be expected for the sum of two independent random variables.
The figure for the RMSE of the sum shows that the demand for balancing energy
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caused by volatile renewable energy is on average 1.4 GW on a 15-minute level, a
fluctuation that does not seem to be too big considering the size of the market of
around 60 GW on average. Looking at the worst 2% in terms of forecasting errors,
i.e., the 1% and 99% quantiles of the 15-minute error distribution, we find errors of
3.7 GW and 3.9 GW, respectively.

Having discussed seasonality and forecast errors, we now turn to distributional
models for renewable energy infeed, which are needed to assess risk in electricity
markets. To model the stochastics of the power output, most authors first model
the stochastics of weather conditions and then transfer these random conditions to
random power outputs using the technical specifications of the system. In the case
of wind, wind speeds are usually modeled as either normally distributed [31, 40] or
following a Weibull distribution [38]. The wind speed is translated to power output
by a polynomial power curve (with cutoffs), i.e., a function mapping the wind speed
to the amount of power produced; see for example [38]. For solar energy a similar
approach is followed: in the first step a stochastic model for the so-called clearness
index [34] is developed and then this quantity is translated to a random power output
using the specifications and the location of the system.

More elaborate models that also take into account the time dynamics and relia-
bility of the systems using Markov-chain models can be found in [5, 84]. The joint
stochastics of wind and solar power infeed is considered in [70].

12.3 Regulatory Frameworks to Support Renewable Energy

From an economic perspective, the main line of justification to support renewables
through public policies are the effects of negative externalities which occur from
producing electricity with conventional technologies, e.g., the negative environmen-
tal effects from burning fossil fuels like the emission of greenhouse gases. Another
argument for promotion of renewable energy sources is the reduction of dependency
on fossil fuels and the security of supply in the energy sector.

According to standard microeconomic theory, efficient market equilibria are dis-
torted when facing widespread externalities. Since the value of public goods like
clean air or the protection from climate change is not captured in the marginal cost
of the suppliers, energy prices are lower than what they should be. In the following
subsections, we elaborate on two ways of dealing with negative externalities: direct
and indirect mechanisms.

The most efficient way of internalizing an externality would be by means of
directly taxing emissions or introducing a permit market.2 However, the unpopular-
ity of taxes or permit supplements is one reason why indirect mechanisms play a
large role around the globe.

2 The Coase theorem provides bargaining as a solution to cope with externalities in a market.
However, property has to be defined in order to trade the externality. Furthermore, for the theorem
to be applicable, the absence of transaction costs is necessary. In the case of a public good like
environmental protection, property rights are poorly defined and also transaction costs would be
severe.
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Indirect mechanisms are tools to support (renewable) technologies rather then
tackling the negative externality directly. Given sufficient support, renewable tech-
nologies are deployed leading to a reduction of the market share of conventional
technologies. Hence, these mechanisms indirectly cope with the negative external-
ity. Furthermore, the subsidy of certain technologies may trigger dynamic learn-
ing effects, which are hard to achieve in direct schemes, as the latter favors the
deployment of technologies that are currently most cost-effective. In the following
subsections, we describe the two mechanisms in more detail and provide some em-
pirical evidence of implemented indirect mechanisms with a focus on Germany and
California.

12.3.1 Direct Mechanisms

Direct mechanisms can be divided in price-based instruments, where the regulating
authority directly influences the price of the externality, and quantity-based instru-
ments where the amount of the produced externality is restricted. The question
whether prices or quantities are the more efficient instrument to control for neg-
ative externalities was first raised by [78]. While in the case without uncertainty
about the marginal cost function both instruments yield efficient results, the situ-
ation changes when introducing uncertainty about marginal costs, in which case
neither instrument yields an optimum ex post. Which instrument eventually can be
considered second best in terms of efficiency depends on the shape of the cost and
benefit curves [78]. In case of a flat marginal cost curve, the application of a price
instrument can have severe consequences on the desired quantity if the marginal
costs are estimated wrongly.

The classical textbook example of a price-based instrument is an environmental
tax á la Pigou [55]. An application of this instrument is the gasoline tax which targets
the externality of burning fossil fuels in the transportation sector and exists in many
countries around the world for decades.

The most prominent examples in the class of quantity-based instruments are cap
and trade mechanisms in which tradeable permits are allocated to firms. Such trad-
ing schemes which are used to price clean air and correct for the negative externali-
ties have been introduced in recent years in some economies.

Although direct mechanisms are considered the most efficient solution, there are
two practical reasons why they are difficult to implement. First, the exact valua-
tion of the avoided damage or the value of the public goods preserved necessary
to design an optimal tax or an optimal permits market is not possible and second
the unpopularity of taxes in general. While the former could be solved by an un-
certainty premium, the latter seems to be the more severe reason. Price increases
through taxes or permit supplements are, therefore, politically difficult to implement
also because of the interlinkage of energy prices and macroeconomic performance
of a country. A global consensus on how to economically treat pollutants stemming
from burning fossil fuel does not exist.
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The European Union Emissions Trading System (EU-ETS) serves as an example
for problems associated with the design of a direct mechanism. The EU-ETS is a
carbon market which exists since 2003 and initially served as a role model for other
countries around the world. However, at the moment the EU-ETS fails to provide
proper price signals. The recent price decline (20 EUR/t in 2011 to 5 EUR/t in
2013) is partly due to the economic crisis and partly due to an oversupply of free al-
lowances. This makes the construction of heavily polluting coal plants more attrac-
tive than that of cleaner gas plants. This development emphasizes the importance
of market design, the knowledge about the value of the public good, and political
influence [69].

12.3.2 Indirect Mechanisms

In addition to direct mechanisms described in the previous section, many coun-
tries implemented subsidy schemes in order to promote (renewable) technologies.
Although this strategy is at most third best in terms of efficiency, it is politically
more feasible. Another stream of arguments for supporting renewable technologies
concern the stimulation of dynamic learning processes required to reduce costs of
renewables to guarantee security of electricity supply in the future at a reasonable
price. Electricity production from renewable sources is fairly cheap at the margin;
however, subsidy schemes are in many cases the only alternative to encourage in-
vestors to bear the high fixed cost of the development of renewables especially in the
emerging phase. An increased diffusion of these technologies ensures benefits from
dynamic learning effects [4] and eventually helps to make them competitive [47].

In the category of indirect mechanisms there exist many ways to support the dif-
fusion of renewables, for example, investment in research and development (see for
instance [1] who argue that an optimal environmental policy involves both carbon
taxes and research subsidies when conventional and renewable technologies are suf-
ficiently substitutable), financial support by providing investment subsidies, or tax
credits. Yet, the most common support schemes are based on generation and are
either price-based or quantity-based instruments.

The so-called feed-in tariffs (FiT) fall into the category of price-based instru-
ments, which typically oblige electric utilities to buy all renewable generated elec-
tricity at a price determined by public authorities. This fixed price is usually higher
than the market price and moreover guaranteed for a specified period of time. A vari-
ation of the FiT is the premium model, where a fixed premium is added to the market
price. This premium is again determined by public authorities and guaranteed for a
specified period. The level of the market premium should, theoretically, be set at
the level of the external costs of conventional power generation. From an investor’s
perspective, the FiT is clearly preferred over the premium system since market risk
induced by volatile prices is excluded. The cost of the market premium or the FiT
likewise is generally borne by the final consumers of electricity [15, 30, 47, 62].
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In contrast to price-based instruments like the FiT, there exist also quantity-based
instruments. The most prominent example in this category is a renewable energy cer-
tificate market. In the USA, this quantity-based scheme is called renewable portfolio
standard (RPS) and in the UK, renewable obligation (RO) . In this type of scheme,
producers or retailers are required to supply a certain percentage of electricity from
renewables or otherwise pay a penalty which is redistributed to the renewable en-
ergy suppliers. The supply from renewables in total has to meet a certain quota set by
the government. Certificates are issued by renewable electricity generators who sell
electricity directly on the wholesale market and additionally benefit from selling
certificates on the renewable energy certificate market. Trading in certificate mar-
kets activates market forces and therefore, theoretically, leads to efficient outcomes
[30, 47].

Without further design restrictions, the certificate market does not discriminate
between technologies which subsequently can lead to unfair competition between
renewable technologies at different stages of development. Therefore, the result
would be a rather homogeneous technology mix, i.e., investors would prefer tech-
nologies which already experienced high learning rates like wind power to tech-
nologies which might need further stimuli in order to become competitive.

Two major criteria influence the investor’s decision: risk and profitability. Sup-
porting schemes for renewables are aiming at decreasing risks and increasing prof-
itability. Mitchell et al. [50] consider three types of risk to be relevant for investors:
price risk, volume risk, and balancing risk. Volume risk refers to the risk of not being
able to sell all the produced electricity, whereas balancing risk is the risk associated
to the deviation from a prespecified production schedule.

In the standard design of an FiT, there is no price and volume risk, since typically
the total generation from renewables is fed into the system at a fixed price. Note that
balancing risk may occur under feed-in schemes depending on their exact design
[19, 33, 50]. For example, in the original FiT design in Spain, generators had to pay
a fixed penalty for deviating from the schedule [43]. However, it is more common
that generators are not exposed to balancing risk in feed-in regimes.

In the market-based certificate trading scheme, without any fine-tuning, quantity
risk and price risk are present. The price risks enter through the volatility of electric-
ity prices and the prices of certificates, which fluctuate, due to the intermittent nature
of renewable technologies. Volume risk [50] is induced by the quota, which fixes an
overall volume for renewable generation. Such a quota does not guarantee that the
individual renewable electricity producer’s output will be bought. Balancing risk is
typically also present in market-based certificate trading schemes. However, in prac-
tice, there are workarounds for the balancing requirement, for example, California
introduced more lenient balancing rules for producer included in the Participating
Intermittent Resource Program [33].

From the risk perspective of an investor, an FiT is favored compared to the
market-based support scheme, though it also has some drawbacks. For example,
it is seen to be more prone to political risk, i.e., if costs escalate, public support
decreases and therefore also political support vanishes. This has been the case in
Spain, where after a change of government all support schemes for building of new
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renewable capacities were suspended in 2012 [61] and the support scheme were
changed to the disadvantage of owners of existing plants. Note that the risk evalu-
ations under the different subsidy schemes hold only under the pure design of the
policies described above. In practice, there are various policy design variations, in-
tending to absorb price risks, for example, through introducing cap and floor prices
in a feed-in premium system or floor prices for quota schemes [44].

Two important questions have not been tackled so far: which policy instrument
is more effective in terms of deployment and which one is more cost-efficient?
The literature considers FiTs to be more effective than quantity-based instruments,
meaning that they are able to quickly deploy significant capacities of renewables
[47, 67]. The most obvious reason for this is the risk reduction of investors as de-
scribed above. With respect to efficiency the literature is not so clear. Menanteau
et al. [47] point out that administrative costs of implementing FiTs are rather low,
but also note that quantity-based instruments like the RPS are preferred when the
slope of the marginal cost curve is flat. Fagiani et al. [24] analyze cost-efficiency and
cost-effectiveness of certificate mechanisms compared to FiTs. They simulated the
hypothetical future Spanish electricity market including both policy tools. They con-
clude that FiTs could obtain higher efficiency than certificate markets if tariffs are
well calculated. This means that policy maker’s estimation of marginal cost curves
need to be accurate; otherwise, the FiT could lead to over- or underinvestment and,
thus, inefficiency. Hence, their simulation model confirms the theory by [78]. The
ultimate efficiency of an instrument, however, depends on the exact design of the
support scheme.

The issue of mixing direct and indirect policies to achieve the goal of emission
reduction is controversially discussed in economic literature. Most of the debate
on policy mixes for one target is based on [71] who states that only one policy
instrument per target is optimal. Böhringer and Rosendahl [12] point out that mixing
direct and indirect mechanisms may have unintended consequences. In particular,
they analyze the impacts of overlapping quotas for emissions and renewables. The
promotion of renewables through quotas leads to a price decrease in the permit mar-
ket, thus making coal more attractive compared to cleaner gas. Philibert [54] con-
firms that overlapping direct and indirect policy instruments are likely to increase
the cost of achieving the single-objective in the short-run. However, in the long-run,
when large-scale deployment of renewables establishes its role in emission mitiga-
tion, cost will be considerably lower because of the support in the early phase of
deployment [54]. Moreover, supporters of indirect mechanisms emphasize that mit-
igating emission is not the only target; it has, rather, multiple targets like the security
of supply at reasonable prices in the future.

12.3.3 Empirical Evidence of Indirect Mechanisms

Around the globe, FiTs as supporting device for renewables are dominating. By
early 2012, FiTs were in place in at least 65 countries and 27 states while quotas or
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renewable portfolio standards were in use in 18 countries and at least 53 other ju-
risdictions [60, 67]. In the USA, 29 states, Washington DC, and two territories have
implemented RPSs [20]. In the European Union, more than 20 of the 27 member
states use the feed-in system (either premium or tariff) as their main support instru-
ment in 2012. In the last years member states which traditionally used quota systems
like Belgium, Italy, and the UK have introduced FiT for small-scale installations
[9, 58, 83]. Figure 12.4a shows a map with the prevailing policy tools implemented
by the European member states. Spain is marked in light yellow since the former
price-based policies to support renewables are currently suspended. Figure 12.4b
shows the distribution of states in the USA which have implemented RPSs or have
renewable goals.

Germany and California are seen as among the front-runners concerning the de-
ployment of renewable energy in Europe and in the USA, respectively. The 2020
policy goal of the European Union (EU) states that 20% of EU gross final energy
consumption is produced by renewable energy sources [22]. To reach this target, the
German government decided to reach a share of 35% generation of electricity from
renewables by 2020 [9]. In 2011, the Californian government decided on a goal of
33% of electricity generated from renewable energy resources by 2020 [16]. While
the targets of Germany and California are quite similar the policies to achieve these
goals are very different. Germany opted for an FiT while California implemented
the RPS.

In California, the first version of the RPS was established in 2002 and accelerated
in 2006 by requiring that 20% of electricity retail sales be served by renewable en-
ergy resources by 2010. In 2011, the RPS was amended to mandate 33% production
from renewables by 2020 [16, 41].

Fig. 12.4 Renewable policy schemes. (a) European Union: member states with feed-in system
(yellow), quota system (blue, dark), and mixed system (green) by December 2012. Source: [9, 58,
61]. (b) United States of America: states with renewable portfolio standard (blue) and renewable
portfolio goal (orange), by March 2013. Source: [20]
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The German Renewable Energy Sources Act (EEG), enacted in the year 2000,
was the start of Germany’s efforts towards large-scale deployment of renewable en-
ergy production capacities. To this day, the EEG has been modified a few times also
in order to decelerate the massive buildup of capacity in wind and photovoltaics (see
Figs. 12.1 and 12.5, Panel a). This was done by lowering degression rates, which
were originally designed to exert cost pressure on manufactures through changes in
remuneration for new plants.

The EEG is deemed to be effective since the price, quantity, and balancing risk is
eliminated for investors. However, in the recent past, a debate about the efficiency
of the German model started because the cost borne by end users saw a dramatic
rise from 0.2 ct/kWh in 2000 to 5.28 ct/kWh in 2013 [21, 48]. Therefore, in a recent
update of the EEG, Germany implemented incentives for renewable energy produc-
ers to switch to more market-based support schemes. In particular, Germany now
offers a market premium model as an alternative to the FiT, which allows operators
to sell their production directly on the market and receive a premium dependent on
the average market price from the government. Moreover, the government pays a
management premium in order to compensate for losses due to forecasting errors
induced by the intermittent nature of most of the renewable technologies, mitigat-
ing balancing risk [10]. The recent modification of the EEG also addresses the lack
of controllability of installed capacities through the FiT mechanism.

Figures 12.1 and 12.5a show the transformation of the German electricity sup-
ply. Although California produced more electricity from renewables than Germany
in 2001, Germany has increased its supply by approximately a factor of 4.5 from
2001 to 2012 while California has increased by a factor of 1.15. This development
supports the effectiveness of the German subsidy scheme. In order to compare the
numbers in Figs. 12.1 and 12.5, notice that Germany has more than twice as much
habitants as California, and also the electricity consumption of Germany with 594.5
GWh compared to 278.3 GWh of California was about two times higher in 2012
[11, 16]. Figure 12.5 depicts the production and installed capacities of photovoltaics
and wind in Germany and California. In 2012, Germany was able to supply about
23% [11] of the demand from all renewable technologies, while for California this
figure is at 20% 3.

It has to be noted that generation from photovoltaics and wind so far only add
a small part to fulfill the demand (about 12% in Germany and 4% in California);
however, these two technologies showed considerable dynamics in installed capac-
ity in recent years which is expected to continue in the years to come. As it can be
seen in Fig. 12.1, Panel b, production from hydro, geothermal, and biomass plays a
major role in California. In the case of Germany, also biomass experienced dynamic
growth in the recent years, while the potential of hydro seems to be exhausted (see
Fig. 12.1a).

3 Data on California’s hydro generation contains also production from pumped hydro storages,
which are normally not counted as renewable.
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Fig. 12.5 Wind energy and photovoltaics in (a) Germany and (b) California. Bars indicate installed
capacity; lines indicate production. Source: [11, 16, 23]

12.4 Price Effects

Since renewables introduce additional uncertainty to electricity markets, one would
also expect to see this effect in the prices. Correspondingly, a lot of research is done
to quantify the impact that renewables have on electricity spot market prices.

One can distinguish short-run and long-run effects on the prices, as mentioned
in Sect. 12.1. It is widely agreed on that in the short-run, an increasing share of
renewables will lower the average price. At the same time, literature indicates that
price volatility will increase.

The long-run effects are more difficult to estimate since strategic decisions of
producers, policies, and technological changes will determine the power generation
mix and consequently the future electricity prices; see [53, 77, 80].

In the following subsections, we introduce a simple static equilibrium model
for price formation on electricity markets, which we subsequently use to discuss
shot-run and long-run effects of renewables.

12.4.1 The Merit Order—A Static Model

The merit order is a helpful theoretical concept to model how spot market prices
form. It is a way of ranking sources of electricity production. Each utility and its
capacity are lined up, ordered by their marginal production costs, from lowest to
highest, resulting in the so-called merit order. Ignoring renewables, uranium and
lignite plants are found to the left end of the line, whereas gas and oil plants are
found at the right end. Figure 12.6 shows an example of a merit order for the German
market.

Often, the term merit order is used not only to refer to the actual ranking of the
plants but also to the resulting curve that relates quantity (x-axis) to marginal costs
(y-axis). Therefore, the merit order can be interpreted as the electricity supply curve.
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Even though in general, the merit order is discontinuous, to facilitate analysis
of the merit order effect, a continuous curve is assumed in most of the literature.
Furthermore, it is usually assumed that the curve is convex; see, e.g., [7, 57, 65] for
examples of merit order curves in US markets and [32, 59] for the German market.

The demand for electricity is rather inelastic. Most consumers do not base their
electricity consumption on current prices, since they usually buy their electricity
for a fixed tariff which is independent of short-term fluctuations on spot markets.
Furthermore, it is difficult for these consumers to shift demand to a different point
in time and there is no possibility to store electricity economically. So far, the only
tools to vary demand from customers are interruptible contracts which exist mostly
between producers and industry. In future, smart grids could be used for demand
management where different price signals influence consumption patterns. Critics
state that the effect will be limited as a big share of consumption is still very inelas-
tic: demand management can only be used for appliances like dishwashers, refriger-
ators, washing machines, and possibly air-conditioning. The situation could change
if more storage capacities were introduced, e.g., hydrogen storages or strategic use
of batteries of parked electric cars.
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Fig. 12.6 Constructed merit order for Germany (conventional plants only), November 17, 2010.
See [26]

Assuming perfect competition and neglecting time dependencies and grid con-
straints, the merit order determines the spot price. To cover a certain demand, the
marginal cost curve of the industry, represented by the merit order, is intersected
with the inelastic demand curve. The point of intersection determines the electricity
price and all the plants with marginal costs below that price are switched on to cover
the demand.
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Fig. 12.7 Demand and residual demand (approximated by loads) for Germany in (a) summer and
(b) winter in the year 2012. Solid lines indicate hourly medians, whereas dotted lines indicate
the corresponding 0.05 and 0.95 quantiles. Wind and photovoltaic infeeds are hourly means. All
quantities are MWh. Source: Data published by German TSOs

12.4.2 Renewables and the Residual Demand

Renewable sources enter the merit order typically at the left end because of their
low marginal cost and therefore will almost always dispatch. Only the demand not
covered by renewables will be covered by conventional energy sources with pos-
itive marginal costs. Another way to see this is that demand for conventional en-
ergy is lowered by renewable energy production. In the static demand and supply
framework, this is equal to a shift in the demand. The shifted demand, that is, the
remaining demand for conventional energy, is the so-called residual demand.

In this context it is interesting to note that while wind is fed into the grid directly,
photovoltaics can effect demand in two ways: either the produced energy is fed into
the grid as well or households satisfy their own demand. In either case, the demand
for conventional energy is lowered.

For an example of the behavior of the residual demand, see Fig. 12.7. The figure
shows the influence of renewables on demand in Germany in 2012. The thin, solid
line is the load, used as a proxy for demand. On the bottom of the figure, the amount
of wind and solar energy is indicated. The difference between load and production
from renewables is a proxy for residual demand and is indicated by the dark, solid
line. For the loads, the hourly median and the 0.05 and 0.95 quantiles are shown;
for renewables the hourly average production is depicted at the bottom of the graph.
The following can be noted:

• The shape and level of the (residual) demand changes with the introduction of
renewables. Wind shifts the entire residual demand curve downwards, since wind
infeed is almost constant in the mean. Photovoltaics, on the other side, change the
shape of the residual demand curve. Since the infeed from photovoltaic produc-
tion is concentrated in the hours with peak consumption and therefore peak price,
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additional solar capacities dramatically lower the prices during these hours. One
result of this development is that the price differences between day and night
hours, on which pumped hydro storage facilities rely to make profits, are shrink-
ing considerably. However, these developments may give rise to a morning and
a late evening peak in future. This shows that renewables can influence price
patterns in a nontrivial way.

• The distribution of the residual demand changes. The quantiles show how the
distribution becomes broader. This indicates that renewables are an additional
source of uncertainty.

Fig. 12.8 Renewable energy production and spot market prices for Germany in the year 2012.
The solid line indicates the regression line. Source: Renewable electricity production published by
German TSOs and spot prices published daily by the EEX

12.4.3 Short-Run Effects

As described above, the residual demand is the demand curve shifted by the infeed
of renewable energy. Since the residual demand is always smaller than the demand,
the price is always lower due to the upward slopping shape of the merit order. There-
fore, the average price decreases.

This effect was shown in many theoretical and empirical works. Traber and Kem-
fert [72] calibrate a computational model for Germany and find price decreases due
to infeed of wind power. Similar results are derived in [64] by means of agent-based
modeling. Although they find almost no price reduction in low load hours, they re-
port a reduction up to EUR 36/MWh in hours of peak load. Nicholson et al. [52]
find that wind generation mildly, but significantly, reduces the market price in the
four-zone Electricity Reliability Council of Texas market. For Denmark, [51] report
a decrease in spot prices if wind penetration increases.
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Jónsson et al. [39] point out that the spot market prices are not influenced by
the actual wind infeed but rather by the wind forecasts. This can be attributed to
the fact that electricity spot markets are usually settled one day before delivery. In
Fig. 12.8 the day-ahead forecasts for renewable electricity production are plotted
against the spot market prices. One can see that low forecasts correlate with high
prices, whereas high forecasts typically yield lower prices.

Another interesting effect, which can also be observed in Fig. 12.8, is the surge
of negative spot prices which mainly arise in hours of high infeed of renewables.
In these hours utilities are actually paid to consume electricity or lower their pro-
duction. However, negative prices are not necessarily related to an oversupply of
renewables. Andor et al. [3] show that negative prices were also observed in the
German market even when there was no renewable energy traded. The reason is that
some suppliers accept negative prices due to ramping costs and opportunity costs of
their power plants. However, it is widely accepted that the increase in renewables has
increased the number of negative price events. It is also interesting to note that the
surge of negative spot prices is strongly related to the type of subsidy scheme. For
example, under a renewable energy certificate market (see Sect. 12.3.2), renewable
energy utilities will feed in at negative costs, as long as the price of the certificates
is higher than the loss they make. In an FiT scheme producers will always feed in
their energy, regardless of the market price.

Whereas in literature lower average prices in the short-run are well documented,
price variance is not studied as extensively. Price variance is an important risk factor
and an input for financial modeling of electricity products, for consumer contract
pricing, or for the market strategy of a pump storage facility.

The following oddity, reported by [18] for Australia, indicates how important
price fluctuations can be for producers: during September 2008 and August 2010,
prices were dominated by 25 extreme peaks exceeding AUD 1000/MWh. These
prices contributed 45% and 63% of the spot market revenue during September 2008
until August 2009 and September 2009 until August 2010, respectively, although
representing just 0.25% and 0.42% of the 30-min trading intervals.

In general, it is concluded in literature that with a higher share of renewables,
price variability increases, e.g., [17, 27, 36, 81]. The main point is often that the
range and the variability of residual demand increases and that this carries over to
the prices. Ketterer [42] studies the influence of wind on German electricity prices
and price variance in particular using a GARCH model and concludes that variable
wind power increases volatility.

Note that short-run effects may also depend on the time between market bids and
delivery due to better weather predictions for shorter time horizons [35] as well as
the functioning of balancing markets [75] and the availability of storage to react to
deviations from load predictions.
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12.4.4 Long-Run Effects

So far, we have studied the short-run effects of renewables on prices using the merit
order with a fixed set of power plants. Matters are more difficult for long-run effects.
The reason is that producers react to market developments and adapt their portfolio
mix dynamically, which leads to a change in the shape of the merit order [53, 80].

Weber and Woll [77] point out that an increasing share of renewables can reduce
the degree of capacity utilization of base-load plants. As base-load plants have high
fixed costs, producers may favor the building of peak-load electricity generation
plants. Green and Vasilakos [28] conduct a numerical study for the UK and come to
similar conclusions. They show that when maximizing social welfare, the capacity
of base-load conventional power generators would fall, but the amount of flexible
gas-fired generators would increase. Steggals et al. [66] recognize that due to higher
uncertainty about load factors of peak plants and depressed average prices, invest-
ment decisions become increasingly complicated. Nevertheless, they also find that
for the future portfolio mix, gas-fired plants are more likely to be built due to their
lower capital costs.

In a portfolio mix with a high share of peak-load plants, it is more likely that an
expensive peak-load plant determines the market clearing price if demand exceeds
production of renewables. Weber and Woll [77] argue that this could offset the price-
reducing effect of wind energy, where [49] show that this can eventually increase
average prices and price variance.

It is also interesting to note how renewable energy affects base-load plants. Troy
et al. [73] report that cycling (starting/stopping operation or varying load levels)
due to varying wind infeed causes accelerated deterioration of components. One
consequence, they argue, could be that generators alter their bid strategies in order
to minimize cycling damage which would affect the market prices.

Contrary to the studies mentioned above, [72] argue that currently incentives for
investments into flexible gas-fired plants are missing: wind energy production re-
duces their load factors overproportionally and consequently, earnings are low at
current prices. Woo et al. [82] find decreasing revenues for gas-fired plants in Texas
if wind energy production increased further. Therefore, [72] propose to implement
a policy under which wind energy producers have to take the balancing risk. Such
a policy would not only affect the supply curve but also open up new market per-
spectives: wind producers may want to sell the risk of varying infeeds or trade more
actively on the balancing market.

In general, policies and subsidy schemes can have a great impact on the future
supply curve and therefore on the prices. As an example we mention the effect of
CO2 prices: if CO2 prices were sufficiently high, then this could interchange the
position of coal- and gas-fired plants which would fundamentally change the merit
order.

Yet another scenario would be the introduction of large-scale storage capacities
or the alternative use of oversupply. Green et al. [29] consider the long-run im-
pact on electricity prices and on the optimal capacity mix in the UK, if hydrogen
was produced in times of excess wind production. The produced hydrogen could
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be used either to generate electricity, for transport, or for combined heat and power.
The authors find that the presence of hydrogen production via electrolysis would
raise average price of electricity and that in the cost-minimizing capacity mix, nu-
clear plants would replace gas-fired power stations, as demand could be spread more
evenly.

Finally, an alternative approach to study the future portfolio mix is to consider
strategic interaction among producers. A stream of literature models investment
decisions in capacities in a game-theoretic setting. The models are formulated as
Cournot or Stackelberg games and are solved numerically. Although they help to
understand the strategic interactions, these models are rather stylized and do not
permit detailed predictions of the portfolio mix. For an overview of these types of
models see [56, 76].

12.5 Conclusion

In this article we tried to give an overview of the most important drivers of the funda-
mental changes that can be observed on many electricity markets nowadays. In par-
ticular, we analyzed the technological and economic impact of increased capacities
in wind and solar power, dealing with issues of levelized costs of different technolo-
gies as well as the predictability and stochastic modeling of renewable production.
Furthermore, we reviewed the current status of subsidy schemes for renewables and
contrasted FiT policies as they are applied in Germany with RPS, which are more
popular in the USA. We also used a stylized market model, the merit order, to inves-
tigate the short-run and long-run impact of increased infeed of intermittent renew-
able electricity in a day-ahead spot market.

We conclude the paper by emphasizing that the next decade will probably bring
about further far-reaching changes in the electricity markets and there is scope for
a lot more research to help market participants understand the developments and
the risk they are taking in their investment as well as in their operational decisions.
In particular, we mention the topic of forecasting the output of renewables and the
econometric modeling of the pertaining random fluctuations, the issue of grid stabil-
ity, demand response and the need for large-scale electricity storage, the efficiency
of different kind of subsidy schemes, as well as concrete stochastic planning mod-
els for investment and operational decisions taking into account the abovementioned
uncertainties.
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Chapter 13
Copula-Based Hedge Ratios for Renewable
Power Generation

Audun Nordtveit, Kim T. Watle, and Stein-Erik Fleten

Abstract The electricity price and production volume determine the revenue of a
renewable electricity producer. Feed-in variations to power plants and high price
volatility result in significant cash flow uncertainty. A copula-based Monte Carlo
model is used to relate price and production volume and to find optimal hedge ratios
through minimization of risk measures such as variance, hedge effectiveness, cash
flow at risk, and conditional cash flow at risk. In our case study, all risk measures
argue for an optimal hedge ratio between 35 and 60% of expected production. The
highest risk reduction is achieved by the use of forward contracts with long time to
maturity but at the expense of a low risk premium. Conversely, short-term futures
and forwards only provide marginal risk reduction, but can yield attractive positive
risk premiums. These findings underline the importance of distinguishing the use
of derivative contracts for speculation and hedging purposes, through positions in
short-term and long-term contracts, respectively.

13.1 Introduction

With increasing use of renewable sources in the deregulated electricity markets,
power producers are faced with production volume risk caused by varying feed-in.
This comes in addition to price risk. In this chapter we develop a copula-based
approach to the simultaneous price and production risk for renewable electricity
producers.
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We will use a Norwegian hydropower producer as a case; however, the analysis
is general enough to be relevant for, e.g., a wind power producer in Spain or solar
power in Germany.

Copula is a statistical tool which has recently received much attention in the fin-
ancial literature and is popular in practice. Genest, Gendron [20] show that from
2000 to 2005 the number of documents published on copula theory per year inc-
reased by a factor of nine. According to their survey, the financial industry is by far
the field where copulas have been applied most frequently, due to their advantages
in modeling non-normal returns and dependency between extreme values of assets.

It is interesting to extend the copula approach from its traditional financial app-
lications to commodity markets. In addition, it can be of interest for a renewables
producer to have an alternative financial approach to the traditional optimization
method for risk management purposes.

It would be great to be able to report that copula-based analysis provides signifi-
cant changes in hedge ratios compared to benchmark methods. This is not the case
in our study, however; calculations using historical data (not copulas) recommend
about the same hedge ratios, which hover around 50% across different maturities.
That is, the recommendation is to sell of around half of the expected future pro-
duction, using month, quarter, and year contracts. This cuts the risk in half, using
variance and value-at-risk-related measures.

This chapter proceeds along the following lines: Sect. 13.2 treats more thor-
oughly how risks faced by hydropower producers can be measured, modeled, and
managed. In Sect. 13.3 the hedge ratios obtained from historical price and produc-
tion data are considered. The derivation of the copula-based Monte Carlo model is
explained in Sect. 13.4. Hedge ratio results from the simulation for various risk mea-
sures are then obtained and discussed in Sect. 13.5. Finally, Sect. 13.6 concludes.

13.2 Market and Institutional Background

Price and production volume are identified to be the main risk factors faced by
hydropower producers. Measurement and management of these risks are first dis-
cussed. Subsequently, important elements in hedging decisions such as taxation
questions and risk premium are treated. Finally, the copula framework used to con-
nect the two identified risk factors is presented.

13.2.1 Measuring Operational Risks

Variance in return, value at risk (VaR), and conditional value at risk (CVaR) [29] are
risk measures commonly used by financial companies, but have also been introduced
in nonfinancial firms and in the commodity literature. These risk measures are often
used to evaluate and find optimal hedging strategies. Fleten et at. [18] consider a
hydropower producer and use VaR, CVaR, and standard deviation of the producer’s
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Fig. 13.1 Illustration of standard deviation in cash flow, CFaR and CCFaR. PDF (cash flow) rep-
resents the probability density function of a cash flow distribution. From the figure it appears that
tail events affect standard deviation, CFaR, and CCFaR differently. Long, fat tails will not affect
the standard deviation a lot, but the CFaR and especially the CCFaR will take much lower values
for these extreme scenarios. CFaR and CCFaR are thus good measures for the downside risk

revenue as risk measures to obtain optimal hedging positions. VaR is also used as
a risk measure in [35] to find a producer’s optimal power portfolio. Unger [34] and
Kettunen et al. [22] use CVaR.

The variance approach is relatively easy to implement in a model where a hyd-
ropower producer’s cash flow volatility depends on the price risk and production
uncertainty. Ederington’s hedging effectiveness measure, e, defined in (13.1), can be
used for a comprehensive comparison of the variance reduction achieved in hedged
power portfolios with different hedge ratios to the variance of an unhedged portfo-
lio [14].

e =
Var(U)−Var(H)

Var(U)
= 1− Var(H)

Var(U)
(13.1)

In (13.1), Var(U) and Var(H) is the variance of the unhedged and hedged positions,
respectively. The Ederington hedging effectiveness measure gives the percentage
reduction in variance achieved by the hedged portfolio. One shortcoming of the
variance risk measure is that it may give misleading results for asymmetrical and
non-normal distributions which are common in power portfolios [28]. This results
in higher possibilities of extreme undesirable outcomes in the cash flow.

CFaR and CCFaR1 are based on the VaR framework and measure the downside
risk in the cash flow. They may therefore be better suited than variance to describe
risk for asymmetrical distributions. CFaRα is defined as the α-quantile of the distri-
bution of the cash flow, π . Thus, α is the confidence level as represented in (13.2).
CFaR and CCFaR are illustrated in Fig. 13.1.

α = Prob(π ≤CFaRα), (13.2)

1 Cash flow at risk and conditional cash flow at risk.
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Standard values of acceptable cash flow threshold values are α = 1 %, 5%, or
10%. The CFaRα represents the threshold cash flow value such that α % of possible
cash flow outcomes over a given time horizon are equal or below this value. The
choice of the threshold value,α , reflects the risk aversion of a company. By reducing
α a firm is more reluctant to accept uncertainty in its cash flow. The appropriate α
value for a hydropower producer will be elaborated further in Sect.13.5.4. CCFaR
is used to measure the expected value of the cash flow when it is known to be equal
or lower than the CFaRα value. The definition of CCFaR is given in (13.3):

CCFaRα = E[π |π ≤CFaRα ] (13.3)

13.2.2 Available Hedging Instruments

The system spot price at Nord Pool is the price obtained in a supply-demand equi-
librium in the market without considering transmission grid congestions and capac-
ity constraints. Transmission bottlenecks give rise to different local zonal market
prices. Hedging price risk by using futures is a well-discussed topic in the literature
[15, 19]. In addition to futures, a power producer can use several other derivative
contracts to hedge the price risk, including contracts for difference (to hedge zonal
price risks), swing contracts, and options.

Futures and forwards in the electricity market differ from the contracts in the
financial market, since they are delivered over a period instead of on a specific
day. These power derivatives are therefore comparable to financial swaps [6]. Both
futures and forwards traded at the Eltermin market are standardized contracts with
denomination in EUR per MWh, and the system spot price is the underlying of these
contracts. Futures contracts consist of daily and weekly agreements and are rolling
contracts for the next 6 weeks [27]. They are marked-to-market with daily settle-
ment of the change in the market price in the trading period. The difference between
the price on the last trading day, called closing price, and the system spot price is
used to calculate the settlements in the delivery period. Forward contracts are settled
in the same way as futures, but have no marked-to-market settlement in the trading
period. Profits/losses are accumulated in the trading period and realized when the
delivery period ends. Due to no margin requirements prior to delivery, the liquid-
ity of these long-term contracts is higher than the liquidity of futures [9]. Forward
contracts have monthly, quarterly, and yearly delivery periods.

Contracts for differences are the third type of derivative contracts traded at Nord
Pool. These agreements are used to hedge the price differences between local areas
and the system spot price caused by congestions in the transmission grid. A hyd-
ropower producer sells the electricity for the local area price, which not necessarily
equals the system spot price. Thus hedging with just swaps will not eliminate all
price risk. By using CfDs in combination with swaps it is possible to create a perfect
price hedge. The liquidity of these contracts is however low and only traded for five
of the thirteen local areas in the Nordic power market. Options available at Nord
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Pool are European-style calls and puts with quarterly and annual forward contracts
as the underlying. These contracts are useful because they offer several strategies
to hedge variation in prices [27]. Nevertheless, options are not widely traded and
may be expensive to use in hedging policies due to high transactions costs. For a
more thorough description of different derivative instruments used in electricity risk
management see [12].

Sanda et al. [30] analyzed the hedging policies of twelve different Norwegian
hydropower firms. According to their study futures and forward contracts have the
highest traded volume and are the most commonly used hedging derivatives. These
findings and the low liquidity in both CfDs and options argue for the consideration
of only swaps for hedging decisions in this chapter. Still, these products do not
necessarily give a perfect price hedge alone.

13.2.3 Taxation Influences the Hedging Decision
of a Hydropower Producer

Hydropower producers in Norway are subjected to four different taxes: income tax,
resource rent tax, natural resource tax, and property tax. The resource rent tax is
30% of spot revenues for plants of a certain age, and it is directly determined by the
spot price. As a result, the resource rent tax may influence the hedging strategy of
a producer since deviations between the spot price and the hedged price are trans-
formed into a relative tax gain or loss. The resource rent tax is calculated from the
power plants’ production sales value individually, where operating costs, concession
costs, property tax, depreciation costs, and a nontaxed revenue are deduced from the
calculated revenue.

Other taxes are less sensitive to hedging decisions in the sense that they are either
fixed, as the natural resource tax of 13 NOK/MWh of the average production over
the last seven years, or calculated as a percentage of the revenue such as the income
tax and the property tax of 28% and 0.2–0.7%, respectively. Since the property tax
is deductible from the resource rent tax, the total tax paid by an unhedged producer
is 28%+ 30% = 58% of the sales value when costs are ignored. For a hedged pro-
ducer this number is somewhat different dependent on its hedging performance and
hedging level.

A cash flow after tax portfolio model for Norwegian hydropower producers,
which utilizes swaps to hedge price risk and includes taxation issues, can be dev-
eloped to find optimal hedge ratios. The revenue after tax of the hedged portfolio,Π ,
is defined in (13.4), but neglects the variable and fixed costs faced by hydropower
producers. The transaction and margin costs in trading swaps are also ignored.

Π = [(P−HP̄)S+HP̄F](1−TC)−PSTRR (13.4)
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In (13.4), P represents the actual production volume, P̄ the expected production
volume, S the spot price, F the swap price, H the hedge ratio, and TC and TRR are
corporate and resource rent tax, respectively.

The variance in profit after tax of a hedged portfolio is given by (13.5). The
Var(F) term is set equal to zero since the swap price is locked when a producer
enter a swap agreement.

Var[Π ] =(1−TC)
2[Var(PS)+ (HP̄)2Var(S)]

+ (TRR)
2Var(PS)

+ 2(1−TC)TRR[HP̄Cov(PS,S)−Var(PS)]

− 2(1−TC)
2HP̄Cov(PS,S) (13.5)

The risk reduction achieved in variance in revenue after tax depends on the cho-
sen hedge ratio, H, of the individual hydropower producer. By minimizing (13.5)
with respect to H, the optimal hedge ratio, H∗, is obtained:

∂Var(Π)

∂H
= 0

→ H∗ = (1− TRR

1−TC
)
Cov(PS,S)

P̄Var(S)
(13.6)

By assuming no uncertainty in the production volume, E[P] = P̄→Cov(PS,S)=
P̄Var(S), the hedge ratio expression in (13.6) simplifies to (13.7):

H∗
Tax−neutral = 1− TRR

1−TC
(13.7)

The hedge ratio H∗
Tax−neutral developed in (13.7) states that hydropower produc-

ers should hedge 58.3% of their expected production volume. Sanda et al. [30]
derive the same hedge ratio for a Norwegian hydropower producer, which means
that 58.3% of expected production must be sold in derivative contracts to obtain a
fully hedged power portfolio.

One shortcoming with (13.5) to (13.7) is that the variance in swaps is set equal
to zero, thus neglecting the possible effect of these contracts’ term structure on the
variance. To deal with this shortcoming, one might generate price and production
scenarios and use (13.4) directly to measure the risk in the resulting cash flow sce-
narios.

13.2.4 Effects of Hedging Strategies for Hydropower Producers

Norwegian hydropower producers experience a negative relationship between elec-
tricity prices and production and pay a resource rent tax on spot revenues. These
factors reduce and set an upper bound for the optimal hedging level well below
100%, as shown for the tax-neutral portfolio in Sect. 13.2.3.
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Fleten et al. [18] argue that “the main reason for the negative correlation between
price and hydropower production in the Norwegian market is that the market is reg-
ional, and 99% of the electricity production comes from hydropower.” The inflow to
the water reservoirs is the main factor determining the production volume, and reser-
voir inflow depends on precipitation. Local precipitation is correlated with national
precipitation, so periods with high water reservoir levels or water reservoir short-
ages often occur synchronously for all hydropower companies in Norway [18]. Dry
and cold or wet and warm periods often tend to coincide within the Nordic coun-
tries. Electricity consumption depends on the need for residential heating in Nor-
way. Consequently, the demand for power by customers and production willingness
among producers often mismatch. Thus, price and production tend to be negatively
correlated. The negative correlation works as a natural hedge and decreases the hyd-
ropower producers’ variance in revenue. Further, this limits their incentive to invest
in derivative contracts to hedge price risk.

Hydropower producers’ hedging policies vary with their risk aversion, with risk
averse producers hedging large parts of their expected production. Multiple opti-
mization methods have been developed using both static and dynamic hedging app-
roaches to investigate different hedging strategies and find optimal hedge ratios.
Fleten et al. [18] develop an optimization model to examine the performance of
static hedge positions for hydropower producers. They find that the use of forwards
to hedge price risk significantly reduces the revenue risk with just a minor decrease
in revenue. It is also shown that hedging costs are higher when producers uses con-
tracts with long time to maturity.

Sanda et al. [30] find evidence of an extensive risk management practice among
Norwegian hydropower companies. An interesting discovery is that hedging reduces
the downside risk in cash flow, measured by CFaR, in ten out of twelve firms. Sur-
prisingly, derivative investments contribute significantly to the firms’ profit with-
out any substantial decrease in cash flow variance. This finding is explained by
the prevalent use of selective hedging, meaning incorporating own market views in
hedging decisions.

13.2.5 Connection Between Electricity Spot and Swap Prices

Electricity is a non-storable commodity, and therefore the usual cost-of-carry rel-
ationship in finance is not applicable [7, 10, 23, 24]. The risk premium approach
has emerged as a method to investigate the spot-forward price relationship. Fama,
French [17], Longstaff , Wang [23] and Adam , Fernando [1] define the risk pre-
mium as in (13.8):

R(t,T ) = F(t,T )−Et [S(T )] (13.8)

where F(t,T ) is the forward price at time t with delivery at time T , Et [S(T )] is the
expected electricity spot price at time T , and R(t,T ) is the risk premium. According
to [23] the forward risk premium represents “the equilibrium compensation for
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bearing the price and/or demand risk for the underlying commodity.” The litera-
ture treating this topic has shown that the risk premium sign does not need to be
strictly negative [7, 21, 23]. A motivation for including a risk premium approach
in hedging strategy decisions is to benefit from the possible positive risk premiums
and hence the excess return such contracts can provide [1]. For a more thorough
examination of risk premiums in commodity markets see [17].

Botterud et al. [8] use the risk premium approach to examine the relationship
between the spot and futures prices in the Nordic electricity market from 1995 to
2001. They explain the sign of the risk premium by the risk aversion and flexibility
of both buyers and sellers. Hydropower producers are able to quickly ramp produc-
tion, allowing them to take advantage of the market price fluctuations by adjusting
their generation. The attractiveness of fixing the price by using futures for hedging
all of the expected production is therefore reduced. At the same time, the production
flexibility enables producers to profit from price peaks in the spot market. On the
other hand, the demand side has limited ability to adjust demand with respect to spot
price changes. As a consequence it may be attractive to fix the price for expected
future demand in order to reduce the negative effect of large price spikes. Botterud
et al. [8] find that futures prices on average have been higher than spot prices in the
period of 1995 to 2001, which according to (13.8) gives a positive risk premium and
in this way contradicts the classical literature. They pinpoint that the results should
be treated with caution due to the limited data available in the electricity market.

Lucia and Torró [25] examine the sign and size of the risk premium in the Nordic
electricity market between 1998 and 2007. They find that risk premiums on average
are positive and vary throughout the year. Positive risk premiums are observed for
contracts in periods where demand is high, such as during autumn and winter. This
result is in accordance with the equilibrium model of [7]. They also find significant
evidence of a structural break in the prediction power of this model in the Nord Pool
market after the winter 2002–2003.

