
Chapter 2
Optimal Resource Rental Management

Abstract Application services using cloud computing infrastructure are prolifer-
ating over the Internet. In this chapter, we study the problem of how to minimize
resource rental cost associated with hosting such cloud-based application services,
while meeting the projected service demand. This problem arises when applications
incur significant storage and network transfer cost for data. Therefore, an Appli-
cation Service Provider (ASP) needs to carefully evaluate various resource rental
options before finalizing the application deployment. We choose Amazon R� EC2
marketplace as a case of study, and analyze the optimal strategy that exploits the
tradeoff of data caching versus computing on demand for resource rental planning in
cloud. Given fixed resource pricing, we first develop a deterministic model, using a
mixed integer linear program, to facilitate resource rental decision making. Next, we
investigate planning solutions to a resource market featuring time-varying pricing.
We conduct time-series analysis over the spot price trace and examine its pre-
dictability using Auto-Regressive Integrated Moving-Average (ARIMA). We also
develop a stochastic planning model based on multistage recourse. By comparing
these two approaches, we discover that spot price forecasting does not provide our
planning model with a crystal ball due to the weak correlation of past and future
price, and the stochastic planning model better hedges against resource pricing
uncertainty than resource rental planning using forecast prices.

This chapter is organized as follows. Section 2.1 provides an overview of the
problem and summarizes our proposed optimal planning methods. Section 2.2
surveys the related work. In Sect. 2.3, we formulate the system model, provide
a deterministic planning model for the resource rental problem, and evaluate the
performance of the deterministic pricing resource planning approach. Finally, in
Sect. 2.4, we analyze the predictability of Amazon R� EC2 spot pricing using time-
series analysis techniques, propose a stochastic optimization model to solve the
rental planning problem, and perform simulations to compare the two approaches.
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2.1 Overview

The emerging cloud computing model, with its virtually infinite resources and
elasticity, liberates organizations from the expensive infrastructure investment.
As a result, more and more Application Service Providers (ASPs) recognize the
separation between the actual application and the infrastructure necessary to run it,
and begin to deploy applications on resources rented from infrastructure providers.
According to a recent forecast by Gartner R� [16], Software-as-a-Service and Cloud-
based business application services will grow from $13.4 billion in 2011 to $32.2
billion in 2016.

In cloud computing, a major issue faced by the ASPs is how to minimize the
resource rental cost while meeting their application service demand. Significant
research efforts have been directed toward developing optimal resource provisioning
schemes to meet service requirements (avoid the cost due to over-provisioning and
the penalty due to under-provisioning) [7, 17, 23, 28, 30]. These works, although
offer effective resource provisioning controls in response with varying workload,
are still coarse-grained in terms of exploring application elasticity with regard to
different resource pricing options. We believe that resource rental planning should
be conducted in a cost-aware manner to reduce ASPs’ operational cost. Specifically,
we propose a fine-grained planning scheme to regulate the rental activities on a
time-slotted basis, exploring hourly charging rate of various types of resources, in
order to meet the projected service demand and minimize resource rental cost at
the same time. Complementary to prior resource scaling solutions, our approach
focuses on application scaling that optimizes resource rental plan in cloud without
compromising the service-level agreement.

In addition to the planning optimization complexity, another obstacle lies in the
uncertainty of computational resource pricing. This challenge is encountered in the
spot resource market emerged in recent years. In a spot resource market, depending
on the resource supply and demand level, the unit price of a computational instance
is fluctuating all the time. For example, at the time Amazon R� first launched its
spot instance service in December 2009, an auction mechanism was employed
to determine instance pricing. Since spot instances leverage idle cycles from the
regular on-demand server pool, they are auctioned off at a price much lower than
that of the regular on-demand instances most of the time. As a result, this real-time
bidding market has attracted many ASPs who wish to increase server capacity at low
cost. There is a growing research interest in utilizing spot instance service. However,
modeling and analyzing spot instance pricing is largely neglected due to the lack of
demand and resource provision information. We believe that our study is helpful
to understand spot pricing, and more importantly, to improve resource utilization
under spot pricing.

The research presented in this chapter represents our initial design for cost-
effective resource utilization and management in utility and cloud computing.
In particular, we develop optimal resource rental planning strategies for fixed pricing
and stochastic pricing resource markets, respectively. The first part of this chapter
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presents our approach for a fixed pricing resource market. Given a forecast demand
schedule, the ASP needs to periodically review the running progress of the deployed
service and make optimal job allocation as well as resource rental decisions so as not
to waste money on excessive computation, storage or data transfer. We formulate a
deterministic planning model for resource rental decision making over a specific
planning horizon. The solution to this model serves as a guide to make cost-effective
resource rental decisions in real time. We show that our planning model is especially
useful for high-cost Virtual Machine (VM) classes. This is because cost saving from
our model primarily comes from eliminating unnecessary job running by decreasing
VM rental frequency. From this perspective, our model formulation is aligned with
the dynamic lot-sizing model commonly encountered in the field of production
planning.

