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Abstract Relative potency is an important concept in the comparative evaluation
of chemicals via dose-response studies. For example, toxicologists use relative
potency estimates to rank chemicals with respect to a given response endpoint,
to convert doses of one chemical to equivalent doses of another chemical, and to
combine information across studies and endpoints when calculating toxic equiva-
lency factors. The conventional definition of relative potency, arising historically
from dilution assays, is a ratio of equi-effective doses, that is, those doses that
produce the same mean response. Specifically, the ratio is the dose of a reference
chemical divided by the dose of a test chemical. In an analytical dilution assay,
relative potency is constant regardless of the mean response used to select equi-
effective doses. Nevertheless, researchers often observed data that were inconsistent
with constant relative potency and desired ways to characterize non-constant relative
potency. This article reviews various approaches for quantifying relative potency
when it cannot be regarded as constant, including modifications to the usual
definition. In particular, we focus on recent proposals that describe the relative
potency of two chemicals as functions of dose or of response.

Introduction

Relative potency plays a critical role in toxicology. For example, toxicologists
estimate relative potency to rank chemicals with respect to a toxicity endpoint of
interest (e.g., [1]), to convert a dose of one chemical to an equivalent dose of another
chemical (e.g., [2]), and to combine information across studies and endpoints when
calculating a chemical’s toxic equivalency factor (e.g., [3]). Relative potency is
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typically derived from the parameters in a mathematical (dose-response) model that
expresses a toxicity response as a function of a chemical dose.

Consider a dose-response function that relates the mean response for a particular
endpoint to the dose of a given chemical. Let f (d;θ ) be a model that specifies
mean response in terms of dose d and parameter vector θ . We focus on models
for which f is a monotone increasing function of d, though the same methods can
be modified easily to handle monotone decreasing dose-response functions. Early
methods for comparative bioassays often assumed a linear model for f, possibly
after transforming dose, response, or both. Often, linearity is reasonable over
some restricted dose-response region only. A linear dose-response model specifies
f (d;θ ) = α +β d*, where θ = (α , β ), α is an intercept, β is a slope, and d* is a
dose metric (typically either dose itself or log dose). Other assays, especially those
for binary endpoints, frequently employed a sigmoid model with lower and upper
response asymptotes and expressed generally as:

f (d;θ ) = L+(U −L)g(d;φ ) , (1)

where L is the lower response limit, U is the upper response limit, and the dose-
quantile function g is a monotone increasing function of d that ranges from 0 (at
d= 0) to 1 (at d =∞) and depends on a parameter vector φ , with θ = (L, U, φ ). If
mean response decreases as dose increases, we associate U with d = 0 and L with
d=∞ and require g to be monotone decreasing in dose. In either case, the elements
of φ typically govern the location and shape of the dose-response curve.

Now consider multiple chemicals. Without loss of generality, we focus on two
chemicals: a reference chemical, C0, and a test chemical, C1. Rooted in ideas from
dilution assays, relative potency, denoted ρ , is classically defined as the ratio of
equi-effective doses (reference divided by test), i.e., doses of the two chemicals
that elicit the same response. Ideally, in dilution assays, this ratio does not change
with the response level chosen. Faced with examples where the ratio did vary with
response level, investigators had to grapple with ways to characterize non-constant
relative potency.

This article reviews approaches that have been proposed for assessing non-
constant relative potency. Some of these retain the classical definition of relative
potency as a ratio of equi-effective doses but abandon the notion that a single
numerical constant suffices to compare potency of two chemicals. Others retain the
simplicity of a single constant to compare potency between chemicals but abandon
or modify the classical definition. The most recent developments describe non-
constant relative potency using the notation of mathematical functions.

