
Chapter 2
Bearing Surfaces for Joint Replacement:
New Materials or New Problems

Stuart Goodman

Total joint replacement (TJR) is one of the greatest technological advances in all of
surgery. Hip, knee, and shoulder replacements, as well as reconstruction of smaller
joints with artificial materials are currently performed worldwide. These procedures
decrease pain and improve function in a cost-effective manner, and thereby improve
the quality of life for millions of patients with end-stage arthritis.

Initially, most modern TJRs consisted of a bearing couple composed of a metallic
alloy that articulated with conventional medical grade polyethylene [1]. This combi-
nation of materials functioned satisfactorily for many years in low demand, elderly
patients for whom TJRs were originally designed. However, as joint replacement
procedures were extended to younger more active higher-demand patients, wear of
the polyethylene and the subsequent adverse biological reaction to wear byproducts
became a serious concern [2].

Wear of the bearing materials of a TJR is a function of use, not time in vivo [3].
Higher-demand patients engage in greater numbers of gait cycles per day, and often
participate in higher-impact sporting activities that increase wear [4]. Polyethylene
wear particles generated at the articulation are pumped and distributed throughout
the “effective joint space”, producing in some cases chronic synovitis, progressive
bone loss (periprosthetic osteolysis), implant loosening and pathologic fracture [5].
Subsequent surgical reconstruction of loose TJRs with extensive periprosthetic bone
loss is challenging; these surgical procedures are long and costly and have a higher
complication rate and a poorer outcome compared to primary procedures [2]. These
facts have stimulated intense research to improve the tribological characteristics of
current materials, as well as develop newer more wear resistant bearing couples that
potentially could last a lifetime [6]. Although this goal has not yet been realized,
significant improvements in implant materials have been achieved in the last two
decades. At the same time, unexpected obstacles have surfaced which have led, in
some cases, to earlier revision surgery than with conventional materials.
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The Inflammatory Reaction to Wear Debris

Wear particles are generated at all artificial joint articulations. These particles are
largely in the micron and submicron range, with metallic particles being amongst
the smallest [7–9]. Wear particles of polymethylmethacrylate (PMMA), polyethylene
(PE) and ceramics evoke a nonspecific, non-antigenic chronic inflammatory and for-
eign body reaction [10]. The cellular components of this reaction commonly include
the monocyte/macrophage cell lineage (macrophages, foreign body giant cells and
osteoclasts), activated fibroblasts, with occasional polymorphonuclear leukocytes
(PMNs) and lymphocytes [11–13]. Larger wear particles of metals such as stainless
steel, cobalt chrome alloy and titanium alloy incite a similar chronic inflammatory
reaction; however, recent evidence has demonstrated that metal byproducts may also
produce a Type IV allergic reaction in some situations (see below) [14].

Macrophages and other cells phagocytize particles less than about 10 microns in
diameter, as part of the innate immune response to foreign materials [2, 7, 8, 13, 15].
The wear debris is non-digestible and activates the cells to produce and release
pro-inflammatory cytokines, chemokines, prostanoids, reactive oxygen species and
other factors that, in the end, stimulate osteoclasts to degrade bone [15–17]. At the
same time, homeostatic mechanisms are initiated that induce local bone formation
[13, 18]. However, with ongoing production of wear debris, the balance between
bone destruction and bone formation favours the former, leading to periprosthetic
osteolysis, and potentially, implant loosening and fracture [18, 19]. Because of the
cyclic nature of walking which induces high intra-articular pressures, the particles,
cells and inflammatory factors are pumped and distributed around the prosthesis and
insinuate into the adjacent cancellous bone along the bone–implant interface [20].
From this pumping and distribution, osteolysis can be seen adjacent to and remotely
from the prosthesis bearing couple. Increased local fluid pressure also induces bone
destruction [21]. The cells that phagocytize particles eventually die, liberating the
particulate debris that continues to perpetuate the inflammatory cycle. Furthermore,
recent in vivo studies have shown that wear particles induce a systemic biological
response, rather than only a local response [22, 23]. Through the action of chemo-
tactic cytokines or chemokines, inflammatory and reparative cells are mobilized to
the site of particle generation to participate in the inflammatory cascade, attempt to
contain this adverse reaction, and restore normal tissue architecture [22–27].