13.2.6 Copula, a Tool to Link Price and Production

Correlation is a key factor in risk management as risk generally is the result of
both the variance of individual variables and their covariance. As an example the
risk in a portfolio of stocks is dependent on not only the individual variance of the
shares but also how they tend to covariate. Analogously, most of the risk in the rev-
enue of a hydropower supplier stems from the individual risk of the price and the
production volumes, and how these covariate. Historically the most popular way
to describe covariance between two or more variables have been the Pearson cor-
relation coefficient, ρ , explained in [3]. This coefficient is a simple and exact mea-
sure for covariance between elliptically distributed variables, but as distributions get
more non-normal, skewed, heavy-tailed, and tail-dependent, the correlation coeffi-
cient tend to underestimate risk [16].
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Copulas represent a new way to describe the dependency structure of the
covariance between distributions and were introduced by [31]. He showed that
every joint distribution can be written as in (13.9) where C is a copula and
F1(x1), . . . ,Fn(xn) are cumulative probabilities of the variables x1, . . . ,xn. The mostly
used copulas are bivariate, and a bivariate function must satisfy four properties to
qualify as a two-dimensional copula. These are listed in (13.10) and explained thor-
oughly in [2].

F(x1, . . . ,xn) =C(F1(x1), . . . ,Fn(xn)) (13.9)

1) C : [0,1]× [0,1]→ [0,1]

2) C(u1,0) =C(0,u2) = 0

3) C(u1,1) = u1 and C(1,u2) = u2

4) C(v1,v2)−C(u1,v2)≥C(v1,u2)−C(u1,u2) ∀ u1,u2,v1,v2 ∈ [0,1],

with u1 ≤ v1 and u2 ≤ v2 (13.10)

There exist a large number of functions C defined in (13.9), satisfying the prop-
erties of a bivariate copula listed in (13.10). These functions have different depen-
dency structure and can therefore be adapted to various problems requiring a more
flexible tool than the linear correlation coefficient. Copula functions have parame-
ters that need calibration to provide an optimal fit to the data. The estimation of the
copula parameters is usually done by a maximum likelihood estimation of the joint
distribution of the dependent variables. Once the likelihood value is obtained, the
best copula can be selected based on an information criterion such as the Akaike
information criterion (AIC) or Bayesian information criterion (BIC). If the exist-
ing families of copulas provide an unsatisfying fit to the data an alternative approach
could be to implement an empirical copula. Alexander [2] presents a straightforward
way to create the empirical copula following (13.11). In (13.11) Ĉ is the cumula-
tive copula function, ĉ is the density function, T is the number of observations, and
x and y are the two dependent variables. For a more thorough study of the copula
framework see [33].

Ĉ(
i
T
,

j
T
) =

Number of pairs (x,y) such that x≤ x(i) and y≤ y( j)

T

ĉ(
i
T
,

j
T
) =

{
T−1, if (xi,y j) is an element of the sample,

0, otherwise

}
(13.11)

Following (13.11) one obtains an empirical copula density function, ĉ, and cumula-
tive distribution function, Ĉ, for the joint densities as illustrated in Tables 13.1 and
13.2, respectively.

Copulas have not yet been given much attention in the nonfinancial literature,
and the use of copulas in risk modeling for electricity suppliers in the Nordic power
market is not an exception. So far, copulas have mainly been applied to commodity
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Table 13.1 An example of the empirical copula density function, ĉ, calculated from (13.11)

F(x)/F(y) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.1 0.000 0.009 0.015 0.009 0.009 0.015 0.012 0.006 0.009 0.006 0.009
0.2 0.000 0.006 0.021 0.000 0.003 0.009 0.018 0.009 0.009 0.006 0.015
0.3 0.000 0.012 0.018 0.009 0.006 0.003 0.015 0.012 0.003 0.009 0.006
0.4 0.000 0.009 0.018 0.003 0.003 0.018 0.006 0.003 0.012 0.015 0.021
0.5 0.000 0.003 0.006 0.015 0.006 0.015 0.009 0.021 0.009 0.009 0.009
0.6 0.000 0.003 0.006 0.009 0.006 0.015 0.003 0.012 0.015 0.009 0.012
0.7 0.000 0.006 0.009 0.021 0.015 0.009 0.006 0.012 0.012 0.018 0.009
0.8 0.000 0.012 0.012 0.009 0.006 0.006 0.012 0.009 0.012 0.012 0.009
0.9 0.000 0.009 0.003 0.009 0.009 0.018 0.012 0.009 0.009 0.012 0.012
1 0.000 0.003 0.021 0.012 0.015 0.012 0.009 0.015 0.006 0.015 0.000

The first row and column are cumulative probabilities for the two dependent variables x and y. The
table illustrates the joint probability density function, and areas with many high densities represent
scenarios that are likely to occur. Conversely, areas with many zeros represent unlikely situations

markets to determine the spark spread [5]. Still, there are several reasons to bel-
ieve that copulas will have the ability to describe the dependency structure between
price and production in a better way than a linear correlation coefficient. Risks faced
by hydropower producers have several characteristics in common with risks enc-
ountered in traditional financial applications. First, electricity prices are far from
normally distributed. Second, one could expect a strong tail dependency between
price and production. High prices often occur during cold winters with high pro-
duction despite low production willingness due to low reservoir levels. Low prices
are common during wet periods where producers generate as much as they can to
reduce the risk of spillage. Thus, a copula’s advantage in modeling non-normal dis-
tributions and dependency between extreme values seems like a desirable feature in
hydropower risk management.

Finally we note that copulas are not a panacea in risk management. A natural
alternative, favored by most electricity companies, is using a fundamental (bottom-
up) model to capture the relationship between local production and local price. The
advantage of such an approach includes the possibility to consider increased renew-
able penetration over time.

13.3 Hedge Ratios Obtained from Historical Data

The purpose of this chapter is to examine optimal swap hedging strategies for
hydropower producers to reduce risks. It is therefore of interest to investigate the
historically optimal hedge ratios. These historical hedging levels can be used as
benchmarks for the theoretically obtained hedge ratios from the model later in this
chapter. Historical spot and swap prices along with production volumes for a Nor-
wegian hydropower producer are considered from 2006 to 2010 on a weekly basis.
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Table 13.2 An example of the empirical cumulative copula function, Ĉ

F(x)/F(y) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.1 0.00 0.01 0.02 0.03 0.04 0.06 0.07 0.07 0.08 0.09 0.10
0.2 0.00 0.01 0.05 0.06 0.07 0.09 0.12 0.14 0.16 0.17 0.20
0.3 0.00 0.03 0.08 0.10 0.12 0.14 0.19 0.21 0.23 0.25 0.30
0.4 0.00 0.04 0.11 0.13 0.15 0.19 0.24 0.27 0.30 0.34 0.40
0.5 0.00 0.04 0.12 0.15 0.18 0.24 0.30 0.35 0.39 0.43 0.50
0.6 0.00 0.04 0.12 0.17 0.20 0.28 0.34 0.40 0.46 0.51 0.60
0.7 0.00 0.05 0.14 0.20 0.25 0.33 0.40 0.48 0.54 0.62 0.70
0.8 0.00 0.06 0.16 0.24 0.29 0.38 0.46 0.54 0.62 0.70 0.80
0.9 0.00 0.07 0.17 0.26 0.32 0.43 0.52 0.61 0.70 0.79 0.90
1.0 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

The first row and column are cumulative probabilities for the two dependent variables x and y. Note
that Ĉ is calculated by (13.11) and follows the conditions in (13.10)

Table 13.3 summarizes what are found to be the optimal static hedge ratios and how
to optimally invest in selected swap contracts with one week, one month, one quar-
ter, and one year to delivery, in order to minimize the risk in the 2006 to 2010 period.
Variance is minimized; CFaR5% and CCFaR5% are maximized and compared with
the natural hedge situation. The natural hedge is the same as selling all production in
the spot market. For the obtained hedge ratios, it is assumed that a rolling investment
in the front contract is taken. A 10% investment in weekly contracts would therefore
imply a sale of 10% of next week’s expected production in weekly contracts each
Friday from 2006 to 2010.

The first row in Table 13.3 presents the expected cash flow of each strategy com-
pared with the natural hedge case. The cash flow of the unhedged scenario is there-
fore 100%. When the other risk measures are considered a cash flow of 95.9%,
98.3%, and 99.3% of the unhedged return is obtained for minimum variance, max-
imum CFaR5%, and maximum CCFaR5%, respectively. As all expected cash flow
values for the risk measures are below 100% there are costs associated with hedg-
ing. Variance in expected revenue is illustrated on the second row. As before, the
minimized risk measures’ variance is compared with the unhedged variance. The
variance is thus reduced by hedging. Hedge effectiveness illustrates the same as
the variance and represents the percentage decrease in variance of each strategy
compared to the unhedged case. In this way the sum of the variance and hedge ef-
fectiveness row is 100% for each column. CFaR5% and CCFaR5% are maximized
on row four and five, respectively, and the listed numbers illustrate the percentage
of the unhedged expected cash flow the CFaR5% and CCFaR5% attain. For exam-
ple, the CFaR5% value of 44.6% for the natural hedge situation means that in 5 %
of the outcomes the cash flow will be less or equal to 44.6% of the unhedged exp-
ected cash flow. The higher this value is, the better, since it represent the worst case
cash flow. CCFaR5% measure more extreme values than CFaR5%, so the percent-
age numbers for CCFaR are lower. As seen in the table hedging reduces downside
risk. The hedge ratios, (HR), in Table 13.3 represent the percentage of the expected
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Table 13.3 Performance of several hedging strategies based on optimization of spot and swap
contract prices from 2006 to 2010

Natural Minimum Maximum Maximum
hedge variance CFaR5% CCFaR5%

Expected cash flow 100 95.9 98.3 99.3
Variance 100 62.2 68.9 78.9
Hedge effectiveness – 37.8 31.1 21.1
CFaR5% 44.6 42.9 49.7 48.3
CCFaR5% 38.5 33.1 40.3 40.5

Hedge ratio (HR) – 47.5 28.0 15.9
% of HR in 1WF – – – –
% of HR in 1MF – 57.9 48.1 42.3
% of HR in 1QF – 1.3 37.3 57.4
% of HR in 1YF – 40.8 14.7 0.2

All numbers are in percent of the natural hedge situation. Hedging reduces the expected cash flow
for a hydropower producer, but can provide risk protection observed by lower variance and higher
hedge effectiveness, CFaR5% and CCFaR5%. The optimal hedge ratio drops when measures that
consider tail events are considered

production a producer should hedge to minimize the risk measure in question. It is
specified how this hedging level should be allocated between weekly, monthly, quar-
terly, and yearly contracts. In this way the four last rows sum to 100 % for the differ-
ent risk measures. The total investment in each contract is therefore the suggested
hedge ratio multiplied with the percentage of the hedge in the contracts.

Examining Table 13.3 one observes that hedging might reduce risks at the
expense of a slightly reduced cash flow. Depending on the considered risk mea-
sure, different optimal hedge ratios are obtained. The more a risk measure considers
tail risk and extreme values, the lower the optimal hedge ratio is. Finally, it seems
undesirable to invest in weekly swaps to eliminate risk. These results are not sur-
prising as short-term swaps are more correlated to spot prices than long-term swaps
and will therefore eliminate less risk. Also, it seems reasonable that risk measures
that consider extreme events give lower hedge ratios. A producer will as an example
incur a great loss if it is highly hedged when a price spike occurs. Although such
events are rare, they will affect the CFaR5% and even more the CCFaR5% but only
have a marginal effect on the variance.

In this historical analysis weekly risk is considered. Natural seasonal cash flow
differences, due to price and production differences between winter and summer
months, are attempted hedged away. The reason to consider weekly variations
despite this obvious drawback is the short, five-year, time horizon of available swap
data. For a hydropower producer, annual cash flow fluctuations are of greater inter-
est than weekly variations. However, it is meaningless to investigate risk measures
such as CFaR5% and CCFaR5% in a data set consisting of five observations.

With the historical optimal hedge ratios in mind it is time to develop a model that
can provide data for a theoretical risk analysis.
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13.4 Derivation of the Copula-Based Monte Carlo Model

A challenge in financial risk management is how to cope with non-normality
of the distributions of risky variables and their interdependency. As discussed in
Sect. 13.2.6, a copula framework will be developed to deal with some of the short-
comings of existing linear correlation models. Further, knowledge about the price-
production dependency structure can be valuable for hedging decisions in order to
define adequate hedge ratios and optimal use of the available derivative contracts.

To investigate and evaluate hedge ratios a copula-based Monte Carlo simula-
tion approach is used to generate possible cash flow outcomes for a hydropower
producer. Dependent electricity spot/swap prices, S/F , and production volumes, P,
must be simulated to obtain the cash flow outcomes, since these factors are the only
dynamic variables in the cash flow expression in (13.4). Figure 13.2 illustrates how a
large sample of dependent prices and production volumes can be generated through
a copula-based Monte Carlo simulation. The copula-based Monte Carlo simulation
will be described in four steps for explanatory reasons. First, the input variables,
production and price (model 1), to the empirical copula are treated in step 1. Then,
in step 2, the construction of the empirical copula is elaborated. Subsequently, step
3 explains the generation of correlated cumulative probability values for price and
production. Finally, the procedure of linking these cumulative probabilities to pro-
duction values, spot, and swap prices is considered in step 4.

Fig. 13.2 An overview over the copula-based Monte Carlo model. Model 1 represents the spot
price model of [4] which is used to generate spot prices. Together with historical production, the
spot prices are used to construct an empirical copula. From the copula, a large sample of depen-
dent cumulative probability values for price and production is randomly generated. The cumulative
probabilities are then linked to production and spot/swap numbers. To connect spot/swap prices a
new model is necessary since model 1, used for the input values, cannot be employed to estimate
swaps with the available data. The two-factor model developed in [24] is therefore used, and con-
stitutes model 2
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13.4.1 Production and Price Input to the Empirical Copula

This section will treat the input variables, price and production, to the copula and
represents step 1 in Fig. 13.2. An empirical copula requires a large sample of corre-
lated data points to capture the existing dependency structure. Hence, long data se-
ries of price and production are necessary. Figure 13.3 depicts the historical average
weekly system spot prices and average weekly production volumes for a Norwegian
hydropower producer from 2000 to 2011.

a b

Fig. 13.3 Time series of weekly historical system spot prices and production volumes from 2000
to 2011. Prices are obtained from Nord Pool’s ftp server and production volumes are received
from a Norwegian hydropower producer. The figures reveal that neither the price nor the produc-
tion is normally distributed and both functions seem to be extremely volatile and contain spikes.
(a) Average weekly system spot prices (b) Average weekly production volumes

As the electricity price dynamics have changed over the years, a modified and
simplified model following the work of [4] has been selected to estimate historical
prices conserving the pricing dynamics observed today. Besides, this model enables
an estimation of electricity prices going further back than the available market spot
prices, satisfying the need of long data series for the empirical copula construction.
The spot price model, model 1 in Fig. 13.2, is defined in (13.12) with deviation from
normal accumulated reservoir levels (ΔHt ), 12-month accumulated inflow (I12M),
and an inflation-adjusted oil product index (OAd j.) as inputs. The data are obtained
from the Norwegian Water Resources and Energy Directorate (NVE), Nord Pool,
and Reuters EcoWin, respectively. Nord Pool also provided the spot prices used to
calibrate this price model. To prevent estimated spot prices to fall too low, the oil
index is adjusted according to the consumer price index. Seasonal load variations
are also accounted for by inclusion of a sine function.

ln(S(t)) =β0 +β1 sin(
2π
52

t +φ)

+βHΔHt +βII12M +βOOAd j. (13.12)
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All data are collected on weekly basis and span from 1986 to 2011, except the
spot prices used for the 2005–2011 calibration period. In (13.12), the adjusted oil in-
dex and spot prices are transformed by the natural logarithm. Table 13.4 summarizes
the descriptive data of the input variables. The data are observed to be non-normally
distributed as the normality Jarque-Bera test is rejected for all factors included in
Table 13.4 with a p-value of less than 0.001.

Table 13.4 Descriptive statistics for weekly input variables to the modified spot price model of [4]
spanning from 1986 to 2011 (2005–2011 for the dependent variable S(t))

Descriptive Δ Hydrobalance Average 12-month Adjusted Spot prices
statistics (GWh) inflow (GWh) oil index (NOK/MWh)
Min −26.87 90991 2.24 100.1
Max 25.51 153902 16.53 1403.7
Avg −0.37 123471 6.21 334.7
Med 1.59 122222 4.98 307.2
St.dev. 9.84 13599 2.96 128.9
Skew −0.41 0.10 1.10 2.14
Ex. kurt −0.38 −0.57 0.26 11.25
JB 46.67 20.40 279 2524.7
No. of obs. 1357 1357 1357 418

Estimated coefficient values, obtained from the least sum of squares approach,
are presented in Table 13.5. All coefficients are significant. From the coefficient’s
sign it is apparent that a negative hydrobalance deviation, representing low reser-
voir levels, leads to higher prices. Surprisingly, high yearly inflow has historically
contributed to higher prices, which contradicts common sense. The influence of this
variable can hence be questioned. However, as seen in the descriptive statistics, the
product of the inflow coefficient and the range of the variable is only a third of the
hydrobalance deviation effect, and it might therefore work as a counterweight. Fi-
nally, fuel costs represented by an oil index are as expected positively correlated to
the spot price. Having the regression coefficients, weekly time series of electricity
spot prices can be generated. Electricity prices are generated back to 1986, when
the history of the underlying input variables starts.

The empirical copula requires a large number of data points to capture the dep-
endency structure of the input variables. However, for a hydropower producer the
annual variations in cash flow and hence the yearly dependency between the under-
lying variables is most interesting, since seasonal effects are expected and preferably
should not affect the dependency structure of the copula. Although a 26-year his-
tory of data is estimated, yearly prices do not provide sufficient data points for a
robust estimation. By comparing the autocorrelation in price and production it is
seen that the autocorrelation is higher for prices than for the production. Therefore
the prices must be considered in an autocorrelation analysis. Prices are highly au-
tocorrelated (see Fig. 13.4), which set a lower bound to the frequency of the input
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Table 13.5 Estimated coefficient values in (13.12)

Coefficient Value Stdev. t-value
β0 2.64 0.22 12.5
β1 0.10 1.55e-2 6.5
φ 1.55 – –
βH −3.71e-2 2.43e-3 −15.3
βI 1.18e-5 1.75e-6 6.7
βO 0.67 5.09e-2 13.1

The estimates are obtained by regressing Eq (13.12) on historical weekly spot prices from 2005 to
2011. β1 underlines the presence of seasonal load variations. From βH and βO it appears that low
reservoir levels and high fuel prices contribute to higher spot prices. The inflow to the reservoirs,
βI , seems to work as a counterweight to the reservoir levels as it results in lower spot prices. All
values are significant. This model gives a R̄2 of 0.58

a b

Fig. 13.4 Autocorrelation plots of historical spot prices from 2000 to 2011. Autocorrelation of
weekly data is strong and persistent for many weeks. The autocorrelation from one quarter to
the next is less prominent than for consecutive weeks, though the quarterly autocorrelation is
still existent. Quarterly data are better suited as input to the empirical copula than weekly data.
(a) Autocorrelation plot of average weekly historical spot prices (b) Autocorrelation plot of aver-
age quarterly historical spot prices

price data. Autocorrelated input to an empirical copula results in a dependency struc-
ture where some outcomes will have a much higher probability than in reality, which
is clearly an undesirable feature. Weekly data should therefore be avoided as input
to the empirical copula and one should strive to use low-frequency data to limit
the negative effect of autocorrelation. If high-frequency data are selected, season-
ality and autocorrelation will be problematic. Conversely, long-term average will
not permit a well-fitted copula, due to the lack of data. For this reason, quarterly
data are selected as input to the copula. In this way, the autocorrelation of the input
price is reduced from the weekly resolution and a considerable number of data, 104
points, are used in the empirical copula calibration. Nevertheless, seasonal effects
will still be present and result in more extreme variations in the output scenarios than
would have been the situation if annual data were used. To exemplify, the range of
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the output scenarios is wider for seasonal than for yearly data since high produc-
tion/prices occurring during the winter can coexist with low production/prices from
the summer. This is a shortcoming of the model.

Table 13.6 Descriptive statistics for price output of the modified spot price model developed in
[4] together with historical observed production volumes from a Norwegian hydropower producer

Price 13 weeks Prod. 13 weeks
(NOK/MWh) (GWh/quarter)

Min 77.25 17.18
Max 624.43 57.23
Avg 212.64 34.35
Med 189.18 34.14
St. dev. 102.02 8.88
Skew 1.24 0.37
Ex. kurt. 1.85 −0.23
JB 41.41 2.59
No. of obs. 104 104

The data set consists of 104 observations of quarterly data. These data will be used as input to
construct the empirical copula

Fig. 13.5 An overview of the estimated spot prices from (13.12) and the actual realized spot prices
in the 1986–2011 and 2005–2011 period, respectively. Prior to 2003, the estimated prices were at
a significant lower level than in the 2003–2011 period. This is due to the level of the underlying
variables to the price model. The price jump in the model bodes well with the detected structural
break in [25]
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The modeled weekly prices are converted into quarterly data and paired with
quarterly historical production volumes for a Norwegian hydropower producer. His-
torical production volumes are used and not production plans, as [30] confirmed that
historical average production is more accurate for predicting production. Descrip-
tive data for the quarterly price and production used as input to the empirical copula
is shown in Table 13.6. Comparing the modeled quarterly 1986–2011 price data in
Table 13.6 with the weekly observed 2005–2011 price data in Table 13.4, it appears
that the average of the quarterly data is lower than the weekly calibration data. The
reason for this is the level of the input variables to the model which resulted in
lower prices from 1986 to 2005 than from 2005 to 2011, and the difference in price
average is therefore not surprising. Figure 13.5 illustrates this trend well, with elec-
tricity prices being low until 2003 where they suddenly increased. During the winter
2002–2003 there was a shock in the market and this may have shifted the price level
and price behavior [25]. The estimated price model seems to capture this shift quite
well. Also, the range of the quarterly data is narrower than that of the weekly data
as quarterly average reduces the magnitude of spikes. Still, the minimum quarterly
price is lower than the weekly price, and the minimum quarterly price was thus rea-
lized prior to 2005. Finally, the Jarque-Bera test, JB, underlines the non-normality
of the input data, which further motivate the copula approach.

13.4.2 Construction of the Empirical Copula

With the input variables to the copula explained, the next step will be to create a
copula to relate the dependency between price and production and this constitutes
step 2 in Fig. 13.2.

There exist numerous predefined copula functions with different dependency
structures between the variables of interest, such as the Clayton and Gumbel copula
treated in detail in [33]. As explained in Sect. 13.2.6 copulas have mainly been app-
lied to relate risks in stock portfolios, and a literature search for copulas applied to
track dependency between price and production for commodities has been without
success.

To explain the obtained empirical copula, the joint cumulative distribution and its
level curves, depicted in Fig. 13.6, can be investigated. The cumulative probabilities
of possible prices F(u|v =V ), obtained from the copula C(u,v), given a production
corresponding to the cumulative probability v =V are represented in (13.13):

F(u|v =V ) =
F(u∩ v =V )

F(v =V )
=

C(u,v =V )

F(v =V )
=

C(u,V )

V
(13.13)

The numerator in the equation represents the cumulative probability for the (u,V )
sample space in Fig. 13.6 where u is variable and V is fixed. For example, with V =
0.1 corresponding to a production of approximately 290 GWh/quarter (Fig. 13.7b),
a plot of the conditional cumulative price probability distribution, F(u|V ), can be
generated by using (13.13). The resulting conditional cumulative probability distri-
bution is graphed in Fig. 13.8. Note that u = F(u) as u is a cumulative probability.
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a b

Fig. 13.6 Empirical copula based on average quarterly price and production data from 1986 to
2011. Note that the x- and y-axis represent the cumulative probability values of the input price and
production distributions. The level curves could have been smoother if a larger data sample were
used to generate the copula. Alternatively, a possibility could be to smooth the data points in the
empirical copula. (a) Joint cumulative probability of price and production, C(u,v) (b) Level curves
of the copula

a b

Fig. 13.7 Relationship between estimated quarterly electricity spot prices from (13.12), actual
quarterly production volumes for a hydropower producer, and their respective cumulative distri-
butions for the 1986 to 2011 period. From the horizontal flat part of the cumulative price curve
it appears that some extreme price spikes have occurred during the sample period (a) Cumulative
distribution of the electricity price (b) Cumulative distribution of the production volume

From Fig. 13.8 it appears that conditional on a low production, V = 0.1, the
expected prices are generally higher than if prices and production volumes were
independent. A similar analysis with production conditional on price can be per-
formed by switching u and v.
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Fig. 13.8 Illustration of the cumulative price distribution conditional on a fixed production corre-
sponding to a cumulative probability V = 0.1. The conditional price distribution obtained from the
copula is compared to an assumed situation with independent price and production. The flat parts
of the curve in the 0.3 ≤ u ≤ 0.4 and 0.7 ≤ u ≤ 0.9 areas are probably due to lack of data. Note
that u = F(u) as u is a cumulative probability. The conditional probability curve lies above the
unconditional probability curve; thus based on the copula approach one should expect higher than
usual spot prices when the production is low

13.4.3 Scenario Generation of Prices and Production

The next step in the model, step 3 depicted in Fig. 13.2, is to generate dependent
cumulative probabilities of price and production volume.

The empirical copula function developed in Sect. 13.4.2 is used to generate num-
erous scenarios of price and production. These scenarios are simulated by first draw-
ing one random uniformly distributed number between zero and one, representing
the cumulated probability for the production, (V ). In order to relate the cumulated
production probability with a correlated cumulative price probability a new random
uniformly distributed number between zero and one, W , is drawn and multiplied
with the cumulative price probability, V . This product, VW , represents the condi-
tional copula value C(u,v = V ), where V is known and u is yet to be determined.
As VW =C(u,v =V ), (13.14) can be used to find the unknown u:

VW =C(u,v =V )→W =
C(u,v =V )

V
= F(u|v =V ) (13.14)

From the equation it appears that W is the conditional cumulative probability of
u given v = V , F(u|v = V ), defined in (13.13). The relationship between u and
F(u|v=V ) was elaborated in Sect. 13.4.2 and exemplified with V = 0.1 in Fig. 13.8.
To obtain u it is sufficient to find the abscissa of the function F(u|v =V ) with ordi-
nate W . The determination of u is illustrated in Fig. 13.9, where random values of V
and W are drawn equal to 0.1 and 0.6, respectively. The cumulative price probability,
u, is then found to equal 0.47.
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Fig. 13.9 Illustration of how to obtain the cumulative price probability u when a random cumu-
lative production probability of V = 0.1 is drawn. A random W -value of 0.6 is also generated to
link the production to a correlated random price. A resulting pair of (u,V ) with values (0.47,0.1) is
obtained from this simulation

The process of sampling correlated pairs of (u,v)-values from the empirical cop-
ula distribution can be repeated a large number of times and hence forms a copula-
based Monte Carlo simulation.

13.4.4 Connecting the Cumulative Probability Pairs, (u,v),
to Production Values and Spot/Swap Prices

The last step in the simulation process, step 4 in Fig. 13.2, is to link the cumulative
probabilities from step 3 to production and price numbers.

First, production is considered. A data set of cumulative probabilities for
production, v, has previously been generated. These probabilities are linked to the
same distribution of quarterly production data used as input to the empirical copula.
The relationship between production and its cumulative probabilities is illustrated
in Fig. 13.7b. To obtain the production value corresponding to the cumulative prob-
ability v one must find the abscissa of the curve in the figure with ordinate v. The
production value is found by interpolation of the cumulative distribution.

Second, prices are generated. The process is more cumbersome than for the pro-
duction, as swap prices must be linked to the electricity spot prices. This is neces-
sary since swap prices are required in later risk analysis, where swaps with differ-
ent maturities are included in the hedging strategy. The model used for generating
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input spot prices cannot be used to simulate historic swap prices, due to some
missing input variables for forward price estimation. To generate a data set with
related pairs of spot and swap prices, the method of [24] has been selected. Their
two-factor model is defined in (13.15) and (13.16). This model will be treated in
depth before an explanation of how to link cumulative price probabilities to spot
and swap prices is given.

ln(St) = f (t)+ χt + ξt

f (t) = γ0 + γ1 sin(
2πt
365

+φk)

dχt =−κχtdt +σχdZχ

dξt = μξdt +σξdZξ

dZχdZξ = ρdt (13.15)

In this model spot-forward prices can be approximated with two Brownian mot-
ions, a mean-reverting short-term factor, χt , and a long-term trend factor, ξt . These
factors are driven by correlated normal error terms, dZχ and dZξ , with a correlation
coefficient ρ . The spot and swap prices are internally consistent, stochastic, and
time dependent. Seasonality in prices is accounted for by adding a sine function
with period one year, f (t). The spot price St and the forward price FT,t with time to
maturity T , at time t, are defined to follow (13.16):

ln(St) = f (t)+ χt + ξt

ln(FT,t) =Et(ST+t) = f (T + t)+ e−κTχt + ξt + μξT

+(1− 2e−2κT)
σ2
χ

4κ
+

1
2
σ2
ξ T

+(1− 2e−κT)
ρσχσξ

κ
(13.16)

The forward price model is estimated using historical daily input data for spot,
weekly, monthly, quarterly, and yearly contracts from 02.01.2006 to 30.04.2010.
This period is chosen as some of the forward contracts had a different structure prior
to 2006 and the available data stopped in 2010. 26,064 observations are considered,
consisting of 23 different swap contracts and the system spot price. The number of
days to delivery for the contracts is also used as input to the Kalman filter estimation.
Descriptive data for historical spot and some selected forward contracts used as
input to the Kalman filter are presented in Table 13.7.

Coefficients and the two factors, χt and ξt , are estimated by running a Kalman
filter on (13.15). For an introduction to Kalman filtering see [13]. The results are
summarized in Table 13.8 and Fig. 13.10.

These coefficients and factors can be used to generate spot and swap prices, and
such simulation yields spot and contract prices with descriptive statistics summa-
rized in Table 13.9. The output data are observed to be non-normal.
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Table 13.7 Descriptive statistics for historical observed spot and selected forward contracts used as
input to the Kalman filter with 1086 observations of each contract from 02.01.2006 to 30.04.2010

Spot 1WF 1MF 1QF 1YF
Min 80.94 114.65 155.93 185.36 249.17
Max 1090.02 723.15 675.00 667.98 558.28
Avg 343.81 339.45 348.78 362.08 371.37
Med 334.15 332.24 335.72 338.05 357.01
St.dev 111.93 108.97 105.35 102.89 59.86
Skew 0.62 0.41 0.40 0.62 0.76
Ex. kurt 1.82 0.055 -0.22 -0.16 0.02
JB 220.75 31.23 31.83 70.48 105.06

Table 13.8 Estimated values of the coefficients in the two-factor model of [24]

Coefficient Value
μξ −0.043
σξ 0.810
κ 1.793
σχ 0.264
ρ −0.268
γ0 1.000
γ1 0.100
φk −0.743

The values are obtained by running a Kalman filter on (13.15). The long-term drift factor μξ is
slightly negative and the mean-reversion coefficient κ is relatively high which gives a half-life,
ln(2)/κ , of fluctuations of less than a half week. The correlation coefficient ρ is closer to 0 than
to -1, so the two processes are quite independent. The constant γ0 equals 1 and could have been
omitted with a resulting upward shift of 1 unit in the long-term drift factor μξ

Comparing the statistics of the input data to the Kalman filter (Table 13.7), with
the output in Table 13.9, it appears that the range of the output data is narrower
than in the input data and the standard deviation slightly lower. The difference is
most prominent for short-term contracts. These observations should not come as
a surprise since a well-known shortcoming of two-factor models, such as the one
derived by [24], is the volatility structure they assume. Although such models fit
observed prices quite well, the volatility term structure is not captured accurately.
Cortazar , Naranjo [11] show how such models tend to underestimate the volatility
structure of oil and copper forwards. As the erroneous volatility estimation is partic-
ularly strong not only for short-term contracts, but also for long-term contracts, the
estimated volatility is consistently below that of their observed data. As electricity
shares many of the same properties as other commodities it is likely that the same
problem arises for electricity swaps, just as observed in Tables 13.7 and 13.9. The
tendency to underestimate volatility in swap contracts is an observation one needs
to bear in mind during the later risk analysis.

Having described the pricing relationship between spot and swap prices thor-
oughly, it is possible to create one single distribution including these two variables.
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ξ χ

a b

Fig. 13.10 Estimated time series for the long-term factor ξt and short-term factor χt from the [24]
two-factor model. The factors have a relatively low correlation coefficient of−0.27 and two factors
provide better fit than a one-factor model. No clear trend can be seen for the long-term factor ξt

which should not come as a surprise since electricity is not a commodity from which an investor
expect any return. The short-term factor fluctuates around a zero mean which could be expected
for a mean-reverting process. (a) Long term factor ξt (b)Short term factor χt

Table 13.9 Descriptive statistics for estimated spot and selected forward contracts calculated from
the forward equation, (13.16), with the coefficients,Table 13.8, and factors, Fig. 13.10, from the
Kalman filter estimation as input

Spot 1WF 1MF 1QF 1YF
Min 146.41 150.02 158.86 196.26 266.76
Max 664.56 662.77 630.06 630.11 540.86
Avg 314.51 318.04 327.87 344.79 377.52
Med 309.35 311.03 308.71 321.03 367.41
St.dev 103.86 103.79 105.22 100.12 59.72
Skew 0.50 0.48 0.50 0.90 0.69
Ex. kurt −0.02 −0.10 −0.33 0.37 −0.06
JB 7.25 6.89 8.08 24.69 13.75

This distribution can then be linked to the cumulated probabilities u. First, a table
with possible spot and swap prices with different maturities are generated, as repre-
sented in Table 13.10.

In Tab. 13.10, the first column represents the date with daily frequency. The last
date in the table, t = 0, can be considered as today, whereas the negative times
above represent the number of days prior to today. The spot price St and swap prices
FT,t , where T describes the different swaps, are then generated for each date t with
(13.16).

A time analysis of the realized prices obtained by a producer in the derivative
market is then conducted, as depicted in Table 13.11. The motivation is to relate
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Table 13.11 Rearranged swap contracts available from (13.15) illustrate how the realized price
and swap prices are linked

Time Spot Week Week Week Week Month Month Month Quarter Quarter Quarter Quarter Year

day 1 2 3 4 1 2 3 1 2 3 4 1

−20 S−20 F1W,−27 F2W,−34 F3W,−41 F4W,−48 F1M,−48 F2M,−81 F3M,−112 F1Q,−112 F2Q,−202 F3Q,−293 F4Q,−385 F1Y,−385

−19 S−19 F1W,−26 F2W,−33 F3W,−40 F4W,−47 F1M,−47 F2M,−80 F3M,−111 F1Q,−111 F2Q,−201 F3Q,−292 F4Q,−384 F1Y,−384

. . .

−3 S−3 F1W,−10 F2W,−17 F3W,−24 F4W,−31 F1M,−31 F2M,−64 F3M,−95 F1Q,−95 F2Q,−185 F3Q,−276 F4Q,−368 F1Y,−368

−2 S−2 F1W,−9 F2W,−16 F3W,−23 F4W,−30 F1M,−30 F2M,−63 F3M,−94 F1Q,−94 F2Q,−184 F3Q,−275 F4Q,−367 F1Y,−367

−1 S−1 F1W,−8 F2W,−15 F3W,−22 F4W,−29 F1M,−29 F2M,−62 F3M,−93 F1Q,−93 F2Q,−183 F3Q,−274 F4Q,−366 F1Y,−366

0 S0 F1W,−7 F2W,−14 F3W,−21 F4W,−28 F1M,−28 F2M,−61 F3M,−92 F1Q,−92 F2Q,−182 F3Q,−273 F4Q,−365 F1Y,−365

The contracts are sorted so that their maturity date corresponds to the date in the first row

the prices of swap contracts and thereby the realized price for the electricity sold,
with spot prices. This new way to illustrate spot and swap prices might be useful
to investigate the effect of swaps in hedging decisions. The producer achieves a
realized price Ft for the electricity it sells in the derivative market at time t given
by (13.17), where FT,t correspond to the different swaps traded at time t. WFT is
the weight of a producer’s total derivative investment positioned in each contract.
FT,t=(t−T ) represents the swap price T days ahead of time t. Note that ∑T WFT = 1.

Ft =∑
T

WFT FT,t=(t−T ),T ∈ {1W,2W,3W, . . . ,1Y,2Y,3Y} (13.17)

To exemplify how to interpret Table 13.11, a two-week swap is considered at
time t = 0, the last row in the table. The F2W,−14 entry illustrates that the price of
a two-week swap at time t = 0− 14 = −14 thus two weeks before t = 0 can be
considered as the realized price of the electricity if production is hedged using this
contract at time t = −14. This hedged price can therefore be compared with the
spot price at t = 0. A similar approach can be made for all other dates t and for all
other maturities T . Thus, the volatility of the realized cash flow over time can be
examined by using (13.4) with St , Ft , and H as input variables.

To create an empirical distribution for spot/swap prices, the rows in Table 13.11
are sorted with increasing spot price, but retaining the same swap prices to the spot
prices as in the table. The rows in the table are thus shuffled.

Having created an empirical distribution for spot/swap prices it is now possible to
link the cumulative price probabilities, u from step 3 in Fig. 13.2, to simulated spot
and swap prices. This is simply done by finding the two successive rows in the sorted
table corresponding to the nearest lower and higher u and interpolating between
these two rows for each spot and swap contract, as illustrated in Table 13.12. Hence,
daily spot and swap prices for all u can be obtained. The price output of the copula
will therefore be based on daily and not quarterly data, even though the production
has quarterly resolution. The minimum, average, and maximum values of the output
price from the Kalman filter, Table 13.9, are to some extent higher than the quarterly
data used as input to the empirical copula, Table 13.6. Nonetheless, the standard
deviations of the two data sets are almost identical, and since the risk measures in
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this chapter will be based on relative measures, the choice of working with two
different pricing models will not disturb the risk analysis a lot.

Table 13.12 The sorted table of spot and swap prices with their cumulative probability u

Cumul.prob. Spot Week Week Week Week Month Month Month Quarter Quarter Quarter Quarter Year

(u) 1 2 3 4 1 2 3 1 2 3 4 1

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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0.46 Stx F1W,tx F2W,tx F3W,tx F4W,tx F1M,tx F2M,tx F3M,tx F1Q,tx F2Q,tx F3Q,tx F4Q,tx F1Y,tx

0.47 Interp. Interp. Interp. Interp. Interp. Interp. Interp. Interp. Interp. Interp. Interp. Interp. Interp.

0.49 Sty F1W,ty F2W,ty F3W,ty F4W,ty F1M,ty F2M,ty F3M,ty F1Q,ty F2Q,ty F3Q,ty F4Q,ty F1Y,ty
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1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Interpolation is used to connect the cumulative probability u obtained in Fig. 13.9 to the empirical
price distribution from the Kalman filter

As pairs of related spot, swap, and production values now are available, sums and
products of these variables can easily be calculated. From the variance of these sums
and products it is possible to obtain covariance between price and production that
were previously unavailable. This copula-based Monte Carlo simulation can hence
be applied to evaluate the price and production uncertainty on cash flow with mea-
sures such as CFaR, CCFaR, and hedge effectiveness. The large number of different
swap contracts available from the two-factor model also renders possible an analysis
of how the term structures of such contracts influence the hedging performance and
the hedge ratios of a hydropower producer.

13.5 Results and Discussion

With the copula-based Monte Carlo model developed in Sect. 13.4, 10,000 scenar-
ios of dependent electricity spot, swap, and production values are generated. These
values and different hedge ratios are then used as input to the expression of the
hydropower producer’s cash flow in (13.4). Thus, for each hedge ratio the result-
ing 10,000 cash flow scenarios can be used to examine the cash flow uncertainty
expressed by different risk measures.

13.5.1 Risk Premium

Before the risk of the cash flow is assessed, an analysis of the risk premium of
several swaps traded in the 2006 to 2010 period at Nord Pool is conducted. The risk
premium is studied to judge the attractiveness of these derivatives. As mentioned
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Fig. 13.11 Annualized risk premiums for different forward contracts. Calculated from (13.18).
There is a clear downward trend in the annualized risk premium with respect to the time to maturity.
Short-term swaps are therefore economically more attractive to hydropower producers than long-
term contracts

in Sect. 13.2.5 the risk premium of the traded swaps may be connected to the term
structure of the contracts. Hence, the risk premium is examined to enable an analysis
of the trade-off between risk and return. The risk premium is defined according to
(13.18):

R(t,T ) =
FT,t −Et [ST ]

FT,t
= 1− ∑T

t=T−P St

PFT,t
,

Annualized R(t,T ) = (1+R(t,T))
365
T − 1 (13.18)

where t is a date, T is the time to expiration of a contract, and P is the delivery length
of the contract. Thus, (∑T

t=T−P St)/P is the average spot price during the delivery
period and FT,t is the forward price of a swap contract with time to maturity, T , at
time t.

A summary of the annualized risk premiums is depicted in Fig. 13.11. The figure
reveals the tendency of a decreasing risk premium when the time to maturity of these
contracts increases. This is consistent with the findings of [8]. Also, the slightly neg-
ative drift term, μξ , in (13.16) for the-long term evolution in forward prices bodes
well with the decreasing risk premium since the price of the contract then decreases
with the time to maturity. The decreasing risk premium with longer time to maturity
is also consistent with the hedging pressure in the market, explained in Sect. 13.2.5.
Consumers tend to hedge themselves in the short term whereas producers often
prefer long-term contracts in their hedging strategies. This creates an unbalanced
demand-supply situation for swap contracts which affects the pricing of the con-
tracts in the direction of higher risk premiums for short-term contracts and low or
even negative risk premiums for forwards with long time to maturity. The risk pre-
mium present in swap agreements argues for the use of short-term contracts by
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producers to obtain an advantageous realized price for the electricity secured in the
derivative market. However, the risk premium has little to do with the elimination
of risk as yearly variations and extreme prices will still affect the cash flow greatly.
Thus, both the risk premiums and the contracts’ abilities to reduce risk should be
considered in the hedging decisions.

13.5.2 Minimum Variance Analysis

Fig. 13.12 Standard deviation of cash flow measured as a fraction of expected cash flow, vary-
ing the hedge ratio. The minimum standard deviation is obtained at a hedging level of 57.0% of
expected production. In the plot the term structure of the hedged swaps is neglected

A minimum variance analysis can be carried out to measure and reduce risk. With
dependent price and production data series from the copula-based Monte Carlo sim-
ulation, variance in cash flow can be minimized by choosing a hedge ratio according
to (13.6) in Sect. 13.2.3. The hedge ratio represents the percentage of the expected
production that should be sold in the forward market. Still, this analysis does not
take into account which swaps to include in a power portfolio since (13.6) ignores
the term structure of these derivatives, thus neglecting that weekly and yearly con-
tracts affect risk reduction differently. However, this approach gives a benchmark
for the optimal hedge ratio.

Figure 13.12 depicts the standard deviation of the electricity producer’s income
as a function of the hedge ratio. Minimum variance is obtained for a hedge ratio of
about 57.0%. This hedge ratio is consistent and almost equal to the tax-neutral hedge
of 58.3% elaborated in Sect. 13.2.3. Hence, the copula framework used to generate
price and production pairs has only marginal effect on the variance of the cash flow
and barely changes the optimal hedging level. The figure still underlines the signif-
icant variance reduction effect of hedging. For a non-hedged producer the volatility
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of the cash flow is about 42% and drops to approximately 28% when the optimal
hedging level is chosen. A question yet to be answered is how the time horizon of
different derivative contracts affects risk reduction and how a power portfolio should
be composed. Possibly, the optimal hedge ratio can be affected by this choice.

13.5.3 Restricted Minimum Variance Analysis

a b

Fig. 13.13 Unrestricted and restricted scenarios for price and production for a hydropower pro-
ducer. The density of the points underlines the probability of the outcomes. Some small disconti-
nuities are the result of lack of input data to the empirical copula. In the restricted copula analysis,
some scenarios that greatly exceed historic outcomes have been eliminated. For the unrestricted
situation the optimal hedge ratio is 57.0% and it drops to 51.0% for the restricted scenario. The
unrestricted scenarios will be used in later risk analyses (a) Unrestricted scenarios (b) Restricted
scenario

The generated series for price and production applied to evaluate volatility in the
previous section permit scenarios where both very high price and production are
connected. Persistent high prices are only viable in the hydro-dominated Nord Pool
area during cold and dry periods, which drain the reservoirs to a critical level. Dur-
ing these periods very high production is not desirable, and the very high price and
production scenario is therefore unlikely. For this reason it is interesting to investi-
gate the consequence of excluding the assumed improbable scenarios from the data
set. An illustration of the effect of the data set when the high price, high produc-
tion scenarios are deleted is shown in Fig. 13.13. The consequence on the optimal
hedge ratio is a minimum variance obtained for a hedging level of 51.0% of the ex-
pected production. The reduction from the unrestricted simulation emphasis that a
producer should be careful to hedge as much as the tax-neutral hedge of 58.3% and
should probably have a ceiling of the hedge ratio closer to 50% when risk reduction
is measured by the variance framework. A lower optimal hedging level is the result
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of a more prominent natural hedge for the restricted copula case, reflecting a more
negative correlation between price and production, than observed in the unrestricted
minimum variance analysis. In the next analyses, the unrestricted copula scenarios
are considered.

13.5.4 Cash Flow at Risk Analysis

Cash flow at risk is used as a tool to measure downside risk which is relevant for a
hydropower producer that operates in a sector where prices are subjected to extreme
fluctuations. CFaR and CCFaR are treated more closely in Sect. 13.2.1. The chosen
threshold value of these risk measures is set equal to α = 5%. This risk level reflects
the secure environment in which hydropower producers operate with stable earn-
ings and low probability of facing financial distress. These criteria should be det-
ermining when a company chooses risk measures, according to [32], and CFaR5%

and CCFaR5% seem suitable. An even higher risk threshold can also be argued for;
Fleten et al. [18] use as an example a VaR10% to monitor risk for a hydropower
producer.

The cash flow at risk analysis conducted in this chapter considers the time hori-
zon of the hedging, which was a shortcoming of the minimum variance approach
in the previous sections. For contracts with long time to maturity, the spot price
has time to deviate a lot from the expected level if price estimates were wrong.
Long-term contracts are therefore less correlated with the spot price in their maturity
period than contracts with shorter time to maturity. For these short-term contracts,
estimates are rarely far out of range. Stated differently, since one knows less about
what will happen far into the future than the possible outcome of the next days or
weeks, long-term contracts are less correlated with the spot price in their delivery
period than short-term contracts. This feature can be the reason behind some of the
characteristics of the calculated CFaR5% and CCFaR5% in Fig. 13.14 that are dis-
cussed below. The CFaR5% and CCFaR5% as percentage of expected cash flow in
the figures are defined in (13.19). High CFaR5% and CCFaR5% values are favorable,
since the threshold values then are closer to the expected cash flow.

