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Abstract Multiple biomarkers are frequently observed or collected for detecting
or understanding a disease. The research interest of this paper is to extend tools
of ROC analysis from univariate marker setting to multivariate marker setting for
evaluating predictive accuracy of biomarkers using a tree-based classification rule.
Using an arbitrarily combined and-or classifier, an ROC function together with a
weighted ROC function (WROC) and their conjugate counterparts are introduced
for examining the performance of multivariate markers. Specific features of the ROC
and WROC functions and other related statistics are discussed in comparison with
those familiar properties for univariate marker. Nonparametric methods are devel-
oped for estimating the ROC and WROC functions, and area under curve (AUC)
and concordance probability. With emphasis on population average performance of
markers, the proposed procedures and inferential results are useful for evaluating
marker predictability based on multivariate marker measurements with different
choices of markers, and for evaluating different and-or combinations in classifiers.

Introduction

The Receiver Operating Characteristic (ROC) analysis has been widely used as tools
for assessing the discriminant performance for biomarkers. Based on a univariate or
combined-to-univariatemarker, the ROC curve is known as a plot of the true positive
rate versus the false positive rate for each possible cut point, for summarizing
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sensitivity and specificity of a binary classifier system when marker measurements
are continuous. In nonparametric, semiparametric or parametric models, the ROC
curve and its associated measures such as area under curve (AUC) or partial area
under curve (pAUC) have been used as useful indices for evaluating the predictive
accuracy of markers or diagnostic tests [17]. In statistical literature, different
measures have been developed to summarize and compare the predictive accuracy
of biomarkers ([2, 8] among others).

This paper considers situations when multiple markers (M1,M2, . . . ,Mk) are
available for classification of disease state. The research interest is to establish
criterion and tools for assessing predictive accuracy based on multivariate markers
or multivariate test measurements, (M1,M2, . . . ,Mk), from observed data or a
training data set. The proposed work includes at least two types of applications:
(i) to quantify the result of dual or multiple readings from a single diagnostic test, or
readings from multiple tests; (ii) to evaluate the predictability of combined multiple
markers for a disease, where each marker characterizes a specific biological function
for the disease. For the first type of applications, (i), multiple reading is employed
for either reducing uncertainty of test classification or comparison of multiple
diagnostic modalities [9, 15]. Applications of the second type, (ii), are important
when multivariate markers are used as prognostic measurements for predicting or
understanding the disease.

To analyze multiple marker data, several approaches have been developed to
handle the correlation structure of marker measurements for different research goals.
The most common approach is perhaps to combine multiple markers into a single
composite score using logistic regression model, and evaluate the predictability
of markers by the one-dimensional composite score [14]. For high-dimensional
markers, or when markers come from different biological sources, it may not be
analytically appropriate to combine the markers into a composite score and, in such
situations, the tree-based regression model could serve as a good alternative for
identifying a classification rule. The tree-based classification method is sometimes
referred to as recursive partitioning, which is frequently used in data mining,
machine learning and clinical practice as a predictive model [3, 22]. For example,
Baker [1] and Etzioni et al. [6] considered discretized markers by keeping the marker
values in multi-dimensional settings and proposed new definitions for ROC curves.

When markers are continuous, Jin and Lu [13] considered bivariate markers and
proposed to use the area under the upper boundary of ROC region to evaluate
diagnostic utilities. Jin and Lu’s work can be viewed as an extension of Baker’s
approach [1] from discrete markers to continuous markers. Wang and Li [21] defined
an ROC function for bivariate continuous markers via generalized inverse set of the
quantile function FP, where the ROC function possesses a conditional expectation
expression. In this paper, we generalize Wang and Li’s results from bivariate marker
to multivariate marker setting, and develop methods and inference for ROC analysis.

Assume a k-dimensional marker vector (M1,M2, . . . ,Mk) is available and the
disease state is determined by a sequence of arbitrarily combined and-or classifier
with positivity specified in either direction of marker values; for example, I((M1 ≥
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m1 or M2 <m2) and (M3 <m3 or M4 ≥m4)). This extension links to potential appli-
cations related to classification tree with binary decision diagrams. The research
interest is to establish criterion and tools for assessing predictive accuracy based on
multivariate markers, (M1,M2, . . . ,Mk). Specifically, the ROC function is extended
from univariate case to multivariate case, and a weighted ROC (WROC) function
is introduced for examining the performance of predictive accuracy with arbitrarily
combined and-or classifiers.

Let (Ml1,Ml2, . . . ,Mlk), l = 0,1, be the marker vector for a non-diseased or
diseased subject. Let the arbitrarily combined and-or classifier be expressed as
I{(Ml1,Ml2, . . . ,Mlk) ∈ D(m1,m2, . . . ,mk)} with D(m1,m2, . . . ,mk) ⊆ Rk defined
as the region for marker-based positivity. To simplify notation and formulation,
hereafter we shall use bold face m to represent the vector (m1,m2, . . . ,mk), and let
ml and Ml, l = 0,1, represent the vectors (ml1,ml2, . . . ,mlk) and (Ml1,Ml2, . . . ,Mlk).
Define the false and true positive rates respectively as

FP(m) = P{M0 ∈ D(m)} , TP(m) = P{M1 ∈ D(m)}

The research interest is to extend rules and tools from univariate marker to
multivariate marker setting for assessment of predictive accuracy of markers.