Next, we analyze and solve the fine-grained cloud resource rental planning prob-
lem under the pricing uncertainty challenge. In particular, two possible solutions
are jointly explored. We systematically analyze the predictability of Amazon R�
EC2 spot pricing and use the predictive prices to perform planning. Furthermore,
we propose a multistage resource model for stochastic resource rental planning.
This model decomposes the stochastic process of decision making under varying
price into sequential decision making processes with the aid of price distribution
at various stages. As such, the stochastic optimization problem is transformed
into a large-scale deterministic optimization problem. Through simulations, we
demonstrate that the stochastic planning approach is more cost-effective than
predictive planning.

2.2 Related Work

Nowadays, a wide variety of computational and data intensive applications utilize
cloud to their benefit. Therefore, it becomes imperative to understand the cost-
benefit of running resource-demanding applications in cloud in order to make
cost-effective resource rental decisions. Cloud computing eliminates up-front setup
and operational cost for distributed resources. However, moving and storing large
data set in cloud incur significant cost comparable to the computing cost [13].
Efforts have been made to mitigate such cost in cloud [22, 29]. In this chapter, we
present a planning model that optimizes resource usages for elastic applications with
comprehensive cost considerations.

Finding an optimal resource utilization strategy is challenging for both cloud
infrastructure providers and application service providers who rely on rented infras-
tructure. From the perspective of the cloud infrastructure provider, the challenge is
how to reduce the operational cost and maximize leasing revenue. Many existing
research has focused on this aspect. The general problem of minimizing resource
allocation cost while meeting job demand is NP-hard [9]. Resource scheduling for
the emerging spot market was proposed in [31]. The proposed framework includes:
(1) a market analyzer periodically forecasting supply and demand, (2) a capacity
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planner determining the spot price based on the forecast results, and (3) a VM
scheduler maximizing the revenue by solving a NLIP model for the scheduling
problem. From the perspective of the application service providers, the challenge
becomes how to minimize resource rental cost while meeting service demand from
customers. Many resource planning schemes rely on predictive workload assess-
ment [17, 21]. Our work takes one step further that presents an application scaling
control model based on the forecast demand. Our model takes full consideration of
various resource types and their associated costs within a cloud resource market,
and strives to find the optimal tradeoff among various resource usage in resource
rental allocation.

The stochastic planning model proposed in this chapter deals with the price
uncertainty in the spot resource market. Such a spot market is either formed by
multiple resource providers [10] or by a single resource provider. Amazon R� EC2
spot market is the most representative example that attracts significant research
attentions. Researchers are interested in utilizing spot instances to temporarily
add capacity to dedicated clusters during peak periods [19]. The biggest concern
for utilizing spot instances is that it is hard to guarantee resource availability.
Recent works [3, 20] addressed this problem using statistical analysis. Notably,
Ben-Yehuda et al. [1] reversely engineered spot prices by constructing a spare
capacity pricing model based on existing price traces. However, the effectiveness of
these approaches is still unclear due to unsubstantiated assumptions on Amazon R�
EC2 spot service. In this chapter, we take EC2 as a case study and targets at a
general spot resource market where prices are market-driven and users bid according
to their true valuations (simple-minded assumption). The most relevant works to
this study are presented in [8, 25]. In [8], the authors presented an optimal VM
placement algorithm that minimizes the cost of resource provisioning in a multiple
cloud providers environment, and in [25], the authors proposed a profit-aware
dynamic bidding algorithm to optimize ASP’s profits in EC2 spot market. Our
work’s application scenario is different from [8], and we develop our model based on
realistic application and price traces. Comparing with [25], our approach proposes a
different model that takes storage and network transfer cost into account in addition
to computational instance bidding.

2.3 Deterministic Resource Rental Planning

Resource rental planning entails the acquisition and allocation of computational
and storage resources to applications so as to satisfy demand over a specified
time horizon. An application scaling control scheme is proposed to optimize rental
decision on a time slotted basis. In this section, we target at a fixed pricing cloud
resource market. After describing the system model, we model the rental planning
problem using a mixed integer linear program.
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Fig. 2.1 System model for the resource rental planning problem

2.3.1 System Model

We present a scenario where an ASP offers some computational and data intensive
application services (example services are data visualization, data analytics, data
indexing, etc.) to customers over a network. Instead of using local resources,
the tasks of computation and data storage are completely outsourced to a shared
resource pool operated by some Infrastructure-as-a-Service (IaaS) provider(s),
shown in Fig. 2.1. The depicted system model resembles a broad range of practical
examples in today’s cloud-based service market. For instance, the ASP could be
mapped to some Software-as-a-Service provider who offers routine data analytics
to its customer firms, or some academic institution that provides scientific data
visualization services to the general public.

As illustrated in Fig. 2.1, resource usage incurs monetary cost to the ASP in
various forms. Rental activities are charged throughout the life cycle of the deployed
service as follows. First, input data is imported into the cloud from the local storage
media, introducing network transfer-in cost. Next, a number of VM instances
(hereby referred as Virtual Servers, or VS for short) are launched to perform data
processing tasks. Each of them costs certain amount of money depending on both
VS unit price and rental duration. After the computational jobs are completed,
results and logs are saved to cloud storage, and may later be dumped into local
persistent storage. Many often the data size is large (e.g., images or videos) and
incurs significant storage and network transfer-out cost for the ASP. The storage cost
may also apply to input data already fetched into the cloud but not processed yet.
Finally, high performance applications often feature tremendous I/O requirements
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and some resource provider will charge for I/O activities. When performing resource
rental planning, an ASP needs to consider all costs described above in order to
understand the cost-benefit ratio of possible choices.