Constant Relative Potency in Bioassay

The classical concept of relative potency arises from analytical dilution assays,
where each test preparation is constructed as a dilution of a reference preparation
[4]. In this context, relative potency as the ratio of equi-effective doses is a
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Fig. 1 Dose-response curves producing constant relative potency. Panels: (a) diverging lines with
equal intercepts, where mean response is linear in dose; (b) parallel lines with equal slopes, where
mean response is linear in log dose; and (c) similar sigmoid curves, generated by Hill functions
with equal response limits and shapes. In all three panels, the ratio of any equi-effective doses for
reference chemical C0 and test chemical C1 is constant and equals the relative potency. In panels
(b) and (c), the length of each horizontal arrow from C1 to C0 is constant and equals the log relative
potency. In panel (b), the vertical dotted lines illustrate that a given arrow (or relative potency) can
be indexed by the dose of either chemical, as well as by mean response

constant, ρ , regardless of the response level considered. When relative potency is
constant, ranking chemicals is straightforward: simply rank them by the relative
potencies. Dose conversion is also simple: the dose of chemical C0 that is equivalent
to dose d1 of chemical C1 is d0 = d1ρ , and the dose of C1 that is equivalent to dose d0

of C0 is d1 = d0/ρ . Furthermore, because the ratio of equi-effective doses is constant,
the difference between the logs of those doses is also constant. Thus, as often noted,
relative potency is constant if and only if the dose-response functions are identical
except for a horizontal shift when plotted against log dose (though this graphical
definition can be inconvenient when zero doses are involved). When the relative
potency of two chemicals is constant, their dose-response curves are referred to as
similar.

Slope Ratio Assays

A slope ratio assay is based on dose-response curves that are linear functions of dose
with a common intercept (usually the origin) but possibly distinct slopes [4]. Thus,
the dose-response function for Ci is f (d;θ i) = α +β id, where β i > 0 and θ i = (α ,
β i) for i= 0,1 (Fig. 1a). Denoting the dose of Ci that produces mean response μ by
di(μ), the corresponding inverse function for Ci is di(μ) = f− 1(μ ;θ i) = (μ −α)/β i

and relative potency is a constant ratio of the slopes: d0(μ)/d1(μ) = β 1/β 0 for all
values of μ .
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Parallel Line Assays

A parallel line assay is based on dose-response curves that are linear functions
of log dose with a common slope but possibly distinct intercepts [4]. Thus,
the dose-response function for Ci is f (d;θ i) = α i +β log(d), where β > 0 and
θ i = (α i, β ) for i= 0,1 (Fig. 1b). The corresponding inverse function is di(μ) =
f− 1(μ ;θ i) = exp[(μ −α i)/β ] and relative potency is again constant: d0(μ)/d1(μ) =
exp[(α1 −α0)/β ] for all values of μ .

Assays Involving Similar Sigmoid Curves

Consider chemicals that have sigmoid dose-response functions of the form given
in Eq. 1. Suppose L and U are the same for both chemicals and that the vector
φ is the same for both chemicals up to a location parameter for log dose. Then,
the dose-response curves are similar, and the chemicals have constant relative
potency. The Hill [5] model is an example. It is obtained by setting g(d;φ ) =
dS/(dS +MS), where S is a shape parameter and M is the median effective dose
(ED50), which is the dose producing a mean response halfway between L and U.
Similar Hill curves have identical response limits and shapes; only their ED50s
differ (Fig. 1c). The corresponding inverse function for Ci is di(μ) = f− 1(μ ;θ i)
= Mi[(μ − L)/(U − μ)]1/S and relative potency is a constant equal to the ED50 ratio:
d0(μ)/d1(μ) = M0/M1 for all values of μ between L and U. The Hill model can
be rewritten in its log logistic form by setting g(d;φ ) = 1/[1+ exp(−X)] with X =
S[log(d)− log(M)]. Here, g(d;φ) is a logistic distribution function for log(d) with
location parameter log(M) and scale parameter 1/S [6]. Analogously, the probit
model takes the dose-quantile function g(d;φ) as the standard normal distribution
function evaluated at X [6]. Other distribution functions, such as the Weibull [7], can
be used for g(d;φ ), and φ can contain more than two parameters [8]. In any of these
cases, similar sigmoid curves (and thus constant relative potencies) are obtained by
constraining the dose-response models for C0 and C1 to be identical except for the
location parameter.