Using the US Alzheimer’s Disease Neuroimaging Initiative (ADNI) data set as an
example, the biomarkers of interest include measurements from different biological
systems related to neuroimaging, genetics, CSF (Cerebrospinal fluid) and cognition.
As the k markers are identified from different biological sources, it may not be
appropriate to combine them using, say, a linear combination of the measurements.
The and-or classifier also signifies the importance of interaction between markers.
For example, using an Alzheimer’s Disease study that the authors are currently
involved (the BIOCARD study at Johns Hopkins School of Medicine), decreases
in CSF Amyloid beta-42 and/or increases in total tau or phosphorylated-tau (p-tau)
are hypothesized as strong predictors for AD or AD-related symptoms. It would be
interesting to keep the k markers in multivariate setting and explore their respective
roles and interaction nonparametrically.

The paper is organized as follows. Section “Univariate Marker Case” briefly
reviews some of the fundamental definitions and properties for univariate ROC
analysis, where emphasis is placed on those which will be extended to multivariate
setting. In sections “Multivariate Markers: ROC, WROC and AUC” and “Other
Types of ROC and WROC Functions”, a set of ROC and ROC-related functions
are introduced with discussion focused on contrasting features between univariate
and multivariate cases. Section “Nonparametric Estimation” considers nonpara-
metric estimators for ROC-related functions, AUC and concordance probabilities.
Simulation and a real data analysis are presented in section “Simulation and Data
Example” to illustrate the applicability of the proposed procedures. Section “Dis-
cussion” concludes the paper with a brief discussion.
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Univariate Marker Case

In the section we consider the univariate marker case, k = 1. Suppose the disease
outcome D takes binary values 0 or 1, and M is a continuous marker variable. Let
M0 and M1 respectively represent the marker variable from non-diseased (D = 0)
and diseased (D = 1) group. Define TP(m) = P(M1 > m) = P(M > m|D = 1) as the
true positive rate (sensitivity), and FP(m)=P(M0>m) = P(M>m|D = 0) the false
positive rate (1− specificity). Assume M0 and M1 are independent. Define F0(m) =
1 − FP(m) and F1(m) = 1 − TP(m) respectively as the cumulative distribution
function of M0 and M1.

There are multiple ways to define the ROC function for a univariate marker. A
mathematically simple definition ROC(q) = TP[FP−1(q)], q ∈ [0,1], evaluates the
magnitude of true positive rate at controlled false positive rate through inverse func-
tional mapping between FP and TP. The comparison of two ROC functions from
different markers should thus be interpreted as the comparison of TP values with
the same FP rate. The partial area under ROC curve for false positive rate less
than p, 0 ≤ p ≤ 1, is defined as AUC(p) =

∫
I(0 ≤ q ≤ p)ROC(q) dq. The area

under ROC curve is defined as the total area with the FP rate ranging from 0 to 1,
that is, AUC(1). Define the partial concordance probability as CON(p) = P(M1 >
M0,FP(M0)≤ p). For univariate marker model, the quantile variable Q0 = FP(M0)
is Uniform[0,1] distributed and thus CON(p) can be calculated using probability
measure on (M1,Q0) and is simplified to

CON(p) = P(M1 > FP−1(Q0),Q0 ≤ p) =
∫ p

0

∫

I(m1 > FP−1(q)) dF1(m1) dq

=

∫ p

0
ROC(q)dq = AUC(p)

Thus, an alternative way to define ROC(p) is to obtain it as the derivative of the
partial concordance probability with respect to p, namely ROC(p) = CON ′(p). By
definition, CON(p) can also be expressed as

CON(p) =
∫ ∫

I(m1 > m0)I(FP(m0)≤ p) dF1(m1)dF0(m0) (1)

The equivalence between CON(p) and AUC(p) has led to development of non-
parametric approaches for estimating AUC(p) using the formula in (1). Dodd
and Pepe [4] showed that the partial area under curve possesses a concordance
probability expression: Let p∗0 = FP(TP−1(p0)) and assume p∗0 < p1, then

∫
I(p∗0 ≤ q < p1)ROC(q)dq = P(M1 > M0 ,FP−1(p1)< M0 ≤ TP−1(p0)) (2)

Thus, the partial concordance probability coincides with the partial AUC restricted
to the interval that false positive rate less than p1 and true positive rate greater
than p0. As proposed by Dodd and Pepe [4], by plugging the empirical distributions
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of M0 and M1 into (1) and (2), the partial area-under-curve can be estimated by
nonparametric U-statistics. The above properties will be extended to multivariate
marker case for further analytical developments.

