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    Abstract     Over the last decade, the transcription factor PPARγ, previously known 
for its essential role in regulation of metabolic processes in adipose tissue, emerged 
as highly promising new target for the treatment of many neurological conditions, 
including ischemic and hemorrhagic stroke. Based on many cell culture and animal 
studies, activation of PPARγ was demonstrated to be associated with a broad range 
of biological effects (via genomic and non-genomic mode of action in virtually all 
brain cell types) which could effectively ameliorate pathogenic processes triggered 
by stroke, including infl ammation, oxidative damage, edema, BBB preservation, 
and excitotoxicity, as well as help in the post-stroke recovery process by modulating 
the macrophage-mediated brain cleanup process. Some key aspects of PPARγ as 
target for stroke treatment are reviewed in this chapter.  

        Introduction 

 The peroxisome proliferator-activated receptors (PPARs), including α, γ, and δ/β, 
are encoded by separate genes and are members of the nuclear hormone receptor 
superfamily of ligand-activated nuclear transcription factors.  PPARγ , also known 
as NR1C3 (nuclear receptor subfamily 1, group C, member 3), is a pleiotropic type 
II   nuclear receptor    , which was termed for its ability to induce proliferation of 
hepatic peroxisomes in response to xenobiotic stimuli in mice [ 1 ]. Three different 
PPARγ transcripts (PPARγ 1, 2, and 3), each a derivative of the PPARγ gene through 
differential promoter usage and alternative splicing, have been identifi ed [ 2 ,  3 ]. 
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While PPARγ 2 is the form primarily expressed in adipose tissue, PPARγ 1 has 
broader tissue distribution including presence in the brain [ 2 ]. As a transcription 
factor that regulates target gene expression through binding to the conserved DNA 
sequence termed  peroxisome-proliferator response element  ( PPRE ) [ 2 ,  4 ,  5 ], 
PPARγ was initially described in adipose tissue as a key regulator of metabolic 
processes [ 6 – 9 ]. Soon after, PPARγ was shown to be a unique therapeutic target for 
the treatment of metabolic disorders, e.g., diabetes (insulin resistance), obesity, 
  hyperlipidemia    , and   hyperglycemia     [ 10 – 12 ]. Among many compounds, ligands for 
PPARγ activation include fatty acids (especially the oxidized form) [ 13 – 15 ], cyclo-
pentanone prostaglandins (e.g. ,  15-deoxy-Δ12,14-prostaglandin J 2 ; -15d-PGJ 2 ) 
[ 16 ], lipoxygenase products [ 17 ,  18 ], the nonsteroidal anti-infl ammatory drugs 
(NSAIDs) [ 19 ,  20 ], and a class of clinically relevant compounds, the thiazolidine-
diones ( TZDs ) [ 10 ,  21 ]; of which pioglitazone and rosiglitazone are used to treat 
the type 2 diabetes mellitus [ 22 – 25 ]. In addition, PPARγ transactivation is regu-
lated by its phosphorylation [ 26 ,  27 ]. Specifi cally, phosphorylation of PPARγ by 
the extracellular signal-regulated kinase ( ERK1/2 ) and C-Jun N-terminal kinase 
( JNK ) reduces PPARγ activity [ 26 ,  27 ]. Since JNK is activated by H 2 O 2 , oxygen–
glucose deprivation ( OGD ), NMDA or ischemic stroke and acts as pro-death signal 
[ 28 – 32 ], the deleterious JNK functions may be secondary to the phosphorylation-
mediated PPARγ inhibition. 

 Later studies on the mechanism of PPARγ action in other than fat tissue demon-
strated its important role in regulation of anti-oxidative and anti-infl ammatory pro-
cesses [ 33 – 35 ]. It is primarily the anti-infl ammatory properties of PPARγ ligands 
that ultimately brought the closer attention to PPARγ and PPARγ-activating agents 
to vascular diseases process [ 36 – 38 ]. PPARγ (and primarily PPARγ1) expression is 
ubiquitous regarding the type of tissues and cells it is expressed. In terms of neuro-
logical conditions, PPARγ in preclinical studies was shown to act as potential target 
for the treatment of ischemic stroke [ 39 – 51 ], intracerebral hemorrhage [ 52 ], neu-
rotrauma [ 53 – 58 ], Alzheimer’s and neurodegenerative diseases [ 59 – 69 ], autoim-
mune encephalomyelitis ( EAE ), a model for multiple sclerosis [ 70 – 72 ]. In this 
chapter, our focus is mainly on the role of PPARγ in ischemic stroke, attempting to 
discuss the interactions of PPARγ with the NF-E2-related factor 2 ( Nrf2 ) and the 
nuclear factor kappa B ( NF-κB ) signaling pathways in regulating pro- and anti- 
infl ammatory responses in the brain.  

