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    Abstract     Immune responses to brain injury are more than a simple reaction to tissue 
damage. Brain and immune system are engaging in a tightly orchestrated communi-
cation, which may protect the brain, help recover lost function, or aggravate damage 
and impede repair. The bewildering complexity of these processes is refl ected by the 
fact that for practically any cell type of the immune system evidence for benefi cial 
as well as detrimental functions can be found in the literature. This introduction sets 
the stage for the chapters of this volume, which will summarize our current knowl-
edge on the immunological mechanisms and therapies of brain injuries and stroke.  

        “Autopsies clearly demonstrate that the [apoplectic] brain is subject to infl ammation and 
suppuration”.  

 Translated from Richelmi, [ 1 ] 

      Introduction 

 That acute brain diseases, such as “apoplexy,” can be accompanied by infl ammation 
has been realized by physicians and pathologists already a long time ago. Today, we 
know that immune responses to brain injury are more than a simple reaction to 
tissue damage, at most responsible for clearing debris. We have come to realize that 
brain and immune system are engaging in a tightly orchestrated communication, 
which may protect the brain and even help recover lost function, but may also 
aggravate damage and impede repair. Indeed, not only resident immune cells of the 
brain, such as microglia, are involved in these responses, but also practically all cell 
types of the innate and adaptive immune system, which may home to the lesion, or 
act in the periphery. The bewildering complexity of the interaction of the two 
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“supersystems” [ 2 ] after brain lesion is refl ected by the fact that for practically any 
cell type of the immune system evidence for benefi cial as well as detrimental func-
tions can be found in the literature, and the realization that despite many attempts 
targeting immune mechanisms has not been successful in large, randomized clinical 
trials of acute CNS diseases. With some general refl ections, I would like to prepare 
the ground for the chapters of this volume, which summarize our current knowledge 
on the immunological mechanisms and therapies in brain injuries and stroke.  

    Nervous and Immune System: Precambrian Twins 

 Nervous and immune systems have coevolved over hundreds of millions of years. 
Both are engaged in the communication of the organism with the outside world. 
They share characteristics from a conceptual (memory, synapse, etc.) to a molecular 
level (e.g., identical signaling and guidance molecules). The most ancient and 
possibly most important task of the nervous system is to control movement and 
predation (or evasion from it), while the immune system protects against infection 
of the host by foreign organisms, parasitic, bacterial, or viral. Brain and immune 
system communicate intensely, sensing and controlling each other’s state to maintain 
homeostasis. When things go wrong, however, primary diseases of the nervous system 
may harm the immune system, and vice versa. In fact, disorders of the immune 
system may lead to acute brain injury, as in atherothrombotic stroke, or acute brain 
injury, as in a stroke can cause brain infl ammation, as well as immunodepression.  

    Nervous and Immune System: Friends, Foes, Then Friends 
Again? 

 For many decades, research into the pathophysiology of acute brain injury after 
ischemia or trauma was almost exclusively focused on the central nervous system. 
Involvement of the immune system was only considered insofar injury may lead to 
local infl ammation, which involves not only brain cells, such as microglia and astro-
cytes, but also cells of the innate immune system which have homed to the lesion, 
such as granulocytes and monocytes. Early anti-infl ammatory treatment in experi-
mental models of stroke or brain trauma appears to be protective, although clinical 
trials were unable to confi rm this effect in stroke patients. The interaction of adaptive 
immunity and the brain has traditionally been the domain of multiple sclerosis 
research, which has demonstrated that even the healthy brain is patrolled by T cells. 
Only recently, it was realized that cells of the adaptive immune system are players 
when the brain is acutely lesioned. Not only may the brain downregulate the periph-
eral immune system (innate and adaptive) after stroke [ 3 ], brain trauma [ 4 ], or spinal 
cord injury [ 5 ], cells of the adaptive immune system enter the brain where they may 
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aggravate or contain damage, or potentially even partake in repair. These fi ndings, 
as well as the notion that infl ammation is intrinsically linked to wound healing in 
the periphery, have promoted the concept of the Janus-facedness of infl ammation 
after brain injury; in its most simplistic version, acute cell death in the brain within 
hours leads to the activation of brain parenchymal and blood-borne immune cells 
and consequently the generation of toxic metabolites, such as free radicals, stressing 
the brain on top of the initial insult. After the acute phase, however, some proin-
fl ammatory cells shift their phenotype towards anti-infl ammation (e.g., M1 → M2 
polarization of macrophages), and other, primary anti-infl ammatory and pro-regen-
erative cells (e.g., regulatory T cells, Tregs) take over, helping the brain to repair 
damage and recover function. This dichotomous concept is highly attractive, as it 
suggests that ill and benefi cial effects of immune responses can be separated on a 
temporal scale. Anti-infl ammation early on and modulation of infl ammation towards 
“wound healing” later suggest itself as straightforward and promising therapeutic 
approaches. Various therapeutic agents (pharmacological and cellular) are ready to 
be tested, the only remaining challenge appears to develop and deploy noninvasive 
strategies (i.e., molecular imaging, such as TSPO-PET) to stratify patients to the 
right type of immune therapy.  

    Of Concepts and Misconceptions 

 But is it that simple? Can the outcome of an interaction between the two super-
systems of the organism be either good or bad, can they be sometimes foes, and 
shortly thereafter friends again? There is nothing wrong in formulating reductionist 
biological concepts—they help to generate testable hypotheses in the face of over-
whelming complexity. However, there is a risk that fl awed concepts stick and may 
turn into dogmas. This has happened with several concepts which are relevant to our 
understanding of brain–immune interactions after injury. I will therefore briefl y 
touch upon them. 

    The Immune Privilege of the Brain 

 The unique structure and function of the brain, the risk of erratic rewiring after 
damage and thus restricted capacity to regenerate, as well as its tight embedding 
into a bony structure limiting volume expansion necessitate protection against 
damage from infl ammation. The organ has therefore developed tolerance against 
the introduction of antigens—the so-called immunological privilege [ 6 ]. However, 
this privilege is not absolute, and it is compartmentalized. An excellent treatment of 
this concept and misunderstandings associated with it can be found in Galea et al. [ 7 ]. 
In short, only the brain parenchyma has a tightly regulated immunosuppressive 
environment without an adaptive efferent arm of immunity. The ventricles (including 
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choroid plexus and circumventricular organs), perivascular spaces, and meninges of 
the brain demonstrate responses of innate and adaptive immunity and antigen 
presentation very similar to peripheral sites. It should also be noted that the environ-
ment of the brain parenchyma rapidly loses its immunosuppressive capacity once 
infl ammation has established itself after brain tissue damage. This is the result of 
blood–brain barrier breakdown, local production of chemoattractants and immuno-
stimulants, and the appearance of dendritic or other antigen-presenting cells. Finally, 
although blood–brain barrier and relative immune privilege are linked, the one is 
not the primary consequence of the other. The immune privilege of the brain paren-
chyma results from a tightly regulated microenvironment and the lack of an efferent 
arm of adaptive immunity, rather than tight capillary endothelia.  

    The Blood–Brain Barrier and Leukocyte Traffi cking 

 A “barrier” made of capillary tight junctions restricts the diffusion of molecules 
potentially disruptive for neurotransmission from the blood into the brain extracel-
lular fl uid and thus neuropil. However, this barrier is mostly restricted to the capil-
lary bed, where no extravascular (“Virchow–Robin”) space exists, as the basement 
membrane between endothelial cells and astrocytic endfeet of the glia limitans are 
fused—the so-called gliovascular or composite basement membrane. For an excel-
lent treatment of the blood–brain barrier and a clarifi cation of some prevalent mis-
conceptions, the reader is referred to Bechmann et al. [ 8 ]. Importantly, leukocyte 
recruitment is a highly regulated process and does not normally involve the blood–
brain barrier, as it occurs in postcapillary venules, where the cells fi rst enter the 
Virchow–Robin space. Only a second step involving different molecular programs 
can take them into the neuropil, as they need to cross the basement membrane of the 
glia limitans. In other words, while solute movement in and out of the CNS is lim-
ited by properties of the endothelium, leukocyte migration is in addition hampered 
by extracellular matrix and membranes, which need to be actively degraded for 
passage [ 9 ,  10 ]. The lack of discrimination of the different barriers encountered by 
leukocytes in brain infl ammation has confounded the literature. To understand the 
role of leukocytes in brain infl ammation, we need to carefully locate and dis-
criminate specifi c leukocyte subsets, such as neutrophils, monocytes, NK cells, 
T-cell subtypes, and B cells. A case in point is the dogma that polymorphonuclear 
leukocytes (PMNs) invade the brain parenchyma early after stroke, where their 
toxic products harm neurons. A recent study in experimental stroke and human 
neuropathological samples demonstrates, however, that after stroke the large majority 
of extravasated PMNs stay within the confi nes of the perivenular space and the 
meninges and do not gain access to the neuropil [ 11 ]. PMNs, therefore, appear to act 
at different sites than previously thought, which may at least partially explain the 
clinical failure of agents that block PMN infi ltration and suggests alternative thera-
peutics targeting infl ammation within the neurovascular unit.  
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    Infl ammation and Wound Healing 

 Tissue responses after brain lesions include resorption of debris, scar formation, 
and possibly attempted repair, and because of clear analogies have been compared 
to the tightly regulated process of wound healing in peripheral tissues, for example 
the skin. There the orchestrated response to injury includes elements of infl amma-
tion, such as leukocyte homing, in particular macrophage activity. Macrophages 
have been implicated in wound closure, reepithelialization, and angiogenesis. It 
should be noted, however, that even for wound healing in the periphery, the role of 
infl ammation is still not clear. While some studies demonstrate disturbed wound 
healing by anti-infl ammatory treatment or specifi c ablation of macrophages [ 12 ], 
others found normal wound healing (including angiogenesis) in the absence of 
infl ammation [ 13 ]. It should be noted in this context that embryos demonstrate 
almost perfect wound healing without scarring, in the complete absence of infl am-
mation [ 14 ]. Herz et al. [ 15 ] demonstrate that brain plasticity and repair after stroke 
can be fostered by anti-infl ammatory therapy. Interestingly, however, Gliem et al. 
[ 16 ] found that bone marrow derived macrophages are critical for preventing 
hemorrhagic transformation of brain infarcts. Thored et al. [ 17 ] linked microglia 
accumulation to neurogenesis and repair after stroke. However, the same group 
went on to demonstrate that elimination of the microglia does not affect the neuro-
genic response [ 18 ]. This presents a nice illustration of the truism that correlation 
does not imply causation, which is unfortunately often overlooked, in particular 
regarding research on the relationship between brain and immune system (see 
below). The controversy surrounding the role of infl ammation and repair or wound 
healing remains unresolved, and the reader is referred to the interesting debate in 
Crutcher et al. [ 19 ].  

    Correlation Versus Causation 

 Many experimental studies report pharmacologic manipulations, which lead to 
smaller infarcts via “anti-infl ammatory” mechanisms. Claiming “anti-infl ammatory 
action” quite often rests on the fi nding that giving the drug not only reduces damage 
but also many markers of infl ammation, such as cytokines, infl ux of leukocytes, etc. 
Unfortunately, this conclusion is confounded by the problem that smaller infarcts 
(by whatever treatment) lead to a reduction of practically all mechanisms related to 
primary and secondary ischemic damage. For example, reducing infarct sizes by 
blocking the  N -methyl- d -aspartate (NMDA) receptor (which is not found on cells of 
the immune system) via a reduction of tissue damage also leads to a reduction in 
secondary release of infl ammatory cytokines or an infl ux of leukocytes into the 
affected hemisphere [ 20 ].  
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    Resolution of Infl ammation 

 Research on infl ammation after brain lesion is highly focused on the mechanisms 
which induce and maintain infl ammation, as well as its effects on tissue damage, 
protection, and repair. Surprisingly, little attention is devoted to the question how 
infl ammation is terminated, and homeostasis is reestablished. This is achieved by an 
active, highly regulated process: resolution. In peripheral tissues, this process is well 
studied, and chemical mediators of resolution have been identifi ed [ 21 ]. Resolution 
failure leads to chronic infl ammation, with increased tissue injury and scarring. In 
the partially immune privileged CNS, resolution after injury may differ from other 
organs, and infl ammation may in part be nonself-limiting [ 22 ]. Very little is known 
about resolution of infl ammation after stroke and brain trauma, a fi eld which 
deserves further inquiry as resolution agonists may be attractive therapeutics.   

    Open Issues and Future Challenges 

 Research of the last decades has clearly demonstrated that immunological responses 
to acute injury of the brain play an important role for tissue damage, protection, and 
repair. This research has also unraveled striking complexities in the interaction of 
brain and immune system: simple dichotomies, categorizing specifi c cells or 
responses as “good” or “bad” are no longer helpful [ 23 ]. We are beginning to under-
stand the functional diversity of immune responses, which are highly context depen-
dent. Numerous open issues remain (Table  1.1 ). The chapters of this volume explore 
these complex responses and the biological contexts in which they occur. They will 
also highlight a number of novel targets to inhibit secondary damage after stroke, 
brain trauma, or spinal cord injury. These targets include the induction or blockade 
of cytokines, subsets of cells of the innate and adaptive immune system, or path-
ways of communication between brain and immune system, such as the sympathetic 
and parasympathetic nervous systems.

   Table 1.1    Exemplary open issues regarding immune responses to brain injuries   

 Can benefi cial and detrimental effects of infl ammation be disentangled? How can we noninvasively 
stratify patients to immunomodulatory therapies? 

 What is the role of specifi c types of T cells after brain injury? What is the role of antigen? If 
antigen presentation is needed, where does it occur? How can T cells damage neurons or 
regenerate neuronal function? 

 Does anti-infl ammatory therapy affect the glial scar? 
 What are the sources of specifi c cytokines measured after brain injury in the blood? 
 Is immunodepression after brain injury an adaptive response? If so, does blocking it potentially 

exacerbate autoimmunity after brain injury? 
 Can adaptive immunity selectively be manipulated to protect or regenerate the brain? 
 How do comorbidities and aging affect immune responses after brain injury? 
 How do immune responses after stroke affect angio-, vasculo-, and neurogenesis? 
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    Abstract     Acute brain injuries elicit prompt and robust immune responses characterized 
by the activation of local glial cells and mobilization of peripheral leukocytes. 
The activation of immune cells originally aims to clear the brain of cellular debris 
and promote brain repair; however, the immune system can also propel and propa-
gate neuronal cell death when overactivated. Understanding the function of each 
type of immune cells in the acute brain injuries and their mechanisms of action 
promises to unveil effective immunomodulatory therapies that benefi cially regulate 
post-injury immune responses. In this chapter, we discuss in detail how immune 
cells are recruited and/or activated in the injured brain and how they contribute to 
the evolvement of brain damage.  

        Introduction 

 A pivotal role of immune responses in the pathogenesis of acute brain injuries has 
emerged in recent years. Once an injury occurs, the brain and the immune system 
infl uence each other in specifi c and profound ways. Bidirectional or reciprocal neuro-
immune communication presumably evolved to clear the brain of infections and dead 
cellular debris. However, in addition to its essential role in protecting the organism 
from harmful microbes and the necrotic spillage of intracellular contents, the immune 
system can also propel and propagate neuronal cell death when overactivated. 
In order to elicit activation of the immune system, injured neurons and other central 
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nervous system (CNS) cells release ATP and neuronal antigens. Other small molecules, 
such as cytokines, chemokines, and adhesion molecules, also convey an activation 
signal to the immune system. In addition, the autonomic nervous system (ANS) 
releases neurotransmitters such as acetylcholine (Ach) and norepinephrine from the 
compromised brain. The innate and adaptive immune systems promptly respond to 
these signals and participate in the development of secondary infl ammatory brain 
injury. Therefore, revealing the paths of communication between the brain and 
immune system promises to unveil effective immunomodulatory therapies that break 
the vicious positive cycle of neuroimmune activation. In this chapter, we discuss the 
intricate dialogue between the brain and immune system after acute brain injuries, 
with an emphasis on acute ischemic stroke. How immune cells such as microglia and 
dendritic cells (DCs) are activated and how monocytes, neutrophils, natural killer 
(NK) cells, T cells, and B cells infi ltrate deep into the brain and contribute to neuro-
infl ammatory damage will all be discussed in detail.  

    The Response of the Innate Immune System Following 
Cerebral Injury 

 The innate immune system is the fi rst line of defense that recognizes and responds 
to pathogens or injuries in a nonspecifi c manner. Unlike the adaptive immune sys-
tem, it does not provide long-lasting protection to the host. The cells involved in the 
innate immune response to the cerebral injury include macrophages, neutrophils, 
DCs, NK cells, and γδT cells (Fig.  2.1 ).

      Bone Marrow Monocytes 

    Microglial Activation 

 Microglia are a specialized type of macrophage residing in the CNS. Unlike other 
CNS cells, which are derived from neuroectoderm, microglia are derived from bone 
marrow monocytes and enter the CNS after birth. Therefore, microglia inextricably 
link the CNS with the immune system. 

 Microglial activation is the initial step in CNS infl ammatory responses induced 
by acute brain injuries. For instance, activation of microglia after cerebral hemor-
rhage occurs much earlier than infi ltration of neutrophils in and around the hema-
toma; the former occurs within 1 h, whereas the latter occurs after 4–5 h [ 1 ]. In 
response to insults, microglia, which are normally ramifi ed in appearance, become 
activated and assume an amoeboid morphology. Meanwhile, the expression of sur-
face markers, such as MHC-II, Iba-1, CD11, etc., is also dysregulated. Both the 
morphology and the surface markers of microglia are virtually indistinguishable 
from infi ltrating macrophages/monocytes, refl ecting their common heritage. 
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 Microglial activation is not a uniform and monotonous state, as the morphological 
and gene expression changes associated with microglial activation vary enormously 
with the nature, strength, and duration of the stimulus [ 2 ]. In particular, in vitro 
stimulation with lipopolysaccharide (LPS) and IFN-γ promotes the differentiation 
of “classically activated” M1 microglia that typically release destructive 

  Fig. 2.1    Innate and adaptive immune response after stroke. In response to ischemic brain injury, 
a variety of danger signals are released from neurons, microglia, and astrocytes. These signals 
include ATP, cytokines, and chemokines, among other molecules. These signals activate microglia 
and induce their activation and further release of infl ammatory cytokines, such as TNF-α and IL-6. 
Activated microglia can also release chemokines, such as CCL2 and CCL3, to recruit leukocyte 
infi ltration. The CCL2 and CCR2 axis is responsible for the recruitment of macrophages. The 
infi ltration of macrophages has been implicated as both detrimental to ischemic injury and protec-
tive against hemorrhagic transformation. In the ischemic brain, infl amed endothelial cells express 
adhesion molecules, such as ICAM-1, P-selectin, and E-selectin, which recruit leukocyte adhesion 
and infi ltration. Following stimulation by IL-6 and TNF-α, neutrophils are activated and release 
MMP-9, which degrades matrix proteins of the blood–brain barrier and stimulates peripheral leu-
kocyte infi ltration. Brain-derived antigens can be processed by antigen-presenting cells, such as 
dendritic cells, and presented by MHC molecules on the cell surface. T-cell receptors on the sur-
face of T cells can recognize the MHC and brain–antigen complex. Subsequently, the adaptive 
immune system is activated. CD4 +  T-helper cells, CD8 +  cytotoxic T cells, B cells, and Th17 cells 
all have been reported to contribute to the pathogenesis of neuroinfl ammation and neuronal cell 
death following stroke. Regulatory T cells (Tregs) and a special subset of regulatory B cells have 
been demonstrated to be neuroprotective through their release of IL-10. IL-35 and TGF-β are two 
other anti-infl ammatory soluble factors which can be secreted by Tregs. Tregs can also inhibit 
MMP-9 production from neutrophils in a cell–cell contact manner       
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pro-infl ammatory mediators [ 3 ]. In contrast, interleukin (IL)-4 and IL-10 induce an 
“alternatively activated” M2 phenotype that possesses neuroprotective properties 
[ 4 – 6 ]. The dualistic roles of distinctly polarized microglial populations have been 
reported in several CNS injuries, including ischemic stroke [ 7 ] and spinal cord 
injury [ 4 ]. For instance, microglia assume the M2 phenotype at early stages of 
ischemic stroke but gradually transform into the M1 phenotype at the sites of injury. 
In vitro studies reveal that ischemic neurons prime the polarization of microglia 
towards M1. This is thought to enhance injury because M1-polarized microglia 
exacerbated oxygen glucose deprivation (OGD)-induced neuronal loss. In contrast, 
maintaining microglia in the M2 phenotype protected neurons against OGD [ 7 ]. 
These fi ndings reveal a Janus-faced nature of microglial responses and refl ect the 
well-known shift between short-term protective effects of early immune activation 
and long-term detrimental effects of chronic immune activation. Furthermore, this 
time-dependent polarity mimics the traditional view of stress, as described by Hans 
Selye in the early half of the twentieth century. Selye fi rst described that acute stress 
elicits resistance but that chronic stress weakens defenses [ 8 ]. 

 Many receptors and signaling pathways, such as Fc receptors, chemokine receptors, 
purinergic receptors, and receptors for neurotransmitters, all mediate microglial 
function following brain injury. These microglia-regulating signals can transmit 
either “Off” or “On” signals [ 9 ]. Off signals are usually constitutively operative in 
resting microglia. The loss of Off signals or the gain of On signals initiates microg-
lial activation. This context-dependent activation orchestrates the complex and vari-
able microglial responses to stresses.  

    Monocyte/Macrophage Infi ltration 

 Monocytes are produced by bone marrow from monoblasts and mature into differ-
ent types of macrophages or DCs. It is well established that peripheral monocyte/
macrophage cells are attracted to infarct areas after cerebral ischemia reperfusion 
[ 10 ]. A recent study showed that the shift of spleen monocytes to a less pro- 
infl ammatory state attenuated infarct volume after transient focal ischemia, sug-
gesting a role for peripheral monocytes in the pathogenesis of cerebral ischemia 
[ 11 ]. Similarly, within 24 h of stroke, immature monocytes infi ltrated into the 
infarct border zone and differentiated into mature phagocytes within the lesion 
compartment [ 12 ]. However, infi ltrating macrophages are morphologically and 
functionally similar to reactive resident microglia that transform into a phagocytic 
phenotype [ 13 ,  14 ]. To distinguish the roles and distributions of microglia and 
peripheral macrophages in ischemic brain injury, some studies used bone marrow 
chimeric mice generated by transplanting green fl uorescent protein (GFP) trans-
genic bone marrow into irradiated wild-type recipients [ 13 – 16 ]. Although the infi l-
tration of hematogenous macrophages into the brain was shown to occur 1–2 days 
after focal cerebral ischemia, their number was much lower than the resident popu-
lation of activated microglia [ 13 ,  17 ]. Peripheral macrophages were most abundant 
in the ischemic brain tissue 3–7 days after transient focal cerebral ischemia and 
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decreased thereafter [ 14 ,  18 ]. Anatomical studies revealed that, at 7 days after transient 
ischemia, many process-bearing ramifi ed blood-derived macrophages were distrib-
uted in the peri- infarct area, while phagocytic cells were detected in the core area of 
the infarction [ 13 ]. The majority of phagocytes in the infarct area were derived from 
local microglia, which were rapidly activated 1 day after ischemia and reached peak 
numbers within 2 days [ 15 ]. Taken together, most studies indicate that local microg-
lial activation precedes and predominates over peripheral monocyte/macrophage 
infi ltration for the fi rst few days following cerebral ischemic injury, whereas blood-
derived macrophages contribute to the delayed post-ischemic infl ammation and 
brain injury. Mechanistically, monocyte chemoattractant protein-1 (MCP-1) and its 
receptor CC chemokine receptor 2 (CCR2) are involved in the migration of hema-
togenous infl ammatory cells, including macrophages, following cerebral ischemia. 
Either MCP-1- or CCR-2-defi cient mice exhibit reduced numbers of infi ltrating 
macrophages as well as neutrophils [ 19 ]. More recently, it was shown that MCP-1/
CCR-2 double defi ciency virtually abrogates the recruitment of hematogenous mac-
rophages [ 20 ], indicating a predominant role of the MCP-1/CCR-2 axis in chemo-
taxis of monocyte/macrophages after cerebral ischemia. MCP-1 is also implicated 
in macrophage recruitment into the damaged parenchyma after TBI. For example, 
sustained elevation of MCP-1 was detected in the cerebrospinal fl uid (CSF) of 
severe TBI patients for 10 days after trauma and in cortical homogenates of C57Bl/6 
mice subjected to closed head injury (CHI), peaking at 4–12 h [ 21 ].   

    Neutrophils 

 The infi ltration of neutrophils into lesioned areas of the ischemic brain has been 
demonstrated not only in animal models [ 13 ,  18 ] but in stroke patients as well [ 22 ]. 
Neutrophil accumulation in injured parenchyma correlated with infarct expansion 
[ 22 ]. Higher peripheral neutrophil counts were associated with more severe stroke 
outcomes [ 23 ]. In rodent models of transient focal ischemia, depletion of neutro-
phils by treatment with anti-neutrophil monoclonal antibody (RP3) signifi cant 
reduced the size of infarct as well as the formation of brain edema [ 24 ,  25 ], indicating 
an important role of neutrophil infi ltration in post-ischemic brain injury. 

 Recent data support the notion that neutrophils infi ltrate into the injured brain 
more rapidly than other types of peripheral infl ammatory cells. This pattern in the 
brain closely mimics the leukocyte response to peripheral injuries, where neutro-
phils lead the way out of blood vessels into damaged tissue and are known as the 
fi rst responders. Neutrophil extravasation into damaged peripheral tissues is fol-
lowed by monocyte/macrophages, also called the second responders. In contrast to 
monocytes, which are most abundant in the injured parenchyma 3–7 days after isch-
emia, neutrophils are observed within a few hours and peak at 1–3 days after cere-
bral ischemia in animal models of stroke [ 26 ]. In stroke patients, neutrophil 
recruitment was also demonstrated to occur within 24 h of symptom onset [ 22 ]. 
Cellular adhesion molecules, including ICAM-1 and P-selectin, appear to be 
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involved in the transendothelial migration of neutrophils into the brain similar to 
their role in peripheral tissues. Either ICAM-1-defi cient or P-selectin-defi cient mice 
exhibit less neutrophil infi ltration as well as smaller infarct volumes following acute 
stroke compared with wild-type mice [ 27 – 29 ]. The MCP-1/CCR-2 chemotactic 
axis is also thought to contribute to post-ischemic neutrophil infi ltration, as defi -
ciency in either one or both signifi cantly decreases the numbers of neutrophils 
recruited to the site of injury [ 19 ,  20 ]. These fi ndings reveal many commonalities 
between peripheral and central immune responses. 

 Recruitment of neutrophil granulocytes is also characteristic of the early infl am-
matory response following human TBI. Neutrophil recruitment has been shown to 
increase over the fi rst 24 h after experimental TBI and is dependent on both leukocyte 
CD11/CD18 and ICAM-1. Neutrophil recruitment is also involved in edema forma-
tion, cell death, and tissue loss following TBI in mice [ 30 ]. Recently, Victor 
Friedrich and his colleagues implicated neutrophils in early microvascular injury 
after subarachnoid hemorrhage (SAH) and showed that treatments which reduce 
neutrophil activity can increase survival after SAH and limit microvascular injury [ 31 ]. 
These studies support the notion that the neuroimmune responses to stroke and 
TBI are somewhat mechanistically similar and play the same negative roles in patho-
logical outcome. 

 Infi ltrating neutrophils, as well as microglia and macrophages, are able to release 
toxic amounts of nitric oxide (NO) via the inducible nitric oxidase (iNOS) isoform. 
The release of this free radical gas may contribute to post-ischemic brain damage 
[ 10 ] via multiple mechanisms including activated matrix metalloproteinase-9 
(MMP-9) [ 32 ]. Many studies have highlighted the involvement of MMPs in isch-
emic pathophysiology. For example, MMP-9 is strongly implicated in the disrup-
tion of the blood–brain barrier (BBB) and hemorrhagic transformation following 
ischemic injury both in rodent models [ 33 ,  34 ] and in stroke patients [ 35 ,  36 ]. 
MMP-9 is elevated after stroke both in plasma and brain tissue [ 37 ] and participates 
in the neuroinfl ammatory response to stroke [ 38 ]. Importantly, current research sug-
gests that neutrophils might be the main source of MMP-9 [ 37 ]. Neutrophils greatly 
contribute to elevations in MMP-9 following cerebral ischemia [ 39 ], which, in turn, 
causes BBB breakdown, promotes hematogenous leukocyte infi ltration, and ulti-
mately results in neuronal injury [ 40 ]. These results indicate that neutrophil inhibition 
might be a reasonable peripheral target for stroke treatment in the clinic.  

    Natural Killer Cells 

 Natural killer (NK) cells are cytotoxic lymphocytes critical to the innate immune 
system. An early study indicated the presence of CD4 − /CD8 +  NK cells at the 
infarct edge following permanent focal cerebral ischemia [ 41 ]. However, a recent 
study showed no signifi cant change in the numbers of infi ltrating NK cells 3 days 
after transient focal cerebral ischemia, although there was infi ltration of neutro-
phils, macrophages, T lymphocytes, and even NKT cells [ 42 ]. In contrast, there is 
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a signifi cant decrease in blood NK cell counts [ 43 ], as well as peripheral NK 
cytotoxicity [ 44 ] in stroke patients. However, no change in NK cell counts was 
observed in gut- associated lymphoid tissue after experimental stroke in animal 
models [ 45 ]. Together, these studies indicate a role for NK cells in stroke-induced 
systemic immunosuppression rather than in the pathogenesis of post-ischemic 
brain injury.  

    γδT Cells 

 γδT cells represent a minor subset of T cells that possess a nonclassic T-cell receptor. 
The T-cell receptor of γδT cells is composed of two glycoprotein chains, one γ 
chain and one δ chain. Because they do not require antigen processing and antigen 
presentation by MHC, γδT cells are considered part of innate immunity. Many stud-
ies have demonstrated that γδT cells play a sentinel role in the early host response 
against many infectious agents [ 46 ,  47 ]. Direct evidence demonstrating their 
involvement in the progression of ischemic brain damage comes from the observa-
tion that depletion of γδT cells signifi cantly ameliorated ischemia–reperfusion 
injury [ 48 ]. It was also shown that IL-17 is the key mediator of γδT cell-mediated 
delayed brain damage following cerebral ischemia–reperfusion [ 48 ]. These results 
suggest that γδT cells might be a rational therapeutic target for mitigating secondary 
infl ammation-mediated damage following cerebral ischemia. However, it was also 
shown that the pro-infl ammatory response of peripheral γδT cells was acutely 
diminished in stroke patients and that the subsequent increases in IFN-γ and perfo-
rin expression by γδT cells correlated well with clinical improvement [ 44 ]. 
Therefore, therapeutic strategies targeting γδT cells will have to be carefully timed 
to avoid undesired immunosuppression. This is not an unusual requirement, because 
all immunosuppressive therapies will have to ultimately ensure that the treatment is 
not accompanied by undesired side-effects such as increased vulnerability to micro-
bial infections.   

    The Link Between the Innate and Adaptive Immune 
Response: APCs 

 Recently, a novel concept, the immunological synapse, was proposed to describe 
the structure formed by cytoskeletal molecules that assemble at the zone of contact 
between antigen-presenting cells (APCs) and T cells. The immunological synapse 
is associated with surface and cytoplasmic signaling [ 49 ]. Studies have shown that 
several hours of interaction between APCs and T cells were necessary for T-cell 
activation [ 50 ]. Biophysical analyses and two-photon microscopy studies confi rmed 
immunological synapse formation at the site of robust interactions between APCs 
and T cells [ 50 ,  51 ]. 
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 There are professional APCs, including DCs, macrophages, B cells, and certain 
activated epithelial cells, and nonprofessional APCs, such as glial cells in the brain 
and vascular endothelial cells. Following stroke, autoimmune responses directed 
against neuroepitopes, which are not recognized by T cells under normal condi-
tions, may be induced by cerebral ischemic injury. DCs, which have the broadest 
range of antigen presentation, might play an important role in the primary immune 
response against neuroepitopes after stroke [ 52 ]. 

 There are two lineages of DCs: mDCs (myeloid DCs), which respond to bacteria 
and fungi and release IL-12, and plasmacytoid DCs (pDCs), which release IFN-α 
upon viral infection [ 53 ]. The precursor cells of both lineages can be detected in 
blood where these immature DCs patrol the circulation and invade tissue in response 
to a local infection. Upon migration into tissue, they pick up antigens and acquire 
the ability to stimulate T cells and subsequently induce the adaptive immune 
response against antigens not previously encountered [ 54 ], such as the cerebral anti-
gens sequestered in the CNS under normal conditions. 

 A rapid increase in the levels of DCs in the ischemic brain was fi rst observed in 
a rat model of permanent focal cerebral ischemia [ 55 ]. A subsequent study analyzed 
in detail the temporal dynamics of brain immune cell accumulation in a mouse 
model of transient focal ischemia [ 42 ]. This study revealed a signifi cant increase in 
DCs in the ipsilateral brain at 1 day after cerebral ischemia/reperfusion, followed by 
a 20-fold increase on day 3 and a 12-fold increase on day 7 [ 42 ]. As there is already 
a DC population residing in the healthy brain, Felger et al. used radiation chimeras 
(wild-type hosts restored with CD11c/EYFP transgenic bone marrow or CD11c/
EYFP transgenic hosts restored with wild-type bone marrow) to distinguish between 
brain original and peripheral DC [ 56 ]. Their results demonstrated DC infi ltration in 
the ischemic hemisphere beginning 1 day after transient focal ischemia, and further 
indicated a role of original brain DCs in post-ischemic neuroinfl ammation [ 56 ]. On 
the other hand, a signifi cant decrease in circulating DC precursors [ 57 ], consistent 
with a reduced costimulatory effi cacy of circulating cells [ 58 ], was observed after 
human or experimental stroke. These results suggest that peripheral DCs are 
recruited from blood into the ischemic brain, which probably either triggers post- 
ischemic cerebral immune reactions or results in systemic immunosuppression. 
However, the role of DCs (both peripheral and brain original DCs) as potent media-
tors of infl ammation in stroke has not been suffi ciently investigated.  