An alternative approach can be adopted by reversing the roles of true and false
positive rates to define a function similar to the ROC function:

ROC ∗(q) = FP[TP−1(q)], q ∈ (0,1) (3)

By property of composite function, it is seen that

ROC ∗(q) = ROC −1(q) (4)

Clearly, since the mapping ROC(q) is one-to-one, the function ROC ∗(q) consists
the same amount of information as that of ROC(q). Graphically, ROC(q) and
ROC ∗(q) are symmetric with respect to the diagonal line which connects points
(0,0) and (1,1). Thus, ROC(q)+ROC ∗(1−q) = 1 and the sum of area under ROC
curve and area under ROC ∗ curve equals 1. In section “Other Types of ROC and
WROC Functions”, for multivariate marker model, a function parallel to ROC ∗(q)
will be introduced and some interesting relationships similar to or different from
those of univariate maker case will be explored.

Multivariate Markers: ROC, WROC and AUC

Now consider continuous markers and classification rule in multivariate setting.
Suppose M0 and M1 are independent k-dimensional marker vectors from non-
diseased group (D = 0) and diseased group (D = 1) respectively. Define

FP(m) = P{M0 ∈ D(m)} ,

TP(m) = P{M1 ∈ D(m)} .

Let F0(m) = P(M01 ≤ m1,M02 ≤ m2, . . . ,M0k ≤ mk) be the cumulative distri-
bution function for non-diseased population, and F1(m) = P(M11 ≤ m1,M12 ≤
m2, . . . ,M1k ≤ mk) the cumulative distribution function for diseased population.
Define the quantile variable Q0 = FP(M0) and denote by H0 the distribution
function of Q0. As an important feature of multivariate markers, in general Q0 is
not uniformly distributed. The distribution of Q0 depends on the classifier as well as
the probability structure of M0, and therefore varies from marker vector to marker
vector.
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Definition of ROC Function

When marker measurements are multivariate, the function FP(M0) is not a one-
to-one transformation, which implies that the ROC function for univariate marker,
TP(FP−1(q)), can not be used for multivariate marker case. Wang and Li [21]
considered bivariate marker models and defined an ROC function via generalized
inverse set of the quantile function FP, where the ROC function possesses a
conditional expectation expression. For multivariate markers, instead of using the
generalized inverse set to conceptualize the ROC function, the ROC function is
defined as the average of the true positive rate conditioning on the set of marker
values with false positive rate q, where the conditional average is calculated subject
to the non-diseased population:

ROC(q) = E[TP(M0) | FP(M0) = q ] (5)

There are a few characteristics of ROC(q) in (5), which may or may not be similar
to characteristics of the ROC function for univariate marker:

• The value of the ROC function in (5) is bounded between 0 and 1.
• The function ROC(q) may not be an increasing function in q, 0 ≤ q ≤ 1.
• If the distributions of M0 and M1 are the same (i.e., the marker vector is

non-predictive for disease), then for each Borel set D(m1,m2, . . . ,mk), one has
TP(m1,m2, . . . ,mk) = FP(m1,m2, . . . ,mk). This implies TP(M0) = FP(M0) with
probability one and

E[TP(M0) | FP(M0) = q ] = q.

Thus, if the markers are non-predictive for disease, the ROC function coincides
with the diagonal line which connects points (0,0) and (1,1), which is similar to
the ROC function for univariate marker.

• When the markers are predictive subject to the classifier D(m1,m2, . . . ,mk), it
means that TP(m1,m2, . . . ,mk)≥ FP(m1,m2, . . . ,mk) for each (m1,m2, . . . ,mk)∈
Rk, and this implies TP(M0)≥ FP(M0) with probability one and

ROC(q) = E[TP(M0) | FP(M0) = q ]≥ E[FP(M0) | FP(M0) = q ] = q,

for 0 ≤ q ≤ 1, Thus, the ROC function is above the diagonal line if the markers
are predictive for disease.

WROC and AUC

In use of the ROC function, a question of interest is whether the function in
(5) can be used for comparisons of markers’ predictive accuracy at population
level. To address the question, we recall that for univariate marker the area
under ROC curve is calculated with uniform distribution on q-axis (i.e., FP-axis).
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For multivariate markers, the ROC function defined in (5) can be used to compare
the performance of true positive rate locally by conditioning on FP(M0) = q.
To evaluate multivariate markers’ predictability unconditionally, the evaluation
should take into account the distribution of Q0 besides the use of the conditionally
defined ROC function.

Using the probability distribution of Q0, the AUC can be naturally defined as the
area under ROC curve subject to Lebesgue integration with measure H0 on q-axis,
namely AUC =

∫
ROC(q)dH0(q), or equivalently,

AUC =

∫ 1

0
ROC(q) ·h0(q) dq (6)

where h0(q) is the derivative of H0(q), which is assumed to exist. Define

WROC(q) = ROC(q) ·h0(q)

as the weighted ROC (WROC) function. Note that WROC(q) is the unconditional
average of the true positive rate with fixed false positive rate q:

WROC(q) = E[TP(M0)I(FP(M0) = q)] . (7)

It is seen that AUC is interpreted as area under WROC curve with uniform
measure over the unit interval [0,1]. Subsequently, the partial area under WROC
curve can be defined as

AUC(p) =
∫ p

0
WROC(q)dq , (8)

which can be used for comparison of markers in terms of their population-average
predictability.