Now, considering an ASP rents a number of VSs from the cloud resource market
for the purpose of data processing and presentation, in order to achieve resource
auto-scaling for efficient resource utilization, the first step is to identify the client
workload pattern and build a forecast demand schedule for each VM. Once the
forecast demand pattern is built up, the ASP is able to schedule resource rental
through job addition, replication, migration and removal.

2.3.2 Optimizing Planning for Deterministic Pricing Market

The first resource rental planning model targets at an on-demand resource market
where each VS costs a fixed amount of money. Each VS belongs to a specific
VS type specifying the hardware configuration. We assume the applications to
be elastic and composed of jobs easy to scale gracefully and automatically. For
example, applications processing Bags-of-Tasks (no job dependencies). Similar
to [14], we are interested in self-aware solutions that can plan resource usage of
cloud applications under various pricing. The planning horizon T is divided into
fixed time slots t D 1; : : : ; T . We refer the start of each time slot as a decision
point. At each decision point, a rental operation is performed to access the most
cost-effective resource available for the application.

Let T be the set of decision points. The goal of resource rental planning is to
minimize the total rental cost associated with processing the forecast workload over
the planning horizon T . In order to accomplish this goal, three sets of variables are
introduced to identify the rental decisions to be made at each decision point. The first
set of variables, ˛i;t , denotes the amount of data to be processed by the application
during time slot t on a type-i VS. Next, at the end of slot t , we use ˇi;t to represent
the desired storage space for holding the data. Finally, let binary decision variables
�t denote if powering on a type-i VS is needed at time slot t . ˛i;t and �i;t specify
how to make use of the computational resources to control the application progress,
while ˇi;t determines the amount of storage resources to reserve in a cloud market.
If all these variables are determined, an application scaling control policy is formed
to guide the rental activities in the cloud market for optimal resource utilization.

A number of cost parameters are associated with our resource rental optimization
problem. Specifically, the rental cost (processing cost) for type-i VS in time slot t

is Cp.i; t/, and the storage rental cost per data unit for slot t is Cs.t/. As presented
earlier in Sect. 2.3.1, many IaaS providers charge nontrivial cost for data transfer
across the cloud boundary. For each time slot t , let Cio.t/ be the I/O cost for data
transfer from and to the cloud storage, and let C C

f .t/ and C �
f be the cost for

transferring into and out of the cloud, respectively. In addition to the cost parameters,
we assume the customer’s demand function is D.�/, where D.i; t/ denotes the
forecast workload demand profile for a type-i VS in slot t . We summarize the
notation used throughout the chapter in Table 2.1.
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Table 2.1 Summary of notations

Variables

˛i;t
Output data size generated by one
type-i VS in time slot t

ˇi;t
Storage space for data produced by
one type-i VS at the end of slot t

�i;t
Binary decision variable representing rental decision
of one type-i VS in time slot t

Parameters
T Set of time slots
I Set of VS types
Cp.i; t / VS rental cost (per type-i VS � slot duration)
Cs.t/ Storage cost (per data unit � slot duration)
Cio.t/ I/O operation cost (per data unit � slot duration)
C

C

f .t/ Network transfer-in cost (per data unit � slot duration)
C �

f .t/ Network transfer-out cost (per data unit � slot duration)

D.i; t /
Demand to be satisfied for one type-i
VS at the end of slot t

P.i/
Average bottleneck resource consumption rate (per data unit
generated) for one type-i VS

Q.i; t /
Bottleneck resource available for one type-i
VS in time slot t

˚i
Average output-to-input ratio for one
type-i VS (application specific)

With all the prerequisites, we formulate the rental payment function following a
linear cost model. More specifically, the rental cost is linearly proportional to the
consumed resource amount as well as to the duration of the rental period. Naturally,
our objective function aims at minimizing the rental cost for each type-i VS over
the entire planning horizon T . At each decision point, a fixed rental cost Cp.i; t/ is
charged if the ASP decides to rent one type-i VS (�i;t D 1). Now, given the presence
of this computational resource cost, the ASP may choose to make full use of the VS
capacity so as to meet the forecast workload demand over a number of future time
slots. However, doing so will increase the storage and I/O cost as more workload is
processed earlier in time. As such, the planning problem emerges as the ASP needs
to carefully trade off the computational rental cost versus storage and data migration
costs. In production planning, similar problems are recognized as the dynamic lot-
sizing problem. The solution to the dynamic lot-sizing problem determines the
optimal frequency of setups so as to minimize the total cost within the resource and
demand constraints. In the context of cloud computing, we formulate the planning
problem under fixed resource pricing as the Deterministic Resource Rental Planning
(DRRP) problem. DRRP models cloud resource rental on a per-VS basis, forming a
fine-grained control policy for rental planning. The complete model formulation is
given as follows.
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min
X

t2T

.C C
f .t/ � ˚i � ˛i;t C .Cs.t/ C Cio.t//

� ˇi;t C C �
f .t/ � D.i; t/ C Cp.i; t/ � �i;t / (2.1)

s:t:

ˇi;t�1 C ˛i;t � ˇi;t D D.i; t/; i 2 I ; t 2 T (2.2)

P.i/ � ˛i;t � Q.i; t/; i 2 I ; t 2 T (2.3)

˛i;t � B � �i;t ; i 2 I ; t 2 T (2.4)

ˇi;0 D "; i 2 I (2.5)

˛i;t ; ˇi;t 2 RC; i 2 I ; t 2 T (2.6)

�i;t 2 f0; 1g; i 2 I ; t 2 T (2.7)

Note that the objective function does not take I/O and storage cost for input data
into account. This is because we assume that input data is brought into cloud on
the fly to complete the computational jobs. Another option is to copy all input data
once and store them in cloud throughout the entire planning horizon. The decision
on which option is better depends on the data access pattern and the duration
of planning horizon. Here, we assume that input data is “transfer-on-demand” to
simplify the presentation.

Constraint (2.2) is analogous to the inventory balance constraint in the dynamic
lot-sizing problem. It specifies that workload demand should be met at any time
slot. At slot t , the data stored at the previous time slot ˇi;t�1, and the data generated
in the current slot ˛i;t , are combined together to serve the forecast demand profile
emerged in the current time slot, i.e., ˇi;t�1 C ˛i;t � D.i; t/. The overprovisioning
amount becomes the storage amount ˇi;t at the end of t . The initial storage space
is set to be some constant " in constraint (2.5), depending on the specific planning
scenario. Next, let P.i/ be the average bottleneck resource consumption rate for one
type-i VS, and let Q.i; t/ denote the bottleneck resource available for one type-i VS
in t , constraint (2.3) ensures that the workload processing rate does not saturate the
available bottleneck resource.

Constraint (2.4) is often referred to as the forcing constraint. It states that there
will be no data generated in t if no rental decision is made (�i;t D 0). B is set to
be a very large constant that exceeds the maximum possible value of ˛i;t . Finally,
constraints (2.6) and (2.7) specify domains of the variables.

The formulation of DRRP is a mixed integer linear program (MILP) that is
NP-complete in nature. With reasonable input size, this problem can be solved using
standard techniques such as the branch-and-bound(B&B) method. These algorithms
are implemented in many optimization software packages. For more details with
regard to the algorithms, we refer readers to [32].
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2.3.3 Evaluation of DRRP

We consider three VS classes I = {c1.medium, m1. large, m1.xlarge}, and perform
simulations to evaluate the solution to DRRP based on realistic pricing and
application-usage scenarios. The rental planning decisions are calculated in an
hourly basis, spanning over daily planning horizon (24 h). The MILP formulation is
solved by the CPLEXTM [12] solver integrated in AIMMS 3.11 [2]. We sample the
hourly data processing demand from a normal distribution N .0:4; 0:2/ (expressed
in the unit of Gigabyte). It is assumed that the software required by the application
services has been configured on virtual servers rented from the cloud market.
Therefore, we do not take the initial environment preparation into account.

The cost parameters used in model formulations are set according to Amazon R�’s
EC2 on-demand pricing policy.1 Specifically, the hourly on-demand VS rental costs
are f$0:2; $0:4; $0:8g for the three VS classes. Using Elastic Block Store (EBS), the
storage cost is $0:1 per GB/month, and 0:1 per million I/O operations. The inbound
and outbound transfer cost is $0:1 and $0:17 per GB. In order to provide realistic
parameter estimates in our proposed models, we refer to a recent paper [4] studying
the cost and performance of running scientific workflow applications on Amazon R�
EC2. Based on the 3-year cost of a mosaic service (generated by an astronomical
application Montage, see [18] for details) hosted on EC2, we normalize the I/O
cost to $0:2 per GB, and set ˚i to 0:5 for all i 2 I . According to the data
provided in [4] (runtime, input and output volume, etc.), the virtual servers are able
to offer sufficient resources for serving the randomly generated demand. Therefore,
constraint (2.3) in DRRP is omitted.

We first show the cost-saving advantage of our proposed solution over resource
rental without planning. The results are shown at the upper side of Fig. 2.2.
In our simulation, per-VS costs over daily planning horizon for both schemes are
compared. From the results, we observe that cost derived from solving DRRP is
significantly lower than that of the no-planning solution. As VS becomes more
powerful, the cost reduction becomes more significant. Especially, the cost reduction
for VS of class m1.xlarge achieves nearly 50% drop off. This is because compared
to the no-planning solution, the cost reduction primarily comes from the saving of
computational cost (virtual servers are turned off in cloud when demand is satisfied
by cached data in cloud storage). Therefore, more saving is expected for high-cost
VS classes. The cost structure for each VS class is presented in the lower side of
Fig. 2.2. The proportion of computational cost is relatively stable in all three classes.
However, we observe that more money is spent on I/O and storage as VS becomes
more powerful. This is because more powerful VS incurs higher VS rental cost each
time the rental decision is made. As a result, an ASP tends to utilize caching more
often to serve the customer demand and rents VS less frequently.