(C)CFaR as a % of expected cash flow =
(C)CFaR

E[CF]
100% (13.19)

First, as the time to maturity of the contracts contained in the hedged portfolio inc-
reases, the downside risk measured by CFaR5% and CCFaR5% is reduced when the
optimal hedge ratio is chosen. For a portfolio with one-week contracts, Fig. 13.14a,
the CFaR5% is only 40% of the mean for all hedge ratios. With yearly contracts,
Fig. 13.14d, the same number is about 70% for an optimal hedge ratio. Second,
when contracts with longer time to maturity are used, the optimal hedge ratio drops.
For short-term contracts there is no clear optimal hedge ratio; Fig. 13.14a reveals an
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a b

c b

Fig. 13.14 Downside risk in cash flow for a producer hedging only 1-week futures, 1-month for-
ward, 1-quarter forward, and 1-year forward contracts as a function of the hedge ratio. CFaR and
CCFaR are represented as a percentage of expected cash flow. For long-term swaps the CFaR and
CCFaR curves are more parabolic and can eliminate more downside risk than short-term contracts,
as observed by the higher obtained values. The hedge ratio that reduces most downside risk is the
abscissa of the maximum of the curves, and the optimal hedging level drops with the length of the
hedged contracts. (a) Power portfolio containing spot and 1-week contracts (b) Power portfolio
containing spot and 1-month contracts (c) Power portfolio containing spot and 1-quarter contracts
(d) Power portfolio containing spot and 1-year contracts

almost flat behavior. A relatively high hedge ratio would therefore not imply less risk
than a lower one. The optimal hedge ratio then drops successively for monthly and
quarterly contracts, Figs. 13.14b and 13.14c, and attains a minimum level of app-
roximately 35% when CCFaR5% is assessed for one-year contracts in Fig. 13.14d.
The hedge ratio that minimizes downside risk is always lower for CCFaR5% than
for CFaR5%, as CCFaR5% punishes extreme events more severely than CFaR5%.
Thirdly, when the time to maturity of the contracts increases, it is more important
to choose the correct hedge ratio. Short-time horizons yield relatively flat CFaR5%

and CCFaR5% curves whereas longer-time horizons yield a more parabolic-shaped
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CFaR5% and CCFaR5% curve. Thus, an overhedged producer using long-term swaps
may experience higher risk than an unhedged producer if its hedge ratio greatly
exceeds the optimal level.

13.5.5 Hedge Effectiveness

Hedging effectiveness, defined in (13.1), has also been assessed to evaluate how
swap contracts with different maturities affect the variance reduction in cash flow.
Hedge effectiveness is treated more thoroughly in Sect. 13.2.1. The hedge effec-
tiveness analysis conducted herein includes the time perspective of the hedge as
opposed to the minimum variance analysis in Sect. 13.5.2. The results of the hedge
effectiveness analysis are presented in Figs. 13.15 and 13.16.

The figure underlines that any contract with a time to maturity of less than two
months is not likely to eliminate more than 10% of the variance in cash flow at
any hedging level. Conversely, contracts with longer time to maturity may eliminate
almost 50% of the producer’s revenue variance. This result emphasizes that it is
pointless to use short-term swaps if the aim is to reduce variance in cash flow. The
finding can possibly explain the surprising result in an empirical analysis of hedging
policies among Norwegian hydropower producers by [30]. In their study the major-
ity of producers did not obtain a significant reduction in their cash flow volatility.
However, they achieved a substantial part of their profit from their hedging pro-
gram. It seems therefore likely that many hydropower producers focus on increased
profitability rather than risk reduction. If the aim of the hedge is to reduce risk, the
hedge effectiveness analysis underlines that most risk is eliminated for hedge ratios
in the 40–60% area (Fig. 13.16a, b, and c). As explained in Sect. 13.5.4, overhedg-
ing can be very risky, and Fig. 13.16d stresses how the variance reduction collapses
when the hedging level increases to 90% of the expected production. Overhedging
may hence result in increased volatility and all risk protection can be lost. As hedg-
ing generally leads to reduced revenue, overhedging implies higher risk and lower
return.

a b

Fig. 13.15 Hedge effectiveness for swaps with different maturities for various hedge ratios. For
the unhedged case the hedge effectiveness is zero. (a) 0 % Hedge (b) 20 % Hedge
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a b

c d

Fig. 13.16 Hedge effectiveness for swaps with different maturities for various hedge ratios. The
discontinuity in the increasing hedge effectiveness trend observed for 1-month and 1-quarter for-
wards might be due to the different contract structure than for the preceding points on the abscissa.
The increasing hedge effectiveness with time to maturity illustrates that long-term contracts elim-
inate more risk than short-term contracts at an adequate hedging level. The optimal hedging level
is between 40 and 60%. When overhedged, as in Fig. 13.16d, the hedge effect collapses and leads
to increased cash flow volatility. (a) 40 % Hedge (b) 50 % Hedge (c) 60 % Hedge (d) 90 % Hedge

13.5.6 Model Results Compared with Historical Hedge Ratios

In Sect. 13.3, Table 13.3, the optimal hedge ratios obtained from the historical data
are 47.5%, 28.0 %, and 15.9% for minimum variance, CFaR5%, and CCFaR5%,
respectively. In the analyses following the copula-based Monte Carlo simulation,
Sects. 13.5.4 and 13.5.5, the optimal hedging levels are 40–60% for the hedge
effectiveness approach and about 45% and 35% for CFaR5% and CCFaR5%. The
empirical variance is compared to hedge effectiveness since both measures mini-
mize variance and include the time perspective. Thus, it appears that the empirical
results are in line with the outcome of simulations conducted in this chapter. How-
ever, the empirical results tend to recommend slightly lower hedge ratios than the
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copula-based values. As discussed previously this could be founded in the estima-
tion of the spot-swap relationship with a two-factor model which normally underes-
timates the volatility of the swap contracts. The estimated swap contracts may there-
fore be more risky than supposed in the analyses. If a more complete and complex
model for the spot-swap price relationship had been selected, the obtained optimal
hedge ratios would probably have been lower.

It is also interesting to observe that none of the historical optimal hedging strate-
gies involve investment in weekly contracts. This same observation is discussed in
the CFaR5%, CCFaR5%, and hedge effectiveness analyses with a conclusion that
weekly contracts are too correlated with the spot price to provide risk elimination,
and at best yield a positive risk premium for the producer.

Finally, it seems like the empirical analysis obtains less risk elimination, mea-
sured by hedge effectiveness, CFaR5%, and CCFaR5%, than the copula framework
claims possible. This problem questions the adequacy and robustness of the copula-
based Monte Carlo simulation.

13.5.7 Implications

The implications of the previous analyses are that a producer should adjust its hedg-
ing strategy according to the purpose of the hedge. The minimum variance analysis
provides an easy and comprehensive picture of the optimal hedging level, with a tar-
get hedge ratio in the 51–57.0% range. However, this analysis seems too simplistic
as it ignores the term structure effects of the swap contracts. The analysis shows that
it is possible to reduce the standard deviation in cash flow from about 42% in the
unhedged case to approximately 28% when an optimal hedge ratio is chosen; see
Fig. 13.12.

Extension of the variance approach by observing hedge effectiveness of different
hedging strategies, consisting of investing a variable part of the expected produc-
tion in one swap contract at a time, is shown in Figs. 13.15 and 13.16. The hedg-
ing effectiveness measure supports the minimum variance approach, but specifies
that the maximum risk reduction is only possible with long-term contracts. Bes-
ides, it is shown that hedging by use of short-term contracts is almost pointless
if the aim is to reduce risk. The CFaR5% and CCFaR5% analyses present similar
results. Short-term contracts have only a marginal risk-reducing effect, shown by
the flat curves in Fig. 13.14a, and the investment in these derivatives therefore pro-
vides negligible risk protection for a hydropower producer. On the other hand, the
long-term contracts may reduce risk significantly, depicted by the parabolic CFaR5%

and CCFaR5% curves in Fig. 13.14c and d. The hedge effectiveness, CFaR5%, and
CCFaR5% approaches show that hedging by means of swaps with longer time to
maturity can almost halve the volatility and the downside risk in cash flow if appro-
priate hedge ratios are chosen. Note that a detailed analysis of the appropriate hedge
ratios should be undertaken to prevent risky overhedging.
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Nevertheless, the attractiveness of the long-term contracts lies only in their
risk-reducing nature as they are priced with a marginally positive or even a negative
risk premium as depicted in Fig. 13.11. Conversely, short-term contracts are gener-
ally priced with a positive risk premium and the premium decreases as the maturity,
and hence the risk-eliminating ability of the swaps increases. Fleten et al. [18] also
find that hedging costs are higher when producers use contracts with long time to
maturity. Thus, the usual risk-reward relationship, faithful to the findings of [26],
also applies to the hedging strategy of hydropower producers.

Swaps can therefore be used for two main purposes by a hydropower producer:
as speculation in short-term contracts with the aim to obtain attractive prices, but
without eliminating much risk, and alternatively as risk-reduction strategies invest-
ing in long-term, risk-reducing swaps, achieving a less attractive premium for this
risk protection. These double possible uses of these derivatives can probably be the
source of the troubling findings of [30], discussed briefly in Sect. 13.5.5. The ten-
dency of hydropower companies to profit from their hedging transactions rather than
reducing cash flow volatility can therefore be founded in hedging biased towards
short-term instead of long-term contracts. Translated, this means that hydropower
companies engage in value adding rather than risk-reducing hedging strategies.

13.6 Conclusion

For renewables producers, price and feed-in uncertainty are the two most important
operational risk factors. An empirical copula is suggested to link the price and pro-
duction volume in a new way. The copula offers an improved relationship between
variables, including flexibility in tail dependency and normality assumptions, which
a linear correlation coefficient does not allow. This chapter develops a copula-based
Monte Carlo model to investigate hedge ratios for Norwegian hydropower producers
taking into account price and production volume uncertainties. The variances in
revenue, hedge effectiveness, CFaR, and CCFaR are used as risk measures to ex-
amine how swaps with different maturities affect a hydropower producer’s hedging
strategy and hedge ratios.

Swaps with short time to maturity are shown to have little effect on risk reduc-
tion measured by hedge effectiveness, CFaR, and CCFaR. Conversely, long-term
contracts should be preferred in order to obtain the highest level of risk reduction
measured by the proposed risk measures. Also, the optimal hedge ratio shifts tow-
ards lower levels when the time to maturity of the hedged swaps included in the
power portfolio increases. This is due to the long-term contracts’ lower correla-
tion with the spot price which offers a better risk reduction than short-term swaps.
Overhedging, meaning hedging too much of the expected production, in long-term
derivatives may result in a risk increase in cash flow instead of risk reduction. The
assessed risk measures give different results when it comes to the optimal hedge
ratio. Thus, it may be problematic to recommend one specific risk measure and
one single hedge ratio. The choice of risk measure must therefore be based on the
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hydropower producer’s approach to risk. Anyway, for all risk measures a hedge ratio
of 35–60 % of expected production invested in long-term contracts is observed to
give the highest risk reduction.

The hedging performance of swap contracts is seen in light of the expected risk
premium for these derivatives. The risk premium is a decreasing function of the time
to maturity of the swaps, and the low or even negative premium achieved for long-
term contracts can be considered as a cost of the provided risk reduction. Hence,
swap agreements can be used for two main purposes by a hydropower producer:
as speculation in short-term contracts with the aim to obtain attractive prices but
without removing much risk and alternatively as a risk-reduction strategy taking
positions in long-term swaps with a negative or less attractive risk premium.

The copula-based model developed in this chapter has some shortcomings. First,
the issue with two sets of prices is problematic, with one set used to construct the
copula and another set of spot and swap prices used as an output distribution from
the copula. The swap price model also underestimates the volatility structure and
contributes to higher optimal hedge ratios. Preferably one single pricing model able
to simulate a long history of spot and swap prices consistent with today’s pricing
level and independent of the production should have been used. Second, price hedg-
ing has only been assessed in this chapter and not production risk. This is due to the
nonexistent market for weather derivatives in the Nord Pool area which can allow
producers to hedge their inflow risk and thereby the production uncertainty. Finally,
prices and production volumes are seasonally dependent and the natural revenue
variations based on the seasonal fluctuation are to some extent attempted hedged
away. The optimal hedge ratios for a hydropower producer might therefore be lower
than those recommended in this chapter, since yearly variations are more interesting
for a hydropower producer than seasonal fluctuations. Quarterly data are considered
to provide a sufficient sample size for the empirical copula estimation. Another ef-
fect of using quarterly and not annual data is that the autocorrelation of the input
data to the empirical copula is higher. This results in some scenarios with a higher
probability than what is actually the case. Consequently, the copula-based Monte
Carlo simulation generates more of these scenarios, affecting the analysis of the out-
put data sample. This may in worst case give misleading results. A purely empirical
copula approach for price and production modeling can therefore be problematic.
In further research it might be interesting to go beyond the empirical framework
and make more assumptions to deal with seasonality, autocorrelation, and lack of
data.
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Chapter 14
Investment in Stochastic Electricity-Production
Facilities

Luis Baringo and Antonio J. Conejo

Abstract This chapter considers a profit-oriented private investor interested in
building stochastic electricity-production facilities, such as solar and wind power
plants. This investor sells its production in a competitive pool-based electricity
market and faces uncertainties related to demand growth, its production level, and
its investment cost. Adopting a multistage approach, a stochastic complementarity
model is formulated to determine the optimal capacity to be built by the investor to
maximize its expected profit while minimizing its profit volatility. An example con-
sidering a wind power investor is presented to illustrate the working of the proposed
model.

14.1 Investment in Stochastic Electricity-Production Facilities

14.1.1 Generation Capacity Investment

Generation capacity investment constitutes a relevant problem in electricity mar-
kets. To tackle this problem two different approaches are generally considered: a
centralized framework [1] and a market framework [2].

The first of these approaches, i.e., a centralized framework [1], usually deter-
mines the generation capacity expansion plan based on a worst scenario case and
considering the whole electric energy system. This approach, although relevant for
the efficient operation of the system as a whole, is not of interest for a particular
investor aiming at maximizing its own expected profit.

The market approach represents the operation of the market in which produc-
ers and consumers participate. This approach allows representing the perspective
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of a profit-oriented investor. Within this framework, there are several approaches
for the generation capacity expansion (or investment) problem, e.g., static [3] or
dynamic [4]; strategic [2] or competitive [5]; and with [6] or without network rep-
resentation [7].

In this chapter, a market framework and a multistage approach are considered to
address a particular but important case of the generation capacity investment prob-
lem: the investment in stochastic electricity-production facilities. Stochastic units
are those units whose production is variable and uncertain, e.g., solar and wind
power units. Note that the production of stochastic units depends on the availabil-
ity of a natural resource such as solar intensity or wind speed. Thus, conventional
models have to be modified to incorporate the uncertain production characteristics
of this type of generation units [8, 9].

14.1.2 Uncertainty

There are several parameters that influence investment decisions, e.g., the future
demand growth, equipment outages, investment costs, generation costs, and the pro-
duction of stochastic units. Most of these parameters are subject to uncertainty and
thus, an adequate modeling of such uncertainty is a must to achieve effective invest-
ment decisions.

Among the parameters subject to uncertainty, those with the greatest influence in
the investment in stochastic electricity-production facilities are the demand growth,
the production of stochastic units, and the investment cost. This is so because:

1. Under a market framework, the demand in the system and its growth directly
influence the market clearing prices that in turn influence the investment deci-
sions.

2. The uncertainty in the production of stochastic units influences the required
capacity to be installed.

3. As the technology related to stochastic units matures, their future investment
costs are expected to decrease. However, the decrease rate is uncertain, which
has a significant impact on investment decisions.

The above sources of uncertainty are represented through a set of scenarios
within a stochastic programming model [10, 11], an appropriate model to address
this type of investment problems. Section 14.2 of this chapter provides the method-
ologies used for modeling of different sources of uncertainty.

14.1.3 Planning Horizon

A multistage approach is adopted by considering a planning horizon comprising a
specific number of time periods. Each time period spans a known number of years.
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This multistage approach allows making investment decisions at different points in
time and provides flexibility to adapt to changes in the conditions that influence the
investment decisions.

In order to characterize the different sources of uncertainty, each time period is
represented by a single year within the corresponding period (e.g., the last year),
which is considered the reference year of the whole time period.

The investment decisions concerning the capacities of the stochastic production
units to be built are made at the beginning of each time period.

14.1.4 Risk Management

The key objective of a private investor is maximizing its expected profit. However,
maximizing expected profit may lead to extreme cases in which the investor achieves
a very high profit in some scenarios but incurs very high losses in others. The inv-
estor may not be able to assume such losses and might prefer to reduce its profit
volatility despite having to reduce its expected profit as well. Thus, it is important
to introduce a metric to control the risk of profit volatility. To do so, we use the
conditional value-at-risk (CVaR) metric [12, 13] that can be easily implemented
through linear constraints.

In a profit maximization problem, the CVaR is defined as the expected value of
the profit smaller than the (1−α)-quantile of the profit distribution, being α a given
confidence level.

There are two manners of implementing the CVaR in a multistage model such
as the one considered in this chapter. The first one seeks to reduce the risk of profit
volatility per period. The second one seeks to reduce this risk throughout the whole
planning horizon. This second approach is used in this chapter.

14.1.5 Complementarity Model

The considered investor aims at making investment decisions to maximize its exp-
ected profit from selling its production in the market while minimizing its profit
volatility. However, these investment decisions are related to the market in which the
investor sells its production once the newly built capacity is ready to operate. Note
that the production of the newly built units influences the clearing of the market
and that the outputs of the market influence in turn the investment decisions. Thus,
the investment model must incorporate the clearing of the market as an additional
constraint.

However, note that the market clearing is itself an optimization problem that
seeks to maximize social welfare or to minimize generation cost. Thus, the invest-
ment model becomes an optimization problem constrained by other optimization
problem, i.e., a complementarity model.
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Figure 14.1 illustrates the structure of this complementarity model which
comprises an upper-level problem and a collection of lower-level problems, i.e.,
a bi-level model. On one hand, the upper-level problem is an optimization prob-
lem that aims at maximizing the investor expected profit while minimizing its profit
volatility. On the other hand, the lower-level problems represent the market clearing
under different operating conditions, scenarios, and time periods. Note that invest-
ment decisions influence the market clearing (through the production of the newly
built units), and that the investor obtains the clearing prices from the market clearing
problems, which in turn influence its investment decisions.

Fig. 14.1 Complementarity model structure

14.1.6 Chapter Organization

The remaining of this chapter is organized as follows. Section 14.2 describes the
modeling of the sources of uncertainty. Section 14.3 provides a risk-constrained
multistage bi-level model to decide the optimal investment in stochastic electricity-
production facilities, as well as a procedure to transform such bi-level model into
a mathematical program with equilibrium constraints (MPEC) and then into a
mixed-integer linear programming (MILP) model. Both Sects. 14.2 and 14.3 include
clarifying examples to illustrate the uncertainty modeling and the bi-level model,
respectively. Finally, Sect. 14.4 summarizes the chapter and provides some relevant
remarks and conclusions.
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14.2 Uncertainty Modeling

This section describes the modeling of the sources of uncertainty that affect the
investment decisions in stochastic electricity-production facilities. The explanations
below are given for the particular case of investment in wind power facilities. How-
ever, extending the analysis to consider alternative stochastic-production units is
straightforward.

14.2.1 Sources of Uncertainty

As explained in Sect. 14.1.2 of this chapter, there are three main sources of uncer-
tainty that influence wind power investment decisions, namely, the future demand
growth, the wind power production, and the future investment cost.

For the sake of simplicity and due to their high impact on investment decisions,
only these three sources of uncertainty are considered below. However, additional
sources of uncertainty (e.g., generation costs and equipment outages) can be con-
sidered in a similar manner.

14.2.2 Demand and Wind Power Production Uncertainty

The demand and the wind power production are usually anticorrelated since low
demands (during the night) generally correspond to high wind power productions
and high demands (during the day) generally correspond to low wind power produc-
tions. Thus, the uncertain character of both parameters has to be addressed jointly
in order to account for this negative correlation.

The aim of the wind power investor is to decide the wind power units to be
built throughout an existing electric energy system at the beginning of each of the
time periods comprising the planning horizon. As explained in Sect. 14.1.3, each of
these time periods is modeled using a representative year. The demand and wind
power production uncertainties throughout the representative years are modeled as
described below.

We consider hourly historical values (throughout one or several past years) of
demand and wind speed in different locations of the electric energy system under
study. First, wind speed values are transformed into wind power capacity factors
(defined as the wind power production per MW) through appropriate wind
speed/wind power production curves. Second, demand values in each location are
divided by the peak demand in each particular location, rendering a set of values
of demand factors. We obtain hourly values of the demand factor and of the wind
power capacity factor in each location of the electric energy system under study
which represent different operating conditions.
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This set of values represents the historical demand and wind power production
profile in the electric energy system under study. This profile also accounts for the
correlation among demand and wind power capacity factors. For the sake of simplic-
ity, this demand and wind power production profile is considered fixed throughout
the whole planning horizon. Thus, these historical demand and wind power capacity
factors are considered to represent the demand and wind power production uncer-
tainty in the representative year of each time period of the planning horizon. It is
important to emphasize that wind power capacity factors do not change through-
out the years but the demand grows. However, for simplicity we assume that all
demands grow in the same proportion, i.e., the geometry remains unaltered.

Considering all historical operating conditions as input data of the investment
model may result in intractability, particularly for realistic electric energy systems.
Thus, the K-means clustering method [14, 15] is used to transform the historical
data into a reduced data set that maintains the information of and the correlation
among the demand and the wind power capacity factors of the historical data.

The working of the K-means technique to reduce the historical operating condi-
tion is summarized below.

We define a cluster as a group of observations (e.g., demand and wind power
capacity factors in different locations) that are similar among them but different
from the observations in other clusters. Additionally, we define the centroid of each
cluster as the mean value of the observations allocated to the cluster. Given these
definitions, the K-means follows the iterative algorithm below:

1. Select an appropriate number of clusters.
2. Define initial clusters and the initial centroid of each cluster, e.g., randomly allo-

cating the observations to different clusters.
3. Compute the distances (e.g., quadratic distances) between each historical obser-

vation and each cluster centroid.
4. Allocate each historical observation to the closest cluster according to the calcu-

lated distances.
5. Recalculate the centroid of each cluster.

Steps 3–5 above are repeated iteratively until there is no change in the composi-
tions of the clusters in two consecutive iterations.

Note that the output of the K-means technique is a set of clusters, each one
defined by its centroid and the number of historical observations allocated to it. The
centroids comprise the values of the demand and the wind power capacity factors in
each location of the system under study, which represent the system operating con-
dition. On the other hand, the number of historical observations allocated to each
cluster gives the weight of the cluster. As we represent each period using a refer-
ence year, we define this weight as the number of hours in the representative year of
each period that are represented by each cluster, i.e., the weight of each operating
condition in each representative year. Additional details of the K-means technique
can be found in [14].

Demand and wind power capacity factors as per unit values are considered fixed
throughout the planning horizon. However, this is not the case for the demand and
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the wind power production which generally increase. Such variations have to be
properly represented. On one hand, the wind power production depends on the ins-
talled wind power capacity which is a decision variable of the problem and, thus, its
increase is determined by the solution of the problem. On the other hand, the uncer-
tainty in the demand growth throughout the planning horizon is represented using a
set of scenarios as depicted in the scenario tree of Fig. 14.2. In this particular exam-
ple of two time periods, the scenario tree comprises two demand growth scenario
realizations in the first time period and two demand growth scenario realizations in
the second period for each scenario realization in the first one, which results in four
demand growth scenarios (D1, D2, D3, and D4) for the whole planning horizon.
In this example, there is only one possible investment decision at the beginning of
the planning horizon (i.e., at the beginning of the first period) and two alternative
investment decisions at the beginning of the second period depending on the sce-
nario realization in the first one: one investment decision for scenarios D1 and D2;
and one investment decision for scenarios D3 and D4.

Fig. 14.2 Scenario tree considering uncertainty in demand growth

As explained above, demand and wind power capacity factors are considered
fixed throughout the planning horizon. This assumption implies that all demands
grow in the same proportion. Note that this may not be the case, specially if the
system under study has (or may have in the future) a smart grid technology enabling
the implementation of demand response programs that may play a significant role
in changing the consumer behavior and thus, the geometry of the demand. However,
note that if this is the case, different demand and wind power production profiles
may be considered through additional scenarios.
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14.2.3 Investment Cost Uncertainty

As the wind power technology matures, the future wind power investment cost is
expected to decrease. However, this potential decrease is uncertain and thus, this
uncertainty has to be properly modeled. To do so, we use a set of scenarios to rep-
resent the investment cost uncertainty.

Figure 14.3 depicts an example of a scenario tree representing the investment
cost uncertainty. In this example, there are three possible investment cost scenario
realizations for the second period (IC1, IC2, and IC3). In this case, there is a single
investment decision at the beginning of the first period and three alternatives invest-
ment decisions at the beginning of the second one, depending on the investment cost
scenario realization.

Fig. 14.3 Scenario tree considering uncertainty in investment cost

The main difference in the uncertainty modeling of the investment cost and in
the demand growth is that in the first case, the wind power investor knows the actual
investment cost at the time it makes its investment decisions. The investment cost
in the first period is known at the point in time that the investment decisions for
this period are made. However, at this point in time, the investor does not know the
investment cost in the second period. Nevertheles, this investment cost is known at
the time the investor makes its investment decisions. On the other hand, the demand
growth in the first period is not known at the time the wind power investor makes its
investment decisions for this period. Thus, the uncertainty in demand growth usually
entails a higher risk than the uncertainty associated with investment costs.

The demand growth and the investment cost scenarios are generated using app-
ropriate forecasting tools [16, 17].
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14.2.4 Decision Sequence: Scenario Tree

The sources of uncertainty described in Sects. 14.2.2 and 14.2.3 above are indepen-
dent and thus, the final scenario tree includes all possible scenario combinations. For
the considered examples in Figs. 14.2 and 14.3, the final scenario tree comprises
twelve scenario realizations (four demand growth scenarios and three investment
cost scenarios) as depicted in Fig. 14.4. In this case, there is a single investment
decision at the beginning of the planning horizon which does not depend on the fut-
ure scenario realizations and six possible investment decisions at the beginning of
the second period depending on the demand growth and the investment cost scenario
realization in the first period (six alternatives).

It is important to note that each of these scenarios comprises a specific number
of clusters (those obtained using the K-means technique and representing different
system operating conditions) for each time period, which account for the demand
and wind power capacity factors variability throughout the reference year of each
period.

Given this framework, the decision sequence is as follows:

1. At the beginning of the planning horizon, i.e., at the beginning of the first time
period, the wind power investor decides the wind power capacity to be built at
this point in time. These investment decisions are here-and-now decisions since
they do not depend on any scenario realization.

2. Once the investment decisions for the first period are made, the market is cleared
for each cluster within each scenario in the first period. From the market clearing
we obtain power productions, power flows, market clearing prices, etc.

3. The first period concludes and the wind power investor knows the actual scenario
realization in this period (i.e., it knows the demand growth in the first period and
the investment cost for the second period). Depending on the scenario realization,
the investor makes its investment decisions for the second period. These are wait-
and-see decisions with respect to the first period since they do depend on the
scenario realization in this period and here-and-now decisions with respect to
the second period (and the following ones if there are more than two) since they
do not depend on the scenario realization in the future periods.

4. Once the investment decisions for the second period are made, the market is
cleared for each cluster within each scenario in the second period.

Finally, steps 3 and 4 are repeated for each time period of the planning horizon
if there were more than two.

14.2.5 Illustrative Example

In order to illustrate the modeling of the different sources of uncertainty, we consider
the three-node electric energy system depicted in Fig. 14.5. This system comprises
three nodes, three demands, three generation units, and three transmission lines.
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Fig. 14.4 Scenario tree considering uncertainty in both demand growth and investment cost

There are two wind zones: North wind zone (comprising nodes 1 and 2) and south
wind zone (node 3).

Data of demand is obtained from aggregated historical data throughout year 2008
in the Iberian Peninsula [18]. The demand values are then divided by the peak
demand to obtain demand factors. On the other hand, historical wind speed data
of the Spanish towns of Tortosa (Northeast Spain) and Tarifa (Southwest Spain) are
considered to characterize the wind speed in the north and south zones, respectively.
These wind speed data are obtained using the databases developed by the University
of Cantabria [19, 20]. To obtain the corresponding wind power capacity factors, we
consider the wind speed/wind power production curve of a Nordex N80/2500 tur-
bine [21]. Finally, we consider a two-period planning horizon, each one comprising
6 years.

14.2.5.1 Clusters

Historical data of demand and wind power capacity factors comprise 8,760 sets of
values (demand and wind power capacity factors in each zone and for each hour
of year 2008). Each set represents a system operating condition. If we use these
historical data as input data of an investment model, we may face intractability.
Thus, we apply the K-means technique explained in Sect. 14.2.2 to reduce these
historical data into a set of clusters.

Table 14.1 provides the demand and wind power capacity factor data of the ten
clusters in which we allocate the historical data. The second column of this table
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gives the demand factors, which for the sake of simplicity are assumed to be the
same at all the nodes of the system. The third and fourth columns provide the wind
power capacity factors in the north and south wind zones, respectively. Both the
demand and wind power capacity factors within each cluster represent a system
operating condition. Finally, the fifth column gives the number of historical obser-
vations that are allocated to each cluster, which represent the weight of each cluster
in the reference year of each period.

Fig. 14.5 Three-node electric energy system

This set of ten clusters covers the information of the historical observations as
well as the correlation among demand and wind power capacity factors in different
zones.

14.2.5.2 Demand Growth Scenarios

First, we assume that the future wind power investment cost is not subject to uncer-
tainty. For this purpose, we consider the scenario depicted in Fig. 14.2 comprising
two demand growth scenario realizations in the first period and two demand growth
scenario realizations in the second period depending on the scenario realization in
the first one.

The probability that the demand in the first period is 15 % higher than the demand
prior to the beginning of the planning horizon is 0.7, while the probability of being
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Table 14.1 Cluster results: demand and wind power capacity factor data

Cluster

Demand
Capacity Number

factors
factors [p.u.] of

[p.u.]
Wind zone hours

North South [h]

1 0.8091 0.0331 0.1211 1712

2 0.7362 0.9191 0.1230 715

3 0.7158 0.7389 0.8100 216

4 0.6674 0.6152 0.0962 477

5 0.6885 0.5308 0.5028 300

6 0.7358 0.0598 0.8771 1312

7 0.7138 0.0406 0.4798 1365

8 0.6214 0.0268 0.0773 1810

9 0.8353 0.2746 0.1266 586

10 0.8286 0.4517 0.0933 267

10 % lower than this demand is 0.3. On the other hand, in the second period, the
demand may be 10 % higher and 5 % lower than the demand in the first period with
probabilities of 0.6 and 0.4, respectively. Table 14.2 summarizes the demand growth
scenario data. The total weight of each scenario is computed as the product of the
probability of occurrence of the demand variations in the first and second periods.

Table 14.2 Uncertainty in demand growth: scenario data

Scenario

Period 1 Period 2
Total

Demand
Weight

Demand
Weight weight

growth (%) growth (%)

D1
+15 0.7

+10 0.6 0.42

D2 −5 0.4 0.28

D3 −10 0.3
+10 0.6 0.18

D4 −5 0.4 0.12

14.2.5.3 Investment Cost Scenarios

In this case we assume that the uncertainty does not affect the demand growth and
we consider the scenario tree depicted in Fig. 14.3, which considers three different
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investment costs in the second period. The probability that the investment cost in
the second period is 15 % higher than that in the first one is 0.2; the probability of
being equal to the investment cost in the first period is 0.4, while the probability that
the investment cost in the second period is 25 % lower than in the first one is 0.4.
Table 14.3 summarizes the investment cost scenario data.

Table 14.3 Uncertainty in investment cost: scenario data

Scenario

Investment cost

Weightvariation in

period 2 (%)

IC1 +15 0.2

IC2 0 0.4

IC3 −25 0.4

14.2.5.4 Demand Growth and Investment Cost Scenarios

Finally, we consider that the uncertainty affects both the demand growth and the
future investment cost. We consider all the scenario combinations of Figs. 14.2
and 14.3 which result in the final scenario tree depicted in Fig. 14.4. Table 14.4
summarizes the scenario data for this case.

There are 12 scenarios for the whole planning horizon as a result of four demand
growth scenarios and three investment cost scenarios. The weight of each scenario
is computed as the weight of the demand growth scenario times the weight of the
investment cost scenario. For example, the weight of scenario D1+IC1 (0.084) is
obtained as the weight of scenario D1 (0.42) times the weight of scenario IC1 (0.2).

14.3 Risk-Constrained Multistage Wind Power Investment

In this section, a risk-constrained multistage model is formulated to determine the
wind power capacity to be built by a wind power investor to maximize its expected
profit while minimizing its profit volatility. This model is based on a bi-level model
which can be recast as a MILP problem.

14.3.1 Notation

The notation of the proposed model is provided below for quick reference.
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Table 14.4 Uncertainty in both demand growth and investment cost: scenario data

Scenario

Period 1 Period 2
Total

Demand Investment cost Demand
weight

growth (%) variation (%) growth (%)

D1+IC1

+15

+15
+10 0.084

D2+IC1 −5 0.056

D1+IC2
0

+10 0.168

D2+IC2 −5 0.112

D1+IC3 −25
+10 0.168

D2+IC3 −5 0.112

D3+IC1

−10

+15
+10 0.036

D4+IC1 −5 0.024

D3+IC2
0

+10 0.072

D4+IC2 −5 0.048

D3+IC3 −25
+10 0.072

D4+IC3 −5 0.048

14.3.1.1 Indices

c Index for clusters
d Index for demands
g Index for generation units (other than candidate wind power units)
l Index for transmission lines
n Index for nodes
r(l) Index of the receiving-end node of line l
s(l) Index of the sending-end node of line l
t Index for time periods
ω Index for scenarios

14.3.1.2 Constants

at Amortization factor in the tth time period
cG

g Marginal cost of the gth generation unit
cinv

t (ω) Wind power investment cost in the tth time period and scenario ω
cmax

t Investment budget in the tth time period
kD

d,c Demand factor of the dth demand in the cth cluster

kW
n,c Wind power capacity factor at node n in the cth cluster

NH
c Number of hours comprising the cth cluster

PD
d,t (ω) Peak load of the dth demand in the tth time period and scenario ω

PG,max
g Capacity of the gth generation unit
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PL,max
l Transmission capacity of the lth transmission line

xl Reactance of line l
XW,max

n Maximum wind power capacity that can be built at node n throughout
the planning horizon

α Confidence level used to compute the CVaR
β Weighting parameter used to model the trade-off between expected

profit and CVaR
γ (ω) Weight of scenario ω

14.3.1.3 Variables

PG
g,c,t (ω) Power produced by the gth generation unit in the cth cluster, the tth time

period, and scenario ω
PL

l,c,t (ω) Power flow through the lth transmission line in the cth cluster, the tth
time period, and scenario ω

PW
n,c,t (ω) Wind power production at node n in the cth cluster, the tth time period,

and scenario ω
XW

n,t (ω) Wind power capacity to be built at node n at the beginning of the tth
time period, and scenario ω

δn,c,t (ω) Voltage angle at node n in the cth cluster, the tth time period, and sce-
nario ω

ϑn,c,t (ω) LMP at node n in the cth cluster, the tth time period, and scenario ω
η (ω) ,ζ Auxiliary variables used to compute the CVaR

14.3.1.4 Dual Variables

The dual variables below are associated with the following constraints:

χn,c,t (ω) Zero voltage angle at the reference node in the cth cluster, the tth time
period, and scenario ω

λn,c,t (ω) Generation-demand balance at node n in the cth cluster, the tth time
period, and scenario ω

φl,c,t (ω) Power flow through transmission line l in the cth cluster, the tth time
period, and scenario ω

φmax
l,c,t (ω) Capacity of transmission line l in direction s(l)-r(l) in the cth cluster,

the tth time period, and scenario ω
φmin

l,c,t (ω) Capacity of transmission line l in direction r(l)-s(l) in the cth cluster,
the tth time period, and scenario ω

ϕmax
g,c,t (ω) Capacity of generation unit g in the cth cluster, the tth time period, and

scenario ω
ϕmin

g,c,t (ω) Nonnegativity of the production of generation unit g in the cth cluster,
the tth time period, and scenario ω

ξmax
n,c,t (ω) Upper limit of voltage angle at node n in the cth cluster, the tth time

period, and scenario ω
ξmin

n,c,t (ω) Lower limit of voltage angle at node n in the cth cluster, the tth time
period, and scenario ω
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14.3.1.5 Sets

ΔC Set of indices of clusters
ΔG Set of indices of generation units (other than candidate wind power

units)
ΔN Set of indices of nodes
ΔT Set of indices of time periods
Δω Set of indices of scenarios
ΛD

n Set of indices of demands located at node n
ΛG

n Set of indices of generation units (other than candidate wind power
units) located at node n

Ψt (ω) Set of parameters defining scenario ω in the tth time period

14.3.2 Bi-level Formulation

The considered risk-constrained multistage wind power investment model is formu-
lated below [9]:

Maximize
ΩU∪ΩL

c,t(ω)

∑
ω∈Δω

γ (ω)

{
∑

t∈ΔT

[
∑

c∈ΔC

NH
c ∑

n∈ΔN

ϑn,c,t (ω)PW
n,c,t (ω) −at ∑

n∈ΔN

cinv
t (ω)XW

n,t (ω)

]}

+β

(
ζ − 1

1−α ∑
ω∈Δω

γ (ω)η (ω)

)
(14.1a)

subject to

0≤ PW
n,c,t (ω)≤ kW

n,c ∑
b≤t

XW
n,t (ω) , ∀n,∀c,∀t,∀ω (14.1b)

∑
n∈ΔN

cinv
t (ω)XW

n,t (ω)≤ cmax
t , ∀t,∀ω (14.1c)

0≤ ∑
t∈ΔT

XW
n,t (ω)≤ XW,max

n , ∀n,∀ω (14.1d)

ϑn,c,t (ω) = λn,c,t (ω) , ∀n,∀c,∀t,∀ω (14.1e)

XW
n,t (ωi) = XW

n,t (ωĩ) , ∀n,∀t,∀ωi,∀ωĩ :Ψb (ωi) =Ψb (ωĩ) ,∀b < t (14.1f)

ζ − ∑
t∈ΔT

[
∑

c∈ΔC

NH
c ∑

n∈ΔN

ϑn,c,t (ω)PW
n,c,t (ω)

−at ∑
n∈ΔN

cinv
t (ω)XW

n,t (ω)

]
≤ η (ω) , ∀ω (14.1g)

η (ω)≥ 0, ∀ω , (14.1h)
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where λn,c,t (ω) ,∀n,∈ arg

{
Minimize

ΩL
c,t(ω)

∑
g∈ΔG

cG
g PG

g,c,t (ω) (14.2a)

subject to

∑
g∈ΛG

n

PG
g,c,t (ω)+PW

n,c,t (ω)− ∑
l|s(l)=n

PL
l,c,t (ω)+ ∑

l|r(l)=n

PL
l,c,t (ω)

= ∑
d∈ΛD

n

PD
d,t (ω)kD

d,c : λn,c,t (ω) , ∀n (14.2b)

PL
l,c,t (ω) =

1
xl

(
δs(l),c,t (ω)− δr(l),c,t (ω)

)
: φl,c,t (ω) , ∀l (14.2c)

−PL,max
l ≤ PL

l,c,t (ω)≤ PL,max
l : φmin

l,c,t (ω) ,φmax
l,c,t (ω) , ∀l (14.2d)

0≤ PG
g,c,t (ω)≤ PG,max

g : ϕmin
g,c,t (ω) ,ϕmax

g,c,t (ω) , ∀g (14.2e)

−π ≤ δn,c,t (ω)≤ π : ξmin
n,c,t (ω) ,ξmax

n,c,t (ω) , ∀n \ n: ref. (14.2f)

δn,c,t (ω) = 0 : χn,c,t (ω) , n: ref. (14.2g)}
,∀c,∀t,∀ω ,

where

ΩU =
{

XW
n,t (ω) ,∀n,∀t,∀ω ;PW

n,c,t (ω) ,ϑn,c,t (ω) ,∀n,∀c,∀t,∀ω ;η (ω) ,∀ω ; ζ
}
,

(14.3)

and

ΩL
c,t (ω) =

{
PG

g,c,t (ω) ,∀g;PL
l,c,t (ω) ,∀l;δn,c,t (ω) ,∀n;λn,c,t (ω) ,∀n;φl,c,t (ω) ,

φmin
l,c,t (ω) ,φmax

l,c,t (ω) ,∀l;ϕmin
g,c,t (ω) ,ϕmax

g,c,t (ω) ,∀g;ξmin
n,c,t (ω) ,ξmax

n,c,t (ω) ,

∀n \ n: ref.;χn,c,t (ω) , n: ref.
}
,∀c,∀t,∀ω . (14.4)

The bi-level model (14.1) and (14.2) comprises an upper-level problem (14.1)
and a set of lower-level problems (14.2), one for each cluster c, time period t, and
scenario ω . The dual variable associated with each constraint of the lower-level
problems is indicated after a colon.

The optimization variables of the lower-level problems are the variables in sets
ΩL

c,t (ω), ∀c, ∀t, ∀ω . The lower-level problems constraint the upper-level one and
thus, the optimization variables of the upper-level problem include variables in sets
ΩL

c,t (ω), ∀c, ∀t, ∀ω and additional variables in set ΩU.
The upper-level problem (14.1) aims at maximizing the expected profit achieved

by the wind power investor plus a coefficient times the CVaR. The CVaR is the
metric used to control the risk of profit volatility [12, 13].
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The objective function (14.1a) of the upper-level problem comprises three terms:

1. Each term ϑn,c,t (ω)PW
n,c,t (ω) is the revenue achieved by the wind power investor

for selling its wind power production in the pool per cluster, time period, and
scenario. The wind power investor is paid the locational marginal price (LMP)
of the node at which wind power is produced times the wind power production.
Since each time period is represented by a reference year, these revenues are
multiplied by the number of hours within each cluster to obtain annual revenues
in each time period and for each scenario.

2. Each term cinv
t (ω)XW

n,t (ω) is the investment cost incurred by the wind power inv-
estor per time period and scenario for building new wind power capacity. These
terms are multiplied in each period by an amortization rate at to make investment
costs and revenues comparable across time periods.

Terms in items 1 and 2 are multiplied in each scenario by the weight of the
corresponding scenario to obtain expected profits.

3. Term β

(
ζ − 1

1−α ∑
ω∈Δω

γ (ω)η (ω)

)
is a coefficient β times the CVaR. Coef-

ficient β is a weighting factor that models the trade-off between expected profit
and CVaR.

For the sake of simplicity, we consider that all the monetary values are referred
to a single point in time and thus, it is not necessary to multiply them by discount
rates.

Constraints (14.1b)–(14.1e) represent the wind power operation and investment
limits and conditions for all clusters, periods, and scenarios. Constraints (14.1b)
limit the wind power production to the wind power availability at each node and for
each cluster, time period, and scenario. Note that the wind power capacity built at the
beginning of any time period is available during this and the remaining periods of the
planning horizon. Constraints (14.1c) impose a cap on investment budget for each
time period and scenario. Equations (14.1d) enforce the nonnegativity of the wind
power capacity to be built and limit it to a maximum throughout the planning hori-
zon. Finally, constraints (14.1e) state that the price paid to the wind power investor
for its production is the LMP of the node at which wind power is produced. These
LMPs are obtained as the dual variables associated with the balance constraints in
the lower-level problems for each node, cluster, time period, and scenario.

Constraints (14.1f) are non-anticipativity constraints that avoid anticipating inf-
ormation. They impose that the wind power capacity to be built at the beginning
of a time period depends on the scenario realization of the previous periods, but
it is unique for all the possible scenario realizations in the current and future peri-
ods [22].

Finally, constraints (14.1g) and (14.1h) allow computing the CVaR metric
through linear expressions. Further information on the CVaR is available in [12, 13].

Additionally, the upper-level problem is also constrained by a set of lower-level
problems (14.2) which represent the clearing of the pool for each cluster, time
period, and scenario.
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The objective function (14.2a) to be maximized is the social welfare, which
is equivalent to minimizing generation costs since demands are considered fixed
within each cluster, time period, and scenario; wind power investor offers its pro-
duction at zero price; and producers other than the wind power investor offer their
productions at their marginal costs.

Constraints of these lower-level problems include equalities (14.2b) that repre-
sent the generation-demand balance at each node of the system; equalities (14.2c)
that define the power flows through transmission lines, limited to the transmission
capacity of the corresponding lines by constraints (14.2d); constraints (14.2e) that
impose upper and lower bounds on the power produced by generation units other
than the wind power units; and finally constraints (14.2f) and (14.2g) that limit the
voltage angles and fix equal to zero the voltage angle at the reference node, re-
spectively. Note that the network topology is explicitly modeled by (14.2b)–(14.2d)
using a direct current (dc) representation and disregarding losses [23].

14.3.3 MPEC Formulation

Bi-level model (14.1) and (14.2) is transformed into an MPEC following the proce-
dure explained below.

Lower-level problems (14.2) represent the market clearing under different clus-
ters, time periods, and scenarios and constraint the upper-level problem (14.1). Since
each of these lower-level problems is linear and thus convex, the Karush–Kuhn–
Tucker (KKT) conditions are necessary and sufficient optimality conditions [24].
Thus, each lower-level problem can be replaced by its KKT optimality conditions,
which are in turn included as additional constraints of the upper-level problem ren-
dering an MPEC, whose formulation is provided below:

Maximize
ΩU∪ΩL

c,t(ω)

(14.1a) (14.5a)

subject to

Constraints (14.1b)–(14.1h) (14.5b){
Constraints (14.2b)–(14.2g) (14.5c)

cG
g,t −λn(g),c,t (ω)+ϕmax

g,c,t (ω)−ϕmin
g,c,t (ω) = 0, ∀g (14.5d)

λs(l),c,t (ω)−λr(l),c,t (ω)−φl,c,t (ω)+φmax
l,c,t (ω)−φmin

l,c,t (ω) = 0, ∀l (14.5e)

∑
l|s(l)=n

1
xl
φl,c,t (ω)− ∑

l|r(l)=n

1
xl
φl,c,t (ω)+ ξmax

n,c,t (ω)− ξmin
n,c,t (ω) = 0,

∀n \ n: ref. (14.5f)
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∑
l|s(l)=n

1
xl
φl,c,t (ω)− ∑

l|r(l)=n

1
xl
φl,c,t (ω)− χn,c,t (ω) = 0, n: ref. (14.5g)

0≤ φmax
l,c,t (ω)⊥ PL,max

l − fl,c,t (ω)≥ 0, ∀l (14.5h)

0≤ φmin
l,c,t (ω)⊥ fl,c,t (ω)+PL,max

l ≥ 0, ∀l (14.5i)

0≤ ϕmax
g,c,t (ω)⊥ PG,max

g −PG
g,c,t (ω)≥ 0, ∀g (14.5j)

0≤ ϕmin
g,c,t (ω)⊥ PG

g,c,t (ω)≥ 0, ∀g (14.5k)

0≤ ξmax
n,c,t (ω)⊥ π− δn,c,t (ω)≥ 0, ∀n \ n: ref. (14.5l)

0≤ ξmin
n,c,t (ω)⊥ δn,c,t (ω)+π ≥ 0, ∀n \ n: ref. (14.5m)}

,∀c,∀t,∀ω .