Non-constant Relative Potency

In many situations, the notion of constant relative potency is inconsistent with
observed data, and investigators face a dilemma. One strategy is to retain the
simplicity of a single constant as a descriptor of relative potency, even though
treating relative potency as fixed when it is not can generate misleading conclusions
[9]. This strategy can involve modifying or abandoning the classical definition of
relative potency based on a ratio of equi-effective doses. An alternate strategy is
to adopt a descriptor of relative potency that involves more than a single constant,
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but this alternative has the undesirable side effect of making dose conversion or
chemical ranking problematic. Despite an awareness that many pairs of chemicals
have non-constant relative potency, few general approaches for handling non-
constant relative potencies were developed until recently.

Defining Relative Potency as the Ratio of ED50s

Because similar sigmoid dose-response functions have constant relative potency
given by the ratio of their ED50s, some authors have simply employed that ratio as
a measure of relative potency even for data where dose-response curves in log dose
may differ by more than a constant horizontal shift (e.g., [10]). Others have pointed
out that this approach is simple and convenient but less than ideal theoretically
[11]. The convenience arises because an estimate of the ED50 is usually output by
software for fitting dose-response models. On the other hand, because this approach
treats relative potency as constant despite evidence to the contrary, it can lead to
flawed conclusions when ranking chemicals [9] and would certainly distort dose
conversions.

A more subtle issue also arises. When two sigmoid curves have the same upper
and lower response limits, the ED50 values for each curve correspond to the same
value of mean response for both curves. In that case, the ratio of ED50s meets the
classical definition of relative potency, at least at the single chosen response level.
On the other hand, when the two curves differ in their upper and/or lower response
limits, the ED50 values for each curve typically correspond to distinct values of mean
response for each curve and the classical definition of relative potency is lost. The
doses are no longer equi-effective in the sense of having the same mean response;
the doses instead mark the same proportional change in mean response between the
respective lower and upper limits for each chemical.

Deforming the Log-Dose and Response Axes to Achieve
Similarity via Splines

Guardabasso et al. [12] proposed to fit the reference chemical’s dose-response curve
using a cubic spline function of log dose and then obtain the test chemical’s dose-
response curve by horizontally shifting and stretching the reference chemical’s
spline by constant amounts along the log dose axis – essentially deforming the log
dose axis with a two-parameter transformation. They assumed that both chemicals
had the same response limits and equated log relative potency with the constant
shift parameter, even if the stretch (i.e., scale) parameter differed from 1. Thus,
even though they reported a constant value that they called ‘relative potency’, they
invoked an unconventional definition by allowing the dose-response curves to differ
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by more than a constant horizontal shift along the log dose axis. Later, Guardabasso
et al. [13] extended this approach to accommodate chemicals with different response
limits by also allowing vertical shifting and stretching of the reference spline along
the response axis. Their methods retained the simplicity of characterizing relative
potency by a single parameter at the expense of redefining relative potency in a way
that no longer matched the classical definition. Although the construction is a clever
one, the utility of this approach for the traditional uses of relative potency, such as
chemical ranking or dose conversion, seems questionable.

Evaluating Relative Potency at Multiple ED100π Values

We have already mentioned the common approach of using the ratio of ED50s to
assess relative potency even if the dose-response curves are not similar. Of course,
with non-constant relative potency, the ED50 ratio can differ greatly from the ED10

ratio, the ED75 ratio, or any other ratio of ED100π values (for any 0< π < 1). One
slight improvement on estimating non-constant relative potency by a single ED100π
ratio would be to report several ratios [14] or the range between two effective doses,
such as the ED20 and the ED80 [15]. Insofar as these proposals rely on ED100π
values, as mentioned earlier, they entail a modification of the classical definition of
relative potency when the two chemicals differ in their lower and/or upper response
limits.

