
Chapter 3
Efficient and Fair Resource Trading
Management

Abstract In this chapter, we investigate the resource trading problem in a utility
and cloud computing setting where multiple tenants communicate in a Peer-to-
Peer (P2P) fashion. Enabling resource trading in cloud unleashes the untapped
cloud resources, thus presents a flexible solution for managing resource allocation.
However, finding an efficient and fair resource allocation is challenging mainly
due to the heterogeneity of resource valuations. Our work first develops a utility-
oriented model to support resource negotiation and trading. Based on this model,
we adopt a multiagent-based technique that allows a group of autonomous tenants
to reach an efficient and fair resource allocation. Further, we add budget limitation
to each tenant and propose a directed hypergraph model to facilitate resource
trading amongst heterogeneous tenants. We develop a directed hypergraph model to
facilitate trading decision making, and design a class of heuristic-based distributed
resource trading protocols in favor of different performance metrics.

The rest of the chapter is organized as follows. We first present an overview
of the proposed research in Sect. 3.1. We then summarize the related work in
Sect. 3.2. In Sect. 3.3, we describe the problem setting and quantify the objectives
of the resource trading problem. In Sect. 3.4, we introduce a multiagent-based
technique to achieve optimal resource trading efficiency and fairness. Section 3.5
further investigates allocation strategies with limited budget. We propose a novel
directed hypergraph model and develop a series of distributed resource trading
protocols based on heuristic approaches. Finally, Sect. 3.6 shows simulation results
and analyzes their implications.
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3.1 Overview

Nowadays, the utility and cloud computing model is mostly vendor driven, with
users having no control over the data or the technology supported by the cloud. Such
a vendor-driven model, although convenient to use, brings many issues to light, e.g.,
failure of monocultures, tradeoff between convenience and control, and concerns
about environmental impact [5]. To address these issues, researchers have proposed
an alternative model that provides a collaborative resource sharing platform that
forms a community-based cloud computing environment [16,18,24]. Different from
the centralized vendor model, this community-based cloud leverages under-utilized
networked private resources for infrastructure support. Tenants within the same
community cloud typically share common security and compliance concerns, and
may delegate management to some trusted third-party organization.

Similar to the centralized vendor-driven model, the community-based model
offers computation and storage resources as metered services. Therefore, the design
goal of the shared cloud resource platform should not only focus on the quality
of computing service, but should equally address the economic aspect such that
tenants receive cost-effective cloud service provisioning. While managing resource
allocation is relatively straightforward in the centralized vendor-driven model (e.g.,
Amazon R�’s on-demand and spot instance pricing), it is particularly challenging
due to the heterogeneity in the multitenancy environment. In a community cloud,
we are facing a free market where tenants are only incentivized to accept profitable
resource exchange. As a result, a well designed multitenancy resource trading
protocol is highly desirable to effectively regulate the management of resource
allocation.

In this chapter, we study the distributed resource trading problem in a
community-based utility and cloud computing environment, and propose a set of
multitenancy resource trading protocols to jointly optimize resource allocation
efficiency and fairness. Specifically, better efficiency refers to the increased
aggregate valuations of all the tenants, and better fairness is interpreted as reduced
envy between every pairwise combination of tenants. Our solution follows a market-
oriented design principle, and uses a directed hypergraph model to integrate these
two seemingly conflicting design objectives into one unified resource trading
framework. It directly extends the work of Chevaleyre [10], and further addresses
the challenge of budget limited resource trading. With systematic analysis of
the resource trading market, a set of heuristic-based distributed resource trading
protocols are developed and evaluated.

The comprehensive study presented in this chapter has broad utility in the
growing world of “everything-as-a-service”. It characterizes the extent to which
independent and self-interested tenants interact with each other. Our analysis shows
that incentive preserving resource exchanges tend to benefit the system, both from a
global view of the overall service efficiency and from a local view of the improved
service quality valuation. Moreover, the proposed resource trading approaches are
complementary to the vendor-driven cloud computing. For example, consider user
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Alice rents a virtual machine from Amazon R� with reserved instance pricing. After
Alice finishes her job and before the lease expires, Alice might “sublease” this
virtual machine to user Bob in order to partially compensate for her resource
rental cost.