The concordance probability is naturally defined as CON = P(M1 ∈ D(M0)).
Next we prove the equivalence between the concordance probability and the area
under WROC curve, which is an extension of a property for univariate marker [4]:

CON = P(M1 ∈ D(M0)) =

∫ ∫

I(m1 ∈ D(m0)) dF1(m1)dF0(m0)

=

∫

TP(m0) dF0(m0) =

∫ 1

0
E[TP(M0) | Q0 = q] ·h0(q)dq

=

∫ 1

0
WROC(q)dq = AUC (9)

With an additional constraint on the false positive rate p, 0 ≤ p ≤ 1, the partial
concordance probability can be expressed as

CON(p) = P(M1 ∈ D(M0),FP(M0)≤ p) ,
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where the full concordance probability corresponds to the special case p = 1.
The partial concordance probability is

CON(p) = P(M1 ∈ D(M0),FP(M0)≤ p)

=

∫ ∫

I(m1 ∈ D(m0))I(FP(m0)≤ p) dF1(m1)dF0(m0)

=

∫

TP(m0)I(FP(m0)≤ p) dF0(m0)=

∫ p

0
E[TP(M0) | Q0 = q] ·h0(q)dq

=

∫ p

0
WROC(q)dq = AUC(p) (10)

The equivalence between CON(p) and AUC(p) is again an extension of the result
from univariate marker model to multivariate marker model. Further, with the
restrictions that the false positive rate is less than or equal to p and that the true
positive rate is greater than q, the formula in (10) can be extended to

CON(p,q) = P(M1 ∈ D(M0),FP(M0)≤ p,TP(M1)> q)

=
∫ ∫

I(m1 ∈ D(m0))I(FP(m0)≤ p,TP(m1)> q) dF1(m1)dF0(m0) ,

which is a useful formula for constructing a U-statistic in estimation of the
concordance probability with two-sided constraints. It is also clear that CON(p,0)=
AUC(p).

Nonparametric Estimation

Suppose the observations include independent samples of iid copies of M0 and
iid copies of M1, where marker vectors are represented by {Mi,0 : i = 1, . . . ,n0}
and {Mj,1 : j = 1, . . . ,n1}, and realization values by {mi,0 : i = 1, . . . ,n0} and
{mj,1 : j = 1, . . . ,n1}, respectively from non-diseased and diseased populations. In
this section we consider nonparametric approaches for estimation of ROC, WROC,
AUC and CON. Denote by T̂P, F̂P, F̂1 and F̂0 respectively the empirical distribution
of the corresponding function. For those p with FP(mi,0) = p, initially one can
use a crude empirical estimate TP(mi,0) to estimate ROC(p). Or, alternatively, we
can consider the ROC function in its form as a conditional expectation in (5),
ROC(q) = E[TP(M0)|FP(M0) = q], and construct a kernel average estimate, which
can be thought of as a smoothed version of the crude empirical estimate, to estimate
ROC(q):

R̂OC(p) =

∫
T̂P(m0) · k( p−F̂P(m0)

b ) dF̂0(m0)
∫

k( p−F̂P(m0)
b ) dF̂0(m0)

=
∑n0

i=1 T̂P(mi,0) · k( p−F̂P(mi,0)

b )

∑n0
i=1 k(

p−F̂P(mi,0)

b )
,

where the kernel k(·) is a mean zero density function and b is a bandwidth [7].
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Note that the ROC function in (5) is defined as the average of true positive
rate given a fixed value of the false positive rate, where the calculation of the
conditional expectation is through the two one-dimensional variables TP(M0) and
FP(M0). Thus, the ‘curse of dimensionality’ does not occur when the ROC function
is estimated nonparametrically. A nonparametric estimator of WROC(p) can be
constructed by estimating the derivative of CON(p) in (10) using kernel estimation
technique:

̂WROC(p) =
1
b

∫
T̂P(m0) · k( p− F̂P(m0)

b
)dF̂0(m0) =

1
n0b

n0

∑
i=1

T̂P(mi,0) · k(
p− F̂P(mi,0)

b
)

which is seen to be the same as the product of R̂OC(p) and the kernel estimate
of h(p),

1
b

∫

k(
p− F̂P(m0)

b
)dF̂0(m0) .