Although biological approaches are currently being explored to improve the os-
seointegration of implants (to provide a more robust bone–implant interface) and to
mitigate wear particle induced inflammation, perhaps a more direct approach is to
develop more wear resistant materials. In essence this amounts providing bearing
couples that generate fewer wear particles, with conceivably more benign biological
physico-chemical properties, which will not perturb local tissue homeostasis. This
goal would aim to provide a “permanent” joint replacement that would allow full
activities (including impact loading) for the duration of the patient’s life.
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New Polyethylenes

As stated above, metal-on-conventional ultra high molecular weight polyethylene
has been the traditional bearing surface for many decades. This material has per-
formed well in the very elderly, more sedentary population. However, in more active
younger individuals with greater numbers of gait cycles per year, more wear particles
are produced [3]. In general, polyethylene linear wear rates of less than 0.1 mm per
year produce little osteolysis compared with higher wear rates [28]. Increased wear
is produced by chain scission and oxidation of the linearly arranged polyethylene
molecules. Recent attempts to improve the wear characteristics of polyethylene have
included: altering the crystallinity of polyethylene, irradiating and packaging the
product in an inert (non-oxygen containing) environment, irradiating and heating
(above the melting point) and/or annealing the polyethylene to induce a more highly
cross-linked end product that contains fewer free radicals, sequential irradiating and
annealing protocols below the melting point of polyethylene, and adding surface
coatings or free radical scavengers [29–31]. Although most of these new processes
have shown highly encouraging early and intermediate clinical results after more than
one decade of use, no long-term (20 + year) clinical outcomes have been reported
[32]. Cross-linked polyethylene (XLPE) has less optimal mechanical properties (in-
cluding toughness, ductility and resistance to fatigue) compared to conventional
polyethylene [33–35]. Issues related to the use of larger femoral heads (to prevent
dislocation) that articulate with thinner polyethylene acetabular liners have lead to
reports of polyethylene rim fractures, necessitating revision surgery [36, 37]. This
has been seen more commonly in implants with suboptimal positioning (for exam-
ple, an excessively abducted or anteverted acetabular cup). Although in vitro studies
have suggested potentially higher adverse biological reactions to wear particles from
cross-linked polyethylene, compared to conventional polyethylene, the numbers of
particles generated are decreased with the XLPE material as to almost negate this
point [38–40]. However, not all XLPEs are exactly alike. The irradiation protocols,
processing, packaging and other variables are different for each manufacturer [32].
Patients with XLPE components are still not encouraged to engage in impact loading
activities that could damage the articular surface.

Ceramic Bearings

The use of ceramic-on-ceramic (CoC) bearings was popularized in France, Japan and
Korea, but has been less popular in the United States. These bearings are biocompat-
ible, display low friction, high-wear resistance and produce few wear particles with
normal usage [41]. Intermediate term series have reported very encouraging results
[42, 43]. The problem of catastrophic fracture of ceramic femoral heads in total
hip replacement has largely been avoided with newer ceramics with smaller grain
sizes. However, some new unanticipated problems have come to light with CoC
bearings [44, 45]. Modular acetabular cups may be difficult to assemble, may seat
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incompletely, or dissociate from their metal backing. Third body interposition (with
soft tissue, bone spicules, etc.) between modular components may be an issue in
assembly. Chipping of the liner may also occur at surgery or with later impingement.
Edge loading with striped wear may take place due to increased range of motion and
cyclic micro-separation during gait, especially if the components are in suboptimal
position [41, 44]. Troublesome and embarrassing audible squeaking has been noted
with some implant designs. In addition, these implants are generally more expensive
than metal-on-polyethylene (MoP) articulations. Nonetheless, CoC bearings facili-
tate the use of larger femoral heads and generally allow more normal activities, even
high-impact sports according to surgeons who utilize them [43].