3.2 Related Work

The study described in this chapter presents distributed protocol design to jointly
optimize resource trading efficiency and fairness. As the organization of distributed
resource evolves towards a more hierarchical architecture [20], distributed algo-
rithms designed for solving combinatorial multi-criteria optimization problems
become more attractive. Common optimization techniques include machine learn-
ing [26], evolutionary algorithms [13], swarm intelligence [25], and socialeconomy
approaches [21, 27]. All these approaches share a common flavor that involves
interacting entities evolving towards the optimal solution (by following certain
learning or negotiation rules). Our proposed approach falls into the category of
socialeconomy approaches. They are built based on the observation that resource
management in distributed systems shares common features with commodity
allocations driven by market power in the economic study. It is widely adopted
to create a computational economy for grid computing [1, 6] and the emerging
cloud computing [7,30]. In an early study, Wolski et al. [32] presented two different
market strategies for controlling resource allocation, namely commodities markets
and auction. The commodities markets strategy treats disparate resources as inter-
changeable commodities, while auction requires orchestration from a centralized
auctioneer for collecting bids and determining winners. Our proposed resource
trading framework is designed for a community cloud environment, and belongs to
the commodities market category. In particular, we propose a P2P resource trading
market for managing cloud resource allocation. Example research related to this
notion includes [12, 31]. In [12], a P2P data replication system was proposed to
improve fault-tolerance of digital collections in library. In [31], the authors proposed
a multiple currency economy that any peer can issue its own currency. Different
from their design, peers directly exchange resources in our distributed resource
trading design.

In this chapter, two economic metrics are used to quantify the quality of an
allocation: efficiency in terms of overall social welfare, and fairness in terms of
envy-freeness. The metric of efficiency is important to characterize the achievable
system performance, and was studied in a number of publications [3, 17, 34].
Meanwhile, the metric of fairness highlights individual’s utility such that each
individual achieves the maximum contentment of its allocated share [14]. Compared
to efficiency, the envy-free fairness has generally received far less attentions.
A related work targeting grid computing is found in [28]. Using game theory, the
authors tackled a multicriteria optimization problem with the aid of axiomatic theory
of equity. The authors concluded that for fair and feasible scheduling on global scale
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computational grid, a strong community control is required. The research conducted
in this chapter approaches the multicriteria optimization problem from a different
angle, and further investigates how to balance the two metrics amongst budget-
aware distributed tenants.

Our proposed protocols utilize a directed hypergraph model. A hypergraph
is an extension of the graph concept that one edge (called a hyperedge) can
connect an arbitrary set of vertices rather than two. A hypergraph model is flexible
and informative to use in algorithm design as it generalizes the graph. For that
reason, it becomes attractive to improve algorithm performance in various research
domains, e.g., page reputation computation for search engines [2], cellular mobile
communication [29] and memory management [19]. For large-scale scientific
computing, Çatalyürek and Aykanat [9] proposed a multilevel partitioning approach
for mapping repeated sparse matrix-vector computations to multicomputers using
hypergraph. Their approach significantly reduces communication overheads while
achieving drastically improved mapping results. In their hypergraph model, hyper-
edges represent affinity among subsets of the data, and the weights reflect the
strength of this affinity. We model the resource trading problem in a similar manner
that aims to optimize the aggregate weights of the directed hypergraph model.

3.3 A Distributed Resource Trading Framework

This section presents the design overview of a distributed resource trading frame-
work for the community cloud. In Sect. 3.3.1, we depict the resource trading system
model. In Sect. 3.3.2, we clarify the problem assumptions, define the goals for
resource trading, and formulate the problem.