    The Adaptive Immune Response 

 Unlike the innate immune system, adaptive immunity refers to antigen-specifi c 
defense mechanisms that require a relatively long time (several days) to become 
protective. Once the adaptive immune response has been established, more specifi c 
defense can be achieved. With the ability to remember specifi c antigens, the adap-
tive immune system can mount immediate, strong attacks each subsequent time that 
it encounters the same antigen. This powerful system of defense appeared fi rst in 
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jawed vertebrates and is phylogenetically more modern than the ancient innate 
immune system. The cells of the adaptive immune system include the T and B lym-
phocytes, both of which are related to the post-injury infl ammatory response. Below 
we discuss the involvement of both cell types in the immune response following 
acute brain injuries. 

    T Lymphocytes 

 T lymphocytes play a central role in cell-mediated adaptive immunity. Accumulating 
evidence has verifi ed the involvement of T lymphocytes in post-ischemic neuroin-
fl ammation and brain damage. Several earlier studies indicated that the infi ltration 
of T lymphocytes into ischemic brain occurred relatively late (3–4 days) post- 
ischemia, following CD11b +  microglia/macrophages and Ly6G +  neutrophils [ 59 ,  60 ]. 
However, there is now mounting evidence showing that T-cell accumulation in the 
post-ischemic brain actually begins within the fi rst 24 h of reperfusion in rodent 
models [ 61 – 63 ]. Treatment with anti-α4-integrin antibody blocked T lymphocyte 
recruitment into the post-ischemic brain and reduced infarct volume after transient 
cerebral ischemia in rats [ 64 ,  65 ]. In addition, mice lacking RANTES (also called 
CCL5), which plays a critical role in recruiting and activating T lymphocytes, 
exhibited smaller infarct volumes than wild-type littermates [ 66 ]. The most impor-
tant evidence for the damaging effects of T lymphocytes arise from studies using 
lymphocyte-defi cient mice. Smaller infarct volumes and improved functional out-
comes after transient cerebral ischemia were consistently shown in severe combined 
immunodefi ciency (SCID) mice [ 67 ] or Rag1 −/−  mice that lack mature B and T 
lymphocytes [ 62 ,  68 ]. Moreover, the lymphocyte defi ciency-mediated neuroprotec-
tion was almost completely abolished when wild-type CD3 +  T lymphocytes were 
transplanted into Rag1 −/−  mice [ 62 ,  68 ], confi rming a detrimental pathophysiologic 
role for circulating T lymphocytes in brain ischemia/reperfusion injury. Interestingly, 
a recent study showed that the detrimental effect of T cells neither depends on anti-
gen recognition nor T-cell receptor (TCR) costimulation in the early stages of isch-
emic stroke, suggesting that classic adaptive immune pathways may be not involved 
in T-cell-mediated early ischemia/reperfusion injury. Recently, studies of TBI sug-
gest that scavenging of reactive oxygen species (ROS) at the endothelial level dra-
matically reduced the infi ltration of activated T lymphocytes [ 69 ]. Thus, targeting 
T lymphocyte traffi cking to the injured brain at the microvascular level is a novel 
neuroprotective concept in TBI and warrants further exploration [ 69 ]. 

 In recent years, there has been an increase in research on the roles of specifi c 
T-cell subtypes in brain injuries. Several subtypes, such as CD8 +  cytotoxic T cells 
and CD4 +  helper T cells, have been implicated in the pathogenesis of brain injury 
[ 62 ]. However, not all T-cell subtypes have detrimental effects after ischemic stroke. 
For example, neutralizing regulatory T cells with anti-CD25 antibody signifi cantly 
increased infarct volume and neurological dysfunction, implicating an essential role 
for regulatory T cells in limiting post-ischemic brain injury [ 70 ]. Below, we will 
discuss the different effects of T-cell subtypes after brain injuries. 
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    CD8 +  Cytotoxic T Cells and CD4 +  Helper T Cells 

 The unique expression profi les of specifi c cell-membrane proteins can be used to 
subtype different T-cell groups. The CD3 +  T lymphocytes mainly encompass both 
CD8 +  cytotoxic T cells and CD4 +  helper T cells in approximately equal proportions 
[ 71 ]. As the name suggests, the CD8 +  cytotoxic T cells are capable of directly induc-
ing the death of intercellular pathogen-infected somatic cells or tumor cells either 
through the release of cytotoxins, perforin, and granzymes, or via cell–surface 
interactions such as Fas–FasL pathway [ 72 ,  73 ]. The CD8 +  cytotoxic T cells can 
also produce several cytokines, including IFN-γ and TNF-α, which serve to pro-
mote immune and infl ammatory response [ 74 ]. In a rat TBI model, signifi cant 
CD8 +  cell accumulation was observed 3 days post-injury. The CD8 +  cells were 
strictly distributed in the pan-necrotic areas and around the pan-necrotic perimeter 
[ 75 ]. The accumulation of activated antigen-specifi c T cells at traumatic injury 
sites, in addition to antigen-containing areas, could amplify local infl ammatory 
processes in the CNS [ 75 ]. 

 Although both CD4 +  and CD8 +  T cells were recruited to the ischemic hemisphere 
following stroke, there are greater numbers of CD4 +  helper T cells than CD8 +  cyto-
toxic T cells [ 42 ,  76 ]. The CD4 +  helper T cells have no cytotoxic activity them-
selves, but instead help to activate and direct other immune cells including CD8 +  
cytotoxic T cells [ 77 ]. They can be further differentiated into several types accord-
ing to their cytokine secretion profi les. Th1 and Th2 cells are two classic subgroups 
of helper T cells. Importantly, either CD4 +  or CD8 +  T-cell-defi cient mice exhibited 
signifi cant smaller infarct volumes than wild-type controls [ 62 ]. Mice defi cient in 
these T-cell subtypes showed comparable reductions in neurological defi cits at 24 h 
after ischemia, although the difference did not reach statistical signifi cance [ 62 ]. 
This was confi rmed by a recent study showing that selective antibody-mediated 
depletion of CD4 +  or CD8 +  T lymphocytes signifi cantly reduced infarct volumes in 
mice with permanent cerebral ischemia [ 78 ]. Therefore, these fi ndings demonstrate 
a detrimental role for both CD4 +  helper and CD8 +  cytotoxic T cells in the develop-
ment of brain injury following stroke. 

 Stroke induces similar changes in peripheral CD4 +  helper and CD8 +  cytotoxic 
T cells. There is a stroke-induced reduction in numbers of both T-cell subtypes in 
spleen, thymus, lymph nodes, and gut-associated lymphoid tissue [ 45 ,  79 – 82 ]. This 
phenomenon may be partially due to an increased apoptosis of either CD4 +  or CD8 +  
T cells in lymphatic organs following stroke and is mediated by the SNS [ 82 ]. 
Moreover, there is a shift from Th1 to Th2 cytokine production [ 82 ,  83 ], which also 
may suppress pro-infl ammatory immune responses [ 84 ]. These fi ndings indicate 
that T-cell subtypes are involved in stroke-induced immunosuppression.  

    Regulatory T Cells 

 The regulatory T cell (Treg), identifi ed by expression of CD25 and the transcrip-
tion factor FoxP3, is an important CD4 +  T-cell subtype that accounts for about 
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10 % of peripheral CD4 +  T cells [ 85 ]. The mechanisms by which Tregs exert their 
immunosuppressive function are still not clear; however, Tregs generally possess a 
diverse arsenal of inhibitory mechanisms, ranging from secretion of inhibitory 
cytokines, such as TGF-β, IL-10 [ 70 ], and a novel anti-infl ammatory cytokine, 
IL-35 [ 86 ,  87 ], to the expression of inhibitory surface molecules, such as CTLA-4 
and GITR [ 88 ]. With their vigorous immunosuppressive function, Tregs play criti-
cal roles in the maintenance of immunologic self-tolerance and negative control of 
a number of physiological and pathological immune responses [ 89 ]. For example, 
Tregs may be a critical factor in controlling experimental autoimmune encephalo-
myelitis and Parkinson’s disease. Expansion of Tregs by prophylactic infusion of 
immunoglobulin prevented the development of experimental autoimmune enceph-
alomyelitis and the protection was associated with increases in peripheral Treg 
number and function. Depletion of Tregs abrogated the protection of intravenous 
immunoglobulin, which strongly suggested that Tregs mediated the protection [ 90 ]. 
Adoptive transfer of Tregs to MPTP-intoxicated mice attenuated Th17 cell-
mediated nigrostriatal dopaminergic neurodegeneration and provided signifi cant 
protection of the nigrostriatal system [ 91 ,  92 ]. 

 In the context of cerebral ischemia, the activation of regulatory T cells appears to 
be one of the intrinsic mechanisms that the body naturally uses to restrict the cere-
bral infl ammation induced by ischemic stroke. Stroke induces a signifi cant increase 
in peripheral regulatory T cells several days after the onset of stroke in patients [ 93 ] 
and in experimental models [ 94 ]. With regard to cell function, it was recently 
reported that the suppressive effect of Tregs in mouse and human was unaltered 
after stroke [ 58 ]. Thus, an increase in regulatory T-cell numbers, rather than 
enhanced function of each cell, may be responsible for the endogenous immunosup-
pression after stroke. 

 Expansion of endogenous Tregs might underlie the mechanism of protection 
afforded by MBP tolerance and E-selectin tolerance [ 95 ,  96 ]. This notion is sup-
ported by the following fi ndings. Rats tolerant of MBP were less likely to develop 
Th1 responses compared to ovalbumin-tolerant rats following experimental stroke 
[ 95 ]. Mucosal tolerance to E-selectin protected against stroke in spontaneously 
hypertensive rats [ 96 ]. The protective effect of endogenous Tregs after stroke occurs 
by limiting secondary cerebral infl ammatory responses and was further confi rmed 
by a recent study showing that depletion of endogenous Tregs profoundly increased 
delayed brain damage and neurological dysfunction after brain ischemia [ 70 ]. 
Controversial evidence exists showing that Treg depletion failed to affect brain 
infarct volume [ 97 ]. However, our recent study confi rmed neuroprotective effects of 
Tregs in experimental stroke. We showed that delayed post-stroke transplantation of 
Tregs robustly reduced brain damage and improved long-term neurological out-
comes [ 98 ]. The neuroprotective effect of endogenous Tregs was previously shown 
to be associated with their ability to attenuate the activation of resident and invading 
infl ammatory cells via releasing IL-10 [ 70 ]. In our study, we demonstrated that 
adoptively transferred Tregs reduced infl ammatory responses both intrinsic and 
extrinsic to the central nervous system in rodent models of transient focal cerebral 
ischemia. Moreover, Tregs provided neurovascular protection against stroke by 
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inhibiting peripheral neutrophil-derived MMP-9. These fi ndings all suggest that 
Tregs might be promising candidates for cell-based therapies targeting post-stroke 
infl ammatory dysregulation and neurovascular disruption [ 98 ].   

    B Lymphocytes 

 Currently, there are few studies investigating the role of B lymphocytes in cerebral 
ischemia/reperfusion injury. In various peripheral organs ranging from the intes-
tines, heart, kidney, to skeletal muscles, the B lymphocyte has been found to be 
predominantly pathogenic following ischemia/reperfusion injury [ 99 ]. However, 
current data suggest the opposite role for B cells in cerebral ischemic injury. 
Although T- and B-cell-defi cient mice, either Rag −/−  [ 62 ] or SCID [ 67 ], exhibited 
signifi cantly reduced infarct sizes and neurologic damage when subjected to tran-
sient MCAO, mice lacking only B cells failed to show improvement against isch-
emic injury [ 62 ]. Recently, another study showed B-cell defi ciency worsened 
histological damage and functional outcomes after transient cerebral ischemia 
[ 100 ]. Adoptive transfer of B cells to B-cell-defi cient mice reduced ischemic infarct 
size and improved neurological defi cits [ 100 ]. The authors further identifi ed IL-10- 
secreting regulatory B cells as a major regulatory cell type in stroke. Notably, the 
secretion of IL-10 was responsible for the B-cell-mediated neuroprotection [ 100 ]. 
These data suggest that the role of B lymphocytes might be protective rather than 
pathogenic in cerebral ischemia/reperfusion injury.   

    Conclusion 

 In summary, an exquisitely coordinated crosstalk between the CNS and peripheral 
immune system regulates the fate of the animal after acute brain injuries. In addition 
to the conventional idea that the brain signals danger to the periphery, recent studies 
also reveal multiple novel neural circuits through which brain injury evokes a robust 
immune response. Brain injury-induced immune responses used to be considered 
innate or antigen nonspecifi c. Recent work on CD8 +  cytotoxic T cells, CD4 +  helper 
T cells, B cells, and regulatory T cells have refreshed scientifi c thought by revealing 
that adaptive immunity also plays pivotal roles in secondary brain injury (Fig.  2.1 ). 
With these new fi ndings in neuroimmune communication, therapeutic candidates 
to modulate immune responses and thereby improve stroke outcome may lie on the 
horizon. Moreover, it seems reasonable to propose that immunomodulation 
through immune cell transplantation will improve brain injuries more profoundly 
than immunosuppressive drugs because immune cell transplantation harnesses the 
protective power of the body’s natural defenses. Further research on immunomod-
ulatory therapies that leverage our current knowledge of brain injuries is highly 
warranted.     
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    Abstract     The contribution of leukocytes to the pathogenesis of ischemic stroke has 
been extensively studied and thoroughly documented. In this chapter, different 
aspects of leukocyte involvement in the lesion formation caused by ischemic stroke 
are highlighted, including the infl ammatory agents that mediate leukocyte recruit-
ment to the site of injury, the primary leukocyte populations that contribute to tissue 
damage, and the adhesion receptors that control leukocyte–endothelial cell interac-
tions in post-ischemic brain. Agents that interfere with leukocyte recruitment in the 
brain are also addressed as potential therapeutic interventions for ischemic stroke.  

        Ischemic Stroke 

 Ischemic stroke is a condition in which an area of the brain becomes poorly per-
fused as a consequence of partial or total blockade of an artery. A blood clot is a 
common cause of artery blockade. Blood clots can be formed in diseases such as 
atherosclerosis, atrial fi brillation, and heart attack. Due to the high oxygen and 
nutrient requirements of brain tissue, blood blockage results in ATP depletion in the 
neurons and consequent lack of ionic gradients across the cellular membranes, 
resulting in calcium and water infl ux and neurotransmitter release. Cytotoxic edema, 
excitotoxicity, and activation of intracellular enzymes then occur, leading to cellular 
damage and infl ammation. 
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 Ischemic stroke is the most common kind of stroke, accounting for near 90 % of 
all strokes. Stroke is the second leading cause of long-term disability in industrial-
ized countries and the second leading cause of death worldwide [ 1 ]. More than 16 
million people had a stroke in 2005 and almost 40 % of them died as a result of the 
stroke [ 2 ]. For the survivors, 50 % have serious disabilities and require long- term 
care. The cost of stroke is estimated to be approximately 72 billion dollars in the 
USA [ 3 ]. The treatment for ischemic stroke in the USA and Canada is largely 
limited to intravenous recombinant tissue plasminogen activator (rtPA); however, a 
signifi cant limitation of this treatment is that it must be administered within 3 h after 
the onset of symptoms [ 4 ,  5 ]. Furthermore, reperfusion of the ischemic tissue can 
potentiate the activation of parenchyma cells, blood cells, and endothelial cells, 
resulting in an infl ammatory response in the brain. While events that lead to neuro-
nal death can occur rapidly after ischemia, infl ammation in the area neighboring the 
ischemic region (called the penumbra) develops more slowly, and this area may be 
amenable to therapeutic intervention    [ 127 ]. 

 There is growing evidence that leukocytes play a role in mediating the tissue 
damage associated with reperfusion of ischemic tissue [ 6 ]. The large increase in the 
leukocyte number in the brain tissue after reperfusion is consequence of the upregu-
lation of cell adhesion molecules (CAMs) on both leukocytes and endothelial cells 
[ 7 ]. Leukocyte recruitment is a highly coordinated and sequential process. 
Neutrophils reach the infl ammatory site fi rst, and they are followed by mononuclear 
leukocytes (especially lymphocytes), which predominate in the infl ammatory area 1 
day after ischemic injury [ 8 ]. In this chapter, we address different aspects of the 
leukocyte involvement in the lesion formation caused by ischemic stroke, including 
the infl ammatory agents that mediate leukocyte recruitment to the site of injury, the 
primary leukocyte populations that contribute to tissue damage, and the adhesion 
receptors that control leukocyte–endothelial cell adhesive interactions. Finally, we 
describe results of some studies that have focused on adhesion receptors as new 
potential therapeutic targets that are directed towards diminishing the damage 
caused by ischemic stroke.  

    Role of Leukocytes on Ischemic Stroke 

 The infl ammatory phenotype which takes place after an ischemia–reperfusion (I/R) 
episode includes leukocyte infi ltration [ 9 ]. Activation of resident cells, such as 
endothelial cells, microglia/macrophages, and astrocytes, in response to I/R injury 
leads to the release of a variety of mediators that attract and activate leukocytes. 
Activated leukocytes express a high density of adhesion receptors that facilitate 
adhesion to endothelial cells and their accumulation at the ischemic site [ 7 ]. 
Initially, the endothelial cell/leukocyte contact is weak, resulting in a phenomenon 
called leukocyte rolling. This binding becomes stronger at a later time, resulting in 
fi rm adhesion of the leukocyte. The rolling process is mediated by a family of 
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adhesion molecules called selectins. P- and/or E-selectin expressed on endothelial 
cells mediate leukocyte rolling while fi rm adhesion is mediated by integrins such as 
β2-integrins on leukocytes, and immunoglobulin-like domain molecules such as 
ICAM-1 that is expressed on cerebral microvascular endothelial cells. 

 Several reports in the literature describe an increased presence of leukocytes in 
brain tissue both in mice [ 10 – 12 ] and rats subjected to ischemic stroke [ 13 – 16 ]. The 
same phenomenon has been demonstrated in humans [ 17 ,  18 ]. The importance of 
leukocyte infi ltration for the ischemic lesion is highlighted by experiments wherein 
animals depleted of leukocytes exhibit a diminished injury response [ 19 ,  20 ], and 
prevention of leukocyte–endothelial cell adhesion affords protection against I/R-
caused tissue injury [ 20 ]. Reactive oxygen species, proteases, and infl ammatory 
cytokines are among the leukocyte-derived mediators that can cause I/R-induced 
tissue damage [ 21 ]. However, there are other reports that do not confi rm a role for 
leukocytes in the genesis of stroke. Few leukocytes in the ischemic area [ 22 ], the 
occurrence of neutrophil accumulation after peak tissue damage [ 23 ,  24 ], and an 
absence of protection on infarct size following neutropenia [ 22 ] are major lines of 
evidence that argue against a role for neutrophils in the pathogenesis of cerebral 
ischemia. The contradictory results may be explained by different approaches used 
in each study, for example, differences in the duration and extent of the ischemic 
insult, duration of reperfusion, the maintenance of body temperature during the I/R 
protocol, methods used to quantify leukocyte infi ltration and tissue damage, and 
anesthetics and/or analgesic agents used during/following the protocol. Despite the 
controversy, new reports continue to appear that describe a protective role of some 
subsets of leukocytes that could defend the brain tissue against more profound brain 
damage following a stroke [ 25 ]. Polymorphonuclear (PMN) leukocytes, mononu-
clear leukocytes, and infi ltrating peripheral dendritic cells have all been implicated 
in the pathogenesis of cerebral ischemia. 

    PMN Leukocytes 

 Neutrophils reach the infl ammatory area within minutes to hours after an initial 
ischemic insult [ 26 ,  27 ]. Mice rendered neutropenic with antineutrophil serum show 
a blunted number of migrated leukocytes to the ischemic area 4 h after focal I/R, 
showing neutrophils greatly account to the leukocyte invasion at that time [ 11 ]. 
At later times (24 h to days after injury), neutrophils account for a smaller propor-
tion of the total leukocyte population at the ischemic site [ 28 ]. Other studies suggest 
that neutrophils are still important several days after initial lesion formation [ 29 – 31 ]. 
It is noteworthy that several reports demonstrate a correlation between PMN leukocyte 
infi ltration after a stroke and the severity of the brain tissue injury and the worsen-
ing of the neurological defi cits [ 17 ,  32 ,  33 ]. Hence, strategies directed towards 
reducing neutrophil infi ltration may be benefi cial from improving the fi nal outcome 
after stroke.  
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    Mononuclear Leukocytes 

 The infi ltration of mononuclear leukocytes appears to surpass the accumulation of 
PMNs days to weeks after the ischemic insult [ 26 ,  34 ]. The mononuclear leukocytes 
that migrate to the ischemic area are mainly monocytes and T lymphocytes as shown 
by immunocytochemistry [ 35 ] and fl ow cytometry [ 31 ]. These leukocytes have 
been implicated in the outcome of I/R in the brain. CD4+ and CD8+ T lymphocytes 
were shown to contribute to the greater damage caused by temporary middle 
cerebral artery occlusion (MCAO) in mice at 24 h after injury compared to 4 h [ 28 ]. 
On the other hand, specifi c subsets of T lymphocytes such as CD4(+)CD25(+) 
forkhead box P3 (Foxp3)(+) regulatory T lymphocytes [T(reg) cells] have lately 
been regarded as protective against the neuronal damage caused by stroke [ 25 ,  36 ]. 
This result has proved to be controversial since others have found no infl uence of 
these cells on stroke outcome [ 37 ]. B lymphocytes have also been shown to limit 
infl ammation in mice after stroke [ 38 ]. More studies are needed to clarify the role 
of each leukocyte population and its temporal profi le during a stroke episode and to 
better defi ne the feasibility of targeting specifi c leukocyte populations to treat isch-
emic stroke.   

    Infl ammatory Mediators Contributing to Leukocyte 
Recruitment 

 There are several signaling events and mediators that occur or are produced/released 
locally after a stroke that can attract leukocytes to the site of an ischemic infarct. 
These include interferon gamma (IFN-γ), reactive oxygen species (ROS), CD40/
CD40L interaction, Notch signaling, and monocyte chemoattractant protein-1 
(MCP-1). Some of their effects during ischemia in brain are described below and 
illustrated in Fig.  3.1 .

    IFN-γ —A series of infl ammatory mediators seems to contribute to the leukocyte 
recruitment following a stroke. IFN-γ, or type II interferon, is a cytokine that is criti-
cal for innate and adaptive immunity and for tumor control. IFN-γ is produced by 
natural killer (NK) cells, natural killer T (NKT) cells, CD4+ Th1, and CD8+ cyto-
toxic T lymphocyte (CTL) effector cells. A reduced number of adherent leukocytes 
in the cerebral microvasculature has been reported after I/R in IFN-γ KO mice, 
implicating a role for IFN-γ in leukocyte recruitment after MCAO [ 28 ]. Similarly, 
Rag-1 −/−  mice, which are defi cient in both CD4+ and CD8+ T cells, show an attenu-
ated recruitment of adherent leukocytes after cerebral I/R. This protection is com-
pletely reversed in Rag-1 −/−  mice reconstituted with T cells harvested from wild-type 
(WT) mice, but only partially reversed if the Rag-1 −/−  mice are reconstituted with 
T cells derived from IFN-γ KO mice [ 28 ]. This observation suggests that a component 
of the IFN-γ produced in response to cerebral I/R is produced either locally or by 
other circulating cells. 
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    Reactive Oxygen Species 

 Superoxide and other ROS are produced after an I/R episode in different tissues, 
including in the brain. ROS have been implicated as mediators of the increased 
expression of several endothelial cell adhesion receptors (e.g., P-selectin) that par-
ticipate in leukocyte recruitment into the post-ischemic brain. NADPH oxidase 
appears to be a major source of ROS production after stroke [ 11 ]. Indirectly, ROS 
can promote leukocyte–endothelial cell adhesion by inactivating nitric oxide, an 
endogenous inhibitor of leukocyte adhesion in postcapillary vessels [ 39 ]. This con-
tention is supported by the observation that nitric oxide donors inhibit leukocyte 
adhesion in the cerebral microcirculation [ 40 ]. Thus, ROS can act both directly and 
indirectly to attract leukocytes to the ischemic site after stroke.  

    CD40/CD40L 

 CD40 is a membrane glycoprotein belonging to the tumor necrosis factor receptor 
superfamily and is expressed on different cell populations like lymphocytes, mono-
cytes/macrophages, platelets, dendritic cells, endothelial cells, and neuronal cells 
[ 41 ]. CD40/CD40L interactions play an important role during infl ammation since 
they induce cellular adhesion molecules [ 42 ] and tissue factor in endothelial cells 
and enhance the production of pro-infl ammatory cytokines [ 43 ,  44 ]. The CD40/
CD40L interaction appears to contribute to the leukocyte recruitment and ischemic 
damage during stroke since CD40 or CD40 ligand (CD40L) defi ciency attenuates 
the recruitment of adherent leukocytes in the cerebral microcirculation after I/R, 
which is accompanied by a parallel reduction in blood–brain barrier (BBB) perme-
ability and infarct volume [ 45 ]. That reduction in the number of adherent leukocytes 
can be mediated by platelets once CD40L on platelets can interact with CD40 on 
endothelial cells to induce P-selectin expression on endothelial cells, thereby 
resulting in the recruitment of leukocytes. CD40/CD40L signaling appears to be an 
important mechanism for leukocyte traffi cking in the microcirculation after cerebral 
I/R injury.  

    Notch Signaling 

 Notch is a cell surface receptor that participates in a variety of physiological 
events such as angiogenesis, neurogenesis, and leukocyte recruitment [ 46 ]. Mutant 
mice with downregulated Notch signaling [ 47    ,  128 ], as well as wild- type mice 
treated with inhibitors of the Notch-activating enzyme, gamma secretase, exhibit an 
attenuated recruitment of leukocytes in the brain after cerebral I/R [ 48 ].  
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    Monocyte Chemoattractant Protein-1 

 This cytokine, also known as CCL2, belongs to the CC chemokine family. MCP-1 
recruits monocytes, memory T cells, and dendritic cells to the sites of infl ammation 
[ 49 ] and has been implicated in pathogeneses of several diseases, such as psoriasis, 
rheumatoid arthritis, atherosclerosis, glomerulonephritis, and neuroinfl ammatory 
processes [ 50 ,  51 ]. MCP-1 has been proposed to play a pivotal role in triggering the 
infl ammatory reaction elicited by ischemia in the brain. It has been shown that 
MCP-1 overexpression leads to larger infarcts and more blood cell recruitment, 
while MCP-1-defi cient mice develop smaller infarcts. Both macrophage and neutro-
phil infi ltration are signifi cantly reduced in MCP-1-defi cient animals, compared to 
wild-type mice    [ 129 ].   

    Adhesion Receptors Controlling Leukocyte–Endothelial 
Cell Interactions After I/R 

 The cerebral microcirculation exhibits unique features compared to other vascular 
beds relative to the leukocyte–endothelial cell interactions. In addition to the high 
venular shear rates [ 52 ], the lower basal expression levels of endothelial cell adhe-
sion molecules appear to contribute to the fewer physical interactions between leu-
kocytes and endothelial cells noted in normal (noninfl amed) cerebral venules, 
compared to venules in other tissues [ 53 ]. A very low basal expression of both P- and 
E-selectin [ 54 ,  55 ] is detected in the cerebral microvasculature. Upon stimulation, 
however, an increased expression of endothelial cell adhesion molecules is observed 
in cerebral vessels. Interleukin-1β enhances the expression of ICAM-1 and VCAM-1 
[ 56 ,  57 ], and TNF-alpha increases E- and P-selectin expression [ 58 ] in the brain. 
Following I/R, several different adhesion receptors contribute to the recruitment of 
leukocytes in the brain, with each adhesion receptor contributing in a time-dependent 
manner (Fig.  3.2 ).

      Selectins 

 E-selectin expression is increased in cerebral microvessels at 2 h, peaks at 6–12 h, 
and is still visualized 24 h within the ischemic lesion in rats [ 55 ,  59 ], and treatment 
with CY-1503, an analog of sialyl Lewis(x) [SLe(x)], signifi cantly reduces the 
infarct volume and neutrophil infi ltration [ 60 ]. CY-1503 can act not only by block-
ing the E-selectin on endothelial cells but also L-selectin on leukocytes or P-selectin 
on endothelial cells or platelets. Due to the nonspecifi c mechanism of action of the 
CY-1503, a single specifi c selectin cannot be implicated in the neuronal damage 
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following a stroke. However, studies targeted E-selectin using highly specifi c 
monoclonal antibodies have revealed reduced infarct size [ 61 ], but whether this is 
accompanied by and/or results from a reduction in the number of recruited leuko-
cytes remains unclear. Increased E-selectin expression may be important for the 
leukocyte-induced damage caused by stroke in nonhuman primates and in humans. 
Increased soluble E-selectin levels are observed in the circulation 72 h after stroke 
in baboons [ 62 ] and 8 h up to 1 day after the beginning of the symptoms in stroke 
patients [ 63 ]. Another selectin, P-selectin, exhibits an increased expression as early 
as 15 min after occlusion of the middle cerebral artery, peaks 6 h later [ 55 ], and 
remains elevated up to 72 h after injury [ 64 ] in the brain of mice and rats. Increases 
in circulating soluble P-selectin [ 62 ] and in the expression of P-selectin in brain 

  Fig. 3.2    Kinetics of cell adhesion molecule expression on endothelial cells, leukocytes and in the 
circulation (soluble CAMs) after ischemia and reperfusion (I/R). The increased P-selectin and 
ICAM-1 expression occurs within 2 h after occlusion of the middle cerebral artery and persist for 
several hours/days. Enhanced expression of E-selectin, VCAM-1, and CD44 on endothelial cells 
and CD18 and CD44 on leukocytes become evident 2 h after injury and the increased expression 
is maintained for several hours. A soluble version of these proteins (CAMs) also appears in the 
circulation. A longer time (more than 12 h) is necessary to increase the expression of CD11a and 
CD11b on leukocytes.  CAMs  cell adhesion molecules,  ICAM-1  intercellular adhesion molecule 1, 
 I/R  ischemia and reperfusion,  VAP-1  vascular adhesion protein 1,  VCAM-1  vascular cell adhesion 
molecule-1       
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microvessels have been reported in stroke patients who died 3.5 h to 9 days after the 
stroke [ 65 ]. The importance of P-selectin in I/R-induced brain damage has been 
confi rmed using P-selectin immunoblockade, since reductions in both leukocyte 
infi ltration and cerebral injury were observed following this treatment [ 66 ]. In addi-
tion to a smaller infarct size, reduced BBB permeability and an improved survival 
rate were demonstrated in P-selectin KO mice, compared to wild-type control mice 
[ 10 ,  67 ]. In a similar way, blockade of selectins with the polysaccharide fucoidan, a 
polymer that inhibits all selectins, reduces leukocyte adhesion in cerebral vessels 
and blunts ischemic damage after focal ischemia in rats [ 68 ]. Not only P- and 
E-selectin expression change but also L-selectin levels are modifi ed after stroke. 
In fact, shedding of L-selectin, which occurs in response to leukocyte activation, 
has been observed in stroke patients 24 h after ischemia [ 69 ,  70 ]. However, 
L-selectin immunoblockade did not improve outcome in MCAO mice [ 71 ].  

    Integrins 

 Studies employing immunoblockade or mice genetically defi cient in either CD11a 
(LFA-1) or CD11b (Mac-1) have revealed an important role for these adhesion 
receptors in mediating leukocyte adhesion in post-ischemic cerebral venules at 
24 h, but not 4 h, after reperfusion [ 72 ,  73 ]. CD18, CD11a, and CD11b expression 
are enhanced in mice after transient MCAO. Stroke patients and patients with tran-
sient ischemic attack also show elevated integrin expression at 12 h and up to 72 h 
after ischemia [ 74 – 76 ]. Interfering with the functionality of CD11a or CD11b 
reduces infarct volume and mortality after MCAO [ 77 ,  78 ].  

    Immunoglobulin-Like Domain Cell Adhesion Molecules 

 An increased expression of ICAM-1 in the cerebral vasculature has been detected 
after ischemia in different species, including baboons [ 79 ], rats [ 35 ], and humans 
[ 80 ]. The increased expression is detected as early as 1 h after reperfusion and it 
remains elevated up to 48 h after stroke [ 14 ,  15 ,  79 ,  81 – 84 ]. Blockade of ICAM-1 
blunts the PMN leukocyte accumulation and ischemic lesion size after MCAO in 
rats, suggesting that ICAM-1-mediated leukocyte adhesion contributes to the dam-
age caused by I/R in this species [ 23 ,  24 ,  85 ]. ICAM-1 knockout mice showed 
reduced leukocyte adhesion, smaller infarcts, improved cerebral fl ow, and reduced 
mortality after cerebral I/R [ 30 ]. The involvement of ICAM-1 on the I/R-induced 
lesion seems to be important in humans as well since induction of ICAM-1 in 
human cerebromicrovascular endothelial cells (HCEC) by ischemia-like conditions 
leads to enhanced neutrophil/HCEC adhesion [ 56 ]. VCAM-1 expression is also 
increased as early as 4 h after I/R injury both in mice and in rats, which parallels the 
increased leukocyte traffi cking to the infarcted area [ 86 – 88 ]. Increases in soluble 
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VCAM-1 levels are also observed in the circulation of patients with acute stroke at 
4 h and up to 5 days after the onset of symptoms [ 63 ] and in microvessels of patients 
who died 5 days to 3 months after stroke onset [ 89 ]. However, anti-VCAM-1 anti-
bodies have shown no effectiveness in protecting patients against the deleterious 
effects of stroke [ 90 ]. Thus, strategies directed to reducing the infl uence of ICAM-1, 
but not VCAM-1, may prove useful in minimizing the tissue damage associated 
with ischemic stroke.  

    Others 

    CD73 

 Recent studies have revealed other cell membrane proteins that may mediate the 
leukocyte diapedesis elicited by ischemic stroke. CD73 is an ecto-5′ nucleotidase 
that catalyzes the terminal phosphohydrolysis of AMP and is expressed on the sur-
face of glial cells, on cells of the choroid plexus, and on leukocytes. One of the main 
functions of the CD73 is to tighten epithelial barriers. Mice lacking CD73 were 
observed to have larger cerebral infarct volumes and more leukocyte accumulation 
after cerebral I/R. These responses were more evident in chimeric mice lacking 
CD73 in nonmyeloid tissue rather than in leukocytes. These observations reveal a 
potentially novel target for therapeutic intervention in ischemic stroke [ 91 ].  