Relative Potency Functions

From evaluating relative potency at a finite list of equi-effective dose levels, it is
a short step to evaluating relative potency at every relevant dose level, that is, to
defining a relative potency function.

Parallel Line Assays Where Similarity Fails

Cornfield [16] derived a relative potency function under separate linear log-
dose-response models. Assume that the mean response to dose di of Ci is
f (di;θ i) = α i +β ilog(di) and θ i = (α i, β i) for i= 0,1 (for similarity, the slopes
would be equal). The corresponding inverse function is di(μ) = f− 1(μ ;θ i) =
exp[(μ −α i)/β i], which allowed Cornfield to express log relative potency as a
linear function of mean response μ :

λμ (μ) = log
[
ρμ (μ)

]
= log

(
d0 (μ)
d1 (μ)

)
=

(
α1

β1
− α0

β0

)
+

(
1
β0

− 1
β1

)
μ . (2)
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Here, the notation ρ μ (μ) denotes a relative potency function that maps μ to the
relative potency at response level μ . Cornfield noted that relative potency also
can be indexed by the dose of either chemical (Fig. 1b) and derived formulae
for ρd1(d1) and ρd0(d0) that express relative potency as functions of the doses of
the test and reference chemicals, respectively. All three relative potency functions
reduce to the constant obtained under the parallel line model if β 0 =β 1 =β .
Cornfield’s approach, which assumes a separate linear model in log dose for each
dose-response curve, produces relative potency functions that are log-linear either in
mean response or in log dose. His approach would be effective whenever a suitable
transformation of the response yields a pair of dose-response models that are linear
in log dose.

Specifying a Relative Potency Function a Priori

DeVito et al. [17] addressed the problem of estimating relative potency when data
on the reference chemical are adequate to fit a non-linear (i.e., Hill) dose-response
model, but data on the test chemical are not. For example, when fitting a sigmoid,
if responses at the highest tested doses do not level out, estimation of the upper
response limit (and thus the ED50) becomes problematic. DeVito et al. [17] proposed
the following ad hoc solution: (i) fit a Hill model to the reference chemical data;
(ii) invert this Hill model to express dose as a function of mean response; (iii) for
each (dose-specific) sample mean response in the test group, apply the inverse model
to predict an equivalent dose of the reference chemical (say d̂0); and (iv) fit a linear
model for equivalent reference dose in terms of actual test dose (say d1) to give:
d̂0 = α + β d1. If the dose-response curves are similar, α is zero and the relative
potency equals the constant β . However, if α is nonzero, relative potency is linear
in the reciprocal of test dose, namely: ρd1(d1) = d̂0/d1 = β +α/d1. Later, facing
data where the simple linear regression of d̂0 on d1 seemed inadequate, DeVito et al.
[18] extended their procedure to give a relative potency function that was constant
up to a threshold and then linear in the reciprocal of test dose.

This approach differs in a fundamental way from Cornfield’s approach. Cornfield
specified two dose-response models and deduced the appropriate relative potency
function. DeVito et al. specified a dose-response model for the reference chemical
but not for the test chemical. Instead, by assuming a simple linear regression of
d̂0 on d1, their procedure in effect specifies a relative potency function and uses
that function together with the dose-response model for the reference chemical
to implicitly induce a dose-response model for the test chemical. With such a
procedure, the induced dose-response model for the test chemical may not have
the same functional form as the dose-response model for the reference chemical.
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Sigmoid Dose-Response Models

Ritz et al. [19] derived a general formula for relative potency as a function of
mean response for dose-response model (1). If f (d;θ ) is monotone, one can invert
μ = f (d;θ ) to express dose as a function of mean response: d = f− 1(μ ;θ ).
Suppose d0(μ) and d1(μ) are doses of C0 and C1 that both produce the same mean
response μ . Dividing d0(μ) by d1(μ) expresses relative potency as a function of
mean response μ :