3.3.1 System Model

Consider a scenario where a number of highly autonomous tenants connected
in a P2P manner, each holding a set of indivisible resources. A resource is an
abstraction of hardware bundle or software service, e.g., Virtual Machine (VM),
computational time, etc. These resources form a publicly accessible resource pool,
and they are completely allocated to all the tenants initially, as described in Fig. 3.1.
All tenants form a collaborative community with common purposes and concerns.
The underlying P2P communication infrastructure ensures that every tenant is able
to talk to every other tenant within the same community (they may not communicate
directly, but there is at least one communication path between every pairwise tenants
on the topology). For this study, we do not consider dynamic tenants join and leave.
We also assume that the distributed system is reliable. Any resource can be assigned
to any tenant, incurring certain benefit and cost that may vary depending on the
specific resource-tenant assignment. Each tenant can be involved in any number of
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Fig. 3.1 Multitenancy resource trading: system model

resource trading activities, following the specific tenant negotiation protocol. The
distributed resource trading results in a remapping of resources to tenants. We call
each instance of such a resource remapping matchmaking. Tenants are incentivized
to purchase under-utilized resources from the tenants who currently hold them. As
a result, the system evolves towards better resource utilization in the long run.

Formally, let P D fp1; : : : ; png be the finite set of tenants, and let R D
fr1; : : : ; rmg be the finite set of indivisible resources. Typically we have jRj > jPj.
This, however, is not necessarily always the case, i.e., some tenants may obtain
empty allocation. A matchmaking is defined as a mapping A : P ! 2R. More
specifically, we have the following definition:

Definition 3.1 (Matchmaking). A matchmaking A D fA1; A2; : : : ; Ang is a map-
ping A : P ! 2R satisfying: Ai

T
Aj D ;, and

S
Ai D A.

The condition of
S

Ai D A ensures that the final matchmaking result is a
complete allocation.
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3.3.2 Problem Statement

For each tenant, we assume a private valuation model, indicating that tenants are
mutually blind to each other and evaluate individual allocation independently. The
valuation of pi is defined by the valuation function Vi .�/, Vi .;/ D 0 and Vi .Ai / �
Vi .A

�
i / for all Ai � A�

i . Moreover, we assume the valuation function is modular,
i.e., Vi .Ai [ Aj / D Vi .Ai / C Vi .Aj / � Vi .Ai \ Aj / for all Ai ; Aj � A.

Our first goal for distributed resource trading protocol design is to achieve opti-
mal matchmaking efficiency such that the social welfare, i.e., ! D Pn

iD1 Vi .Ai /, is
maximized.

Definition 3.2 (Efficiency). Let � be the set of all possible matchmaking results,
an efficient matchmaking is an allocation A D fA1; A2; : : : ; Ang that maximizes the
social welfare: !max D maxA2�

P
pi 2P Vi .Ai /.

The efficiency criterion reflects the overall system performance. For example,
suppose there are two resources, one with 2 cores C 1G memory and the other one
with 1 core + 2G memory, also assuming user Alice has a CPU-bound job and user
Bob has a memory-bound job. Therefore, Alice has higher valuation for the first
resource while Bob prefers the second resource. By assigning the first resource to
Alice and the second to Bob, the aggregate valuation is maximized, and the system
features best job turnaround time.

We define a resource-bundle as a collection of one or more resources held by any
tenant pi , i.e., a resource-bundle is a non-empty subset of Ai . We define a Deal as
the basic event in the multitenancy resource trading framework. A deal represents
the process of resource-bundle transfer from one tenant to another. In order to
acquire resources from another tenant, certain amount of compensation is necessary
to complete the deal. A Payment Function 'i;j defines this compensation amount
pi pays to pj . If 'i;j is negative, then pi receives money from pj . Each tenant keeps
a record of its payment history. Formally, we define pi ’s Balance as the summation
of its withdrawals and deposits in all deals pi is involved in: �i D P

'i . All tenants
are utility-driven that seek to make profit at each deal. Formally, suppose after a
deal, the allocation of pi becomes QAi , a deal must be a Rational Deal (RD) if and
only if Vi . QAi / � Vi.Ai / � 'i;j for all pi 2 P. Note that the requirement of rational
deal applies to both tenants involved in the deal, thus is a bilateral constraint. The
Utility of pi is given as Ui.Ai / D Vi .Ai/ � �i .

The second goal of our protocol design is to promote fairness within the system.
By associating the valuation and payment function, fairness denotes to envy-free [4]
amongst all tenants, indicating that no tenant would get better off by swapping its
allocation with another peer though a rational deal. Specifically, the definition of a
fair allocation is given as follows.