    CD47 

 CD47 is a cell surface glycoprotein that helps mediate neutrophil transmigration 
across blood vessels. Ischemia does not upregulate the brain levels of CD47 in mice. 
However, CD47 knockout mice exhibit reductions in both infarct volume and tissue 
swelling at the lesion site after I/R. These effects occurred in parallel with a reduction 
of the extravasation of neutrophils into the brain parenchyma [ 92 ].  

    CD44 

 The CD44 antigen is a cell surface glycoprotein involved in cell–cell interactions, 
cell adhesion, and transmigration. Increased CD44 expression is observed 6 h and 
persists for up to 72 h after permanent MCAO in mice [ 93 ,  130 ]. Furthermore, 
signifi cant reductions in ischemic infarct volume and neurological function 
were observed in CD44-defi cient mice after transient and permanent MCAO [ 93 ]. 
These observations, coupled to the established role of CD44 in leukocyte traffi cking, 
underscore the potential importance of this molecule in the pathogenesis of isch-
emic stroke.  
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    VAP-1 

 Soluble vascular adhesion protein-1 (VAP-1) concentration is elevated postmortem 
in the serum of stroke patients [ 94 ]. VAP-1 is a semicarbazide-sensitive amine oxidase 
(SSAO) which functions as an endothelial adhesion molecule and participates in the 
process of transmigration of infl ammatory cells into the ischemic brain. Moreover, 
VAP-1 may worsen ischemic brain injury due to its enzymatic function by producing 
toxic metabolites [ 94 ]. More studies are needed to better elucidate the role of VAP-1 
in stroke.    

    Leukocyte Mediators Contributing to the I/R-Induced 
Cerebral Damage 

 Most of the leukocyte-derived mediators that cause damage to the brain tissue after 
ischemia remain unknown although recent studies have revealed some of them. 
These include high-mobility group protein B1 (HMGB1), interleukin 23 (IL-23), 
interleukin 17, regulated on activation, normal T-cell expressed and secreted 
(RANTES), metalloproteinase 9 (MMP-9), and neutrophil elastase. Leukocytes can 
also release mediators that blunt the brain damage caused by ischemia. Interleukin 
10 (IL-10) is a good example of this type of mediator. These pro and anti- 
infl ammatory mediators are described below and illustrated in Fig.  3.3 .

      HMGB1 

 High-mobility group protein B1 acts as a cytokine, induces pro-infl ammatory medi-
ators, such as inducible nitric oxide (NO) synthase, cyclooxygenase-2 (COX-2), 
interleukin (IL)-1β, and tumor necrosis factor (TNF)-α and causes neuronal apopto-
sis [ 95 ]. It is produced by infl ammatory cells such as macrophages and monocytes 
and activated neurons. Fujioka et al. [ 96 ] recently reported increased plasma 
HMGB1 levels in MCAO mice, which corresponded with larger brain infarcts. 
Blocking HMGB1 has been shown to reduce infarct volume after cerebral artery 
occlusion [ 97 ]. The HMGB1-induced cerebral injury after ischemia seems to be 
related to Toll-like receptor-4 activation since it was demonstrated that TLR4- 
defi cient mice presented reduced cerebral ischemia–reperfusion injury as well as 
downregulation of infl ammatory cytokines, compared to WT animals [ 98 ] and intra-
cerebroventricular injection of rhHMGB1 in TLR4(+/+) mice caused signifi cantly 
more injury after cerebral ischemia–reperfusion than the control group [ 99 ]. 
Interestingly, the coexpression of HMGB1 and MPO was noted in ischemic brain, 
suggesting that neutrophils may be releasing HMGB1 locally and, as a result, causing 
larger lesions after ischemia.  
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    IL-23 

 This is a heterodimeric cytokine consisting of two subunits: p40 and p19. The cyto-
kine is considered to act as a pro-infl ammatory agent and it appears to be released 
by infi ltrating macrophages after cerebral ischemia. IL-23 is followed by peroxire-
doxin release into the extracellular space by necrotic brain cells, resulting in further 
neural cell death. Peroxiredoxin inactivation suppresses both IL-23 expression and 
infarct volume [ 100 ].  

    IL-17 

 This cytokine acts as a potent infl ammatory mediator in delayed-type reactions by 
increasing chemokine production in various tissues, including brain, to recruit 
monocytes and neutrophils to the site of infl ammation. IL-17 is often produced by 
T-helper cells and is induced by IL-23, which result in destructive tissue damage in 
delayed-type reactions. In fact, it was observed that expression of IL-23, derived 

  Fig. 3.3    Leukocyte-derived infl ammatory mediators that contribute to cerebral tissue damage 
after ischemia and reperfusion. Acting as pro-infl ammatory mediators are HMGB1, IL-23, IL-17, 
RANTES, MMP-9, and neutrophil elastase. Downregulating infl ammation is IL-10.  HMGB1  high- 
mobility group protein B1,  IL-10  interleukin 10,  IL-17  interleukin 17,  IL-23  interleukin-23,  I/R  
ischemia and reperfusion,  MMP-9  matrix metallopeptidase-9,  RANTES  regulated and normal 
T-cell expressed and secreted       
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mostly from infi ltrated macrophages, increases 24 h after I/R, and that IL-17 levels 
were raised 72 h later, suggesting that the induction of IL-17 was dependent on 
IL-23 [ 101 ]. It appears that IL-23 has greater pathophysiologic relevance immedi-
ately after I/R injury, while IL-17 gains importance at a later stage, when further 
apoptotic neuronal death occurs in the penumbra. However, contrary to the com-
monly held view of CD4+ helper T-cell production of IL-17, the main source of 
IL-17 during I/R in brain appears to be γδT lymphocytes. This is consistent with 
reports describing improved I/R injury following depletion of T lymphocytes. Thus, 
IL-17 production and modulation of γδT lymphocytes seems to be important targets 
for control of stroke.  

    RANTES 

 This chemokine is also known as CCL5. It is chemotactic for T cells, eosinophils, 
and basophils and plays an active role in recruiting leukocytes into infl ammatory 
sites. RANTES has been implicated in the pathobiology of ischemic stroke. 
The increased leukocyte and platelet adhesion, blood–brain barrier permeability, 
and tissue infarction elicited in WT and control chimeric WT > WT mice after 
MCAO and reperfusion are signifi cantly blunted in RANTES(−/−) mice. This pro-
tective effect is also observed in RANTES(−/−) > WT mice, suggesting that blood 
cell- produced RANTES contributes to the cerebral injury after ischemia [ 102 ].  

    MMP-9 

 This metalloproteinase is involved in the breakdown of extracellular matrix in normal 
physiological processes, such as embryonic development, reproduction, and tissue 
remodeling. Colocalization of MMP-9 and neutrophils has been described both 
within and at the periphery of an ischemic infarct detected 24 h after focal ischemia 
[ 103 ]. After 5 days, MMP-9 appears to stain with the macrophages present within 
the infarcted brain. Furthermore, MMP-9 blockade in wild-type mice as well as 
MMP-9 −/−  mice present with a signifi cantly reduced infarct size, similar to that 
observed in bone marrow chimeras lacking leukocytic MMP-9 but not in chimeras 
with MMP-9-containing leukocytes [ 104 ]. These observations suggest that neutro-
phil and macrophage-released MMP-9 is important for the genesis of an infarct 
following ischemic stroke.  

    Neutrophil Elastase 

 This enzyme, also called ELA2 (elastase 2), is a serine proteinase secreted by 
neutrophils and macrophages during infl ammation. It destroys bacteria but can 
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cause damage to host tissue as well [ 105 ]. Neutrophil elastase degrades structural 
matrix proteins (e.g., elastin, collagens, laminins, and fi bronectin), and endothelial 
junction proteins resulting in increased vascular permeability and leukocyte diape-
desis [ 106 ,  107 ]. Release of neutrophil elastase appears to harm cerebral tissue during 
acute cerebral ischemia. Ikegame et al. [ 108 ] reported that most cerebral microves-
sels in I/R-induced infarcted region are destroyed and that sivelestat, a selective 
neutrophil elastase inhibitor, was effective in preserving the microvessels in the 
boundary zone. Sivelestat treatment also reduces brain edema, vascular permeability, 
and neurological defi cit after acute focal ischemia [ 108 ].  

    IL-10 

 This anti-infl ammatory cytokine is also known as human cytokine synthesis inhibitory 
factor (CSIF). It was recently observed that IL-10-released by B cells limits damage 
caused by ischemia in the brain. Ren et al. [ 38 ] reported greater brain damage caused 
by ischemia in B-cell-defi cient μMT(−/−) mice, compared to WT controls and these 
MCAO-induced changes were completely prevented in B-cell-restored μMT(−/−) 
mice after transfer of highly purifi ed WT GFP(+) B cells. However, this protection was 
no longer observed when B cells from IL-10(−/−) mice were transferred into μMT(−/−) 
mice. In a similar experiment, Frenkel et al. [ 109 ] showed that not only B cells but 
IL-10 released by CD4+ T cells protects the brain against the deleterious effects of 
ischemia. Overall, these fi ndings implicate IL-10 as an important lymphocyte-
derived mediator of protection against brain injury after cerebral I/R.   

    Adhesion Receptors as New Targets for Reducing 
Tissue Damage After Ischemic Stroke: Experimental 
and Clinical Trials 

    Targeting Selectins 

    Experimental Data 

 The clinical utility of P-selectin immunoblockade as a therapeutic strategy for 
reducing the brain damage after I/R is lessened by reports indicating that the protec-
tion noted in experimental models using antibody pretreatment is not evident in 
studies that administer the antibody after reperfusion [ 66 ,  110 ]. The same limitation 
has been described in nonhuman primates treated with a humanized monoclonal 
antibody against both E- and P-selectin (HuEP5C7) [ 62 ]. Although improved brain 
function was reported, there are no studies that employ the antibody after onset of 
the stroke. On the other hand, an antibody directed against E-selectin proved to be 
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effective even when given 3 h after the beginning of the brain ischemia, suggesting 
that E-selectin may be a good target for prevention of brain damage following I/R [ 61 ]. 
A limitation of selectin blockers is that they appear to be more effective in preventing 
the tissue damage resulting from the combination of ischemia and reperfusion, 
rather than ischemia alone [ 111 ]. 

 Another novel strategy for targeting selectins to reduce stroke-induced tissue 
injury in rats involves the nasal instillation of E-selectin. Takeda et al. [ 112 ] reported 
that nasal instillation of E-selectin potently inhibits the development of ischemic 
and hemorrhagic strokes in spontaneously hypertensive stroke-prone rats with 
untreated hypertension. Among the benefi cial effects of E-selectin instillation are 
decreased infarction volume, increased numbers of Tregs in ischemic brain, reduced 
expression of tumor necrosis factor on blood vessels and an increase in the number 
of newly generated neuroblasts or neurons in the brain [ 113 ].  

    Clinical Trial 

 A phase I clinical trial is ongoing to defi ne the maximum tolerated dose of recom-
binant E-selectin that can be instilled intranasally (ClinicalTrials.gov identifi er: 
NCT00069069).   

    Targeting Integrins 

    Experimental Data 

 Similar to what has been observed with selectin targeting, blockade of integrins is 
therapeutically more effi cient after tissue reperfusion [ 77 ]. Antagonism of neutro-
phil migration by treatment with a CD11/CD18 integrin blocking antibody 
(Hu23F2G) injected 20 min after occlusion reduces ischemic injury in a rabbit 
model of transient experimental stroke [ 114 ]. IB4, a monoclonal antibody directed 
against the CD18 leukocyte adhesion protein, was reported to reduce edema in isch-
emic brains of rabbits [ 115 ] and to improve refl ow in cerebral blood vessels of 
baboons [ 116 ]. Matsuo et al. [ 33 ] observed the same benefi cial results in rats using 
antibodies against CD11a (WT1 antibody) or CD18 (WT3 antibody) given before 
ischemia or immediately after reperfusion. In a similar way, treatment of pigs with 
a monoclonal antibody to the leukocyte adhesion glycoprotein complex CD11/
CD18 severely attenuated both leukocyte adherence and the increase in vascular 
permeability    [ 131 ]. It was also demonstrated that in experimental models of stroke, 
a combination of anti-b2 integrin (CD11/CD18) and thrombolytic therapy (rtPA) 
extends the therapeutic window for usage of rtPA, with a better outcome than the 
additive effects of these agents [ 83 ,  84 ]. In fact, treatment with UK-279,276, a selec-
tive CD11b/CD18 antagonist, in combination with rtPA at 2 or 4 h signifi cantly 
( P  < 0.01) reduced infarct volume and enhanced recovery of neurological function, 
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compared to controls [ 117 ]. The thrombolytic therapy was extended from 3–4 h 
after concomitant treatment with an integrin antagonist.  

    Clinical Trials 

  Leukarrest  ®  (Hu23F2G)—This is a humanized anti-Mac-1 antibody that was previ-
ously tested in rabbits following MCAO and showed reduced infarct size and neu-
ronal damage [ 114 ]. In a phase III clinical study,  Leukarrest  ®  from Icos (Bothell, WA) 
was halted while tested in stroke patients because it did not reach the success criteria 
[ 118 ] and no public information regarding the outcomes, safety issues, or relative 
number of severe adverse effects is available. 

  UK -279,276—This is a small recombinant glycoprotein that binds to CD11b 
integrin of Mac-1 and reduces infarct size in rats after stroke [ 119 ]. In a phase II 
clinical study, the UK-279,276 test was fi nished due to the absence of good results 
in UK-279,276-treated stroke patients. Only a slight improvement was observed 
when UK-279,276 was combined with rtPA treatment [ 120 ]. 

  Rovelizumab  ®  —  It is a humanized monoclonal leukointegrin antibody developed 
by ICOS as a potential treatment for several diseases, including stroke. The company 
evaluated rovelizumab ®  in patients with ischemic stroke, in a double-blind, dose-
escalating, placebo-controlled phase II trial in the US. Rovelizumab ®  was given 12 h 
after beginning of the symptoms and showed no signifi cant difference in severe adverse 
effects compared to placebo treatment, with no immunogenicity observed [ 121 ].   

    Targeting Immunoglobulin-Like Domain Cell Adhesion 
Molecules 

    Experimental Data 

 ICAM-1 immunoblockade (1A29 antibody) has been reported to abrogate the dam-
aging effects of I/R in the brain tissue of rats [ 33 ,  122 ]. Furthermore, antibodies 
directed against ICAM-1 are even more effective in reducing lesion area in a rabbit 
cerebral embolism stroke model when used concomitantly with tissue-type plas-
minogen activator, compared to the responses noted with either agent alone [ 123 ]. 
Thus, the work in animal models of stroke suggests that, when used either alone or 
in combination with thrombolytic therapy, ICAM-1 antibodies can be benefi cial for 
treatment of ischemic stroke.  

    Clinical Trial 

  Enlimomab  ®  (R6.5)—This is an anti-ICAM-1 murine monoclonal antibody tested 
in stroke patients in a phase III study. This study revealed that Enlimomab ®  
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administration leads to higher mortality, infarct volume, and side effects in highly 
compromised patients [ 124 ]. This negative outcome is the likely result of using an 
antibody of murine origin, which can lead to an immunological response after 
treatment. In fact, tests made in rats showed murine anti-ICAM-1 antibodies can 
activate leukocytes secondary to the activation of complement [ 125 ,  126 ]. A verdict 
on the utility of anti-ICAM-1 therapy in ischemic stroke must await trials that test 
humanized antibodies.    

    Conclusion 

 Despite the massive amount of evidence showing benefi ts of leukocyte blocking in 
alleviating the tissue damage and cerebral dysfunction caused by cerebral ischemia 
in different animal species, similar outcomes have not been reproduced in humans. 
A variety of reasons have been offered to explain the absence of harmonization of 
anti-adhesion therapy outcome in animal models and stroke patients. It remains 
unclear whether the answer lies with the anti-adhesion therapy per se and an absence 
of importance of infl ammation in human stroke or whether it refl ects limitations of 
animals studies that do not allow for an accurate recapitulation of human stroke 
pathogenesis. Future advances in stroke research and in the discovery of effective 
therapeutic interventions for human stroke will rely on the continued improvement 
and refi nement of technologies and approaches for assessing the responses of the 
human and animal brain to ischemic stroke. Since stroke continues to kill nearly six 
million people each year, the need for successful translation of successes in the 
laboratory to the clinical setting remains urgent.     
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    Abstract     Oxidative stress, which generates reactive oxygen species (ROS), plays 
an important role after acute brain injuries, including transient cerebral ischemia. 
Brain injuries like ischemic–reperfusion result in a surge of excess oxygen that 
leads to generation of free radicals. Free radicals are present at low levels in the 
normal state where they play a critical role in signaling pathways. Antioxidants help 
in maintaining the redox level in the cells, but during an insult this homeostasis is 
disturbed resulting in excessive ROS. Mitochondrial ROS are among the main intra-
cellular ROS. Cerebral ischemia triggers infl ammation in response to injury, which 
also leads to the generation of free radicals and eventually to neuronal cell death. 
Studies using genetically manipulated animals where antioxidant genes are overex-
pressed or knocked down show the key role that ROS play in ischemia. Oxidative 
stress affects the injured area in a multifaceted way. It activates apoptotic markers, 
infl ammatory mediators including cytokines and chemokines, and transcriptional 
activators. Therefore, it has a signifi cant function in cell death and survival signal-
ing cascades. Several recent reports have demonstrated the various effects of ROS 
generation and its link to the infl ammatory response after ischemia. In this chapter, 
we present an overview of these mechanisms that have been elucidated, focusing on 
the damaging effects of ROS and their crucial role in infl ammation after stroke.  

  Abbreviations 

   cyt c    Cytochrome c   
  DAPI    4′,6 Diamidino-2-phenylindole   
  GPx    Glutathione peroxidase   
  HEt    Hydroethidine   
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  HO-1    Hemoxygenase-1      
  ICAM1    Intercellular adhesion molecule 1   
  IL    Interleukin   
  I/R    Ischemia/reperfusion   
  MCAO    Middle cerebral artery occlusion   
  MCP-1    Monocyte chemoattractant protein-1   
  MIP-1α    Macrophage infl ammatory protein-1α   
  mNSS    Modifi ed neurologic severity scores   
  NF-κB    Nuclear factor-kappa B   
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  non-PC    Non-preconditioned   
  NOX    NADPH oxidase   
  NQO1    NADH quinone oxidoreductase   
  NSCs    Neural stem cells   
  O 2  • ̄     Superoxide anion   
  O.D.    Optical density   
  OH    Hydroxyl ion   
  ONOO    Peroxynitrite   
  PC    Preconditioned   
  ROS    Reactive oxygen species   
  s.d.    Standard deviation   
  siRNA    Small interfering RNA   
  SOD    Superoxide dismutase   
  STAT3    Signal transducer and activator of transcription 3   
  Tg    Transgenic   
  TNF-α    Tumor necrosis factor-α   
  TUNEL    Terminal deoxynucleotidyl transferase-mediated uridine 5′-triphosphate- 

biotin nick end labeling   
  Wt    Wild-type   

          Introduction 

 Free radicals are highly reactive molecules produced after various acute brain inju-
ries, including stroke, which is the third major cause of death worldwide after heart 
disease and cancer. Oxidative stress is a major contributing factor to reperfusion 
injury that occurs after stroke. Many pro-oxidant enzymes, including nitric oxide 
synthase, cyclooxygenase, and xanthine oxidase, participate in oxidative injury in 
cerebral ischemia [ 9 ]. The most common free radicals are those that contain 
unpaired valence electrons in oxygen, such as superoxide and its derivatives hydro-
gen peroxide and hydroxyl ions. Other free radicals include reactive nitrogen spe-
cies, such as nitric oxide, which reacts with superoxide to release peroxynitrite. 
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Low levels of pro-oxidants are critical signaling molecules that participate in 
normal neuronal and vascular functions, but when the homeostasis is perturbed due 
to acute injury, an increase in pro-oxidants can be detrimental [ 12 ]. Homeostasis 
maintains non-pathological levels of reactive oxygen species (ROS) as part of the 
body’s natural antioxidant defenses. Several studies have reported the complexity of 
the mechanisms that lead to cell injury after ischemia/reperfusion (I/R). Both oxida-
tive stress and infl ammation are associated with the damage observed in the brain 
after stroke, but the mechanisms involved have not been elucidated. In this chapter, 
we focus on the damaging effects of free radicals in stroke and their relation to 
infl ammatory mediators.  

    Ischemic Stroke and ROS 

 Acute ischemic stroke results from the occlusion of a cerebral artery due to throm-
bosis or embolism in the brain, which is then followed by reperfusion. I/R produces 
an oxygen surge that generates free radicals, eventually leading to neuronal damage. 
In the early period after ischemia, insuffi cient oxygen and glucose result in energy 
failure and cell damage. Furthermore, the sudden decrease in blood fl ow initiates 
disintegration of cell membranes, leading to neuronal death in the core of the isch-
emic region. However, in the surrounding cerebral area that has residual blood fl ow, 
neuronal cells can be salvaged depending on the duration of ischemia. This area 
surrounding the core is the penumbra, which refers to cells that are damaged but 
have not yet died. This suggests that targeting this region for new therapies could 
help rescue cells and reduce the extent of post-stroke disability. ROS generation and 
lipid peroxidation have been observed at both early and late time points after I/R. 
Different cell types in the brain react differently to ROS production. Neurons are 
more susceptible to cellular damage than astrocytes and endothelia. There is evi-
dence that impaired mitochondrial function after ischemia results in a large release 
of ROS, in particular massive amounts of superoxide anions (O 2  • ̄ ), in neurons and 
astrocytes. Subsequently, the free radicals trigger lipid peroxidation and release 
substances that promote and activate leukocytes and endothelial cell injury, with a 
secondary release of ROS and other proteases. Immune cells like neutrophils and 
microglia generate ROS as an infl ammatory response. Damage continues in the 
penumbra, and over several days and weeks delayed brain damage occurs due to 
infl ammation processes [ 2 ,  33 ,  48 ], eventually leading to neuronal cell death after 
I/R. Taken together, this growing evidence shows that free radicals play a major role 
in brain injury in a cell-specifi c and temporal manner. 

 Previous studies have shown that ROS are generated by mitochondria after 
I/R [ 9 ]. Additionally, NADPH oxidase (NOX) is activated after cerebral isch-
emia, resulting in O 2  • ̄  generation, which then causes lipid and DNA damage 
[ 4 ,  6 ,  11 ].  
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    Antioxidants 

 Endogenous antioxidants, such as superoxide dismutase (SOD), glutathione 
peroxidase (GPx), and catalase, act as natural defenses and help in the maintenance 
of low-concentration oxidants and redox homeostasis in tissue. Other antioxidants 
like Nrf2 play an important role in triggering the response of the second phase of 
ROS scavenging proteins. There are three main SODs, each having specifi c cellular 
localization and cofactors. SOD1 is a cytosolic enzyme requiring copper and zinc as 
cofactors for its activity. SOD2 is present in the mitochondria and requires manga-
nese for enzyme activity. SOD3 is present mainly in the extracellular space, cerebral 
fl uid, and vessels and its cofactors are copper and zinc. Studies using overexpress-
ing and knockout SOD1 and SOD2 animals have yielded important evidence pro-
viding signifi cant insights into neuroprotection after cerebral ischemia. ROS and 
multiple mechanisms have been identifi ed in SOD1-blocked mitochondrial- 
mediated apoptosis and are involved in regulation of cell death and survival signal 
transduction pathways, including p53, p53-upregulated modulator of apoptosis and 
Bax [ 15 ,  17 ,  37 ]. 

 Transcription regulation of SOD2 by signal transducer and activator of transcrip-
tion 3 (STAT3), a novel transcription factor, shows evidence that deactivation of 
STAT3 leads to downregulation of the SOD2 gene, which results in overproduction 
of ROS under conditions of cerebral I/R, followed by neuronal cell death [ 25 ]. In 
these studies, STAT3 was downregulated at early postischemic reperfusion times. 
Interestingly, there was high phosphorylation of STAT3 in normal neuronal cells not 
subjected to ischemia (Fig.  4.1 ). This indicates that SOD2, a housekeeping gene that 
is highly inducible by various cellular stimuli, is critical for sustaining the defense 
system against oxidative stress.

   Nrf2 is a transcription factor that regulates other antioxidant genes (phase II 
genes) whose proteins act to scavenge ROS through enzyme reactions. Nrf2 is nor-
mally bound to kelch-like erythroid cell-derived protein with CNC homology asso-
ciated protein 1 in the cytoplasm [ 22 ]. When oxidative stress occurs, the complex 
dissociates and Nrf2 translocates to the nucleus. Activated Nrf2 binds to promoters 
of genes that specifi cally have the antioxidant-response element. These phase II 
genes include hemoxygenase-1, 1-ferritin, and GPx, which maintain the redox bal-
ance and infl uence the infl ammatory response. Increasing Nrf2 activity after stroke 
reduces damage to the cortical penumbra 24 h after reperfusion [ 43 ]. Functional 
recovery improves with Nrf2 treatment up to 1 month after transient focal cerebral 
ischemia, suggesting Nrf2 plays a role in delayed apoptosis and infl ammation [ 31 ]. 
Moreover, Nrf2-defi cient mice are signifi cantly more susceptible to ischemic brain 
injury and neurological defi cits than wild-type (Wt) mice [ 43 ]. 

 Studies done in our laboratory showed that neural stem cells (NSCs) are pro-
tected after transplantation in mice subjected to I/R injury when they are precondi-
tioned with minocycline. This occurs via upregulation of Nrf2 and Nrf2-regulated 
antioxidant genes [ 42 ]. Transfecting the NSCs with Nrf2 small interfering RNA 
(siRNA) before transplantation abolishes minocycline-induced neuroprotection. 
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This indicates that preconditioning with minocycline reprograms the NSCs to tolerate 
oxidative stress after I/R injury and to express higher levels of paracrine factors 
through Nrf2 upregulation. Furthermore, transplantation of these preconditioned 
NSCs signifi cantly decreases infarct size and improves neurological performance. 

 GPx is a major antioxidant enzyme containing selenocysteine that scavenges 
ROS by reducing hydrogen peroxide and organic hydroperoxides to their corre-
sponding alcohols. GPx-3 is the only member of the GPx family that is present in 
the extracellular space and plasma. GPx-3 defi ciency results in signifi cantly larger 
infarcts compared with Wt animals as a consequence of platelet activation and 
impaired endothelial function due to increased oxidative stress after I/R injury [ 24 ]. 
ROS generation facilitates recruitment of platelets to the growing platelet plug 
(thrombus). GPx-3-defi cient mice treated with clopidogrel, a platelet inhibitor, have 
relatively small infarcts and better neurological scores, supporting the role of GPx-3 
during oxidative stress, which contributes to platelet-dependent thrombosis and 
cerebral infarction. Ishibashi et al. [ 21 ] have shown that GPx-1-overexpressing mice 
have infarct volumes decreased by 48 % compared with Wt mice. Increased expres-
sion of GPx-1 in transgenic mice protects against I/R injury by modulating the 
infl ammatory response and by decreasing the number of injured cells. There is an 
increase in transcriptional activation of cytokines and chemokines, including stress- 
response kinases that are targeted by GPx-1. Using gene transfer, overexpression of 
GPx was also shown to be neuroprotective after stroke, with increased survival of 

  Fig. 4.1    ( a ) Inhibition of STAT3 by I/R increases generation of O 2  • ̄ . ROS production shown by 
hydroethidine (HEt,  red ) and 4′,6 diamidino-2-phenylindole (DAPI,  blue ) staining of ischemic 
regions (cortex) on the contralateral and ipsilateral sides.  Scale bar , 20 μm. ( b ) STAT3 inhibition 
decreased SOD2 expression and increased protein nitrosylation. Summary graph depicting the 
changes in 3-nitrotyrosine (3-NT) relative to total protein loading in primary cortical neurons 
transfected with STAT3 siRNA.  *  P  < 0.05 ( n  = 4 per group).  OD  optical density [ 25 ]       
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GPx-targeted striatal neurons via attenuation of apoptosis-related events with 
increased cytochrome c release [ 20 ]. These studies suggest that GPx is important in 
postischemic infl ammation as well as in neuronal apoptotic signaling pathways.  

    ROS, Oxidative Stress, and Infl ammation 

 In response to stroke, infl ammation mediators and cytokines, in addition to free 
radicals, are generated along with activation of glia and microglia (Fig.  4.2 ). In fact, 
immune cells produce O 2  • ̄  via NOX, which is comprised of membrane-bound sub-
units NOX-2 and p22 and cytoplasmic subunits p47, p67, and p40, as well as one of 
the small Rho guanosine triphosphate-binding proteins Rac1. Removal of NOX-4, 
another subunit, reduces brain infarction by more than 60 % at 24 h of reperfusion 
[ 29 ]. NOX is constitutively expressed in neurons, microglia, and astrocytes, in 
which it may function as a physiologic redox signal [ 4 ]. In NOX-2 knockout mice, 
there is a reduction in O 2  • ̄  generated at 3 h of reperfusion after transient focal cere-
bral ischemia. Ablation of NOX-2 reduces oxidative stress [ 11 ]. This is ameliorated 
in SOD1-overexpressing mice, suggesting that NOX plays a role in oxidative stress 
and infl ammation. Oxidative stress plays an important role in regulation of the 

  Fig. 4.2    Role of oxidative stress in the signaling pathways after I/R. Oxidative stress plays a major 
role in cerebral damage. In addition to mitochondrial-mediated apoptotic cell death, activation of 
infl ammatory mediators leads to vascular dysfunction and neuronal cell death.  nNOS  neuronal 
nitric oxide synthase,  NO  nitric oxide,  ONOO  peroxynitrite,  OH  hydroxyl ion,  cyt c  cytochrome c, 
 HO-1  hemoxygenase-1,  NQO1  NADH quinone oxidoreductase       
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postischemic neuroinfl ammatory process. Chen et al. [ 11 ] showed a greater reduction 
in expression of myeloperoxidase and intercellular adhesion molecule 1 (ICAM1) 
in NOX-2-knockout mice and apocynin-treated mice than in Wt mice at 24 h of 
reperfusion, suggesting that NOX inhibition can also protect against cerebral dam-
age by alleviating infl ammation processes such as neutrophil infi ltration. Studies 
elucidating the molecules and pathways that are activated by NOX and that mediate 
changes in postischemic infl ammation have shown the interaction between immune 
response and oxidative stress [ 5 ,  23 ,  27 ].

   Activated microglia also play a key role in the infl ammatory process after isch-
emia by releasing factors such as interleukin (IL)-1β, tumor necrosis factor-α (TNF- 
α), monocyte chemoattractant protein-1 (MCP-1), and macrophage infl ammatory 
protein-1α (MIP-1α) [ 1 ]. Both MCP-1 and MIP-1α are induced after cerebral isch-
emia in rodents [ 49 ]. ROS facilitate MCP-1 and MIP-1α expression after ischemia 
[ 38 ]. Moreover, Nishi et al. [ 38 ] demonstrated that overexpression of the antioxi-
dant enzyme SOD1 reduces MCP-1 and MIP-1α gene transcription and protein 
expression after brain ischemia (Fig.  4.3 ). The difference in protein expression 
between Wt and SOD1-overexpressing mice became very apparent at 24–48 h of 
reperfusion, which coincides with the peak of the infl ammatory response in this 
transient focal ischemic model. MIP-1α is a well-known chemoattractant that 

  Fig. 4.3    Real-time quantitative reverse transcriptase polymerase chain reaction showing the time 
course of mRNA levels of proinfl ammatory cytokines (TNF-α, IL-1β, and IL-6) and β-chemokines 
(MCP-1 and MIP-1α). In general, the SOD1 transgenic (Tg) mice tended to have decreased mRNA 
expression compared with the Wt mice. Statistically signifi cant differences were observed at 12 
and 24 h of recirculation for TNF-α and MCP-1, at 12 h of recirculation for MIP-1α, and at 24 h 
of recirculation for IL-6. All data were standardized by glyceraldehyde 3-phosphate dehydroge-
nase and divided by controls (sham-operated animals). The  bars  show the mean ± s.d. ( *  P  < 0.05) 
C, control [ 38 ]       
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modulates macrophage function [ 16 ] and triggers hydrogen peroxidase production 
in leukocytes. MIP-1α is mainly expressed in microglia/macrophages but has been 
observed in astrocytes [ 10 ], neurons, and endothelial cells [ 28 ]. This reduction in 
MCP-1 and MIP-1α was also observed in NOX-2-knockout mice [ 11 ], strongly 
indicating that oxidative stress plays a signifi cant role in the immunomodulation 
response after cerebral ischemia.

   Genetic ablation of NOX-2 also abolishes IL-1β-mediated brain damage after 
ischemia. After cerebral I/R, IL-1β is rapidly induced and exacerbates brain damage 
by inducing a strong infl ammatory response [ 46 ]. It is thought that NOX-2 modu-
lates the IL-1β effect by generating H 2 O 2 , which is well known as a critical redox- 
signaling intermediate [ 40 ]. NOX-2-derived H 2 O 2  is also involved in the induction 
of the nuclear factor-kappa B (NF-κB) pathway after TNF-α activation [ 32 ]. Indeed, 
NF-κB is activated in response to oxidative stress and chemical stress and is involved 
in the induction of many of the genes that respond to several stresses. These include 
pro-infl ammatory cytokines, growth factors, and cell adhesion molecules. NF-κB is 
a multiprotein complex and its regulation in cerebral ischemia is different depend-
ing on the nature of the damaging insult, the status of oxidative stress, and the time 
points after injury [ 13 ]. 

 In SOD1-overexpressing mice, protein levels of IκBα, part of the NF-κB com-
plex, do not change after transient focal cerebral ischemia. SOD1 prevents NF-κB 
activation and IκBα degradation. This fi nding suggests that transient loss of the IκB 
kinase α, β, and γ complex (part of NF-κB signaling) is mediated by ROS [ 44 ]. This 
supports other reports suggesting that NF-κB is regulated by the redox system [ 39 ]. 
NF-κB is thought to be triggered by ROS in leukocyte–endothelial interactions [ 48 ]. 
NF-κB activation elicits a cascade of events, including activation of adhesion 
molecules like ICAM-1, thereby mediating microvascular dysfunction and tissue 
injury [ 8 ,  51 ]. 