    Pleiotropic Effect of PPARγ Agonists in Ischemic Stroke 

 Based on the known function of gene targets, PPARγ acts as a key regulator in a broad 
range of processes virtually in all brain cells including neurons [ 45 ,  73 ], astroglia 
[ 74 – 76 ], oligodendroglia [ 77 – 79 ], microglia [ 54 ,  80 ,  81 ], and   endothelial cells     [ 82 , 
 83 ]. Primarily through the use of various PPARγ agonists but also through the use of 
cell-specifi c PPARγ knockouts, PPARγ was demonstrated to protect brain from 
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damages caused by ischemic [ 41 ,  42 ,  45 ,  84 – 87 ] and hemorrhagic stroke [ 53 – 55 ]. The 
benefi cial effects of PPARγ activation was linked to (1) repression of pro- infl ammatory 
mediators production (at least in part through inhibition of NF-κB either directly or by 
upregulation of endogenous NF-κB inhibitor, IκB [ 33 ,  34 ,  53 ,  88 – 95 ]), (2) upregula-
tion of antioxidant enzymes including CuZn-superoxide dismutase ( SOD ) and cata-
lase [ 41 ,  54 ], (3) inhibition of excitotoxicity [ 96 ,  97 ], and (4) activation of phagocytotic 
activities by microglia and macrophages via mechanism involving the PPARγ-target 
gene—scavenger receptor CD36, the molecule that assists in cleanup of damaged 
brain tissue, a process necessary for effi cient recovery and the termination of deleteri-
ous pro-infl ammatory cascade (Fig.  17.1 ) [ 54 ,  98 – 101 ].
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  Fig. 17.1    PPARγ regulated pathways after stroke—role of PPARγ activators. PPARγ transcrip-
tionally controls expression of numerous genes including the anti-oxidative enzymes, such as cata-
lase and superoxide dismutase (SOD), as well as the transcription factor Nrf2. Nrf2 plays a key 
role in amplifying the expression of many anti-oxidative genes including catalase and SOD, simi-
lar to PPARγ. This anti-oxidative feature of PPARγ is critical in combating oxidative damage 
imposed by cerebral ischemia. Importantly, since PPARγ and Nrf2 are ubiquitously expressed, this 
anti-oxidative mechanism may apply to all brain cell types affected by stroke. In addition, both 
PPARγ and Nrf2 regulate expression of CD36, a scavenger receptor that is abundant on microglia/
macrophages. CD36 plays important role in endocytosis of oxidized lipids and phagocytosis of 
dead (including apoptotic) cells and other cellular debris, thereof aiding in cleanup—process 
allowing for a faster infl ammation resolution and more effi cient tissue repair. Another important 
task of PPARγ is to inhibit NF-κB, a proinfl ammatory transcription factor implicated in BBB dis-
ruption and brain edema formation. Ultimately, augmented PPARγ activation improves infl amma-
tion resolution, tissue repair, and functional recovery after stroke       
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       PPARγ and Neuroprotection 

 In response to the prolonged ischemia, neurons that are localized in the ischemic 
core die rapidly as consequence of ischemia-induced energy failure, anoxic depolar-
ization, and excitotoxicity, which is the result of glutamate receptors overactivation, 
calcium overload, and a breakdown of ion homeostasis [ 102 – 109 ]. Using oxygen–
glucose deprivation (OGD) or glutamate/NMDA toxicity (in vitro models of isch-
emia) to study the neuroprotective capacity of PPARγ agonists [including 
pioglitazone, rosiglitazone, or cyclopentanone prostaglandins ( CyPG )], we and 
other groups demonstrated that activation of PPARγ potently reduces the neuronal 
death in the primary neurons [ 96 ,  97 ,  110 ], implying that PPARγ may act as pro- 
survival factor for neurons under the ischemic/excitotoxic stress. The anti- excitotoxic 
effect of PPARγ agonists was observed not only in cultured neurons but also in the 
animal injury model that assess the extent of brain damage caused by intracortical 
injection of NMDA [ 97 ]. Finally, we have established that neurons derived from 
animals engineered to lack PPARγ, selectively in neurons, demonstrated signifi -
cantly increased susceptibility to excitotoxic damage and to OGD [ 84 ]. In agree-
ment with the in vitro data, mice lacking PPARγ in neurons were signifi cantly more 
susceptible to the ischemic damage caused by focal cerebral ischemia [ 84 ]. 