1Amazon R� has declared lower pricing for EC2 when we prepared this manuscript. Since our
simulation is based on [4], the study presented here is by no means up-to-date, but serves as a
representative case of study.
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Fig. 2.2 Cost analysis of DRRP

Next, we conduct a sensitivity analysis to the solution for DRRP and plot the
results in Fig. 2.3. We define cost ratio as the cost of rental planning based on DRRP
to the cost of resource rental without planning. The base ratio (67%) is set to the cost
ratio of VS class m1.large calculated in the last simulation. From this base ratio, we
first vary the weights of I/O and computational cost gradually. In one direction, we
keep the I/O cost fixed and increase the computational cost with a fixed step of 0:1,
and then we increase the I/O cost in the other direction similarly. The result showed
in the left part of Fig. 2.3 clearly demonstrate that the cost reduction achieved by
solving DRRP becomes more salient for expensive computational resources. This
conclusion confirms the analysis we previously provided. The impact of demand
is investigated in the right part of Fig. 2.3. In particular, we alter the mean of
the demand distribution from 0:2 to 1:6 GB/h. As more demand is generated for
services, the computational resources tend to be kept busy all the time because the
current storage cannot meet the demand. As a result, cost reduction is not noticeable
for heavy service demand.
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2.4 Dealing with Spot Pricing Uncertainty in Cloud

In this section, we extend the resource rental planning model by including cost
uncertainty. Such uncertainty is introduced by many IaaS providers who offer
a spot pricing option for idle computational resources. Example markets can be
found in [15, 26]. The price fluctuation of spot resources over time creates time
series data for analysis. Using Amazon R�’s spot market as a case of study, we
take two routes to attack the resource rental planning problem with spot pricing
uncertainty. First, we apply time series forecasting to spot price history crawled
from [11]. The prediction results are then fed into our deterministic planning
model (hereafter labeled as predictive planning). Next, we propose an alternative
approach that leverages the price distribution information (hereafter labeled as
stochastic planning). A dynamic programming algorithm is also presented to solve
the stochastic optimization problem. We compare the two approaches in the end of
this section.

Before we proceed, a few assumptions need to be clarified. First, we assume that
ASPs will bid truthfully in the spot resource acquisition process. This assumption
is in line with the assumption made in [20]. With this assumption, an ASP will
not bid strategically. In fact, whether strategic bidding is helpful to achieve some
desired level of resource availability is controversial. On the one hand, by exploiting
prior price history, it is viable to optimize bidding using probabilistic models for a
single bidder [3]. On the other hand, one should also consider bidding strategies
of other bidders before making decisions. From a game theoretic perspective,
intentionally overbidding or underbidding is not a dominant strategy (e.g., if every
bidder overbids, the spot price increases, only benefiting the IaaS provider). Second,
an out-of-bid event occurs when an ASP’s bid price is lower than the spot price.
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If an out-of-bid event happens, the ASP needs to rent the desired number of virtual
servers from the regular on-demand resource market in order to meet the demand
requirement.

2.4.1 Predictive Planning in Amazon R� Spot Market

2.4.1.1 Introduction

In this study, we use Amazon R�’s spot instance market as a case of study for price
prediction and cost optimization. Launched on December 2009, Amazon R�’s spot
instance market offers a new way to purchase EC2 instances in a discount rate.
It allows cloud customers to bid on unused server capacity and use them as long
as the bid exceeds the current spot price, which is updated periodically based on
supply and demand. Payment in spot instance auction is uniform, i.e., all winners
in the auction will pay a per-unit price equal to the lowest winning bid (a.k.a the
spot price). While running spot instances saves huge cost (typically over 60 %
according to [27]), it also introduces significant uncertainty for resource availability.
As a result, previous resource rental planning model based on deterministic resource
pricing does not apply.

If one is able to forecast spot prices with relatively high accuracy, then these
predictions can be used to instantiate the DRRP model presented in Sect. 2.3.2 to
obtain a near-optimal solution. However, performing forecasting is challenging for
customers because they do not possess the global information of supply and demand
as Amazon R� does. In [31], the authors attempted to predict customer demand from
the view of an IaaS provider. They proposed a simple auto-regression model for
prediction but no prediction results were reported due to the lack of realistic demand
information. Another study on the predictability of Amazon R�’s spot instance price
was presented in [20]. Their work focused on achieving availability guarantee with
spot instances, and used a quantile function of the approximate normal distribution
to predict when the autocorrelation of current and past price is weak. When the
autocorrelation is strong, a simple linear regression prediction model was adopted.
However, we found that such an approximation is inaccurate in some test cases
that cannot be taken as a generic approach. In this section, we will assess the
predictability of spot instance price based on a statistical approach (ARIMA), and
estimate the prediction errors using empirical data set.