 While some cytokines, such as IL-1, exacerbate cerebral injury after an ischemic 
insult, others like IL-6 and transforming growth factor-β provide neuroprotection 
and tissue repair. The role of IL-6 in stroke is controversial. Its expression signifi -
cantly increases during the acute phase of cerebral ischemia and remains elevated in 
neurons and reactive microglia of the ischemic penumbra up to 14 days after isch-
emic insult [ 45 ]. Early studies in patients demonstrate a positive correlation between 
increased serum levels of IL-6 and larger infarct volumes and long-term poor out-
comes [ 3 ,  47 ]. Recent reports support the idea that IL-6 has a neuroprotective effect 
in ischemic brain injuries [ 34 ,  45 ,  50 ]. Hirano et al. [ 19 ] and Brivanlou and Darnell 
[ 7 ] have reported that the presence of IL-6 results in the phosphorylation of STAT3, 
which then translocates to the nucleus and binds to specifi c promoters of target 
genes involved in cytoprotection and angiogenesis. The neuroprotective effect of 
exogenous IL-6 has been observed in PC12 cells in a hypoxia-reoxygenation para-
digm [ 35 ]. Endogenous IL-6 transiently increases in the acute phase of cerebral 
ischemia and prevents neuronal cell death mediated by STAT3 activation [ 26 ,  50 ]. 
The mechanism by which IL-6 is regulated is described as the phosphatidylinositol 
3-kinase/Akt and Ras/extracellular signal-regulated kinase pathways [ 36 ]. 
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 IL-6 acts by binding to IL-6R [ 18 ], which is composed of two major subunits, a 
ligand-binding α subunit (IL-6Rα) and a β subunit (gp130). Induction of gp130 
results in phosphorylation of Janus-activating kinase and phosphorylation of tyro-
sine residues on gp130 providing docking sites for STAT3, which is recruited and 
phosphorylated. Phosphorylated STAT3 then translocates to the nucleus and binds to 
promoters of specifi c target genes, including SOD2. STAT3 is involved in regulation 
of the SOD2 gene in the mouse cerebral cortex and cortical neurons, thereby affect-
ing the generation of ROS during oxidative stress by regulating SOD2 transcription, 
which is the cell’s primary antioxidant defense [ 26 ]. IL-6 injected in mice subjected 
to cerebral ischemia and reperfusion protects neurons against oxidative stress. It 
restores signal transduction of STAT3-mediated SOD2 expression through the recov-
ery of IL-6R association, which is blocked by I/R injury. Transfection with IL-6Rα 
or gp130 disrupts IL-6R function and signifi cantly increases superoxide radical pro-
duction via suppression of SOD2 transcription through blockage of STAT3 recruit-
ment to the SOD2 promoter. This results in neuronal cell death caused by reduction 
in SOD2 expression and hence by suppression of the ROS defense system. 

 Protection offered by IL-6 has also been examined in NSCs. Indeed, precondi-
tioning with IL-6 enhances the effectiveness of cell transplantation therapy after 
ischemic injury. Preconditioning with IL-6 protects transplanted NSCs from I/R 
injury. Preconditioned NSCs confer antioxidant properties by activating STAT3, 
which leads to induction of SOD2. Using STAT3 siRNA and SOD2 siRNA, IL-6- 
induced cytoprotection is abolished in NSCs subjected to oxygen–glucose depriva-
tion and reoxygenation [ 41 ]. When NSCs are grafted into the ischemic penumbra 
6 h after stroke, hydroethidine signals of NSCs preconditioned with IL-6 are signifi -
cantly reduced compared with non-preconditioned NSCs (Fig.  4.4 ). Twenty-eight 

  Fig. 4.4    Reduced grafted-cell death with IL-6 preconditioning in vivo. NSCs were transplanted 
into the brain 6 h after stroke. ( a ) Hydroethidine (HEt) signals increased in the nonpreconditioned 
NSCs under I/R injury, but this signal increase was reduced in the preconditioned NSCs and SOD2 
NSCs ( n  = 4).  MCAO  middle cerebral artery occlusion. ( b ) IL-6 preconditioning and SOD2 over-
expression signifi cantly reduced the number of terminal deoxynucleotidyl transferase-mediated 
uridine 5′-triphosphate-biotin nick end labeling (TUNEL)—positive-grafted cells in the ischemic 
brain.  *  P  < 0.05,  †  P  < 0.005, and  ‡  P  < 0.001 [ 41 ]       
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days after stroke and transplantation, the NSCs migrate towards the ischemic lesion 
and a signifi cantly greater number of IL-6 preconditioned NSCs survive compared 
with non-preconditioned NSCs. There is a signifi cant reduction in infarct size as 
well as improvement in neurological performance as measured by rotarod test in the 
transplanted preconditioned NSC group compared with non-transplanted control 
and non-preconditioned NSC groups (Fig.  4.5 ). There is also a reduction in infarct 
size in the SOD2 NSC-transplanted group. Furthermore, preconditioned NSCs pro-
mote angiogenesis, as observed by increased blood vessel density 14 days after 
transplantation, through expression of STAT3-induced vascular endothelial growth 
factor. Transfection of STAT3 siRNA in IL-6 preconditioned NSCs abolishes angio-
genesis and furthermore, there is no attenuation in infarct size or behavior.

  Fig. 4.5    Effects of preconditioned NSCs on infarct size and behavioral performance. NSCs were 
transplanted into the brain 6 h after stroke. ( a ) Cortical infarct size was signifi cantly attenuated in 
the preconditioned NSC and SOD2 NSC groups compared with the nontransplanted control group 
( n  = 4) 28 days after stroke and transplantation. Transplantation of preconditioned NSCs resulted 
in the greatest functional recovery 28 days after stroke and transplantation ( n  = 8). Indices of 
behavioral performance using the rotarod test ( b ) and modifi ed neurologic severity scores (mNSS) 
( c ).  Black bars  denote nontransplanted control group;  yellow bars  denote nonpreconditioned (non-
 PC) NSC group;  blue bars  denote preconditioned (PC) NSC group; and  red bars  denote SOD2 
NSC group. The labels show  P -value compared with the nontransplanted control group.  *  P  < 0.05; 
 ‡  P  < 0.005; and  §  P  < 0.001 [ 41 ]       
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    In addition to the infl uence of infl ammatory molecules on neurons during cerebral 
ischemia, a number of studies have reported on the effects of ROS in the microvas-
culature, including neutrophil and leukocyte infi ltration and increased leukocyte–
cerebrovascular endothelial cell interactions. Postischemic reperfusion is a markedly 
vulnerable time for the brain with a massive infl ux of ROS. In vascular cells, ROS 
provide signaling mechanisms affecting cerebral blood fl ow. Studies have demon-
strated ROS action as endogenous vasodilators. Using arachidonic acid, dilation of 
feline cerebral arterioles is inhibited by the presence of SOD and catalase, an H 2 O 2  
scavenger [ 30 ]. SOD1 plays a role in affecting vascular tone where its genetic inhi-
bition elicits a large increase in superoxide levels. This impairs nitric oxide-mediated 
vasodilation [ 14 ]. Evidence in recent years has also indicated that NOX represents 
a major source of ROS in cerebral arteries in the ischemic penumbra, which have 
detrimental effects in the perfusion of the penumbra, contributing to delayed neuro-
nal damage. 

 In conclusion, numerous studies of cellular macromolecules have demonstrated 
that ROS are directly involved in oxidative damage such as lipid peroxidation, pro-
tein oxidation, protein nitrosylation/nitration, and nucleic acid damage, as well as 
modulation of the infl ammatory response in ischemic tissue, all of which lead to cell 
death. The mechanisms of these oxidative stress-mediated processes have been elu-
cidated by genetic manipulation of pro-oxidant or antioxidant enzymes, which has 
helped us to identify several key molecules that might have therapeutic potential 
against cerebral ischemic injury. Some of these molecules that have been promising 
in experimental studies have not held up during clinical trials. The discrepancies 
may be due to differences in the subjects, age, and comorbidity found in patients vs. 
experimental animal (rodent) studies. Stroke severity is another variable that is hard 
to translate from a rodent model to humans. The concept of targeting various anti-
oxidant molecules with pleiotropic properties that block ROS generation as well as 
contain infl ammation in the later stages and promote tissue repair would help in 
salvaging neurons and would also protect other cell types from oxidative injury. 
Further elucidation of mechanisms and the interrelationship between oxidative 
stress and infl ammatory response would provide insights into the clinical treatment 
of stroke.     
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    Abstract     The prominent role of infl ammatory pathways in acute brain injury has 
become increasingly clear in recent literature. The complement system represents a 
heterogeneous group of infl ammatory molecules capable of being activated by 
numerous stimuli to a large number of ends. In this chapter, we review the mecha-
nisms of the complement system, with emphasis on C5 and C3. We then present the 
leading theories of the confl icting role of the complement system in central nervous 
system disease and the current state of investigations attempting to modify injury 
through modulation of the complement system.  

        Introduction 

 Acute brain injury (ABI) represents one of the principal neurological emergencies, 
with the primary etiologies being traumatic, hemorrhagic, and ischemic in nature. 
Stroke is the fourth most common cause of death and a leading cause of disability 
in the USA [ 1 ]. It affects patients of all ages and backgrounds and results in pro-
found losses in terms of quality years of life and economic resources [ 2 ,  3 ]. In the 
USA, there are 795,000 strokes per year, of which approximately 87 % are ischemic 
and 10 % are intracerebral hemorrhage (ICH) [ 4 ,  5 ]. Traumatic head injury severe 
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enough to result in brain injury has been estimated to have an incidence of 100–
600/100,000, with 15 % of this population suffering from severe brain injury [ 6 ,  7 ]. 

 The medical and surgical management of ABI is rooted in applying interventions 
designed to either decrease the primary insult to cerebral tissue or to minimize 
secondary injury due to detrimental physiologic responses to the original injury. 
In recent years, numerous potential mechanisms and markers of secondary ABI 
have been elucidated and investigated as potential approaches to curbing the sever-
ity ABI. A major topic of interest has been the complement system, which has long 
been known to be a central part of the innate immune system, with a role spanning 
various mechanisms of cell lysis, opsonization, chemotaxis, and infl ammation [ 8 ]. 

 In this chapter, we summarize the current understanding of the role of the comple-
ment system in each category of ABI, and the current level of success in modulating 
the pathway as a method of improving patient outcomes.  

    Review of the Current Knowledge of the Complement 
Pathways 

 The complement cascade is an elegant component of the innate immune system that 
was originally associated with bacterial killing but has demonstrated roles in mech-
anisms of infl ammation, cell signaling, phagocytosis, adaptive immunity, and opso-
nization. Traditionally, the activation of the complement system has been via three 
well-demarcated pathways: the classical, alternate, and lectin pathways. The mech-
anisms of all three pathways are similar enough to allow for generalization into the 
activation phase, C3 convertase phase, C5 convertase phase, and the membrane 
attack complex (MAC) phase [ 8 ]. 

 Each pathway begins with a unique activation phase. The Classical pathway uti-
lizes IgG and IgM binding to the surfaces of foreign cells to stimulate serine protease 
activation of C1, allowing for the generation of one type C3 convertase by cleaving 
C2 and C4 via serine protease action into the components required. This convertase 
is also formed via the lectin pathway, which cleaves C2 and C4 via a complex of 
mannose-binding lectin and associated proteins, which forms in the presence of the 
mannose molecules that are often incorporated into the structure of pathogen surfaces. 
The C3 convertase can then cleave C3 into its active form, which is incorporated into 
the convertase to form C5 convertase. C3 can alternatively be used to create an alter-
native form of C3 convertase, allowing for a cascade effect. This alternative C3 con-
vertase is essential in the Alternative pathway of complement. C3 is capable of 
spontaneous activation when associated with cell surfaces, something that is vigor-
ously inhibited on host cells, allowing for the formation of C3 convertase and the 
progression to C5 convertase as described above [ 9 ]. The cleavage of C5 convertase 
allows for the initiation of the MAC. C5b binds to C6, C7, and C8 to form a “scaffold” 
on the cell membrane for the attraction of C9, which extends through the membrane. 
C9 polymerizes with numerous copies of itself, forming a ring-shaped pore linking 
the intracellular and extracellular spaces [ 9 ,  10 ]. 
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    Signaling 

 Another product of the complement pathways are signaling molecules, composed 
of portions of the complement molecules that were not used in the direct pathway 
after cleavage. As discussed below, these molecules play a signifi cant role in the 
specifi c mechanisms of complement in acute brain injury. The two major molecules 
are C5a and C3a. C5a is a highly potent infl ammatory molecule, as well as a chemo-
kine. There is substantial evidence that C5a also promotes apoptosis through MAP 
kinase-mediated caspase mechanisms and potentially directly via a tumor necrosis 
factor-type receptor, resulting in release of cytochrome c from mitochondria [ 9 ,  11 , 
 12 ]. C3a, in conjunction with C5a, is a major anaphylatoxin responsible for stimula-
tion of smooth muscle contraction, mast cell degranulation, and histamine release, 
and increasing the permeability of capillary beds, precipitating edema, and increas-
ing the rate of chemotaxis [ 13 ].  

    Interactions with the Coagulation Pathway 

 Recent advances in the understanding of complement have yielded a potential new 
pathway through interactions with the coagulation cascade that may someday 
explain many of the idiosyncrasies of complement in acute brain injury. Early data 
showed that there was potential serine protease cross-reactivity, and inhibitors of the 
complement pathway have also been shown to be potent inhibitors of the coagula-
tion pathway in vivo [ 14 ]. It has been well established that fi brin deposition with a 
counterbalancing fi brinolytic response occurs in situations of severe injury [ 15 ]. 
Similar fi brin deposition has been seen secondary to elevated thrombin levels 
detected in areas of complement-mediated infl ammation [ 16 ]. At the same time, 
portions of the coagulation cascade have also demonstrated the ability to regulate 
complement levels of activity. Data have suggested a correlation between early 
coagulopathy after acute injury and hyperactivation of the complement system, par-
ticularly elevation of C3 and C5a [ 17 ,  18 ]. Some data suggest that thrombin may be 
capable of activation of C3 and C5 independent of traditional mechanisms, whereas 
plasmin may inactivate these molecules similarly to thrombin [ 19 ]. The abundance 
of serine protease activity in each pathway provides biological plausibility for 
potential cross talk between the two mechanisms (Fig.  5.1 ) [ 18 ].

       Risk Factors, Etiology, Pathophysiology, Prognosis, 
and Treatment for Ischemic Stroke 

 Major risk factors for ischemic stroke include hypertension, hypercholesterolemia, 
heart disease, atrial fi brillation, diabetes mellitus, and cigarette smoking [ 20 ]. Most 
strokes result from an embolus or local thrombosis occluding a major cerebral 
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artery leading to infarction [ 21 ]. Secondary damage to the penumbra, the region 
around the irreversibly infarcted core, may occur despite prompt reperfusion 
(“reperfusion injury”) [ 22 ]. The mechanisms mediating this process include the 
release of free radical species from damaged cells, cytotoxic edema, and infl amma-
tion [ 2 ,  23 ]. Weakening of the blood–brain barrier is maximal 3–6 h following isch-
emic onset [ 24 ] and promotes additional infl ammation and edema, leading to 
increased intracranial pressure, mass effect, and potentially herniation [ 21 ,  25 ,  26 ]. 

 Degree of edema is among the earliest markers of ensuing pathophysiology after 
ischemic stroke and a major predictor of survival beyond the fi rst few hours [ 2 ]. 
Treatment for ischemic stroke includes a combination of recanalization therapies 
and supportive measures and requires achieving balance between preventing isch-
emic injury, minimizing reperfusion injury, and avoiding hemorrhage. Intravascular 
thrombolytic therapies administered within the fi rst 3 h of stroke have been shown 
to be effective [ 27 ], but effi cacy decreases as a function of time from symptom onset 
[ 28 ] and carries increased risk of fatal hemorrhage [ 27 ].  

    Risk Factors, Etiology, Pathophysiology, Prognosis, 
and Treatment for ICH 

 Hypertension is the main risk factor for and the most signifi cant etiology of ICH 
[ 29 ]. Mass effect and midline shift caused by the hematoma physically disrupts 

  Fig. 5.1    Summary of 
complement activations 
pathways and the cross- 
regulation with the 
coagulation cascade ( MAC  
membrane attack complex, 
 MBL  mannose-binding 
lectine,  MASP-2  mannose- 
associated serine protease-2, 
 TF  tissue factor). Reprinted 
with permission from Amara 
U, et al (2008) Interaction 
between the coagulation and 
complement system. Adv 
Exp Med Biol 632: 71–9       
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neighboring tissues and brain structures and can result in secondary brain injury, 
neurological impairment, and, often, fatality [ 30 – 32 ]. Edema and infl ammation, 
spurred on by activation of the complement cascade, follow shortly after hemor-
rhage and peak after several days [ 30 ,  33 – 36 ]. 

 ICH volume and Glasgow Coma Scale grade on admission are the best predictors 
of death 30-day post-ictus [ 37 ,  38 ]. Edema is closely associated with poorer clinical 
outcomes [ 30 ,  32 ,  39 ,  40 ]. The current treatment for ICH consists of supportive 
measures, prevention of hematoma expansion [ 30 ], and maintenance of a safe intra-
cranial pressure [ 38 ,  41 ]. Medical therapy entails glucose management, cerebral 
temperature control, and antiepileptic drugs in patients with seizures [ 38 ,  41 ].   

    Putative Mechanisms of Complement Activation and 
Complement-Mediated Injury in Acute Cerebrovascular 
Injury 

    Putative Mechanisms of Complement Activation 
and Complement-Mediated Injury in Ischemic Stroke 

 Complement activation and deposition on neurons is known to occur following 
cerebral ischemia [ 42 – 45 ]. The origin of this deposition is not currently well under-
stood, but local synthesis of complement proteins may contribute. While comple-
ment components are primarily produced in the liver, astrocytes, microglia, 
oligodendrocytes, and neurons can express most of the complement proteins [ 46 – 51 ] 
and some types of brain cells have been shown to produce mRNA for the entire 
complement cascade in vitro [ 52 – 54 ]. 

 Activation of the cascade in the setting of cerebral ischemia may occur through 
the MBL pathway or an autoimmune version of the classical pathway. In systemic 
organs, ischemia and reperfusion is believed to lead to exposure of self-antigens, 
which subsequently interact with circulating natural IgM antibodies and MBL to 
initiate the complement cascade [ 55 ]. A 2011 study by our laboratory demonstrates 
that MBL defi ciency in mice reduces C3 cleavage as well as the accumulation of 
mononuclear cells in the ischemic region, providing evidence that such a process 
of activation may occur in ischemic stroke [ 56 ]. 

 Once activated, complement contributes to the spread of the infarct into the sur-
rounding penumbra regions. Cleavage of C3 and C5 produces the diffusible ana-
phylatoxins C3a and C5a, which serve as chemoattractants for leukocytes and may 
damage the blood–brain barrier further, allowing for propagation of infl ammation 
and injury into healthy tissue. Initiation of infl ammatory pathways leads to the 
release of proteases and free radicals by infi ltrating neutrophils [ 57 ,  58 ] as well as 
increased leukocyte adhesion to capillary walls, which can result in microvascular 
failure [ 42 ]. Leukocytes also produce cytokines that further attract infl ammatory 
cells and can potentially accumulate to toxic levels.  
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    Putative Mechanisms of Complement Activation 
and Complement-Mediated Injury in ICH 

 Spontaneous intracerebral hemorrhage (ICH) is a disease associated with signifi -
cant disability [ 37 ]. The estimated incidence of ICH is 10–20/100,000 people and 
typically presents after the fi fth decade of life [ 59 ]. Commonly assessed risk factors 
include chronic hypertension, smoking, impaired coagulation, vascular malforma-
tions, and cerebral amyloid angiopathy [ 37 ]. Injury from mass effect during the 
initial bleed and subsequent expansion in up to 1/3 of patients disrupt tissue archi-
tecture and is the major source of early fatality or neurological impairment [ 30 – 32 ]. 
Post-ictal edema begins almost immediately upon hemorrhage and peaks mid-week 
[ 30 – 32 ,  60 ]. It is within the pathophysiology of edema and the underlying infl am-
mation of nervous tissue that complement plays a signifi cant role [ 33 ,  34 ]. 

 The complement system is excluded for central nervous system tissues in normal 
physiology due to a lack of permeability across the blood–brain barrier. Following 
ICH, the complement system is present in local tissue as part of the original hema-
toma and secondarily through continued disruption of the blood–brain barrier [ 60 ]. 
Complement activation following ICH may depend upon prior activation of the coag-
ulation cascade via normal hemostatic mechanisms. While not a traditionally accepted 
role, rapidly activated coagulation factors Xa, Xia, plasmin, and thrombin have been 
associated with cleavage of C3 and C5 via serine protease action into C3a, C3b, C5a, 
and C5b [ 18 ,  19 ,  61 ]. Much of this evidence stems from non- neurological models, 
but Gong et al. recently provided evidence that this extrinsic protease pathway is 
present in rat ICH models [ 62 ]. Additional evidence has been generated to support 
that thrombin may be a primary cause of blood–brain barrier disruption, early peri-
hematomal edema, activation of complement in ICH [ 63 – 65 ]. 

 C5 and C3 serve to promote cerebral injury via an anaphylatoxin-mediated mech-
anism (C5a and C3a) and a membrane attack complex (MAC)-mediated mechanism 
(C3b and C5b). The binding of C3a to its receptor has been found to increase granu-
locyte infi ltration and edema when studied within ICH animal models [ 66 ]. The role 
of C5a is less clear in ICH specifi cally, but it is well known to be a powerful chemoat-
tractant for neutrophils and is heavily involved in other types of acute brain injury 
[ 19 ,  67 ]. Further, C5a likely plays a causal role in increasing peri- hematomal edema 
[ 68 ]. C5 has the additional complexity of being activated in the traditional way via 
C3b-dependent pathways, or independent of C3 levels via the coagulation cascade 
[ 18 ,  19 ]. The exact mechanism in nervous tissue is still being elucidated, but these 
molecules assist in the upregulation and secretion of pro- infl ammatory cytokines, 
including TNF-alpha, IL-1Alpha, and IL-1Beta, and stimulate leukocyte release of 
myeloperoxidase [ 13 ,  69 ,  70 ]. This milieu of infl ammatory biomolecules results in 
secondary tissue injury and edema. 

 While C5a and C3a mediate neurological damage through secondary infl amma-
tion and edema, C5b and C3b are crucial regulators of direct MAC cell lysis. 
MAC formation is mediated by C5b forming the initial component of the complex, 
which subsequently attracts C6, C7, C8, and C9 to form the membrane pore. C5b is 
in term upregulated heavily by C3b-dependent C5 convertase, as well as potentially 
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supplementary pathways such as via thrombin activation [ 63 – 65 ,  71 ,  72 ]. Activated 
MAC within the acute and resolving hematoma assist in hemolysis, causing a highly 
concentrated hemoglobin and iron level [ 73 ,  74 ]. Iron freed via upregulated heme 
oxygenase has a demonstrable effect on neural tissue via oxidative stress and 
caspase activation [ 65 ,  75 ,  76 ]. The data also suggest that hematoma development 
and resolution may play a role in late-onset edema starting several days after 
thrombin- related edema, approximately at the time of peak edema level [ 74 ]. Direct 
MAC destruction of parenchymal tissue has been associated with ABI, but its role 
in ICH is yet unclear [ 76 ].   

    Experimental Support for the Pathophysiological Role 
of Complement Activation in Acute Brain Injury 

    Complement Activation Is Implicated in the Pathophysiology 
of Other Central Nervous System Diseases 

 The complement cascade is implicated in the pathophysiology of a number of central 
nervous system diseases, including multiple sclerosis [ 77 ], Alzheimer’s disease 
[ 47 ,  78 – 81 ], Pick’s disease [ 47 ,  82 ,  83 ], Huntington’s Disease [ 47 ], aneurysmal sub-
arachnoid hemorrhage [ 84 ,  85 ], and age-related macular degeneration [ 86 ]. Perhaps 
most relevant to ischemic and hemorrhagic stroke, complement has been shown to be 
an important mediator of injury following acute brain trauma [ 54 ,  87 – 94 ].  

    Neurons Seem to Be Unusually Susceptible to Complement 
Activation 

 In vitro, neurons are capable of spontaneously activating the complement cascade, 
eventually leading to opsonization and lysis [ 95 ,  96 ]. This phenomenon may be due 
to a relative neuronal defi ciency in key complement modulators such as membrane 
cofactor protein (MCP, CD46), membrane inhibitor of active lysis (MIRL, CD59), 
decay-activating factor (DAF, CD55), C4b-binding protein, and Factor H, all of 
which are more abundantly produced by astrocytes [ 51 ,  96 ].  

    Ischemic Stroke: Evidence that Complement Is Activated 
and Is Associated with Pathology 

 Early research with nonspecifi c complement inhibitors such as cobra venom factor 
(CVF) and C1 esterase inhibitor (C1-INH) demonstrated an important role for the 
complement cascade in the pathophysiology of ischemic brain injury. CVF has been 
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shown to deplete systemic and brain complement in rat stroke models and result in 
reduced infarct size [ 44 ,  97 ] and diminished neurological defi cits as measured by 
somatosensory evoked potentials (SSEPs) [ 98 ]. C1-INH treatment in rat and mouse 
models of transient focal brain ischemia/reperfusion (I/R) similarly results in 
reduced infarct volume, neutrophil accumulation, and neuronal damage [ 99 – 101 ] as 
well as signifi cantly improved general and focal defi cits [ 100 ]. 

 A more specifi c complement inhibitor, soluble complement receptor type 1 
(sCR1), promotes inactivation of C3b and methylamine-treated C4 (C4-ma), 
thereby blocking complement activation by multiple pathways [ 102 ]. In murine 
stroke models, sCR1 reduces neutrophil and platelet aggregation and signifi cantly 
improves neurologic function as well as providing modest but not statistically 
signifi cant reductions in cerebral infarct volume [ 45 ]. These effects are improved 
by sialylation of the sCR1 molecule to form a compound called sCR1-sLex [ 45 ]. 
Studies by our laboratory investigating sCR1 and sCR1-sLex treatment in nonhu-
man primates failed to demonstrate comparable neuroprotective effects, however 
[ 103 ,  104 ]. 

 Further investigations have examined specifi c complement components. 
Cleavage of C3, the central and most abundant component of the complement cas-
cade, appears to be a critical step in complement-related infl ammatory tissue injury, 
although other components play a role as well [ 105 ,  106 ]. A 2006 study by our 
group examined C1q, C5, and C3 knockout murine models of focal cerebral isch-
emia and found that only the C3 strain was protected [ 107 ]. Furthermore, adminis-
tration of a C3a receptor antagonist (C3aRA) to wild-type mice 45 min prior to 
ischemia resulted in neurological improvement and stroke volume reduction equiv-
alent to that demonstrated in C3 knockout mice, indicating C3aR could represent a 
potential target of therapy in ischemic stroke [ 107 ]. 

 Numerous studies have confi rmed that complement is activated and deposited on 
neurons following cerebral ischemia in humans [ 43 – 45 ,  108 ]. Translation of results 
from laboratory models into human therapies has proven diffi cult, however. In 2001, 
the Enlimomab Acute Stroke Trial of an anti-ICAM-1 antibody was halted after 
Enlimomab-treated patients were found to experience worse outcomes than placebo- 
treated patients [ 109 ]. The mouse antibody utilized in this study was later shown to 
activate the complement cascade when incubated with blood from healthy human 
volunteers, providing a possible explanation for the adverse effects observed in the 
trial [ 110 ]. 

 Complement activation following stroke in humans may also be distinct from 
murine models as a result of heterogeneity of activation of the different components 
over time. Work by our laboratory demonstrates that human plasma levels of 
complement proteins exhibit complex temporal variation following ischemic stroke. 
We found that C3a is elevated acutely after ischemia, C5a is elevated 7–14 days 
after ischemia, and soluble C5b-9 is depressed acutely after ischemia [ 108 ]. 
Additional evidence suggests that I/R injury in human ischemic stroke results not 
just from variable upregulation of complement proteins but also from variable 
downregulation of key complement regulators [ 111 ].  
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    ICH: Evidence that Complement Is Activated and Is Associated 
with Pathology 

 The fi rst direct evidence that complement activation plays a role in the pathophysi-
ology of ICH was provided by Hua et al. [ 34 ,  35 ]. In a rat model of ICH, a sixfold 
increase in C9 deposition around the hematoma was identifi ed 24 h after hemor-
rhage and peri-hematomal MAC formation was evident by 72 h.  N -acetyl heparin, a 
complement inhibitor, signifi cantly reduced brain edema in the ipsilateral basal 
ganglia at 24 h and 72 h after ICH. These results show that ICH leads to comple-
ment activation and that initiation of the MAC contributes to cerebral edema for-
mation after ICH. Experiments by Xi and colleagues examining the effect of 
systemic depletion of complement proteins confi rmed these fi ndings [ 33 ,  68 ,  112 ]. 
Intraperitoneal administration of CVF in rats reduced brain edema at 24 h and 72 h. 
Cerebellar water was unaffected. TNF-α production was reduced 2 h after ICH. 
Peri-hematomal C9 deposition, C3d production, and the number of C5a- and 
myeloperoxidase-positive cells were signifi cantly reduced by complement deple-
tion. A similar study in rats using venom defi brase DF-521 batroxobin, another 
nonspecifi c complement inhibitor, likewise identifi ed reduced expression of C3d 
and C9, as well as ICAM-1, in the peri-hematomal area after ICH [ 113 ]. 

 Broad evidence of complement involvement in ICH pathogenesis prompted fur-
ther investigation into the roles of specifi c complement proteins. The fi rst such 
study by Nakamura and colleagues examined ICH in C5-defi cient mice. This study 
produced surprising results. C5-defi cient mice in the setting of ICH were found 
to have signifi cantly increased brain water content at 3-day post-hemorrhage com-
pared with C5-suffi cient mice [ 114 ]. These paradoxic fi ndings indicate that C5a 
may have a benefi cial effect in this setting, a conclusion supported by previous work 
in models of hippocampal damage using transgenic C5a receptor (C5aR) knockout 
mice [ 115 ]. 

 Given these fi ndings regarding the potential protective role of C5a in ICH stroke 
and evidence suggesting a predominant role for C3 in the pathogenesis of cerebral 
I/R injury [ 107 ,  108 ,  116 ], subsequent work has focused on the role of C3 activation 
in ICH. Compared to C3-suffi cient mouse ICH models, Yang et al. found C3-defi cient 
mouse ICH models have less brain edema, lower hemeoxygenase-1 levels, and 
reduced microglia activation and neutrophil infi ltration around the clot after ICH 
[ 117 ,  118 ]. C3-defi cient mice also demonstrated improved neurological function 
compared to C3-suffi cient mice. In 2008, using a new murine model of ICH devel-
oped in our laboratory, we demonstrated that a C3a receptor antagonist (C3aRA) 
attenuates brain injury after cerebral hemorrhage [ 66 ,  119 ]. Animals pretreated with 
C3aRA experienced signifi cant amelioration of neurologic dysfunction, decreased 
brain water content, and reduced granulocyte infi ltration relative to vehicle-treated 
animals at 72 h post-ICH. Animals treated with C3aRA at the delayed time point of 
6 h following hemorrhage onset likewise showed reduced edema formation and 
signifi cantly improved spatial memory and sensorimotor capacity. 
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 Subsequent work has built upon this evidence, examining the time course of 
infl ammation-related injury in ICH and exploring other potential synergistic targets. 
Zhang et al. found that infl ammatory infi ltrate (especially neutrophils) and cells 
immunopositive for expression of TNF-α, IL-6, and NF-κB were maximum at 48 h 
following ICH [ 36 ]. C3 expression peaked at 48–72 h. Garrett et al. compared mice 
treated with both C5aRA and C3aRA with animals treated with C5aRA alone and 
found that, while administration of only C5aRA provides some neuroprotective effects 
versus vehicle, combination C3aRA/C5aRA therapy post-ICH leads to synergistic 
improvements in neurologic function as measured by a Morris water-maze, a 28-point 
scale, and a corner test at 6, 12, 24, 48, and 72 h after ICH onset [ 120 ]. Mice treated 
with combination therapy also demonstrated reduced infl ammatory cell infi ltration and 
brain edema. In addition, C5aRA-treated mice and C3aRA/C5aRA-treated mice had a 
decreased ratio of granulocytes in the hemorrhagic versus nonhemorrhagic hemi-
spheres relative to vehicle-treated animals. These results indicate that a combined 
approach of complement inhibition targeting both the C3a receptor and the C5a recep-
tor may offer superior neuroprotection in hemorrhagic stroke.   

    The Benefi cial Role of Complement in Recovery Following 
Acute Brain Injury 

 The role of complement in the pathophysiology of acute brain injury is not singularly 
harmful; indiscriminate inhibition of the complement cascade may interfere with 
physiologic mechanisms important for recovery following ischemic stroke and ICH. 

 It has been long established that complement is involved in opsonization and clear-
ance of apoptotic cell debris [ 121 – 125 ]. Defi ciencies in complement leading to accu-
mulation of apoptotic fragments have been associated with the pathogenesis of several 
diseases including systemic lupus erythematosus and Alzheimer’s disease [ 123 ,  125 , 
 126 ]. Apoptotic fragments and other cellular debris that go uncleared undergo second-
ary necrotic cell death and release damaging intracellular substances into the sur-
rounding extracellular tissue space [ 125 ]. Whereas phagocytosis of apoptotic cell 
fragments leads to disposal without an induction of infl ammation [ 121 ,  125 ,  127 ], 
necrotic cell death is pro-infl ammatory [ 128 – 132 ]. Furthermore, effective comple-
ment-mediated phagocytosis has been shown to actively shift the cytokine milieu 
from pro-infl ammatory to anti-infl ammatory [ 125 ,  128 ,  130 ,  133 – 136 ]. 

 Complement components, particularly the anaphylatoxins C3a and C5a, also 
have benefi cial actions in promoting tissue regeneration following ischemia by 
sensitizing damaged tissues to key growth factors [ 137 – 139 ]. Complement may 
regulate endogenous neurogenesis following ischemic and ICH stroke through such 
a process. Evidence indicates that neurogenesis occurs following acute brain injury 
[ 140 ,  141 ], that neural progenitor cells and immature neurons express both C3aR 
and C5aR [ 46 ], and that both C3a receptor antagonism and C3aR defi ciency reduces 
their proliferation [ 46 ]. C3-defi cient mice demonstrate diminished ischemia- induced 
neurogenesis and larger infarcts when assessed at delayed time points, indicating 
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that chronic blockade of C3aR might suppress neurogenesis and could thereby neg-
atively impact functional outcome [ 46 ]. Some more recent studies have failed to 
support such a clear role for complement in neurogenesis, however, and this issue 
remains an ongoing subject of investigation [ 142 ,  143 ]. 