Metal-on-Metal (MoM) Bearings

MoM bearings were recently re-introduced for several reasons, including the high
wear rates and high incidence of osteolysis with metal-on-conventional polyethylene
bearings in younger patients, and for resurfacing arthroplasty [46]. MoM bearings
depend on a high level of congruence of the articulating metallic surfaces to encourage
fluid film lubrication [47]. This results in extremely low wear rates [41, 48]. The
head sizes can be larger than with a MoP bearing, increasing the range of motion
and overall stability of the joint. These points lead to a resurgence of MoM bearing
surfaces, which at one point constituted about 25 % or more of the hip replacement
market in the USA. The early and mid-term results for some MoM total hip and
resurfacing implants were very encouraging [49]. However, the enthusiasm for this
bearing couple has waned somewhat because of issues related to pain and adverse
tissue reactions with some implants [48]. Indeed several suboptimal implant designs
with unacceptably high failure rates have been withdrawn from the marketplace
[50, 51].

In general, patients with MoM total hip replacements have a higher incidence
of adverse tissue reactions compared with those with MoP or CoC bearings. Some
MoM failures are the result of a type IV hypersensitivity reaction to metal particles
and their byproducts [41, 47]. The clinical presentation may vary from a diffusely
painful joint with chronic synovitis and no other abnormal radiographic features to
loosening, osteolysis or pseudotumor formation. Registry data from several countries
have shown a higher revision rate for MoM bearing THRs [48, 52, 53]. Larger head
sizes (> 28 mm) appear to increase these adverse events compared to smaller head
sizes.

Willert and colleagues published a seminal study on adverse tissue reactions to
MoM bearings and implicated a hypersensitivity reaction to metallic byproducts [14].
They noted prominent perivascular lymphocytic cuffing in the periprosthetic tissues
and implicated immune processes for the adverse clinical outcomes in some patients.
Patients with high wear rates of MoM hip implants, especially those with suboptimal
alignment leading to edge loading, may have increased metal ion levels of cobalt and
chromium in the blood. In vitro and in vivo studies have demonstrated that metal
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particulates and their byproducts may be associated with cytotoxicity, DNA damage
(DNA-strand breaks, inhibition of DNA repair, chromosomal aberrations, etc.), metal
hypersensitivity reactions and pseudotumors [47, 54]. Metal particles are about 30–
200 nm in size; ionic complexes may form due to corrosion and other processes that
degrade the alloys. The numbers of these smaller particles are often 2–3 orders of
magnitude greater than with MoP articulations. These small metallic particles are
small enough to cross the placenta. Although some hematopoietic abnormalities have
been noted with MoM bearings, the incidence of different cancers in patients with
MoM bearing surfaces does not appear to be higher compared to conventional MoP
bearing surfaces [55].

In the last several years, the number of new MoM resurfacing arthroplasties
has decreased dramatically, especially in younger women with smaller implant sizes
[56]. These higher-risk patients are particularly susceptible to adverse immunological
events due to wear byproducts from MoM implants [47]. Resurfacing arthroplasty is
reported to have a much higher success rate in younger males with good bone stock
and little deformity.

Other Bearing Couples

Other novel, so-called “hard-on-hard” bearing couples (such as ceramic-on-metal
etc.) have recently been introduced to avoid the metallic byproduct issue altogether
[46]. Longer-term studies are needed to determine their importance as a practical
articulation for hip replacement.

Summary

As the general population continues to age, and high demands are placed on joint
replacements to function for prolonged periods of time, issues related to implant
materials become more prominent. Thorough preclinical assessment of newly in-
troduced materials must be rigorous to avoid some of the pitfalls noted during
the last one to two decades. Although advances have been made, the long-lasting,
high-performance joint replacement that will function normally in vivo is still elusive.

This work was supported in part by National Institute of Health (NIH) grants
2R01 AR055650-05 and 1R01 AR063717-01.
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