 Reactive oxygen species ( ROS ) are well known to represent one of the most 
important components of brain injure in response to ischemia/reperfusion insult. 
ROS are generated by the ischemia-affected brain cells, the activated microglia, and 
infi ltrating neutrophils that collectively impose oxidative stress to cells located in 
proximity to the ischemia [ 111 – 114 ]. To combat the oxidative stress, cells have 
developed a number of self-defense mechanisms including upregulation of enzymes 
with anti-oxidative functions. Superoxide dismutase along with catalase and gluta-
thione peroxidase plays key roles in eliminating ROS through catalytic decomposi-
tion of superoxide or H 2 O 2  [ 84 ,  115 ,  116 ]. Catalase is a large homotetrameric 
protein that is usually localized in peroxisomes (the membrane-bound organelles 
that house β-oxidation of very long chains of fatty acids, in which toxic peroxides 
are generated as side products) [ 117 ], where it acts to protect the cells from the toxic 
effects of H 2 O 2  by catalyzing its decomposition. As a ubiquitous enzyme to most 
cells in our body including neuroglia and neurons [ 118 ], catalase expression is 
 regulated by PPARγ and Nrf2 [ 115 ,  119 ]. The distribution pattern of catalase-
immunopositive neurons throughout the brain inversely corresponds to increased 
susceptibility to damage induced by global cerebral ischemia [ 118 ], suggesting that 
catalase plays important role in cell survival. Overexpression of catalase in rat stria-
tum through virus-mediated gene transfer decreases the vulnerability to ischemic 
stroke [ 120 ]. In response to PPARγ activation, expression of catalase rapidly 
increased in the ischemia- affected brain [ 118 ,  121 ] and in the OGD-injured neurons 
[ 122 ], which likely refl ect an adaptive response aiming at improving the antioxidant 
buffering capacity under the pathological scenarios. In agreement with this notion, 
treatment with catalase of neurons in culture subjected to H 2 O 2 -induced injury pro-
vided a robust cytoprotection [ 123 ,  124 ]. Thus, catalase upregulation by PPARγ 
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may refl ect a self-protective mechanism to combat oxidative stress in stroke. It is 
important to point out that in addition to catalase, PPARγ regulates expression of 
superoxide dismutase (including in neurons), an enzyme well recognized for 
decades as a key player in mitigating oxidative injury and brain damage after cere-
bral ischemia [ 41 ,  84 ,  125 ,  126 ].  

    PPARγ-Induced CD36 Expression on Phagocytes 
and the Endogenous Cleanup Mechanism 