Based on the equivalence between AUC(p) and CON(p), a nonparametric
estimator of AUC(p) can be obtained:

ÂUC(p) =
∫ ∫

I(m1 ∈ D(m0))I(F̂P(m0)≤ p) dF̂1(m1)dF̂0(m0) (11)

With the restriction that the false positive rate is less than or equal to p and the true
positive rate greater than q, the formula in (11) can be extended to

̂CON(p,q) =
∫

I(m1 ∈ D(m0)) · I(F̂P(m0)≤ p, T̂P(m1)> q) dF̂1(m1)dF̂0(m0)

=
1

n0n1

n0

∑
i=1

n1

∑
j=1

I(mj,1 ∈ D(mi,0)) · I(F̂P(mi,0)≤ p, T̂P(mj,1)> q) ,

where the estimator has the form of a U-statistic [12].

Theorem 1. Let N = n0 + n1. Assume 0 < limN→∞ n0/N = λ < 1. Then, for

p,q ∈ [0,1], (i) ̂CON(p,q) converges to CON(p,q) in probability as N → ∞, and

(ii)
√

N{̂CON(p,q)−CON(p,q)} d→ Normal(0,σ2), where σ2 is specified in the
Appendix.

The asymptotic results require that N be large and 0 < n0/N = λ < 1. This
condition is generally satisfied with random sampling while disease status D
could be either random or fixed, which is respectively relevant in prospective and
retrospective (case-control) study. In the case D is random, N corresponds to the
total sample size and n0/N converges to P(D = 0) = λ , 0 < λ < 1, with probability
1 and the asymptotic normality holds with the usual interpretation.
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Other Types of ROC and WROC Functions

Similar to considerations of using (3) in univariate marker case, for multivariate
markers we may want to consider a function with the roles of true and false
positive rates reversed. Define Q1 = TP(M1), and let H1 and h1 respectively be the
distribution function and density function of Q1. Then, similar to the structure of
ROC(q), where ROC(q) = E[TP(M0) | FP(M0) = q ], for multivariate markers we
may define

ROC ∗(q) = E[FP(M1) | TP(M1) = q ] .

In general, as a part of the main features which distinguish the univariate and
multivariate ROC inferences, the functional transformation ROC ∗(q) is not one-
to-one and therefore does not have the inverse functional relationship with ROC(q).
Further define

ROC(q) =E[FN(M0) | TN(M0) = q ] and ROC
∗
(q) =E[TN(M1) | FN(M1) = q ]

where FN(m) = P(M1 /∈ D(m)) is the false negative rate and TN(m) = P(M0 /∈
D(m)) is the true negative rate. The weighted functions corresponding to ROC ∗,
ROC(q) and ROC

∗
(q) can be defined in such ways similar to the WROC function:

for 0 < q < 1,

WROC(q) = ROC(q) ·h0(q); WROC ∗(q) = ROC ∗(q) ·h1(q)

WROC(q) = ROC(q) ·h0(1− q); WROC
∗
(q) = ROC

∗
(q) ·h1(1−q)

These weighted ROC functions serve to study the performance of predictive accu-
racy for multivariate markers from different perspectives. For example, WROC ∗(p)
serves to study the performance of false positive rate with true positive rate
controlled at value p. It is shown in the appendix that

ROC(q)+ROC(1− q) = 1; ROC ∗(q)+ROC
∗
(1−q) = 1

WROC(q)+WROC(1− q) = h0(q); WROC ∗(q)+WROC
∗
(1−q) = h1(q)

Thus, the function ROC provides the same amount of information as ROC,
and similarly ROC ∗ is as informative as ROC

∗
. Also, with knowledge of h(q),

WROC(q) provides the same amount of information as WROC for predictive
accuracy, and similar argument applies to the relationship between WROC ∗ and
WROC

∗
. Essentially, the pair-wise relationship can be thought of as the conjugate

partnership.



ROC Analysis for Multiple Markers with Tree-Based Classification 189

For evaluation based on partial area under curve, subject to either smaller FP
(FP ≤ p) or larger TP (TP > q), choices of these weighted ROC functions should
be WROC and WROC

∗
so that maximization of area under curve would make

sense. These two weighted ROC functions together with their corresponding ROC
functions are used in our simulation to study the performance of the proposed
criterions and methods for multivariate markers. Note that the partial concordance
probability for true negativity is CON

∗
(p) = P(M0 /∈ D(M1), FN(M1) ≤ p).

By similar technique employed in section “WROC and AUC”, it can be proved
that this concordance probability coinsides with the area under WROC

∗
(p) function,

CON
∗
(p) = AUC

∗
(p), and therefore a U-statistic ̂CON

∗
(p) can be constructed to

estimate CON
∗
(p).

In case of requiring both FP ≤ p and TP > q, these ROC or WROC functions
cannot be used for evaluation, but CON(p,q) can be used and estimated by the
technique described in section “Multivariate Markers: ROC, WROC and AUC”.
For estimation of ROC

∗
, WROC

∗
and CON

∗
(p,q), nonparametric estimates can

be constructed using methods similar to those for the functions ROC, WROC and

CON(p,q). Also, a property similar to Theorem 1 can be established for ̂CON
∗
(p)

by the same technique.