ρμ (μ) = f−1 (μ ;θ 0)/ f−1 (μ ;θ 1) , (3)

where θ 0 and θ 1 are the parameter vectors in the dose-response models for
chemicals C0 and C1. If Li and Ui are the lower and upper response limits for Ci

(i= 0, 1), ρ μ(μ) is positive and finite for any μ in the intersection of the response
ranges: max(L0, L1)< μ <min(U0, U1). Conversely, ρ μ(μ) is undefined for any
μ <min(L0, L1) or μ >max(U0, U1); and if μ lies between two distinct lower (or
upper) response limits, ρ μ (μ) is either 0 or ∞.

Dinse and Umbach [9] extended these ideas by expressing relative potency as
functions of reference dose, of test dose, and of response quantile. Recall that similar
sigmoid curves are identical up to a constant shift along the log dose axis (Fig. 1c).
In fact, if we draw a horizontal arrow from the dose-response curve for C1 to the
dose-response curve for C0, the length and direction of the arrow correspond to the
magnitude and sign of the log relative potency (with left being negative). For similar
dose-response curves, any horizontal arrow will have the same length and direction
(Fig. 1c). For non-similar curves, each length can be distinct and the direction may
change. Nevertheless, each arrow, and thus each log relative potency (or relative
potency), can be indexed by mean response, reference dose, and test dose (Fig. 2).
Indexing by response quantile is somewhat different, and we will return to it later.

Consider expressing relative potency as a function of dose. Substituting f (d0;θ 0)
for μ in Eq. 3 and noting that f− 1(f (d0;θ 0); θ 0) = d0, one may express relative
potency as a function of reference dose d0:

ρd0 (d0) = d0/ f−1 ( f (d0;θ 0) ;θ 1) . (4)

Substituting f (d1;θ 1) instead, one may express relative potency as a function of test
dose d1:

ρd1 (d1) = f−1 ( f (d1;θ 1) ;θ 0)/d1. (5)

These relative potency functions are defined or undefined according to where the
corresponding mean responses, f (d0;θ 0) and f (d1;θ 1), fall with respect to the
bounds for ρ μ (μ).

Relative potency also can be indexed by response quantile (denoted by π), which
is the fraction of the distance between the lower and upper response limits (i.e.,
mean response standardized to the unit interval). As mean response μ varies from L
to U, the corresponding quantile π = (μ – L)/(U – L) varies from 0 to 1. Let ED100π
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Fig. 2 Classical definition of
relative potency indexed by
dose, response, and response
quantile. Reference chemical
C0 and test chemical C1 have
the same lower (L) and upper
(U) response limits. The
length of each horizontal
arrow, drawn from C1 to C0,
varies and represents a
changing log relative potency.
For illustration, the arrow
labeled λ (and its
corresponding relative
potency) can be indexed by
mean response (μ), reference
chemical dose (d0), test
chemical dose (d1), or
response quantile (π), as
indicated by the dotted lines

be the dose producing a mean response 100π% of the way from L to U (e.g., π = 0.5
gives the ED50). If C0 and C1 have the same upper and same lower response limits,
each value of π corresponds to the same value of μ for both chemicals (Fig. 2). On
the other hand, if the chemicals differ in one or both response limits, each value of
π will correspond to a distinct value of μ for each chemical (Fig. 3).

Consider the ratio of ED100π values for C0 and C1 as an alternative definition
of relative potency [9]. If C0 and C1 have the same response limits, the log of the
ED100π ratio is the horizontal distance between their dose-response curves on a log
dose axis (Fig. 2). Thus, when chemicals have equal response limits, a definition
based on the ED100π ratio corresponds exactly to the classical concept of relative
potency. If the limits differ, however, the ED100π ratio is no longer the ratio of doses
producing the same mean response. Instead, the log ED100π ratio is the horizontal
component of the non-horizontal line segment connecting the dose-response curves
at responses 100π% of the way from Li to Ui (i= 0, 1) (Fig. 3). Thus, when C0

and C1 have unequal limits, a definition based on the ED100π ratio embodies a
modified concept of relative potency. For a given quantile π , the mean response
to Ci is μ i =Li + (Ui −Li)π . Dividing dose f− 1(μ0;θ 0) by dose f− 1(μ1;θ 1), Dinse
and Umbach [9] obtained:

ρ∗
π (π) = f−1 (L0 +(U0 −L0)π ;θ0)/ f−1 (L1 +(U1 −L1)π ;θ1) ;

and, under the sigmoid model in Eq. 1, they showed that ρπ
*(π) reduces to:

ρ∗
π (π) = g−1 (π ;φ0)/g−1 (π ;φ 1) . (6)
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λ * (and its corresponding relative potency) can be indexed by response quantile (π), reference
chemical dose (d0), or test chemical dose (d1), as indicated by the dotted lines

These equations express relative potency as a function of response quantile π for
any 0<π < 1. We use the modified notation ρ* to emphasize that this particular
relative potency function does not, in general, embody the classical definition of
relative potency.

Also, because one can index the log ED100π ratio by either the dose of the
reference or test chemicals (Fig. 3), the modified definition of relative potency
admits two other relative potency functions. Substituting the dose-quantile function
g(d0;φ 0) for π in Eq. 6 and noting that g− 1(g(d0;φ 0); φ 0) = d0, one may express the
modified definition of relative potency as a function of reference dose d0:

ρ∗
d0 (d0) = d0/g−1 (g(d0;φ 0) ;φ 1) . (7)

Substituting g(d1;φ 1) instead, the modified relative potency becomes a function of
test dose d1:

ρ∗
d1 (d1) = g−1 (g(d1;φ 1) ;φ0)/d1. (8)
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Equations 6, 7 and 8 express the modified relative potency as functions of response
quantile π , reference dose d0, and test dose d1, respectively, for all π ∈ (0,1), d0 > 0,
and d1 > 0.

Consideration of the modified definition of relative potency embodied in the ρ*
functions arose for two reasons. First, as mentioned in sections “Defining Relative
Potency as the Ratio of ED50s” and “Evaluating Relative Potency at Multiple ED100π
Values”, earlier authors have suggested using the ratio of ED50s or of ED100πs
to measure relative potency. The ρ* functions are a natural extension of those
earlier approaches so examining the implications of this modified definition seemed
worthwhile. Second, before fitting dose-response models to compare chemicals,
toxicologists sometimes re-express measured responses as a percent of a control
mean for each chemical (e.g., perhaps a zero dose is expected to give a maximal
response) or rescale them to a range set by mean responses to both positive and
negative control treatments (e.g., normalized percent of activation) [20]. These
transformations seem designed to remove extraneous variability from the data under
a belief that rescaling makes sense when comparing chemicals (a point we return to
later). Thus, consideration of the ρ* functions also represented an effort to reflect
common toxicologic practice, though without transforming measured responses.

Solving Eq. 5 for f (d1;θ 1) yields f (d1;θ 1)= f (d1ρd1(d1); θ 0); that is, the dose-
response function for C1 can be expressed as the dose-response function for C0

evaluated at dose d1ρd1(d1). Similarly, Eq. 8 implies g(d1;φ 1)= g(d1ρd1
*(d1); φ0).

Consequently, specifying a dose-response (or dose-quantile) model and a relative
potency model together is equivalent to specifying a pair of dose-response (or dose-
quantile) models, a fact implicitly used by DeVito et al. [17, 18]. Recently, Dinse and
Umbach [21] described conditions where modeling ρd1(d1) (or ρd1

*(d1)) as a power
function, eηd1

ψ , guaranteed that, for a wide range of popular dose-response models,
the dose-response (or, respectively, dose-quantile) models for both chemicals would
have the same functional form. They also pointed out that directly modeling ρ or
ρ* can sometimes facilitate inferences about relative potency functions.