Definition 3.3 (Fairness). Let � be the set of all possible matchmakings, a match-
making result is characterized as fair iff there exists A D fA1; A2; : : : ; Ang 2 �

such that: (a) 8pi ; pj 2 P; pi and pj has direct connection; and (b) Vi .Ai / � �i �
Vi .Aj / � �j .
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The fairness criterion is in line with the envy-free definition given out in [10]
that takes transferable utility into account. The authors proved that a Efficient
and Envy-Free (EEF) state always exists. Here, we further extend their result by
adding topology constraint to the fairness definition. Our definition limits envy-free
states to neighboring tenants. This is justifiable as the underlying communication
topology might not be a fully connected network. In addition, a common practice in
distributed systems is to employ a budget transfer mechanism to enforce incentives
for community control [22]. For example, in P2P and social networks, some form of
digital cash, or numerical reputations representing trust relationships may be used
for rewarding and punishing certain actions. We formally define budget constraint
as follows.

Definition 3.4 (Budget). Budget bt
i expresses maximum amount pi is able to offer

after t deals. Let b0
i be the initial budget initially, we have:

bt
i D b0

i � �t
i

Given any initial allocation, the goal of this study is to investigate to what
extent efficiency and fairness can be achieved in the multitenancy resource trading
framework described above, and to design resource trading protocols to guide tenant
interactions evolving towards system-wide efficiency and fairness. We analyze
situations with and without the budget limitation. From now on, we label the
scenario with budget constraint as budget-aware, and refer to the later scenario
as budget-unaware.

3.4 Budget-Unaware Resource Trading Protocol

In this section, we develop a resource trading protocol without the presence of
budget constraint. Our protocol design is based on the multiagent-based resource
allocation optimization framework presented in [10].

3.4.1 Preliminaries

By following certain payment rules, we will show that the resource trading protocol
is capable of reaching topology-wide efficiency as well as envy-free fairness upon
convergence. A topology-wide efficient allocation is an allocation such that for
every tenant, the allocation for the sub-topology consisting of that tenant and
its direct neighbors is efficient, i.e., the matchmaking achieves maximum social
welfare on the sub-topology. We introduce topology-wide efficiency because for
a partially connected communication topology, a globally efficient matchmaking is
not guaranteed unless the order of resource trading is carefully planned. An example
is given out in [33], Sect. 3.4.1.
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In the resource trading framework, each tenant completes transactions with
neighbors using only rational deals (RD), and obtains or loses resource bundle
accordingly. An RD indicates that the transaction is beneficial for pushing resources
to tenants who value them more. In fact, ANY sequence of RD executions will
achieve efficiency with regard to the underlying communication topology. This is
due to the following observations: (1) RD increases social welfare according to its
definition; and (2) if no more RD is possible, then the matchmaking must reach the
maximum possible social welfare. Given modular valuation function, we have the
following proposition.

Proposition 1 (Convergence to Efficiency [15]). Any sequence of RD involving
any number of resource exchanges will eventually yield to topology-wide efficiency.

The reasoning behind Proposition 1 is fairly simple. Each RD results in
remapping of resources to tenants with higher interests. When no RD is possible
with respect to the communication topology, the system converges to a topology-
wide efficient state. Another implication is that the final state is independent of
the execution order of RDs. Now suppose after an execution of an RD, the current
allocation becomes QA. Since the deal is bilaterally beneficial to both tenants involved
in the deal, we calculate the payment range with the following equations.

Vi . QAi / � Vi .Ai / � 'i;j

Vj . QAj / � Vj .Aj / � �'i;j

(3.1)

By solving this equation, the result of the payment function 'i;j falls into the
range of ŒVj .Aj / � Vj . QAj /; Vi . QAi / � Vi.Ai /�, i.e., the rational payment range.