2.4.1.2 Methodology

We collected the historical data (published in [11]) for spot price variation from
February 1, 2010 to June 22, 2011. The data source represents spot price variations
for Linux instances in us-east-1 region. The data size is approximately 100K
records. We employ a statistical approach to analyze the predictability of Amazon R�
EC2 spot pricing, and plot the results in Fig. 2.4.
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Fig. 2.4 Analyzing the predictability of Amazon R� EC2 spot price. (a) Box-and-Whisker dia-
gram; (b) frequency analysis; (c) histogram plot; (d) price decomposition; (e) correlation analysis;
(f) 24-h prediction

The first step in our investigation is to identify the outliers in the original
data set. Figure 2.4a plots the box-and-whisker diagram for the spot price data
set corresponding to four different Linux VM classes. The outliers are identified
as those points beyond the whiskers (1:5 IQR (interquartile range) of the upper
quartile). We can see that more outliers present in more powerful VM class,
indicating increasing price dynamics in more powerful types. However, even for
the most powerful instance (c1.xlarge), the number of outliers still contributes a
trivial amount to the overall data set (<3 %).
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Having trimmed out the outliers, we still cannot apply standard time series
analysis because the derived data set is unequally spaced with inconsistent sampling
intervals, as shown in Fig. 2.4b. It plots the daily price update frequency for VS of
class linux-c1-medium. For that reason, we further convert the data into equally
spaced time series data with a regular update frequency of 24 times per day. At the
start of each hour, the spot price is set to be the most recent updated price in the last
hour. If no update appears in the last hour, the spot price is unchanged.

We have performed various experiments on this converted data set, each with
different time scale of prediction (both short-term and long-term). Here we show a
representative prediction result for instance of class linux-c1-medium over a period
of 2 months. Specifically, we use the data ranging in [12/1/2010, 1/31/2011] as the
estimation data set, and data in 2/1/2011 as the validation data set. In other words,
the data collected from the 2-month historical records is used to provide the next-day
price forecasting. In Fig. 2.4c, we plot the histogram and density of the selected data.
We also randomly generate the same number of points from a normal distribution
characterized by the three main measures in quantitative statistics (mean, variance
and standard deviation), and plot the curve in Fig. 2.4c for comparison. Examination
of the Shapiro-Wilk test result (omitted here) verifies that the pricing data does not
fit the normal distribution.

In order to identify patterns in the selected series and perform prediction, we
use the ARIMA approach developed by Box and Jenkins [6], which retains great
flexibility in recognizing data patterns and is relatively lightweight compared to
machine learning techniques such as artificial neural networks or support vector
machines. Two common processes are used in ARIMA to identify the correct
time series pattern. The first process is the Auto-Regressive (AR) process that
decomposes observations into a random error component and a linear combination
of prior observations. The second process is called the Moving Average (MA)
process. In MA, each observation is made up of a random error component, and
a linear combination of prior random errors. Given a time series of data Xt , the
general form of an ARIMA process is given as follows:

 
1 �
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�i Li

!
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qX

iD1
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"t ; (2.8)

where L is the lag operator, �i and �i are the parameters for AR and MA
process, respectively, and "t are error terms. The key to the ARIMA model is to
identify parameters p (AR parameter), d (differencing pass), and q (MA parameter)
correctly. This is achieved through a series of steps. First, we verify that our
test data series is statistically stationary (statistical properties such as mean and
variance are constant over time), and does not require further differencing. The
decomposition of the selected series is presented in Fig. 2.4d, where the original
time series is decomposed into three parts: trend, seasonal, and random noise.
We can see that the target series does not exhibit clear trend, but advertises certain
cyclic pattern as shown in the seasonal decomposition. For that reason, we revise
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our prediction approach by employing a Seasonal ARIMA (SARIMA) model,
which takes the seasonal component into account. It can be expressed as SARIMA,
.p; d; q/�.P; D; Q/24, which includes the seasonal parameters for price prediction.

The next step for identifying the SARIMA model parameters is to plot the cor-
relograms for autocorrelation function (ACF) and partial autocorrelation function
(PACF), as displayed in Fig. 2.4e. These two functions help to detect trend and
seasonality of the selected series. Note that the x-axis is normalized by frequency
so that 1:0 corresponds to lag D 24. From the graphs we observe that, the selected
series has certain degree of correlation with its past at certain lag value, e.g., lag D 3,
because these values exceed the 95 % confidence limit. However, such a correlation
is not strong enough since its value is still far from 1:0 (which indicates perfect
correlation).

Finally, the identification of the most appropriate model parameters is achieved
by the forecast package developed in R [24]. In the forecast package, the calling
of auto.arima function will return the best model according to Akaike information
criterion (AIC) or Bayesian information criterion (BIC) values. The function per-
forms a search over possible models within the order constraints provided. Through
extensive trials, we found that most test series fit SARIMA .2; 0; 1 or 2/�.2; 0; 0/24

best. The prediction result for the selected series is shown in Fig. 2.4f. The solid
points and the hollow points represent the predicted and the actual prices on
February 1st, 2011, respectively. The horizontal dashed line represents the average
price in the selected data series, while the fluctuating solid lines represent spot
price variation in the past 48 h. We observe that the predicted prices are mostly
hanging over the average price line. While this model returns the least prediction
error compared to other models, its mean squared prediction error (MSPE) is only
slightly better than the simple prediction using the expected mean value.