Selecting Among Various Relative Potency Functions

The primary question is whether to use {ρ μ(μ), ρd0(d0), ρd1(d1)}, the functions
that embody the classical concept of relative potency, or {ρπ

*(π), ρd0
*(d0), ρd1

*(d1)},
the functions that embody the modified concept. If the dose-response curves have
identical response limits, both sets of functions are direct generalizations of the
usual definition of relative potency as a ratio of equi-effective doses. Graphically
these six relative potency functions convey essentially the same information because
they all plot the same dose ratio as the ordinate, though each against a distinct
abscissa, so the curves are differentially stretched horizontally (Fig. 4a–d).

If the response limits are not equal, however, {ρπ
*(π), ρd0

*(d0), ρd1
*(d1)}, in

using a modified definition of relative potency, can give a different impression
than the other three relative potency functions based on the classical definition
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Umbach [9])

(Fig. 4e–h). When the response limits differ, the choice between these definitions
depends on whether those differences are intrinsic or extrinsic to the chemicals [9].
For example, suppose two pesticides are compared with respect to the percentage
of pests killed and a subset of the population is immune to one pesticide; thus,
the upper response limit would be 100% for one pesticide and less than 100%
for the other. These differences are intrinsic to the chemicals and should be taken
into account by using {ρ μ(μ), ρd0(d0), ρd1(d1)}. The convenient choice is to use
ρ μ(μ) for ranking chemicals and ρd0(d0) or ρd1(d1) for dose conversion. On the
other hand, suppose each chemical’s dose-response study is performed in a different
laboratory. Differences in response limits would be considered extrinsic if they were
idiosyncratic to the specific laboratories rather than a property of the chemicals
themselves. If response-limit differences are extrinsic, ρπ

*(π) should be used for
ranking chemicals because it rescales the dose-response curves to the same response
range. Likewise, ρd0

*(d0) and ρd1
*(d1) would be used to calculate equivalent doses

of one chemical in terms of the other on a standardized response scale. Use of
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{ρπ
*(π), ρd0

*(d0), ρd1
*(d1)} is in accord with the toxicologic practice of rescaling

responses as a percent of control mean response and is preferable to rescaling the
data, which can introduce correlations that are not accounted for by most standard
analyses.

Example

We analyzed data from U.S. National Toxicology Program (NTP) bioas-
says evaluating 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,3,4,7,8-
pentachlorodibenzofuran (PeCDF) [22, 23]. We focused on cytochrome P450
1A1-associated 7-ethoxyresorufin-O-deethylase (EROD) activity measured in liver
tissue of female Harlan Sprague–Dawley rats treated by oral gavage for 14 weeks.
Both studies involved 10 rats in each of 6 dose groups (control plus 5 exposure
levels). Our estimates of relative potency functions were derived from parameters
estimated by fitting dose-response models using the relationships described earlier.

We analyzed log-transformed enzyme activity via least squares. We used Proc
GLM in SAS (version 9.3, SAS Institute Inc., Cary, NC, USA) to fit a saturated
analysis-of-variance model that estimates a mean response for each dose level of
each chemical and Proc NLIN to fit nonlinear regression models. All analyses
assumed a common residual variance across dose levels and chemicals. Dose-
response models were Hill models based on Eq. 1 with g(d;φ) = dS/(dS +MS).
We compared the fit of nested models with F tests [24] based on residual sums
of squares and constructed simultaneous confidence bands for relative potency
functions using Scheffe’s method [24].