 Recent work by our group confi rms that complement inhibition does not have 
wholly neuroprotective effects and further suggests that the balance between the 
detrimental and benefi cial actions of complement shifts predictably as a function 
time. In Ducruet, 2011, we demonstrate that MBL defi ciency in murine stroke models 
ameliorates reperfusion injury in the acute phase (24 h post-ischemia), but that this 
neuroprotective effect of complement inhibition is not sustained in the subacute 
phase (7 day post-ischemia). A study published this year by our group similarly 
indicates that, relative to the cohort treated at a delayed time point, C3aRA admin-
istration limited to the acute post-stroke period increases neurogenesis, improves 
neurological functional outcome, and reduces mortality [ 144 ].  

    Therapeutic Strategies for Complement Inhibition in Acute 
Brain Injury 

 The complement cascade is an appealing therapeutic target in the treatment of acute 
brain injury following ischemic stroke and ICH for a number of reasons. First, the 
outcomes achieved by current strategies evince the need for new approaches in gen-
eral. Second, the limitations of surgical interventions and the recognition that the 
biological processes involved in the pathogenesis of these diseases extend beyond 
the initial injurious event and are dynamic over the ensuing time course indicate a 
need for pharmacological alternatives that have ongoing activity in the brain and 
can be adjusted over time. Third, the understanding that complement activation is a 
key feature of the secondary cerebral damage on which functional outcomes often 
hinge paired with the rapid expansion in the array of available immunomodulatory 
agents has targeted complement modulation specifi cally as the best possibility for 
new treatments in these devastating disease processes. 

 Given the centrality of C3 in the pathways of activation, the possibility for 
cascade- independent cleavage of C3 by thrombin and other proteases, and available 
evidence from laboratory models, therapeutic strategies targeting C3 currently 
appear to have the most promise. Inhibition of C3 cleavage would block infl amma-
tory exacerbation by anaphylatoxins as well as downstream MAC-mediated lysis 
and associated iron toxicity. Research by our group and others has largely focused 
on antagonism of the C3a receptor, with promising initial results in murine models 
[ 46 ,  66 ,  107 ,  116 ,  120 ]. Additional evidence suggests the therapeutic benefi ts of 
C3aRA treatment can be augmented by administration of a C5aR antagonist [ 120 ]. 

 It has become clear, however, that a number of complicating factors continue to 
impede the translation of these results to human stroke and ICH. First, new research 
has recognized that complement proteins, in particular C3a and C5a, have benefi cial 
effects in the recovery process following ischemic and ICH stroke, both in stimulating 
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neurogenesis and in shifting the cytokine milieu away from a pro-infl ammatory state. 
As a result, inhibition of complement activation through antagonism of the C3a/
C3aR axis could potentially impair neurorestorative processes. Second, recent 
investigations demonstrate that the complicated balance between the harmful and 
benefi cial effects of complement activation is not homogenous over time. 
Specifi cally, evidence seems to indicate that the injurious actions of complement 
predominate in the acute phase immediately following ischemia or hemorrhage but 
that long-term inhibition of the complement cascade into the subacute phase inter-
feres with complement-mediated reparative processes [ 46 ,  56 ,  144 ]. 

 The gap between laboratory models of these diseases and their pathophysiology in 
humans was further evidenced by the failure of sCR1 and sCR1-sLex trials in nonhu-
man primates despite promising results in mice [ 103 ,  104 ]. To date, the only relevant 
drug trial in humans, the enlimomab acute stroke trial, was a notable failure [ 109 ]. 

 Another approach to complement inhibition involves intravenous immunoglobu-
lin (IVIG) therapy. IVIG is less specifi c in targeting complement than other experi-
mental alternatives such as C3aRA, but it also therefore has the potential to act on 
multiple pro-infl ammatory pathways at once, including pro-infl ammatory cytokine 
production and leukocyte adhesion [ 145 ]. IVIG treatment targeting neuroinfl amma-
tion through inhibition of complement has been shown to be benefi cial in numerous 
neurological diseases [ 145 – 149 ]. In murine models of stroke, one study found IVIG 
reduced infarction size by 50–60 %, signifi cantly improved functional outcome, and 
almost entirely eliminated mortality [ 150 ]. In addition, greater numbers of neurons 
were spared with only occasional cell loss observed within the ischemic region. The 
authors of this study posit that IVIG therefore could reduce the long-term neuro-
logical consequences of ischemic stroke in humans that result from neuron loss.  

    Conclusion 

 Recent revelations about the complexities of the role played by complement in acute 
brain injury and its temporal pattern of activity suggest, on the one hand, that the rift 
between our current understanding and the ultimate end-goal, a viable drug for use 
in humans, is perhaps wider than initially believed. On the other hand, the intricacies 
of complement activity in the setting of ischemic and ICH stroke, of which our 
understanding has grown dramatically in recent years, indicate that, with precise 
targeting and timing, nuanced and personalized pharmacological treatments that 
are both safe and produce signifi cant improvements in neurologic outcome may be 
achievable in the near future. 

 Future research must elucidate further the various actions of the complement 
cascade, the different roles played by the many component proteins, and the temporal 
patterns of complement activity in the setting of acute brain injury. While C3a recep-
tor antagonism still appears to be the most promising approach for a potential drug, 
greater understanding of the effects its blockade will produce in humans is needed. 
Meanwhile, alternative approaches like IVIG also should continue to be explored.     
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    Abstract     Matrix metalloproteinases (MMPs) represent a critical set of mediators 
in the neurovascular unit after stroke. Responses in MMPs underlie both acute 
injury as well as delayed remodeling as tissue transitions from damage into repair. 
This chapter briefl y reviews how MMPs may contribute to acute infarction, stroke 
recovery, gray versus white matter responses, and how cell–cell signaling in neuronal, 
glial, and vascular compartments can be interpreted in the overall context of infl am-
mation within the perturbed neurovascular unit. Dissection of these underlying 
MMP pathways may eventually lead us to novel therapeutic approaches for target 
neuroprotection as well as new ways to search for biomarkers for mapping stroke 
recovery.  

        Introduction 

 Infl ammation and activation of both innate and adaptive immunity are now recognized 
to signifi cantly contribute to stroke pathophysiology. In the context of the neurovas-
cular unit, infl ammation may be expressed as a set of coordinated cell–cell and cell–
matrix signals that allow the damaged neurovascular unit to respond to injury. 

 The importance of cell–cell signaling between all elements of the neurovascular 
unit in stroke, brain injury, and neurodegeneration has been extensively discussed 
[ 1 – 4 ]. Dysfunctional cross talk between neurons, glia, and vascular compartments 
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contributes to multiple aspects of acute pathophysiology in CNS disease. Impaired 
glutamate release–reuptake mechanisms in neurons and astrocytes can amplify 
excitotoxicity [ 5 ]. Perturbed signaling between cerebral endothelium, astrocytes, 
and pericytes can disrupt blood–brain barrier integrity [ 6 ]. Dysfunctional coupling 
between neuronal activation and vascular responses can promote deleterious spread-
ing depression [ 7 ]. And ultimately, disordered signaling between all neurovascular 
and gliovascular elements can underlie the evolution of neuroinfl ammation and cell 
death [ 8 ]. This concept of the neurovascular unit may be important because, by 
understanding how complex multicellular events unfold, we may be able to move 
beyond a singular focus on “preventing neuron death” towards a more integrative 
approach where we attempt to rescue function within and signaling between all cell 
types in the entire neurovascular unit. 

 Increasingly, however, investigations into cell–cell signals of the neurovascular 
unit in stroke have suggested that these mechanisms may be extremely complex. 
A key challenge may be the recognition that many of the signals within the neuro-
vascular unit may play biphasic roles as injury and disease evolves. What is damaging 
may become protective and what is protective may become damaging. Acute over-
activation of the NMDA receptor is excitotoxic, but without well-regulated NMDA 
signaling during stroke recovery, neuroplasticity cannot take place. Infl ammatory 
activation of microglia might be initially benefi cial for tissue clean-up and repair, 
but prolonged microglia activation in Alzheimer’s disease becomes highly neuro-
toxic. In this chapter, we discuss one of the best examples of this biphasic nature of 
infl ammatory signals in the neurovascular unit, i.e., the extracellular family of pro-
teases comprising matrix metalloproteinases (MMPs). 

 In stroke, a large body of preclinical data and accumulating clinical fi ndings sup-
port a role of MMPs as both biomarker as well as target. When stroke or brain injury 
occurs, MMPs become dysregulated and may be a central cause of tissue damage. 
However, some caution may also be warranted since MMPs can play biphasic roles 
after brain injury—deleterious in the acute phase but potentially benefi cial in 
delayed remodeling and recovery.  

    MMPs in Acute Brain Injury after Stroke 

 MMPs comprise a large family of extracellular zinc endopeptidases [ 9 ]. But in the 
context of stroke, the largest amount of data may exist for the gelatinases MMP-2 
and MMP-9. In animal models of focal and global cerebral ischemia, MMPs are 
upregulated, and treatment with MMP inhibitors prevent neuronal cell death, 
decrease infarction, and improve outcomes [ 10 – 12 ]. Knockout mice that lack 
MMP-9 show signifi cantly reduced brain cell death after cerebral ischemia or trau-
matic brain injury [ 13 – 16 ]. Conversely, transgenic mice that overexpress tissue 
inhibitors of metalloproteinase (TIMP) have better outcomes [ 17 ]. 

 Mechanistically, the data in animal models fi t well with the premise that high 
levels of MMPs can damage neurovascular matrix and cause BBB injury, edema, 
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and hemorrhage [ 18 ]. Degradation of various basal lamina and tight junction 
proteins has been correlated with BBB leakage and blockade of MMPs reduce 
edema [ 13 ,  15 ]. Matrix proteolysis and BBB disruption was reduced in knockout mice 
lacking MMP-9 [ 15 ]. MMP activation and BBB leakage also appears to coincide with 
the generation of free radicals. And as neurovascular injury continues to evolve, 
recruitment of cytokines and vascular adhesion molecules add onto the accumulating 
tissue damage and may even further amplify MMPs and infl ammation [ 19 ]. 

 Beyond vascular leakage per se, MMP-mediated proteolysis of neurovascular 
matrix may also interfere with homeostatic signals between different cell types in 
the neurovascular unit. Resting matrix signaling via integrins is vital for normal cell 
function. Disruption of extracellular matrix by MMPs can induce anoikis in neurons 
and cerebral endothelial cells [ 20 ,  21 ]. In animal models, degradation of matrix cor-
relates with cell death [ 22 ]. In a nonhuman primate model of focal cerebral isch-
emia, areas where matrix antigens are lost correspond to growing regions of 
collapsing penumbra and dying cores [ 23 ]. The importance of these matrix signals 
is further confi rmed in fi bronectin knockout mice in which neuronal apoptosis and 
brain damage are amplifi ed after cerebral ischemia [ 24 ]. Broadly speaking, MMPs 
may degrade homeostatic cell–matrix integrin signals that then lead to anoikis-like 
cell death in a wide spectrum of CNS cell types. Hence, blocking MMPs may reduce 
neurovascular damage and infarction after stroke.  

    MMPs in Delayed Recovery after Stroke 

 MMPs play a deleterious role during acute stroke by augmenting BBB disruption, 
edema, hemorrhage, and brain injury. However, emerging data now suggest that 
MMPs may play biphasic roles. During the acute stages of stroke, MMPs are delete-
rious. But during delayed phases of stroke recovery, MMPs may play surprisingly 
benefi cial roles [ 25 ,  26 ]. In part, this duality of MMP phenotype may be related 
to its original physiologic roles in normal development of brain morphology [ 27 ]. 
In developing brain, these proteases modify extracellular matrix to allow newborn 
cells to migrate and neurites and axons to extend and connect. Additionally, MMPs 
may also facilitate the actions of other signaling molecules. For example, MMP-9 
may be an “angiogenic switch” by processing and releasing bioactive VEGF to 
promote vascular growth and/or remodeling [ 28 ]. MMP-9 has also been implicated 
in associative learning in the hippocampus. The broad-spectrum MMP inhibitor 
FN-439 interferes with long-term potentiation [ 29 ]. MMP-9 knockout mice display 
defi cits in learning and memory [ 30 ]. 

 During stroke recovery, the brain attempts to remodel. MMPs may be recruited 
as part of this endogenous recovery process. So blocking MMPs at the wrong place 
or wrong time may worsen outcomes. Following focal cerebral ischemia in mice, 
endogenous neurogenesis is amplifi ed in the subventricular zone and newborn 
neuroblasts are diverted from their original rostral migratory stream towards dam-
aged brain [ 31 ]. This process requires MMPs, and delayed blockade of MMPs 
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disrupts neuroblast migration [ 32 ]. At 2 weeks after focal strokes in rats, a secondary 
upregulation of MMPs in peri-infarct cortex can be detected in astrocytes and endo-
thelial cells [ 33 ]. Late blockade of MMPs in this model system is damaging since 
MMPs appear to mediate VEGF processing, compensatory angiogenesis, and stroke 
recovery [ 33 ]. Hence, MMP inhibitors can sometimes lead to benefi cial reductions 
of acute edema, while resulting in impaired long-term recovery [ 34 ]. Similar biphasic 
properties of MMPs may also exist in spinal cord injury, where MMP-2 is increased 
together with reactive gliosis [ 35 ]. But genetic deletion of MMP-2 exacerbated 
white matter damage and decreased motor recovery [ 36 ]. Of course, not all 
MMP- mediated plasticity is guaranteed to be benefi cial. How MMPs augment 
normal or abnormal rewiring in recovering brains after stroke or trauma remains to 
be fully elucidated.  

    MMPs and Infl ammatory Demyelination 

 Although the neurovascular unit was originally proposed as a concept to assess 
neuronal function and disease, it has become clear that analogous cell–cell interac-
tions take place in white matter. An “oligovascular unit” has been described and 
investigated that operationally comprises trophic interactions between axonal, glial, 
and vascular compartments [ 37 ]. Myelin proteins produced by oligodendrocytes 
can support axonal health and function [ 38 ]. Cerebral endothelium and white matter 
astrocytes can also secrete critical trophic factors such as IGF1 and FGF that sup-
port homeostasis and proliferation in oligodendrocyte precursor cells [ 39 ,  40 ]. Just 
as in neurovascular unit of gray matter, extracellular proteolysis by MMPs will also 
play a central role in the oligovascular unit after stroke. 

 MMPs were initially implicated in white matter injury because it was discovered 
that they could proteolytically cleave myelin basic protein [ 41 ]. In EAE animal mod-
els that mimic multiple sclerosis, activated microglia secrete MMPs that degrade the 
blood–brain barrier and myelin basic protein, thus leading to infl ammatory demye-
lination [ 42 ]. After traumatic brain injury, similar events may also be detected in 
damaged white matter. MMPs become upregulated, especially MMP-9, which then 
results in degradation of myelin basic protein and disruption of axonal function [ 43 ]. 
These events may also impact on the recovery process. The extracellular matrix sub-
strate laminin is known as a critical cofactor for neurite growth [ 44 ]. MMP-2 and 
MMP-9 can both recognize laminin, but the effects may be complex. Outright degra-
dation of laminin should reduce this pro-neurite outgrowth factor, thus interfering 
with recovery. However, under some conditions, extracellular matrix proteolysis may 
conversely increase laminin bioavailability and promote neurite recovery in white 
matter after stroke and trauma [ 45 ]. 

 In the context of cerebrovascular disease, white matter dysfunction may occur in 
various conditions of vascular dementia. A recent study has implicated a role for 
MMPs in this disease [ 46 ]. After prolonged cerebral hypoperfusion in mice, white 
matter tracts of the corpus callosum begin to demyelinate over the course of weeks 
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to months. At the same time, there is neurovascular infl ammation evidenced by 
BBB leakage, activation of microglia, and invasion of neutrophils. When MMP-9 
levels were measured, a multicellular response was detected. During the initial 2–3 
days post-onset, MMP-9 was upregulated in oligodendrocyte precursor cells. 
Thereafter, by 1–2 weeks, MMP-9 expression shifted into microglia and perturbed 
cerebral endothelium. In concert with this biphasic temporal profi le, early blockade of 
MMPs in oligodendrocyte precursor cells signifi cantly reduced blood–brain barrier 
leakage and subsequent demyelination and neutrophil infi ltration. The biphasic 
profi le of MMPs in this model of white matter vascular dementia may again support 
to demonstrate a biphasic role for infl ammation in CNS disease. After white matter 
injury, an “overactivation” of oligodendrocyte precursors may initially exacerbate 
injury by damaging the blood–brain barrier. But in the delayed phase, oligodendro-
cyte precursors may remain essential to rebuild lost mature oligodendrocyte popula-
tions and restore myelination and white matter function.  

    MMPs as Target and Biomarker in Clinical Stroke 

 Because MMPs can degrade BBB integrity and function in the neurovascular unit, 
they have been proposed as potential biomarkers in clinical stroke and brain injury. 
Plasma levels of MMP-9 are elevated during acute stages of both ischemic and 
hemorrhagic stroke and appear to be correlated with poor neurological outcomes 
[ 47 ,  48 ]. In animal models of embolic stroke, tPA amplifi es MMP-9 [ 49 ]. Emerging 
clinical data may be consistent with the experimental literature. Patients with higher 
plasma levels of MMP-9 may be more susceptible to hemorrhagic transformation 
following tPA thrombolysis for acute ischemic strokes [ 50 ,  51 ]. 

 In addition to serving as positive protein signals in plasma, MMP responses have 
also been detected in genetic and brain compartments of stroke patients. After isch-
emia or brain injury, circulating blood cells show rapid alterations in gene expression. 
In particular, responses in MMP-9 genes are highly conserved [ 52 ,  53 ]. In the brain 
parenchyma itself, MMP-9 positive astrocytes colocalize with peri-hematoma 
edema [ 54 ]. After ischemic strokes, MMP-9 positive neutrophils appear to coincide 
with local disruptions in microvessels [ 55 ,  56 ]. Taken together, these signals are 
broadly consistent with data and mechanisms derived from experimental models. 

 Beyond their utility as biomarkers, MMPs have also been pursued as potential 
therapeutic targets. In animal models of focal cerebral ischemia, MMP inhibitors 
reduce infarct volumes when administered early during acute ischemic strokes. 
Consistent with its proposed mechanisms, MMP inhibitors appear to be especially 
effective in terms of reducing brain edema and hemorrhage. One aspect of this 
pathophysiology with particular clinical relevance may be the relationship between 
MMPs and tPA thrombolysis. tPA is known to bind several lipoprotein receptors in 
cerebral endothelium that can upregulate MMP-9 [ 57 ]. Therefore, it is possible that 
some of the hemorrhagic transformation complications seen in tPA-thrombolysis 
patients may be caused by an inadvertent increase in MMPs [ 50 ,  51 ]. An obvious 
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question is whether clinically acceptable compounds can be used as MMP inhibitors 
in stroke thrombolysis? In this regard, minocycline has been proposed as a potential 
“re-purposed drug” to target MMP-9 [ 58 ]. In experimental clot-based models of 
focal stroke in hypertensive rats, minocycline plus tPA as combination stroke ther-
apy seem to suppress MMP-9, decrease hemorrhagic transformation, and widen the 
therapeutic time window for safe and effective reperfusion [ 59 ]. Based in part on 
these experimental data, clinical trials have been started [ 60 ]. Initial fi ndings are 
promising as minocycline appeared to dampen plasma MMP-9 biomarker levels as 
hypothesized [ 61 ]. Nevertheless, some caution might be warranted. As discussed 
earlier, MMP blockade may interfere with endogenous recovery after brain injury, 
and long-term use of minocycline worsened outcomes in an ALS clinical trial [ 62 ]. 

 Although the majority of clinical MMP data has been collected in ischemic 
strokes, recent efforts extend the role of these proteases to hemorrhagic strokes as 
well. MMPs are upregulated in subarachnoid hemorrhage patients, and blood and 
CSF levels of MMP-9 may track vasospasm and clinical outcomes [ 63 ]. 
Mechanistically, MMPs contribute to early brain injury and may also process gelsolin 
that can further amplify neuroinfl ammation [ 64 ]. In experimental models of sub-
arachnoid hemorrhage, MMP inhibition improves outcomes [ 65 ]. Whether these 
targets work clinically remains to be determined. 

 Besides acute ischemic and hemorrhagic strokes, MMPs may also contribute to 
the pathophysiology of “slower” cerebrovascular disorders such as vascular demen-
tia. Similar to fi ndings in experimental animal models, dysregulation of MMPs may 
occur in white matter injury after vascular dementia. MMP-9 in particular has been 
found to be upregulated in the CSF of vascular dementia patients [ 66 ]. More 
recently, it has been suggested that a panel of biomarkers including MMPs, myelin 
basic protein, tau, and amyloid-beta may help distinguish vascular dementia from 
Alzheimer’s disease [ 67 ]. 

 Proper functioning of the neurovascular unit and oligovascular unit requires 
integrated cell and matrix signaling between multicellular compartments. In this 
regard, MMPs can disrupt signaling or promote remodeling, depending on timing 
and context. Hence, MMPs may serve as useful biomarkers and targets in stroke 
and brain injury.  

    Conclusion 

 Infl ammation and immune reactions play key roles in the pathophysiology of stroke 
and cerebrovascular disease. From a clinical standpoint, these mechanisms are impor-
tant because they provide many potential targets for diagnostics and therapeutics. 
However, what is being increasingly recognized, is that infl ammatory and immune 
responses are highly complex and are not always deleterious. Indeed, infl ammation 
can be broadly interpreted as a set of evolutionarily conserved responses that underlie 
endogenous attempts at tissue repair. After stroke, multiple infl ammatory signals 
are activated within the neurovascular unit that also have both deleterious as well as 
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benefi cial consequences. In this regard, MMPs may represent a stereotyped exam-
ple of this concept. As extracellular proteases in the CNS, MMPs become upregu-
lated in the damaged neurovascular unit. Initially, overactivated MMPs may injure 
the neurovascular unit and lead to BBB leakage, edema, hemorrhage, anoikis-like 
cell death, activation of microglia, and secondary infi ltration of immune cells. But as 
the neurovascular unit continues to recover, MMPs may then switch into a repair 
mode whereby they help neurovascular plasticity and remodeling. Therefore, any 
attempt to defi ne MMPs as an infl ammatory target in stroke will have to carefully 
balance the transition between initial injury and subsequent repair.     
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    Abstract     Each year a substantial number of Americans suffer from hypoxic injury 
to the brain due to diminished blood fl ow and few effective treatments are available. 
A fruitful area of current investigation involves toll-like receptors (TLRs), which 
are a family of highly conserved receptors that play a key role in the pathology of 
brain injury. Studies in animals defi cient in specifi c TLRs as well as genetic data 
from patients with altered TLR biology suggest that the activation of TLRs exacer-
bates damage in the setting of ischemia. Paradoxically, the stimulation of TLRs  
prior to injury is known to induce a state of tolerance to subsequent ischemic injury 
or “preconditioning”. Such preconditioning results in a profound neuroprotective 
effect and the mechanisms involved are under intense investigation. Understanding 
these divergent roles of TLRs in brain injury and neuroprotection offers great prom-
ise in the discovery of new therapeutic targets and the mitigation of ischemic brain 
injury in “at risk” patients through the use of prophylactic TLR stimulation as a 
therapeutic strategy. This chapter focuses on these two divergent roles of TLRs—
one role that promotes and another that prevents ischemic injury in the brain in the 
context of stroke and other acute brain injuries.  
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        Toll-Like Receptors: An Introduction 

 Damage to the brain following injury occurs through the activation of multiple patho-
logical mechanisms (e.g., hypoxia, excitotoxicity, ionic imbalance, spreading depolar-
ization, oxidative stress, endothelial dysfunction, infl ammation, and apoptosis) [ 1 ]. 
These mechanisms develop over hours or even days after the initial injurious event and 
negatively affect the complex network of cellular interactions in the brain. Among these 
mechanisms, the infl ammatory response plays a critical role. Stroke, cerebral ischemia, 
and traumatic brain injury each elicit an infl ammatory response consisting of systemic 
and local responses that can result in signifi cant pathology or even death [ 1 ,  2 ]. 

 Infl ammation can be observed systemically by peripheral immune activation and 
centrally by the activation of microglia, endothelial cells, and astrocytes in the cen-
tral nervous system. A key factor in the activation and modulation of the infl amma-
tory responses in the brain involves TLRs, a family of receptors initially characterized 
in mammals by their ability to recognize “nonself” antigens in the form of pathogen- 
associated molecular patterns (PAMPs) [ 3 ]. PAMPs are components derived from 
pathogens (e.g., bacteria, viruses, parasites, and fungi) [ 4 ]. TLRs constitute a major 
component of innate immunity, traditionally considered to be the nonspecifi c fi rst 
line of immune defense. Structurally, TLRs are transmembrane proteins character-
ized by the extracellular presence of leucine-rich repeats that recognize PAMPs and 
by the intracellular presence of Toll-interleukin 1 (IL-1) receptor (TIR) domains 
that are responsible for downstream signal transduction [ 5 ]. Ten TLRs have been 
identifi ed in humans, whereas 12 functional TLRs have been found in mice [ 5 ]. 
TLRs can form heterodimers or homodimers and some associate with co-receptors 
or other accessory molecules (e.g., MD2 and CD14 in the case of TLR4), which can 
be critical factors necessary for tailoring the outcome of TLR signaling. Certain 
TLRs localize to the plasma membrane (TLRs 1, 2, 4, 5, and 6), whereas others are 
located intracellularly on endosomes or lysosomes (e.g., TLRs 3, 7, 8, and 9) [ 5 ]. 

 TLR stimulation induces a diverse array of intracellular signaling pathways that 
regulate the scale, duration, and nature of the infl ammatory response elicited by a 
given ligand. TLR signaling initiates the recruitment and association of adaptor mol-
ecules characterized by a structurally conserved Toll/interleukin-1 receptor (TIR) 
domain. There are two principal adaptor molecules that associate with TLRs: myeloid 
differentiation factor-88 (MyD88) and TIR-domain-containing adaptor inducing 
IFNβ (TRIF) [ 6 ]. MyD88 associates with all TLRs, with the exception of TLR3, 
which exclusively associates with TRIF [ 7 ]. Among the TLRs, TLR4 is the only 
receptor that is known to associate with both MyD88 and TRIF [ 8 ]. Briefl y, the asso-
ciation of MyD88 with an activated TLR results in the activation of the transcription 
factor nuclear factor kappa B (NFκB) and subsequent generation of primarily pro-
infl ammatory cytokines including interleukin (IL)-6 and tumor necrosis factor-alpha 
(TNF) [ 9 ]. In contrast, recruitment of TRIF typically leads to the generation of anti-
infl ammatory (e.g., IL-10 and TGFβ), antiviral, and type I interferon (IFN)-associated 
molecules including IFNβ [ 6 ]. These differences in signaling indicate a tailoring of 
the response for a given PAMP or pathogen (e.g., virus versus bacteria). 
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    TLR Activation: Detection of Self and Nonself 

 Studies conducted in mice defi cient in individual TLRs have elucidated distinct 
functions for each receptor, with regard to PAMP recognition [ 4 ]. The most com-
mon PAMPs recognized by TLRs include the bacterial cell wall components pepti-
doglycan (TLR2) and lipopolysaccharide (LPS, endotoxin) (TLR4), and the nucleic 
acids double-stranded RNA (TLR3), single-stranded RNA (TLR7), and unmethyl-
ated cytosine–guanosine-containing DNA oligonucleotides (CpG ODNs) (TLR9) 
[ 4 ,  10 ]. Depending upon their localization, PAMPs are recognized by TLRs present 
in the plasma membrane, or in the endosomal, lysosomal, and endolysosomal com-
partments inside the cell [ 4 ], thus providing an additional level of regulation. 

 In addition to pathogen or “nonself” detection, TLRs act as sentinels of cell or tissue 
damage. As a result, TLRs mediate infl ammatory responses to aseptic tissue injury or 
“self”. In the absence of pathogens, the activation of TLRs depends upon the recognition 
of certain molecules derived from host cells. These self-derived signals indicate the 
presence of an endogenous threat and convey the nature of the damage (e.g., mechanical 
injury, cellular necrosis, or hyperactivation) [ 11 ]. A variety of signals are released or 
modifi ed during cellular damage or death, including    damage-associated molecular pat-
terns (DAMPs) as well as PAMP-binding or PAMP-sensitizing proteins [ 11 ,  12 ]. These 
molecules consist of intracellular proteins, extracellular matrix components, modifi ed 
lipids, nucleic acids, and other soluble mediators that represent “self or modifi ed self” 
and accumulate at the site of injury (Fig.  7.1 ). Some of these ligands are thought to acti-
vate TLRs directly while others are postulated to participate with other ligands, chaper-
ones, or co-receptors to fi ne-tune TLR responses [ 13 ].

   At least 24 distinct ligands have been reported to represent danger signals 
released or modifi ed during injury and some constitute key effectors identifi ed in 
the injured brain including chromatin-associated protein high mobility group pro-
tein B1 (HMGB1) [ 14 ], uric acid [ 15 ], heat shock proteins (HSP) [ 16 ], ATP [ 17 ], 
S100 proteins [ 18 ], heparin sulfate [ 19 ], and host-derived nucleic acids in the form 
of DNA [ 20 ], RNA [ 21 ], and microRNA [ 22 ] (Table  7.1 ). Antioxidant proteins 
called peroxiredoxins are the most recently identifi ed DAMPs released from the 
ischemic brain during the late phase of injury [ 48 ] (Table  7.1 ). In contrast, HMGB1 
is released early from damaged neurons and is detectable in the cerebral spinal fl uid 
within hours of the ischemic event [ 50 ]. These data suggest that distinct roles may 
exist for the variety of DAMPs released at various stages of injury.

   These endogenous molecules with their unique location and timing of appearance 
clearly contribute to TLR activation and suggest that danger signals play a critical role 
in the brain’s overall response to injury. For example, the administration of HMGB1 
directly into the brain resulted in exacerbated stroke severity and infl ammation [ 51 ,  52 ], 
whereas specifi c blockade of HMGB1 ameliorated infarction in a rodent stroke model 
[ 53 ]. Another example is that of S100A8 and S100A14, putative ligands of TLR4 [ 49 ] 
whose targeted deletion resulted in reduced lesion volumes, brain edema, and less 
infl ammatory infi ltrates following stroke in mice [ 54 ]. These are but two examples of 
the detrimental effects of TLR activation via danger signals generated by brain injury.  
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  Fig. 7.1    Endogenous danger signals derived from dead or dying cells. Damaged or necrotic cells 
release products known as damage-associated molecular patterns (DAMPs). These DAMPs can acti-
vate TLR pathways. DAMPs are released either passively through damaged plasma membranes or 
actively by secretion from the damaged cell. In addition, disruption of the surrounding extracellular 
matrix releases components that act as DAMPs. Upon DAMP recognition, responding cells initiate 
pathways that culminate in a pro-infl ammatory cascade that drives infl ammation or repair. When 
exaggerated or prolonged, these infl ammatory signals may cause signifi cant pathology in the brain       

     Table 7.1    Selected danger-associated molecular pattern (DAMP) ligands and proposed TLR 
associations   

 Compartment  Ligand  TLR Association  References 

 Extracellular 
matrix derived 

 Fibronectin  TLR4  [ 23 ] 
 Hyaluronan  TLR2, TLR4  [ 24 ,  25 ] 
 Heparan sulfate  TLR4  [ 19 ] 
 α-Crystallin  TLR4  [ 26 ] 

 Intracellular  ATP  TLR4  [ 27 ] 
 Heat shock proteins  TLR2, TLR4  [ 28 ,  26 ,  29 ,  30 ] 
 Uric acid  TLR2  [ 15 ,  31 ] 

 Nuclear  Chromatin:IgG complex  TLR9  [ 32 ] 
 dsRNA  TLR3  [ 33 ] 
 DNA  TLR9  [ 34 ] 
 MicroRNA  TLR7  [ 22 ] 
 HMGB1  TLR2, TLR4  [ 35 ] 
 ssRNA  TLR7, TLR8  [ 36 ,  37 ] 

 Other  Amyloids  TLR2, TLR4  [ 38 ] 
 β-defensin  TLR1/2, TLR2,TLR4  [ 39 ,  40 ,  41 ,  42 ] 
 Eosinophil-derived neurotoxin  TLR2  [ 43 ] 
 Fibrinogen  TLR4  [ 44 ] 
 Low-density lipoproteins  TLR4  [ 45 ,  46 ,  47 ] 
 Peroxiredoxins  TLR4  [ 48 ] 
 S100A  TLR4  [ 49 ] 
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    TLR Expression and Distribution in the CNS 

 As part of immune surveillance, TLRs are generally expressed by antigen- presenting 
cells such as B cells, dendritic cells, monocytes, and macrophages from blood, 
organs, or lymphoid tissues (Table  7.2 ). These important cell types function in 
innate and antigen-acquired immune responses designed to target specifi c patho-
gens or altered self. TLRs in the brain are constitutively expressed by microglia and 
astrocytes—cells that are considered to be key sentinels of innate CNS immunity. 
Other brain cells, not strictly involved in the CNS immunity, such as brain endothe-
lial cells, oligodendrocytes, and neurons, also express TLRs [ 55 ,  69 ,  70 ]. Human 
neurons express TLRs 2, 3, 4, 7, 8, and 9, whereas microglia and astrocytes express 
TLRs 1–9 (Table  7.2 ). Human astrocytes highly express TLR3 as compared to other 
cells [ 57 ], suggesting a special role for this receptor in the brain. Other cells in the 
brain typically express a restricted number of TLRs including TLR2, TLR3 (oligo-
dendrocytes and endothelial cells), and TLR4, TLR6, and TLR9 (endothelial cells) 
(Table  7.2 ). These cells increase their expression of TLRs in response to activating 
stimuli and subsequent TLR stimulation generates cytokine profi les refl ective of the 
specifi c cell type as well as the TLR, co-receptors, or ligands [ 71 ]. Thus, the varied 
distribution of TLRs on cells in the brain suggests unique aspects of TLR biology in 
the regulation of the brain’s response to injury.