MPEC (14.5) above is a single-level problem but includes different sources of
nonlinearities, namely, the objective function (14.5a), constraints (14.1g), and the
complementarity constraints (14.5h)–(14.5m). The following subsection explains
how to transform this MPEC into an MILP problem that can be solved using tradi-
tional branch-and-cut techniques.

14.3.4 MILP Formulation

The MPEC (14.5) above has the following nonlinearities:

1. Each term ∑
n∈ΩN

ϑn,c,t (ω)PW
n,c,t (ω) in the objective function (14.5a) and in con-

straints (14.1g).
2. The complementarity constraints of the KKT conditions (14.5h)–(14.5m).

Each term ∑
n∈ΩN

ϑn,c,t (ω)PW
n,c,t (ω) can be replaced by an exact equivalent linear

expression using the strong duality equality (SDE) as explained below [25]. The
SDE states that if a problem is convex (as it is the case of each of the lower-level
problems), the objective functions of the primal and dual problems have the same
value at the optimum:

∑
g∈ΩG

cG
g,tP

G
g,c,t (ω) = ∑

n∈ΩN

λn,c,t (ω)

⎡
⎣ ∑

d∈ΛD
n

PD
d,t (ω)kD

d,c−PW
n,c,t (ω)

⎤
⎦

− ∑
l∈ΩL

⎡
⎣φmax

l,c,t (ω)+φmin
l,c,t (ω)

⎤
⎦PL,max

l − ∑
g∈ΩG

ϕmax
g,c,t P

G,max
g

− ∑
n∈ΩN\n: ref.

⎡
⎣ξmax

n,c,t (ω)+ ξmin
n,c,t (ω)

⎤
⎦π , ∀c,∀t,∀ω . (14.6)
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Since ϑn,c,t (ω)= λn,c,t (ω), ∀n, ∀c, ∀t, ∀ω , as stated in constraints (14.1e), (14.6)
allows reformulating each term ∑

n∈ΩN

ϑn,c,t (ω)PW
n,c,t (ω) as a function of exclusively

linear terms:

∑
n∈ΩN

ϑn,c,t (ω)PW
n,c,t (ω) = ∑

n∈ΩN

λn,c,t (ω) ∑
d∈ΛD

n

PD
d,t (ω)kD

d,c

− ∑
l∈ΩL

⎡
⎣φmax

l,c,t (ω)+φmin
l,c,t (ω)

⎤
⎦PL,max

l − ∑
g∈ΩG

ϕmax
g,c,t P

G,max
g

− ∑
n∈ΩN\n: ref.

⎡
⎣ξmax

n,c,t (ω)+ ξmin
n,c,t (ω)

⎤
⎦π− ∑

g∈ΩG

cG
g,tP

G
g,c,t (ω) , ∀c,∀t,∀ω .

(14.7)

On the other hand, the complementarity constraints of the KKT optimality con-
ditions (14.5h)–(14.5m) have the form 0 ≤ e⊥ h≥ 0. These terms can be replaced
by the following exact equivalent linear expressions based on the Fortuny-Amat
transformation [26]:

e≤Mu (14.8a)

h≤M (1− u) (14.8b)

e,h≥ 0 (14.8c)

u ∈ {0,1} , (14.8d)

where M is a sufficiently large positive constant [26].
Using (14.7) and (14.8), the risk-constrained multistage wind power investment

problem can be finally formulated as the MILP problem below:
Maximize

ΩU∪ΩL
c,t(ω)∪ΩA

c,t (ω)

∑
ω∈Δω

γ (ω)

{
∑

t∈ΔT

[
∑

c∈ΔC

NH
c

⎛
⎝ ∑

n∈ΩN

λn,c,t (ω) ∑
d∈ΛD

n

PD
d,t (ω)kD

d,c

− ∑
l∈ΩL

⎛
⎝φmax

l,c,t (ω)+φmin
l,c,t (ω)

⎞
⎠PL,max

l − ∑
g∈ΩG

ϕmax
g,c,t P

G,max
g

− ∑
n∈ΩN\n: ref.

⎛
⎝ξmax

n,c,t (ω)+ ξmin
n,c,t (ω)

⎞
⎠π− ∑

g∈ΩG

cG
g,tP

G
g,c,t (ω)

⎞
⎠

− at ∑
n∈ΔN

cinv
t (ω)XW

n,t (ω)

]}
+β

(
ζ − 1

1−α ∑
ω∈Δω

γ (ω)η (ω)

)
(14.9a)
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subject to

Constraints (14.1b)–(14.1f) and (14.1h) (14.9b)

ζ − ∑
t∈ΔT

⎡
⎣ ∑

c∈ΔC

NH
c

⎛
⎝ ∑

n∈ΩN

λn,c,t (ω) ∑
d∈ΛD

n

PD
d,t (ω)kD

d,c

− ∑
l∈ΩL

⎛
⎝φmax

l,c,t (ω)+φmin
l,c,t (ω)

⎞
⎠PL,max

l − ∑
g∈ΩG

ϕmax
g,c,t P

G,max
g

− ∑
n∈ΩN\n: ref.

⎛
⎝ξmax

n,c,t (ω)+ ξmin
n,c,t (ω)

⎞
⎠π− ∑

g∈ΩG

cG
g,tP

G
g,c,t (ω)

⎞
⎠

−at ∑
n∈ΔN

cinv
t (ω)XW

n,t (ω)

⎤
⎦≤ η (ω) , ∀ω (14.9c)

{
Constraints (14.2b)–(14.2g) and (14.5d)–(14.5g) (14.9d)

φmax
l,c,t (ω)≤Mφ ,maxuφ ,max

l,c,t (ω) , ∀l (14.9e)

PL,max
l − fl,c,t (ω)≤Mφ ,max

(
1− uφ ,max

l,c,t (ω)
)
, ∀l (14.9f)

φmin
l,c,t (ω)≤Mφ ,minuφ ,min

l,c,t (ω) , ∀l (14.9g)

fl,c,t (ω)+PL,max
l ≤Mφ ,min

(
1− uφ ,min

l,c,t (ω)
)
, ∀l (14.9h)

ϕmax
g,c,t (ω)≤Mϕ,maxuϕ,max

g,c,t (ω) , ∀g (14.9i)

PG,max
g −PG

g,c,t (ω)≤Mϕ,max (1− uϕ,max
g,c,t (ω)

)
, ∀g (14.9j)

ϕmin
g,c,t (ω)≤Mϕ,maxuϕ,min

g,c,t (ω) , ∀g (14.9k)

PG
g,c,t (ω)≤Mϕ,min

(
1− uϕ,min

g,c,t (ω)
)
, ∀g (14.9l)

ξmax
n,c,t (ω)≤Mξ ,maxuξ ,max

n,c,t (ω) , ∀n \ n: ref. (14.9m)

π− δn,c,t (ω)≤Mξ ,max
(

1− uξ ,max
n,c,t (ω)

)
, ∀n \ n: ref. (14.9n)

ξmin
n,c,t (ω)≤Mξ ,minuξ ,min

n,c,t (ω) , ∀n \ n: ref. (14.9o)

δn,c,t (ω)+π ≤Mξ ,min
(

1− uξ ,min
n,c,t (ω)

)
, ∀n \ n: ref. (14.9p)

φmax
l,c,t (ω) ,φmin

l,c,t (ω)≥ 0, ∀l (14.9q)

ϕmax
g,c,t (ω) ,ϕmin

g,c,t (ω)≥ 0, ∀g (14.9r)

ξmax
n,c,t (ω) ,ξmin

n,c,t (ω)≥ 0, ∀n \ n: ref. (14.9s)

uφ ,max
l,c,t (ω) ,uφ ,min

l,c,t (ω) ∈ {0,1} , ∀l (14.9t)



14 Investment in Stochastic Electricity 375

uϕ,max
g,c,t (ω) ,uϕ,min

g,c,t (ω) ∈ {0,1} , ∀g (14.9u)

uξ ,max
n,c,t (ω) ,uξ ,min

n,c,t (ω) ∈ {0,1} , ∀n \ n: ref. (14.9v)}
,∀c,∀t,∀ω ,

where Mφ ,max, Mφ ,min, Mϕ,max, Mϕ,min, Mξ ,max, and Mξ ,min are large enough con-
stants [26], and

ΩA
c,t (ωs) =

{
uφ ,max

l,c,t (ω) ,uφ ,min
l,c,t (ω) ,∀l;uϕ,max

g,c,t (ω) ,uϕ,min
g,c,t (ω) ,∀g;uξ ,max

n,c,t (ω) ,

uξ ,min
n,c,t (ω) , ∀n \ n: ref.

}
,∀c,∀t,∀ω , (14.10)

are sets of auxiliary binary variables.

14.3.5 Illustrative Example

14.3.5.1 Data

MILP problem (14.9) is applied to the three-node system depicted in Fig. 14.5. This
system comprises three nodes, one generation unit per node, one demand per node,
and three transmission lines. Node 1 is the reference node.

Table 14.5 provides the generation unit and demand data. The first column gives
the nodes at which generation units and demands are located. The second and
third columns provide the capacity of each generation unit and the correspond-
ing marginal cost, respectively. For the sake of simplicity, both the capacities and
marginal costs are considered fixed throughout the planning horizon. Finally, the
fourth column provides the peak demand at each node of the system prior to the beg-
inning of the planning horizon. These peak demands multiplied by the correspond-
ing demand factors give the demands for each operating condition, time period, and
scenario.

Table 14.5 Generation unit and demand data

Node

Generation units Peak

PG,max
g cG

g demand

[MW] [$/MWh] [MW]

1 150 76 150

2 150 58 120

3 120 65 120
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All transmission lines are considered to have identical parameters with a reac-
tance equal to 0.2 p.u. and a transmission capacity of 100 MW.

Wind power capacity can be built at nodes 2 and 3 up to 300 MW at each node
throughout the planning horizon. Investment costs at the beginning of the planning
horizon are $1,000,000 per MW. The investment budget is considered unlimited.

The planning horizon comprises two time periods of 6 years each. The demand
and wind power capacity factors throughout the reference year of each period are
represented using the ten clusters whose data are provided in Table 14.1. The amor-
tization rates are considered equal to 0.26 and 0.13 in the first and second periods,
respectively.

Regarding the uncertainty in the demand growth and investment costs, we con-
sider the three cases below:

1. Uncertainty only affects demand growth. This case corresponds to the scenario
data provided in Fig. 14.2 and Table 14.2.

2. Uncertainty only affects investment cost. This case corresponds to the scenario
data provided in Fig. 14.3 and Table 14.3.

3. Uncertainty affects both demand growth and investment cost. This case corre-
sponds to the scenario data provided in Fig. 14.4 and Table 14.4.

The subsections below provide the results for the three above cases. MILP prob-
lem (14.9) is solved for two different values of parameter β that realizes the trade-off
between expected profit and risk of profit volatility:

1. β = 0: this case corresponds to a risk-neutral investor. This investor aims at max-
imizing its expected profit regardless of its profit volatility.

2. β = 10: this case corresponds to a risk-averse investor. This investor prefers to
reduce its profit volatility despite the subsequent decrease in its expected profit.

In all cases a confidence level α = 0.95 is considered.
Problem (14.9) is solved using CPLEX 12.2.0.1 [27] under GAMS [28] on a

Linux-based server with four processors clocking at 2.9 GHz and 250 GB of RAM.

14.3.5.2 Results: Uncertainty in Demand Growth

Results corresponding to the scenario data of Fig. 14.2 and Table 14.2 (uncertainty
in demands growth) and for risk-neutral and risk-averse investors are provided in
Table 14.6. The first column provides the value of weighting parameter β . The sec-
ond column indicates the scenarios. The third/fourth and fifth/sixth columns give
the wind power capacity to be built at the beginning of the first/second period at
nodes 2 and 3, respectively.

Note that in this case there are two demand growth scenario realizations in the
first period and two scenario realizations in the second period depending on the sce-
nario realization in the first one. This results in a single investment decision at the
beginning of the planning horizon, which does not depend on any scenario realiza-
tion (i.e., it is a here-and-know investment decision) and two alternative investment
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Table 14.6 Results: uncertainty in demand growth

Case Scenario

Wind power capacity

to be installed [MW]

Node 2 Node 3

Period 1 Period 2 Period 1 Period 2

Risk-neutral
D1

0

0

300

0
D2

(β = 0)
D3

0 0
D4

Risk-averse
D1

0

0

279.7

20.3
D2

(β = 10)
D3

0 0
D4

decisions for the second period, one for scenarios D1 and D2 and other one for sce-
narios D3 and D4 (i.e., they are wait-and-see investment decisions with respect to
the first period and here-and-know with respect to the second one).

Node 3 located in the south zone has better wind power conditions than node
2, located in the north zone. Thus, the wind power investor prefers to build wind
power capacity at node 3 and does not build any wind power capacity at node 2 in
any scenario and time period.

Regarding the differences between the investment decisions of a risk-neutral and
a risk-averse investor, note that the first one builds 300 MW at the beginning of the
planning horizon (which is the maximum wind power capacity that can be installed
at each node for the whole planning horizon) while the risk-averse investor prefers to
build a smaller wind power capacity at the beginning of the first period (279.7 MW)
and wait until the beginning of the second period to decide on further investment:
if the demand in the first period has increased (i.e., scenarios D1 and D2), it builds
20.3 MW that complete the 300 MW capacity; however, if the demand in the first
period has decreased (i.e., scenarios D3 and D4), the wind power investor builds no
additional capacity. This way, the wind power investor reduces its profit volatility.

14.3.5.3 Results: Uncertainty in Investment Cost

Results corresponding to the scenario data of Fig. 14.3 and Table 14.3 (uncertainty
in investment cost) and for risk-neutral and risk-averse investors are provided in
Table 14.7. The first column provides the value of weighting parameter β . The
second column indicates the different scenarios. The third/fourth and fifth/sixth
columns give the wind power capacity to be built at the beginning of the first/second
period at nodes 2 and 3, respectively.
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Table 14.7 Results: uncertainty in investment cost

Case Scenario

Wind power capacity

to be installed [MW]

Node 2 Node 3

Period 1 Period 2 Period 1 Period 2

Risk-neutral
IC1

0

0

267.6

0

(β = 0)
IC2 0 0

IC3 109 32.4

Risk-averse
IC1

0

0

267.6

0

(β = 10)
IC2 0 0

IC3 109 32.4

In this case, there is a single investment decision at the beginning of the first per-
iod and three different investment decisions at the beginning of the second period
depending on the investment cost in the second period with respect to that in the
first one: higher than (scenario IC1), equal to (scenario IC2), or lower than (sce-
nario IC3).

The optimal solution consists of installing 267.6 MW at node 3 at the beginning
of the planning horizon, and then, if the investment cost in the second period has
decreased (i.e., scenario IC3), the wind power investor decides to install 109 and
32.4 MW of additional wind power capacity at nodes 2 and 3, respectively. As in
the case of uncertainty in demand growth, the wind power investor prefers to install
wind power capacity at node 3, which has better wind power conditions than node 2.

In this case, there are no differences between the optimal solutions of the
risk-neutral and the risk-averse investors. This is so because at the time the wind
power investor makes its investment decisions, it knows the actual investment costs.

14.3.5.4 Results: Uncertainty in Both Demand Growth and Investment Cost

Results corresponding to the scenario data of Fig. 14.4 and Table 14.4 (uncertainty
in both demand growth and investment cost) and for risk-neutral and risk-averse
investors are provided in Table 14.8. The first column provides the value of the
weighting parameter β . The second column indicates the different scenarios. The
third/fourth and fifth/sixth columns give the wind power capacity to be built at
the beginning of the first/second period at nodes 2 and 3, respectively.

This case is a combination of the two previous cases since it considers all possible
scenario combinations. The results show that, for the risk-neutral case, the wind
power investor decides to build the whole 300 MW at node 3 at the beginning of
the planning horizon and to build 132.9 and 63.7 MW at node 2 at the beginning of
the second period in scenarios D1+IC3/D2+IC3 and D3+IC3/D4+IC3, respectively.
That is, it only builds wind power capacity at node 2 if the investment cost in the
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Table 14.8 Results: uncertainty in both demand growth and investment cost

Case Scenario

Wind power capacity

to be installed [MW]

Node 2 Node 3

Period 1 Period 2 Period 1 Period 2

D1+IC1

0

0

300

0
D2+IC1

D1+IC2
0 0

D2+IC2

Risk-neutral D1+IC3
132.9 0

D2+IC3

D3+IC1
0 0

(β = 0) D4+IC1

D3+IC2
0 0

D4+IC2

D3+IC3
63.7 0

D4+IC3

D1+IC1

0

0

279.7

20.3
D2+IC1

D1+IC2
0 20.3

D2+IC2

Risk-averse D1+IC3
132.9 20.3

D2+IC3

D3+IC1
0 0

(β = 10) D4+IC1

D3+IC2
0 0

D4+IC2

D3+IC3
63.7 20.3

D4+IC3

second period has decreased with respect to that in period 1. Moreover, the investor
builds higher wind power capacity if the demand in the first period has increased
(i.e., scenarios D1 and D2) than if the demand in the first period has decreased (i.e.,
scenarios D3 and D4).

Regarding risk-averse results, the wind power investor prefers in this case to build
lower wind power capacity at node 3 at the beginning of the planning horizon than
in the risk-neutral case and to wait until it knows the scenario realization in period 1.
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Depending on this scenario realization it decides whether or not to build additional
capacity.

Finally, Fig. 14.6 depicts the efficient frontier in this case. The efficient frontier
shows how the expected profit decreases as the CVaR increases, as a consequence
of changes in the weighting parameter β . Note that as parameter β increases, the
wind power investor reduces its profit. However, it also reduces its profit volatility,
i.e., it increases its CVaR.
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Fig. 14.6 Efficient frontier for the case of uncertainty in both demand growth and investment cost

14.3.5.5 Computational Issues

The computational time required for solving MILP problem (14.9) for the case stud-
ies analyzed in the previous subsections is less than 5 s in all cases. However, if
problem (14.9) is considered for systems of realistic size and a large number of
scenarios are considered as well, it is expected that the computational time drasti-
cally increases due mainly to the number of binary variables required to linearize
the complementarity constraints.

Nevertheless, note that if investment decisions Xn,t (ω), ∀n, ∀t, ∀ω , and auxiliary
variable ζ are fixed to given values, MILP problem (14.9) decomposes by scenario
ω , and Benders’ decomposition can be applied [29] to reduce the computational
burden.
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14.4 Summary and Conclusions

In this chapter we provide a risk-constrained multistage decision-making model
to determine the optimal generation investment in stochastic electricity-production
facilities. This model is a stochastic bi-level problem that incorporates the clear-
ing of a pool-based electricity market in which the investor sells the production of
the newly built capacity. This investor aims at maximizing its expected profit while
minimizing its profit volatility.

The multistage approach allows making investment decisions in different points
in time to adapt to eventual changes in market and investment cost conditions. In this
sense, we consider a planning horizon comprising a number of time periods, each
one spanning a specific number of years. Investment decisions, involving stochastic
capacity to be built in different locations, can be made at the beginning of each of
these time periods.

The risk-constrained approach allows controlling the risk of profit volatility.
To do so, the CVaR metric is used to quantify the risk. A weighting parameter in the
objective function of the problem allows modeling the trade-off between expected
profit and profit volatility and allows obtaining different investment strategies for
different risk levels.

The stochastic approach allows incorporating in the model different sources of
uncertainty though appropriate scenario trees that represent different realizations of
the uncertain parameters.

A study pertaining to wind power investment is presented. In this study, three
sources of uncertainty affect the investment decisions: the demand growth, the wind
power production, and the investment cost.

Finally, from the theoretical modeling and the study carried out, the conclusions
below are in order:

1. A risk-constrained framework is an appropriate approach for investment
decision-making since it allows controlling the risk of profit volatility and gener-
ally prevents the investor to incur losses.

2. A multistage approach is necessary since demand growth and investment cost
are subject to variations in the future and having the possibility of investing in
different points in time is advantageous.

3. The resulting bi-level model can be formulated as an MILP problem, which can
be solved using available branch-and-cut techniques.

4. The model is computationally tractable provided that the size of the system under
study and the number of scenarios are moderate. For large systems and a large
number of scenarios, decomposition techniques can be applied to reduce the
computational burden.
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Part III
Pricing



Chapter 15
Pricing of Energy Contracts: From Replication
Pricing to Swing Options

Raimund M. Kovacevic and Georg Ch. Pflug

Abstract The principle of replication or superhedging is widely used for valuat-
ing financial contracts, in particular, derivatives. In the special situation of energy
markets, this principle is not quite appropriate and might lead to unrealistic high
prices, when complete hedging is not possible, or to unrealistic low prices, when
own production is involved. Therefore we compare it to further valuation strate-
gies: acceptability pricing weakens the requirement of almost sure replication and
indifference pricing accounts for the opportunity costs of producing for a consid-
ered contract. Finally, we describe a game-theoretic approach for valuating flexible
contracts (swing options), which is based on bi-level optimization.

15.1 Introduction

This chapter deals with energy delivery contracts and their fair prices both from the
seller’s and the buyer’s points of view. A contract between two parties determines
the respective obligations of the two contracting sides to deliver or receive energy
and to pay or receive money. Typically a contract is valid for a certain period of
time and both the energy deliveries and the financial compensations are made at
several moments in time. Some energy-related contracts even do not imply deliv-
ery of energy, but only financial transfers, which are however related to observable
prices in the energy markets.

Suppose for simplicity that a contract states that payments and energy deliver-
ies are due at times t = 1,2, . . . ,T . The payments (cash flows) are denoted by Ct

(in currency units). If both parties transfer money to the other one at the same
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time, only the net amount is recorded. By convention, a positive value Ct indicates
a money inflow to the contract seller. One contract may involve several forms of
energy j ∈ J = {0, . . . ,J}, such as electricity, oil, gas, and coal. To avoid unit
conversions as much as possible amounts of energy sources are measured by their
energy content (in MWh). Energy of type j delivered in period t (in the time span
(t, t + 1]) is denoted by Dt, j . We agree that positive amounts Dt, j refer to energy
inflows, while negative amounts refer to outflows. If the contract involves only one
type of energy we will just write Dt .

Both quantities Ct and Dt may be unknown at the time of contracting and may
depend on information which is only available at the respective time of settlement
(e.g., actual market prices). However, the amounts must be determinable by this
information. A clause like “The buyer pays 1,000, if there is no extraterrestrial life”
is void, because the validity of the condition it is not determinable. Conditions which
are determinable but not known at the time of contracting are modeled as random
variables.

Pricing principles determine a reasonable price to be offered to the buyer.
The basic pricing principle is known as replication pricing: the buyer will not accept
the price for the contract, if the market offers an alternative possibility, for which
the upfront payment is lower and the cash flows or commodity flows are not smaller
than the ones contracted. Thus the maximal offered price can be determined by an
optimization problem, which is called the replication problem.

The alternative trading/hedging/production strategy belonging to the replication
price is called replication strategy, if it produces exactly the same cash or commod-
ity flows as the contract under consideration. If it produces larger flows, it is called
a superreplication strategy. These types of strategies are riskless for the seller: fol-
lowing this strategy, the seller can under no circumstances make losses since the
(super)replication must hold with probability 1. This is however a very strong req-
uirement. Quite often, replication strategies do not exist and the superreplication
leads to unrealistically high prices, which no buyer would accept. If there are con-
tracts for which replication strategies do not exist in the market, the market is called
incomplete. Electricity markets are typically incomplete, since replication strategies
must use contracts offered on the wholesale market and these few types of contracts
are quite simple compared to the possible variety of demand patterns.

As an example, consider a contract for energy delivery of amounts given by
Fig. 15.1, upper graph. The lower graph shows possible hedging contracts. Any non-
negative linear combination of them qualifies as a replication strategy, but none of
them replicates the demand shown in the upper graph.

In incomplete markets, replication pricing is not appropriate: if the seller wants
to conclude a contract, he/she has to accept a certain risk. The acceptance pricing
rule accounts for that the acceptance price is the minimal upfront payment, which
makes the risk of this contract acceptable (but typically not riskless) for the seller.
To quantify the notion of acceptable risk, measures of risk are introduced. Again
this rule leads to an optimization problem: the minimal upfront payment has to be
found under the constraint that the risk value lies below a certain prespecified value.
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Fig. 15.1 Above: a demand profile of an energy buyer for the 168 h of a week. Below: the exchange
market does only offer specific profiles, the base profile (dotted), the peak profile (dash-dotted),
and the Vattenfall GH0 profile (solid)

The acceptance price takes the risk aversion of the seller into account, however
does not depend on his/her actual risk exposure. A fine-tailored pricing instrument
would take the risk portfolio of the seller into account and would make the contract
acceptable only if the total risk exposure of the existing portfolio of contracts aug-
mented by the new contract is acceptable. Notice that this pricing principle depends
on the full knowledge of the existing portfolio of resources and contracts, which is
not always available. Notice that the same contract may be acceptable for seller A
but not acceptable for seller B. Consider for instance the situation when seller A
has a lot of baseline energy available, but his contract portfolio is much biased ver-
sus peak demand. He would accept a contract which requires delivery in the night
hours. On the other hand, if seller B has mostly solar energy to offer, then a con-
tract which delivers at night time risks to require expensive purchases from the spot
market and is not advantageous for seller B. The indifference pricing rule compares
the risk of the existing resource and contract portfolio with the portfolio augmented
with the new contract. The indifference price is the lowest price such that the risk of
the augmented portfolio is not larger than the risk of the actual portfolio.

The three pricing principles (replication, acceptance, indifference) are applicable
for rigid contracts, for which all conditions are fixed at contracting time 0. While
amounts and prices may depend on future parameters and are considered as random
variables at time 0, their way of calculation cannot be changed later by the con-
tract parties. In contrast, flexible contracts allow the specification of demands by the
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buyer at later times. Whenever a contract party has the right to exercise the contract
in his discretion, this fact has to be taken into account in the price modeling pro-
cess. While the ask price of rigid contracts are determined by a regular optimization
problem (as described above), the pricing of flexible contracts requires the solu-
tion of a bi-level problem. A bi-level problem consists of two coupled optimization
problems: an upper-level and a lower-level problem. The lower level describes the
optimal reaction of the contract buyer to the price asked by the seller. The seller has
to anticipate the reaction of the buyer when calculating the best ask price. Given
this reaction, the seller may find the price according to one of the three principles:
replication, acceptance, and indifference.

We summarize the mentioned approaches in the following overview:

(1) (Super)replication is based on the nonexistence of a better investment strategy
for all scenarios.

(2) Acceptance pricing is based on the nonexistence of a better investment strategy
with an acceptable risk. Superreplication is the special case if only zero risk is
acceptable.

(3) Indifference pricing considers the actual risk exposure of the seller and accepts
only if the additional contract does not increase the risk exposure. It requires
to consider and model the full portfolio of all existing contracts and goes far
beyond case (2) as there only the contract under consideration has to be consid-
ered.

(4) For the pricing of flexible contracts the anticipated behavior of the counterparty
is taken into account when the price is calculated.

In principle, also the pricing for flexible contracts may be based on (1) repli-
cation, (2) acceptance, or (3) indifference. The superreplication principle is quite
unrealistic since it is practically impossible to hedge the risk away simultaneously
for all reactions of the buyer. We will concentrate on the acceptance principle and
the related model structure for flexible contracts in this chapter. However, indiffer-
ence pricing for flexible contracts can be easily introduced along the lines of the
general indifference pricing approach, analyzed in Sect. 15.4.3.

The chapter is organized as follows: in Sect. 15.2 the concept of replication
for financial contracts is presented. This concept is adapted to energy contracts in
Sect. 15.3. Section 15.4 deals with the more general notion of acceptance pricing
and the next Sect. 15.4.3 with the even more powerful notion of indifference pric-
ing. Finally, bi-level acceptance pricing for electricity swing options is presented in
Sect. 15.5.

15.2 Replication Pricing of Financial Contracts

As a starting point, we consider financial contracts, which generate for the con-
tract holder a discrete-time sequence of random cash flows (c1, . . . ,cT ). Unlike for
energy contracts, these cash flows are payments from the contract seller to the con-
tract holder (think of the purchase of a share, which requires the initial payment by
the buyer but gives him later the benefits of cash flows ct as dividend payments).



15 Pricing of Energy Contracts 391

Later, in the context of energy contracts, we set Ct = −ct . We assume that the cash
flows are—if necessary—already discounted to the present day by an appropriate
discounting scheme [e.g., using a deterministic or stochastic interest rate process
(Rt)]. We further assume that the cash-flow process (ct) is adapted to a filtration
F= (F0,F1, . . . ,FT−1), which models the information available at the respective
time t.

At time zero money flows only from the buyer to the seller, as the price of the
contract is payable at the beginning. From the contract buyer’s side, the cash-flow
structure is the same, but the signs are opposite. The main questions in contract
pricing are what is the maximal price, which is acceptable for the buyer, and what is
the minimal price which is acceptable for the seller and are these prices the same?

To answer these questions, alternative investments have to be taken into account:
suppose that m+ 1 investment possibilities are given by a stochastic column price
vector St = (St,0, . . . ,St,m)

� (where St,0 relates to the riskless investment), adapted to
the filtration F. Typically F will be modeled as the filtration generated by the price
process St .

Within our setup a hedging strategy is a nonanticipative row vector process
x = (x0, . . . ,xT−1) on R

m+1, where xt = (xt,0, . . . ,xt,m) denotes the holdings of the
m+ 1 investment possibilities during the time interval [t, t + 1]. Nonanticipativity
means that also the decision process x is adapted to the filtration F. While we prefer
intervals with length 1 for notational simplicity, it is easily possible to extend the
notation to include periods with different lengths.

With initial capital w and a trading strategy x, let Y w,x
t be the wealth at time t

resulting from this strategy. To be more precise, let Y w,x
t− be the wealth just before

time t. At time t the portfolio may be restructured and Y w,x
t denotes the wealth just

after these transactions are made.

15.2.1 The Upper Price

Given investment opportunities as above, a market price π for a contract is accept-
able for the buyer only if there is no better investment for the same or a lower
price, i.e., there is no initial payment w and trading strategy x, such that w < π and
Y w,x

t− −Y w,x
t ≥ ct (the cash flows can be paid) for all t and Y w,x

T ≥ 0 (the terminal
wealth is nonnegative).

The upper price πu is the highest price a potential buyer is willing to pay for the
contract with the given cash-flow structure ct . It is given as the minimal value of the
following optimization problem:

∥∥∥∥∥∥∥∥∥∥∥∥∥

Minimize (in x and w): w
subject to

Y w,x
0 = w,

Y w,x
t− −Y w,x

t ≥ ct t = 1, . . . ,T,
Y w,x

T ≥ 0,
xt is nonanticipative.

(15.1)
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Notice that in case that the minimal value in (15.1) is attained by a trading
strategy x, then the contract seller may execute this strategy to completely hedge
the risk away. He/she would take the price w to invest in such a way that the cash-
flows ct are covered by the earnings of the invested portfolio and the final financial
position is nonnegative, i.e., at the end the seller is free of debts out of this contract.
The optimal x = (x0, . . . ,xT−1) in (15.1) describes the superreplication strategy.

15.2.2 The Lower Price

The seller receives an initial amount w and has to pay the cash flows ct at later times.
The price π of the contract is acceptable for the seller only if there is no alternative
strategy, which receives more at the beginning and has lower liabilities later, i.e.,
there is no initial liability w and a strategy x, such that w > π and Y w,x

t− −Y w,x
t ≤ ct

a.s., where Y w,x
t denotes now the liability process. At the end of the trading period,

the liabilities Y w,x
T must be nonpositive.1 That is, the lower price π� of this contract

is the maximal value of the following optimization problem for liabilities Y w,x
t :

∥∥∥∥∥∥∥∥∥∥∥∥∥

Maximize (in x and w): w
subject to

Y w,x
0 ≥ w,

Y w,x
t− −Y w,x

t ≤ ct t = 1, . . . ,T − 1,
Y w,x

T ≤ 0,
xt is nonanticipative.

(15.2)

We call a strategy x which is feasible for this problem a subreplication strategy.
All prices greater than π� are in principle acceptable for the seller, although he/she
would prefer to get the upper price πu.

15.2.3 The Linear Setup

In the simplest case with proportional transaction costs and volume-independent
prices, the determination of the upper and lower prices amounts to solving a linear
(stochastic) program.

If the transaction costs are neglected, the upper price πu can be calculated by the
following linear program2:

1 Negative liabilities are profits.
2 We denote by x ·S the inner product of the vectors x and S.



15 Pricing of Energy Contracts 393

∥∥∥∥∥∥∥∥∥∥∥∥∥

Minimize (in x and w): w
subject to

x0 S0−w≤ 0,
xt−1 St ≥ xt St + ct t = 1, . . . ,T,
xT−1 ST ≥ 0,
xt is nonanticipative.

(15.3)

In similar manner it is possible to formulate the lower price problem as a linear
program: ∥∥∥∥∥∥∥∥∥∥∥∥∥

Maximize (in x and w): w
subject to

x0 S0−w≥ 0,
xt−1 St ≤ xt St + ct t = 1, . . . ,T,
xT ST ≤ 0,
xt is nonanticipative.

(15.4)

Dualization of these linear programs then entails the following well-known
result: let c̃t = ct/St,0 and S̃t = St/St,0, where St,0 denotes the price of the riskless
investment. Then

πu = max{
T

∑
t=1

EQ(c̃t) : (S̃t) is a martingale under Q }, (15.5)

π� = min{
T

∑
t=1

EQ(c̃t) : (S̃t) is a martingale under Q }. (15.6)

Here EQ is the expectation w.r.t. the probability measure Q. The upper and the
lower price are equal if there is a unique martingale measure Q. In this (rather exc-
eptional) case Q is called the risk neutral measure and πu = π� for all contracts.
If there are several martingale measures, then the model is called an incomplete
market model. In incomplete markets, typically π� < πu and we speak of an ask-bid
interval. If the price is within the interval [π�,πu], then it is acceptable for both par-
ties and none of them may have an arbitrage opportunity.3 However, even in incom-
plete markets, there may be contracts for which the inequalities in (15.1) and (15.2)
are satisfied as equalities, meaning that the cash-flow ct can be completely repli-
cated and the optimal superreplication and subreplication strategies coincide. In this
case π� = πu even in incomplete markets.

On the other hand, for unbounded processes St , it may happen that πu = ∞
[infeasibility in (15.1)] and/or that π� = −∞ [infeasibility in (15.2)]. It is unreal-
istic to assume that the buyer will pay any arbitrary price if πu =∞. To the contrary,
he/she will not conclude the contract at all. That is why we consider acceptance
pricing as a realistic alternative.

3 The ask-bid interval has to be clearly distinguished to the bid-ask spread (bid-price < ask-price)
appearing in stock exchanges, when no deal can be made.
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Transaction costs lead to an increased ask-bid interval. Furthermore, non-
proportional transaction costs result in nonlinear and/or integer programs to be
solved for pricing. For a comprehensive overview of convex models see, e.g., [16].
If the hedging process is nonconvex, a duality gap may occur and the notion of
martingale measure makes no sense.

15.3 Replication for Energy Contracts

So far we have considered the valuation of pure financial contracts, which leads to
classical results of derivative pricing. In the context of energy risk management we
have to extend the analysis to deal with energy-related commodities in the following.
There is a fundamental difference between pricing in financial markets and pricing
in energy markets: while in financial markets the set of feasible trading strategies is
considered to be the same for the seller and for the buyer, it is different in energy
markets. The seller has a much larger spectrum of possible actions; he/she may
use his/her own energy production, buy energy futures, and trade on the wholesale
markets; and the buyer typically has no access to these possibilities, maybe for the
exception of access to the spot markets. For this reason, the seller may determine
the upper price by including all his/her assets in a replication model and may offer
this price to the buyer.

15.3.1 Scope and Basic Model Setup

A key difference between financial and commodity derivatives results from the crit-
ical role of physical quantities and physical restrictions for the latter. The number
of basic financial securities on which derivatives are written (i.e., the market capi-
talization, number of shares, etc.) is fixed. It is not necessary to produce securities
and the market participants can hold arbitrary amounts without physical restrictions
at negligible costs. It is also possible to go short in securities to a huge extent. Fur-
thermore constraints on traded amounts and on the speed of trading are almost not
existent.

Some energy-related contracts (usually futures) are settled financially and can
therefore be viewed as financial contracts. However the picture is completely dif-
ferent for the physical commodities: they are produced and transported, and storage
is costly and restricted. In particular negative storage is not possible. Commodities
like electricity cannot even be stored. Therefore the usual relation between direct
and future financial contracts is in general not valid for commodities and valuation
concepts from finance cannot be applied to over-the-counter (OTC) contracts, which
are settled physically.

Nevertheless, also for energy contracts we may seek for the smallest amount of
cash necessary, at time zero to finance all feasible actions, in particular both physical
and financial contractual cash flows. However, but the model has to be extended to
capture all peculiarities of energy markets.
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In the extended model it is possible to invest in different forms of energies: let
J = {0, . . . ,J} denote the set of available energy commodities, e.g., gas, heating
oil, and electricity, measured by their energy content (MWh). The related spot prices
are Se

t, j ∈R
J+1, and xe

t, j denotes the stored amount of the jth commodities at time t.
Throughout this paper the index j = 0 is reserved for (physical) electricity delivered
at time t.

With minimum storage level zero and maximum levels x̄e = (x̄e
0, . . . , x̄

e
J) ≥ 0 we

have to consider constraints
0≤ xe

t ≤ x̄e. (15.7)

For electricity no storage is available and we have x̄e
t,0 = 0. We assume proportional

storage costs ζ e
j for each storage j.

Moreover, ye
t = (ye

t,0, . . . ,yt,J) denotes the amounts of energy bought (ye
t, j ≥ 0)

or sold (ye
t, j ≤ 0) at prices Se

t, j at time t, and matrices Ze
t with elements ze

t,i j model
the amount of energy i used to produce energy j during period (t, t + 1]. Energy
conversion leads to variable operating costs, which we assume to be proportional
to input energy. The cost factors can be time dependent and are denoted by γt,i j

(currency unit per MWh).
Related to the conversion from energy i to energy j are efficiencies ηi j. In this

way it is, e.g., possible to model electricity production from different fuels. Con-
version between different forms of energy is restricted by lower and upper bounds
zt , z̄t , i.e.,

0≤ zt,i j ≤ ze
t,i j ≤ z̄t,i j , (15.8)

which reflects physical constraints on production. On the other hand, trading of
energy is not restricted in the basic superhedging setup.

For certain energy sources (e.g., stored water in a certain reservoir) one may
also consider random inflows, denoted by dt, j ≥ 0. Further inflows can result from
intermittent electricity production by renewable sources like wind or solar power.

Note that in this framework it is also possible to model energy-related contracts
with physical delivery, if the lower and upper bounds for conversion and the related
conversion costs are modeled time dependent or depending on other variables of the
system. As an example consider an electricity future j: conversion between elec-
tricity deliverable by the future contract and actual electricity happens during the
delivery period. The related conversion factors are described by η j0 = 1. For the
seller of the delivery contract we have during delivery z̄t = zt = −xt, j/nt , where
nt is the number of remaining exercise dates. Outside the delivery period we have
z̄t = zt = 0. Finally, the delivery price is modeled by using the operating cost factors
γt, j0.

In addition to forms of energy and physically settled contracts we use a cash pos-
ition xt,0 with an interest yield of r f > 0 and include financial assets and contracts

I = {1, . . . , I} with prices S f
t,i, paying cash flows C f

t,i at time t. While typical finan-
cial assets are not in the focus for pure energy-related valuation problems, energy
derivatives with financial settlement can be modeled in this way. As an example,
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an electricity future contract i for fuel j with strike price Ki pays Se
t, j −Ki during

delivery. Holdings of financial contracts are denoted by x f
t,i and are not restricted; in

particular there are no shortselling constraints.
In the extended model we use physical and financial contracts to hedge an OTC

contract that is defined by cash flows Ct and physical flows of energy Bt , with Bt, j

denoting the flow of energy j at time t in MWh. Inflows are reflected by positive
and outflows by negative values. Both Ct and Dt can be random and can depend on
other variables of the system.

For a simple delivery contract, Dt (delivery of one commodity) and Ct are con-
stant during the whole time of delivery. A swap contract for different forms of en-
ergy i, j can be modeled by setting Dt,i ≥ 0 and Dt, j ≤ 0.

Table 15.1 gives an overview of the possible conversions within the proposed
framework.

Table 15.1 Possible conversions, including cash

1. 2. 3. 4. 5. 6. 7.

1. Cash x x x x x
2. Energy commodities x x x
3. Phys. en. contracts x x
4. (Stored water) x
5. Electricity x x
6. Phys. el. contracts x x
7. Financial contracts x

15.3.2 Formulation of the Extended Valuation Model

Using the outlined notation we can now formally describe the financial sellers’ prob-
lem to energy markets. We do not consider transaction costs on energy related and
financial markets. Hence it is possible to give an LP formulation.

Stored energy starts with an initial storage x0. In the subsequent periods storages
are changed by buying and selling energy, by conversion between energy forms
and contractual deliveries of the physical contracts in the portfolio and of the OTC
contract under consideration. For all energy contracts except electricity ( j �= 0) we
formulate this as

xe
0, j ≤ x0 + ye

0, j + d0, j (15.9)

and

xe
t, j ≤ xe

t−1, j + ye
t, j +

J

∑
i=0

ηi jz
e
t−1,i j−

J

∑
i=1

zt−1, ji + dt, j +Dt, j. (15.10)

Note that the index in the first sum begins at i = 0. This allows for pumping, if
energy j refers to water, stored in a reservoir.
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Optimization will lead to boundary solutions in (15.9) and (15.10). For electricity
(which is not storable) we require

0 = ye
0,0 + d0,0 (15.11)

0 = ye
t,0 +

J

∑
i=1

ηi0ze
t−1,i0 + dt,0 +Dt,0. (15.12)

Note that (15.9)–(15.12) refer to the point in time immediately before the
next production period [t, t + 1) begins and recall that storage is also constrained
by (15.8), which models physical restrictions as well as contractual limits for phys-
ical contracts.

In a model with discrete time, only energy stored at the beginning of a period
can be used for conversion during the period. Therefore we introduce the following
constraints:

J

∑
j=1

ze
t,i j ≤ xe

t,i. (15.13)

The cash account is x f
t,0. Cash is considered after buying and selling energy and

settling all types of contract but before actually converting between energies. Hence
with an initial amount w of cash just before the transactions at time zero to be effec-
tuated, x f

0,0 must fulfill

x f
0,0 ≤ w−

J

∑
j=0

Se
0, jy

e
0, j−

I

∑
i=0

S f
0,ix

f
0,i. (15.14)

In the subsequent periods t > 0 the cash position accumulates gains and subtracts
costs from buying and selling energy and financial contracts and the cash flows from
the OTC contract under consideration. Furthermore, it has to account for interest on
cash, costs for energy conversion, storage costs, and all cash flows from financial
contracts. This results in

x f
t,0 ≤ (1+ r f )x

f
t−1,0 (15.15)

−
J

∑
j=0

Se
t, jy

e
t, j−

I

∑
i=1

S f
t,i(x

f
t,i− x f

t−1,i)+
I

∑
i=1

C f
t,i +Ct

−
J

∑
i=0

J

∑
j=0

γt,i jzt,i j

−
J

∑
j=1

ζ j
(xe

t, j + xe
t−1, j)

2
.

Note that we do not use a nonnegativity constraint on the cash position, that is,
borrowing money is allowed.
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Finally the inequality

x f
T,0 +

J

∑
j=1

Se
T, jx

e
t, j +

I

∑
i=1

S f
T,ix

f
T,i ≥ 0 (15.16)

ensures that we search for the smallest initial payment w and a related hedging
strategy, such that the asset value—consisting of the final cash position x f

T,0 and all
physical and financial contracts—is nonnegative after handling the OTC contract
under consideration.

Based on the previous considerations and using the hedging approach, the valu-
ation problem can be formulated as the following optimization problem:

∥∥∥∥∥∥∥∥∥

Minimize (in xe, x f , y, z and w): w
subject to

constraints (15.7)–(15.16),

xe
t ,x

f
t ,yt ,zt are nonanticipative.

(15.17)

In principle, both the seller’s and the buyer’s hedging problem have the same
form (15.17). However, the typical situation in energy markets, the buyer’s set of
possibilities in producing, trading, or hedging is usually restricted. Thus a natural
asymmetry between the contracting partners occurs.

Another key difference lies in the fact that the streams Ct and Dt have different
signs for the two participants, e.g., for a simple delivery contract for one commodity,
the physical flow Dt is negative for the seller and positive for the buyer, while the
opposite holds for the cash flow Ct . Hence even if the buyer would have access
to all types of financial and commodity contracts, there is still another source of
asymmetry: it is impossible to just change the signs of the flows of commodities
to get the picture of the other contractor: usually efficiencies are not symmetric,
i.e., ηi j �= η ji. Consider e.g., the production of electricity: for pumped turbines it is
possible to use electricity for storing it in higher reservoirs, but with low efficiency,
compared to the efficiency of producing electricity from stored water. As an extreme
example of asymmetry it is not possible to produce fuel from electricity delivered by
a contract, while fuel clearly can be used to produce electricity with some positive
efficiency. Moreover, by the existence of bounds in production the problem does not
scalarize.