An 8-parameter model based on two separate Hill models (Table 1) showed
no lack of fit (Fig. 5a, b) compared to a saturated analysis-of-variance model
with 12 parameters (F4,108 = 0.06, p= 0.99). However, a 6-parameter model with
common response limits for TCDD and PeCDF did not fit as well as the 8-parameter
model (F2,112 = 14.44, p< 0.0001). We conclude that the chemicals have different
response limits. Consider ρd1 as an example. If one regarded these response-
limit differences as intrinsic to the chemicals, estimation of ρd1 as a function of
PeCDF dose should use Eq. 5. The differences in response limits guarantee that
ρd1 is non-constant. The estimated ρd1 is below one for most of the dose range
but exceeds one at either edge of that range (Fig. 5c), suggesting that PeCDF is
generally less toxic than TCDD. On the other hand, if one regarded the response-
limit differences as extrinsic to the chemicals, estimation of ρd1

* as a function of
PeCDF dose should use Eq. 8. Relative potency modeled as a power function of
PeCDF dose, ρd1

*(d1)= eηd1
ψ , a straight line in log-log plots (Fig. 5d), fit no better

than ρd1
*(d1)= eη for these data (F1,112 = 0.24, p= 0.63) (Table 1). This conclusion

is consistent with the horizontal line at 0.06 (= e− 2.76), the estimate of modified
relative potency as constant, remaining within the 95% confidence band for the
power-function estimate (Fig. 5d). We do not know enough about the details of
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Fig. 5 Dose-response and relative potency for TCDD and PeCDF for liver EROD activity (pmol
of resorufin formed per min per mg of microsomal protein) in rats after 14-week exposure via oral
gavage. Dose units are ng per kg of body weight per day. Panels (a) TCDD and (b) PeCDF show
observed activity for each rat (◦), dose-specific means (♦), and estimated dose-response curves
(solid, 8-parameter model with a separate Hill function for each chemical; dashed, 6-parameter
model honoring a constraint that both chemicals have same response limits; dotted, 7-parameter
model honoring a constraint that ρd1

*(d1) is constant). Panel (c) shows an estimate of ρd1(d1).
Panel (d) shows estimates of ρd1

*(d1) (solid, as a power-function; dashed, its 95% simultaneous
confidence band; dotted, as a constant)

the experiments and the biology to decide whether the response-limit differences
should be regarded as intrinsic or extrinsic to these chemicals. Regardless of that
judgment, however, these data support a conclusion that PeCDF is less potent than
TCDD.
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Summary

The idea that relative potency should be constant is rooted historically in analytical
dilution assays. It simplifies chemical ranking and dose conversion. If relative
potency is a constant equal to ρ , the dose of chemical C0 that is equivalent to dose
d1 of chemical C1 is d0 = d1ρ , and the dose of C1 that is equivalent to dose d0 of C0

is d1 = d0/ρ . Chemical ranking is even easier: order each chemical by its value of ρ .
Toxicologists, however, have long been faced with data from comparative assays

that indicate that relative potency is not generally constant. Over the years, various
investigators have suggested ways to cope with non-constant relative potency.
Extending the concept that relative potency is the ratio of equi-effective doses,
Cornfield [16] showed that linear dose-response models in log dose induce relative
potency functions that are log-linear in log dose or response. In fact, a wide variety
of monotone dose-response models can be inverted to express relative potency
as a function of reference dose, test dose, or mean response. Analogously, using
a modified concept of relative potency as the ratio of ED100πs, one can express
(modified) relative potency as a function of reference dose, test dose, or response
quantile. If the chemicals have the same response limits, the classical and modified
definitions of relative potency coincide. Relative potency functions allow chemicals
to be ranked with respect to toxicity, though that ranking may change for different
dose or response levels. For dose conversion, the dose of C0 that is equivalent to
dose d1 of C1 is d0 = d1ρd1(d1) and the dose of C1 that is equivalent to dose d0

of C0 is d1 = d0/ρd0(d0). The choice between {ρπ
*(π), ρd0

*(d0), ρd1
*(d1)}, based on

the modified concept of relative potency, and {ρ μ(μ), ρd0(d0), ρd1(d1)}, based on
the classical definition, depends on whether response limits differ for extrinsic or
intrinsic reasons. Relative potency functions appear to be a promising avenue for
characterizing non-constant relative potency.
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