       TLRs in CNS Immunity 

 The CNS has traditionally been considered an immune privileged site completely 
separate from immunological processes in peripheral organs. However, accumulating 
evidence argues that the CNS has its own well-organized innate immune reaction to 
injury or infection [ 72 ,  73 ]. The primary function of these cells is to maintain and 
restore tissue homeostasis by regulating the balance between the protective and the 
potentially harmful effects of their activation following stimuli, such as acute brain 
injury [ 74 ]. Microglia are central to the process of immune regulation in the brain, 
as the immune response of the CNS depends upon phagocytic and scavenger recep-
tors that distinguish foreign and host-derived molecules [ 75 ]. 

 Microglia are the resident phagocytic cells of the CNS similar to macrophages 
found in other tissues [ 76 ]. Under basal conditions microglia, like macrophages, con-
tinuously survey the CNS microenvironment for the presence of infection or injury. 
Upon infection or CNS injury, microglia are rapidly activated leading to increased 
proliferation, motility, phagocytic activity, and the release of cytokines and reactive 
oxygen species [ 77 ]. Because microglia play a central role in innate immunity, recog-
nizing both PAMPs and DAMPs, it is not surprising that they are implicated in a range 
of detrimental neuronal infl ammatory processes associated with diseases of the CNS 
[ 78 ]. However, microglia when appropriately activated may also protect neurons from 
damage induced by resident or infi ltrating cells [ 79 – 81 ]. 
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 The effects induced by the stimulation of a particular TLR can differ according 
to the specifi c cell type involved. For example, microglia and astrocytes can respond 
differently upon engagement of a given TLR. Microglia secrete cytokines and che-
mokines (e.g., TNF, IL-6, IL-10, IL-12, CXCL-10, and IFNβ) in response to the 
stimulation of TLR2, TLR3, and TLR4 with their cognate ligands, whereas astro-
cytes produce small amounts of IL-6 to all but TLR3 stimulation [ 82 ]. Upon activa-
tion, adult human astrocytes were shown to express TLR3 followed by induction of 
neuroprotective mediators, anti-infl ammatory cytokines (e.g., IL-10), as well as 
regulators of growth, differentiation, and migration. This activation of TLR3 and the 
downstream processes resulted in a functional inhibition of neuronal cell death in 
human organotypic brain slice cultures [ 83 ]. 

 A recent study showed that stimulation of neurons with LPS in vitro induced 
JNK activation and high CXCL1 (KC) chemokine with limited pro-infl ammatory 
cytokine secretion when compared to mixed glial cultures [ 62 ]. However, when 
cocultured with endothelial cells, LPS-treated neurons induced the expression of 
cellular adhesion molecules (ICAM-1 and VCAM-1) and increased the infi ltration 
of neutrophils [ 62 ]. As with peripheral immune responses, the activation of CNS 
immune effector mechanisms can have both toxic and protective effects depending 
upon the circumstances and cellular context [ 84 ].   

    TLRs in the Brain: At the Crossroads Between 
Injury and Protection 

    Detrimental Role of TLRs in Ischemic Stroke 

 Acute brain injury is associated with a myriad of infl ammatory responses, both sys-
temically and locally. For example, acute stroke stimulates an infl ammatory cascade 
in the occluded vessel, the arterial wall, and the brain parenchyma [ 85 ]. The stroke-
induced damage of those compartments leads to the release of DAMPs into the 
extracellular environment including extracellular matrix components (hyaluronan, 
heparan sulfate, and fi bronectin), modifi ed lipids, nucleic acids (microRNA, RNA, 
and DNA), and intracellular proteins (heat shock proteins, gp96, HMGB1, and uric 
acid) (Fig.  7.1 , Table  7.1 ). These DAMPs activate the innate and adaptive arms of 
the immune system and further stimulate the infl ammatory cascade [ 86 ,  87 ]. 

 Studies in animals defi cient in specifi c TLRs and genetic data from patients with 
altered TLR biology suggest that the activation of TLRs exacerbates damage in the 
setting of ischemia [ 86 ,  88 – 90 ]. The involvement of TLRs, in particular TLR4 and 
TLR2, in ischemic brain injury has been studied extensively. The expression of 
TLR4 was upregulated on glial cells in vitro in response to hypoxic conditions and 
in vivo after ischemia [ 89 ,  91 ]. Microglia cultured in vitro and exposed to hypoxia 
show increased mRNA and protein levels of TLR4 [ 91 ] and TLR4 mRNA upregula-
tion in neurons was found as early as 1 h after cerebral ischemia in vivo [ 92 ,  93 ]. 
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More extensive genomic analyses conducted in a mouse stroke model showed that 
TLRs and TLR pathway genes were regulated by ischemia–reperfusion injury. 
Specifi cally, genes encoding TLRs 1, 2, 4, 7, and 13 were upregulated in the brain 
of animals that had been subjected to a stroke, whereas TLRs 3, 6, 8, and 9 showed 
no differential regulation compared to control animals (Stenzel-Poore unpublished 
data and [ 94 ]). A similar, although not identical, set of genes were upregulated in 
the peripheral blood following stroke (Stenzel-Poore unpublished data). 

 Importantly, cortical neuronal cultures derived from mice defi cient in TLR4 
were protected from glucose deprivation [ 92 ]. In vivo studies also revealed that 
TLR4 defi ciency conferred protection against permanent middle cerebral artery 
occlusion (pMCAO) or transient MCAO (tMCAO), as demonstrated by improved 
behavioral outcomes and smaller infarct volumes [ 89 ,  95 – 97 ]. The activation of 
TLR downstream effectors was also reduced following stroke in TLR4-defi cient 
animals (e.g., reduced IκB phosphorylation, NFκB activity, and secretion of pro- 
infl ammatory cytokines TNF and IL-6 [ 96 ,  98 ]). Other major mediators of brain 
damage such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX- 2), 
and matrix metalloproteinase-9 (MMP9) were also reduced in TLR4-defi cient mice 
[ 89 ,  95 ]. TLR4 has also been shown to contribute to injury associated with intrace-
rebral hemorrhage using a mouse model of perihematomal infl ammation [ 99 ]. 
Collectively, these studies indicate that TLR4 signaling exacerbates brain injury in 
experimental models of ischemic and hemorrhagic stroke. 

 TLR2 appears to play a similar role to TLR4 in cerebral ischemic damage [ 92 , 
 100 – 103 ]. After cerebral ischemia in mice TLR2 mRNA was upregulated in the 
brain [ 92 ] and neuronal cultures from TLR2 knockout mice showed reduced cell 
death compared to wild-type cells after energy deprivation [ 101 ]. In addition, brain 
damage and neurological defi cits induced by MCAO were signifi cantly reduced in 
TLR2-defi cient mice compared with wild-type control mice [ 101 ]. TLR2 was the 
most highly induced TLR in the ipsilateral brain hemisphere following injury when 
compared to TLR4 and TLR9 [ 103 ]. In these studies, TLR2 protein was expressed 
mainly in microglia in post-ischemic brain tissue but also in selected endothelial 
cells, neurons, and astrocytes. In addition, genes having known pro-infl ammatory 
(NFκB and IRAK) and pro-apoptotic (FADD, CASP1, and CASP8) functions were 
also observed. Similarly, brain TLR2 mRNA was upregulated acutely (6–24 h) fol-
lowing hypoxic–ischemic brain injury of neonatal mice and TLR2 defi ciency was 
protective [ 104 ]. Therefore, the induction of TLR2 and downstream signaling are 
potentially important contributors to the damage resulting from focal cerebral isch-
emia in experimental models. 

 In a more recent study, TLR2 has been shown to mediate leukocyte and microg-
lial infi ltration and neuronal death, as these processes were attenuated upon TLR2 
inhibition [ 102 ]. However, another study showed that in the absence of TLR2, ani-
mals were protected at early time points (~3 days) following stroke, yet subsequent 
observations revealed an exacerbation of the ischemic lesion at 7 and 14 days after 
stroke. In that study, TLR2 defi ciency resulted in reduced microglia/macrophage 
activation acutely after stroke along with a reduced capacity of resident microglia to 
proliferate. The authors concluded that an early reduction in microglial response 
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was associated with initially smaller lesions and that a long-term decrease in 
microglia/macrophage activation and proliferation led to increased neuronal apop-
tosis and delayed exacerbation of ischemic lesions in TLR2 null mice [ 105 ]. 

 Collectively, this evidence implicates TLR4 and TLR2 as critical mediators of 
injury induced by stroke; thus, these two receptors are potential targets for therapeu-
tic manipulation. While much is known regarding the putative roles of TLR2 and 
TLR4 in brain injury, more recent data suggest that other TLRs may play similar 
roles inducing divergent processes. The presence of let-7, an extracellular 
microRNA, which has recently been identifi ed as a ligand for TLR7, induced neu-
rodegeneration through neuronal TLR7 signaling in vivo. While a role for let-7 in 
human stroke has not yet been defi ned, studies showed that let-7f was expressed in 
microglia in the ischemic brain and antagonists of let-7 promoted neuroprotection 
in female rats [ 106 ]. In addition, high levels of let-7 have been detected in the cere-
brospinal fl uid of Alzheimer’s patients [ 22 ]; thus, it may be fruitful to examine this 
TLR ligand in other CNS disorders including stroke.  

    Role of TLRs in Other Brain Injuries 

 TLRs have recently been implicated in a host of other brain pathologies including 
traumatic brain injury (TBI) and neurodegenerative diseases. TBI results from dam-
age due to external forces and the severity of injury depends upon the nature of the 
precipitating event, as well as the location, intensity, and duration of the injurious 
forces acting on the brain. TBI can lead to a diverse array of histopathological 
changes, including but not limited to hemorrhagic contusion, intracerebral hemor-
rhage, subarachnoid hemorrhage, and widespread white matter damage [ 107 ]. 
A primary biomechanical injury occurs following TBI that is followed by a secondary 
wave of injury occurring within hours and lasting days after the initial insult [ 1 ]. 
The extent of the secondary injury (e.g., neurotransmitter release, free-radical gen-
eration, calcium-mediated damage, gene activation, mitochondrial dysfunction, and 
infl ammation) is the major determinant of the extent of overall brain damage and 
functional defi cits [ 108 ]. Infl ammatory response to TBI involves glial activation, 
recruitment and activation of immune cells, activation of the complement cascade, 
upregulation of pro-infl ammatory cytokines, chemokines, and continued release of 
endogenous DAMPs upon neuronal cell death [ 109 ,  110 ]. As such, TLR2 and TLR4 
play pivotal roles in the injury associated with TBI [ 111 ,  112 ]. TBI induces a sig-
nifi cant upregulation of TLR1, TLR2, and TLR9 as well as TLR4 and MyD88 [ 111 , 
 112 ] in the brain and initiates the infi ltration of TLR-expressing circulating immune 
cells into the CNS. TLR2 is induced mainly in neurons while TLR9 is upregulated 
in astrocytes following TBI [ 111 ]. TLR2, TLR4, and MyD88 were determined by 
immunohistochemistry to be localized to lesion regions and subcortical matter in 
astrocytes and macrophage/microglia, whereas the endogenous danger signal, 
HSP70, was found in glia at the site of injury and in peri-lesional neurons [ 112 ]. In 
this study, TLRs and downstream effectors were detected within 1–2 days after TBI 
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and positive cells accumulated for up to 4 days following injury [ 112 ]. Importantly, 
genomic studies in a rodent TBI model have demonstrated the upregulation of two 
TLRs (TLR1 and TLR2), fi ve TLR adaptor/interacting proteins (CD14, MD-1, 
HSPA1a, PGRP, and Ticam2) and 13 downstream target genes encoding proteins 
elicited by TLR pathways (Ccl2, Csf3, IL1a, IL1b, IL1r1, IL6, IL-10, TNFa, 
Tnfrsf1a, Cebpb, Clec4e, Ptgs2, and Cxcl10) [ 111 ]. 

 A potential role for TLRs in the exacerbation of TBI-induced brain damage was 
evident from studies in TLR-defi cient mice. Mice lacking TLR2 function showed 
reduced neurological defi cit, apoptosis, and brain edema acutely following TBI. In 
addition, decreased expression of infl ammatory cytokines such as TNF-α, IL-1β, and 
IL-6 was observed after TBI in these mice, as compared with their wild-type counter-
parts. These results argue that TLR2 signaling may exacerbate TBI-induced second-
ary brain injury, possibly by affecting key infl ammatory processes in the cortex [ 113 ]. 
Similar to experimental TBI, humans demonstrate a robust infl ammatory response 
characterized by intracerebral leukocyte infi ltration and upregulation of infl ammatory 
cytokines following a cerebral contusion [ 114 – 116 ]. Similarly, traumatic injury in the 
spinal cord (SCI) was shown to increase the expression of TLRs and TLR signaling 
mediators in the brain, although in this case, the absence of TLR2 or TLR4 function 
exacerbated injury suggesting a protective role for these receptors in SCI [ 117 ]. 

 TLRs also play a role in the exacerbation of the damage caused by retinal gan-
glion cell (RGC) axotomy, a clinically relevant model of subacute neuronal degen-
eration [ 97 ]. TLR4-defi cient and TLR2-defi cient mice are protected from neuronal 
injury in this model, similar to stroke and TBI [ 86 ,  97 ]. Neurodegeneration can also 
occur secondary to alcohol abuse due to the ensuing neuroinfl ammatory response. 
Consumption of ethanol can elicit cytokines and other pro-infl ammatory mediators 
in the brain that results in cell damage [ 118 ]. TLR4 plays a pivotal role in alcohol- 
associated brain damage [ 119 ]. Ethanol activates TLR4 signaling in astrocytes 
[ 120 ], microglia, and macrophages [ 121 ] in wild-type mice; however, mice defi -
cient in TLR4 show reduced TLR signaling, reduced pro-infl ammatory and apop-
totic mediators [e.g., cytokines, caspases, cyclooxygenase-2 (COX-2), and reduced 
inducible nitric oxide synthase (iNOS)] in the cortex in response to chronic ethanol 
[ 119 ]. These data support the contention that TLR4 signaling contributes to glial 
activation in ethanol-induced brain damage and confi rm the important role of TLRs 
in the development of brain damage regardless of the nature of the injury. 
Collectively, all of these data highlight the clinical potential of anti-infl ammatory or 
TLR-modulatory strategies in the treatment of a multitude of brain injuries.  

    Neuroprotection Induced by TLR Stimulation 

 TLR activation has been demonstrated to potentiate infl ammatory responses that 
exacerbate ischemic damage [ 71 ] and initiate anti-infl ammatory or cytoprotective 
responses designed to ameliorate infl ammation and promote repair [ 83 ]. 
Paradoxically, TLRs, when stimulated prior to injury, can induce a state of tolerance 
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to a subsequent ischemic challenge [ 122 – 128 ]. The specifi c induction of any one of 
these effects depends upon the cell type, the particular TLR or stimulus, the timing 
of activation with respect to injury, the intensity and duration of signal, and the com-
position of the surrounding milieu (e.g., proteins, metabolites, and adjacent cells). 
Of particular relevance to ischemic injury is the fi nding that suboptimal stimulation 
of TLRs days prior to ischemia provides robust neuroprotection, a phenomenon 
known as delayed preconditioning [ 129 ]. TLR4-induced tolerance to cerebral isch-
emia was fi rst demonstrated with low-dose systemic administration of LPS, a cell 
wall component of Gram-negative bacteria. LPS treatment prior to injury caused 
spontaneously hypertensive rats to become tolerant to subsequent ischemic brain 
damage induced by MCAO [ 128 ]. Subsequent studies in a mouse model of stroke 
and a porcine model of deep hypothermic circulatory arrest also demonstrated LPS-
mediated tolerance to brain ischemia [ 130 ]. Neuroprotection induced by LPS is time 
and dose dependent. For example, tolerance to ischemic injury occurs within 1 day 
following LPS administration and extends to 7 days, but is lost by 14 days [ 131 ]. 

 Similar regimens of preconditioning with low doses of TLR agonists of TLR2, 
TLR3, TLR4, TLR7, and TLR9 have been shown to protect against ischemic injury 
in rodent stroke models [ 122 ,  123 ,  125 ,  127 ,  128 ]. Typically, preconditioning with a 
low dose of a TLR agonist 3 days prior to ischemic injury was associated with reduced 
infarct volumes in mice. A pivotal proof of concept study performed by the Stenzel-
Poore laboratory showed that nonhuman primates subjected to cerebral ischemia 
exhibit a similar time and dose-dependent neuroprotection induced 3 days following 
treatment with CpG ODNs (TLR9 agonists) [ 132 ]. Thus, TLR-induced neuroprotec-
tion shows considerable promise in humans at risk of ischemic brain injury.  

    Genomic Underpinnings of TLR-Induced Neuroprotection 

 TLR-induced neuroprotection in the brain, as demonstrated for other tissues, seems 
to be related to an early low-level activation of TLR signaling that results in a sub-
sequent “tolerance” characterized by a hyporesponsive state [ 133 ,  134 ]. Effi cacy 
using TLR agonist preconditioning is generally correlated with the early induction 
of systemic and brain pro-infl ammatory mediators within hours of systemic admin-
istration. This is followed by the induction of interferon-related genes in the context 
of subsequent ischemic brain injury [ 135 ]. Using microarray analysis performed on 
multiple distinct preconditioning paradigms we found that the preconditioning- 
induced neuroprotection is associated with genomic reprogramming characterized 
by attenuated NFκB-mediated pro-infl ammatory signaling and increased expression 
of IFN-associated genes [ 135 ,  136 ]. Our studies have identifi ed a network of genes 
associated with preconditioning-induced neuroprotection against ischemic injury 
[ 135 ]. This gene network is comprised predominantly of genes that are transcrip-
tionally associated with interferon regulatory factor (IRF) activity. Thus, we pro-
posed that preconditioning reprograms injury-induced TLR signaling to drive 
substantial TRIF-IRF-mediated signaling. 
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 A recent analysis performed using the genomic signatures elicited by various 
neuroprotectants of diverse mechanisms supports our fi ndings in that common sig-
natures were observed that also included interferon-associated genes [ 137 ]. Further, 
Pappas et al. showed that treatment with either IFNβ or IFNα was suffi cient to 
increase neuronal survival in vitro following exposure to an excitotoxic insult [ 137 ]. 
These data suggest the possibility that IFNs arising after injury as a result of delayed 
TLR preconditioning may also be providing direct protection to neurons undergo-
ing excitotoxic injury. Additionally, LPS can precondition against traumatic brain 
injury in mice, resulting in IFNβ expression and increased IL-6 [ 138 ]. Taken 
together, mouse genomic and functional studies suggest the intriguing possibility 
that TLR stimulation prior to stroke may reprogram or alter the outcome of post- 
injury TLR signaling and effectively reduce neuronal excitotoxic injury.  

    Cellular Targets of Neuroprotection 

 The identity of the initial target cell for TLR activation is not yet clear. Most experi-
mental models use systemic administration of various TLR agonists, which are gen-
erally considered to be unable to cross the blood–brain barrier (BBB). It is possible 
that TLR agonists induce robust neuroprotection via actions on peripheral cells that 
subsequently signal indirectly leading to preservation of brain tissue in the setting of 
injury. In the context of preconditioning, TLR agonists induce circulating pro- 
infl ammatory cytokines when administered systemically to mice or primates [ 139 , 
 140 ]. Rapid acute expansion of neutrophils and concomitant reduction in other 
peripheral blood mononuclear cells also occur post-administration [ 139 ]. These sys-
temic infl ammatory cues (e.g., prostaglandins) may act as infl ammatory messengers 
across the BBB [ 141 ] to prepare the brain for potentially injurious conditions. 

 Alternatively, TLR agonists could act directly on CNS cells to reprogram their 
response to ischemia, provided they gain access to the brain by crossing the BBB or 
by active transport. As discussed above, neurons and glial cells express TLRs and 
respond to many TLR ligands (Table  7.2 ). Specifi cally, ischemia modeled in vitro 
using cultured murine primary neuronal cells indicated that pretreatment with TLR 
ligands can directly protect cells in mixed cortical cultures from ischemic injury. 
Primary cortical cells pretreated with a TLR agonist prior to exposure to oxygen–glucose 
deprivation were protected from injury [ 125 ,  127 ,  131 ]. These primary cortical cell 
cultures were comprised of astrocytes, neurons, and microglia, all of which express 
TLRs and thus represent potential target cell populations. Due to the variable presence 
and activation of each TLR on these individual cell types, it is diffi cult to determine 
precisely which effectors are at play in this system. Recent data from our laboratory 
revealed that the neuroprotective effect of CpG preconditioning was absent in mice 
defi cient in TLR9 expression on either hematopoietic cells or other parenchymal cells 
including the brain [ 142 ]. These fi ndings argue that TLR9- induced neuroprotection 
requires expression in non-hematopoietic as well as hematopoietic cells in the circula-
tion, thereby suggesting an important interplay between the peripheral and central 
responses to produce the neuroprotective effect of CpG preconditioning. 
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 Brain ischemia activates perivascular infl ammation and causes an increase in BBB 
permeability that results in increased leukocyte infi ltration, brain edema, and tissue 
damage [ 143 ]. Endothelial cells are an integral part of the BBB that make up the inter-
face between the blood and brain, which positions them strategically for TLR-induced 
neuroprotection. TLR agonists may act directly on brain endothelial cells to induce 
protection by reducing BBB dysfunction and infl ammatory-cell infi ltration, and ulti-
mately leading to less damage. Using an in vitro BBB model consisting of a coculture 
of primary murine brain microvessel endothelial cells (BMEC) and primary mixed 
astrocytes and microglia cells, we and others have shown that preconditioning with 
TLR ligands can attenuate OGD-induced BBB dysfunction [ 122 ,  144 ]. For instance, 
the administration of poly-ICLC 1 day prior to exposure to OGD prevented the drastic 
reduction in transendothelial resistance (TEER) typically induced (Fig.  7.2a ) and 
restored permeability coeffi cient (Pe) transport values (Fig.  7.2b ). In addition, treat-
ment preserved tight junction (TJ) structure (Fig.  7.2c ). This indicates poly-ICLC 
preconditioning maintains both the function and integrity of the BBB endothelial cells 
in the setting of in vitro ischemic injury. Similar fi ndings were obtained using 
Pam3CSK4, a TLR2 agonist using a similar in vitro BBB system [ 122 ].

   We have observed that IFNβ plays a key role in the protective effect induced by 
preconditioning via poly-ICLC treatment [ 144 ]. Stimulation of cells with poly- 
ICLC induced astrocyte/microglial cell production of IFNβ prior to OGD, a response 
essential for the protective effects seen on BBB integrity and function. We further 
showed that the IFNβ produced by glial cells as well as type I IFN receptors on the 
endothelium were both required to maintain the integrity of the BBB in response to 
OGD. The signifi cance of these fi ndings is further highlighted by in vivo studies 
indicating that poly-ICLC preconditioning depends upon type I IFN signaling to 
protect the brain against ischemic injury [ 144 ]. These data correlate with fi ndings in 
other neurological diseases. For instance, multiple sclerosis is an autoimmune- 
mediated nervous system disorder for which recombinant IFN-β-1-α (sold under 
trade names Avonex™, Betaseron™, Extavia™, and Rebif™) remains one of the 
most recognized worldwide therapeutic treatments. While the precise mechanism of 
action of IFNβ therapy in MS remains elusive, its immunomodulatory effects are 
likely to be a primary mechanism of effi cacy [ 145 ]. 

 There are at least three potential sites of action for TLRs in preconditioning- 
induced neuroprotection (Fig.  7.3 ). TLR agonists can have a systemic effect on 
hematopoietic cells, a direct effect on CNS cells or they can act on the endothelial 
cells that represent the physical interface between the two compartments. It is also 
likely that based on the specifi c TLR agonist being used, more than one mechanism 
could be involved in the neuroprotective effect observed in vivo.

        Conclusion 

 Stroke is the leading cause of disability and the third leading cause of death in the 
USA today and is projected to be the leading cause of death by the year 2050 [ 146 ]. 
Despite intensive efforts by researchers to identify interventions that lessen 
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stroke- induced brain injury, few therapies exist for the 800,000 Americans affected 
by stroke each year. An equal number of Americans are at high risk of cerebral 
ischemia secondary to cardiovascular or cerebrovascular medical procedures (e.g., 
cardiac bypass grafting, cardiac valve replacement, carotid endarterectomy, aortic 
repair, endovascular coiling or clipping, peripheral vascular surgery, or resection of 
head and neck tumors). Depending upon the procedure as many as two-third of 
patients will demonstrate ischemic brain lesions detectable by diffusion-weighted 
magnetic resonance imaging (DWI) and some will have cognitive defi cits [ 147 –
 149 ]. Importantly, the true long-term clinical impact of these ischemic lesions iden-
tifi ed in asymptomatic patients remains undefi ned. Many of these patients will 
experience peri- or postoperative stroke [ 150 – 153 ]. Moreover, traumatic brain 
injury (TBI) affects approximately 1.7 million Americans each year, one-third of 
which are children under the age of 14 [ 154 ]. In the USA, TBI contributes to ~30 % 
of all injury-related deaths. Given the prevalence and severity of acute brain injuries, 
there is compelling need to improve the development of novel therapeutics, which 
requires an improved understanding of the pathology that underlies these injuries. 

  Fig. 7.2    Poly-ICLC preconditioning reduces damage and preserves the function of the BBB fol-
lowing OGD. Poly-ICLC preconditioning signifi cantly prevented the drastic reduction of TEER 
values ( a ) and the increase of endothelial permeability coeffi cient (Pe) values for both paracellular 
and transcellular transport ( b ) induced by OGD. Poly-ICLC preconditioning also prevented the 
OGD-induced disorganization of the tight junction ZO-1. ( c ). Qualitative analysis of ZO-1 immu-
nofl uorescence showed an intense and continuous staining on the cell borders ( c ,  left panel ). OGD 
induced a decrease in immunostaining intensity, loss of the continuous junctional staining pattern, 
and a global disorganization of the proteins ( c ,  middle panel ). Poly-ICLC-treated cells showed a 
preserved staining intensity and distribution of ZO-1 following OGD ( c ,  right panel ). Data refl ect 
mean±SEM. ** P  < 0.01 and *** P  < 0.001 vs CTR; °° P  < 0.01 vs OGD, two-way ANOVA followed 
by Bonferroni test for TEER and one-way ANOVA followed by Bonferroni test for Pe.  Scale 
bar  = 10 μm. Adapted from [ 144 ]       
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 Collectively, experimental data in rodents and nonhuman primates argue that TLR 
activation represents a key initiating event in acute brain injuries and thus represents a 
potential therapeutic target. Clinically, the expression levels of TLR7, TLR8, TLR2, 
and TLR4 were independently associated with poor outcome and increased levels of 
infl ammatory mediators, while the expression levels of TLR4 and TLR8 were addi-
tionally associated with size of infarcted tissue [ 88 ,  155 ]. Genetic polymorphisms in 
the human genes encoding TLR2 [ 156 ] and TLR4 [ 157 ] have also been associated 
with ischemic stroke in some studies. While it is unproven whether modulation of 
TLR-induced infl ammation in humans will lead to clinical improvement in stroke, 
current data from animal models suggest that infl ammatory signals drive potent sec-
ondary injury. As such, manipulation of TLR signaling and blockade of endogenous 
and exogenous TLR ligand signaling remain promising clinical strategies. Importantly, 
therapeutic strategies aimed at blocking the infl ammatory response in humans with 
brain injury have produced mixed results, which may indicate that selective modula-
tion of the infl ammatory response, rather than global suppression would be a more 
valuable clinical therapeutic strategy. For instance, downregulation of the deleterious 
side of infl ammation and upregulation of protective molecules could provide clinical 
benefi t. Thus, understanding the protective pathways of the neuroinfl ammatory 
response is a priority in planning future therapies aimed at its manipulation [ 110 ]. 
Novel therapies that target post-injury processes mediated by TLRs or downstream 
mediators also offer promise as important adjunct treatments that synergize with 

  Fig. 7.3    Potential sites of action for TLR preconditioning-induced neuroprotection. TLR precon-
ditioning via systemic TLR agonists administration prior to a harmful event may occur directly on 
peripheral cells to induce a cascade culminating in neuroprotection. This could result in decreased 
number of circulating activated cells and reduced leukocytes infi ltration that in turn would contrib-
ute to decreased brain damage. Alternatively, TLR agonists may cross the BBB and directly act on 
CNS cells resulting in neuroprotection by reprogramming their response to subsequent ischemia. 
TLR agonists may also act directly on BBB at the interface between blood and brain resulting in 
increased BBB stabilization following ischemia. Adapted from [ 125 ]       
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conventional pharmacotherapy (e.g., thrombolytics and clot removal devices) or 
enhance the effi cacy of existing partially effective therapeutics. As with many human 
conditions, brain injury is multifactorial; thus, a single therapeutic, a so-called magic 
bullet, is not likely to exist for stroke or other brain injuries. Therefore, innovative 
combination strategies are most likely to achieve widespread benefi t for patients but 
will require arduous preclinical efforts. 

 While the precise site of action and mechanisms involved in TLR-induced neuro-
protection are unknown, preclinical and mechanistic data offer substantial promise 
for the clinical development of preventative therapeutic approaches directed against 
ischemic injury. Several agents under clinical development represent good candi-
dates for use as prophylactic neuroprotectants (e.g., poly-ICLC and CpG ODNs). 
Three TLR agonists have been approved for use in humans by the FDA including 
 Bacillus Calmette – Guérin Calmette – Guérin  (BCG, TLR2/4), monophosphoryl 
lipid A (MPL, TLR4), and the small molecule agonist Imiquimod (TLR7/8) [ 158 ]. 
An attenuated strain of  Mycobacterium bovis  known as BCG is mainly used as a 
vaccine against tuberculosis, but it is also known to be an immunotherapeutic for 
bladder carcinoma. Cervarix ® , a vaccine against human papillomavirus-16 and -18, 
has been formulated with monophosphoryl lipid A (MPL), a TLR4 ligand derived 
from the LPS of  Salmonella minnesota . Lastly, Imiquimod is a well- characterized 
synthetic imidazoquinoline often used topically in patients with actinic keratosis, 
superfi cial basal cell carcinoma, and external genital warts. Given their favorable 
safety profi le, these and related agents that similarly target TLRs could be useful in 
the multitude of high-risk populations impacted by brain ischemia. In addition, the 
use of prophylactic therapies that promote resistance to ischemic injury is an invalu-
able platform for the discovery of novel acute therapeutic targets. 

 The use of TLR agonists as an antecedent therapy could be a novel and powerful 
strategy to protect patients at risk of ischemic injury to the brain. Nearly one million 
US patients annually will undergo cardiovascular and cerebrovascular procedures 
that increase the risk of brain ischemia from embolic events associated with these 
medical procedures. Preclinical validation of preconditioning has produced 
extremely positive outcomes in nonhuman primate models of stroke involving 
severe cerebral ischemic injury. Clinical testing in humans is the next critical step to 
demonstrate whether this approach offers benefi t by reducing ischemic brain inju-
ries associated with these common vital surgical procedures.     
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    Abstract     Microglia are the macrophage immune cells in the CNS and monitor 
extracellular microenvironment in healthy brains. They can be rapidly activated 
under pathological conditions and move to a lesion site following chemotactic gradi-
ents and unfold their phagocytotic activities to clear tissue debris, damaged cells, or 
microbes. A growing body of studies illustrated the importance of ion transporters 
in regulating activation and migration of microglia and peripheral immune cells in 
cerebral ischemic conditions. This chapter summarized roles of Na + /H +  exchanger, 
Na + /Ca 2+  exchanger, and K + /Cl −  cotransporters in regulation of pH i , Ca 2+ -spiking 
events, cell volume, and membrane signal molecule expression during microglia/
peripheral immune cell migration, adhesion, and activation. In light of the detrimental 
effects of excessive pro-infl ammatory response on ischemic brain injury, targeting 
ion transporters may be a new therapeutic strategy to minimize neuroinfl ammatory 
reactions after ischemic stroke.  

  Abbreviations 

   NHE    Na + /H +  exchanger   
  NCX    Na + /Ca 2+  exchange   
  MCAO    Middle cerebral artery occlusion   
  NOX    NADPH oxidase   
  OGD    Oxygen and glucose deprivation   
  pHi    Intracellular pH   
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  ROS    Reactive oxygen species   
  [Ca 2+ ] i     Intracellular Ca 2+    
  [Na + ] i     Intracellular Na +    
  KCC    K + –Cl −  cotransporters   
  IL    Interleukin   
  TNF-α    Tumor necrosis factor alpha   
  ATP    Adenosine triphosphate   

          Introduction 

 Microglia are resident macrophages ubiquitously distributed throughout the CNS 
and serve as neurological sensors. In developing brains, microglia with ameboid 
morphology phagocytose cellular debris resulting from spontaneous neurodegen-
eration or nerve fi ber remodeling [ 1 ,  2 ]. In the adult brain, microglial cells exhibit a 
ramifi ed morphology and monitor their extracellular space and cellular neighbor-
hood and are ready to transform to the executive states of the activated microglia. 
They can be rapidly activated under many pathological conditions, including stroke, 
brain trauma, and neurodegenerative diseases [ 3 – 5 ]. Microglia can move to a lesion 
site following chemotactic gradients and unfold their phagocytotic activities to clear 
tissue debris, damaged cells, or microbes [ 6 ]. 

 Recent studies indicate that microglia are highly plastic cells that can assume 
diverse phenotypes and engage different functional programs in response to specifi c 
microenvironmental signals. Interleukin (IL)-4 and IL-10 can induce an “alterna-
tively activated” M2 phenotype of microglia, these microglia are healthier cells 
with enhanced phagocytic activity and reduced production of infl ammatory medi-
ators [ 7 ]. In contrast, the “classically activated” M1 microglia typically release 
destructive pro-infl ammatory mediators including reactive oxygen species (ROS), 
nitrogen species (NO), cytokines (TNF-α and IL-1β), and growth factors [ 8 ,  9 ]. 
M1-state like microglia represent reduced phagocytosis and increased secretion of 
pro- infl ammatory mediators. Release of chemoattractive factors can recruit and 
guide immune cell population migrating into the CNS through disrupted blood–
brain barrier [ 6 ]. 