2.4.2 Stochastic Planning for Spot Pricing Market

2.4.2.1 Solution Overview

In addition to the predictive planning approach, we propose an alternative approach
that takes the stochastic nature of the spot pricing into account. We model the
fluctuation of the spot instance rental cost Cp.i; t/ as a stochastic process Cp with
state space S. Cp is a collection of S-valued random variables on a probability space
˝ indexed by the time slot set T , i.e., Cp for class-i instance is a collection:
fCp.i; t/ W t 2 T g. The true valuations of the spot prices over the planning
horizon are represented by set: fcCp.i; t/ W t 2 T g. The goal of the stochastic
resource rental planning is to optimize the expected overall cost over the complete
state and probability space. In particular, the objective function (2.1) in DRRP can
be reformulated as follows:
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where ıexp is the expected total cost. The optimization model now becomes to
minimize (2.9), subject to constraints (2.2)–(2.7). We summarize our solution to
stochastic resource planning as follows.

1. Generate bid prices cCp.i; t/ for the class-i VS at every t 2 T , based on the true
valuations.

2. Calculate the base probability distribution according to the pricing history.
3. Derive new probability distributions at all t 2 T according to the base

distribution and the bid price.
4. Reformulate using a multistage recourse approach, based on the newly generated

distributions.
5. Solve the deterministic equivalent reformulation.

Due to the possibility of losing the auction, the actual realizations of spot prices
are possibly different at multiple decision points. Steps (1)–(3) summarize our
solution to this challenge. We call our proposed approach bid-dependent dynamic
sampling. After calculating the distributions, a multistage resource model is used to
optimize the expected total cost.

2.4.2.2 Bid-Dependent Dynamic Sampling

Let Si be the finite state space for the spot price of a class-i VS. A base probability
distribution is the summarized discrete probability distribution over a selected
historical price series: P r.Cp.i; t/ D si /; si 2 Si . This distribution cannot be
used in our stochastic optimization model because it does not include the risk of
out-of-bid. Therefore, we propose to use the following approach to dynamically
generate the probability distribution at every decision point t . The values in the finite
state space Si is sorted in the ascending order (no equivalent values are present in
Si ). Suppose the fixed on-demand cost is �i . At each decision point, we keep all
the probability distributions for those prices in the base distribution whose values
are less than the bid prices, i.e., si � cCp.i; t/. The rest of the distributions are
substituted by the following probability representing the likelihood of the out-of-
bid event.

P r.Cp.i; t/ D �i / D 1 �
X

si �bCp.i;t /

P r.Cp.i; t/ D si / (2.10)

Note that it is impossible to generate the precise distribution at each decision
point because we do not know the actual realization of the spot price in advance.
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t = 0 t = 1 t = 2 t = T

Fig. 2.5 An example of multistage scenario tree: each leaf vertex represents a scenario, and each
non-leaf vertex represents an intermediate state within the planning horizon. A probability is
associated with each branch representing the likelihood of state transition

Therefore, the dynamically generated distribution based on the ASP’s bid price is an
approximation to the actual spot price distribution. However, stochastic planning
using this approximated distribution outperforms deterministic planning using fixed
cost parameters. We will illustrate this point as well as the impact of approximation
precision to stochastic planning in the later part of this section.

2.4.2.3 Transforming Using Multistage Recourse

We formulate the problem of Stochastic Resource Rental Planning (SRRP) as a
stochastic optimization problem, and build a multistage recourse model to solve this
problem. The multistage recourse model allows the application planner to adopt a
decision policy that can respond to random events as they unfold. Initially, decisions
are made given present resources. As time evolves, possible adjustments (recourse
actions) become available to the application planner. As to SRRP, rental planning
decisions at various decision points are recourse variables.

The dynamic stochastic spot prices are represented in a multistage scenario tree,
G D .V ; E /, presented in Fig. 2.5. A scenario tree has T C 1 stages. The first stage
represents the current state of the world, and all subsequent stages correspond to
the future time slots when new information is available to the application planner.
A vertex v in stage t 2 T stands for the state of the system that can be distinguished
by information available up to stage t . Each vertex v 2 V , except the root vertex
(indexed as v D 0), has a unique parent vertex �.v/. The probability associated
with the state represented by vertex v is pv . Let �.v/ denote the time stage of vertex
v in the tree, we have:

P
�.v/Dt pv D 1. Each non-leaf vertex v is the root of the

subtree: G .v/ D .V 0 � V ; E 0 � E / containing all descendants of vertex v. The
complete tree is represented by G D G .0/.

Let the set of leaf vertices of G .0/ be L , and let the set of vertices on the path
from the root to vertex v be P.v/. If v 2 L , then P.v/ represents a scenario
of the problem describing a joint realization of the stochastic parameters over
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all stages. Otherwise, P.v/ denotes a partial realization of the problem up to the
stage �.v/. With the notations defined above, a decision variable Xi;t defined in the
deterministic problem is replaced by a set of scenario-dependent decision variables
(recourse variables) presented below.

Xi;t ) fXi;vj�.v/ D tg; t 2 T (2.11)

The multistage scenario tree is perfectly balanced because each path from root to
leaf vertex has the same length T . However, the numbers of possible states appeared
in each stage are not necessarily equal because of the bid-based dynamic sampling
process presented in Sect. 2.4.2.2. Given a scenario tree with a scenario set S , the
ASP wishes to set a policy that makes different resource rental decisions under
different scenarios. For a scenario Sj 2 S , decisions made at stage t if encountered
by scenario Sj is a vector:

f˛i;v; ˇi;v; �i;vg; v 2 Sj (2.12)

The solution must conform to the flow of available information (non-
anticipativity). It guarantees that decisions do not rely on information that is not yet
available.