3.4.2 A Multiagent Based Optimization Approach
for Resource Trading

This section introduces the theoretical foundation of our multitenancy resource
trading protocol design. It is mainly based on the theoretical framework developed
by Chevaleyre et al. [10, 11] for multiagent systems. One central conclusion is
that resource allocation efficiency and fairness can be simultaneously achieved in
a multiagent negotiation framework. In order to achieve this state, a proper payment
function was selected to deal with the increased social surplus !. QA/ � !.A/ after
each deal. In particular, a payment function called Globally Uniform Payment
Function (GUPF) was proposed. Suppose A and QA are allocations before and after
an RD execution, respectively, the GUPF is defined as follows.

GUPF: 'i D ŒVi . QAi/ � Vi .Ai /� � Œ!. QA/ � !.A/�

n
(3.2)
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Equation (3.2) is labeled as globally uniform because this payment is imposed
on all tenants. For tenants who do not involved in the deal, Vi . QAi / � Vi .Ai/ equals
to zero, so each of them receives an equal share of the social surplus created by
the trading activity. Note that GUPF is within the bound of rational payment (3.1).
In addition to GUPF, a one-off payment amount at initial is introduced. The initial
payment amount, called initial equitability payment, is defined as: '0 D Vi .A

0
i / �

!.A0/

n
. The main purpose for this payment function is to “level the playing field”.

The next two theorems show that imposing initial equitability payment and GUPF
for resource trading leads to efficient and fair matchmaking. The following theorem
shows that individual utility is invariant after every RD.

Theorem 3.1. If each tenant pays initial equitability payments at start and pays
GUPF after each RD executes, then all tenants share the same utility: Ui.Ai / D
!.A/

n
after each RD.

With this invariant, we prove the following theorem. Note that our version
is slightly different from that presented in [10], as we target at topology-wide
efficiency and use a more strict assumption of modular domain.

Theorem 3.2 (Convergence to Efficiency and Fairness [10]). When all valua-
tions are modular and budget limitation is not a concern, paying initial equitability
payment at start and GUPF after each RD for every pi 2 P will converge to
a matchmaking state that achieves both topology-wide efficiency and envy-free
fairness.

More details about these two theorems and the implementation of the protocol
are described in the Sect. 3.4 of [33].

3.5 Budget-Aware Resource Trading Protocol

3.5.1 Modeling Resource Trading Using a Directed
Hypergraph

When budget constraint is imposed, the convergence to the optimal matchmaking
state might not exist. In this section, we develop a directed hypergraph model for
community-based cloud resource trading. A hypergraph is a generalization of the 2D
graph that an edge can connect a set of vertices. If the hypergraph is directional, an
edge (a.k.a. a hyperarc) connects a hypernode (head) with a set of hypernodes (tail
set). The motivation behind the directed hypergraph model lies in its implication for
one-to-many relationship. A 2D graph merely models connectivity among tenants,
but cannot represent task allocation and envy relationship among them. A directed
hypergraph is more informative, succinctly capturing the scenario that a resource is
held by some tenant, but inspires more interest from some other tenants each holding
a set of resources.
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Fig. 3.2 A directed hypergraph model. The proposed directed hypergraph model derives from an
m � n � n hyperspace. A hypernode is a point mapping allocation and envy relationship on the
hyperspace. A hyperarc connects a hypernode v 2 V with a set of other hypernodes belonging to a
common tenant and has envy relationship with the v’s host tenant. An example directed hypergraph
is shown on the right side

We propose two matrices to build up a hyperspace. The first matrix is an
Allocation Matrix (AM). It is an m � n matrix that takes binary values, representing
current resource matchmaking state for all tenants. Each entry ˛i;j in AM is defined
as follows.

˛i;j D
�

1 tenant j holds resource i

0 otherwise

The second matrix is an Envy Matrix (EM) representing current matchmaking
unfairness (or envy relationship). Suppose we have two tenants, Alice and Bob. Bob
is said to envy Alice when Bob has higher valuation for some resource currently
allocated to Alice. Again, we use binary values to represent the envy relationships.
Formally, An Envy Matrix is a n � n matrix defined as follows.