15.4 Acceptability Replaces Non-replicability

Clearly, the principle of (super)replication is one of the cornerstones of modern
finance. On the other hand it might be too strong under some circumstances. As was
already said, it may lead to very large (even infinite) upper prices in incomplete
markets.
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This is especially true in the case of electricity markets: generating companies
have the equipment to buy, store, and use fuel to generate electricity in order to
satisfy even very complicated contractual terms. Physical constraints are present
but only mildly affect the ability to hedge the flows related to the contract. On the
other hand other market participants do not own the same equipment. Pure traders
have access to electricity exchanges or pools, and hence to the full spectrum of
financially settled contracts, but are not able to produce electricity. End consumers
do not even have access to exchange markets. While contractual energy flows can
be very complicated for OTC contracts, electricity is not storable and there are only
very few instruments (i.e., contracts such as base and peak futures) available to
partially hedge a specific contract. So even for a trader with access to an electricity
exchange, hedging is difficult and will in general work only approximately—there
will always remain residual electricity flows that have to be settled by buying spot
electricity without protection from future contracts.

For these reasons we analyze the pricing problem by the notion of acceptability:
it is wanted that the difference between the optimal hedge and the cash-flow pro-
cess is acceptable for the seller, which—in the most basic formulation—means that
inequality (15.16) is replaced by

A (CT +
J

∑
j=1

Se
T, jx

e
t, j +

I

∑
i=1

S f
T,ix

f
T,i)≥ 0, (16′)

where A is an acceptability functional (see below). In this way, unfavorable sce-
narios are not avoided completely at the end. Instead, the loss distribution is res-
tricted by the acceptability functional, such that only unfavorable outcomes with
small probability are acceptable.

The resulting optimization problem for acceptability pricing is a modification
of (15.17) and can be written as

∥∥∥∥∥∥∥∥∥∥∥

Minimize (in xe,x f ,y,z and w): w
subject to
constraints (15.7)–(15.15),

A (CT +∑J
j=1 Se

T, jx
e
t, j +∑I

i=1 S f
T,ix

f
T,i)≥ 0,

xe
t ,x

f
t ,yt ,zt are nonanticipative.

(18)

15.4.1 Acceptability Functionals

A probability functional is an extended real-valued function defined on some ran-
dom space or on a suitable subset of a random space. Examples are well-known
functionals like the expectation, the median, value-at-risk, average (or “condi-
tional”) value-at-risk, and variance. If the value of a probability functional depends
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only on the distribution of the random variable under consideration, it is called
version independent. If a functional is interpreted in the sense that higher values
are preferable to lower values, we call it an acceptability-type functional.

Acceptability functionals are probability functionals A , defined on a linear Y
space of random variables on (Ω ,F ,P), such that the following properties are true
for all X ,Y ∈ Y :

(A1) Concavity. A (λ ·X +(1−λ ) ·Y) ≥ λ ·A (X)+ (1− λ ) ·A (Y ) holds for
λ ∈ [0,1].

(A2) Monotonicity. X ≤ Y a.s.⇒A (X)≤A (Y ).

Often (see, e.g., [17]), acceptability functionals are defined by including the
translation equivariance property:

(A3) Translation equivariance. A (Y + c) = A (Y )+ c holds for all constants c.

An acceptability functional is called positively homogeneous, if it satisfies the
condition A (λY ) = λ ·A (Y ) for all λ ≥ 0. It is called strict, if A (Y )≤E(Y ) holds.
Recall that for an acceptability functional A and a random loss Y the valuation
−A (−Y ) is a coherent risk measure in the sense of [1].

Throughout this paper we will consider only acceptability functionals with
A (0) = 0. If necessary, this can be achieved easily by relocating the functional.
Under rather mild conditions (upper semicontinuity) an acceptability functional At

has a dual representation

A (Y ) = inf{E(Y Z)−A +(Z) : Z ∈ Y ∗},

where Z is an element of the dual space Y ∗ and A + is the concave conjugate
(in the sense of Fenchel–Moreau–Rockafellar, see [20]) of the functional A . If the
functional is positively homogeneous, then the dual representation simplifies to

A (Y ) = inf{E(Y Z) : Z ∈Z }, (19)

where Z is a convex subset of Y ∗.
An important, but simple, example for a positively homogeneous acceptability

functional is the average value-at-risk. For a random variable Y with distribution
function GY it is defined by AV@Rα(Y ) = 1

α
∫ α

0 G−1
Y (u)du and is also known as

conditional value-at-risk or tail value-at-risk. Its conjugate representation is given
as follows [see [17], Theorem 2.34 (ii)]:

AV@Rα(Y ) = inf

{
E(Y ·Z) : E(Z) = 1, 0≤ Z ≤ 1

α

}
. (20)

In our examples we will use the average value-at-risk, because it is closely related
to the notion of value-at-risk, the most important risk measure in practice. The value-
at-risk of a random variable X at confidence level 0 ≤ α ≤ 1 is basically defined
as the value-at-risk of the related distribution (see, e.g., [14]), which is given by
V@Rα(Y ) = inf{v : P{Y ≤ v} ≥ α}.
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Fig. 15.2 Acceptability pricing: delivery pattern Dt over the 52 weeks of a year

Using the value-at-risk in (16′) is called quantile hedging/pricing; see, e.g., [8].
In this case V@Rα(Y ) ≥ q is equivalent to P{Y < q} ≤ α . V@R is monotone,
but unfortunately the mapping Y �→ V@Rα(Y ) is not convex and nonsmooth. This
makes the usage of constraint (16′) in an optimization problem very difficult.

On the other hand AV@R is an acceptability functional and is a concave mino-
rant of the V@R. As an alternative to using quantiles or acceptability functionals,
one may also consider utility functions U and accept a contract, if E[U(Y )] ≥ q.
However, the price will then depend on the choice of the entire utility function
while in quantile pricing only two parameters, the threshold q and the confidence
level 1−α , have to be set by the management.

The following example illustrates acceptability pricing, using the average
value-at-risk.

Example 1. We consider a planning horizon of 1 year (52 weeks). Electricity spot
prices are modeled by geometric Brownian motion with jumps (GBMJ), estimated
from EEX Phelix hourly electricity prices (hourly, 09/2008–12/2011, Bloomberg).
The pricing model was reformulated and solved on a stochastic tree, generated from
the GBMJ model.

The hedging opportunities are represented by four future contracts, related to the
quarters of the year, i.e., each of the futures delivers a constant amount of electric
energy during one of the quarters. The delivery pattern of the contract to be valued
is shown in Fig. 15.2.

Using problem (18) the acceptability price is calculated for a pure trader mean-
ing that only wholesale base quarter future contracts can be used for hedging for
different values of the AV@R-parameter α , shown in Fig. 15.3. The related optimal
hedging strategies can be seen in Fig. 15.4. Finally, Fig. 15.5 shows the density of
the optimized distribution of profits and the value-at-risk at level α = 0.1.
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Fig. 15.3 Acceptability pricing: the price of 1 MWh as a function of the acceptance level α

0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.5

1

1.5

2

2.5

Fig. 15.4 Acceptability pricing: optimal hedges as a function of the acceptance level α

15.4.2 Acceptability Pricing for Financial Contracts

For purely financial contracts, the acceptability upper pricing problem can be inves-
tigated in more detail: it is the following variant of the replication problem (15.1).
The upper price πu is the minimal value of

∥∥∥∥∥∥∥∥∥∥∥∥∥

Minimize (in x and w): w
subject to

Y w,x
0 = w,

Y w,x
t− −Y w,x

t ≥ ct t = 1, . . . ,T,
A (Y w,x

T )≥ 0,
xt is nonanticipative,

(21)
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Fig. 15.5 Acceptability pricing: density of the profit variable

which takes the following form in the linear setup:
∥∥∥∥∥∥∥∥∥∥∥

Minimize (in x and w): w
subject to

x0 S0 ≤ 0,
xt−1 St− xt St − ct ≥ 0;t = 1, . . . ,T,
AT (xT ST )≥ 0.

(22)

If the functional A is given by representation (19), then problem (22) has a dual
given by ∥∥∥∥∥∥∥∥∥∥∥

Maximize (in Zt ) ∑T
t=1E(ct Zt)

subject to
E(St+1Zt+1|Ft) = ZtSt ,

Zt ≥ 0; t = 1, . . . ,T − 1,
ZT ∈Z .

(23)

The latter problem can be reformulated in an analogous way as in (15.5): Let c̃t =
ct/St,0 and S̃t = St/St,0, where St,0 is the riskless investment. Then the acceptability
upper price πu is given by

max{
T

∑
t=1

EQ(c̃t) : (S̃t) is an (equivalent) martingale under Q s. t. dQ
dP ∈Z }. (24)

Similarly, the lower price π� is

min{
T

∑
t=1

EQ(c̃t) : (S̃t) is an (equivalent) martingale under Q s. t. dQ
dP ∈Z }. (25)

Denote by πu(Z ) the upper price in dependency of the considered acceptability
functional A with dual set Z . Notice that

Z1 ⊆Z2 implies that πu(Z1)≤ πu(Z2).
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The largest price is gotten when full (super)replication is required, meaning that Z
must be equal to all nonnegative random variables, compare (15.5). A smaller and
more realistic price is obtained, if the acceptability functional is, e.g., the average
value-at-riskAV@Rα , with Z = {Z : 0≤ Z≤ 1

α }. The smallest price is given by the
choice Z = {1}, which corresponds to the acceptability requirement E(Y w,x

T )≥ 0.
This simple pricing rule is related to the concept of expected net present value
(ENPV) of a contract and can be seen as the absolute minimum price for avoid-
ing bankruptcy. However no seller will be willing to contract on this basis.

15.4.3 From Acceptability Pricing to Indifference Pricing

Acceptability pricing allows a meaningful valuation of contracts, even if full repli-
cation of the related flows is not possible or too expensive. However there is ano-
ther difficulty remaining: the equipment of, e.g., a producer of electricity is never
dedicated just to the production of the OTC contract under consideration. From
the standpoint of production, delivering new contractual cash and energy flows is
always an addendum to previously planned decisions. This means that the value of
a contract should be valuated relative to the optimal management of all the other
contracts which are already in the portfolio of the seller.

This idea leads to the notion of indifference pricing: the indifference principle
states that the seller of a product compares his optimal decisions with and without
the contract and then requests a price such that he is at least not worse off when
closing the contract. This idea goes back to insurance mathematics (see [4]) but has
been used for pricing a wide diversity of financial contracts in recent years, e.g., [5]
for an overview.

In order to model the indifference price approach, assume that the total energy
deliveries of the actual portfolio are Dold

t and the total cash flows out of this port-
folio are Cold

t . These cash flows must include also the upfront payments at time
0. The additional contract, for which a price is not yet determined, is given by Dt

respectively Ct . Indifference pricing happens in two steps:

• Determination of the acceptability of the actual portfolio. To this end, the follow-
ing problem is solved:

∥∥∥∥∥∥∥∥∥

Maximize (in x,y,z and w): A (Cold
T +∑J

j=1 Se
T, jx

e
t, j +∑I

i=1 S f
T,ix

f
T,i)

subject to
constraints (15.7)–(15.16),
xt ,yt ,zt are nonanticipative.

(26)

Here the equations are based on Dold
t respectively Cold

t . The optimal value of this
optimization problem, that is, the acceptability level of the actual (old) portfolio,
is denoted by a0.
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• Determination of the indifference price of the additional contract. Let the new
total deliveries be Dnew

t = Dold
t +Dt and the new cash flows (without the upf-

ront payment for the additional contract) be Cnew
t = Cold

t +Ct . The price of the
additional contract is denoted by x0,0. It is determined by the following problem:

∥∥∥∥∥∥∥∥∥∥∥

Minimize (in x,y,z and w): w
subject to

A (Cnew
T +∑J

j=1 Se
T, jx

e
t, j +∑I

i=1 S f
T,ix

f
T,i)≥ a0

and constraints (15.7)–(15.15),
xt ,yt ,zt are nonanticipative.

(27)

Of course, here the equations are based on Dnew
t respectively Cnew

t .

The following example compares indifference pricing with acceptability pricing
for a simple setup with one thermal generation unit and a fixed delivery contract to
be valuated.

Example 2. We consider an electricity producer, who has available a single com-
bined cycle plant that is able to use both oil and gas. The machine has maxi-
mum power production of 410 MW and efficiencies of 0.575 (gas) and 0.57 (oil).
Both fuels can be stored up to some amount (1.5 · 106 MWh) at storage costs 0.2
Euro/MWh/h. We do not consider future contracts in this setup; hence hedging is
possible only by buying fuel at appropriate points in time. Again we use electricity
prices and weekly decision periods as described in Example 1. Gas prices are esti-
mated (following [12]) by GBMJ from GPL spot prices (hourly, 04/2007–12/2011,
Bloomberg) and oil spot prices for Brent Crude prices (daily, 05/2003–12/2011,
Bloomberg).

We valuate a simple delivery contract, which binds the producer to supply a fixed
amount of energy, the contract size in MWh, during each stage of the planning
problem. The producer is free to buy and store fuel and to produce electric energy
for the contract and also for selling it at the spot market. The value of the contract per
MWh contains variable operating costs. From this we calculate a contract value per
MWh that also includes an amount of coverage for fixed cost, which is proportional
to the mean workload of the production unit during the planning horizon.

Within this setup we compare the superhedging approach to indifference pricing.
Superhedging is possible for a producer, if the contract size does not exceed the
capacity of the combined cycle turbine. For indifference pricing, we use the average
value-at-risk at level α = 0.05 as the related acceptability functional.

See Fig. 15.6 for the main results. As described above, superhedging leads to
contractual deliveries, but does not account for alternative usages of the machine,
whereas indifference pricing does. This is the reason why the superhedging price
might be considered as too low in this case. Superhedging and indifference pricing
also show different amounts of fixed cost, because the related strategies use non-
contractual electricity production at different levels.
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15.5 Flexible Contracts: Swing Option Pricing

Electricity swing options give their buyers the right to obtain electricity at a fixed
price K per MWh during some delivery period. The price is set by the seller at
contract formation, while the actual purchase quantities can be chosen (within some
contractual range) by the buyer during the whole delivery period. Swing options are
also known as flexible nomination contracts, take-or-pay contracts, or virtual power
plants. See, e.g., [2, 11, 18, 19].

So far, we considered delivery contracts with delivered quantities that were either
fixed in advance or depending on some observable (possibly stochastic) variables.
Swing options are different, because the delivered quantities are decisions of the
option buyer, and the seller has to account for this fact, when making the pricing
decision. Hence, two questions are important, when considering swing options:

Fig. 15.6 Superhedging and indifference pricing

• The buyer’s view: given the exercise price K, what is the optimal demand strategy
of the buyer, and what is the resulting value of a swing option?

• The seller’s view: what exercise price K should be offered by the seller, in view
of the related optimal decision of the buyer?

Clearly the second question goes beyond the pure valuation issues raised and
analyzed in the previous sections. While different approaches have been used to
answer the first question, we remain in the framework of stochastic optimization
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and base our elaboration of the buyer’s problem on the method proposed first in [9],
which was developed further in [10]. For the second question we build on these
results and follow the approach in [3], which was extended in several directions
by [13].

15.5.1 The Buyer’s View

Again, we consider points in time t ∈ {0,1,2, . . . ,T}. The delivery price K is fixed
at t = 0 and delivery (for a single commodity) is possible during some periods t ∈
{tD, . . . ,T}. The buyer specifies the actual consumption from the contract, Dt , one
period before delivery. The quantities bought for the tth period are denoted by yt ,
where t ∈ T = {0,1, . . . ,T − 1}.

The exact strategy of the buyer clearly depends on his own liabilities (e.g., a
producer of aluminum will behave differently from a pure trader) and his access
to electricity spot markets and other parts of energy markets. We follow [3, 10]
and [13], and model a trader with access to the electricity spot market, which is in
some sense the worst case from the standpoint of a swing option seller, because the
trader is not restricted by own liabilities: the basic problem lies in the fact that the
buyer buys swing electricity at the delivery price if he thinks that spot prices will
be high and does not buy if he thinks that spot prices will be low. If the buyer is
right, this means for the seller that he will have to deliver when prices are high,
which clearly is inconvenient.

In this framework, the trader solves the following optimization problem to find
an optimal strategy—a consumption pattern D = (D0, · · · ,DT−1) such that Dt is
deliverable during period (t, t +1]—for a swing option contract with given exercise
price K. It is assumed that both the consumption in each period (base line schedule)
and the accumulated consumption over the whole delivery period are restricted by
lower and upper bounds and that the trader sells any consumption from the contract
at the electricity spot market. By Se

t,0 we denote the electricity spot prices; et and et

represent lower and upper bounds for consumption in each period and E , E refer to
lower and upper bounds for the cumulated consumption.

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

maxD ∑T−1
t=0 E

[
Dt

(
Se

t+1,0−K
)]

subject to et ≤ Dt ≤ et , ∀t ∈ {0, . . . ,T − 1} ,
E ≤ ∑T−1

t=0 Dt ≤ E,
Dt ≥ 0, ∀t ∈T ,

∑T−1
t=0 E

[
Dt

(
Se

t+1,0−K
)]
≥ 0,

Dt is nonanticipative.

(28)

As pointed out in [10] the optimal value of this problem can be seen as the value
of the swing option from the buyer’s perspective, as long as it is not negative. If
the optimal value is negative, the contract will not be concluded, which justifies the
second to last constraint.
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The formulation (28) is used in [3, 13] and can be extended in various directions.
In particular, ramping constraints with ratchets ρt can be modeled by

−ρt ·Δ ≤ yt − yt−1 ≤ ρt ·Δ , (29)

where Δ is the length of the time periods.

15.5.2 The Seller’s View

While the buyer’s decision problem (28) does not make use of the hedging or
acceptability concepts discussed before, the sellers decision is again modeled by
acceptability pricing: the seller searches for the minimal delivery price and related
hedging and production decisions such that the resulting profit and loss distribution
remains acceptable.

The seller’s decision problem is similar to (18): the decision variables are aug-
mented by the strike price K and the contractual cashflows Ct are redefined by
Ct = Dt ·K. In particular this means that (15.15) is replaced by

x f
t,0 ≤ (1+ r f )x

f
t−1,0 (30)

−
J

∑
j=0

Se
t, jy

e
t, j−

I

∑
i=1

S f
t,i(x

f
t,i− x f

t−1,i)+
I

∑
i=1

C f
t,i +Dt ·K

−
J

∑
i=0

J

∑
j=0

γt,i jzt,i j

−
J

∑
j=1

ζ j
(xe

t, j + xe
t−1, j)

2
.

Unfortunately, acceptability pricing by an extended version of (15.15) cannot be
used directly, because the formulation would include the buyer’s decisions Dt which
are not decision variables of the seller. Instead, the problem has to be reformulated
in the framework of bi-level optimization. The papers [3, 13] propose this approach
but use simplified versions of this problem, both simplifying production decisions:
the first does not model production, while the second uses an internal price for acc-
ounting between a production and a trading department as a proxy. The latter paper
also gives a broad survey of related models and methods.

The basic problem in bi-level optimization lies in the fact that given a strike
price K the buyer’s problem (28) may have non-unique optimal decisions. Using
the optimistic approach of bi-level optimization and assuming that the lower level
chooses among its optimal decisions the best one from the seller’s point of view (see,
e.g., [7], also for the alternative—the pessimistic approach) the decision problem
can be formulated as
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∥∥∥∥∥∥∥∥∥∥∥∥∥

Minimize (in K,xe,x f ,y,z, w and D): w
subject to

constraints (15.7)–(15.14) and (30),

A (CT +∑J
j=1 Se

T, jx
e
t, j +∑I

i=1 S f
T,ix

f
T,i)≥ 0,

D ∈D∗K ,
xe

t ,x
f
t ,yt ,zt are nonanticipative,

(31)

where D∗K denotes the argmin-set (i.e., the set of optimal solutions), given the strike
price K, of the buyer’s problem (28).

Even in the simplest case bi-level problems like (31) are nonconvex, and strongly
NP-hard. See, e.g., [6, 15] for necessary optimality conditions. A specific intricacy
of bi-level problems lies in the fact that their feasible set can be disconnected.

Typical standard approaches for stochastic bi-level optimization are stochastic
quasi-(sub)gradient methods and the MPEC approach. The first one is applicable
only if the argmin-set of the buyer’s problem is guaranteed to be a singleton for all
relevant prices K. The latter approach consists in formulating the KKT conditions
for the buyer’s problem and to include them into the upper-level problem in order to
code the argmin-set of the buyer’s problem. This is very common but hard to use for
multistage problems like (28), because complementarity conditions for each node
have to be included, which makes the resulting formulation hard to solve. Kovacevic
and Pflug [13] give an overview and propose some new algorithms, building on the
fact that the optimistic bi-level problem can be approximated by an LP if polyhedral
acceptability functionals like the average value-at-risk are used for A and that all
decisions of both the buyer and the seller are dominated by the seller’s decision
regarding the strike price K.

The following example illustrates the bargaining situations between buyer and
seller.

Example 3. We set et ≡ 5, E ≡ 50. The AV@R-parameter is α = 0.15 and the min-
imum AV@Rα -requirement q = −20. The spot price process St is modeled by a
stochastic tree with 6 (monthly) stages. The generating unit and the fuels are as
in the previous examples. In addition, we use three futures products (with exercise
periods of length 2) for hedging. Three scenarios for lower bounds are considered:
e = 0, e = 0.4e, and e = 0.8e. Furthermore we use E = 0 and E = 5e.

Figure 15.7 shows effects of these scenarios. In particular increasing lower
bounds reduces the value of the contract for the buyer, while it increases the value for
the seller. However, the drawback of increasing lower bounds is that also the largest
feasible strike price decreases. Note that the feasible prices in this example are com-
parably small, because they refer to summer months, and the AV@R-requirements
are relatively mild.
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15.6 Conclusions

We have shown that fair pricing of energy contracts is a difficult task, which can be
accomplished by solving various multistage optimization problems. While (super)
replication requires the solution of a deterministic program, acceptance and indiffer-
ence pricing are based on stochastic programs. These programs can be quite com-
plex, especially if the full available portfolio of the contract seller is modeled. For
flexible contracts, it is even necessary to solve a stochastic bi-level program, since
in this case the optimal pricing must be embedded into a game-theoretic model of
the leader-follower type.
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Fig. 15.7 Swing option pricing—the bargaining situation: the left part shows the buyer’s expec-
tation (dashed) versus the seller’s average value-at-risk (solid). The right part shows the buyer’s
expectation (dashed) versus the seller’s expectation
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Chapter 16
Energy Derivatives with Volume Controls

Fred Espen Benth and Marcus Eriksson

Abstract We analyse two classes of power derivatives with volume control, tolling
agreements and flexible load contracts. Under certain assumptions, we can price a
tolling agreement by resorting to theory of flexible load contracts, when using the
fuel cost as numeraire in the power price. Tolling agreements can be priced as a strip
of spread options under simple set of controls. Finally, we prove a general theory
based on dynamic programming for these two classes of derivatives. We base our
theory on price dynamics driven by Brownian motion.

16.1 Introduction

Electricity can be generated by a fuel like gas or coal or nuclear or from renewable
sources like wind, sun or water. In most developed economies, the electricity pro-
ducers sell their production in open power markets where they face a considerable
price risk. But, equally important is the volume risk.

As low demand for power goes along with low prices, the producer will have a
double effect on her revenues. On the other side, retailers must pay high prices when
the demand is high, typically. Hedging instruments that cover both price and volume
risk will provide an insurance against undesirable market situations like these. Such
derivatives are traded in the power markets and include protection against low elec-
tricity prices, high fuel costs and/or demand uncertainty. In this chapter we will
focus on tolling agreements and flexible load contracts.

With the development of renewable energy production, like wind power and
solar, the volume risk also comes on the supply side. A wind mill generates
power only when there is wind, with an effect being a function of the wind speed.
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Hence, the wind speed determines the volume power that can be produced, and one
cannot necessarily generate more when prices are favourable. In this way, we might
say that there is an opportunity loss for a wind mill producer if there are high prices
in the power market, but no wind.

A tolling agreement is a financial contract that mimics the operation of a gas
or coal-fired power plant. We analyse this contract in the case of power and fuel
prices following a co-integrated Brownian motion-driven dynamics. We relate the
contract to spread options, for which we provide an analytical pricing formula for
our specific set-up. This will be an extension of the well-known Margrabe formula
(see [6]).

Next, we show that the tolling agreement can be viewed as a flexible load con-
tract. This class of derivatives gives the holder the right to buy power at a fixed price
within given volume constraints. For example, the holder can buy power up to a
certain total volume over a year. The tolling agreement, with rather general volume
constraints, can be mapped into such a derivative, where the power price is using
the fuel as a numeraire.

Finally, we study the two classes of derivatives for more general price processes
applying dynamic programming. We associate the Hamilton–Jacobi–Bellman equa-
tions and provide verification theorems for the value function (or the price of the
contract) and its optimal execution. These results rely heavily on recent develop-
ments presented in the papers [1, 2].

We present our analysis as follows. In the next section we analyse tolling agree-
ments and derive an extension of Margrabe’s formula . Then, in Sect. 16.3 we show
that a tolling agreement is a flexible load contract. Section 16.4 deals with these
contracts using dynamic programming.

16.2 Tolling Agreements

Let P(s) be the price of power at time s and C(s) be the price of a fuel (like coal or
gas, say). If u(s) is the production rate at time s, then the t-value of a power plant
which is assumed to operate until time T will be

∫ T

t
e−r(s−t)(P(s)− hC(s))u(s)ds . (16.1)

Here, t ≤ T and the production rate u is an adapted control which is supposed to
satisfy u(s) ∈ [0, ū], where ū < ∞ is the maximal production rate from the power
plant. Furthermore, r is a nonrandom (fixed) interest rate and h > 0 is the heat rate,
e.g. the factor converting the units of the fuel into units of power.

A tolling agreement is now a financial option contract mimicking the ownership
of a power plant fuelled by coal or gas. The holder of the tolling agreement will be
paid at time T the amount given in (16.1), where u is the production rate decided by
the holder. Obviously, the holder tries to maximize the payoff, which means that she
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is maximizing over all admissible controls u. We say that a control u is admissible if
it is adapted and bounded as above and denote the set of such controls by A (t,T ).

The tolling agreement is paying the same as the profit/loss from operating a
power plant. In this sense, the option is giving the holder access to the power plant
in a virtual sense, without actually having to operate one. A tolling agreement could
also be viewed as a real option valuation of a power plant project.

The price of a tolling agreement is

V (t) = sup
u∈A (t,T )

EQ

[∫ T

t
e−r(s−t)(P(s)− hC(s))u(s)ds |Ft

]
. (16.2)

Here, Q is some pricing measure, incorporating the risk premium in the market. We
are interested in both the optimal strategy u∗ such that

V (t) = EQ

[∫ T

t
e−r(s−t)(P(s)− hC(s))u∗(s)ds |Ft

]
(16.3)

and the price V (t) of the tolling agreement.
Note that the tolling agreement contract is an option paying out the accumu-

lated present value of the difference between the power and fuel price. The payment
stream is scaled by the production rate and thus is an option paying money according
to price levels and volume decisions.

As long as there are no other constraints on the rate u than it should be adapted
and bounded in the interval [0, ū], it is obvious that the holder will produce at a maxi-
mal rate whenever this is advantageous, while turning off the production completely
if it produces a negative payment. Thus, the optimal control is given by

u∗(s) = ū1(P(s)> hC(s)) , (16.4)

where 1(·) is the indicator function. We show that this is indeed the optimal control
in the following lemma:

Lemma 1. The control u∗(s) in (16.4) is admissible and is such that (16.3) holds.
Hence, u∗ is the optimal control.

Proof. As the processes P(s) and C(s) are Fs-measurable, so is u∗(s). Moreover,
we trivially have that u∗(s) ∈ [0, ū]. Thus, u∗(s) ∈A (t,T ).

Let u be a constant such that u∈ [0, ū]. If P−hC> 0, then (P−hC)u≤ (P−hC)ū.
If P−hC < 0, then trivially (P−hC)u≤ 0. Here, P and C are simply two constants.
Thus, we find that for any admissible control u ∈A (t,T )

∫ T

t
e−r(s−t)(P(s)−hC(s))u(s)ds≤

∫ T

t
e−r(s−t)(P(s)−hC(s))ū1(P(s)> hC(s))ds ,

and the lemma follows. �
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From this result, we can express the value function of a tolling agreement as

V (t) = ūEQ

[∫ T

t
e−r(s−t)(P(s)− hC(s))+ ds |Ft

]

= ū
∫ T

t
e−r(s−t)

EQ
[
(P(s)− hC(s))+ |Ft

]
ds .

Hence, a tolling agreement is nothing but a strip of European call options with zero
strike on the spread between power and fuel prices.

16.2.1 Pricing of Spread Options in the Energy Market

Let us study the pricing of spread options in the energy market for a particular
bivariate exponential Gaussian process. We specify the dynamics as

P(t) =ΛP(t)exp(X(t)+YP(t)) , (16.5)

C(t) =ΛC(t)exp(kX(t)+YC(t)) , (16.6)

where Λi(t) for i = P,C are deterministic seasonality functions, assumed to be mea-
surable and of at least polynomial growth, and k is a constant. Furthermore, X(t) is
a drifted Brownian motion

X(t) = μt +σB(t) ,

while Yi(t), i = P,C are two correlated Ornstein–Uhlenbeck processes defined as

dYi(t) = (θi−αiYi(t)) dt +σi dWi(t) (16.7)

for i = P,C. Here, B, WP and WC are three correlated Brownian motions such that
E[dWi(t)dB(t)] = ρi dt and E[dWP(t)dWC(t)] = ρ dt, ρ ,ρi ∈ [−1,1]. To make mat-
ters technically simpler, we suppose the model is already stated under the pricing
measure Q.

Such two-factor models have been extensively used in the literature for commod-
ity pricing; see for example Lucia and Schwartz [5] for modelling of power spot
prices or Schwartz and Smith [8] for modelling of oil and gas. The non-stationary
factor X models the long-term mean, towards which the short-term factor Y is mean
reverting. The short-term fluctuations of prices are due to supply and demand imbal-
ances, while the long-term movements are coming from macro-economic variables
like inflation, limitations in reserves and technological innovations.

The solution of Yi, i = P,C is given by

Yi(t) = Yi(0)e−αit +
θi

αi
(1− e−αit)+

∫ t

0
σie−αi(t−s) dWi(s) . (16.8)

We see from the model that the deseasonalized spot prices are co-integrated in their
difference, that is,

ln(P(t)/ΛP(t))− 1
k

ln(C(t)/ΛC(t)) = YP(t)− 1
k

YC(t),
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where the right-hand side is a difference of two OU processes, which are stationary
in the sense that the difference converges to a normal distribution with time going
to infinity. From this relationship we see that the power prices P can be expressed
in terms of the fuel prices C.

The variance-covariance matrix of the Brownian motions B, WP and WC is

⎡
⎣ 1 ρP ρC

ρP 1 ρ
ρC ρ 1

⎤
⎦ ,

which is positive definite if and only if

ρ2
P +ρ2

C +ρ2 < 1+ 2ρρPρC .

We assume this to hold for the correlation coefficients, and note that in this case we
can express the Brownian motions B, WP and WC in terms of a three-dimensional
Brownian motion B(t) with independent coordinates. That is, it holds that

⎡
⎣ dB

dWP

dWC

⎤
⎦=

⎡
⎢⎢⎢⎣

1 0 0

ρP

√
1−ρ2

P 0

ρC
ρ−ρPρC√

1−ρ2
P

√
1−ρ2

P−ρ2
C−ρ2+2ρρPρC√
1−ρ2

P

⎤
⎥⎥⎥⎦dB(t).

We denote the above matrix C. But then we can represent the two energy price
dynamics as

P(t) = exp

(
μP(t)+

∫ t

0
aP(t− s)′ dB(s)

)
(16.9)

C(t) = exp

(
μC(t)+

∫ t

0
aC(t− s)′ dB(s)

)
(16.10)

for

μP(t) = lnΛP(t)+X(0)+ μt+YP(0)e−αPt +
θP

αP
(1− e−αPt) (16.11)

μC(t) = lnΛC(t)+ kX(0)+ kμt+YC(0)e
−αCt +

θC

αC
(1− e−αCt) (16.12)

and

aP(x)
′ = [σ ,σPe−αPx,0]C (16.13)

aC(x)
′ = [kσ ,0,σCe−αCx]C. (16.14)

Here, x′ denotes the transpose of a vector. In the next proposition we state a
generalization of the Margrabe formula for the model in (16.9) and (16.10) with
general assumptions on the parameters μi and ai. Indeed, we suppose that B is a
d-dimensional Brownian motion and that the parameters are naturally extended to
this situation.
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Proposition 1. Suppose that P and C have dynamics given by (16.9) and (16.10)
where μi(t) is a bounded function on each finite time interval and ai(x) is an R

d-
valued measurable function which is square integrable on each finite time interval,
i = P,C. Then the spread option price at time t on a contract that pays (P(s)−
hC(s))+ at time s≥ t is given by

Ṽ (t,s) = exp

(
μP(s)− r(s− t)+

∫ t

0
aP(s− u)′dB(u)

+
1
2

∫ s−t

0
aP(u)

′aP(u)du

)
Φ(d1)

− hexp

(
μC(s)− r(s− t)+

∫ t

0
aC(s− u)′dB(u)

+
1
2

∫ s−t

0
aC(u)

′aC(u)du

)
Φ(d2),

where d1 = d2 +σa(s− t),

d2 =
1

σa(s− t)

[
μP(s)− μC(s)+

∫ t

0
aP(s− u)′ − aC(s− u)′dB(u)

+

∫ s−t

0
(aP(u)

′ − aC(u)
′)aC(u)du− lnh

]
,

σ2
a (x) =

∫ x

0
(aP(u)

′ − aC(u)
′)(aP(u)− aC(u))du ,

and Φ being the cumulative standard normal distribution function.

Proof. Since (P(s)− hC(s))+ =C(s)(P(s)/C(s)− h)+, we find from the dynamics
of C(s) that

EQ
[
(P(s)− hC(s))+ |Ft

]
= exp

(
μC(s)+

1
2

∫ s

0
aC(s− u)′aC(s− u)du

)

×EQ

[
Z(s)

(
P(s)
C(s)

− h

)+

|Ft

]
.

Here, the martingale process Z(v) for v≤ s is defined as

Z(v) = exp

(∫ v

0
aC(s− u)′dB(u)− 1

2

∫ v

0
aC(s− u)′aC(s− u)du

)
.

But by Girsanov’s theorem (see Øksendal [7], p. 162) there exists a probability
measure QC ∼ Q with density process Z(v) and where

dW(u) =−aC(s− u)du+ dB(u)

is a d-dimensional QC-Brownian motion u ∈ [0,s]. Applying Bayes’ theorem
(see [4]) we obtain
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EQ

[
Z(s)

(
P(s)
C(s)

− h

)+

|Ft

]

= EQ[Z(s) |Ft ]EQ

[
Z(s)

EQ[Z(s) |Ft ]

(
P(s)
C(s)

− h

)+

|Ft

]

= Z(t)EQC

[(
P(s)
C(s)

− h

)+

|Ft

]
.

But from the dynamics of P and C in (16.9) and (16.10), we find the QC-dynamics
to be

P(s)
C(s)

= exp

(
μP(s)− μC(s)+

∫ s

t
(aP(s− u)′ − aC(s− u)′)aC(s− u)du

)

× exp

(∫ s

t
aP(s− u)′ − aC(s− u)′dW(u)

)
.

The first exponential is Ft -measurable, while the Itô integral in the second expo-
nential is normally distributed with mean zero and variance equal to σ2

a (s− t). The
proposition follows after computing the expectation using standard properties of the
normal density function and rearranging terms. �

The extended Margrabe formula above contains the terms
∫ t

0 ai(s− u)′ dB(u) for
i = P,C, which for s > t is not equal to the analogous terms

∫ t
0 ai(t − u)′dB(u) in

the spot prices P(t) and C(t). Hence, in this general form we cannot express the
option price in terms of the underlying spot. However, if we go back to the special
case of a co-integrated spot price dynamics in (16.5) and (16.6) with X being a
drifted Brownian motion and Yi, i = P,C correlated Ornstein–Uhlenbeck processes,
we may simplify to at least obtain an explicit dependency on the factors X(t) and
Yi(t), i = P,C. Using the above link to the general model, we get the spread option
price in the specific case of the dynamics in (16.5) and (16.6) as

Ṽ (t,s) =ΛP(s)exp
(

X(t)+ e−αP(s−t)YP(t)+ θ̃P(s− t)
)
Φ(d1)

− hΛC(s)exp
(

kX(t)+ e−αC(s−t)YC(t)+ θ̃C(s− t)
)
Φ(d2) ,

where d1 = d2 +σa(s− t),

σ2
a (x) = (1− k)2σ2x+ 2(1− k)ρPσ

σP

αP
(1− e−αPx)− 2(1− k)ρCσ

σC

αC
(1− e−αCx)

+
σ2

P

2αP
(1− e−αPx)− 2ρ

σPσC

αP +αC
(1− e−(αP+αC)x)+

σ2
C

2αC
(1− e−2αCx) ,

θ̃P(x) = (μ− r+
1
2
σ2)x+

1
αP

(θP +ρPσσP)(1− e−αPx)+
σ2

P

4αP
(1− e−2αPx)

θ̃C(x) = (kμ− r+
1
2

k2σ2)x+
1
αC

(θC +ρCkσσC)(1− e−αCx)+
σ2

C

4αC
(1− e−2αCx) ,
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and

d2 =
1

σa(s− t)

[
ln(ΛP(s)/ΛC(s))+ (1− k)X(t)

+e−αP(s−t)YP(t)− e−αC(s−t)YC(t)− lnh+ θ̃(s− t)

]
.

Here,

θ̃ (x) = (1− k)(μ+ kσ2)x+
θP

αP
(1− e−αPx)− θC

αC
(1− e−αCx)

+ kσρP
σP

αP
(1− e−αPx)+ (1− 2k)σρC

σC

αC
(1− e−αCx)

+ρ
σPσC

αP +αC
(1− e−(αP+αC)x)− σ2

C

2αC
(1− e−2αCx).

Notice that the total spread volatility σa(x) is not depending on ρ and σ when k = 1.
We can relate the factors in the spread option price to the forward price associated

to the two energies P and C. From the general price dynamics, we find the forward
price for a contract delivering P at time s≥ t as

fP(t,s) = EQ[P(s) |Ft ]

= EQ

[
exp

(
μP(s)+

∫ s

0
aP(s− u)′ dB(u)

)
|Ft

]

= exp

(
μP(s)+

∫ t

0
aP(s− u)′ dB(u)

)
EQ

[
exp

(∫ s

t
aP(s− u)′dB(u)

)]

= exp

(
μP(s)+

∫ t

0
aP(s− u)′ dB(u)+

1
2

∫ s−t

0
aP(u)

′aP(u)du

)
,

where we have applied the Ft -measurability of the Itô integral and the independent
increment property of Brownian motion. Analogously, it follows that

fC(t,s) = exp

(
μC(s)+

∫ t

0
aC(s− u)′dB(u)+

1
2

∫ s−t

0
aC(u)

′aC(u)du

)
. (16.15)

Inspecting Proposition 1, we obtain the spread price expressed in terms of the for-
ward prices as

Ṽ (s, t) = e−r(s−t) { fP(t,s)Φ(d1)− h fC(t,s)Φ(d2)}

with d1 = d2 +σa(s− t), σa defined in Proposition 1 and

d2 =
ln fP(t,s)− ln fC(t,s)− lnh− 1

2Σ
2(t− s)

σa(s− t)
.
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That the price of an option on the spread of the spots can be expressed in terms of the
respective forward prices is not a surprise since indeed the contract can be viewed
as an option on the spread of the forwards from the identities fP(s,s) = P(s) and
fC(s,s) = C(s). The advantage is that we can mark the option price to observable
market prices being the forwards. Furthermore, this is also the starting point for
developing a hedge of the contract. For example, the deltas are easily computed
to be

∂Ṽ (t,s)
∂ fP(t,s)

= e−r(s−t)Φ(d1),

∂Ṽ (t,s)
∂ fC(t,s)

=−he−r(s−t)Φ(d2),

via direct differentiation and usage of the expressions for d1 and d2.

16.3 Flexible Load Contracts

One may easily imagine situations where there are additional constraints on the set
of possible controls u in A (t,T ) defining the problem (16.2). For example, a gas-
fired power plant cannot simply switch on or off the production, as it takes time to
close the plant and time to restart it (the so-called ramping times). Also, it might
be situations where one has to make the plant run for regulatory reasons. Thus,
we may be interested in considering a strictly smaller set of admissible controls

˜A (t,T ) ⊂ A (t,T ) defined in connection with tolling agreements. Thus, we con-
sider the stochastic control problem

V (t) = sup
u∈ ˜A (t,T )

EQ

[∫ T

t
e−r(s−t)(P(s)− hC(s))u(s)ds |Ft

]
. (16.16)

Below, we translate the stochastic control problem (16.16) into a structure which
resembles a call option payoff. In fact, as it turns out, one may reduce the prob-
lem into controlling only the power price, using the fuel price C as a numeraire.
Hence, instead of facing a bivariate stochastic control problem, we can recast it as
a univariate one, which is considerably simpler to analyse. In Sect. 16.4 we give a
rigorous treatment of the univariate and bivariate stochastic control problem in a
general setting. Furthermore, we analyse different choices of the restricted control
set ˜A (t,T ).

The reduction from the bivariate to the univariate case leads us to another set of
swing options called flexible load contracts. Flexible load contracts give the holder
the right to buy power at a given price with given volume constraints over a set of
pre-defined hours.

We state and prove the following proposition on the stochastic control prob-
lem (16.16).
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Proposition 2. Let P and C have dynamics as in (16.9) and (16.10), respectively.
It holds for the stochastic control problem (16.16)

V (t) = fC(t,T )g
−1(T ) sup

u∈ ˜A (t,T )

EQC

[∫ T

t
e−r(T−s)g(s)

(
P̃(s)− h

)
u(s)ds |Ft

]
,

where

g(t) = exp

(
μC(t)− 1

2

∫ t

0
aC(t− u)′aC(t− u)du

)
,

the probability QC is equivalent to Q with density process

Z(t) = exp

(∫ t

0
aC(T − u)′dB(u)− 1

2

∫ t

0
aC(T − u)′aC(T − u)du

)
,

and dW(u) = −aC(T − u)du+ dB(u) is a QC-Brownian motion for u ≤ T . More-
over, the price dynamics of P̃(s) = P(s)/C(s) is given by

P̃(s) = exp

(
μP(s)− μC(s)+

∫ s

0
(aP(u)

′ − aC(u)
′)aC(u)du

+

∫ s

0
aP(s− u)′ − aC(s− u)′dW(u)

)
.

Proof. Since C(s) =C(T )C(s)/C(T ), we find

J(t) : = EQ

[∫ T

t
e−r(T−s)(P(s)− hC(s))u(s)ds |Ft

]

= EQ

[
C(T )

∫ T

t
e−r(t−s) C(s)

C(T )

(
P̃(s)− h

)
u(s)ds |Ft

]
.

But, from the dynamics of C in (16.10), C(T ) = g(T )Z(T ), with g and Z defined in
the proposition. The process Z(t) is a martingale and by Girsanov’s theorem (see [7])
is the density process of an equivalent probability QC for which W(u) defined in the
proposition is a Brownian motion, u ≤ T . Hence, it follows from Bayes’ formula
(see [4]) followed by Fubini–Tonelli’s theorem that

J(t) = Z(t)g(T )EQC

[∫ T

t
e−r(T−s) C(s)

C(T )

(
P̃(s)− h

)
u(s)ds |Ft

]

= Z(t)g(T )
∫ T

t
er(T−s) g(s)

g(T )
EQC

[
Z(s)
Z(T )

(
P̃(s)− h

)
u(s) |Ft

]
ds

= Z(t)
∫ T

t
e−r(T−s)g(s)EQC

[
EQC

[
Z(s)
Z(T )

|Fs

](
P̃(s)− h

)
u(s) |Ft

]
ds .

In the last equality we applied the tower property of conditional expectation together
with the Fs-measurability of (P̃(s)− h)u(s). Invoking Bayes’ formula once again,
we find
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EQC

[
Z(s)
Z(T )

]
=

EQ

[
Z(s)
Z(T )Z(T ) |Fs

]
EQ[Z(T ) |Fs]

= 1

by the martingale property of Z. We conclude that

J(t) = Z(t)EQC

[∫ T

t
e−r(T−s)g(s)

(
P̃(s)− h

)
u(s)ds |Ft

]
.

By the definition of the dynamics of P and C, and the Girsanov change of probabil-
ity, we find the dynamics of P̃ under QC easily. Using the definition of the forward
price fC(t,T ) in (16.15) completes the proof. �

From this proposition we may view a tolling agreement on P and C with dynam-
ics (16.9) and (16.10), respectively, and controls u in ˜A (t,T ) as a flexible load
contract on P/C. Flexible load contracts are interesting in their own right, being
popular derivatives in the power market.

Note that if ˜A (t,T ) =A (t,T ), it is simple to see that the optimal control for the
problem

sup
u∈ ˜A (t,T )

EQC

[∫ T

t
e−r(T−s)g(s)

(
P̃(s)− h

)
u(s)ds |Ft

]
(16.17)

is given by a bang-bang type, namely

u∗(s) = ū1(P̃(s)> h) . (16.18)

However, since P̃(s) = P(s)/C(s), this coincides, not surprisingly, with the con-
trol in (16.4). Moreover, we can move the expectation operator inside and relate
the value function V to the price of a strip of call options on P̃ with exercise time
s ∈ [t,T ] and strike h. However, again using that P̃ is the ratio between the power
and fuel price, we can compute an analytic price that will be equal to the one in
Proposition 1.

16.4 The Dynamic Programming Approach

In this section we use the dynamic programming approach to consider the univariate
and bivariate stochastic control problems of the previous sections in a more general
context. We give a rigorous statement of the univariate case, prove some general
properties and derive the associated Hamilton–Jacobi–Bellman (HJB) equation as
well as a verification theorem. Then we extend those results to a multidimensional
model (which, in particular, covers the case of tolling agreements), which we relate
to the bivariate case in Sect. 16.2. Finally, we discuss the delicate issue of boundary
conditions which are important in numerical solutions of the control problem.
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16.4.1 Univariate Case

Let P(t) be the unique strong solution to the stochastic differential equation

dP(t) = μ(t,P(t))dt +σ(t,P(t))dW(t), (16.19)

where W is a one-dimensional Brownian motion, μ ,σ : [0,T ]×R �→ R being con-
tinuous functions satisfying a uniform Lipschitz condition in the second argument
(see [7]) and σ taking positive values. Referring to the discussions in the sections
above, we may view P as the power price or the power price with the fuel as num-
eraire. The exposition that follows is closely based on the analysis in [1].