 The roles of microglia/macrophages in ischemic brain injury remain to be 
defi ned. Microglia respond dynamically to ischemic injury: at 1–5 days after isch-
emic injury, microglia experience an early healthy M2 phenotype and then transi-
tion to a sick M1 phenotype up to 14 days after ischemic injury [ 7 ]. The early 
recruitment of M2 microglia after ischemic stroke can represent an endogenous 
effort to clean ischemic tissue and restrict brain damage [ 7 ,  10 ]. Therefore, microg-
lia can shift from the M2 to M1 phenotypes in ischemic brains. 

 The failure of ionic homeostasis is a hallmark of ischemic brain damage [ 11 ]. 
Ion exchangers contribute to ionic dysregulation after cerebral ischemia [ 12 ]. 
Emerging new evidence suggests that ion transporters play a role in microglial 
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activation and migration. In this chapter, we summarized recent studies of the ion 
transporters in microglia, neutrophils, macrophages, and monocytes. A better 
understanding of the function and regulation of ion transporters in neuroinfl amma-
tion following cerebral ischemia will provide insight into developing more effective 
neuroprotective therapy for stroke.  

    The Na + /H +  Exchanger 

    Expression and Function of NHE-1 in Microglia 

 NHEs are a family of membrane transport proteins which catalyze the secondary 
active electroneutral exchange of one Na +  for one H + . To date, nine NHE isoforms 
(NHE1-9) have been cloned in mammalian tissues, and NHE-1 is the most abun-
dantly expressed isoform in brains including microglia [ 13 ]. The isoform NHE-1 is 
found in the plasma membrane of most mammalian cells and normally described as 
the housekeeping isoform [ 14 ]. Other isoforms have a more restricted tissue distri-
bution and appear to regulate more specialized functions: NHE-2 and NHE-3 are 
expressed predominantly in the kidney and gastrointestinal tract, while NHE-5 is 
expressed mainly in the brain [ 15 ]. NHE-6 and NHE-7 are exclusively localized in 
intracellular organelles such as mitochondrial and trans-Golgi; these isoforms are 
expressed in tissues with high metabolism rates such as heart, brain, and skeletal 
muscle [ 16 ,  17 ]. NHE-8 and NHE-9 are also found to distribute in kidney, stomach, 
and intestine [ 18 ]. 

 Of all the isoforms, NHE-1 is the most extensively characterized member. It 
resides exclusively on the cell surface but is also present in discrete microdomains of 
the plasma membrane in different types of cells [ 13 ]. NHE-1 exerts two fundamental 
functions. First, it serves as the principal alkalinizing mechanism in many cell types 
against the damaging effects of excess intracellular acidifi cation. Together with 
bicarbonate transporting systems, NHE-1 plays a crucial role in maintaining cyto-
plasmic acid–base balance. Second, it provides a major resource for Na +  infl ux, cou-
pled to Cl −  and H 2 O uptake, which is required to restore cell volume to steady- state 
levels following cell shrinkage induced by external osmolality [ 19 ]. The cell-type- 
specifi c localization of NHE-1 in distinct subdomains of the plasma membrane also 
suggests that this exchanger may play more specialized roles in cell function. NHE-1 
expression may be a signifi cant factor in regulating cell morphology, adhesion, and 
migration. It has been reported that NHE-1 plays an important role in remodeling 
the cortical actin cytoskeleton and cell shape of fi broblasts through its association 
with the cytoskeletal-associated proteins ezrin, radixin, and moesin (ERMs) [ 20 ]. 
Both the cation translocation and anchorage to the cytoskeleton are required for 
remodeling focal adhesions at the front and trailing edges of the cell necessary for 
guided movement [ 21 ].  
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    NHE-1 in Microglial Activation and Neuroinfl ammation 

 NHE-1 is the most studied NHE isoform in microglia. One important component 
for microglial activation and function is the NADPH oxidase (NOX). NOX cata-
lyzes the reduction reaction of molecular oxygen to superoxide anion using NADPH 
as an electron donor and is the major source of ROS production in microglia [ 8 ,  22 ]. 
In this process, H +  accumulates inside microglia as a by-product, causing depolar-
ization and cytoplasmic acidifi cation [ 18 ]. NOX is sensitive to intracellular pH and 
has an optimal pH i  of 7.2 [ 23 ]. Intracellular acidosis may impair NOX function. 
Thus, NHE-1 is required to maintain an optimal pH i  and sustain microglial respira-
tory burst. It has been shown that microglial activation by several stimuli depends 
on NHE-1-mediated H +  homeostasis [ 24 ]. Inhibition of NHE-1 with HOE 642 
impaired pH i  regulation in microglia under basal conditions. HOE 642 also reduced 
the production of superoxide anion as well as pro-infl ammatory cytokines IL-6, 
IL-1β, and TNF-α induced by LPS or in vitro ischemia [ 24 ]. In a recent study using 
the mouse middle cerebral artery occlusion (MCAO) model, activation of microglia 
is signifi cantly reduced with NHE-1 inhibition by HOE642 or transgenic global 
knockdown of NHE-1 protein [ 25 ]. Meanwhile, blocking NHE-1 activity either 
pharmacologically or by a transgenic knockdown also signifi cantly decreases pro- 
infl ammatory cytokine formation in ischemic brains [ 25 ]. Since microglia activa-
tion in ischemic brains lasts up to 7–14 days, blocking NHE-1 in microglia may 
present a new therapeutic target in treating the prolonged infl ammatory responses in 
ischemic brains (Fig.  8.1 ).

  Fig. 8.1    Role of NHE-1 in microglial pro-infl ammatory “respiratory burst” and cytokine produc-
tion. NHE-1 protein is expressed in microglia and its activity is important for microglial function 
by extruding H +  and regulation of pH i  during the respiratory burst. Thus, NHE-1 is important in the 
production of ROS and cytokines and in infl ammatory responses in ischemic brains [ 12 ]          
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       NHE-1 in Microglial Migration 

 Microglial migration plays an important role in physiological processes, including 
immune infl ammatory response and injury healing after ischemic stroke. Under 
stroke or neurodegenerative pathological conditions, the microglia with the amoe-
boid form migrate to the site of injury. Extracellular ATP and ADP released from 
ischemic and traumatic brain tissues can stimulate microglial migration [ 26 ]. Injury 
to the CNS tissues also releases other chemotactic factors including bradykinin 
[ 27 ], which stimulate microglial migration to the site of injury. 

 Maintaining alkaline pH i  by NHE-1 is important in microglial migration. pH i  
serves as a regulator of cell polarization and migration [ 28 ]. However, how the local 
pH i  environment regulates cell movement is not fully understood. One possible 
mechanism is through effects of pH i  on regulation of the actin binding protein 
cofi lin activity. Activation of cofi lin promotes accumulation of actin at leading edge 
and is required for cell motility [ 29 ,  30 ]. Cofi lin activity is inhibited by pH- 
dependent phosphoinositide binding at more acidic pH i  [ 31 ]. In contrast, more alka-
line pH i  environment increases activity of cofi lin to promote actin fi lament dynamics 
[ 32 ]. NHE-1 may regulate microglial migration in part by providing an optimal 
local alkaline pH i  environment. NHE-1 protein was colocalized with cytoskeletal 
protein ezrin in lamellipodia of microglia and maintained its more alkaline pH i  [ 33 ]. 
In response to chemoattractant bradykinin (BK), microglia exhibited stimulated 
migration by the increase in lamellipodial area and protrusion rate, but reduction of 
lamellipodial persistence time [ 33 ]. Interestingly, blocking NHE-1 activity with its 
potent inhibitor HOE 642 not only acidifi ed microglia, abolished the BK-triggered 
dynamic changes of lamellipodia, but also reduced microglial motility and micro-
chemotaxis in response to BK [ 33 ]. In addition, BK-mediated NHE-1 activation 
resulted in intracellular Na +  loading as well as intracellular Ca 2+  elevation mediated 
by stimulating a reverse mode operation of Na + /Ca 2+  exchange (NCX rev ). 

 Taken together, these studies showed that NHE-1 protein is abundantly expressed in 
microglial lamellipodia and maintains alkaline pH i  in response to BK stimulation. 
NHE-1 protein interacts with ERM protein and provides anchoring for actin cytoskel-
eton in microglia. Meanwhile, NHE-1 and NCX rev  play a concerted role in BK-induced 
microglial migration via Na +  and Ca 2+  signaling. Since one of the earliest microglial 
responses to brain ischemia is its migration to the site of injury, the role of NHE-1 in 
microglia migration may affect outcome of ischemic stroke injury (Fig.  8.2 ).

        Na + /Ca 2+  Exchanger 

    Expression and Functions of NCX1 in Microglia 

 The sodium–calcium exchanger (NCX) belongs to the superfamily of Ca 2+ /cation 
antiporter membrane proteins. NCX is a high-capacity and low-affi nity ionic trans-
porter that exchanges three Na  +   ions for one Ca 2+  ion [ 34 ]. When intracellular Ca 2+  
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concentration rises in the cell, which requires it to be returned to the resting levels, 
the NCX mechanism couples the uphill Ca 2 +   extrusion with the Na  +   ions entry 
driven by the Na +  electrochemical gradient. This forward mode of operation (Ca 2+  
effl ux) in NCX, together with Ca 2+ -ATPase, keeps the 10 4 -fold difference in Ca 2+  
across the cell membrane [ 34 ]. NCX function depends on the cross-membrane of 
Na  +   and Ca 2+  gradients and membrane potential, when [Na  +  ] i  rises or the cell mem-
brane depolarizes, NCX reverses its mode of operation and extrudes Na  +   in exchange 
of Ca 2+  ions [ 35 ,  36 ], a reverse operation of NCX (NCX rev ). Therefore, NCX is a 
major player in regulation of intracellular Ca 2 +   and Na  +   under physiological and 
pathophysiological conditions. 

 Three NCX genes, NCX1, NCX2, and NCX3, have been identifi ed and cloned. 
NCX1 is broadly expressed in the heart, kidney, and brain, whereas NCX2 and 
NCX3 are exclusively expressed in the brain and skeletal muscle [ 36 ,  37 ]. In vitro 
studies revealed that among the three different NCX genes, NCX1 is the most highly 
expressed in microglia [ 38 ,  39 ]. Matsuda et al. reported that exposure of cultured 
microglia to interferon-γ or nitric oxide enhanced NCX1 transcript levels [ 40 ].  

    NCX in Microglia Activation, Migration, and Neuroinfl ammation 
in Cell Cultures 

 In vitro study performed on the BV2 microglial cell line shows that these cells in 
anoxic conditions displayed a signifi cant increase of NCX currents and of NCX1 
protein expression, but not of NCX2 and NCX3 [ 41 ]. The enhanced NCX activity 
may lead to an increase in [Ca 2+ ] i  after oxygen–glucose deprivation (OGD), which 
might be attributed to NCX1 in the reverse mode of operation. NCX1 silencing fully 
prevented the OGD-induced intracellular Ca 2+  rise [ 41 ]. Consistent with this 

  Fig. 8.2    Role of NHE-1 in chemoattractant-induced microglia migration. NHE-1 interacts with 
ERM proteins and functions as an anchoring point for actin fi lament, contributing to membrane 
protrusion and microglial movement. Chemoattractant BK, produced in injured brain tissues, can 
induce microglial migration. BK stimulates microglial NHE-1 activity to maintain an alkaline pH i  
in lamellipodia, which facilitates the pH i -sensitive actin-binding proteins actin depolymerizing 
factor (ADF)/cofi lin function during microglial movement [ 33 ]       
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fi nding, increased NCX1 expression and activation was detected in microglia in 
other pathological conditions such as interferon-γ or NO exposures [ 42 ]. Our recent 
study showed transgenic knockdown of NCX1 in microglia impairs BK-induced 
Ca 2+  rise, chemotaxis, and migration [ 33 ].  

    In Vivo Study of NCX in Microglia Activation, Migration, 
and Neuroinfl ammation Following Brain Ischemia 

 It was reported that NCX1 expression and activity were upregulated in microglia in 
response to the ischemic injury in MCAO model of mice [ 41 ]. One day after perma-
nent MCAO, NCX1 protein expression was detected only in some microglial cells 
located in the infarct core, but 3–7 days after permanent MCAO, NCX1 expression 
progressively increased in the Iba1-positive microglia invading the infarct core [ 41 ]. 
In these cells, NCX1 expression was limited to the round phagocytic phenotype, 
which represents the fi nal stages of microglia activation [ 43 ,  44 ]. Microglial cells 
isolated from the lesion core region 7 days after permanent MCAO and in cultures 
show increased NCX1 protein expression [ 41 ]. Furthermore, NCX activity in the 
reverse mode of operation was signifi cantly increased in these cells. Collectively, 
the upregulation of NCX1 expression and activity in microglial cells after cerebral 
ischemia suggests NCX1 may play a role in modulating microglial functions in the 
post-ischemic brain.   

    K + –Cl −  Cotransporter and Na + /HCO 3  −  Cotransporter 

    K + –Cl −  Cotransporter 

 K + –Cl −  cotransporters were characterized by whole cell recording and RT-PCR in 
microglia [ 45 ]. The repertoire of chloride-conducting pathways in murine primary 
microglial cells includes the K + –Cl −  cotransporters (KCC1, KCC2, KCC3, and 
KCC4) as well as swelling-activated chloride channels. K + –Cl −  cotransporters 
induce K +  and Cl −  effl ux when swelling-activated chloride channels are activated. 

 The remarkable feature of microglial cells to respond to distinct changes in their 
microenvironment is the formation of vibrant lamellipodia, either at the tip of their 
processes to seal injured capillaries or with a prominent lamellipodium in the case 
of amoeboid phenotypes to migrate to the site of injury. The polar distribution of 
KCC transporters and chloride infl ux promotes microglial lamellipodium formation 
[ 45 ]. Cell death by injuries or neurodegenerative diseases liberates intracellular K + . 
Following ischemia, the extracellular K +  concentration increases from the range of 
2.5–3.5 mM to 50–80 mM [ 46 ]. Extracellular K +  increase reverses KCC fl ux direction 
and evokes cell swelling of microglia, which may promote microglial lamellipodia 
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formation [ 45 ]. In microglial cells, activation of Cl −  infl ux and concomitant local 
volume changes may explain the reason why these cells do not swell homogenously 
in response to osmotic changes in their microenvironment [ 45 ].  

    Na + –HCO 3  −  Cotransporter 

 The presence of operational Na + /HCO 3  −  cotransporter and Na + -dependent Cl − /
HCO 3  −  exchanger were found in the cultured microglia [ 47 ]. Expression of ion 
transporters Cl − /HCO 3  −  exchangers at the protrusion site of microglia are reported 
to contribute to the extension of the actin projection in lamellipodium by mediating 
salt and osmotically obliged water uptake [ 6 ]. A migrating cell shows a regulatory 
volume decrease at its rear end and a regulatory volume increase at its front end 
[ 48 ]. This model has been substantiated by identifi cation of the asymmetric distri-
bution of transporters and ion channels in the polarized migrating cell. In the lamel-
lipodium, Na + /HCO 3  −  cotransporter has been identifi ed [ 48 ]. Schwab and coworkers 
postulate that ion channels and cotransporters, like the Na + /HCO 3  −  cotransporter, 
are distributed in a polarized way [ 49 ] which contributes to cell migration.   

    Ion Transporters in Neutrophils, Macrophages, 
and Monocytes 

 The innate microglia are the predominant immune cells in the brain for the fi rst days 
after brain ischemia. Microglia were activated and proliferated as early as 1 day 
after ischemia, followed by an infl ux of peripheral immune cells such as neutrophils 
and macrophages into the ischemic brain parenchyma 2 days after ischemia, peak-
ing at day 4 [ 50 ]. Macrophage infi ltration after ischemia is a later event in most 
experimental paradigms, starting to infi ltrate on day 4 and peaking at day 10 after 
ischemia [ 50 ]. Although the resident microglia were almost exclusively responsible 
for phagocytosis of dead and dying neurons during the fi rst 3 days after ischemia 
[ 51 ], the delayed peripheral immune cells infi ltration may also contribute to the 
outcome of ischemic brain injury [ 50 ]. Ion transporters such as NHE-1 and NCX1 
may play a role in activation and function of these peripheral immune cells during 
their infi ltrating and phagocytosis process. 

    NHE-1 in Neutrophils 

 Neutrophils are infl ammatory leukocyte cells, which are the fi rst of the circulating 
leukocytes to arrive at the site of injury [ 52 ]. Neutrophils kill microorganisms by 
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ingesting them during phagocytosis. Neutrophils rapidly produce superoxide and 
other ROS under certain specifi c circumstances, known as the respiratory burst 
[ 53 ,  54 ]. NHE-1 activity is reported to be stimulated during the respiratory burst in 
response to infl ammation or invading substance [ 54 ]. NHE-1 could regulate intra-
cellular pH of neutrophils during the respiratory bursts by extrusion of H +  following 
activation of NOX [ 55 ]. NHE-1 activity is also involved in neutrophil movement to 
locations of lesions and infections [ 56 ]. The exact mechanisms of NHE-1 in migra-
tion of neutrophil cells are unknown. One theory is that NHE-1 controls the electro-
neutral exchange of sodium for hydrogen, and the change of pH i  and the increase of 
intracellular cations affect the cell movement [ 56 ]. Removal of extracellular sodium 
impairs neutrophil movement, suggesting the important role of NHE-1 in ion trans-
location and cell movement function [ 56 ]. Moreover, migration of neutrophil cells 
was signifi cantly reduced in cells that lacked the NHE-1 function [ 56 ]. 

 Furthermore, intracellular acidifi cation and NHE inhibition cause an extensive 
loss of surface  l -selectin, which is very likely to reduce neutrophil rolling adhesion 
and possibly inhibit  l -selectin associated signaling processes. This would lead to a 
decrease in fi rm adhesion and transmigration, especially during reperfusion period 
after ischemia injury. Such a mechanism would explain the reduced tissue damage 
after hypoxia reperfusion because fewer neutrophils would adhere to the endothe-
lium, migrate into the tissue, and cause damage. A reduction in neutrophil adhesion 
accounts at least in part for the benefi cial effects of NHE inhibition on ischemia 
reperfusion cardiac injury, and suggest the possible utility of therapeutic strategies 
directed at reducing  l -selectin adhesion to reduce neutrophil invasion of tissues dur-
ing an ischemic event, and prevent tissue injury [ 57 ]. On the other hand, NHE-1 
causes an increase of osmolytes and water that result in cell swelling and extension 
of pseudopods [ 56 ]. Taken together, NHE-1 plays an important role in neutrophil 
function, which is involved in H +  extrusion during the respiratory burst and cell 
migration.  

    NCX in Macrophages and Monocytes 

 Studies in murine macrophages have suggested the presence of NCX in immune 
cells [ 58 ]. NCX activities have also been reported in human lymphocytes and neu-
trophils investigated using pharmacological agents [ 59 ,  60 ]. In these cells, NCX 
may contribute either to the extrusion of Ca 2+  after Ca 2+ -spiking events or to the 
elevation in intracellular Ca 2+  during cell activation which could be important for 
these cell after they migrate to the brain ischemic damaged area to clearance the 
dead neurons and synapse. 

 The mononuclear phagocyte cells are a widely distributed cellular network that has 
a primary role in innate immunity, tissue infl ammation, and remodeling [ 61 – 63 ]. 
Mononuclear phagocyte cells derive from CD34 +  bone marrow progenitor, then dif-
ferentiating into monocytes [ 64 ]. Peripheral monocytes further differentiate into 
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macrophages as they migrate into damaged or injured tissues [ 65 ]. Both monocytes 
and macrophages rely on Ca 2+  signaling to start their activation programs leading to 
the release of pro-infl ammatory cytokines [ 66 ,  67 ]. Recent study showed that in 
human macrophages and blood monocytes constitutively express NCX1 and NCX3 
[ 68 ].    NCX is present in both monocytes and macrophages, indicating that this 
exchanger is expressed early in the development of mononuclear phagocyte cells, 
and lasts up to the fi nal steps of cell maturation. NCX may thus have an important 
role in regulating functions in circulating momocytes and differentiated tissue mac-
rophages. Expression of NCX1 and NCX3 enables the macrophages and monocytes 
to respond in the classical model of activation. The role of NCX in macrophages and 
monocytes might be particularly important since NCX3, and partially NCX1, are 
not dependent on ATP for their function [ 69 ]. This means that NCX can contribute 
to maintaining intracellular Ca 2+  homeostasis also in pathophysiological conditions 
such as tissue ischemia or anoxia in which ATP levels are reduced [ 69 ]. Under 
hypoxic conditions, NCX might help preserve the viability and functions of macro-
phages by limiting Ca 2+  overload and maintaining intracellular Na +  levels. On the 
other hand, activation of NCX promoted mRNA expression and protein release of 
TNF-α, which is one of the main pro-infl ammatory cytokines produced by macro-
phages, silencing NCX1 in human macrophage signifi cantly reduces the release of 
TNF-α. Ca 2+  is involved in the production of TNF-α and other cytokines in macro-
phages [ 70 ] and many stimuli that activate cytokine production also generate Ca 2+  
signals [ 71 – 73 ]. These study shows that human monocytes and macrophages consti-
tutively express functionally active forms of the NCX1 and NCX3. Understanding 
the role of NCX exchangers in regulating monocyte/macrophage pro-infl ammatory 
functions may reveal novel targets to subsequent infl ammatory and immune responses 
after ischemic stroke.   

    Conclusion 

 In summary, new studies show that ion transporters, such as NHE-1 and NCX, are 
constitutively expressed in microglia and peripheral immune cells including mono-
cytes, neutrophils, and macrophage. These ion transporters are important for 
microglia and peripheral immune cell function by regulation of pH i , Ca 2+ -spiking 
events, cell volume, and membrane signal molecule expression during microglia/
peripheral immune cell activation, adhesion, and migration. Especially, they play a 
key role in formation of infl ammatory responses in ischemic brains. In light of the 
detrimental effects of excessive pro-infl ammatory response on ischemic brain 
injury, targeting ion transporters may be a new therapeutic strategy to minimize 
neuroinfl ammatory reactions after ischemic stroke.     
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    Abstract     Emerging data show that the mechanisms of injury, including neuroin-
fl ammation, differ greatly in the immature brain and adult brain. This chapter will 
discuss the maturation-dependent contribution of glial and peripheral immune cells, 
differences in the blood–brain barrier structure and function in relation to injury, as 
well as the effect of immaturity on the function of several receptors on microglia/
macrophages related to innate and acquired immune responses. We will discuss how 
age-related differential infl ammatory and vascular responses to injury would impact 
development of treatments for newborns affected by stroke.  

        Introduction 

 It has become apparent over the last decade that infl ammation is not as one- dimensional 
or necessarily detrimental after brain injury, including stroke, as was traditionally 
thought. There is also ample evidence that the mechanisms of injury differ greatly 
in the immature brain and adult brain. This chapter will focus on most recent experi-
mental observations regarding the differential aspects of the neuroinfl ammatory 
response after acute brain injury in the postnatal brain as opposed to the adult brain, 
fi ndings obtained after our previous review on this topic [ 1 ]. We will discuss the 
maturation-dependent contribution of peripheral immune cells, differences in the 
blood–brain barrier (BBB) structure and function and initiation of neuroinfl amma-
tion after injury, the intrinsic age-related differences in the resident microglial 
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phenotypes, and the consequences of these effects for acute injury. We will then 
discuss the effect of immaturity on the function of several receptors on microglia/
macrophages related to innate and acquired immune responses, toll-like receptors 
(TLRs), and the scavenger receptor CD36. Finally, we will discuss impact of these 
recent discoveries on the differential vascular responses to injury in immature and 
adult brain for development of treatments for newborns affected by stroke.  

    Brain Maturation and Mechanisms of Brain Susceptibility 
to Injury 

 The developmental stage of the brain at the onset of injury is a decisive factor that 
determines the patterns of brain damage, including cell-type-specifi c susceptibility, 
which in turn affects initiation, progression, and fi nal outcome of injury in individual 
brain regions. For example, in preterm newborns asphyxia- or hypoxia–ischemia 
(H–I)-induced brain injury generally coincides with a time window of high suscepti-
bility of oligodendrocyte progenitors (OLPs) to excitotoxicity, oxidative stress, and 
infl ammation [ 2 – 4 ] and adversely interferes with normal differentiation of this cell 
population into mature, myelinating oligodendrocytes [ 5 ], thus predisposing the brain 
to periventricular white matter injury, defective myelination of white matter tracts, 
and long-term injury. Subplate neurons, a cell type that exists transiently during 
human fetal brain development, are also prone to H-I, contributing to long-term injury. 
We will not discuss in detail these aspects, as several recent reviews comprehensively 
discussed the unique features of fetal brain neuroinfl ammation and injury in humans 
and in corresponding injury models in postnatal day 1–3 (P1–P3) rodents [ 5 – 8 ]. 

 The patterns of ischemic injury in full-term newborns are different from those 
in preterm newborns [ 9 ]; injury is no longer diffuse and is mostly manifested 
focally in gray matter regions, most commonly in the striatum, thalamus, and 
cortical areas. Studies in animal models of H-I and focal arterial stroke following 
transient middle cerebral artery occlusion (MCAO) in P7-P10 rodents showed 
the predominance of neuronal cell death which occurs via the apoptotic–necrotic 
continuum [ 10 – 12 ]. 

 Although the targeted cell populations and regions affected by cerebral hypoxia 
and ischemia are different in preterm and term newborns, the “triangle” of the 
pathophysiological mechanisms that ultimately cause cell death—the excitotoxic, 
oxidant, and infl ammatory components—are similar (Fig.  9.1 ). Excitotoxicity, 
triggered by accumulation of glutamate and other excitotoxic molecules in extracel-
lular spaces following neuronal membrane depolarization, glutamate effl ux, and 
failure of its uptake mechanisms, is a common initial damaging process caused by 
asphyxia, H-I, or focal arterial stroke [ 13 ,  14 ]. The neonatal brain is more excitable 
and prone to oxidative stress than the adult brain due to higher levels of glutamate 
receptor expression [ 15 ,  16 ] and a different composition of individual NMDA 
receptor subunits [ 17 ] and interaction with downstream signaling cascades [ 18 ]. 
Several other distinct characteristics of the immature brain, such as high oxygen 
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consumption, higher iron levels, and low expression of endogenous antioxidant 
enzymes contribute to higher vulnerability to the deleterious actions of free radicals 
[ 19 ,  20 ]. However, overexpression of antioxidant enzymes does not necessarily protect 
the neonatal brain, as was shown for SOD1 overexpressor mouse pups, and is 
dependent on particular targeted free radical pathways [ 21 ,  22 ] and cell types [ 23 ]. 
Infl ammation, the third major contributor to neonatal brain injury, can induce injury 
by itself as well as enhance excitotoxicity and oxidative stress through the release of 
cytokines, free radicals, and other toxic products or trigger release of excitotoxic mol-
ecules, including glutamate (Fig.  9.1 ).

   Another important distinction between postnatal and adult brain is the major dif-
ference in cell death mechanisms in response to brain injury. It has been described 
more than a decade ago that physiological apoptosis is still prominent in normal 
brain at term and that the relative contribution of apoptosis to the overall cell death 
declines with age in injured brain [ 24 – 26 ]. Amplifi cation of necrosis due to failure 
to remove dying cells was then described [ 27 ,  28 ], leading to a unique hybrid 
cell death, which was called the “continuum,” an intermediate mechanism of cell 
death that exhibits features of both necrosis and apoptosis (reviewed in [ 29 ,  30 ]). 

Excitotoxicity

Oxidative
Stress

Inflammation

Cerebral 
Ischemia 

1
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  Fig. 9.1    “Triangle” of pathophysiological mechanisms of ischemic brain injury in the immature 
brain .  Cerebral ischemia triggers glutamate excitotoxicity, leads to the accumulation of free radicals, 
and promotes the activation of infl ammatory responses in the affected brain tissue (shown as 1). Each 
of these primary mechanisms is suffi cient to induce cell death, but when they occur simultaneously 
in the brain widespread cell death occurs (shown as 2). Damage of cell components caused by oxida-
tive stress is one of the signals that induces infl ammation. Infl ammatory cells are major sources of 
free radicals and at the same time responders to free radicals, which in turn propagate their own 
activation. Incomplete removal of apoptotic cells activates infl ammation and oxidative stress (shown 
as 3) and initiates additional apoptotic/necrotic signaling cascades in the neighboring cells (shown as 
4). Thus, injury evolution is determined by the presence of these three intrinsically interconnected 
mechanisms and is further modulated by feedback mechanisms among these cells       
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While the central role of infl ammatory cells in insuffi cient clearance of apoptotic 
cells and subsequent injury exacerbation is well recognized, whether limited clear-
ance of degenerating cells is due to a lack of recognition of surface markers in dying 
cells by brain phagocytes or due to ineffective interactions between such cells is not 
well defi ned.  

    Blood–Brain Barrier and Extracellular Matrix 

 One factor that may contribute to the differential infl ammatory response to stroke in 
adults and neonates is the BBB. BBB disruption after adult stroke is an important 
contributing factor to injury, but until recently information on BBB function after 
stroke during the early postnatal period has been scant. Earlier studies have demon-
strated the dynamic nature of the BBB function during the fi rst postnatal weeks and, 
in contrast to common belief, they showed that functional integrity of the BBB to 
infl ammatory stimuli does not increase linearly from birth to adulthood [ 31 ]. 
Instead, based on assessment of permeability to HRP, the BBB was more disrupted 
in 3-week-old rats than in 2-h-old rats or in young adult rats following intrastriatal 
injection of the infl ammatory cytokine IL-1b [ 31 ]. These observations determine 
the existence of “windows” of susceptibility of the BBB to infl ammatory cytokines, 
although the underlying cellular and molecular mechanisms are still poorly 
understood. 

 Using transient MCAO models in P7 rats and in adult rats, we recently discov-
ered that in contrast to the markedly increased leakage of plasma proteins (albumin) 
and intravascular tracers of approximately 500 Da, 3 kDa, and 70 kDa into injured 
adult brain 24 h after reperfusion, leakage of these molecules remained low in the 
injured neonatal brain within 24 h [ 32 ]. Although this fi nding might seem paradoxi-
cal, it is known that endothelial tight junctions are functional early during develop-
ment and that the BBB is integrant at birth in most brain regions [ 33 ,  34 ]. Moreover, 
several specifi c components of the BBB known to contribute to vascular imperme-
ability are expressed in higher levels in neonates than in adults  ( Table  9.1  ).  For 
example, both gene and protein expression of the basement membrane proteins col-
lagen IV and laminin was much higher in endothelial cells in uninjured neonatal 
brain cortex than in the adult cortex [ 32 ]. Considering that collagen IV and laminin 
have direct effects on proliferation, migration, and maturation of endothelial cells, 
higher expression of these proteins may be central to the active vascular outgrowth 
in the brain that continues during the fi rst three postnatal weeks [ 35 ,  36 ]. It could 
also affect endogenous mechanisms that preserve BBB integrity but delay and limit 
angiogenesis [ 37 ]. The expression of the tight junction protein occludin was also 
higher in neonates than in adults, whereas expression of other tight junction pro-
teins, claudin-5 and ZO-1, was better preserved after acute stroke in neonates [ 32 ]. 
Our observation that the gene expression of the proteolytic enzyme MMP-9 and the 
adhesion molecule E-selectin is lower in endothelial cells isolated from injured neo-
natal brains than in adult brains also suggests that some mechanisms of interactions 
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between circulating cells, the extracellular matrix, and endothelial cells are matura-
tion dependent. This result is consistent with low recruitment of circulating immune 
cells that is discussed later [ 32 ]. Together, these observations support the notion of 
a higher intrinsic resistance of the neonatal BBB to focal transient ischemia than in 
the adult.

   However, the temporo-spatial particulars of cerebral blood fl ow regulation and 
the extent of recirculation affect BBB permeability. Focal stroke induced in P7 rats 
by permanent MCAO combined with transient CCA ligation was associated with 
BBB disruption and neutrophil accumulation [ 38 ]. In another neonatal brain injury 
model, H-I, increased BBB permeability was demonstrated from 3 to 72 h [ 39 – 41 ]. 
In the same studies, the injurious effects of H-I were reduced in neonatal MMP-9 
knockout mice [ 39 ] and abrogated after administration of the broad-spectrum 
MMP inhibitor GM6001 [ 41 ], once again highlighting the important role of MMPs 
on the degradation of BBB components. Further animal studies should better delin-
eate the dynamics of BBB function and susceptibility to injury during postnatal 
brain development.  

    Infi ltration of Peripheral Leukocytes and Injury 

 Under normal conditions, leukocyte entry into the CNS is low and is limited to the 
vasculature surveillance functions of these cells, but after cerebral ischemia neutro-
phils rapidly and often transiently infi ltrate ischemic tissue in the adult, with the 
extent and timing of their appearance in the tissue dependent on injury severity [ 42 ]. 
Neutrophils exacerbate reperfusion injury after transient ischemic insult in the adult 

   Table 9.1    Gene expression in endothelial cells in adult and neonatal rats subjected to 3 h of 
MCAO followed by 24 h of reperfusion   

 Gene name  Neonatal Contra  Ipsi  Ipsi/Contra  Adult Contra  Ipsi  Ipsi/Contra 

 Collagen IV alpha1  15,622  19,599  1.3  3,278  13,571  4.1 a  
 Collagen IV alpha2  15,643  16,910  1.1  1,478  6,966  4.7 a  
 Laminin alpha5  1,079  1,413  1.3  656  1,618  2.5 a  
 Occludin  9,600  7,132  0.7  8,047  3,034  0.4 a  
 Claudin-5  24,730  23,434  0.9  20,181  17,964  0.9 
 ZO-1  13,473  12,329  0.9  12,887  10,971  0.9 
 MMP-9  187  88  0.5  42  2,631  63.2 a  
 E-selectin  22  1,245  57.6 b   21  4,414  214.3 b  
 VEGFR-2  14,626  12,974  0.9  4,151  10,916  2.6 a  
 Angiopoietin-2  9,569  6,066  0.6  2,761  14,568  5.3 a  

  Abbreviations:  Ipsi  Ipsilateral; the gene expression is determined in injured tissue.  Contra  contra-
lateral; the gene expression is determined in the matching tissue in contralateral hemisphere. Ipsi/
Contra—fold increase in injured vs. contralateral hemisphere. Notice differences in values between 
Contra hemisphere in the two age groups 
  a Statistical signifi cance (Ipsi/Contra) only this age 
  b Statistical signifi cance (Ipsi/Contra) in both ages  
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by at least several mechanisms. They prime the endothelium and contribute to 
reducing CBF, causing “no-refl ow” phenomenon [ 43 ], release free radicals and pro-
teolytic enzymes, and stimulate cytokine release from neighboring cells [ 44 ]. 
Neutrophils also possess specifi c mechanisms that disturb the BBB [ 45 ,  46 ]. 
Treatments that either induce neutropenia, prevent leukocyte vascular adhesion, 
and extravasation into the brain parenchyma or inhibit proteolytic enzymes in 
leukocytes, such as elastase, cathepsin G, or MMP-9, are neuroprotective [ 46 – 50 ]. 
Peripheral and loosely adherent neutrophils can also induce injury, but the relative 
roles of transmigrated and intravascular neutrophils in mediating damage are not 
fully understood. The majority of the genes induced in the blood of human patients 
with acute stroke are expressed by neutrophils [ 51 ]. Neutrophils accumulate within 
hours after stroke, and neurological outcome is worse and infarct is larger in patients 
with marked neutrophil accumulation [ 52 ]. 