Remark. By setting Ml1 = Ml2 = . . . = Mlk, l = 0,1, univariate marker model can
be viewed as a degenerated case of multivariate markers. For this degenerated case,
the quantile variable Q0 = FP(M0) and Q1 = TP(M1) both follow Uniform[0,1]
distribution, and ROC(q) = FN(TN−1(q)) and ROC

∗
(q) = TN(FN−1(q)). In this

case, each of the WROC functions coincides with their counterpart of ROC func-
tions. Further, besides the relationship ROC(q)+ROC(1−q) = 1 and ROC ∗(q)+
ROC

∗
(1−q) = 1, it is seen that ROC ∗(q) = ROC −1(q), which implies that each of

the four ROC functions provides the same amount of information as the other three
functions for predictive accuracy of the marker.

Simulation and Data Example

Simulation

To show the performance of predictive accuracy for multivariate markers, we
conduct simulation studies under different scenarios. We compare ROC and WROC
curves for multivariate markers under each scenario, along with the weight function
h0(q). We also compare univariate and multivariate marker cases to evaluate the
gain and loss by using multiple markers.

Since this paper is a generalization of the bivariate ROC analysis of Wang and
Li [21], we take k ≥ 3 markers for evaluation. For simplicity, we take k = 3.
Consider the simulation model where (M01,M02,M03) and (M11,M12,M13) follow
a multivariate normal distribution. By convention we assume higher marker value
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Fig. 1 Simulation for classifier I(M1 > m1, M2 > m2, M3 > m3) with ρ0 = ρ1 = 0

indicates presence of disease. Let N1 = 200 be the number of diseased individuals
and N2 = 200 be the number of non-diseased individuals. We generate data so that
(M01,M02,M03) have mean (0, 0, 0) and unit deviations. We generate data so that
(M11,M12,M13) have mean (1, 1, 1) and unit deviations. Let ρl = (ρl12,ρl23,ρl13),
l = 0,1, where ρli j denote the correlation between Mli and Ml j . We consider
different scenarios according to different correlations ρl . The ROC analysis for
univariate marker is based on data generated from the distributions of Ml1, bivariate
ROC analysis is based on data generated from the distribution of (Ml1,Ml2), and
multivariate ROC analysis is based on data generated from the distribution of
(Ml1,Ml2,Ml3).

Figures 1–3 exhibit simulation results when ρ0 = ρ1 = 0, 0.5 and 1 respectively.
As discussed in section “Other Types of ROC and WROC Functions”, WROC is
the conjugate partner of WROC and WROC∗ is the conjugate partner of WROC

∗
,

and with the knowledge of h0(q) and h1(q), each of paired-partners provides the
same amount of information for prediction as its partner. Choices of these weighted
ROC functions should include only WROC and WROC

∗
so that maximization of

area under curve makes sense.
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Fig. 2 Simulation for classifier I(M1 > m1, M2 > m2, M3 > m3) with ρ0 = ρ1 = 0.5

When ρ0 = ρ1 = 0, the three markers are mutually independent, so the use
of all three markers is expected to be more informative than one marker or two
markers alone. Figure 1 shows a clear pattern of gain and loss as the number of
markers increases. The gain in WROC(q) for small values of q, when compared to
univariate ROC curve, is substantial for multivariate ROC curve but only moderate
for bivariate ROC curve. Similarly, the loss in WROC(q) for large values of q is
substantial for bivariate ROC curve but only moderate for bivariate ROC curve.
This phenomenon can partly be explained by the right skewness of the weight
function h0(q): the distribution of FP is uniform in univariate case, but it distributes
more probability toward smaller values for bivariate marker case, and the inclusion
of the third marker makes the weight function more skewed. By the equivalence
between partial concordance probability and partial area under WROC curve, we
find that multivariate markers outperform univariate marker and bivariate marker
for the region with small FP. The function WROC

∗
for multivariate markers shows

the opposite direction of gain and loss, compared to univariate or bivariate marker
case. There is loss in WROC

∗
(q) for small values of q (FP) and gain for large values

of q, which is due to the left skewness of the weight function h1(1−q).
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Fig. 3 Simulation for classifier I(M1 > m1, M2 > m2, M3 > m3) with ρ0 = ρ1 = 1

When ρ0 = ρ1 = 0.5, the three markers are moderately correlated, similar to the
case ρ0 = ρ1 = 0, the distribution of Q0 and Q1 still distribute more probability to
small values, so we can observe the same pattern of tradeoff between gain at small
FP and loss at large FP.

When ρ0 = ρ1 = 1, the three markers are identical and they provide the same
information as one marker case (or two marker case). The ROC (WROC) functions
for multivariate case coincides with the ROC function for univariate case (Fig. 3).
The univariate case can thus be viewed as a degenerated case of multivariate
markers.