We focus on a flexible load contract with maximal volume constraint on the con-
trols u ∈A (t,T ). To this end, define for u ∈A (t,T )

dZ(t) := u(t)dt. (16.20)

The process Z measures the total volume produced until time t using the production
rate u. We define the restricted control set ˜A (t,T ) as the set of controls u ∈A (t,T )
with the additional constraint that Z(T ) ∈ [0,M], where M > 0, ū > 0 are constants.
Hence, we have bounded production rates as well as a total volume constraint M
that must be satisfied by the production rate.

It is convenient to extend the state space of the control problem (16.16) to include
the total volume process Z. Thus, we define the value function V (t,z, p), defined on
S := [0,T ]× [0,M]×R, as

V (t,z, p) = sup
u∈ ˜A (t,T )

E

[∫ T

t
e−r(s−t)(P(s)− h)u(s)ds |P(t) = p,Z(t) = z

]
. (16.21)

Note that the process Z appears in the control set. However, we may also substitute
u(s)ds by dZ(s) in the formulation above to get it explicitly appearing in the value
function. Note also that h> 0 is the strike price in the flexible load contract. We also
observe that the state processes P and Z are Markovian, which explains why we
condition on P(t) = p,Z(t) = z rather than the filtration Ft in the definition of the
value function in (16.21).

16.4.1.1 Some General Results

We now state some general results about the value function. First, observe that if
z = M, ˜A (t,T ) consists of only u = 0. Hence,

V (t,M, p) = 0 , t ≤ T, p≥ 0 . (16.22)

Therefore, the maximal constraint comes in as a boundary condition on the value
function. Also, we have V (T,z, p) = 0 for (z, p) ∈ [0,T ]×R.



16 Energy Derivatives 425

Observe that the maximum volume constraint is absent if M− z≥ ū(T − t) as it
will be reached trivially. In this case we have the following result.

Proposition 3. If M− z≥ ū(T − t), an optimal control is given by

u∗(s) = ū1(P(s)− h > 0) . (16.23)

Proof. Clearly u∗(s) is admissible. For any u ∈ ˜A (t,T ) we have

J(t,z,x : u) : = E

[∫ T

t
e−r(s−t)(P(s)− h)u(s)ds |P(t) = p,Z(t) = z

]

= E

[∫ T

t
e−r(s−t)(P(s)− h)u(s)1(P(s)− h > 0)ds |P(t) = p,Z(t) = z

]

+E

[∫ T

t
e−r(s−t)(P(s)− h)u(s)1(P(s)− h≤ 0)ds |P(t) = p,Z(t) = z

]

≤ E

[∫ T

t
e−r(s−t)(P(s)− h)u∗(s)ds |P(t) = p,Z(t) = z

]
, (16.24)

and the result follows. �

With the optimal control (16.23) we see that the value of the contract is independent
of the amount of power produced. As a consequence we get

Lemma 2. If M− z ≥ ū(T − t), then the marginal value of the value function with
respect to the production volume becomes

∂V (t,z, p)
∂ z

= 0 ,z < M− ū(T − t) . (16.25)

The immediate interpretation of this result is that the holder of the flexible load con-
tract cannot lose value by producing more power. This is intuitively clear, since he
is allowed to produce as much (or little) as he wants when the maximal volume con-
straint is not effective. However, in the presence of an effective volume constraint,
we find a different result on the marginal value.

Proposition 4. If M− z < ū(T − t), then the marginal value of the value function
with respect to the production volume satisfies

∂V (t,z, p)
∂ z

≤ 0 ,z > M− ū(T − t) . (16.26)

Since the holder has a maximal amount of power that can be produced until maturity
the set of admissible control rates decreases as more power is produced. Hence, the
value function decreases with respect to an increasing z, meaning more production
has taken place. For a proof we refer to [1], Proposition 3.3.

When the maximal constraint was absent we could find an optimal production
rate explicitly according to Proposition 3. In the presence of an effective maximal
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constraint, we use Bellman’s principle of optimality to derive an HJB equation and
via a verification theorem we are able to show that its solution (under appropriate
assumptions) coincides with the optimal value of the contract. This is our next task.

16.4.1.2 Necessary Conditions

To study Problem (16.21) under an effective total volume constraint, we first derive
the associated HJB equation. This is done by appealing to the dynamic programming
principle (see, e.g., [3]), which is expressed in the present situation as: for all times
0≤ t < w≤ T , the condition

V (t,Z(t),P(t)) = sup
u∈ ˜A (t,T )

E

[∫ w

t
e−r(s−t)(P(s)− h)u(s)ds

+e−r(w−t)V (w,Z(w),P(w)) |P(t),Z(t)
]

(16.27)

holds. Rewrite (16.27) as

sup
u∈ ˜A (t,T )

E

[∫ w

t
e−rs(P(s)− h)u(s)ds

+
(
e−rwV (w,Z(w),P(w))− e−rtV (t,Z(t),P(t))

) |P(t),Z(t)
]
= 0 .

(16.28)

To proceed, we assume that V is a smooth function, that is, V ∈C1,1,2(S ). Applying
the Itô formula to the process t �→ e−rtV (t,Z(t),P(t)) yields

ertd(e−rtV (t,Z(t),P(t)))

= (Vt(t,Z(t),Pt)− rV(t,Z(t),P(t))+ u(t)Vz(t,Z(t),P(t))) dt

+Vp(t,Z(t),P(t))(μ(t,P(t))dt +σ(t,P(t))dW(t))

+
1
2
σ2(t,P(t))Vpp(t,Z(t),P(t))dt.

Here, we have used the notation Vt = ∂V/∂ t, Vk = ∂V/∂k for k = p,z and Vpp =
∂ 2V/∂ p2. Using this, we can rewrite (16.28) as

sup
u∈ ˜A (t,T )

E

[
1

w− t

∫ w

t
e−rs((P(s)− h)u(s)+ (L − r)V (s,Z(s),P(s))

+u(s)Vz(s,Z(s),P(s)))ds+(Y (w)−Y (t)) |P(t),Z(t)
]
= 0,

(16.29)

where the linear operator L is defined on C1,1,2(S ) as

L F(t,z, p) = Ft(t,z, p)+ μ(t, p)Fp(t,z, p)+
1
2
σ2(t, p)Fpp(t,z, p), (16.30)
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and the (local) martingale Y is defined as

Y (t) =
∫ t

0
e−rsσ(s,P(s))Vp(s,Z(s),P(s))dW (s) .

Under appropriate growth conditions on σ and V , the process Y will be a true mar-
tingale. Assuming this, we obtain

E

[
1

w− t

∫ w

t
e−rs((P(s)− h)u(s)+ (L − r)V (s,Z(s),P(s))

+u(s)Vz(s,Z(s),P(s)))ds |P(t),Z(t)
]
≤ 0 ,

for each admissible u ∈ ˜A (t,T ). Furthermore, if there exists an optimal admissible
control policy u∗ ∈ ˜A (t,T ), then

E

[
1

w− t

∫ w

t
e−rs((P(s)− h)u∗(s)+ (L − r)V(s,Z(s),P(s))

+u∗(s)Vz(s,Z(s),P(s)))ds |P(t),Z(t)
]
= 0.

Now, under appropriate regularity conditions on V (see, e.g., [3]), we can pass to
the limit w→ t in (16.29) and, consequently, end up with the HJB equation

Vt(t,z, p)+
1
2
σ2(t, p)Vpp(t,z, p)+ μ(t, p)Vp(t,z, p)− rV (t,z, p)

+ sup
u
{u(t)(p− h+Vz(t,z, p))} = 0 , (16.31)

where u varies over the set of functions defined on [0,T ] satisfying the conditions
0≤ u(t)≤ ū,

∫ t
0 u(s)ds = z, and

∫ T
0 u(t)dt ≤M. We remark that if the value V does

not satisfy the required smoothness conditions, it may still be possible to identify it
as a viscosity solution of (16.31)—for details, see [9].

Intuitively, we can interpret the quantity Vz in (16.31) as the (marginal) lost option
value. From (16.31) it seems clear that the boundary p−h=−Vz(t,z, p) plays a key
role when determining the optimal control rate. Indeed, if p− h > −Vz(t,z, p) for
t ∈ [0,T ], that is, payoff dominates the lost option value, then

sup
u
{u(t)(p− h+Vz(t,z, p))}= ū(p− h+Vz(t,z, p)).

On the other hand, if p− h≤−Vz(t,z, p), then

sup
u
{u(p− h+Vz(t,z, p))} = 0 .

Define now the admissible Markovian exercise policy û(t,Z(t),P(t)) by

û(t,z, p) =

{
ū, p− h >−Vz(t,z, p),

0, p− h≤−Vz(t,z, p) ,
(16.32)

for all t ∈ [0,T ]. We denote by dẐ(t) = û(t)dt the corresponding volume produced
from this policy.
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We note that if M ≥ ūT , then, by Lemma 2, Vz(t,z, p) = 0 and the control û,
defined in (16.32), coincide with the optimal control in Proposition 3. The presence
of an effective volume constraint appears in the restricted set ˜A (t,T ) of admissible
controls.

16.4.1.3 Sufficient Conditions

In the following theorem we present a set of sufficient conditions for the value func-
tion in (16.21) to be the solution of the HJB equation (16.31) along with the pro-
posed control û to be the optimal one:

Theorem 1. Assume that a function F : S → R satisfies the following conditions:

1. F(T, ·, ·)≡ 0, F(·,M, ·) = 0 and F ∈C1,1,2(S ),
2. (L − r)F(t,z, p)+u(t)(Fz(t,z, p)+ (p− h))≤ 0 for all (t,z, p) ∈S and u(t) =

u(t,z, p) defining an admissible Markovian control u ∈ ˜A (t,T ), where the oper-
ator L is defined in (16.30), and

3. the process Y : t �→ ∫ t
0 e−rsσ(s,P(s))Fp(s,Z(s),P(s))dW (s) is a martingale.

Then F(t,Z(t),P(t))≥V (t,Z(t),P(t)) for all t.
In addition, if there exists an admissible Markovian control uo such that

(L − r)F(t,z, p)+ sup
u
(u(t)(Fz(t,z, p)+ (p− h))) =

(L − r)F(t,z, p)+ uo(t)(Fz(t,z, p)+ (p− h)) = 0,
(16.33)

for all (t,z, p) ∈ S , then uo = u∗ and the function F coincides with the value
function V .

Proof. Let u ∈ ˜A (t,T ) and t ∈ [0,T ]. First, we find using the Itô formula to the
process t �→ e−rtF(t,Z(t),P(t)) that

d(e−rtF(t,Z(t),P(t))) = e−rt [(L − r)F(t,Z(t),P(t))+ u(t)Fz(t,Z(t),P(t))

+σ(t,P(t))Fp(t,Z(t),P(t))dW (t)] .

Using assumption (i) and conditioning up to time t, we find that

0 = e−rtF(t,Z(t),P(t))+E

[∫ T

t
e−rs(L − r)F(s,Z(s),P(s))ds |P(t),Z(t)

]

+E

[∫ T

t
e−rsFz(s,Z(s),P(s))u(s)ds |Ft

]

+E [(Y (T )−Y(t)) |P(t),Z(t)] .
Now, assumptions (ii) and (iii) imply that

0≤ e−rtF(t,Z(t),P(t))−E

[∫ T

t
e−rs(P(s)− h)u(s)ds |P(t),Z(t)

]
, (16.34)

which is equivalent to the first claim.
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Assume now that there exists an admissible uo such that the condition (16.33)
holds. Then with exactly the same calculation as above we find that

0 = e−rtF(t,Z(t),P(t))−E

[∫ T

t
e−rs(P(s)− h)uo(s)ds |P(t),Z(t)

]
, (16.35)

which concludes the proof. �

From this theorem we see that û is an optimal control if we can prove sufficient
regularity of the value function. We see that the optimal production policy still has a
bang-bang structure, that is, we produce at maximal or minimal rates. However, the
threshold for switching from one to the other is not determined by whether one has
a positive income stream or not, but by having a sufficiently high positive income
stream. As Vz is non-positive, we may produce at minimal rate although P(t), the
power price, is bigger than the strike h. The maximal production constraint will
make the holder of the contract to wait for prices being sufficiently higher than the
strike.

We could add the constraint that the holder of the flexible load contract has to
produce a minimal volume, that is, that Z(T )≥m for a constant m < M. This would
force the holder to produce at a higher rate than zero, even possibly when he can
lose money. It is to be expected that the simple bang-bang structure gets lost in this
situation. A minimal total volume constraint is a subject for further research.

16.4.2 Multidimensional Model

We now consider the multidimensional case, interpreted as a derivative written on
several price processes like the tolling agreement. We outline the general formu-
lation before we relate this to the power and fuel prices and the tolling agree-
ment (16.1). The presentation in this subsection is heavily influenced by the analysis
in [2].

Let f : Rn → R be a continuous function of at least linear growth. Define a
stochastic process X(t) ∈ R

n to be the unique strong solution of the stochastic dif-
ferential equations:

dX(t) = a(t,X(t))+Σ(t,X(t))dW(t) , (16.36)

where Σ is an n × m-matrix-valued function on [0,T ] × R
n and W(t) an

m-dimensional Brownian motion. We view the components Xi as prices for different
commodities which may be correlated via Σ and related via the function f .

Define the value function on S n := [0,T ]× [0,M]×R
n as

V (t,z,x) = sup
u∈ ˜A (t,T )

E

[∫ T

t
e−r(s−t) f (X(s))u(s)ds |X(t) = x

]
. (16.37)
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Note that with n = 1, X(t) = P(t) and f (x) = x− h, we are back to the case of the
previous subsection. In the general model, the function f plays the role as mixing
the various factors of X into one or more price processes, as well as describing
the payoff structure. One can modify the results in Proposition 3, Lemma 2 and
Proposition 4 to cover this more general situation. Moreover, we can also cover the
tolling agreement considered in Sect. 16.3. We restrict our attention to this contract
type in the following.

Let

dX(t) = [dPt ,dCt ]
′ , (16.38)

with a(t,X(t)) being a vector in R
2 having coordinates μi(t,X(t)), i = 1,2, and

Σ(t,X(t)) a 2×3 matrix with elements σi j(t,X(t)), i= 1,2, j= 1,2,3. We denote by
B a three-dimensional Brownian motion. The coordinates μi and σi j are supposed
to be Lipschitz function with at most linear growth in x∈R

2, uniformly in t ∈ [0,T ].
Define, for x = (p,c) ∈ R

2, f (x) := p− hc. The value of the contract is now given
by the value function, defined on S 2 := [0,T ]× [0,M]×R

2

V (t,z, p,c) = sup
u∈ ˜A (t,T )

E

[∫ T

t
e−r(s−t)(P(s)− hC(s))u(s)ds |P(t) = p,Z(t) = z

]
.

(16.39)

Note that the control u scales the spread between the electricity and fuel price. Fur-
thermore, note that Lemma 1 is just a special case of Proposition 3 with P(s)− h
replaced by P(s)− hC(s).

The necessary and sufficient conditions for an optimal value are derived, follow-
ing the same procedure as in previous section. The associated HJB equation to the
problem (16.39) reads as

(L̃ − r)V (t,z, p,c)+ sup
u
{u(t)( f (p,c)+Vz(t,z, p,c))} = 0 , (16.40)

where the operator L̃ is defined as

L̃ F(t,z, p,c) = Ft(t,z, p,c)+ μ1(t, p,c)Fp(t,z, p,c)+ μ2(t, p,c)Fc(t,z, p,c)

+
1
2
(ΣΣ

′
)11(t, p,c)Fpp(t,z, p,c)

+ (ΣΣ
′
)12Fpc(t,z, p,c)+

1
2
(ΣΣ

′
)22Fcc(t,z, p,c) . (16.41)

We have the following verification theorem:

Theorem 2. Assume that a function F : S 2 → R satisfies the following conditions:

1. F(T, ·, ·)≡ 0, F(·,M, ·) = 0, and F ∈C1,1,2(S 2),
2. (L̃ −r)F(t,z, p,c)+u(t)(Fz(t,z, p,c)+ f (p,c)))≤ 0 for all (t,z, p,c)∈S 2 and

u ∈ ˜A (t,T ), where the operator L̃ is defined in (16.41), and
3. the processes
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Y : t �→
∫ t

0
e−rs{Fp(s,Z(s),P(s),C(s))Σ[1] (s,P(s),C(s))

+Fc(s,Z(s),P(s),C(s))Σ[2] (s,P(s),C(s)}dB(s)

are a martingale, where Σ[i], i = 1,2 are the rows of Σ .

Then F(t,z, p,c)≥V (t,z, p,c) for all t ∈ [0,T ]. In addition, if there exists an admis-
sible uo such that

(L̃ − r)F(t,z, p,c)+ uo(t)(Fz(t,z, p,c)+ f (p,c)) = 0 , (16.42)

for all (t,z, p,c) ∈ S 2, then uo = u∗ and the function F coincides with the value
function V .

The proof is similar to the proof of Theorem 1. For rigorous proofs when the process
X is a general Rn-valued Lévy process and the control space is a subset of R

n,
see [2].

The tolling agreement in Sect. 16.2 is studied without a maximal volume con-
straint; therefore we obtain the optimal control by Lemma 1 directly. If there is a
maximal constraint (and possibly additional restrictions on the controls), we obtain
the value of the tolling agreement by solving the HJB equation (16.40). The veri-
fication Theorem 2 shows that this solution is the correct one if it satisfies certain
additional regularity conditions.

16.4.2.1 Boundary Conditions

In order to solve the HJB equations derived in this section numerically we need to
find the appropriate boundary conditions. Such conditions are related to the adm-
issible controls, the state-space dynamics and asymptotic properties of the value
function.

In general, we defined the value function V in (16.37) on S n, where n indicates
that we have an n-dimensional underlying state-space process X. Clearly, we have
the terminal condition

V (T,z,x) = 0 ∀(z,x) ∈ [0,M]×R
n . (16.43)

This follows from the definition of the value function and the fact that Z cannot
have any jumps since u is bounded. For z = M we have used the entire volume
permitted in the contract and can only have u = 0 from that time on. Hence, we get
the boundary condition

V (t,M,x) = 0 ∀(t,x) ∈ [0,T ]×R
n . (16.44)

We observe that these conditions are independent of the state x.
To find the boundary conditions in the x-direction(s) is a very delicate issue and

has to be done in a case by case manner. It requires a good knowledge about the
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underlying price process X, e.g. in a way such that one can find an optimal control
explicitly. Theoretically, we can hope for asymptotic results in the state-space vari-
ables, but these must be applied to pin down boundary conditions in a numerical
scheme for solving the HJB equation on a finite domain. Dirichlet conditions are
found in [1, 2] when X is a one- and two-dimensional Ornstein–Uhlenbeck process,
respectively. In [1] they also find Neumann conditions and discuss second-order
boundary conditions. Furthermore, due to the higher dimensionality in [2], the dif-
ficulty of the problem increases and certain assumptions have to be made about the
(existence and) form of the optimal control in order to find appropriate boundary
conditions.
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Part IV
Long-Term and Political Risks



Chapter 17
Risk Hedging Strategies Under Energy System
and Climate Policy Uncertainties

Volker Krey and Keywan Riahi

Abstract The future development of the energy sector is rife with uncertainties.
They concern virtually the entire energy chain, from resource extraction to con-
version technologies, energy demand, and the stringency of future environmental
policies. Investment decisions today need thus not only to be cost-effective from
the present perspective, but have to take into account also the imputed future risks
of above uncertainties. This chapter introduces a newly developed modeling deci-
sion framework with endogenous representation of above uncertainties. We employ
modeling techniques from finance and in particular modern portfolio theory to a
systems engineering model of the global energy system and implement several al-
ternative representations of risk. We aim to identify salient characteristics of least-
cost risk hedging strategies that are adapted to considerably reduce future risks and
are hence robust against a wide range of future uncertainties. These lead to sig-
nificant changes in response to energy system and carbon price uncertainties, in
particular (i) higher short- to medium-term investments into advanced technologies,
(ii) pronounced emissions reductions, and (iii) diversification of the technology port-
folio. From a methodological perspective, we find that there are strong interactions
and synergies between different types of uncertainties. Cost-effective risk hedg-
ing strategies thus need to take a holistic view and comprehensively account for
all uncertainties jointly. With respect to costs, relatively modest risk premiums (or
hedging investments) can significantly reduce the vulnerability of the energy system
against the associated uncertainties. The extent of early investments, diversification,
and emissions reductions, however, depends on the risk premium that decision mak-
ers are willing to pay to respond to prevailing uncertainties and remains thus one of
the key policy variables.
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17.1 Introduction

The future development of the energy system is rife with uncertainties that con-
cern virtually the entire energy chain, from resource extraction to conversion tech-
nologies, energy demand, and the stringency of future environmental policies, in
particular those addressing climate change. Ignorance with respect to the multitude
of uncertainties can be very costly, due to a high share of long-lived capital stock
in the energy system and the resulting long time spans that transitions require. In-
vestment decisions today thus need not only to be cost-effective from the present
perspective, but have to take into account also the imputed future risks of uncer-
tainties. For energy models and scenario analysis this means that uncertainty needs
to be represented endogenously in order to include trade-offs between “optimal”
decisions based on most likely developments and risks resulting from uncertainties
being resolved in one direction of the other.

Although optimization techniques incorporating uncertainty, such as stochastic
programming [3, 7], have been developed several decades ago, but their application
to realistic problems has only come into reach in recent years with the evolution of
computational resources. Therefore, in the majority of energy studies and models,
uncertainties are typically treated—if at all—by performing sensitivity analysis for
a set of parameters. While it is possible through sensitivity analysis to better under-
stand the uncertainty space and broader ranges of future developments, this method
is generally not appropriate for identifying robust “hedging” strategies, including
response measures and their economic implications to minimize or at least reduce
exposure to unwanted risks. More advanced approaches for performing uncertainty
analysis include scenario analysis, in particular if performed by multiple models
(see [19]), as well as robust decision making [25] which aims at deriving robust
strategies through iterative multi-scenario simulations.

Different approaches to uncertainty analysis in energy-economic models have
been described and systematically categorized by Kann and Weyant [19], and more
recently by Ascough et al. [1] and Peterson [40]. With a few exceptions most of
the described modeling approaches fall into the category of more stylized models,
which lack explicit representation of individual energy technologies. In addition, the
majority of the models focuses on uncertainties related to the climate system and
climate change-related damages with the climate sensitivity being the most popular
parameter that is treated as uncertain (e.g., [27, 28, 54]). There are a few technology-
explicit model applications, e.g., [2, 20, 23, 24, 26, 27, 34]; however, they concen-
trate either on a very limited number of uncertain parameters in comparison to the
total number of parameters included in the models or consider very few realizations
of these parameters.

This chapter does not aim at providing a comprehensive overview of existing
modeling approaches documented in the literature, but instead introduces a newly
developed modeling framework of the global energy system that features an en-
dogenous representation of uncertainties. The basic structure of the model builds
upon the deterministic energy engineering model MESSAGE [33, 34, 44]. We em-
ploy risk management techniques, developed for portfolio management applications
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in finance (cf. [30, 41]), and incorporate a variety of different representations to
measure risks into MESSAGE. Following the school started by Markowitz [30], our
model in addition to the expected value of energy system costs takes into account a
risk measure in the optimization procedure. On top of a variety of different risk mea-
sures we provide a set of alternative (equivalent) problem formulations (e.g., risk-
constrained cost minimization, cost-constrained risk minimization). The different
model formulations increase the flexibility of the modeling approach and permit us
to put more or less emphasis on the tails of the uncertainty distribution or to consider
different risk attitudes of decision makers (e.g., towards limiting risks below critical
thresholds in contrast to exploring the effect of different levels of risk premiums1).
The modeling approach is related to, for example, chance constraint programming
[6] and robust optimization [4] in the sense that no recourse is considered. Given this
close relationship of our modeling approach with robust optimization we will refer
to the model version including uncertainty as robust decision making framework
throughout this chapter.

In our model application all relevant cost parameters are treated as uncertain,
i.e., costs concerning the entire chain of energy technologies including resource ex-
traction , energy conversion technologies, and energy-saving measures. In addition,
to account for the uncertainty of the policy intensity to climate change, the carbon
price is also modeled as an uncertain parameter.

Through a series of sensitivity analysis we aim at identifying salient characteris-
tics of least-cost hedging strategies that are able to considerably reduce future risks
and are hence robust against a wide range of future uncertainties. In particular, we
explore the effect of uncertainties on (i) investment decisions in the energy sec-
tor, (ii) technology deployment and diversification of the technology portfolio, and
(iii) associated greenhouse gas emissions. From a methodological perspective, we
are also interested in synergies of hedging strategies against technology- and policy-
related uncertainties. Finally, the question of how much risk can be avoided at which
cost or, alternatively, whether it is possible to come up with more robust strategies
at affordable costs is central to our modeling approach.

The sequel of this chapter is structured as follows: In Sect. 17.2 we lay out the
methodological basis of our modeling framework, starting with various types of
problem formulations and risk measures. In the later part of the section we also
address the question of how joint distributions of uncertain input parameters are
generated. Section 17.3 illustrates how the methodology operates on the basis of
a very simple static three-technology model. The following Sect. 17.4 introduces
the central application of this study, the full global energy systems model and the
main scenario input assumptions. Results of the modeling exercise including uncer-
tainty are extensively discussed in Sect. 17.5, ranging from implications of hedging
strategies for primary energy supply and emissions to diversification of the technol-
ogy portfolio and reallocation of investments within the energy system. The chapter
concludes with a summary of the main findings in Sect. 17.6.

1 In this chapter the term risk premium refers to additional expenditures to limit exposure to un-
wanted risks.
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17.2 Model Formulation and Solution Method

Energy systems models are frequently used to aid scenario analysis and to provide
quantitative information about possible future development pathways in the energy
sector. In the process of constructing scenarios many assumptions about future de-
velopments of socioeconomic, demographic, and technological change have to be
made. In particular, more detailed energy systems models include a large number
of technologies, which need to be represented in a parametric way. How these pa-
rameters evolve over time is subject to large uncertainties. In our model we assume
all relevant cost parameters (investments, operation and maintenance costs, carbon
price) to be uncertain.

The objective of this chapter goes beyond the documentation of our robust en-
ergy systems model but to provide a modeling framework that is generic enough to
be used within (or together with) other similar energy-economic optimization mod-
els.2 To capture different risk attitudes of decision makers, a number of alternative
ways of measuring risks (e.g., upper mean absolute deviation, downside risk, Con-
ditional Value-at-Risk) have been implemented. In addition, a variety of alternative
(equivalent) problem formulations is provided to increase flexibility of the modeling
framework. What all formulations have in common is that they describe economic
trade-offs between decisions based on expected (most likely) future trends and the
associated economic risks of the underlying uncertainty. The three alternative prob-
lem formulations that we consider are:

1. Minimization of a weighted sum of deterministic total system costs and a so-
called risk measure as suggested by Messner et al. [34]

2. Minimization of total system costs under constrained risk
3. Cost-constrained minimization of risk (which considers a maximum risk pre-

mium that may be paid for the risk reduction)

As mentioned above, an earlier version of the MESSAGE model [34] used a similar
robust modeling approach as under point (1), but concentrated on a very limited
number of technologies as well as uncertain parameters. Further applications of this
type of approach include uncertain import prices of fossil energy carriers [23] as
well as uncertain increasing returns to scale [12, 13]. A more general discussion of
the methodology can be found in [10, 31].

We shall next describe the three different problem formulations (Sect. 17.2.1),
followed by a discussion of the employed risk measures (Sect. 17.2.2).

2 The model’s source code is made available at http://www.iiasa.ac.at/web/home/
research/researchPrograms/Energy/Robust-MESSAGE.en.html.

http://www.iiasa.ac.at/web/home/research/researchPrograms/Energy/Robust-MESSAGE.en.html
http://www.iiasa.ac.at/web/home/research/researchPrograms/Energy/Robust-MESSAGE.en.html
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17.2.1 Generic Problem Formulations

To start with, let us consider the system of equations of a generic intertemporal
deterministic linear programming (LP) minimization problem:

min∑
t

cT
t xt ·δ (t) ,

Ax = b , (17.1)

x≥ 0 .

Here t = 1 . . .T is the time-period index, ct is the cost coefficient vector of the
objective function in period t, and xt are the corresponding decision variables in
period t, with x = (x1, . . . ,xT ) referring to the vector of decision variables for all
periods t = 1 . . .T . The set of constraints is defined by the matrix A and the vector
of the right hand sides b. The last term in the objective function, δ (t), is the discount
factor. In the following we will refer to the deterministic objective function in the
first line of (17.1) as Fdet(x) and to the cost-optimal solution of the deterministic
problem as x�det.

Based on the above defined deterministic model, we now describe a set of model
formulations of our robust decision-making framework that include an endogenous
representation of risk that result from future uncertainties. For this purpose a risk
measure (or risk functional), denoted by R(x), is introduced (see also Sect. 17.2.2).
Note in particular that the risk measure is an endogenous function of the deci-
sion variables x, thus depending on, e.g., investment decisions driving technology
deployment.

We implemented three alternative problem formulations. From a methodologi-
cal perspective, the three formulations represent different ways to combine the de-
terministic objective function, i.e., total system costs Fdet(x) and the risk measure
R(x). Conceptually, the formulations allow for different policy perspectives, where
depending on the context, it may be preferable either to control costs or to con-
trol risks or to define the risk aversion of the decision maker. The formulations are
equivalent to each other and can even be combined in a synergistic way as will be
discussed later in this section. The three formulations are discussed in turn:

1. Minimization of a weighted sum of deterministic total system costs Fdet(x) and
the risk measure R(x):

Fsto(x) = Fdet(x)+ρ ·R(x) .

A simple linear combination of deterministic total system costs and risk measure
allows to explore the impact of risk on the optimal solution. In this formulation
there is no clear focus on either total system costs or risk measure, but the relative
weight of the two can be adjusted with the help of the factor ρ , an indicator for
the risk aversion of the decision maker (cf. [34]).
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2. Minimization of deterministic total system costs Fdet(x) under constrained risk
measure R(x):

minFdet(x)

s.t. R(x)≤ Rmax.

In this formulation the emphasis is on risk reduction. From the perspective of a
decision maker the focus is to reduce the risk by constraining the risk measure
R(x) to a maximal permissible value. The cost minimization then guarantees that
a solution is on the efficient frontier, i.e., the risk level Rmax is achieved at lowest
possible costs. The formulation is particularly important if critical thresholds for
risks can be identified. A practical example would be local water supply man-
agement, which typically focuses on the optimal allocation of resources in order
to reduce the risk of supply shortages below certain levels [9].

3. Minimization of risk measure R(x) under constrained expected total system costs
Fdet(x):

minR(x)

s.t. Fdet(x)≤ (1+ f ) ·Fdet(x�det).

In contrast to the previously presented formulation here the focus is to control
the risk premium, i.e., the “additional” costs for reducing risk. These “hedging
expenditures” are limited to a fraction f of the total costs in absence of uncer-
tainty [the costs of the deterministic solution Fdet� = Fdet(x�det)]. The objective
of this problem formulation is then to minimize the resulting risk (given bud-
getary constraints for the risk premium). This formulation gains importance if
risk thresholds cannot be identified or when the problem is characterized by large
complexity. Particularly in the latter case a sensitivity analysis for different risk
premiums can provide important policy insights, enhancing the understanding of
the magnitude of risk that can be reduced at specific costs. Future energy projec-
tions, as explored here, are a typical example of a complex problem with often
counteracting uncertainties (e.g., the increasing likelihood of high carbon prices
and the uncertainty of future cost improvements for new zero-emission technolo-
gies are pulling the solution into opposite directions). We will come back to this
and primarily use this formulation for illustrating our results.3

The three formulations are—with appropriately chosen parameters Rmax, f , and
ρ—equivalent to each other and their combined use can help to understand differ-
ent aspects of risk hedging strategies. Cost-constrained risk minimization (3) has the

3 From a technical perspective, the latter two formulations have the advantage that the relative
orders of magnitude of total system costs Fdet(x) and risk measure R(x) can be allowed to be very
different. This happens, e.g., in the case of a linear cost function and a quadratic risk measure
(e.g., semi-variance, see Sect. 17.2.2). Apparently this situation causes problems in the third case,
because one of the two terms then dominates the other one for ρ ∼ 1; thus the magnitude of ρ has
to be chosen individually for each risk measure used.
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advantage of being comparatively easy to interpret and to communicate, since the
hedging cost f denotes in essence a risk or insurance premium. However, a draw-
back is that the risk measure defines the objective function, leading to shadow prices
of, e.g., energy carriers or carbon emissions which are not comparable with those of
the deterministic model. Therefore, combining cost-constrained risk minimization
and risk-constrained cost minimization allows a complementary view on the prob-
lem by determining the risk level corresponding to a certain risk premium f first
and then running the model again in the risk-constrained formulation that allows
obtaining “ordinary” shadow prices, like marginal carbon abatement costs. Another
interesting aspect is that the linear combination Fsto(x) makes the trade-off between
expected costs and risk explicit in the objective function. With an appropriately
chosen ρ this allows deriving an “optimal” level of risk—an admittedly hypothet-
ical concept, but with clear methodological advantages for exploring cost-benefit
analysis of, e.g., climate change.

17.2.2 Risk Measures

As stated above, we are interested in a generic framework for risk assessment rather
than a particular type of formulation. Therefore, in addition to the different prob-
lem formulations presented above, we have implemented a number of—partly well-
known—risk measures. Similar to the alternative problem formulations the choice
of an appropriate risk measure depends on the risk attitude of a decision maker
as well as on the specific characteristics of the problem under consideration. For
instance, if low-probability high-impact events are of particular interest, a risk mea-
sure that focuses on the tail of the distribution (e.g., semi-variance, β -CVaR) is more
appropriate than one that equally weights all positive deviations from the expected
value (e.g., upper mean absolute deviation).

In the following, ct(ω) and c̄t are the uncertain cost parameters in period t and
their expected values, respectively. For practical reasons, i.e., to ensure solvability
of the problem, we restrict ourselves to measures that are implementable in linear
and quadratic programming:

1. The upper mean absolute deviation is a linear risk measure originally used by
Messner et al. [34] and is defined in the following way:

R(x,ω) =∑
t

max
{

0, [ct(ω)− c̄t ]
T x
} ·δ (t). (17.2)

Its expected value R(x) = EωR(x,ω) corresponds the expected underestimation
of total system costs which is used to measure the economic risk associated with
a strategy x.

2. Conditional Value-at-Risk (CVaR), also referred to as expected shortfall, is
related to the above defined upper mean absolute deviation but only takes the
worst (1− β ) fraction of outcomes into consideration, where β typically is
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chosen to be 0.90, 0.95, or 0.99. Our model implementation is based on the work
of [47] which, in addition to the risk measure’s definition in (17.2), requires the
following two equations:

CVaR(x) = Eω∑
t

{
αt (1−β )−1 · zt(ω) ·δt

}
,

R(x,ω , t) = αt − zt(ω).

Here αt serves as a proxy for the so-called Value-at-Risk in period t and zt(ω)
is an auxiliary variable. More background information and details on the imple-
mentation can be found in [39, 47].

3. Semi-variance or downside risk:

R(x,ω) =∑
t

(
max

{
0, [ct(ω)− c̄t ]

T x
})2 ·δ (t). (17.3)

The expected value of this quadratic risk measure corresponds to a semi-
variance, i.e., only positive deviations contribute to it, but in contrast to (17.2)
quadratically.

4. Linear-Quadratic Risk-Benefit Function

R(x,ω) =∑
t

{
γ · (max

{
0, [ct(ω)− c̄t ]

T}x
)2−min

{
0, [ct(ω)− c̄t ]

T}x
}
·δ (t).
(17.4)

Following the arguments by Grübler and Gritsevskyi [13], positive deviations
from the expected costs c̄t contribute quadratically to the risk-benefit function,
whereas negative contributions, i.e., opportunities or benefits, contribute linearly.
This formulation reflects that underestimating costs is penalized more heavily
in competitive markets than overestimation. From a company’s perspective the
latter might result in lower profits whereas the former can result in bankruptcy.

The first three risk measures are well known and widely used in the finance and
risk management literature (cf. [41]), even though they have rarely been applied to
energy-economic problems. To a large extent the alternative risk measures represent
different risk attitudes towards either the average risk or extreme tail events. For
example, the quadratic risk measures (17.3) and (17.4) put much more emphasis on
the “low-probability high-cost” events in the tails of the distributions compared to
the upper mean absolute deviation in (17.2), which averages risks over the whole
range of excess costs. Similarly, the case of CVaR represents also risk aversion
towards the tails, since per definition only the worst (1−β ) fraction of realizations
is taken into account. A specific characteristic of the linear-quadratic risk measure
in (17.4) is that it takes opportunities into consideration. However, if distributions
are sufficiently wide, the quadratic part typically dominates the linear one such that
results turn out to be very close to that of the semi-variance (17.3).
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17.2.3 Numerical Computation

We assume distribution functions for the uncertain cost parameters (see
Sect. 17.4.2). For practical implementation purposes we draw a finite number of N
samples from these joint distributions. By doing so we obtain a numerical estimate
of the risk measure R(x) as defined in (17.5) below

R(x)→ RN(x) =
1
N

N

∑
s=1

R(x,ωs) . (17.5)

Given the sampling procedure the approach can be referred to as distribution-free.
The quality of the solution critically depends on the sample size. In other words, N
needs to be selected large enough, so that it approximates a solution with N → ∞.
We assess the minimum sample size through experiments, where N is increased until
solutions converge and outcomes do not show any qualitative difference. A detailed
description of the convergence criterion as well as the sampling techniques can be
found in Appendix 17.8.

We also account for correlations between uncertain parameters (see Sect. 17.4.2).
Depending on the sampling algorithm, we use either the so-called copulae (in case
of random sampling) or the algorithm suggested by Iman and Conover [18] [in
case of latin hypercube sampling (LHS)] to induce correlation among uncertain
parameters.4

17.3 Three-Technology Model

This section presents results from a very simple and idealized model with the aim
to illustrate, from a conceptual point of view, how in our modeling approach uncer-
tainties and risks affect the decision-making process.

The simple model consists of just three variables x, y, and z. In the energy context
these three variables can be thought of as different types of power plants (e.g., nat-
ural gas, coal, nuclear) with expected values for electricity generation costs c̄x, c̄y,
and c̄z respectively. Uncertainties with respect to costs, characterized by the variance
σ2

i , are assumed to differ across the three technologies (see Table 17.1). The three
power plants need to supply an electricity demand d. To further the complication
from inter-temporal effects, the model is chosen to be static.

Assuming that there is no uncertainty, the problem formulation is reduced to the
simple deterministic objective function Fdet(x,y,z) = c̄xx+ c̄yy + c̄zz. Due to the
employed cost minimization the model suggests to deploy only the cheapest tech-
nology. Even if cost differences between technologies would be very minimal, the

4 For k parameters, as a result of both procedures, we obtain samples on the k-dimensional unit
cube [0,1]k that can subsequently be transformed into arbitrary distributions with the corresponding
quantile functions. Samples are generated with the help of the graphics and statistics software R
[43], making use of several add-on packages [5, 53].



444 V. Krey and K. Riahi

winner always takes it all. In our example this is the natural gas power plant in
the upper left corner of Fig. 17.1a which illustrates the total system costs of the
deterministic objective function. The lines in Fig. 17.1a denote cost meridians of
identical system costs for a combination of nuclear and natural gas shares in total
demand. Naturally the lower the contribution of natural gas becomes, the more the
other technologies need to be deployed, leading consequently also to an increase in
the system costs. The third variable z (coal) is not shown explicitly, because its con-
tribution corresponds just to the gap between the other two technologies’ supplies
and the demand, that is, z = d−x−y.5 A major drawback of the deterministic solu-
tion is that it always features the least-cost option supplying the total demand. Small
changes in cost assumptions may thus dominate the results, with switching between
one extreme to another. This behavior is known as penny switching or knife edge
effect of linear programming.

Table 17.1 Technology specifications in the 3-technology model

Variable Technology c̄i [ct/kWh] σi [ct/kWh]

x Nuclear power plant 4.5 1.0
y Natural gas power plant 3.5 1.5
z Coal power plant 4.0 1.25
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Fig. 17.1 Illustration of (a) total system cost Fdet(x,y, z) and (b) risk measure R(x,y, z) as a func-
tion of technology activities

Panel (b) in Fig. 17.1 shows the values of the risk measure R(x,y,z) if we assume
that the costs are uncertain.6 As illustrated by the graph, also R(x,y,z) is depen-
dent on the share of the individual technologies. From a pure risk perspective, how-
ever, natural gas has for example become much less attractive due to its high-cost

5 In the numerical example without loss of generality the demand is set to d = 1.
6 We implemented the risk measure as defined by the upper mean absolute deviation as defined
in (17.2).
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uncertainty (see standard deviations σi in Table 17.1). Most importantly, the risk
measure in Fig. 17.1b features a minimum—again indicated by the black dot—that
corresponds to a diversified technology portfolio with contributions of all the three
power plant types. In that sense, the model confirms the well-known rule that in
the case of uncertainty it is advisable “not to put all the eggs into one basket.” To
which extent diversification or hedging can help reduce the imputed risk of uncer-
tainty depends on the problem at hand and the model formulations presented further
above (Sect. 17.2.1). Regardless of the problem formulation, robust response strate-
gies need to consider both panels of Fig. 17.1 and the economic trade-off between
the expected costs Fdet as well as the imputed risk R.

It needs to be emphasized that diversification can only help as a hedging strategy,
if the costs of the technologies are not perfectly correlated. In the case of highly
correlated electricity generation costs it is for example preferable to mostly choose
the technology with less volatile costs to minimize the risk measure. This behavior
is illustrated in Fig. 17.2 where the correlation coefficient ρyz between gas- and coal-
fired electricity generation is varied between 0 and 1. With increasing correlation the
share of natural gas at minimal risk is reduced to zero in comparison to more than
20 % in the case without correlation. Note also that the share of the uncorrelated
nuclear plant is increasing in response to the cost dependency between coal and
gas. This has important practical implications for the bigger global energy systems
model, presented in the next section.
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Fig. 17.2 Influence of correlation on diversification of the technology portfolio for correlations
(a) ρyz = 0, (b) ρyz = 0.5, and (c) ρyz = 1

The introduction of an uncertain carbon price would influence the cost distribu-
tions of the three technologies in our example very differently. The cost distribution
of nuclear as a carbon-free technology would not change at all whereas gas- and in
particular coal-fired power generation would be penalized by shifting the distribu-
tions towards higher costs. As a result the optimal share of nuclear in a risk-minimal
portfolio would increase whereas coal’s contribution would decrease.

The combination of expected costs Fdet and risk measure R in our modeling
framework is different for the three formulations described in Sect. 17.2.1. The
mechanism of the three formulations is illustrated graphically in Fig. 17.3. As in
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Fig. 17.3 Illustration of alternative model formulations: (a) minimization of a linear combina-
tion of total system costs and risk measure, (b) minimization of total system costs under a risk
constraint, (c) minimization of the risk measure under a cost constraint

the previous figures the corresponding minima are again indicated by the black dots
in the graphs.

The left-hand panel of Fig. 17.3 represents risk-constrained cost minimization,
i.e., the objective function is identical to that of the deterministic model. In addi-
tion, the risk constraint Rmax—indicated by the red dashed line—is projected onto
the surface of the cost function. The resulting cost minimum corresponds to a tech-
nology portfolio on the edge of the Rmax surface with the lowest possible objective
function value. The risk constraint Rmax excludes the optimal deterministic solution
featuring the extreme of 100 % gas electricity generation. Consequently, all three
power plants contribute to electricity generation.

Figure 17.3b denotes the result of a cost-constraint risk minimization. Panel
(b) thus shows the risk measure R with the cost constraint (1+ f ) ·Fdet projected
onto its surface as the red dashed line. The resulting risk minimum corresponds to a
technology portfolio on the edge of the surface denoted by the cost constraint. Syn-
onymous to the above implementation, the cost constraint (1+ f ) ·Fdet excludes the
minimum risk solution; thus, e.g., natural gas shares are higher than in a case with
pure risk minimization.

The third graph on the right side of Fig. 17.3 corresponds to a linear combina-
tion of expected costs Fdet� and risk measure R, also featuring an optimum with
a diversified technology portfolio. Moreover, the three panels of Fig. 17.3a–c illus-
trate the equivalence between the three alternative problem formulations. As a result
the optimum is identical in the three formulations if the parameters ρ , Rmax, and
f are chosen accordingly. Although mathematically equivalent, from a conceptual
perspective, the three formulations allow for different policy perspectives, where
depending on the context it may be preferable either to control risk (left panel) or
costs (middle panel) or to define specific risk aversion of the decision maker (right
panel).

We move next to the more complex global energy systems model and the imple-
mentation of uncertainty into a “real world problem.”
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17.4 Global Energy Systems Model

In order to explore the impact of cost uncertainties on optimal transitions within
the global energy system and the resulting development pathways, we employ the
above methodologies within a systems engineering model. On the one hand a rela-
tively simple or stylized model structure is a precondition to keep the model trans-
parent and the results interpretable. On the other hand, modeling approaches con-
sidering uncertainties are computationally more demanding than deterministic mod-
els and therefore put limitations on the number of parameters treated as uncertain.
Compared to other energy-economic models, our framework is thus of intermediate
complexity, characterized by a relatively comprehensive representation of energy
technologies within a single world-region.

17.4.1 Model Structure and Scenario Assumptions

Figure 17.4 provides a schematic illustration of the model’s reference energy sys-
tem (RES). The RES is designed to cover a large number of possible energy supply
chains, from primary energy extraction to a range of energy conversion technolo-
gies, and the transmission and distribution of final energy carries to three aggregated
demand sectors.
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Fig. 17.4 Schematic illustration of the one-regional global model. The small letters in the boxes
indicate the uncertainty level assigned to the cost development of individual technologies (l=low,
m=medium, h=high); see Sect. 17.4.2 for details
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The model includes various fossil, nuclear, and renewable energy resources along
with estimates of the associated potentials and extraction costs (see left-hand side of
Fig. 17.4). The conversion sector consists of nine electricity generation technologies
with the possibility of carbon capture and storage (CCS) from fossil- and biomass-
based power generation. In addition the model considers five alternative technolo-
gies to supply liquid fuels, including refineries for oil products as well as coal, gas,
and biomass to liquid options and hydrogen.7 Transportation and distribution costs
of particularly grid-bound energy carriers, such as electricity and natural gas, are
considered as well; however, they are not shown explicitly in Fig. 17.4.