 After cerebral ischemia, the infarcted/dead tissue not only acts as a reservoir of vari-
ous cytotoxic and pro-infl ammatory molecules that harm the adjacent healthy brain 
tissue, but it also forms a biological and physical barrier hampering neural reorga-
nization, repair, and ultimately, neurological recovery. Thus, in order to minimize 
such detrimental effects, infarcted tissue needs to be removed to facilitate recovery. 
Microglia and hematogenous macrophages ( MMΦ ) are the cells primarily respon-
sible for such cleanup and repair processes. Successful removal of the disintegrated 
and apoptotic brain cells or debris (including the neutrophils that accumulate in 
brain in response to injury and consequently die through apoptosis) by MMΦ is also 
essential in achieving resolution of infl ammation. While apoptotic cells appear to be 
considerably benign to the surrounding brain tissue, an apoptotic cells non- 
phagocytosed in a timely manner may undergo secondary necrosis causing spill of 
the intracellular toxic content, leading to the damage to the neighboring cells and 
causing infl ammation. Several macrophage scavenger receptors that mediate 
cleanup process have been identifi ed. These include not only CD36 but also CD91, 
SR-A, and several others [ 54 ,  127 – 133 ]. Regarding apoptotic cell efferocytosis by 
macrophages, the phosphatidyl serine on the sickle red blood cells, symmetric red 
cell ghosts [ 134 – 136 ], or apoptotic neutrophils was suggested to act as the recogni-
tion molecule for CD36, a class II scavenger receptor on macrophages [ 137 – 139 ]. 
Expression of CD36 on macrophages ( MΦ ) is transcriptionally regulated by both 
PPARγ [ 98 ,  140 ,  141 ] and Nrf2 [ 142 – 145 ]. Although CD36 has various functions, 
one of its primary roles is to mediate endocytosis of (oxidized) fatty acids and 
phagocytosis of dead/apoptotic cells [ 129 ,  137 ,  146 – 148 ]. Defi ciency of CD36 in 
macrophages due to genetic deletion of PPARγ leads to delayed uptake of oxidized 
LDL by macrophages and aggravation of atherosclerotic lesions [ 149 ]. In CD36-KO 
mice, aberrant phagocytotic capacity of macrophages was proposed to explain the 
defi ciency in remyelination in response to sciatic nerve crush injury [ 150 ]. In addi-
tion, transfection of non-phagocytic cells with CD36 renders these cells capable of 
ingesting apoptotic neutrophils, lymphocytes, and fi broblasts [ 138 ], further con-
fi rming the important role of CD36 in phagocytosis. As pointed above, since CD36 
transcription is under control of Nrf2 and PPARγ, the upregulation of CD36 by 
MMΦ in response to Nrf2 and/or PPARγ activators may ensure a more effi cient 
interaction between the MMΦ and their targets for phagocytosis. This may allow 
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for more effi cient phagocytosis-mediated clearance of dead cells/tissues from the 
ischemic brain. However, despite its benefi cial role in the cleanup process, CD36 
may have detrimental effect which is normally characterized by increased oxidative 
stress and pro-infl ammatory responses, as adult animals defi cient in CD36 suffer 
from the less profound damage in response to cerebral ischemia [ 151 ,  152 ]. The 
nature of these responses is not known; however, the likelihood is that upon engulf-
ment of cellular debris including oxidized lipids, the MMΦ generate damaging lev-
els of oxidative stress during degradation of debris in the phagolysosomes. 
Interestingly, CD36 knockout neonates subjected to cerebral ischemia experienced 
more damage (suggesting benefi cial function of CD36), which was suggested to be 
in part due to the impaired cleanup mechanism [ 153 ]. Independent of the natural 
responses that were tested in experiments using CD36 knockout mice, we suggest 
that under conditions using pharmacologic agents to activate PPARγ, MMΦ not 
only express higher levels of CD36 for a more effi cient phagocytosis but also pro-
duce more anti-oxidative enzymes (e.g., catalase) that are regulated by PPARγ. 
Recently, we provided the evidence that MMΦ in culture challenged with PPARγ or 
Nrf2 activators, despite expressing CD36 at much higher level and demonstrating 
the augmented phagocytosis, experienced less oxidative damage and showed 
reduced pro-infl ammatory gene expression [ 54 ]. 

 Thus, in response to PPARγ in activated microglia, the upregulation of the anti-
oxidant enzymes (in addition to CD36) may play a protective role allowing for 
effective and safe phagocytosis. Consequently, cleaning the apoptotic/dislocated/
damaged cells or debris will help to reestablish the nurturing environment necessary 
for restoring tissue structure and neurological function recovery [ 154 ,  155 ].  

    PPARγ Activation and the Interaction of PPARγ and RXR 

 PPARγ regulates target gene expression by binding to PPRE as heterodimers with 
the retinoic acid receptor ( RXR ). Interestingly, existing studies indicate that activa-
tion of PPARγ–RXR complex can be achieved with either PPARγ and/or by RXR 
ligand (e.g., 9- cis  retinoic acid), indicating some level of the promiscuity in activa-
tion of PPARγ [ 156 ,  157 ]. Although each ligand can initiate transactivation inde-
pendently, the effect of co-activation appears to be stronger [ 9 ], suggesting that the 
occupancy of both PPARγ and RXR ligand (e.g., 15d-PGJ 2  plus 9- cis  retinoic acid) 
is needed for the maximal receptor activity [ 9 ,  158 – 160 ]. In agreement with this 
notion, we found that co-treatment of cultured neurons with 15d-PGJ 2  and 9- cis  
retinoic acid was more effective in reducing the OGD-induced damage, as com-
pared to each ligand alone [ 53 ]. This benefi cial interaction between PPARγ and 
RXR ligands in our neuroprotection assay is consistent with an earlier report show-
ing that combination use of 15d-PGJ 2  and 9- cis  retinoic acid was superior to each 
drug alone in reducing behavioral dysfunction in a mouse model of experimental 
autoimmune encephalomyelitis [ 161 ].  
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    Interaction of PPARγ and Nrf2 and NF-κB 