"i;j D
�

1 pi is envies pj

0 otherwise

Combining the allocation matrix and the envy matrix, we are ready to unifying
allocation and envy relationships into one directed hypergraph model. We first create
a three-dimensional space, m�n�n, as shown in the left side of Fig. 3.2. A directed
hypergraph H D .V; E/ is composed of a finite non-empty set V of hypernodes and
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a finite non-empty set E of hyperarcs. Using the coordinates of the hyperspace, we
define the hypernode as follows. A hypernode v (3.3) is a three-tuple .x; y; z/, where
x 2 R represents the resource, y 2 R represents the tenant currently holding x, and
z is some tenant has envy relationship with y, i.e., z 2 P; "y;z D 1. A hyperarc e (3.4)
is a pair < T; h >, where T � V is the tail of e and h 2 V n T is its head. The tail
set T includes those hypernodes whose host tenants involved in envy relationships
with the host of the head.

Hypernode: A hypernode is a three-tuple:

v D .x; y; z/ 2 V

s.t. x 2 R

y 2 P; and ˛x;y D 1

z 2 P; and "y;z D 1 (3.3)

Hyperarc: A hyperarc e 2 E is an ordered pair < T; h > iff:

e D< T; h >2 E

s.t. h D .x1; y1; z1/ 2 V

v D .x2; y2; z2/ 2 T � V

y2 D z1 (3.4)

Each tenant can establish a local view of the directed hypergraph. The hyperarcs
imply potential transactions to be negotiated. In a distributed environment, when
one transaction is accomplished using an RD, resource allocation changes which
might affect other resource trading activities. Building a directed hypergraph is thus
helpful to evaluate the quality of trading selections. For example, there are many
applications of the optimal structures in the proposed directed hypergraph model,
such as optimal spanning hypertree and optimal edge cover. Readers can find more
information in Sect. 3.5.2 of [33].

3.5.2 Protocol Design

When proposing for resource trade, a tenant rationally calculates its payment
amount. When the budget limitation bi is imposed on pi 2 P, the rational payment
amount 'i;j for trade proposal is in the range of:

'i;j 2 ŒVj .Aj / � Vj . QAj /; minfVi. QAi / � Vi .Ai /; big�: (3.5)
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Protocol 1: (a) V-BaMRT (b) E-BaMRT (c) P-BaMRT
begin

for pi 2 P do
Establishes local view with neighboring peers;
// --Trade Proposal- -
while pi has at least one envious neighbor do

a) Sorts potential transactions based on envy degree;
b) Selects pj with the highest envy degree drop;
c) Selects payment within the range defined by Equation 3.5;
if pj accepts offer then

� Make payments;
� Removes pj from its envy list

// --Offer Selection- -
while conflicting offers arrival do

Selects offer with;

8
<̂

:̂

(a) highest social welfare gain, or

(b) largest envy degree decrease, or

(c) highest transaction profits

Accepts offer;
Receives payments and updates local view;

According to analysis in Sect. 3.4.2, resource allocation in the community cloud
evolves towards efficient and fair state when tenants pay initial equitability '0 and
GUPF in BuMRT. However, when budget limitation presents, tenants do not always
abide by these routine payments. Therefore, we are interested in investigating the
transition of resource allocation states, when tenants pay different amounts as long
as the amounts fall in the range of (3.5). In this section, we propose a series of
heuristic-based BaMRTs. These protocols confine the trading activities of each
tenant to neighboring peers, allowing them to conduct local negotiations. However,
they are different with each other in terms of trading selection criterion. The
complete description of the proposed BaMRT protocols are illustrated in Protocol 1.

Tenants delegate trading controls to trading agents who perform two basic
operations periodically: proposing trade and selecting offer. When proposing a
trade, the agent simply selects the neighboring peer who he envies most as the
trading partner. In order to quantify the matchmaking unfairness between pairwise
trading partners, we use the following equation to define the envy degree on a
particular hyperarc.