A Data Example

We apply the proposed methods to the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) data for multivariate ROC analysis. The ADNI study is a research project
with research focus on

changes of cognition, function, brain structure and function, and biomarkers in elderly
controls, subjects with mild cognitive impairment, and subjects with Alzheimer’s disease
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(quoted from http://adni.loni.ucla.edu/). The study is supported by the NIH, private
pharmaceutical companies, and nonprofit organizations. Enrollment target was 800
participants – 200 normal controls, 400 patients with amnestic MCI, and 200
patients with mild AD – at 58 sites in the United States and Canada. Participants
were enrolled on a rolling basis, and evaluated every six months. One of the
major goals of the ADNI study is to identify biomarkers that are associated with
progression from MCI to AD, and determine which biomarker measures (alone
or in combination) are the best predictors of disease progression. Sensitivity and
specificity for both cross-sectional and longitudinal diagnostic classification were
considered important statistical techniques for assessing biomarkers in disease
progression [18].

Investigations of the risk of progressing from MCI to AD dementia have largely
focused on measures from the following categories: demographics, cognition,
apolipoprotein E (APOE), magnetic resonance imaging (MRI), and cerebrospinal
fluid (CSF) data. Demographic variables include age, education and gender. Cog-
nitive measures represent five domains respectively: memory, language, executive
function, spatial ability, and attention. Neuroimaging measures include brain vol-
ume, ventricular volume, and bilateral hippocampal volumes. The CSF variables
include T-tau, Aβ 42, p-tau181, the ratio of the first two variables, and the ratio of
the last two variables.

For this section, we selected three markers, hippocampus volume, memory
score and executive function for illustration. To account for censoring, we used
a reduced sample data set to create time-independent binary disease outcomes
(D = 0,1). We chose the 24th month as the cut-off time to define disease state.
Of the 274 subjects who had complete data for the three markers, 49 subjects
were loss to follow up before 24 months, so we focused on the 225 subjects who
have had follow-up time longer than 24 months: there were 89 failures (D = 1)
and 136 survivors (D = 0) at the 24th month. Let M1 be hippocampus volume,
M2 be executive function score, and M3 be memory score. Figure 4 compares the
diagnostic performance of three markers (M1,M2,M3), bivariate markers (M1,M2),
and univariate marker M1. If the classifier is I(M1 > m1, M2 > m2, M3 > m3), there
is gain for small values of FP and loss for large values of FP. The partial AUC plot
indicates that multivariate markers produce higher partial concordance summary
than univariate marker when q < 0.6, and multivariate markers produce higher
partial concordance summary than bivariate marker when q < 0.3. In diagnostic
testing, it is crucial to maintain the false positive rate to be low to avoid unnecessary
monetary costs. Thus, if the prognostic capacity is evaluated in terms of partial AUC,
the multivariate marker hippocampus volume, executive function and memory score
together would be considered performing much better than hippocampus volume
alone.

Without restriction on the false positive rate, the AUC under the multivariate
WROC curve is 0.358 (SE: 0.022) and the AUC under the multivariate WROC

∗
is

0.964 (SE: 0.024); the AUC under the bivariate WROC curve is 0.437 (SE: 0.030)

http://adni.loni.ucla.edu/
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Fig. 4 (M1,M2,M3)= (hippocampus, executive function, memory), with classifier I(M1 > m1,
M2 > m2, M3 > m3)

and the AUC under the bivariate WROC
∗

is 0.906 (SE: 0.030); the AUC under the
univariate ROC curve is 0.658 (SE: 0.040). The bootstrap method was adopted to
calculate the standard errors for estimation of AUC.

Discussion

Existing ROC methods to incorporate multiple markers typically consider a com-
posite score based on combined markers by modeling the relationship between
the marker vector M and the binary outcome D [14], where P(Y = 1|M) = p(M)
is used as the optimal score to identify the combination of multiple markers for
classifying the disease outcome. In general, by the Neyman-Pearson lemma, the
optimality of p(M) is a very general property which holds without dimensionality
constraint on M. In the case that the linear logistic regression model assumption
holds, the optimal classification rule, p(M), becomes equivalent to the regression
function β M under the logit link. Thus, the optimality property of a one-dimensional
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classification score heavily relies on the assumption of logistic regression model.
In this paper, we extend tools from univariate marker to multivariate markers for
evaluating predictive accuracy of markers under a nonparametric setting based on
tree-based classification rules.

The proposed ROC and WROC functions together with the AUC are intended to
measure the average performance of and-or classifier among all possible combina-
tions of true positive rate for a given false positive rate for evaluating predictability
of markers and comparing curves, and they may not reflect the optimized use of
markers for clinical decisions. Although the proposed approach is not designed
to achieve optimality as a decision rule such as the one proposed by Jin and
Lu [13], our methods and inferential results are much more structural, accessible
and workable. The proposed ROC and WROC functions enjoy the advantage of
preserving the distributional structures of markers, and the associated summary
measures such as AUC or partial AUC serve as very appropriate summary measures
to evaluate the performance of and-or classifier among all possible combinations
of marker values – this is a feature similar to the univariate marker case. These
summary measures are useful in applications, since many biomarker studies (such
as the ADNI study and two other Alzheimer’s Disease studies that the authors are
currently involved) have research emphasis largely focused on the understanding
of predictability of biomarkers in target population, and less emphasis toward
optimization of clinical decision rules.