 The pro-survival role of PPARγ includes the non-genomic inhibition of deleterious 
pro-infl ammatory transcription factor, nuclear factor kappa B, NF-κB. In the 
ischemia- injured brain, the delayed cell death is in part triggered by the overproduc-
tion of pro-infl ammatory molecules including pro-infl ammatory cytokines (such as 
tumor necrosis factor alpha,  TNF-α  or interleukin-1 beta,  IL-1β ), adhesion mole-
cules (such as intercellular adhesion molecule 1,  ICAM-1  or vascular cell adhesion 
molecule,  VCAM ), matrix metalloproteinases (including  MMP9 ) or the pro- 
oxidative inducible form of nitric oxide synthase ( iNOS ) capable of generating large 
quantities of nitric oxide, that in presence of superoxide generated by NADPH oxi-
dase is converted to a highly cytotoxic peroxynitrites [ 109 ,  162 – 165 ]. Once per-
petuated by ischemia, these potentially deleterious factors act in concert to damage 
blood–brain barrier (BBB) and cause edema and/or hemorrhage [ 166 – 168 ]. 
Interestingly, the expression of all these factors is tightly regulated by NF-κB. The 
activation of PPARγ can antagonize these harmful effects through inhibition of 
NF-κB [ 33 ,  34 ], which may be achieved by at least three independent mechanisms 
(Fig.  17.1 ) [ 33 ,  34 ,  53 ,  88 – 95 ]. First, PPARγ may directly bind to the NF-κB sub-
units, p50 and p65, resulting in NF-κB inactivation [ 169 ]; second, PPARγ may 
indirectly inhibit NF-κB by sequestering the common transcription co-activators 
such as SRC-1 [ 170 ] and p300/CBP (CREB-binding protein) [ 88 – 90 ]; and third, 
PPARγ may upregulate the production of inhibitor kappa B ( IκB ) [ 91 ,  93 – 95 ], the 
protein that directly inhibit NF-κB activation. Inhibition of NF-κB by PPARγ ago-
nists may reduce generation of pro-infl ammatory mediators involved in the second-
ary brain damage. 

 Nrf2 is a ubiquitous pleiotropic transcription factor and a key genomic homeo-
static regulator of intracellular stress [ 171 ]. By combining with Mif family proteins, 
Nrf2 forms heterodimeric complexes capable of transactivating the antioxidant 
response elements  (ARE ) within the regulatory region of many cytoprotective target 
genes including catalase, superoxide dismutase, glutathione- S -transferase, thiore-
doxin, NQO1, and many other proteins with important role in neutralization of oxi-
dative stress and detoxifi cation [ 172 ]. In most cells, Nrf2 is present at low 
concentrations due to continuous Nrf2 degradation through the proteasome pathway 
[ 173 ,  174 ]. Nrf2 contributes to cytoprotection and amelioration of tissue damage 
through reducing the oxidative stress in many pathogenic conditions including cere-
bral ischemia [ 175 – 181 ], neurodegenerative diseases [ 182 ], and mitochondrial met-
abolic stress [ 183 ]. The growing body of evidence suggests that PPARγ may play 
important role in regulation of Nrf2 and thus Nrf2 target genes (Fig.  17.1 ). The 
interaction between PPARγ and Nrf2 may involve several layers of interaction. 
Most importantly, PPARγ was demonstrated to regulate Nrf2 gene expression and 
Nrf2-regulated genes containing putative PPREs [ 184 ]. Interestingly, it appears that 
Nrf2 also regulates PPARγ and PPARγ-regulated genes containing the ARE [ 185 ]. 
Next, PPRE and ARE coexist in the same genes, such as CD36 and catalase, sug-
gesting an interactive function of Nrf2 and PPARγ in expression of these genes. 
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Finally, an interaction between PPARγ and Nrf2 may be through NF-κB inhibition. 
Since NF-κB activation requires the presence of oxidative stress [ 186 ], the effect of 
Nrf2 in ameliorating oxidative stress was proposed to inhibit NF-κB [ 187 ]. As dif-
ferent mechanisms are used by Nrf2 and PPARγ in inhibiting NF-κB, it is likely that 
the mutual effect may lead to a synergistic role [ 188 – 190 ].  