�i;j D maxfUi. QAi ; Q�i / � Ui.Ai ; �i /; 0g



3.6 Performance Evaluation 49

The trading agent may select any payment amount within the rational range.
A tenant can set up a predefined payment policy for the trading agent. For example, a
conservative policy results in resource acquisition with low cost, while an aggressive
policy helps funding peer tenants to conduct further trades, and might benefit more
in return. We will evaluate different payment policies in the performance evaluation
section. When multiple offers arrive, each trading agent needs to carefully evaluate
trading decisions with a local view of the directed hypergraph model. This is
especially important when offers conflict with each other since the resource can
only be granted to one neighbor. In our design, each trading agent employs a hill
climbing technique to negotiate resource trading with neighboring peers. The hill
climbing algorithm is fast and effective in finding a local optimal matchmaking.
The local optimal offer selection decision must be rational, as the payment amounts
conforming to RD increase the overall social welfare (Proposition 1). In other words,
if a trade occurs, the allocation efficiency is reinforced, and the corresponding envy
relationship between the trading parties is eliminated.

We propose three versions of BaMRT in favor of different trading selection
criterion. Each of them follows different paths to reach the local minimum. The
first version labeled as Valuation oriented BaMRT (V-BaMRT), let trading agents
select trades with the highest social welfare gain. In the second version, each agent
selects the neighboring peer who he envies most as the trading partner. We label this
version of BaMRT as Envy oriented BaMRT (E-BaMRT). Finally, we propose
Profit oriented BaMRT (P-BaMRT), in which agents select offers that will bring
in the highest transaction profits (defined as the difference of payment and gained
valuation). These protocols work similarly to BuMRT except that they do not require
message broadcasting to redistribute social wealth within the community.

3.6 Performance Evaluation

In this section we investigate the performance of the proposed protocols through
three different sets of simulations. First, we implement BuMRT and validate its
achievable efficiency and fairness. In the second set of simulations, three versions
of BaMRT presented in Protocol 1 are compared in various norms. Finally, we
evaluate the performance impact of different payment selection policy and initial
budget settings for BaMRT.

3.6.1 Simulation Settings

We instantiate the matchmaking framework to a generalized distributed computing
environment, and implement the resource trading protocols using SimGrid [8].
The core scheduling and communication functions are implemented using the
application-level simulation interfaces provided by the MSG module of SimGrid.
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A community cloud platform with 20 computational nodes (tenants) is simulated.
We also creates 800 synthetic task units (resources). To create a heterogeneous
platform, we assign different computational and networking settings to the com-
putational nodes. As such the same task unit presents different values to different
nodes. In SimGrid, this information is encapsulated in separate XML files. Node i ’s
satisfaction of its current allocation is quantified by a concave valuation function
Vi .�/, where Vi .x/ defines the utility of node i obtaining x tasks [23]. The concavity
assumption indicates that the marginal valuation diminishes when the allocation
increases. Specifically, we use the following concave function to represent valuation,

Vi .x/ D c � xr ;

where the constant coefficient c is set to 10:0, and r is randomly generated in the
range of .0:2; 0:6/.

We primarily use four metrics to evaluate the performance of the proposed
protocols. First, we use social welfare to quantify the allocation efficiency. Second,
in order to validate fairness, the total envy degree amongst all nodes is recorded
after each transaction. In addition, two nodes that envy each other form an envious
pair. The total number of envious pairs is also counted throughout the negotiation
process. Finally, we measure system profit as an indication of system’s side utility.
For each transaction, the profit earned is the difference of buyer’s valuation and
the associated payment amount. The system profit is thus defined as the cumulative
profit earned in all transactions.

3.6.2 Evaluation of BuMRT

In the first set of simulations, nodes negotiate with each other using BuMRT until
convergence is reached. The results are plotted in Fig. 3.3. At the start of each
simulation, 800 task units are randomly mapped to 20 nodes. We generate three
topology profiles representing different network configurations. The first topology
profile (labeled as “fully connected”) describes a fully connected mesh network,
and the rest profiles describe two relatively sparse network topologies. The fully
connected topology has a total node degree of 20 � 19 D 380. The node degrees
of the other two profiles are normalized relative to the fully connected profile.
We use these normalized values, 0:45 and 0:72, to represent the connectivity of
both profiles. In order to validate efficiency, we also implement a self-adaptive
auction algorithm [34] that achieves maximum social welfare when tasks are
allocated. This result, labeled as “optimal” in Fig. 3.3a, defines the global optimal
social welfare. From Fig. 3.3a, we observe that in all topology profiles, the overall
social welfare increases all the time and converges after around 24 transactions.
In addition, for the fully connected network, the final allocation achieves the
maximum social welfare when converges. Figure 3.3b, c show that all simulations
converge to fair state where all envy relations are eliminated. Note that after each
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Fig. 3.3 Performance evaluation for budget-unaware case. (a) Measurement of efficiency;
(b) measurement of fairness: envy degree; (c) measurement of fairness: envious pair