The demand side is more aggregated than the supply side and distinguishes three
demand categories for electric, non-electric (direct use), and transportation fuel de-
mand. In the demand sectors we currently do not model individual appliances, but
use energy conservation cost curves. The reference demand is based on the B2 sce-
nario [45] from the IPCC Special Report on Emissions Scenarios (SRES) [37]. The
parameterization of the conservation cost curves and the corresponding energy con-
servation potentials is derived from an updated version of the B2 scenario using the
IIASA Integrated Assessment modeling framework [16, 46] including the detailed
11-regional MESSAGE-MACRO model [32, 46].

Large-scale energy systems models typically include a number of additional re-
strictions or constraints in order to (i) avoid typical penny switching effects of linear
programming approaches and (ii) guide the model into a “realistic” direction. Such
external model guidance often mimics market penetration limitations of specific
technologies and remains however to some extent arbitrary with limited empirical
basis. In contrast to this practice, we do only include restrictions that have a phys-
ical or technical motivation, like, e.g., resource availability, renewable potentials,
maximum share of intermittent electricity generation (25 % of final demand, oth-
erwise additional backup capacity needed), or baseload constraints (60 % of final
electricity demand). An exception is the use of solid fuels in the end-use sectors
which is limited to the level of the B2 baseline [16] in order to mimic noneconomic
considerations and inconvenience of solid fuel consumption at the consumer level.

The main underlying assumptions with respect to scenario drivers, such as eco-
nomic growth, population, or technological change, build upon the B2 SRES story-
line and the most recent quantitative update summarized in [46]. The B2 scenario
is a middle of the road “dynamics as usual” scenario, which combines intermediate
population and economic growth with modest but balanced technology improve-
ments. The balanced and intermediate characteristic of the scenario makes it ideal
for defining the expected values in our analysis. Hence, the parameterization of the
technologies, including the evolution of expected costs over time, and energy de-
mand stem mainly from the B2 scenario. In addition, we build upon the review of
technological change in the scenario literature performed by Nakicenovic and Riahi
[36], which analyzes future distributions of costs of three ensembles of scenarios for

7 Hydrogen production is limited to electrolysis. While this permits that hydrogen is produced
from all primary fuels, we did not consider other technologies such as natural gas steam reforming
in order to keep the number of technologies as small as possible for the computationally expensive
optimization procedure.
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the World Energy Council [38], the IPCC SRES, and the IPCC Third Assessment
Report [35]. We use their analysis in order to define broader uncertainty ranges of
future technology costs (see Appendix 17.7 for further details on cost and demand
assumptions).

As noted earlier, all our scenarios consider a modest price for carbon, approx-
imating that there will be some (but not drastic) efforts to limit climate change
over the long term. The expected carbon price [and its probability density func-
tion (PDF)] was derived from a subset of 58 stabilization scenarios from the IPCC-
AR4 scenario database [15] with CO2-equivalent concentration targets of 650 ppmv
and higher. A lognormal distribution was fitted to this sample of carbon prices in
the year 2100 (see Appendix 17.7.3) and the resulting values were then propagated
backwards to 2010 with the discount rate. This procedure results in a moderate ex-
pected carbon price of 4.6 US$/tC in 2010 which grows with the model’s discount
rate of 5 % over time. The carbon price in later periods is, e.g., 12.2 US$/tC in 2030,
32.5 US$/tC in 2050, and 372 US$/tC in 2100.

17.4.2 Uncertain Parameters

We need to define uncertainties with appropriate assumptions about the shape, vari-
ance, and correlation between different uncertain cost parameters.

Unlike in natural sciences, controlled experiments are unfortunately not available
to define the shape of probability distribution functions of future technology costs.
There is though some limited empirical evidence from time-series analysis of his-
torical technology data (e.g., nuclear power generation [21]), which suggest the use
of lognormal or similar distributions (e.g., Gamma), characterized by a tail on the
upper side and a cutoff on the lower part of the costs. Similar to earlier uncertainty
analysis by for example [12] we thus apply lognormal distributions8 to all uncertain
cost parameters where the expected values correspond to the deterministic costs.9

Depending on which part of the technology costs are dominant, we either model
(capacity-related) investment or (activity-related) variable operation and mainte-
nance costs as uncertain parameters. For example, the variable costs of fossil fuel
extraction as well as biomass production and nuclear fuel costs are modeled as un-
certain parameters. For power generation, including CCS and liquid fuel production,
investment costs typically dominate levelized production costs (excl. fuel costs) and
are therefore modeled as uncertain. In contrast, for energy-saving options which op-
erate on the level of conservation cost curves the cost of the activity is assumed to
be uncertain.

We assume also that the cost uncertainty of technologies is increasing over
time. For this purpose we use the future cost distributions from [36] as a proxy to

8 The choice of lognormal distributions for the costs corresponds to normally distributed growth
rates of these.
9 In total 32 cost parameters are treated as uncertain; 31 of which are technology-related and the
32nd, the carbon price, is policy-related.
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define the cost variance for individual technologies at the end of the time horizon.10

Figure 17.5 gives a schematic illustration of the increasing uncertainty over time
(technical details of the implementation are given in Appendix 17.7.2). Apart from
the evolution of the expected value, Fig. 17.5 also shows the 25th and 75th per-
centile (shaded area) as well as the 1st and 99th percentile of the distribution func-
tion. Given our approach, costs generally change more rapidly in the first decades
and then converge towards their long-term value in the second half of the century.
Perhaps, most importantly our implementation of uncertainty considers not only the
possibility of dropping costs, but also a long tail with small likelihoods of increasing
costs as observed during the recent years.

We distinguish three broader uncertainty categories for individual technologies:
low uncertainty (σlow = 0.15), medium uncertainty (σmed = 0.3), and high uncer-
tainty (σhigh = 0.6). Following [36], mature technologies with only small cost re-
duction potentials (e.g., coal power plant, oil refinery) exhibit low variance and
are thus assigned to the lowest uncertainty category. Readily available technolo-
gies that have been deployed on a large scale, but are still expected to have signif-
icant cost reduction potential (e.g., gas combined cycle power plant) are grouped
in the medium uncertainty category. In addition, also mature technologies where
heterogeneity and local context add to the cost uncertainty (e.g., hydro-power, fos-
sil fuel extraction, energy-saving measures) are assigned to the intermediate cate-
gory. Finally, advanced technologies with potential for high-cost reductions typi-
cally show a wide spread of cost assumptions across different scenarios (e.g., solar
photovoltaics). These technologies are grouped with those that are affected by ad-
ditional risks (e.g., acceptance problems of nuclear power) in the category with the

Fig. 17.5 Illustration of cost interpolation procedure (left) and cost distribution in 2100 (right) for
investment costs of a natural gas combined cycle power plant

10 The cost distributions are defined for the final year of the model’s time horizon, i.e., 2100.
To derive cost paths for the model’s full time horizon (2000–2100) we exponentially interpolate
between the base year value in 2000 and the random parameter values in 2100.
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highest uncertainty. The resulting classification of individual technologies is de-
noted in Fig. 17.4 as small letters in the technology boxes (l = low, m = medium,
and h = high).

Many energy technologies share similar components (e.g., gas turbines in natural
gas combined cycle and integrated coal gasification combined cycle power plants)
or rely on identical technologies (e.g., exploration and drilling techniques for con-
ventional oil and gas reserves). Hence, the future development of their costs and
the associated diffusion process are not independent of each other [19, p. 36]. As
illustrated earlier, this has major implications for hedging or diversification strate-
gies. We thus explicitly include correlations among different uncertain parameters
in our modeling framework. For some of the technologies data was available from
specific technology component analysis (electricity generation technologies [22]) to
derive the correlation coefficients. For others we rely on expert opinions. Similar to
the uncertainty categories, we distinguish several levels of correlation, i.e., perfect
(ρi j = 1), high (ρi j = 0.7), medium (ρi j = 0.35), and uncorrelated (ρi j = 0). A more
detailed description of this procedure can be found in Appendix 17.7.2.

17.5 Results

This section presents results of the robust decision-making framework. We analyze
a series of model runs and compare scenario outcomes with and without considera-
tion of uncertainties. By doing so we explore the main characteristics of least-cost
risk hedging strategies and the extent to which the imputed risk of future uncertain-
ties can be reduced and at what costs. We are hence particularly interested in the
relationship between the “risk premium” and avoided risk, including implications
for the tail of the cost distribution. In addition, we analyze responses of the energy
system with respect to the technology portfolio and investment patterns, as well as
consequences for carbon emissions under uncertainty.

17.5.1 Energy System Costs

Our modeling approach considers the uncertainty of future technology costs as well
as of the carbon price. On an aggregated level these uncertainties translate into dis-
tinct future distributions for the total energy system costs, which critically depend
on investment decisions and the type of technologies that become adopted. Com-
parisons of probability distributions of different energy deployment pathways are
thus critically important for understanding the implied risk of different strategies. It
is worthwhile noting that parameters other than costs cannot be included into this
framework as these would require the introduction of recourse conditional on the
actual realization of these parameters.
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A comparison of the PDF of the total energy system costs of two alternative
development pathways, with and without considering uncertainty, is illustrated in
Fig. 17.6a–d. The individual panels show discounted system costs over the century
as well as for individual points in time (2030, 2050, and 2100).11 The deterministic
solution’s PDFs are shown in black whereas the PDFs of our robust decision-making
framework, assuming a risk premium of 1 %, are shown in red.

In the deterministic model uncertainty is ignored in the decision process and
system costs are minimized based on expected values of all input parameters. The
resulting distribution of energy system costs is relatively wide, including high-cost
tails with comparatively higher probability of very costly outcomes. In contrast,
the PDFs resulting from the robust solution with a risk premium of 1 % are more
centered around their expected value than the deterministic ones. While this ten-
dency increases over time as uncertainties grow towards the end of the century (see
Sect. 17.4.2), the distributions clearly show increasing confidence that future system
costs will be closer to the expected values.

By construction the expected value of system costs, indicated by the red vertical
lines in all subfigures, is shifted by 1 % to the right indicating the additional costs
(or hedging investments) that were spent to reduce uncertainties and their imputed
risk. Consequences of this investment are visible in the tails of the cost distribu-
tions, represented by the 99th percentiles in Fig. 17.6 which are shifted towards the
expected value, implying significantly reduced risk of unfavorable outcomes with
extreme costs. Remarkably, the shaving of the tales has occurred even though we
employ upper mean absolute deviation as our default risk measure which puts uni-
form emphasis on all parts of the distribution exceeding the expected value and not
only the tails (see also Sect. 17.2.2). This development needs thus to be seen as an
endogenous response driven by the characteristics of energy system uncertainties.

This effect is most pronounced in the long term. For example, by 2100 total
costs in the deterministic case are twice as high as the expected value at the 99th
percentile of the distribution (see Fig. 17.6d). With additional hedging investments
of just 1 % the 99th percentile’s value is reduced by about 60 % in relation to the
expected value. Or in other words, hedging investments of just about 100 billion
US$ have acted as a leverage to reduce the risk at the 99th percentile by more than
6 trillion US$. This behavior nicely illustrates the trade-off between expected value
costs and risk of severely underestimating future costs.

As a result of discounting with 5 % the PDF of total discounted system costs
(Fig. 17.6a) is dominated by the relatively narrow near-term distributions and ex-
hibits a shape which is similar to the PDFs of 2030 and 2050 but much narrower
than the 2100 PDF which is suppressed by a factor of ∼ 80 in comparison with the
2010 PDF due to discounting.

11 The energy system cost PDFs are generated by propagating the joint input distributions through
the model, given a fixed solution. Technically speaking, the N = 20,000 realizations of uncertain
cost parameters are multiplied with the deterministic and robust solution vectors, respectively, thus
obtaining 20,000 objective function values. A kernel density estimate is then used to generate the
PDFs in Fig. 17.6.
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Fig. 17.6 Probability density functions of future energy systems costs. Deterministic model with-
out uncertainty (black) and robust decision-making framework results assuming a risk premium of
1 % (red): (a) total discounted system costs (2010–2100), (b) system costs in 2030, (c) in 2050,
and (d) in 2100

The above calculations assume a risk or insurance premium of 1 %, hence limit-
ing the additional hedging investments to 1 % of total systems costs of the determin-
istic case. It needs to be emphasized, however, that in the “real world” the risk pre-
mium is dependent on the risk attitude of the decision maker and is therefore a policy
variable. A quantitative analysis of the trade-off between the costs of hedging (i.e.,
the risk premium f ) and the resulting benefits in terms of reduced risk is neverthe-
less central for providing guidelines and to understand the order of magnitude of this
trade-off. Figure 17.7 thus shows the relationship between increasing risk premium
and the resulting benefits in terms of reduced risks through changes in the distribu-
tion of future system costs. We specifically focus on the 80th to the 99th percentile
of the cost distribution, with the solid lines showing how these quantiles change as
a function of the risk premium f in the case of upper mean absolute deviation and
the dashed lines showing the relationship for the case of semi-variance. As clearly
illustrated by Fig. 17.7, increasing willingness to invest into the risk premium is gen-
erally resulting in reduced risk of high energy system costs. The marginal benefits
of hedging investments, however, decrease with increasing risk premium f —a clear
indication of decreasing returns of scale at high premiums. How the different quan-
tiles perform as a function of the risk premium also depends on the employed risk
measure. The linear risk measure (upper mean absolute deviation) reduces the 80th
and 90th percentiles stronger than the quadratic one (semi-variance) whereas the sit-
uation is the opposite for the 95th and 99th percentiles. As expected, the quadratic
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Fig. 17.7 Trade-off between expected total system costs and risk for linear (solid lines) and
quadratic risk measure (dashed lines)

risk measure puts a higher emphasise on reducing the impact of the extreme tail
events and therefore the 99th percentile is reduced strongest, followed by the 95th,
90th, and the 80th percentiles in relative terms.

Regarding the choice of the risk premium, Fig. 17.7 clearly shows that 1 % is in
the range where the marginal returns of the hedging investments become relatively
saturated—as indicated by the flattening curves for most quantiles in the figure. We
therefore select in the sequel a risk premium of f = 1 % as our central case, but
will continue to show the sensitivity of the results for alternative risk premiums if
necessary.

17.5.2 Primary Energy Supply

The development of total primary energy supply (TPES), resulting from different
assumptions about uncertainty, is shown in Fig. 17.8. Panel (a) displays the devel-
opment in the deterministic case without any uncertainty, while panel (b)–(d) il-
lustrate the impact of considering either only technology-related uncertainties (b),
only carbon price uncertainties (c), and finally taking both carbon and technology
uncertainties into account simultaneously (d).

Comparing panels (a) and (b) of Fig. 17.8 reveals the main responses of the en-
ergy system due to technology uncertainty.12 An important characteristic of the
deterministic energy system is that the lack of uncertainty results in the sequen-
tial deployment of first the cheap options until they are exhausted, followed later

12 It is important to recall that both panels consider a modest expected value carbon price.
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Fig. 17.8 TPES in the (a) deterministic case, (b) technology uncertainties only case, (c) carbon
price uncertainty only case, and (d) technology and carbon price uncertainties case

by an almost instant switch to new technologies or resources. By contrast hedg-
ing against technology uncertainty results in the comparatively early introduction
of new and advanced alternatives. This is, e.g., visible in the deployment sched-
ules of oil resources, where under technology uncertainty depletion of conventional
oil (characterized by relatively lower uncertainty) is delayed, while unconventional
oil is introduced earlier in time (compared to the deterministic case). The result is
a mixture of conventional and unconventional extraction in order to increase the
resilience of the system against the possibility that unconventional oil might not be-
come available at the expected price. The same holds not only for unconventional
gas but also for other advanced technologies, which deploy comparatively earlier in
the case of considering uncertainty. In the medium to long term this results in a more
diverse technology portfolio, which we will discuss in some detail in Sect. 17.5.4 on
diversification. Perhaps, worth noting is also the revival of coal under technology
uncertainty, which is a direct result of the relatively lower uncertainty of coal oc-
currences and electricity generation technologies, which push coal tentatively back
into the system around mid century. In the latter half of the century, coal becomes
less deployed due to the increasing carbon price over time.
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Comparing panels (a) and (c) illustrate the impact of carbon price uncertainty. It
needs to be noted that the case with carbon price only uncertainty corresponds in
theory to an alternative deterministic model run with relatively higher carbon price,
since the risk term penalizes carbon emissions only, and all other energy system
aspects are deterministic. There is thus no trade-off between different types of un-
certainties as in the case of technology uncertainty shown in panel (b). It is therefore
not surprising that the scenario with uncertain carbon prices features (compared to
the deterministic case) primarily a further reduction of the deployment of carbon-
intensive technologies (and emissions). Diversification as observed under technol-
ogy uncertainty is thus lacking in this setup.

Note also the increase in total primary energy use, which is primarily a result
of decarbonization of the end-use sectors by a fuel switch to hydrogen whose pro-
duction is quite energy-intensive, in particular because we have adopted fossil fuel-
equivalent TPES accounting method for renewable and nuclear energy.13

Comparing all three panels with uncertainty treatment (b)–(d) with the deter-
ministic panel (a) we recognize quite different changes in quantity and structure of
TPES. Whereas in the technology uncertainties only case (b), an increased use of
coal as well as a diversification of TPES is observed, and the carbon price uncer-
tainty only case (c) mainly shows more pronounced decarbonization and an increase
of TPES towards the end of the century with no revival of coal. The results of the
combined technology and carbon price uncertainty run in panel (d) combine some
of these effects and are characterized by not only both diversification and decar-
bonization but also increased TPES towards the end of the century.

In summary, we thus conclude that it is important to take a holistic view and
consider both technology- and policy-related uncertainties simultaneously. Only in-
cluding one of them leads to either diversification or hedging against possibly high
carbon prices with distinctly different technology portfolios. Incomprehensive ac-
count of uncertainty may thus lead to biased policy recommendations.

17.5.3 CO2 Emissions

As mentioned earlier, our scenarios assume an expected value for the carbon price
of about 4.6 US$/tC in 2010 which increases with the discount rate to about 370
US$/tC in 2100. This corresponds to the mean across all scenarios in the IPCC
scenario database [15] with CO2-equivalent concentration stabilization targets of
650 ppmv and above. The deterministic implementation of this carbon price trajec-
tory results in our modeling framework in cumulative CO2 emissions of ∼ 880 GtC
over the course of the century, corresponding to CO2 concentrations around 530 ppm
towards 2100. Considering also non-CO2 emissions, based on the scenario classifi-
cation from Chap. 3 of the IPCC Fourth Assessment Report [11], this would corre-

13 Each unit of electricity generated from renewable and nuclear energy contributes with 2.56 units
to TPES corresponding to a conversion efficiency of 39 %.
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spond to about 650 ppmv CO2-equivalent concentrations. This result, although not
surprising, illustrates that our modeling approach leads to very similar results than
other deterministic models assessed by the IPCC.

Considering the uncertainty of the carbon price, however, we observe signifi-
cant changes of the emissions pathway towards more stringent mitigation. This is
particularly due to the lognormal distribution of the carbon price, including low-
probability events in the tail with much higher carbon prices of several thousand
US$/tC. Therefore, in the robust cases hedging against the tail of high carbon prices
becomes a major motivation to reduce carbon emissions, even if additional technol-
ogy uncertainty is considered. This response to uncertainty has also been observed
in previous studies, such as [29, 42, 54]. While we derive the same conclusion, the
reason for the response is different. Both [29, 54] conclude that relatively lower
emissions would be rectified due to the uncertainty of climate change damages (i.e.,
uncertainties in the response of the physical climate system to an increase in GHG
emissions), whereas our analysis suggests lower emissions because of the economic
risk of uncertain carbon prices.

a b

Fig. 17.9 (a) Annual energy-related carbon emissions in GtC and (b) atmospheric CO2 concentra-
tions in ppm as a function of the risk premium f

We find further that the stringency of mitigation is critically dependent on the
risk premium. The relationship between the risk premium and annual carbon emis-
sions and resulting atmospheric CO2 concentrations is summarized in Fig. 17.9.14

We observe that already very small additional hedging investments of only 0.1 % re-
sult in a reduction of cumulative emissions by 50 GtC or 5.5 % in comparison to the
deterministic case. This corresponds to a CO2 stabilization level of about 515 ppm.
In our standard case with a risk premium of 1 %, cumulative emissions are approxi-
mately reduced by an additional 22 % (∼ 690 GtC) for the linear risk measure (upper
mean absolute deviation), corresponding to a further reduction of the CO2 stabiliza-

14 The annual carbon emissions in Fig. 17.9a are a direct model output whereas the CO2 concen-
trations in the atmosphere in Fig. 17.9b are calculated with the climate model MagiCC 4.1 [52].
As our model calculates only energy-related emissions, we added for this purpose non-energy-
related CO2 emissions (e.g., land-use change, cement production, gas flaring) from a 670 ppmv
stabilization scenario developed at IIASA [46].
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tion level to ∼ 480 ppm. The impact of the distribution’s tail is more pronounced
by the quadratic and CVaR risk measures. Thus, in the quadratic case, emissions
are reduced by another 2 % points to about 670 GtC in comparison with the linear
risk measure. The 95 %-CVaR risk measure even results in cumulative emissions of
∼ 620 GtC reaching a CO2 concentration level of close to 460 ppm CO2 by the end
of the century. For higher risk premiums even more effort is put into carbon abate-
ment to limit the impacts of eventually high carbon prices, e.g., at f = 3 % we find
a reduction in excess of one third (580 GtC, 450 ppm) in comparison with the de-
terministic optimization and at f = 5 % cumulative emission reductions constitute
even more than 40 % (510 GtC, 430 ppm).

The peaking year of energy-related CO2 emissions is only marginally affected by
the risk premium and varies just between 2030 and 2040. However, the magnitude of
the emission peak changes considerably from 12 GtC in the deterministic case ( f =
0) to 8.8 GtC at a risk premium of f = 5 %. The impact on near-term emissions is
relatively smaller in our standard case with a risk premium of 1 %, where emissions
are about 10 GtC around 2030 and stay relatively unaffected until 2020, because of
the energy system’s inertia (see Fig. 17.9).

17.5.4 Diversification

As discussed in the context of the 3-technology model in Sect. 17.3, but also in
the previous paragraphs, diversification may serve as a possible hedging strategy to
increase resilience of a system. While we are focusing in this section particularly
on the diversification within the electricity sector, it needs to be stressed that the
energy system is more complex, and diversification may also occur as a result of
shifting investments between different sectors. These aspects are discussed later in
Sect. 17.5.5, which is focusing on the investment patterns under uncertainty.

In order to measure diversity, we employ an integrated multi-criteria diversity
index developed by Stirling [51], which is based on distance metrics and will be
referred to in the following as the Stirling index.15 We are in particular interested
in the relationship between the Stirling index and the risk premium and to which
extent increasing risk aversion is triggering diversity as a response to uncertainty.

For this purpose, Fig. 17.10a, b display the electricity generation portfolio’s de-
pendence on the risk premium f in 2030 and 2050 respectively. In addition to the
technology shares in electricity generation, the relationship between the Stirling in-
dex and the risk premium is shown on the right axes of the graphs. As can be seen
from Fig. 17.10a, b the Stirling index is generally increasing at higher risk premi-
ums, but the behavior is quite different in 2030 and 2050.

15 The index is defined as M=∑i j di j pi p j , where pi is technology i’s share of electricity generation
and di j the distance in Euclidean disparity space between technology i and j [51, Chap. 3.2]. For
the graphs a distance of 0.5 between fossil energy technologies (coal and gas) is used whereas for
all other technologies we assume a distance of 1.
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Fossil power generation from natural gas dominates electricity generation in the
short to medium term as is evident from its high share in 2030 (Fig. 17.10a). In the
deterministic case hydro and wind are the only other two technologies contributing
to electricity generation. At risk premiums below 2 % this situation only marginally
changes towards a larger share of hydropower plants. Above 2 % nuclear power
comes in as a fourth option, resulting in a significant increase of the Stirling index.
This situation indicates that the gap in levelized electricity generation costs between
natural gas and nuclear is substantial (0.96 ct/kWh which corresponds to ∼ 26 %
higher costs for nuclear) which requires a relatively high risk premium of 2 % to
bring in this alternative. Coal power generation is phased out until 2030 as a result
of a moderate carbon price and the uncertainties that come along with it.16

a b

S
tir

lin
g 

In
de

x

sh
ar

e

S
tir

lin
g 

In
de

x

risk premium f risk premium f

sh
ar

e

Fig. 17.10 Technology shares in electricity generation and corresponding Stirling index in
(a) 2030 and (b) 2050 as a function of the risk premium f

In 2050 the deterministic electricity generation portfolio features four technolo-
gies, namely gas, nuclear, hydro, and wind that contribute to electricity generation.
Already at relatively low risk premiums of less than 1 % the share of hydro more
than triples at the cost of gas and nuclear power generation, resulting in a noticeably
higher Stirling index. The reason for this early diversification is that levelized elec-
tricity generation costs are very close for these three technologies with hydro only
being some 8 % and 6 % more expensive than gas and nuclear respectively. With
further increasing risk premium the technology portfolio grows to seven technolo-
gies with biomass CCS power plant, coal CCS power plant, and solar PV joining
in. In addition, the shares are much more evenly distributed, such that at f = 5 %
no technology supplies more than 31 % of total electricity in comparison to almost
42 % in the deterministic model run. This is an illustration of the previously cited
Don’t put all your eggs in one basket rule. The observed diversification is though
significantly stronger by 2050 compared to 2030, due to the short-term inertia of the
system against rapid structural changes.

16 We assume on average a lifetime of 30 years for fossil power plants. Therefore by 2030 all power
plants that were built in the base year 2000 reach the end of their lifetime.
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It has to be emphasized that in contrast to modeling frameworks that explicitly
aim at diversification as an objective (e.g., [50]) in our modeling framework di-
versification is an endogenous result driven by the aim to reduce risk. The extent
of diversification is, however, critically dependent on the nature of the system and
the dependence structure of joint input distributions which we have assumed (see
Appendix 17.7.2). Our sensitivity analysis of the same scenarios indicates that in
absence of any correlation between the costs of power generation technologies di-
versification would be significantly more pronounced.

17.5.5 Energy-Related Investments

We finally review the implications of the risk-hedging strategies for energy-related
investments. Our systems engineering perspective permits us to explore shifts of
investment between various technology clusters in fuel extraction, electric, non-
electric (liquid fuels), and the energy end-use sectors.

The cumulative energy system investments between 2010 and 2050 are summa-
rized in Fig. 17.11. Although we are dealing with a moderate stabilization scenario
(∼ 690 ppmv CO2-equivalent concentration in the deterministic case), investments
into fossil fuel technologies still dominate the first half of the century. In particular
not only upstream investments but also electricity generation and liquid fuel pro-
duction are characterized by high shares of fossil fuels, particularly in absence of
uncertainty. This situation changes in the robust cases with increasing shares of in-
vestments into low-carbon options such as biomass, nuclear, and renewable electric-
ity generation and synthetic fuels. In addition, increased efforts to improve energy
efficiency in the end-use sectors become a more important factor in the robust cases,
where the strongest increase occurs at risk premiums higher than 1 %. Most of these
efficiency improvements take place in the non-electric and transport end-use sec-
tors, because decarbonization is typically more costly in these sectors than, e.g., for
electricity.

Total energy-related investments in the deterministic case are estimated to be
around 49 trillion US$2,000 between 2010 and 2050. Additional investments into
risk-hedging range between 7 % and 30 %, corresponding to a total of 52 and 64
trillion US$ in the cases with 1 % and 5 % risk premium respectively. Despite the
comparatively modest increase of total costs, which is determined by the risk pre-
miums, a significant increase in investments is required. Along with the increase of
the total energy investments, we observe a considerable reallocation of investments
among the different sectors of the energy system, most notably from the supply-side
sectors to the end-use sectors, but also from fossil to renewable technology clus-
ters. For example, the reallocation of investments between the four major sectors
indicated in Fig. 17.11 (i.e., resource extraction, electricity generation, non-electric
sector, and end-use) comprises 4.5 % and 15 % of total energy-related investments
between 2010 and 2050 under the 1 % and the 5 % risk premium, respectively. These
numbers increase further if reallocation of investment within the four major sectors,
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Fig. 17.11 Cumulative energy system investments for the period 2010–2050 in different sectors as
a function of the risk premium

e.g., from fossil electricity generation towards renewables, is taken into account.
It is interesting to note that the reallocation of investments becomes increasingly
important for the lowest risk premiums of 1 % and below, simply because the total
increase of energy system expenditures, and therefore also investments, is tightly
constrained by the risk premium. For these cases, the reallocation effect is compa-
rable to the absolute increase of energy investments.

In terms of energy expenditures, i.e., in addition to investments also including op-
eration and maintenance costs, the reallocation effect is much more drastic. We find
that the reallocation of energy-related expenditures is up to a factor of 10 higher
than the total increase in expenditures in the case of very low risk premiums. In
Sect. 17.5.1 it was shown that more robust solutions can be obtained even at very
low hedging costs. However, the dominance of redistribution of sectoral investments
and expenditures over the actual increase in costs, in particular at low risk premi-
ums, illustrates that hedging results in significantly different investment patterns in
comparison with the deterministic expected least cost solution. Therefore, it is not
so much the total costs of hedging against technology and carbon price uncertain-
ties that need to be in the focus of attention, but rather how investments are allocated
within the energy system,17 with major implications also for the appropriate portfo-
lio of up-front R&D expenditures.

17 From a more technical perspective this illustrates that quasi-degeneration is an important prob-
lem in modeling, i.e., quite different solutions can be accommodated within very small variations
of the objective function value of optimization models.
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17.6 Summary and Conclusions

Traditional deterministic energy models without an endogenous representation of
uncertainty favor cost-optimal investments into a limited set of technologies that are
expected to perform best in the future. Exploring the uncertainty of future energy
systems costs, however, we find that such strategies can be very costly. This is in
particular due to the nature of imputed energy systems uncertainties, characterized
by long tails and the possibility of very high costs in case future uncertainties are
resolved in an unfavorable direction.

In this chapter we thus presented a new modeling framework of the global en-
ergy system, which combines traditional elements of systems engineering model-
ing approaches with salient features of a risk management perspective. Employing
optimization techniques from modern portfolio theory with a representation of un-
certain costs and associated risks along the energy chain, including extraction and
conversion technologies as well as demand-side management costs, permitted us to
identify future development pathways that are cost-effective not only from today’s
perspective and expectations, but factor in also the imputed risk of uncertainty.

Through a series of sensitivity analysis we identify characteristics of risk hedging
strategies that are adapted to considerably reduce future risks and are hence robust
against a wide range of future uncertainties. We observe significant changes in re-
sponse to energy system and carbon price uncertainties with major implications for
the expected energy system costs, timing of investments, the choice of technology,
as well as resulting emission levels.

Firstly, we find that hedging strategies under uncertainty are characterized by
higher short- to medium-term investments into advanced technologies, including
not only earlier deployment of renewables but also exploration of unconventional
natural gas resources. Our results illustrate that while in the absence of uncertainty
it seems to be cost-effective to postpone investments into new alternatives in order to
maximize profits from available low-cost options early on; a more comprehensive
view of the future including the uncertainty that new options might not become
available at the expected costs imposes long-term deployment risks and thus triggers
early up-front investments into niche markets and demonstration plants.

Secondly, we find that CO2 emission reductions to be much more pronounced un-
der uncertainty. This response to uncertainty has been observed in previous studies,
such as [29, 54]. While we derive the same conclusion, the reason for the response is
different. Yohe et al. [54] conclude that relatively lower emissions would be rectified
due to the uncertainty of climate change damages (i.e., uncertainties in the response
of the physical climate system to an increase in GHG emissions); our analysis sug-
gests lower emissions because of the economic risk of uncertain carbon prices and
technology costs.

Thirdly, our analysis suggests a considerable diversification of the technology
portfolio under uncertainty. Diversification not only helps to reduce the “average
risk,” but it also results in significant reduction of the risk of high impact tail events.
In our analysis, for example, a modest risk premium of about 1 % of total energy ex-
penditures reduces the value of the 99th percentile by up to a factor of two relative to
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the expected value expenditures, thus reducing the risk of large losses significantly.
This conclusion has important implications for energy and climate policy, empha-
sizing the risk of unbalanced R&D portfolios or picking winners at a premature
stage and thus focusing on a too narrow policy portfolio.

With respect to costs, we find that modest risk premiums (or hedging invest-
ments) can significantly reduce the vulnerability of the energy system against the
associated uncertainties. The extent of early investments, diversification, and emis-
sions reductions, however, depends on the risk premium that decision makers are
willing to pay to respond to prevailing uncertainties. In other words, our modeling
framework helps to understand how much risk can be avoided through which mech-
anisms and at what costs. How much risk needs to be avoided is though dependent
on the risk aversion of the whole society or the decision makers in the respective
sectors—and remains thus one of the key policy variables.
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17.7.1 Demands

As described in Sect. 17.4 we distinguish the three demand categories electric,
non-electric (direct use) and transportation fuel demand. Demands are defined in
terms of baseline final energy consumption derived from the B2 scenario that
was developed with the IIASA GGI Integrated Assessment modeling framework
[14, 16, 46]. Table 17.2 presents the numerical demand values for the periods 2000,
2050 and 2100.

Table 17.2 Final energy demands in the three demand categories for the periods 2000, 2050
and 2100

Demand [EJ] 2000 2050 2100

Electric 45.9 178.2 335.7
Non-electric 168.9 348.3 362.1
Transport 74.7 190.3 246.7

These demands can be lowered by additional investments into sectoral energy-
saving measures which are modeled on the level of discretized two-step conser-
vation cost curves. More details on the energy saving potentials and costs will be
provided in the following section on technology data.

17.7.2 Technologies

Descriptions of individual technologies in the model include economic (e.g. invest-
ment costs, fixed and variable operation and maintenance costs) as well as techni-
cal parameters (e.g. efficiency, emissions, load factor). In our modeling framework
only economic parameters, i.e. either investment or variable operation and mainte-
nance costs, are assumed to be uncertain whereas all other parameters are treated
deterministically and in addition do not include any time-dependence to simplify
interpretation of results.

Due to the large potential for wind power, we distinguish two categories with
different wind conditions which were derived from the analysis by de Vries et al.
[8]. The cost data for the two categories are identical, just the load factor is assumed
to be different to reflect the difference in wind conditions. Potentials for the two
wind categories as well as for other renewable energy carriers are summarized in
Table 17.5 of the following section.

17.7.2.1 Deterministic Parameters

Table 17.3 summarizes the assumptions made for all parameters of individual tech-
nologies. As mentioned above, the technical parameters in the first three columns of
the table (pll = plant lifetime, plf = plant load factor, eff = net conversion efficiency)
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Table 17.3 Deterministic technology-specific parameters (pll in years, inv and fom in US$/kW
and vom in US$/kWyr)

Technology pll plf eff inv fom vom inv fom vom
– 2000 – – 2100 –

Coal extraction 10 1.00 1.00 130 35 130 35
Oil conv. extraction 10 1.00 0.96 150 80 150 80
Oil unconv. extraction 10 1.00 0.82 225 140 225 140
Gas conv. extraction 10 1.00 0.97 100 75 100 75
Gas unconv. extraction 10 1.00 0.92 180 160 180 160
Biomass < 3US$/GJ 10 1.00 1.00 65 65
Biomass ≥ 3US$/GJ 10 1.00 1.00 125 125
Nuclear fuel 10 1.00 0.50 30 30
Coal power plant 30 0.75 0.38 1,300 74 1,100 62.6
Gas combined cycle 30 0.75 0.50 716 51 400 32
Nuclear power plant 30 0.75 0.38 2,500 108 1,800 99
Biomass power plant 30 0.75 0.33 1,567 82 1,200 68
Hydro power plant 50 0.42 0.38 2,500 40 2,500 40
Wind turbine (cat. 1) 30 0.34 0.38 1,344 56 600 37
Wind turbine (cat. 2) 0.22
Solar PV 30 0.25 0.38 4,756 111 1,000 48
Backup (e.g. CAS) 30 0.50 0.80 500 20 500 20
Coal CCS module 30 0.75 −0.25 705 55.9 705 55.9
Gas CCS module 30 0.75 −0.13 503 19.8 503 19.8
Biomass CCS module 30 0.75 −0.25 846 109 846 109
Hydrogen electrolysis 30 0.95 0.80 452 20 4 380 15 4
Coal methanol 30 0.90 0.63 1,350 76 10 1,150 76 10
Gas methanol 30 0.90 0.68 630 46 5.4 480 35 5.4
Bioethanol 30 0.90 0.87 1,400 74 8 507 55 8
Refinery 30 0.90 0.93 66 7.5 66 7.5
Electricity t/d 30 0.55 0.90 800 55 18 800 55 18
Gas t/d 30 0.70 0.95 200 24 3.5 200 24 3.5

are assumed to be time-independent. In contrast to that, economic parameters (inv
= investment costs, fom = fixed operation and maintenance costs, vom = variable
operation and maintenance costs) typically vary over time. Therefore, Table 17.3
contains two sets of these parameters, one showing the value in the base year 2000
and one for the year 2100. The interpolation procedure between these two values
is described in Sect. 17.4.2 and is illustrated in Fig. 17.5 where additional technical
details are provided in the following section on uncertain parameters.

As mentioned in Sect. 17.4 we do not model individual technologies in the end-
use sectors, but have chosen to use discretized conservation cost curves instead.
These cost curves were derived from a set of model runs (B2 baseline, 670 ppmv
and 480 ppmv stabilization scenarios) with the 11-regional MESSAGE-MACRO
model [32, 33, 46] which are documented in the corresponding scenario database
[16]. Original scenario data were aggregated to the global level, after which an ex-
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ponential trend in time was fitted to the data to obtain smooth curves. The result-
ing two-step discretizations of these conservation cost curves are summarized in
Table 17.4, for the first year they become available to the model, i.e. in 2010, as
well as for 2050 and for the end of the model’s time horizon 2100. This procedure
allows us to roughly reproduce the demand response in stabilization scenarios of
the much more detailed MESSAGE-MACRO model which is part of IIASA’s In-
tegrated Assessment modeling framework [46] without adding the same degree of
technological detail.

Table 17.4 Conservation cost curve parameters for the three demand categories

Conservation Potential [EJ] Costs [US$/GJ]
category 2010 2050 2100 2010 2050 2100

Electricity 1 0.57 3.31 30.84 16.62 17.82 19.47
Electricity 2 1.51 2.62 5.17 19.15 20.36 21.97
Non-electric 1 2.18 11.07 85.43 4.12 6.18 10.18
Non-electric 2 9.05 25.01 89.25 4.31 8.18 18.20
Transport 1 0.82 5.49 58.78 4.00 6.63 12.49
Transport 2 4.23 13.50 57.68 4.28 8.24 18.74

The resource base of fossil energy carriers has its foundations in [48] and is
adjusted to the B2 storyline [16, 46]. For coal all grades A–E are included, con-
ventional oil includes categories I–III and unconventional oil categories IV–V. Con-
ventional gas is an aggregate of categories I–III and unconventional gas covers cat-
egories IV–VI. Potentials of renewable energy carriers with the exception of wind
are based on the estimates used in [16, 46]. Because of the large potential for wind
we distinguish two categories with different wind conditions which are based on the
B2 potentials published by de Vries et al. [8]. The assumptions used in the model
are documented in Table 17.5. The values provided for fossil energy carriers corre-
spond to the resource base available in the base year 2000. The quantities available
in later years are then a result of the optimization procedure. For renewable energies
the potentials are provided on an annual basis.

To calculate CO2 emissions that originate from burning fossil energy carriers we
uniformly apply the following emission factors on the basis of the lower heating
value.

• Coal: 25.8 MtC/EJ
• Oil: 20.0 MtC/EJ
• Natural gas: 15.3 MtC/EJ

Biomass is predominantly provided by the forest sector and therefore assumed to be
carbon neutral as a result of a sustainable production approach (see [49] for details).
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Table 17.5 Fossil fuel resource base in 2000 and renewable energy potentials in 2000, 2050 and
2100 [EJ]

Resource category 2000 2050 2100

Coal 260,450 Endogenous
Oil conventional 11,770 Endogenous
Oil unconventional 8,890 Endogenous
Gas conventional 17,920 Endogenous
Gas unconventional 23,020 Endogenous
Biomass < 3US$/GJ 107 132 149
Biomass ≥ 3US$/GJ 22 62 106
Hydro 13 35 50
Wind (cat. 1) 20 54 54
Wind (cat. 2) 23 61 61
Solar PV 2.3 33 73

17.7.2.2 Uncertain Parameters

The PDFs of uncertain technology investment costs have been determined in the
following way: Based on a review of technological change across selected energy
scenarios [36] we have determined the expected value of costs in the year 2100 by
calculating the median across the scenario assumptions. Also the variability of costs
has been estimated from this source as described in Sect. 17.4.2. However, we only
take the numerical values as a first indicator and assign the next highest uncertainty
category (standard deviation σ : low uncertainty σlow = 0.15, medium uncertainty
σmed = 0.3 and high uncertainty σhigh = 0.6) to the technologies, because of the
limited set of scenarios that was included in the analysis. This procedure was applied
to most electricity generation technologies, except the backup technology, and all
liquid fuel technologies with the exception of the oil refinery. All other technologies
were assigned to one of the three uncertainty categories based on experts’ opinion,
the result of which is shown in Fig. 17.4 as mentioned in Sect. 17.4.2.

Figures 17.12 and 17.13 show histograms and pair-wise scatter-plots for the nine
electricity generation technologies based on the samples that result from the above
described procedure. In Fig. 17.13 only scatter-plots for pairs of technologies with a
correlation coefficient larger than 0.05 are shown. The investment costs correspond
to the period 2100 where random sampling was used to generate samples of size
N = 20,000.

To derive random cost paths for the model’s full time horizon (2000–2100) we
proceed in the following way: Based on one of the two sampling procedures de-
scribed in Sect. 17.2.3 we generate N sets of random cost parameters for the period
2100. We then exponentially interpolate between the base year value in 2000 and
the random parameter values in 2100. To fix the third parameter in the exponential
function y(x) = y0 +A · exp(−λx) we assume the asymptote y0 to be 1 % higher
(lower) than the 2100 value depending on whether the 2100 is higher (lower) than
the 2000 value. A graphical illustration of this procedure for the investment costs
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Fig. 17.12 Histograms of investment costs [US$/kW] of electricity generation technologies in the
period 2100 for a sample size of N = 20,000 (random sampling)

of a natural gas combined cycle power plant is given in Fig. 17.5 of Sect. 17.4.2. In
contrast to linear interpolation this procedure approaches the final level of costs rel-
atively quickly—typically within the first half of the century—whereas cost levels
stay relatively constant in the second half of the century. Therefore, envelopes of
costs “widen” quickly, thus creating some overlap of input cost distributions early
in the century.

17.7.3 Carbon Price

As briefly described in Sect. 17.4.2 the carbon price and its distribution in 2100 was
derived from a sample of stabilization scenarios from the IPCC scenario database
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[15]. A lognormal distribution fits the entire set of carbon prices from a total of 134
stabilization scenarios quite well (see Fig. 17.14). In addition, a Shapiro–Wilk nor-
mality test was conducted with the logarithmized data set which provides a p-value
of 0.14 and therefore does not allow to reject the hypothesis of the logarithmized
data being normally distributed.

The actual fit of the lognormal distribution used in the one-regional global en-
ergy systems model was obtained from a subsample of stabilization scenarios with
CO2-equivalent concentration targets of 650 ppmv and above. Parameters were de-
termined by taking mean and standard deviation of the logarithmized dataset. This
procedure resulted in numerical values for the expected value of p̄c = 372US$/tC
and of σc = 520US$/tC for the standard deviation. The resulting values (mean as
well as realizations of uncertain parameters) for the year 2100 were subsequently
propagated backwards to 2010 with the model’s 5 % discount rate to obtain carbon
price trajectories.

17.8 Appendix: Sample Function Approximation

As described in Sect. 17.2.3, the risk measures R(x,ω) are in practical model appli-
cations estimated by N independent realizations, so-called sample functions, where
N → ∞.

R(x)→ RN(x) =
1
N

N

∑
s=1

R(x,ωs).

The sample size N is evaluated by experiment, i.e. N is increased as long as different
draws of the same sample size still produce noticeably varying solutions. Although
it is problematic to proof convergence from a theoretical point of view, we find that
in practice such approximations work better than expected theoretically (see also
[10, Chap. 1.8]). For this purpose we introduce a so-called Taxicab- or 1-norm as a
quantitative measure

‖x‖1 =∑
i
|xi| , (17.6)

where x = (x1, . . . ,xT ) is the vector of the model’s decision variables for all periods
t = 1 . . .T .

Based on the Taxicab-norm we define a convergence criterion to measure (rela-
tive) deviations between two solutions i and j with identical sample size N

Δi j =
‖xi− x j‖1

‖xi + x j‖1
, (17.7)

where xi and x j are the solution vectors of the two solutions respectively. We require
the maximum of all pair-wise distances Δi j to be less than a ε > 0

max
i, j

Δi j ≤ ε . (17.8)
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Fig. 17.13 Pair-wise scatter-plots of investment costs [US$/kW] of electricity generation tech-
nologies in the period 2100 with non-zero correlation (ρi j > 0.05) for a sample size of N = 20,000
(random sampling)
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Fig. 17.15 Pairwise convergence measure Δi j as a function of sample size N for random sampling
and LHS (5 model runs resulting in 10 combinations)—double-logarithmic scale

In realistic applications of energy systems models, the sample size N imposes
restrictions on the number of uncertain parameters. Therefore, improved sampling
methods to decrease the sample size N, but at the same time satisfying a given con-
vergence criterion ε , are a possibility to reduce computational effort or alternatively
increase the number of uncertain parameters. For this purpose we employ LHS (e.g.
[17]) in contrast to random sampling. Correlations among latin hypercube sampled
parameters are introduced with the algorithm suggested by Iman and Conover [18]
(see also [55]).

The convergence behavior of LHS in comparison with random sampling can be
seen in Fig. 17.15. This figure was generated with the model presented in Sect. 17.4
on the basis of 5 model runs for each sample size N with random and LHS. LHS
gives significantly better convergence across all sample sizes N that have been an-
alyzed. To obtain the same convergence level ε with LHS the sample size can be
chosen almost one order of magnitude smaller than with random sampling. There-
fore, the additional effort for employing LHS is well justified, in particular for larger
models where memory limitations can become a constraint. As a result of these
numerical experiments we used LHS for all model runs presented in this chapter.
The sample size was chosen to be N = 20,000 corresponding to a convergence cri-
terion of ε = 0.75 %.