    Adverse Effects of PPARγ Agonists 

 There is a small number of observations reporting the dose-dependent neurotoxic 
effects of the endogenous PPARγ ligand 15d-PGJ 2  in cerebellar granule cells [ 191 ], 
primary cortical neurons [ 192 ], and spinal cord motor neurons [ 193 ]. The mecha-
nism that underlies this neurotoxicity is unclear and some reports indicate that these 
harmful actions are probably not directly linked to PPARγ [ 191 ]. In our studies 
using mouse and rat neurons in culture, we have not observed neurotoxicity using 
PPARγ activating ligands to date. In fact, all the tested PPARγ agonists including 
15d-PGJ 2 , 15d-PGD 2 , ciglitazone, rosiglitazone, and pioglitazone demonstrated 
potent cytoprotective effects in models of OGD and excitotoxicity [ 45 ,  50 ,  97 ]. The 
only instance showing toxicity was when the doses of the agonists were higher than 
these needed for the cytoprotection. Unlike synthetic TZDs that display rather sig-
nifi cant levels of PPARγ specifi city, prostaglandin D 2  derivatives, including 15d- 
PGJ 2   , have a limited selectivity toward PPARγ and many of their biological 
activities are independent of PPARγ [ 92 ,  194 – 198 ]. However, the clinical use of 
PPARγ ligands, and primarily rosiglitazone, was associated with hemodilution, 
peripheral edema, increase in body weight, as well as cardiomyopathies and heart 
failure [ 46 ,  199 – 201 ]. Again, these are the known side effects of long-term use of 
these medications and as such should not necessarily infl uence the safety of patients 
subjected to short-term treatment. The study evaluating the safety of pioglitazone in 
patients with hemorrhagic stroke is currently ongoing [ 52 ].  

    PPARγ Agonists and Clinical Trials 

 Two of the thiazolidinediones (TZDs), pioglitazone and rosiglitazone, are currently 
approved by the FDA for treatment of type 2 diabetes mellitus. These insulin- 
sensitizing PPARγ agonists are unique among all the glucose-lowering agents as 
they act independent of secretion of insulin from pancreas (TZDs do not change 
blood insulin levels, rather make cells more sensitive to its effect) [ 22 ,  202 ]. The 
glucose-lowering effect of TZDs is of clinical importance since hyperglycemia dur-
ing ischemia/reperfusion may worsens the brain damage and neurological outcome, 
including by increasing incidence of hemorrhage in patients subjected to throm-
bolysis with rt-PA [ 203 – 206 ]. A fi rst case-matched controlled study reporting 
improved functional recovery in stroke patients with type 2 diabetes receiving 
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pioglitazone or rosiglitazone (vs. control type 2 diabetes patients not receiving 
TZDs) yields a promising outlook [ 207 ]. Subsequently, PROACTIVE ( PRO spective 
pioglit A zone  C linical  T rial  I n macro V ascular  E vents; NCT00174993), a random-
ized, double-blinded, placebo-controlled study looked at the impact of pioglitazone 
on total mortality and macrovascular morbidity in 5,238 patients with diabetes and 
macrovascular disease. This secondary prevention study showed safety and a mac-
rovascular benefi t with pioglitazone in terms of major adverse cardiovascular events 
including all-cause mortality, nonfatal myocardial infarction, acute coronary syn-
drome, cardiac intervention (including coronary artery bypass graft or percutaneous 
coronary intervention), and stroke [ 208 – 210 ]. The higher benefi cial rates were 
observed in patients with prior stroke compared with those without prior stroke 
[ 211 ,  212 ]. A meta-analysis of 19 randomized clinical trials with pioglitazone 
revealed a statistical difference regarding the favorable outcome including mortal-
ity, nonfatal MI, and stroke when using pioglitazone [ 201 ]. However, a recent study 
suggests that use of rosiglitazone may impose 1.4-fold increase in risk of acute MI 
and death from cardiovascular diseases compared with non-TZDs therapies [ 213 ]. 
As compared to pioglitazone, rosiglitazone signifi cantly increased the risk of stroke, 
heart failure, and death in elderly patients [ 214 ]. In contrast, from the stroke preven-
tion point, pioglitazone has shown signifi cant protection from both micro- and mac-
rovascular cardiovascular events and plaque progression [ 215 – 217 ].     
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