transaction, both envy degree and envious pair number do not necessarily decrease.
This can be explained as follows: although the overall unfairness will be eliminated
eventually, each single transaction only eliminates envy between the two trading
partners, but may create envy relationship between other pairs. Another interesting
observation for Fig. 3.3 is that the initial matchmaking unfairness is closely related
to the network connection degree. This is because envy relation is more likely
to present if more nodes are connected. Moreover, more connected network also
means more opportunities for tasks to be assigned to nodes who value them more.
Therefore, the achievable local efficiency is more likely to increase as the network
becomes more connected.
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Fig. 3.4 Performance evaluation for budget-aware case. (a) Efficiency improvement; (b) profits
gain; (c) fairness improvement: envy degree; (d) fairness improvement: envious pair

3.6.3 Evaluation of BaMRT

Next, we add budget limitation to each node and compare the performance of
different versions of BaMRT presented in Sect. 3.5. The node and the task unit
number are set to be 20 and 800 respectively. Based on the analysis of the
average transaction payment range, we assign each node an initial budget of 100.
When a transaction is completed, the node who makes payment will deduct the
corresponding amount from its balance. Conversely, its trade partner will add the
same amount to its balance. For fair comparison, all simulations are conducted using
the same setting (valuation functions and initial allocation). All simulations use a
same fully-connected network. The comparison results are exhibited in Fig. 3.4.
From these results, we draw the conclusion that the performance of each protocol
is primarily influenced by the offer selection strategy. In V-BaMRT, the offer brings
the most social welfare growth is selected. Therefore in Fig. 3.4a we observe that
V-BaMRT leads to the highest local efficiency when converged. Similarly, Fig. 3.4c,
d show that E-BuMRT performs better in promoting fairness. And not surprisingly,
the overall profits gain is in favor of U-BuMRT, as shown in Fig. 3.4b.
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3.6.4 Sensitivity Analysis

In this section, we investigate the impact of different payment selection strategies
and initial budget settings. The configuration parameters are kept the same as in
Sect. 3.6.3.

As analyzed in Sect. 3.5.2, each tenant can set up arbitrary payment policy for
the trading agent. A conservative policy results in resource acquisition with low
cost, while an aggressive policy helps funding other tenants to conduct more trading
activities. Which policy gives better result depends on the offer selection strategies
and initial budget distribution. We modify the simulation code to let each node
select payment amount within the allowed range deterministically. Specifically, let
the payment selection range be .low; high/, we devise three deterministic payment
selection strategies for evaluation:

• Aggressive: payment D low C 0:75 � .high � low/

• Modest: payment D low C 0:5 � .high � low/

• Conservative: payment D low C 0:25 � .high � low/

We compare the aggregate profits of the system in Fig. 3.5. Each value is the
average result of 20 simulation runs. The result suggests that more aggressive
bidding behavior will result in higher system profits at convergence. This can be
explained that if all nodes offer higher at each deal, more nodes will get funded that
lead to more transactions. As a result, the micro-economy of the small computing
community is boosted.

Finally, we alter the initial budget assignment and measure its impact to the
system envy degree. Taking initial budget of 100 to be the base case (marked as
“1X”), the startup fund for each node is altered from 0:5 to 2 times of 100. Again
we average the result of 20 simulation runs. The comparison is visualized in Fig. 3.6.
We observe that for the case of abundant initial fund assignment, the convergence
value is close to that achieved by BuMRT. When the initial budget reaches 200,
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all protocols converge to an envy degree of 0 as if there are no budget constraint.
On the contrary, for a poorly funded computing community, the trading activities are
more likely to freeze due to lack of budget, resulting in potential longer convergence
time and higher degree of unfairness.
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