Chapter 18
Comparative Assessment of Accident Risks
in the Energy Sector

Peter Burgherr, Stefan Hirschberg, and Matteo Spada

Abstract This chapter is structured in five parts. The introduction discusses the rel-
evance of accidents in the energy sector and puts them into the broader perspective
of sustainability, energy security, and critical infrastructure protection. Furthermore,
an overview of various risk assessment concepts is given. The second part provides a
detailed overview of the comprehensive framework for comparative risk assessment
developed by the Paul Scherrer Institut (PSI), at the core of which is the energy-
related severe accident database (ENSAD). Third, a broad range of risk indicators
and other measures are described and calculated allow for an objective, fair, and
quantitative comparison of accident risks across a broad range of fossil, nuclear,
and renewable technologies. This evaluation is complemented by a compilation of
additional risk factors that can play a key role in decision processes and stakeholder
interaction. However, for the time being they are often not amenable to full quan-
tification because they cannot be described and analyzed by traditional risk metrics
mainly focusing on consequences or because only limited historical experience is
available. The chapter ends with a summary of the main findings and conclusions
that can be drawn from comparative risk assessment as well as their potential impli-
cations for policy making.

18.1 Introduction

18.1.1 Definitions of Risk

Risk assessment is a well-established discipline with numerous important achieve-
ments in the past three decades [46]. Depending on the field of application and
the object under study a large variety of definitions of the term risk exists [5, 49].
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In engineering and natural sciences, risk is frequently defined in a quantitative way:
risk (R) = probability (p) · consequence (C). Another approach looks at risk as the
triplet of threat (T) · vulnerability (V) · consequences (C) [28, 92]. Aven [4] pro-
poses a slightly different approach using knowledge-based probabilities to express
risk, vulnerability, and resilience. Additionally, subjective factors of risk perception
can influence stakeholders’ acceptance or aversion towards a specific technology,
involving trade-offs between quantitative and qualitative risk factors [47, 97]. For
example, energy choices may be influenced by potential climate change impacts
and risk beliefs [45]. Furthermore, the consideration of low-frequency–high conse-
quence events and the adequate treatment of uncertainty are key elements of every
risk analysis [6, 80]. Finally, it is important that decision makers are offered infor-
mation based on probable exposure scenarios, so that they can make risk-informed
decisions [56].

18.1.2 Relevance of Accidents in the Energy Sector

In the past 40 years a number of catastrophic accidents (e.g., Santa Barbara oil spill
from drilling platform in 1969, Three Mile Island nuclear power plant accident in
1979, Exxon Valdez tanker spill in 1989, Deepwater Horizon oil spill in 2010, or
Fukushima nuclear accident in 2011) have affected the entire energy-related busi-
ness and industry, not only due to the human health effects and environmental im-
pacts but also due to the lessons learned from them [98]. This class of risks is of
particular importance for two main reasons. On the one hand there is often a strong
societal aversion towards such low-probability high-consequence events and on the
other hand a perceived lack of urgency about these risks can be observed among
the public and decision makers, despite the potential of such threats to dramatically
affect human health, property, environment, society, and economy [44]. Therefore,
comparative assessment of accident risks is a central aspect in a comprehensive eval-
uation of the performance of energy technologies, which has been recognized and
emphasized repeatedly since the 1980s [41, 59, 85]. Although, it has been shown
that accidents attributable to the energy sector form the second largest group of all
manmade accidents worldwide, their treatment in terms of completeness and data
quality was not satisfactory [42]. Therefore, the Paul Scherrer Institut (PSI) initiated
in the early 1990s a long-term research activity, building upon extensive historical
experience complemented by probabilistic safety assessment (PSA), at the core of
which is the energy-related severe accident database (ENSAD) [52].

18.1.3 Accidents in the Context of Sustainability
and Energy Security

Conceptually, comparative risk assessment is also closely intertwined with the
broader concepts of sustainability, energy security, and critical infrastructure protec-
tion (e.g., [62, 96, 110]). However, energy security is a complex concept covering
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many disciplines including (1) engineering responsible for technical safety and
sufficient capacity, (2) economy concerned about functioning energy markets, and
(3) political sciences analyzing geopolitical security threats. Thus, it is not surpris-
ing that there is no unique definition that grasps all aspects [25, 72, 77, 109]. How-
ever, a variety of concepts and approaches have recently been developed to com-
prehensively evaluate energy security and its implications [73, 103, 107, 108]. Fur-
thermore, several holistic perspectives have been proposed and developed to address
and evaluate vulnerabilities, interdependencies, and resilience of critical infrastruc-
tures [7, 40, 55, 71]. In recent years the aspect of risk governance has also received
a prominent position on the international agenda [37, 60, 87]. Finally, there is a
vivid discussion about rare and unimaginable events with large consequences, for
which often the metaphors black swans, perfect storms, unknown unknowns, here
be dragons, and dragon kings are used [36, 81, 94].

18.1.4 Comparative Risk Assessment of Energy Accidents

In spite of these methodological advancements and application developments, it
is paramount that comparative risk assessment of severe accidents strongly re-
lies on a consistent and comprehensive basis upon which a variety of risk in-
dicators can then be systematically quantified to address the impacts of differ-
ent energy technologies on human health, environment, economy, and society
[13, 20, 54]. Risk indicators can also provide essential inputs for energy sce-
nario analysis and policy formulation with regard to energy security aspects and
sustainability performance associated with our current and future energy systems
[10, 17, 34, 88]. Finally, several approaches have been proposed to combine risk
assessment, life cycle assessment, and multi-criteria decision analysis (MCDA) in
the past decade [58, 63, 74, 76]. While the comparative assessment of severe acci-
dent risks for major centralized technologies such as fossil (coal, oil, natural gas),
hydro, and nuclear energy chains is well established [13, 17, 20, 52], corresponding
evaluations for new renewables like solar photovoltaics (PV), wind, biomass, and
geothermal electricity generation have received substantial interest in recent years
due to their advances in technological development and market penetration [10].
A key challenge of broadening the analytical scope by including hazards and risks
from new renewables is that technology comparisons are based on a set of common
and consistent risk indicators, which can be expressed in quantitative terms and are
applicable to the various electricity generation technologies under consideration.
Since its first release in 1998 [52], the methodological framework based on ENSAD
has been refined and extended by adding numerous new elements and broadening
the analytical scope and coverage, including:
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• Consideration of new information sources for specific energy chains and coun-
tries, e.g., coal China [12, 53], natural gas [11], and oil spills [8, 21, 35]

• Estimation of external costs [13, 16]
• Application of a simplified level-3 PSA for nuclear energy [16, 17]
• Georeferencing of accident data and use of geographic information systems

(GIS) [9, 20]
• Evaluation of new renewable technologies [10, 17]
• Calculation of specific risk indicators to be used within MCDA [34, 88, 90]
• Development of advanced analytical approaches such as Bayesian hierarchical

networks and fat tail distribution fitting [33]
• Consideration of intentional attacks within the broader context of energy security

and critical infrastructure protection [15, 18]

In the past decade accidents in the energy sector have received a high degree of
attention by policy makers and the general public. On the one hand this is at-
tributable to several exceptionally disastrous events with correspondingly high me-
dia coverage. On the other hand consideration of accident risks has become an in-
tegral part of sustainability and energy security evaluations of energy technologies
as well as energy scenario analysis. Therefore, a growing number of studies on ac-
cident risks in the energy sectors have been published in recent years, covering a
broad range of aspects, such as different energy technologies, geographic regions,
consequence categories, safety issues, financial and market aspects, and strategy and
policy development. A concise overview of selected examples is given in Table 18.1.

Table 18.1 Selection of recent studies on accident risks in the energy sector

Thematic area References
Coal mine accidents China [23, 75, 102]

India [79]
USA [2, 89]

Oil refineries [66, 99]
Downstream oil industry [38]
Oil spills from tankers [51, 61, 67, 68, 84]
Offshore oil facilities [3, 31, 83, 86, 93, 104, 105]
Carbon capture and storage (CCS) [48, 69, 111]
Solar photovoltaics [43]
Wind power [22, 78]
Biofuel [32]
Accidents triggered by natural hazards (Natech) [29, 30, 65, 70]
Comparative studies [27, 39, 91, 95]
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18.2 Methodological Approach

18.2.1 Framework for Comparative Risk Assessment

Figure 18.1 shows a graphical overview of PSI’s overarching methodological frame-
work for comparative risk assessment, which is an essential component in the
context of comprehensive sustainability and energy security assessments, and can
also provide inputs to decision-making processes. The ENSAD is the central and
connecting element of this framework. In its initial implementation the analysis was
limited to technological accidents of major centralized technologies, namely fossil
energy carriers and hydro and nuclear power [52]. However, in the past years the
scope has been significantly extended to specifically include (1) accidents that are
triggered by natural hazards (Natech accidents) and (2) intentional malicious attacks
(e.g., vandalism, sabotage, sabotage, terrorist threat). Additionally, evaluations for a
broad portfolio of low-carbon technology options were developed and established,
ranging from new renewables (e.g., photovoltaics, wind, geothermal) to fossil with
CCS and advanced nuclear designs (generations III and IV). For fossil energy chains
(coal, oil, natural gas) and hydropower, extensive historical experience is contained
in ENSAD for the period 1970–2008 [19]. However, for hydropower some com-
plementary, site-specific analyses are also carried out. In the case of nuclear energy
a simplified level-3 PSA is employed to address hypothetical accidents [17, 19].
In contrast, consideration of new renewable technologies is based on a “hybrid”
approach that combines available accident data with chain-specific modeling and
expert judgment [10, 19]. Depending on the actual study objectives, a tailored data
set can be compiled, which then can be analyzed (1) for individual energy chains,
(2) for comparison between energy chains, and (3) for addressing spatial patterns
and temporal trends. Furthermore, evaluations can be performed at the level of tech-
nologies or supply mix scenarios, also allowing extrapolating into the future.
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18.2.2 Severe Accident Database

ENSAD is a relational database in MS Access format that since its initial release
[52] has been continuously updated and extended, with regard to content, scope,
and analytical capabilities. An overview of the main structural elements of ENSAD
is given in Fig. 18.2. Every accident record in ENSAD is assigned a unique identi-
fication number (ID) that will only be used once, even if a record is deleted later.
Accident information can be divided in two main blocks. The first block is directly
(1:1) linked, containing information on the incident date, location, event categoriza-
tion and description, and meta and change log information. The second block is
linked through a 1:n relationship because information on damages can vary among
different primary information sources, and in this way it is possible to take into
account all available information.

ENSAD Accident Record
(Unique ID)

Date

Location

Event Classification

Chain Stage

Energy Chain

Affected Infrastructure

Event Sequence

Data Record Meta Information

Event Summary

Data Record Change Log

1:1 1:n

Damages

Consequence Indicators
-Human health
-Environment
-Society
-Economic Loss

Materials involved

Information Sources

Fig. 18.2 Schematic representation of the accident record structure in ENSAD

ENSAD utilizes merged and harmonized historical data from a large variety of
information sources. Therefore, ENSAD can be considered superior compared to
single database approaches that are often limited concerning geographic area, time
period, and energy chains included. Table 18.2 gives an overview of the main infor-
mation sources that have been considered within ENSAD; however, in total, about
80 different sources have been used to date. The reason for this large amount of
databases is twofold. First some of the databases used in the initial phase [52] have
been discontinued (e.g., MHIDAS), but could be replaced by new ones (e.g., OSH
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Update). Second, databases can be classified as primary (ca. 30) and secondary (ca.
50) information sources, the latter is important for purposes of cross-checking and
complementing gaps in retrieved data. Finally, one should note that both freely avail-
able sources and commercial databases are regularly surveyed because the latter
may contain proprietary information not available at all or documented in a less
detailed manner in noncommercial sources.

Table 18.2 Selection of main information sources used within ENSAD. Abbreviations: C = com-
mercial database, F = freely available database

Database Geographic area Accident types
Hint (C) Worldwide Industry
OSH update (C) Worldwide Industry
Swiss Re (C/F) Worldwide Natural and man-made

disasters
EM-DAT (F) Worldwide Natural and man-made

disasters
Industrial Fire World Log (F) Worldwide Industry
FACTS online (C) Worldwide Industry
MHIDAS (C) Worldwide Industry
eMARS (F) EU, OECD, UNECE Industry
Aria/Barpi (F) Worldwide Industry
Lloyd’s casualty service (C) Worldwide Industry
China coal industry yearbook (C) China Coal
WOAD (C) Worldwide Offshore oil and gas
Centre de documentation, de Recherche et
d’Expérimentations sur les Pollutions Acciden-
telles des Eaux Cedre (CEDRE) (F)

Worldwide Tanker oil spills

International tanker owners pollution federation
ltd. (ITOPF) (C/F)

Worldwide Tanker oil spills

International oil pollution compensation funds
(IOPCF) (F)

Worldwide Tanker oil spills

The Center for tankship excellence (CTX) (F) Worldwide Tanker oil spills
Regional marine pollution emergency response
centre for the Mediterranean Sea (REMPEC) (F)

Mediterranean Tanker oil spills

National oceanic and atmospheric administration
(NOAA), NOAA incident news (F)

Mainly USA Oil spills

Bibliography of the History of Dam Failures
(BHDF)

Worldwide Dams

ICOLD Catalogue of Dam Disasters Worldwide Dams

ENSAD is clearly focused on so-called severe accidents. Accidents resulting in
more severe consequences are of greatest concern to industry, authorities and reg-
ulators, insurance companies, policy makers, and the general public. Furthermore,
accidents with disastrous impacts on the human health, the environment, the soci-
ety, and the economy receive a broad and often controversial coverage in the media.
Finally, a much higher level of completeness and accuracy of reported information
are generally available for severe accidents, which is also important with regard
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to comparisons among individual countries and country groups and globally. In the
literature no commonly accepted definition can be found of what constitutes a severe
accident. Differences concern the actual damage types considered (e.g., fatalities, in-
jured persons, evacuees, or economic costs), use of loose categories such as “people
affected,” and differences in damage thresholds to distinguish severe from smaller
accidents [19, 52]. The severe accident definition used in ENSAD comprises seven
criteria. An accident is considered severe if it fulfils at least one severity threshold
(Table 18.3). Generally, fatality data is the most reliable, accurate, and complete,
whereas for injured or evacuated persons, details on the severity of an injury or the
duration of an evacuation are frequently not clearly indicated. The estimation of
precise values for economic loss is also often difficult as different sources of in-
formation report various types of economic damages (e.g., insured vs. total loss),
depending on their specific scope (e.g., insurance company vs. disaster recovery or-
ganizations). The other consequence indicators are either only relevant for specific
energy chains (i.e., hydrocarbon release and land/water contamination) or ENSAD
contains very few entries (ban on food consumption). Therefore, ENSAD-based res-
ults presented here are focused on the number of fatalities. A detailed discussion of
the various consequence indicators including their accuracy, robustness, and com-
pleteness is for example given in [17].

Table 18.3 Severity thresholds

Risk description Impact category ENSAD severity threshold Consequence indicator
Human health Fatalities ≥ 5 Fatalities per GWeyr

Injured ≥ 10 Injured per GWeyr
Societal Evacuees ≥ 200 Evacuees per GWeyr

Ban on food consumption yes Nominal scale
Environmental Release of hydrocarbons ≥ 10,000 t Tonne per GWeyr

Land/water contamination ≥ 25 km2 km2 per GWeyr
Economic Economic loss ≥ 5 Mio USD(2000) USD per GWeyr

18.2.3 Scope and Assumptions for Analysis

Full-Energy Chains: When comparing accident risks across different energy chains
it is important to consider complete chains because accidents can occur at all
stages, and also the contributions from different stages can differ between chains
[17, 19, 52]. In general, an energy chain comprises the following stages: exploration,
extraction, processing and storage, long distance transport, regional and local distri-
bution, power and/or heat generation, waste treatment, and disposal. However, not
all of these stages are applicable to every energy chain.
Evaluation Period: ENSAD currently holds a total of 32,705 accident records, of
which 83.2% are classified as man-made, 16.3% as natural disasters, and 0.5% as
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conflicts. Within the category of man-made accidents, 20,245 are energy-related,
the vast majority of these (93.8%) fall in the period 1970–2008, 1.2% occurred in
the years 1960–1969, 4.1% after 2008, and 0.9% before 1960. Accidents prior to
the 1970s are normally not included in the analysis of existing technologies be-
cause they are too far back to be relevant for current conditions. For a more detailed
discussion see [17, 19, 52].
Data Normalization: To enable a fair and unbiased comparison of accident risks
among energy chains, it is important to use data normalized to the unit of energy
production. For fossil energy chains the thermal energy is converted to an equiva-
lent electrical output using either a generic efficiency factor (used in the examples
of this chapter) of 0.35 [13, 52] or chain-specific efficiency factors [17]. For nuc-
lear power, hydropower, and new renewables the normalization is straightforward
because the generated product is electrical energy. Although not a SI unit, the Giga-
Watt-electric-year (GWeyr) is used because large individual plants have capacities
in the order of 1 GW electrical output (GWe), and thus the GWeyr is a natural unit
to compare accident risks in technology assessment.
Regional Aggregation: Risk indicators can be calculated for different spatial scales,
i.e., for individual countries and country groups or globally. The chosen resolution
depends on the specific study objectives, but in most cases the level of country
groups is adequate. Furthermore, a global analysis naturally does not provide any
regional differentiation, and looking at individual countries is only possible if suf-
ficient data are available for the countries of interest. Therefore, risk indicators are
commonly calculated for three major country groups, i.e., OECD and non-OECD
countries as well as European Union (EU 27). This distinction is meaningful be-
cause of significant differences in safety management and regulatory frameworks
between highly developed countries (OECD and EU 27) and the mostly less de-
veloped non-OECD countries [14]. The Chinese coal chain is treated separately
because it has been shown that its performance is clearly different from other non-
OECD countries [12, 53]. In the case of nuclear site-specific calculations are per-
formed, using a simplified level-3 PSA, with results available for Switzerland, Ger-
many, France, Italy, Finland, the USA, and China [17, 19, 52, 88]. For hydropower,
detailed dam failure modeling and consequence calculations for a large Swiss dam
have been undertaken to complement historical experience ([11] and references
therein). For new renewables, risk indicators can be considered representative for
average conditions in OECD and EU 27 countries [10].
Evaluation of Accident Risks: Classical risk indicators include aggregated indica-
tors (e.g., fatalities per GWeyr) and frequency consequence (F-N) curves, both of
which have been extensively described in [52] and are briefly summarized in the
section “fossil energy chains.” However, various new methods and techniques have
recently been adapted for use in comparative risk assessment:

• Estimation of economic losses and external costs to monetize impacts of acci-
dents and to provide a common basis for aggregation of different types of conse-
quences (e.g., fatalities, injured, evacuees) (e.g., [13, 16])

• Geo-referencing of accident data to allow for geostatistical analysis and risk map-
ping using GIS (e.g., [9])
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• Better representation of low-frequency–high-consequence events through
extreme value theory and distribution fitting (e.g., Generalized Pareto (GP),
Value at Risk (VaR) (e.g., [19, 33]).

18.3 Evaluation of Accident Risks in the Energy Sector

This section provides a selection of risk assessment results. First, an overview of
the accident data contained in ENSAD is given. Second, fossil energy chains are
analyzed because for them extensive historical experience in ENSAD is available.
Third, aggregated risk indicators are calculated for a broad portfolio of large central-
ized technologies (coal, oil, natural gas, hydropower, and nuclear) as well as decen-
tralized new renewables (PV, wind, biogas, solarthermal, and geothermal). Fourth,
external costs of accidents in fossil energy chains are presented.

18.3.1 Overview and Contents of ENSAD

The selection of results presented in this chapter is focused on severe accidents that
resulted in at least five fatalities. Summary statistics for fossil, hydropower, and
nuclear accident data contained in ENSAD for the period 1970–2008 are shown in
Table 18.4, amounting to a total of 3,222 severe (≥ 5 fatalities) accidents with a
cumulated number of 96,630 fatalities.

Table 18.4 Summary of severe (≥5 fatalities) accidents contained in ENSAD for fossil, hyd-
ropower, and nuclear accidents in the period 1970–2008. Acc = accidents, Fat = fatalities

OECD EU 27 Non-OECD
Acc/Fat Acc/Fat Acc/Fat

Coal 87/2259 45/989 2394/38672 (all non-OECD)
162/5788 (non-OECD w/o China)
818/11302 (China 1994–1999)
1214/15750 (China 2000–2008)
2032/27052 (China (1994–2008)

Oil 187/3495 65/1243 358/19516
Natural gas 109/1258 37/367 78/1556
Hydro 1/14a 1 /116b 22/30083c (all non-OECD)

21/4083 (w/o Banqiao/Shimantan)
12/26108 (China alone)
11/108 (China w/o Banq./Shim.)

Nuclear -/- -/- 1/31d

a Teton dam failure (USA, 1976)
b Belci dam failure (Romania, 1991)
c Banqiao/Shimantan dam failures (China, 1975) together caused 26000 fatalities
d Only immediate fatalities of the Chernobyl accident are shown here. See section “com-
parison of fossil, nuclear and renewable technologies” for a more detailed discussion of
the nuclear chain
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18.3.2 Fossil Energy Chains

A comprehensive evaluation of how severe accident risks should take into account
a variety of factors because no single aspect can provide the full picture. Therefore,
a set of six risk indicators was defined:

• The number of accidents per GWeyr (accident rate)
• The number of fatalities per GWeyr (fatality rate)
• Mean accident severity, i.e., the average number of fatalities per accident
• The Value at Risk for the 99th percentile (VaR99) of the severity distribution
• The probability of exceeding VaR99
• The probability of at least one severe accident per year

While fatality rates provide a measure of the expected fatalities per unit of energy
produced, maximum credible consequences of a single accident can be seen as a
measure of risk aversion. Based on historical accident data, maximum consequences
for a specific energy chain and country group can be simply determined as the most
deadly accident in a given time period, which is straightforward but disregards the
specific distribution properties of accident data. Alternatively, one could use the
VaR that is commonly used in financial risk management and measures the conse-
quences for low-frequency extreme events at a given percentile (e.g. 99%). Here we
estimated VaR99 using the Epanechnikov kernel density estimator, which does not
assume that the data follow a normal or any other distribution and thus does not
make VaR estimation normal or even parametric [1]. Additionally, the probability
of exceeding VaR99 is also calculated, using the formula p = m/n+1, where m is the
accident rank and n is the total number of accidents. The probability that at least one
severe accident per year occurs is calculated using the equation p = 1 - exp(-R*T),
where R denotes the consequences (fatality rate) per year and T is equal to 1 year.
Figure 18.3 shows the above-described six indicators for fossil energy and different
country groups in the period 1970–2008. Generally, OECD and EU 27 countries
exhibit a better performance than non-OECD.

In a second step, the resulting matrix of 6 risk indicators× 11 samples (i.e., ene-
rgy chain-country group combinations) was then analyzed by means of principal
component analysis (PCA), which was first described by [82] and [57], but see [64]
for a detailed overview. Generally, PCA is a mathematical procedure that transforms
a set of possibly correlated variables (here indicators) into a smaller number of un-
correlated variables, the so-called principal components (PC). Thus, it provides a
reduction of multidimensional data onto two or three independent (orthogonal) axes
as well as graphic representation of inter-sample and inter-variable relationships
for exploratory data analysis. Data were normalized to ensure equal weights for all
variables and then subjected to correlation matrix PCA using the ADE-4 software
[26, 101]. Figure 18.4 shows (a) the correlation circle and (b) the positions of the
11 analyzed country aggregates on the PC1 × PC2 factorial map. The first two PC
axes explained 49.7% and 36.1% of the total variation. The probability of exceeding
VaR99 was positively related to PC1, whereas the probability of at least one severe
accident per year was negatively related to PC1. The axis PC2 was best explained



486 P. Burgherr et al.

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

O
E

C
D

E
U

27

n
on

-O
E

C
D

w
/o

C
h

in
a

O
E

C
D

E
U

27

n
o

n-
O

E
C

D

O
E

C
D

E
U

27

no
n

-O
E

C
D

Coal Oil Natural Gas

(s
ee

 le
ge

nd
 fo

r 
in

di
ca

to
rs

 a
nd

 u
ni

ts
)

Accidents / GWeyr Fatalities / GWeyr Mean Accident Severity

VaR99 p of exceeding VaR99 p of 1 severe accident per year

C
h

in
a

19
94

-1
99

9

C
h

in
a

20
00

-2
00

8

Fig. 18.3 Comparison of six accident risk indicators based on historical experience of severe (≥ 5
fatalities) accidents in fossil energy chains for OECD, EU 27, and non-OECD countries in the
period 1970–2008. Note that coal chain was treated separately (compare section on methodological
approach), with indicators calculated for two time periods

by VaR99 and mean accident severity. Accident and fatality rates contributed about
equally to both axes. Coals China during 1994–1999 and 2000–2008 are most iso-
lated from all other country groups, which is primarily due to the large annual num-
bers of severe accidents (and thus high accident rates) and by far highest fatality
rates. However, it is also apparent that coal China is slowly approaching other non-
OECD countries. The non-OECD oil chain is also clearly separated because VaR99
and mean accident severity are highest, which is also in accordance with actual his-
torical experience that the two most deadly oil accidents occurred in the Philippines
(4,386 fatalities) and Afghanistan (2,700). OECD and EU 27 countries are both
clearly separated along PC1, whereas non-OECD countries (including China) were
separated along PC2. Finally, fossil energy chains in OECD and EU 27 showed dis-
tinctly lower variation compared to non-OECD and coal China. Third, the compari-
son of results was expanded beyond aggregated risk indicators by combining results
of the frequency and consequence analyses by means of frequency-consequence
(F-N) curves. F-N curves are a common way to express collective or societal risks
in quantitative risk assessment, that is, the F-N curves provide an estimate of the
risk of accidents that affect a large number of people. F-N curves show the rela-
tionship of the cumulative frequency (F) of events having consequences ≥ N (e.g.,
fatalities) which is usually presented in a diagram with double logarithmic axes. In
this way, they comprise more information than aggregated indicators because they
show the probability of accidents with varying degrees of severity of consequences,
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including chain-specific maximum damages. Additionally, the 5% and 95% confi-
dence intervals can be calculated for the point estimates of the F-N curve, based
on the Chi-square distribution [50]. Figure 18.5 shows F-N curves for coal, oil, and
natural gas in OECD, EU 27, and non-OECD countries for the period 1970–2008.
Generally, OECD and EU 27 countries had lower frequencies than non-OECD for
all fossil chains; however, for natural gas, this difference was less distinct. The Chi-
nese coal chain showed a significantly worse performance than other non-OECD
countries, with frequencies even greater than 10-1 at lower death tolls (5–13 fatali-
ties). Concerning maximum consequences, OECD values were between 1.5 and 4.2
times greater than EU 27. Non-OECD values were substantially higher than corre-
sponding OECD values, except for coal China where only 15 out of 2,032 accidents
resulted in 100 or more fatalities. Finally, the range of observed maximum con-
sequences among fossil chains was larger in non-OECD, particularly because the
oil chain can reach maximum numbers up to one order of magnitude higher than
other fossil chains due to two extremely deadly accidents in the Philippines and
Afghanistan.

18.3.3 Comparison of Fossil, Nuclear, and Renewable
Technologies

Figure 18.6 shows the two indicators fatality rate and maximum consequences for a
broad portfolio of fossil, nuclear, and renewable technologies and different country
groupings. For fossil energy chains and hydropower, fatality rates and maximum
consequences are generally lower in OECD and EU 27 countries compared to non-
OECD. Among fossil chains, natural gas performs best with respect to both ind-
icators. The fatality rate for coal China (1994–2008) is significantly higher than
for the other of non-OECD [12, 53]; however, a comparison between 1994–1999
and 2000–2008 (see Fig. 18.3) indicates that China could slowly approach the non-
OECD level. Among large centralized technologies, hydro OECD and Western-style
nuclear power plants exhibit the lowest fatality rates, but at the same time the con-
sequences of catastrophic accidents can be very large. Experience with hydro in
OECD countries points to very low fatality rates, although based on a theoretical
model it has been shown that maximum consequences for the total failure of a large
Swiss dam could range between 7,125 and 11,050 fatalities without pre-warning,
but could be reduced to 2–27 fatalities given sufficient prewarning time ([11] and
references therein). In contrast, several dam failures in non-OECD have claimed
large numbers of victims. Concerning nuclear energy three core-melt events have
occurred at Three Mile Island 2 (TMI-2, USA, 1979), Chernobyl (Ukraine, 1986),
and Fukushima Daiichi (Japan, 2011). The TMI-2 accident did not result in any
immediate fatalities, and due to the small release of the radioactivity the estimated
collective effective dose to the public was about 40 person-Sv. Based on this one
extra cancer fatality was estimated. However, 144,000 people were evacuated from
the area around the plant. For more information see [52]. The Chernobyl accident
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Fig. 18.4 PCA results showing (a) the correlation circle of six risk indicators and (b) graphical
representation of the various energy chains and country groups in the PC1 × PC2 factorial plane

caused 31 immediate fatalities, whereas PSA-based maximum consequences includ-
ing expected latent fatalities range from about 9,000 for Ukraine, Russia, and Be-
larus to about 33,000 for the whole northern hemisphere in the next 70 years [52].
According to a recent study by numerous United Nations organizations up to 4,000
people could die due to radiation exposure in the most contaminated areas [24].
This estimate is substantially lower than the upper limit of the PSI interval, which,
however, was not restricted to the most contaminated areas. Published health effects
of the Fukushima Daiichi nuclear accident show large variations, which is partially
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attributable to different assumptions and methods used. For example, [100] esti-
mated an additional 130 (range 15–1,100) worldwide cancer-related latent fatalities,
whereas [106] reported a much higher value of 10,000, and some rather extreme sen-
sitivity cases up to 300,000 latent fatalities. According to current knowledge, new
generation III reactors are expected to have significantly lower fatality rates than
currently operating power plants because of various safety augmenting systems, but
maximum consequences could increase due to the much larger radioactive inven-
tory of a 1,600 MW EPR, as indicated by the results of a simplified level-3 PSA
[17, 19, 88].

Finally, new renewable technologies exhibit distinctly lower fatality rates than
fossil chains, and are fully comparable to hydro and nuclear in highly developed
countries. Concerning maximum consequences, renewables clearly outperform all
other technologies because their decentralized nature strongly limits their catas-
trophic potential. However, it should be noted that current analyses of risks ass-
ociated with new renewables have limited scope and do not include probabilistic
modeling of hypothetical accidents. This may have bearing, particularly on results
for solar PV.

18.3.4 External Costs of Accidents

In Figs. 18.7 and 18.8 external costs of severe (≥5 fatalities) accidents were esti-
mated for fossil energy chains [period 1970–2008, except coal China (1994–2008)].
Assumptions for external cost calculation were based on the results of the EU project
NewExt (for details see [16]). Table 18.5 provides an overview of the central (me-
dian), minimum, and maximum values used for the values of statistical life (VSL),
as well as the degrees of internalization for occupational and public fatalities in
OECD, EU 27, and non-OECD countries.

Table 18.5 Summary of central, minimum (Min), and maximum (Max) values for value of statis-
tical life (VSL) and degree of internalization for occupational and public fatalities used in external
cost calculations

Million EUR(2002) Degree of internalization
VSL Occupational fatalities Public fatalities

Region Central Min Max Central Min Max Central Min Max
OECD/EU 27 1.045 0.400 3.310 0.8 0.7 1.0 0.5 0.3 0.7
Non-OECD 1.045 0.400 3.310 0.5 0.0 1.0 0.2 0.0 0.5

Central estimates of external costs for OECD and EU 27 countries were rather
similar, whereas non-OECD countries were significantly higher. Non-OECD values
for coal and oil were about one order of magnitude higher, and in the case of coal
China even two, whereas natural gas non-OECD was roughly 50% higher. When
looking at sensitivities, it is evident that changes in VSL have the strongest effect on
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Fig. 18.6 Comparison of (a) fatality rates and (b) maximum consequences of a broad selection of
energy technologies. Fossil and hydropower are based on the ENSAD database [period 1970–2008,
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combined heat and power; EGS enhanced geothermal systems

external costs, whereas the degree of internalization for occupational fatalities is in-
termediate and for public fatalities smallest. This difference between the two fatality
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categories was most pronounced for the coal chain, where mining accidents clearly
dominate, whereas for oil and natural gas it was less distinct because particularly
during transportation stages public fatalities can make a substantial contribution.
In the case of hydropower (not shown), external costs are almost exclusively dom-
inated by public fatalities because dam failures primarily affect downstream set-
tlements, i.e., the general public. Therefore, occupational fatalities are practically
negligible because of the limited number of staff needed for operation of a hydro
dam. However, accidents during the construction phase of a dam can lead to many
occupational fatalities as in the case of the Mattmark dam (Switzerland) in 1965
when an ice-avalanche catastrophe caused the death of 88 workers, or the Guavio
dam (Colombia) in 1983 when torrential rains led to mudslides, burying and killing
160 workers changing shifts at the dam [13]. PSA-based external costs for a Swiss
nuclear power plant (not shown) have been estimated at 1.2E−3 USD-cent/kWhe,
with 5% and 95% percentiles at 1.0E−4 and 3.8E−3 USD cent/kWhe, respectively,
by [52].
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18.4 Additional Risk Aspects

While in the previous section the focus was on quantifiable risk indicators,
Table 18.6 provides an overview of additional risk aspects that are not amenable
to full quantification yet because only limited data and experience are available or
they cannot be fully covered by traditional risk indicators that focus mainly on con-
sequences. For a more in-depth discussion and a list of key references we refer to
the IPCC special report on renewable energy sources and climate change mitigation,
Chapter 9.3.4.7 on accidents and risks [10].

Table 18.6 Overview of selected additional risk aspects for various energy technologies

Risk aspect Affected technologies
New resource developments Deep offshore oil resources (e.g., Gulf of

Mexico, Brazil)
Oil resources in extreme environments (e.g.,

Arctic)
Induced seismicity, subsidence Oil and gas production, coal mining

Hydropower reservoirs
Enhanced geothermal systems (EGS)
Carbon capture and storage (CCS)

Resource competition Bioenergy (e.g., food vs. fuel; water resources)
Hydro reservoir (electricity vs. irrigation vs.

supply)
Hazardous substances Explosive, flammable, toxic, and asphyxiant

substances in PV module production
Spills of chemicals via hydraulic fracturing

(shale gas, geothermal) can lead to
groundwater contamination

Climate effects Large wind deployment could locally increase
lower atmosphere temperature

Long-term storage (public acceptance) Disposal of nuclear waste and CCS
Proliferation Nuclear energy
Geopolitics, terrorist threat, capture/ransom Large renewable capacities in geopolitically

less stable regions
Intentional attacks on energy infrastructure
Pirate attacks on oil/gas tankers

18.5 Conclusions and Recommendations

• The comparative risk assessment approach developed by PSI provides a compre-
hensive framework for the evaluation of severe accidents in the energy sector,
with the database ENSAD as the core element.
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• The evaluation of a broad set of risk indicators is essential because stakeholders
and decisionmakers may not only focus on objective risks (e.g., fatality rates),
but also consider subjective risk aversion (e.g., maximum consequences) and/or
other risk aspects that are difficult to quantify.

• External costs of severe accidents are rather insignificant when compared to the
effects of global warming and air pollution [13].

• Nevertheless, energy-related accidents have the potential for disastrous conse-
quences on human health and the environment as well as society and economy,
and thus they should be considered in a holistic evaluation of sustainability and
energy security concerns.

• In summary, no technology performs best or worst in all respects, i.e., trade-offs
and compromises are necessary to ensure a sustainable and secure energy supply.
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1, Lyon

27. Colli A, Serbanescu D, Ale BJM (2009) Indicators to compare risk
expressions, grouping, and relative ranking of risk for energy systems: appli-
cation with some accidental events from fossil fuels. Safety Sci 47:591–607

28. Cox LA Jr (2008) Some limitations of “risk = threat× vulnerability× conse-
quence” for risk analysis of terrorist attacks. Risk Anal 28(6):1749–1761

29. Cozzani V, Campedel M, Renni E, Krausmann E (2010) Industrial acci-
dents triggered by flood events: Analysis of past accidents. J Hazard Mater
175:501–509

30. Cruz AM, Krausmann E (2009) Hazardous-materials releases from offshore
oil and gas facilities and emergency response following Hurricanes Katrina
and Rita. J Loss Prevent Process Ind 22:59–65

31. Dadashzadeh M, Abbassi R, Khan F, Hawboldt K (2013) Explosion modeling
and analysis of BP deepwater horizon accident. Safety Sci 57:150–160

32. Delzeit R, Holm-Müller K (2009) Steps to discern sustainability criteria for a
certification scheme of bioethanol in Brazil: approach and difficulties. Energy
34:662–668

33. Eckle P, Burgherr P (2013) Bayesian data analysis of severe fatal accident risk
in the oil chain. Risk Anal 33(1):146–160

34. Eckle P, Burgherr P, Hirschberg S (2011) Final report on multi-criteria deci-
sion analysis (MCDA). SECURE deliverable No. D6.2. In: SECURE project:
security of energy considering its uncertainty, risk and economic implications,
Brussels, Belgium

35. Eckle P, Burgherr P, Michaux E (2012) Risk of large oil spills: a sta-
tistical analysis in the aftermath of deepwater horizon. Environ Sci Tech
46(23):13002–13008

36. Elahi S (2011) Here be dragons. . . exploring the ‘unknown unknowns’.
Futures 43:196–201

37. Ersdal G, Aven T (2008) Risk informed decision-making and its ethical basis.
Reliab Eng Syst Safety 93:197–205

38. Fabiano B, Curro F (2012) From a survey on accidents in the downstream oil
industry to the development of a detailed near-miss reporting system. Process
Safety Environ Prot 90:357–367



498 P. Burgherr et al.

39. Felder, F.A.: A critical assessment of energy accident studies. Energy Policy
37, 5744–5751 (2009)

40. Filippini R, Silva A (2012) Resilience analysis of networked systems-of-
systems based on structural and dynamic interdependencies. In: PSAM 11 &
ESREL 2012, Helsinki, p 10

41. Fritzsche AF (1989) The health risks of energy production. Risk Anal
9(4):565–577

42. Fritzsche AF (1992) Editorial - severe accidents: can they occur only in the
nuclear production of electricity? Risk Anal 12:327–329

43. Fthenakis VM, Kim HC (2011) Photovoltaics: life-cycle analyses. Solar
Energy 85(8):1609–1628

44. Garrick BJ (2008) Examples of risks having the potential for catastrophic
consequences. In: Garrick BJ (ed) Quantifying and controlling catastrophic
risks. Academic, Burlington, pp 203–230

45. Greenberg M, Truelove HB (2011) Energy choices and risk beliefs: is it
just global warming and fear of a nuclear power plant accident? Risk Anal
31(5):819–831

46. Greenberg M, Haas C, Cox A Jr, Lowrie K, McComas K, North W (2012)
Ten most important accomplishments in risk analysis, 1980–2010. Risk Anal
32(5):771–781

47. Gregory R, Lichtenstein S (1994) A hint of risk: tradeoffs between quantitative
and qualitative risk factors. Risk Anal 14(2):199–206

48. Ha-Duong M, Loisel R (2011) Actuarial risk assessment of expected fatali-
ties attributable to carbon capture and storage in 2050. Int J Greenhouse Gas
Control 5:1346–1358

49. Haimes YY (2009) On the complex definition of risk: a systems-based app-
roach. Risk Anal 29(12):1647–1654

50. Härtler G (1983) Statistische Methoden für die Zuverlässigkeitsanalyse. VEB
Verlag Technik, Berlin

51. Hassler B (2011) Accidental versus operational oil spills from shipping in the
Baltic Sea: risk governance and management strategies. Ambio 40:170–178

52. Hirschberg S, Spiekerman G, Dones R (1998) Severe accidents in the energy
sector, 1st edn. PSI Report No. 98–16. Paul Scherrer Institut, Villigen PSI

53. Hirschberg S, Burgherr P, Spiekerman G, Cazzoli E, Vitazek J, Cheng L (2003)
Assessment of severe accident risks. In: Eliasson B, Lee YY (eds) Integrated
assessment of sustainable energy systems in China. The China energy tech-
nology program - a framework for decision support in the electric sector of
Shandong province. Alliance for global sustainability series, vol 4. Kluwer
Academic Publishers, Amsterdam, pp 587–660

54. Hirschberg S, Burgherr P, Spiekerman G, Dones R (2004) Severe accidents in
the energy sector: comparative perspective. J Hazard Mater 111(1–3):57–65

55. Hollnagel E, Woods DW, Leveson N (2006) Resilience engineering: concepts
and precepts. Ashgate, Burlington

56. Hope BK (2012) Exposure gone “wild”: a call for rational exposure scenarios.
Hum Ecol Risk Assess 18:485–487



18 Comparative Assessment of Accident Risks 499

57. Hotelling H (1933) Analysis of a complex of statistical variables into principal
components. J Educ Psychol 24:417–441 and 498–520

58. Huang IB, Keisler J, Linkov I (2011) Multi-criteria decision analysis in en-
vironmental sciences: ten years of applications and trends. Sci Total Environ
409:3578–3594

59. Inhaber H (2004) Risk analysis applied to energy systems. In: Cleveland CJ
(ed) Encyclopedia of energy, vol 5. Elsevier, Amsterdam, pp 469–482

60. International Risk Governance Council (2005) White paper on risk gover-
nance. Towards an integrative approach. International Risk Governance Coun-
cil (IRGC), Geneva

61. Jernelöv A (2010) The threats from oil spills: now, then, and in the future.
AMBIO 39:353–366

62. Johansson B (2013) A broadened typology on energy and security. Energy
53:199–205

63. Johnson S, Low-Choy S, Mengersen K (2011) Integrating Bayesian networks
and geographic information systems: good practice examples. Integr Environ
Assess Manag 8(3):473–479

64. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer series in
statistics. Springer, New York

65. Kaiser MJ, Yu Y (2010) The impact of Hurricanes Gustav and Ike on offshore
oil and gas production in the Gulf of Mexico. Appl Energy 87:284–297

66. Kalantarnia M, Khan F, Hawboldt K (2010) Modelling of BP Texas City refin-
ery accident using dynamic risk assessment approach. Process Safety Environ
Prot 88(3):191–199

67. Knapp S, Franses PH (2009) Does ratification matter and do major con-
ventions improve safety and decrease pollution in shipping? Marine Policy
33:826–846

68. Kontovas CA, Psaraftis HN, Ventikos NP (2010) An empirical analysis of
IOPCF oil spill cost data. Mar Pollut Bull 60:1455–1466

69. Koornneef J, Ramírez A, Turkenburg W, Faaij A (2012) The environmental
impact and risk assessment of CO2 capture, transport and storage: an evalua-
tion of the knowledge base. Progress Energy Combust Sci 38, 62–86

70. Krausmann E, Renni E, Campedel M, Cozzani V (2011) Industrial accidents
triggered by earthquakes, floods and lightning: lessons learned from a database
analysis. Nat Hazards 59:285–300

71. Kröger W, Zio E (2011) Vulnerable systems. Springer, London
72. Kruyt BDP, van Vuuren HJM, Vries d, Groenenberg H (2009) Indicators for

energy security. Energy Policy 37(6):2166–2181
73. Lefèvre N (2010) Measuring the energy security implications of fossil fuel

resource concentration. Energy Policy 38:1635–1644
74. Linkov I, Satterstrom FK, Kiker G, Batchelor C, Bridges T, Ferguson E (2006)

From comparative risk assessment to multi-criteria decision analysis and adap-
tive management: recent developments and applications. Environ Int 32:1072–
1093



500 P. Burgherr et al.

75. Lirong W, Zhongan J, Weimin C, Xiuwei Z, Dawei L, Yujing Y (2011) Major
accident analysis and prevention of coal mines in China from the year of 1949
to 2009. Mining Sci Tech (China) 21:693–699

76. Liu KF-R, Ko C-Y, Fan C, Chen C-W (2012) Combining risk assessment,
life cycle assessment, and multi-criteria decision analysis to estimate environ-
mental aspects in environmental management system. Int J Life Cycle Assess
17:845–862

77. Löschel A, Moslener U, Rübbelke DTG (2010) Indicators of energy security
in industrialised countries. Energy Policy 38(4):1665–1671

78. Mabel MC, Raj RE, Fernandez E (2010) Adequacy evaluation of wind power
generation systems. Energy 35:5217–5222

79. Maiti J, Khanzode VV, Ray PK (2009) Severity analysis of Indian coal mine
accidents: a retrospective study for 100 years. Safety Sci 47:1033–1042

80. Morgan MG, Henrion M (1990) Uncertainty: a guide to dealing with uncer-
tainty in quantitative risk and policy analysis. Cambridge University Press,
New York

81. Paté-Cornell E (2012) On “Black Swans” and “Perfect Storms”: risk analysis
and management when statistics are not enough. Risk Anal 32(11):1823–1833

82. Pearson K (1901) On lines and planes of closest fit to systems of points in
space. Philos Mag 2:559–572

83. Perrons RK (2013) Assessing the damage caused by Deepwater Horizon: not
just another Exxon Valdez. Mar Pollut Bull 71(1-2):20–22

84. Psarros G, Skjong R, Vanem E (2011) Risk acceptance criterion for tanker oil
spill risk reduction measures. Mar Pollut Bull 62:116–127

85. Rasmussen NC (1981) The application of probabilistic risk assessment tech-
niques to energy technologies. Annu Rev Energy 6:123–138

86. Ren J, Jenkinson I, Wang J, Xu DL, Yang JB (2009) An offshore risk analysis
method using fuzzy Bayesian network. J Offshore Mechanics and Arctic Eng
131:1–12

87. Renn O, Klinke A, van Asselt M (2011) Coping with complexity, uncertainty
and ambiguity in risk governance: a synthesis. Ambio 40(2):231–246

88. Roth S, Hirschberg S, Bauer C, Burgherr P, Dones R, Heck T, Schenler W
(2009) Sustainability of electricity supply technology portfolio. Ann Nuclear
Energy 36:409–416

89. Saleh JH, Cummings AM (2011) Safety in the mining industry and the un-
finished legacy of mining accidents: safety levers and defense-in-depth for
addressing mining hazards. Safety Sci 49:764–777

90. Schenler W, Hirschberg S, Burgherr P, Makowski M (2009) Final report on
sustainability assessment of advanced electricity supply options. NEEDS de-
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