The evaluation takes into account the distributions of quantile variables Q0 and
Q1 in the diseased and non-diseased populations, which leads to the result of
equivalence between AUC and CON, a property similar to the case of univariate
marker. We also provide estimation procedures using nonparametric smoothing
estimators for the ROC and WROC function, and U-statistic for the AUC. For
applications of the proposed analysis, as the ‘curse of dimensionality’ is not a
concern for nonparametric estimation of ROC, WROC and other related properties,
the usual random split into training sample (for model fitting) and test sample (for
creating ROC curve and calculating AUC) would be as proper as it is for univariate
marker case, and therefore is advisable.

For future and further research, similar to the considerations for univariate
ROC analysis [16, 20], it would be interesting to consider methodology to adjust
for covariates such as age, sex or other demographical factors for bivariate or
multivariate markers.

Also, given that the disease outcomes typically change with time, it would be
interesting to extend the ROC analysis for high-dimensional markers to accommo-
date time-to-disease information using the ‘survival-tree methodology’ [22], along
the lines of extending ROC techniques from binary disease outcome model to right-
censored survival data model in univariate marker settings [5, 10, 11, 19].
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Appendix

Proof of Theorem 1. Define the kernel function of the U-statistic [12] as

h(M0i,M1j;FP,TP) = I(M1j ∈ D(M0i)) · I(FP(M0i)≤ p,TP(M1j)> q).

Note that

ÂUC(p,q) =
1

n0n1

n0

∑
i=1

n1

∑
j=1

h(M0i,M1j; F̂P, T̂P) =
1

n0n1

n0

∑
i=1

n1

∑
j=1

h(M0i,M1j;FP,TP)

+
1

n0n1

n0

∑
i=1

n1

∑
j=1

{h(M0i,M1j; F̂P, T̂P)−h(M0i,M1j;FP,TP)}

= I+ II

The kernel function in Term I satisfies E[h2] < ∞ and by two-sample U-statistics
theory, I converges to AUC(p,q) in probability. Term II can be expressed as

II =
1

n0n1

n0

∑
i=1

n1

∑
j=1

I(M1j ∈ D(M0i)){I(F̂P(M0i)≤ p, T̂P(M1j)> q)−FP(M0i)≤ p,TP(M1j)> q)}

Note that

|II| ≤ 1
n0n1

n0

∑
i=1

n1

∑
j=1

∣
∣
∣I(F̂P(M0i)≤ p, T̂P(M1j)> q)− I(FP(M0i)≤ p,TP(M1j)> q)

∣
∣
∣

≤ 1
n0n1

n0

∑
i=1

n1

∑
j=1

∣
∣
∣I(F̂P(M0i)≤ p)− I(FP(M0i)≤ p)

∣
∣
∣+

1
n0n1

n0

∑
i=1

n1

∑
j=1

∣
∣
∣I(T̂P(M1j)> q)− I(TP(M1j)> q)

∣
∣
∣

=
1
n0

n0

∑
i=1

∣
∣
∣I(F̂P(M0i)≤ p)− I(FP(M0i)≤ p)

∣
∣
∣+

1
n1

n1

∑
j=1

∣
∣
∣I(T̂P(M1j)> q)− I(TP(M1j)> q)

∣
∣
∣

= op(n
−1/2
0 )+op(n

−1/2
1 ) = op(N

−1/2)

The consistency result, (i), in Theorem 1 follows by viewing the fact that term
II converges to 0 in probability. To prove (ii), first note that Term I converges in

distribution to a normal distribution by U-statistics theory:
√

N{I −AUC(p,q)} d→
Normal(0,σ2), where σ2 = λ−1τ1,0 +(1−λ )−1τ0,1 with

τ1,0 = COV[h(M01,M11),h(M01,M12)]

and

τ0,1 = COV[h(M01,M11),h(M02,M11)] .
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Also,

√
N{ÂUC(p,q)−AUC(p,q)} =

√
N{I−AUC(p,q)}+

√
N · II

=
√

N{I−AUC(p,q)}+op(1)
d→ Normal(0,σ2)

Property in section “Other Types of ROC and WROC Functions”.

(i) ROC(q)+ROC(1− q) = 1, and WROC(q)+WROC(1−q) = h0(q)

(ii) ROC ∗(q)+ROC
∗
(1− q) = 1, and WROC ∗(q)+WROC

∗
(1−q) = h1(q)

Proof. Note that

ROC(q)+ROC(1− q) = E[TP(M0)|FP(M0) = q]+E[FN(M0)|FP(M0) = q]

= E[TP(M0)+FN(M0)|FP(M0) = q]

= E[ 1 |FP(M0) = q] = 1 ,

and it follows WROC(q)+WROC(1− q) = ROC(q) · h0(q)+ROC(1− q)h0(q) =
h0(q), which proved (i). Similar argument can be used to prove (ii).
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