2.4.2.4 Deterministic Reformulation of SRRP

Having built the multistage recourse model, we derive a deterministic equivalent
formulation of SRRP. In the reformulation, the time-dependent decision variables
are eliminated. The new formulation introduces a set of new variables that are
indexed by the vertices presented in G .0/. Each variable indexed by vertex v is
associated with a probability pv . As such, the goal of resource rental planning is to
solve MILP with regard to the scenario tree. The complete deterministic equivalent
formulation of SRRP is given below:

min
X

v2V

pv � .C C
f .�.v// � ˚i � ˛i;v C .Cs.�.v//C

Cio.�.v/// � ˇi;v C C �
f .�.v// � D.i; �.v//C

Cp.i; �.v// � �i;v/ (2.13)

s:t:

ˇi;�.v/ C ˛i;v � ˇi;v D D.i; �.v//; i 2 I ; v 2 V (2.14)

P.i/ � ˛i;v � Q.i; v/; i 2 I ; v 2 V (2.15)

˛i;v � B � �i;v; i 2 I ; v 2 V (2.16)
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ˇi;0 D "; i 2 I (2.17)

˛i;v ; ˇi;v 2 RC; i 2 I ; v 2 V (2.18)

�i;v 2 f0; 1g; i 2 I ; v 2 V (2.19)

Since variables at each t 2 T are associated with a number of possible
realizations, solving SRRP is equivalent to solving a large-scale MILP. There exist
a number of standard techniques to solve this problem, for example, using Benders
decomposition [5]. However, due to the huge search space for optimization, they
are only suitable for performing short-term resource rental decisions. Fortunately,
efficient algorithms are developed that approximate the objective with runtime
proportional to the number of nodes on the multistage scenario tree. Readers can
refer to Sect. 2.4.2.6 in [32] for more detailed discussions.

2.4.2.5 Evaluation of Stochastic Rental Planning Model

In this section, we perform simulations to evaluate the solution to SRRP model.
The simulation setting is based on realistic spot pricing history and application-
usage scenario presented in Sect. 2.3.3. First, imagine an oracle who knows all the
future realizations of spot prices in advance, and takes them as inputs to the DRRP
model. We denote the cost generated by this method as the ideal case cost for fine-
grained resource rental planning. We then compute the overpay percentages against
the ideal case cost for all other approaches. The price distribution is drawn from the
same representative data set described in Sect. 2.4.1.2, paragraph 3. The results are
plotted in Fig. 2.6. Here, we use the prediction values obtained from the approach
described in Sect. 2.4.1 as the bid prices, because they are the best approximation
values we can obtain using statistical analysis of past price history. The cost derived
by solving SRRP using forecast prices is labeled as “stochastic planning”, and the
cost of solving its DRRP counterpart and the cost of using on-demand virtual servers
are labeled as “predictive planning” and “on-demand-deterministic”, respectively.
It is not surprising to see that the deterministic planning scheme using on-demand
virtual instances yields the most overpay. In addition, stochastic planning is more
cost efficient than predictive planning for all three VS types. This is because
planning using price distributions is more adaptive to the uncertain availability of
spot resources than deterministic planning, and the approximation errors introduced
by bidding are “diluted” by fine-grained scenario division at each decision point.
When considering the price distribution at every decision point, stochastic planning
better hedges against the risk of the unexpected out-of-bid event compared to rental
planning based on forecasting values in predictive planning. We also mimic a
common bid strategy that ASPs bid a fixed price equal to the expected mean price of
the historical data, and compare its cost derived by stochastic and predict planning.
The results shown on Fig. 2.6 draw the same conclusion that stochastic planning has
better cost advantage.

Next, we investigate the impact of bid price approximation precision to the
stochastic planning approach with regard to cost reduction for VS type c1.medium.
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Fig. 2.6 Comparing predictive and stochastic planning

This evaluation is necessary because according to Sect. 2.4.2.1, the solution quality
of stochastic planning is closely related to the true valuation cCp.i; t/, which is
inaccurate in nature with respect to the actual spot price. Taking the cost derived
by actual realization of spot price as the baseline cost, we create artificial bid prices
that are ˙2 % to 10 %2 deviated from the actual price realizations, and measure
the cost deviation from the baseline cost introduced by the approximation errors.
The results converted to percent errors against the baseline cost are plotted in
Fig. 2.7. Clearly, the errors increase as approximation becomes less accurate. We use
the mean squared prediction error (MSPE) to measure the approximation errors.
The MSPE of our best approximation achieved based on the method presented
in Sect. 2.4.1 falls between that of 2 and 4 % deviation of the model. However,
the actual percent error using our approximation is �12 % from the baseline cost.
A possible explanation is that our approximations present a mixture of over- and
under-estimations of the actual price realizations, thus are different from the pattern
of the artificial approximated bid prices we created in the simulation. In conclusion,
if one bids according to the best approximation result in practice, the percentage
error introduced by approximation is generally acceptable.

2Prices that are more than ˙10 % from the actual prices are out of the actual price range.
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