 In contrast, in neonatal brain, infi ltration of neutrophils is substantially lower 
[ 53 ] and occurs later [ 32 ,  54 ] in response to H-I and stroke. Indeed, it has been 
shown that at 24 h after neonatal stroke, neutrophils accumulate in the brain post-
capillary venules without transmigrating across the BBB [ 32 ] despite the presence 
of a concentration gradient of the cytokine-induced neutrophil chemoattractant 1 
(CINC-1) between the brain and the blood [ 55 ]. Interestingly, reduction of CINC-1 
concentration in peripheral blood early after injury, by intravenous administration 
of a neutralizing anti-CINC-1 antibody, led to neutrophil transmigration into 
injured neonatal brain and, interestingly, increased infi ltration, recapitulating the 
“adult phenotype” (i.e., an increased BBB leakage and worsened injury) [ 32 ]. It is 
yet not clear whether the inability of neutrophils to transmigrate into injured neo-
natal brain is related to a lower capacity of these cells than in adult brain to respond 
to their specifi c chemoattractants, due to inadequate endothelial cell activation 
after injury, or due to loss of receptors on neutrophils that recognize inducible 
antigens on activated endothelium. The data on increased transmigration of neutro-
phils in response to reduction of systemic CINC-1 [ 32 ] suggest that neutrophil–
endothelial interactions in post-ischemic immature brain differ from that in 
post-ischemic adult brain. 

 Monocytes, a leukocyte subpopulation that typically infi ltrates injured adult brain 
later than neutrophils, is also thought to injure the BBB and damage the ischemic 
tissue. Although macrophages are present in injured neonatal brain in large numbers, 
especially over time after H-I [ 56 ], there is increasing evidence showing that the 
extent and the dynamics of monocyte infi ltration in response to injury are different 
in the neonatal than in adult brain [ 57 ]. In a transient MCAO model in P7 rats, we 
showed that at a time when circulating monocytes actively infi ltrate adult brain after 
transient MCAO, 24 h after reperfusion, most brain macrophages are comprised of 
resident microglia (CD45 low/int /CD11b +  cells), and only a small fraction of the macro-
phage population are infi ltrating monocytes (i.e., CD45 high /CD11b +  cells) [ 58 ]. The 
contribution of peripheral monocytes to the macrophage brain population increases 
by 48 h after reperfusion [ 58 ], indicating that the invasion by peripheral monocytes 
after stroke is delayed in the neonatal brain.  
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    The Microglial Phenotypes and Injury 

 Microglia—endogenous brain macrophages—are the main cell type that provides 
immuno-surveillance in the brain, but these cells can be toxic [ 59 ]. Historically, the 
concept of a “cytotoxic” role of microglia in stroke came from data showing that the 
increased number of the macrophages is associated with more severe injury whereas 
neuroprotective agents decrease both the macrophage numbers and injury severity. As 
resident brain macrophages, microglia have been typically described as injurious. 
However, more recent data suggest that they may act as a “double-edged sword” in 
acute stroke: injurious [ 60 ,  61 ] or benefi cial [ 62 – 64 ]. Three aspects of the microglia/
macrophage contribution to injury after stroke are frequently overlooked: 1) the origin 
of these cells, resident microglia vs. peripheral monocytes, 2) the heterogeneity of the 
microglia/macrophage population, and 3) a switch in the microglial/macrophage phe-
notype from injurious to benefi cial that can occur in response to a changed brain 
microenvironment. Yet, the origin of macrophages may critically affect their functions 
and contribution to injury. For example, TNFα is protective after stroke when it is 
produced in activated microglia, but injurious when it is generated by monocytes [ 65 ]. 
Heterogeneity of the microglial pool [ 66 – 68 ] and microenvironment [ 69 ,  70 ] criti-
cally affect an array of functions in these cells. As an example, selective ablation of 
proliferating (Mac2 + ) microglia (in transgenic mice expressing a mutant thymidine 
kinase form of herpes simplex virus driven by myeloid-specifi c CD11b promoter 
(CD11bTK mt30 ) by ganciclovir treatment) markedly altered the temporal dynamics of 
infl ammatory cytokine expression and signifi cantly increased infarct size and the 
number of apoptotic neurons in adult brain following MCAO [ 70 ]. 

 A classifi cation of macrophage activation—classic activation (M1), alternative 
activation (M2A), and acquired deactivation (M2B)—has been developed based on 
their potential responses to infectious conditions [ 71 ]. M1/M2A/M2B macrophages 
were then shown to play distinct roles under sterile infl ammation conditions, including 
stroke and neurodegenerative diseases, and additional M2 markers were described 
[ 72 ]. Microglia also produce mediators that can harm initially but enhance the repair 
through remodeling of the extracellular matrix [ 73 ] during the chronic recovery 
phase after cerebral ischemia. Therefore, it is not surprising that differing and even 
opposite effects of microglia have been reported in individual studies of repair after 
stroke—either adverse [ 60 ,  61 ] or benefi cial, by facilitating angiogenesis [ 62 ] and 
supporting neurogenesis [ 63 ,  64 ]. 

 It is yet to be learned whether microglial cells have similar functional pheno-
types in the immature and adult brain after injury. In fact, many laboratories 
[ 31 ,  74 ], including ours [ 55 ,  75 ,  76 ], have shown that the infl ammatory response, 
the mechanisms of oxidative injury, the modes of microglial activation, and the 
status of the neurovascular unit are vastly different in neonatal and adult injury. 
Furthermore, although a marked presence of macrophages 1–4 weeks after H-I has 
been fi rmly established, little is known about the relative contribution of microglia 
and invading differentiated monocytes to brain injury and repair. Intriguingly, 
several anti-infl ammatory drugs known to be protective against adult stroke by 
reducing macrophage accumulation led to protection after neonatal stroke without 
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directly affecting the infl ammatory mechanisms associated with microglia activa-
tion [ 77 – 80 ]. The distinction between the local and peripheral components of the 
brain infl ammatory response, especially the contribution of resident microglia and 
infi ltrating monocytes, has been challenging due to the scarcity of reliable differen-
tial cell markers for both cell populations. Recently, development of novel experi-
mental techniques aimed at selective pharmacological depletion of microglial cells 
without affecting peripheral bone marrow-derived monocytes has provided unique 
tools for the study of the particular role of microglia in the ischemic neonatal brain. 
Depletion of microglia by intracerebral injection of liposomes containing encapsu-
lated clodronate, a toxin that selectively induces apoptosis in resident microglia 
without affecting other cell types in the brain [ 81 ], led to increased infarct volume 
and further accumulation of several pro-infl ammatory cytokines and chemo-
kines subacutellly after focal arterial stroke in P7 rats [ 81 ]. Importantly, in the 
absence of microglia the production of cytokines and chemokines typically secreted 
by activated microglia was compensated for by other cell types in the brain, includ-
ing astrocytes, neurons, and endothelial cells [ 81 ]. These data indicated that at least 
a subpopulation of microglial cells mediates benefi cial effects. At the same time, 
microglia can harm by limiting the removal of neurons dying via caspase-3- 
dependent apoptosis and inducing secondary infl ammation and enhanced necrosis. 
The lack of microglia did not signifi cantly increase the number of cells with cleaved 
caspase-3 following acute transient MCAO in P7 rats [ 23 ]. These results raised the 
possibility that the phagocytotic microglial pool might either be low or the recogni-
tion mechanisms between dying neurons and the phagocytotic microglia are not 
suffi ciently activated early after injury. 

 Another potentially important but poorly understood aspect of microglial effects 
after stroke is the role of these cells in vascular integrity. In adults, microglia have 
been shown to rapidly respond to localized small lesions induced in brain vessels in 
vivo by extending their processes towards the injured site in order to “shield” the 
vessel wall and prevent the leakage of plasma components into the brain parenchyma 
[ 82 ]. The active response of microglia to the degradation of BBB components and 
vascular leakage has been shown in an animal model of EAE [ 83 ], in which accumu-
lation of microglia around leaky vessels correlated with the progression of injury. 
Our preliminary data [ 76 ] also show that after neonatal stroke depletion of microglia 
leads to increased BBB permeability and vascular degeneration, supporting the 
notion of a role for microglia in preventing vascular damage after neonatal stroke. 
It remains to be elucidated whether microglia contribute to the maintenance of 
vascular integrity by direct cell–cell contact, by paracrine release of vasoprotective 
factors, or by a combination of both mechanisms.  

    The Scavenger Receptor CD36 and Oxidative 
and Infl ammatory Injury 

 There are numerous classes of scavenger receptors with organ-specifi c and cell 
type-specifi c physiological and pathophysiological functions. CD36 is a scavenger 
class B receptor involved in the modulation of multiple processes, including 
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neuroinfl ammation, production of free radicals, phagocytosis of apoptotic cells, 
lipid metabolism, and injury-induced angiogenesis [ 84 ]. CD36 is expressed by sev-
eral cell types, including monocytes, microglia, dendritic cells, and endothelial cells 
[ 85 ]. It is activated by multiple ligands, including phospholipids, advanced glyca-
tion end products, TSP-1, and OxLDL, or acts via cooperation with other recep-
tors like vitronectin and TLRs. There is an extensive body of data showing that 
CD36 is injurious in adult brain, for example, mediating Aβ toxicity and oxLDL- 
atherosclerosis [ 86 – 88 ]. The effects of CD36, however, are context dependent, as it 
facilitates hematoma resolution after intracerebral hemorrhage in adult mice by 
mediating PPARgamma-dependent phagocytosis of red blood cells by microglia 
[ 89 ], leading to reduced neurological defi cits [ 90 ]. After adult focal stroke, CD36 
expression is upregulated in microglia and in peripheral monocytes and is later 
induced in scar-forming astrocytes in the peri-ischemic brain regions [ 91 ]. Adult 
CD36 knockout mice (CD36ko mice) showed smaller infarcts [ 91 ], less free radical 
formation [ 91 ,  92 ], less NF-kB activation [ 93 ], and attenuated accumulation of pro- 
infl ammatory cytokines [ 94 ], indicating that CD36 activation contributes to brain 
injury by multiple mechanisms. Inhibition of the production of CD36 ligands by the 
antioxidant peptide SS31 also resulted in protection [ 92 ]. 

 Compared to adult stroke, the effects of genetic deletion of CD36 differed 
signifi cantly after neonatal stroke. The absence of CD36 did not improve, but wors-
ened short-term outcome after neonatal stroke. While the volume of “tissue at risk” 
during MCAO, as defi ned by diffusion-weighted imaging, was similar in wild-type 
and CD36ko mice, recovery of the initially affected brain tissue was greatly dimin-
ished in CD36ko mice compared to wild-type mice, resulting in larger injury at 24 h 
after brain reperfusion [ 95 ]. 

 Given that the presence of apoptotic neurons is signifi cantly higher in the injured 
neonatal brain than in the adult brain, the reduced removal of apoptotic cells by 
macrophage-like cells due to the lack of a scavenger receptor would have deleteri-
ous consequences. Consistent with this notion, injury exacerbation was associated 
with the increased presence of cleaved caspase-3 and diminished engulfment of 
apoptotic neurons in neonatal CD36ko mice after neonatal stroke [ 95 ]. Another 
likely mechanism responsible for opposite effects in adult and neonates is accumu-
lation of free radicals in microglia/macrophages. Superoxide accumulation after 
neonatal stroke was low in microglia/macrophages in the injured brain regions 
within 24 h, a time frame of accumulation of this free radical in microglia/macro-
phages in injured adult brain [ 91 ] (Fig.  9.2 ). A marked superoxide accumulation 
was observed in injured vessels after neonatal stroke while no such effect was 
reported after adult stroke [ 91 ]. It is unclear if age differences in free radical produc-
tion in microglia/macrophages are directly related to distinct effects of the genetic 
deletion of CD36 on Nf-kB activation after stroke—a signifi cant reduction in the 
nuclear translocation of NF-kB in the adult but unchanged activation in the neo-
nate—but the production of macrophage chemoattractant chemokines, which were 
decreased in adult CD36ko mice after adult stroke, remained unaffected in neonatal 
stroke [ 95 ] (Figure  9.2 ). The distinct age-related effects of CD36 in injury may also 
depend on downstream intracellular signaling in multiple cell types [ 95 ] as well as 
possible differences in cooperation of CD36 with other receptors, such as TLRs.
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       Toll-Like Receptors and Innate Immune Responses 
to Neonatal Brain Injury 

 TLRs are a well-characterized family of proteins involved in innate immune 
responses to exogenous pathogens that also can be activated by endogenous damage- 
associated molecular patterns (DAMPs) released from cells affected by local altera-
tions of the tissue homeostasis. In adults, TLR2 and TLR4 expression is induced in 
activated microglia following stroke [ 96 ,  97 ]. While TLR4 seems to be purely injuri-
ous in both experimental [ 98 – 100 ] and human stroke [ 101 ], the role of TLR2 is more 
complex and is not well understood. TLR2 elicits context- and tissue- dependent 
effects—injurious [ 102 ,  103 ] or benefi cial [ 104 ,  105 ]—based on the type(s) of het-
erodimers that it forms with TLR1 and TLR4 [ 102 ]. While TLR downstream signal-
ing pathways are relatively well described, the mechanisms facilitating ligand 
recognition by TLRs remain poorly understood. Recent results showed that the 
assembly of the TLR complexes in response to β-amyloid or oxLDL is not ligation 
of the TLRs but the initial CD36-mediated ligand recognition, which signals to Src 
kinases to induce TLR heterodimerization [ 106 ]. The formation of CD36–TLR4–
TLR6 complex mediates injury in the setting of adult stroke [ 102 ,  106 ]. 

 The situation is very different following H-I in neonates than after adult stroke: 
there is an upregulation of several TLRs, including TRL1, TLR2, and TLR8 [ 107 ], 
but, in contrast with the observations in adults, the expression of TLR4 remains 
unchanged. The effect of TLR4 on progression of H-I injury is unclear, since 
deletion of its intracellular effector protein, Myd88, did not result in protection [ 108 ]. 
In contrast, TLR2 deletion led to reduced H-I injury in neonate rats [ 107 ]. TLR1 
expression was upregulated in neurons in the injured hemisphere following neonatal 
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  Fig. 9.2    Differential effects of CD36 genetic deletion after adult and neonatal stroke       
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H-I, but genetic deletion of this receptor did not affect injury outcome, suggesting a 
minor involvement of TLR1 in injury evolution after neonatal H-I [ 107 ]. Even without 
stroke, activation of brain TLR2 and TLR4 by exogenous ligands adversely inter-
fered with normal postnatal brain development [ 109 ]. Selective TLR2 and TLR4 
agonists administered from P3 to P11 (a time window during which oligodendro-
cyte progenitors are selectively vulnerable) impaired normal postnatal myelination 
and reduced the number of hippocampal neurons [ 109 ]. Maternal exposure to LPS 
(endotoxin) also has negative consequences on the offspring, including decreased 
myelination and increased reactive astrogliosis [ 110 ,  111 ]. Moreover, exposure of 
pregnant mice to LPS induced changes in the gene expression of factors involved 
in key cell processes for brain development, including cell stress, migration, and 
cell death and altered certain behaviors through young adulthood [ 112 ]. 

 The systemic activation of TLRs also results in the induction of infl ammatory 
responses in the neonatal brain. Peripheral administration of serial doses of LPS in 
rats during the fi rst postnatal week led to a transient increase in BBB permeability in 
the white matter regions [ 113 ]. Strikingly, adult animals that received LPS systemi-
cally during the fi rst postnatal week also showed increased BBB permeability, indi-
cating that activation of TLR4 early after birth could induce permanent alterations 
in BBB function [ 113 ]. The mechanisms by which peripheral LPS can induce brain 
infl ammation are not very clear, although several hypotheses have been proposed 
[ 114 ]. LPS does not seem to cross the intact BBB [ 115 ], but activation of TLR4 in 
circulating immune cells may induce release of infl ammatory mediators that can 
affect the neurovascular endothelium and cause alterations of the BBB. Also, LPS 
can bind to the TLR4 present on endothelial cells and activate synthesis and release 
of infl ammatory cytokines and prostaglandins to the brain parenchyma, where they 
can thereby act on neural cells and propagate infl ammation [ 116 ,  117 ]. Finally, 
cytokines released from circulating cells activated by LPS can be translocated 
across the disrupted BBB and reach brain parenchymal cells [ 118 ,  119 ]. 

 While data on the involvement of TLR in neonatal H-I and focal stroke are accu-
mulating, the underlying immaturity-related differences in the mechanisms remain 
mostly unknown and may be related to differences in ligand levels and the ways in 
which CD36 forms heterodimers with multiple TLRs. It is also possible that overacti-
vation of TLR4 receptors early postnatal reprograms brain responses later in life.  

    Remarks on Infl ammation and Long-term Injury 
and Repair after Stroke 

 Although we limited the discussion of infl ammation to its role in acute stroke, 
infl ammation is an important modulator of repair. Repair is very complex [ 120 , 
 121 ]. Several studies have demonstrated that post-ischemic angiogenesis enhanced 
pharmacologically [ 122 ,  123 ] or by cell-based therapy [ 124 ,  125 ] promotes func-
tional recovery, while suppression of angiogenesis by anti-infl ammatory strategies, like 
a MMP inhibitor [ 73 ], or by disruption of SDF1 or Ang1/Tie2 signaling [ 126 ] 
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worsens functional recovery. Neurogenesis itself is regulated by non-neuronal cells 
[ 127 ], including microglia. Microglia can damage newly born neurons or support 
them through production of anti-infl ammatory factors [ 63 ,  64 ], such as IGF1 and 
IL-10. LPS-activated microglia block neurogenesis whereas microglia activated 
by IL-4/T-helper cells induce neurogenesis [ 67 ]. Microglia contribute to the main-
tenance of hippocampal neurogenesis and spatial learning in the adult by enriched 
environment [ 68 ]. Data are also emerging that the effect of neuroprogenitor cells to 
repair injured brain may be due to reshaping brain microenvironment rather than 
due to engrafted cells themselves. 

 In the neonatal brain, extensive proliferation of neural stem/progenitor cells in 
the SVZ has been described in response to H-I and stroke [ 128 – 131 ], but relatively 
few newly born neurons survive and mature. Surprisingly, angiogenesis remains 
relatively low for at least a week after stroke in the neonate [ 37 ], likely adversely 
affecting neurogenesis. Future studies would defi ne the effects of brain microenvi-
ronment, hostile or supportive, in neurogenesis and survival of newly generated 
neurons, information necessary to facilitate neurogenesis and synaptic plasticity.     
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    Abstract     Stroke-induced pathology involves biphasic induction of an early massive 
peripheral immune cell activation followed by delayed, progressive splenic apoptosis 
and consequent immunosuppression. In this chapter, we review key immunological 
aspects of stroke induction and immunosuppression in the context of an emerging 
concept called “brain–spleen injury cycling.” Moreover, we discuss the contribution 
to stroke severity of immune cells, including T and B cells, regulatory IL-10 secreting 
B cells and the programmed death receptor/ligand inhibitory pathway. Finally, we 
propose two novel therapeutic approaches that may limit stroke pathology and ame-
liorate downstream immunosuppression.  

        Introduction 

 It is now increasingly clear that human stroke creates not just a single organ insult, 
but a complex interaction between two great physiological systems: the CNS and 
the peripheral immune system. Until recently, the events behind how stroke induces 
pathology in distant immune organs (e.g., spleen and thymus) has been relatively 
unstudied. Furthermore, the signifi cance of, and mechanisms underlying, cerebral 
ischemia-induced immune dysfunction remain poorly understood. However, using 
animal and cell models, we have observed that systemic immunopathology evolves 
in tandem with the maturing central cerebral infarct. This chapter summarizes 
evidence from our work and that of others, characterizing the systemic immune 
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response after experimental stroke, the cell players, and their interactions with the 
injured brain. Several key concepts are discussed. The fi rst is that post-ischemic 
immunopathology is biphasic in nature. Within hours of brain events, intra-splenic 
immune cell activation and enormous local cytokine elaboration occur, followed by 
a delayed, progressive splenic apoptosis and consequent immunosuppression. 
As activated immunocytes are released from the spleen, they are transported across 
a dysfunctional blood–brain barrier, fully primed to contribute to cerebral infl amma-
tion. We call this phenomenon “brain–spleen injury cycling,” a second key concept 
of the chapter. Next, a variety of immunocytes are discussed as part of brain–spleen 
cycling, all of which impact outcomes for the injured brain. Lastly, the implications 
of brain–spleen injury cycling for future immunotherapy are presented.  

    Signifi cance of Stroke-Induced Immunopathology 

 Stroke and infection are strongly intertwined. Evolving data suggests that chronic 
infection may precede acute ischemic stroke and alter stroke risk, presumably 
through infl ammatory processes that lead to progression/destabilization of atheroscle-
rotic plaques. Acute infection can also represent a risk factor for cerebral infarction, 
and stroke severity is an important predictor of subsequent infection [ 1 ,  2 ]. However, 
most striking is the vulnerability of patients to infection after a cerebral ischemic 
event, a vulnerability that arises in part through altered immune function. Animals 
employed in models of cerebral ischemia and human stroke survivors demonstrate an 
acute phase response within hours of the ischemic insult, chiefl y increased white 
blood cell count and blood-borne markers of infl ammation. In individuals with large 
strokes, immunodefi ciency follows within days of the acute phase response, typi-
cally exhibiting lymphopenia and elevated plasma levels of IL-10 and IL-6 [ 3 ,  4 ]. 
The presence of immune system dysfunction is most ubiquitously recognized in 
these patients by the enhanced susceptibility to respiratory and urinary tract infections. 
Such infections account for signifi cant morbidity and mortality in stroke patients. 
Therefore, it is imperative to understand the causes and mechanisms of post-stroke 
immunopathology, the subject of this chapter.  

    Early Work: Characterizing Stroke-Induced Immune 
System Pathology in Mice 

 While post-ischemic infl ammation within brain has been well studied in models of 
experimental focal stroke, systemic infl ammatory responses have been poorly char-
acterized. To initiate a study of this problem, we quantifi ed changes in cell numbers 
in the spleen, and mRNA and protein levels for cytokines, chemokines, and chemo-
kine receptors (CCR) in brain, spinal cord, peripheral lymphoid organs (spleen, 
lymph node, blood, and cultured mononuclear cells from these sources), and blood 
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plasma 6 and 22 h after reversible middle cerebral artery occlusion (MCAO) or sham 
MCAO in male C57BL/6 mice [ 5 ,  6 ]. Infarction at 22 h was present in all animals, 
and damage was consistent with previous work in this model. In the post- ischemic 
brain, there were striking differences in cytokines, chemokines, and chemokine 
receptor levels. Cortex and striatum ipsilateral to the occlusion demonstrated pro-
nounced increases in expression of infl ammatory cytokines (TNF-α, IL-1β, and 
IL-6) and chemokines (RANTES, IP-10, and MIP-2), as well as noninfl ammatory 
factors (TGF-β1, IL-10, and IL-13), but not IFN-γ or  FoxP3  relative to equivalent 
regions in sham MCAO-treated brains. In most instances, there was already sub-
stantial basal expression of chemokine receptors, and MCAO further enhanced 
expression of only CCR3 and CCR8. After 22 h of reperfusion, tissue ipsilateral to 
the occlusion showed a similar pattern, but generally lower levels of expression of 
cytokines and chemokines, with the exception of IL-6 and MIP-2, which were nota-
bly increased. However, more widespread changes in expression of chemokine 
receptors were evident at 22 h, including fi vefold additional increase in message of 
CCR1 and CCR2, and a 40-fold increase in message of CCR5, and lower but signifi -
cant changes in CCR3, CCR7, and CCR8. These measurements were consistent 
with what has become well known about post-ischemic cerebral infl ammation. 

 The novel aspect lies in the connection between the ischemic lesion in brain and 
evolving infl ammatory changes in distant peripheral immune cell populations. 
Mononuclear cells were isolated from various lymphoid organs 6 and 22 h after 
MCAO or sham MCAO, and cytokines were assessed by CBA and ELISA in super-
natants of cultures stimulated for an additional 24 h with plate-bound anti-CD3/
CD28 antibodies. The most striking and consistent changes induced in the MCAO 
mice versus sham-MCAO mice were observed in the spleen. At both the 6 and 22 h 
time points, activated spleen cells from stroke-injured mice secreted signifi cantly 
enhanced levels of the infl ammatory factors TNF-α, IFN-γ, IL-6, MCP-1, and IL-2 
(Fig.  10.1 ), with increased secretion of the anti-infl ammatory factor, IL-10 only at 
the 22 h time point. Moreover, unstimulated spleen tissue from stroke mice had 
increased expression of message for MIP-2, CCR2, CCR7, and CCR8 at the 6 h 
time point, and MIP-2, IP-10, CCR1, and CCR2 at the 22 h time point (not shown). 
Similar increases in secretion of TNF-α, IL-6, IL-2, and IFN-γ (LN only) were 
observed only at the 22 h time point in activated lymph node and blood mononuclear 
cells (Fig.  10.1 ).

   These data demonstrated for the fi rst time that focal cerebral ischemia results in 
dynamic and widespread activation of infl ammatory cytokines, chemokines, and 
chemokine receptors in the peripheral immune system. A major fi nding was the 
rapid and widespread increase in production of infl ammatory factors (TNF-α, IL-6, 
IL-2, MCP-1, and MIP-2) by basal and activated splenocytes that occurred as early 
as 6 h after stroke, with similar changes occurring later in the spleen as well as in 
lymph nodes and blood. While there were many similarities in the pattern of expres-
sion of splenic versus brain cytokines and chemokines, there were also striking 
differences. In particular, splenic T cells activated with anti-CD3/CD28 antibodies 
produced a signifi cant increase in IFN-γ (not observed in brain), but absent levels of 
IL-1β (observed only in brain). Others have evaluated the effects of MCAO on 

10 Systemic Immune Responses after Experimental Stroke



156

lymphoid tissue, demonstrating extensive loss of lymphocytes in spleen and thymus, 
a shift from T helper cell (Th1) to Th2 cytokine production and increased lympho-
cyte apoptosis by 12 h of reperfusion [ 7 ,  8 ]. We observed enormous splenic T-cell 
cytokine/chemokine production that was readily measured during early reperfusion 
(minimum 6 h). These observations are signifi cant in that they may play a role in the 
adaptive immune response to stroke. There is a likelihood that once the brain 
no longer possesses a functional blood–brain barrier, then exposure of normally 
cloistered brain structural elements occurs, initiating autoimmune-like processes 
and cell-mediated immune defenses in the periphery. However, in the absence of 
previously activated memory T cells, naïve autoimmune responses to newly released 
brain antigens would require days, rather than hours, to manifest. 

 Given the distance of the splenic T cells from the evolving infarction and the low 
level of infi ltrating mononuclear cells present in the injured brain [ 9 ], it is unlikely 
that the splenic infl ammatory cells measured at 6 h represent emigrating cells from 

  Fig. 10.1    Effects of stroke on cytokines secreted from stimulated splenocytes and blood cells. 
Spleens and blood were collected 6 and 22 h after vascular occlusion and immune cells were 
stimulated for 48 h with plate-bound anti-CD3/CD28 antibodies. Supernatants were evaluated for 
levels of secreted factors, including TNF-α, IFN-γ, IL-6, MCP-1, IL-2, and IL-10.  Asterisk  indi-
cates a signifi cant difference in expression in stroke mice versus sham-treated mice (Previously 
published,  Journal of Cerebral Blood Flow and Metabolism , 2006;26:654)       
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the brain. It is more likely that the early phase of splenic infl ammation and the 
spread of activated lymphocytes to lymph nodes and blood results from sympathetic 
neural stimulation initiated in response to brain injury.  

    Splenic Activation Is Followed by Destruction and Suppressed 
Immune Function 

 An important early study demonstrated reduced numbers of immune cells and 
increased percentages of TUNEL +  B cells, T cells, and NK cells in blood, spleen, 
and thymus in mice after focal cerebral ischemia [ 10 ]. The reduced cell numbers 
accounted for decreased production of IFN-γ, resulting in increased mortality 
caused by bacteremia and pneumonia. Further work by this group showed that 
immune cells in peripheral lymphoid organs decrease, accompanied by decreased 
secretion of TNF-α and IFN-γ and increased susceptibility to spontaneous bacterial 
infections [ 8 ]. We evaluated how MCAO affected spleen cell numbers, morphology, 
and function through 4 days of recovery [ 5 ,  6 ] and so characterized a second phase 
of post-stroke immunopathology. The total number of mononuclear cells per spleen 
fell by 6 h post-MCAO and continued to fall by 22 h post-occlusion (Table  10.1 ). 
By 96 h, spleen cell numbers were drastically decreased, as compared to sham-
MCAO- treated mice or mice naïve to injury. Furthermore, splenocyte proliferation 
in response to mitogen stimulation (ConA) was suppressed at 22 h after MCAO. 
To determine if the reduction in spleen cell numbers and responsiveness was due to 
cell death, splenocytes were harvested from animals at 22 h post-MCAO and evalu-
ated for the presence of apoptotic markers Annexin V and TUNEL. Annexin V 
staining was increased in MCAO versus sham-MCAO B lymphocytes and CD4 +  
T lymphocytes, and a moderate increase in TUNEL +  splenocytes was detected in situ 
22 h after MCAO [ 5 ,  6 ].

   Furthermore, both spleens and thymi were grossly reduced in volume by 96 h 
after MCAO [ 5 ,  6 ]. Hematoxylin and Eosin stained spleens from MCAO mice 
showed a gross loss of tissue in both the white and red pulp, loss of lymphoid isles, 
and clear apoptosis morphologically, while spleens from sham-MCAO animals 

   Table 10.1    Spleen Cell 
Yield (×10 6 ) from sham and 
MCAO B6 male mice  

 Time/status  Sham MCAO  MCAO 

 6 h  50 ± 14 (4)*   46      ± 4 (3) * 
 22 h   35 ± 5 (15) *   16 ± 3 (16) **  ,   * 
 96 h   80 ± 10 (2)    6 ± 3 (4) **  ,   * 

  Naïve mice: 91 ± 8 (4)  

  Reprinted from  Neuroscience , 158(3), Offner H, Vandenbark 
AA, Hurn PD. Effect of experimental stroke on peripheral 
immunity: CNS ischemia induces profound immunosup-
pression, 1098–1111, 2009, with permission from Elsevier 
 * p  < 0.001 versus Naïve mice (number of mice) 
 ** p  < 0.002 versus sham-MCAO mice  
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appeared grossly normal. Total spleen size and cell number (Table  10.1 ) and T-cell 
response to both ConA and anti-CD3 mAb were all strongly decreased [ 5 ,  6 ]. The 96 h 
MCAO spleens had strongly reduced secretion and message levels for infl ammatory 
cytokines, TNF-α, IFN-γ, and IL-6 (Figs.  10.2  and  10.3 ). These changes were 
refl ected by a striking increase in TUNEL +  cells and in propidium iodide positive 

  Fig. 10.2    Effects of stroke on cytokines secreted from stimulated splenocytes. Spleens were 
collected 96 h after vascular occlusion and immune cells were stimulated for 48 h with plate-bound 
anti-CD3/CD28 antibodies. Supernatants were evaluated for levels of secreted factors, including 
TNF-α, IFN-γ, IL-6, MCP-1, and IL-10.  Asterisk  indicates a signifi cant difference in expression 
in MCAO versus sham-MCAO mice (Previously published,  The Journal of Immunology , 
176:6523–6531, 2006. Copyright 2006. The American Association of Immunologists, Inc.)       

 

H. Offner and P.D. Hurn



159

(PI + ) splenocytes. Curiously, despite near total loss of splenocytes after MCAO, 
there were no changes in the percentage composition of T or B lymphocytes, or 
macrophages. However, splenocytes from 96 h MCAO mice had an increase in 
 FoxP3  mRNA, and a threefold increase in CD4 + FoxP3 +  regulatory T lymphocytes 
(Tregs) as compared to naïve or sham-MCAO mice. In blood, there was a twofold 
decrease in white cell counts/ml, but a dramatic increase in the percentage of 
CD11b + VLA-4 −  macrophages in MCAO (66 %) versus sham MCAO (9 %). This 
suggests that by 96 h, the VLA-4  positive  T and B cells have likely migrated to the 
brain or other tissues, causing an increase in circulating macrophages. These results 
strongly indicate a general loss of B and T cells and macrophage/dendritic cells 
from the spleen, while Treg cells were relatively enriched, and appearance of 
macrophages/DC is readily detectable in the blood. We interpreted the cause of sup-
pressed responsiveness to anti-CD3 and ConA by splenic T cells to be linked to the 
combination of reduced T-cell numbers and increased Treg activity.

    Accordingly, cell death represented only one of the processes that contributed to 
post-MCAO splenic atrophy and loss of T-cell responsiveness to mitogen stimula-
tion. The relatively selective reduction in B cells in spleen and blood, the pro-
nounced increase in splenic CD4 +  Treg cells, and the increased presence of 
circulating monocytes/macrophages that all occur by 96 h after MCAO are also 
important, and in the following ways. First, B cells constitute about 60 % of splenic 
and blood mononuclear cells in mice. By 96 h after stroke, the percentage of B cells 
was reduced by about half to about 30 % of the remaining splenic and blood mono-
nuclear cells. When translated to total cells, this represents a reduction from 45 
million to only 2.5 million B cells per spleen, and a >80 % reduction in the number 
of B cells/ml of blood. This degree of B-cell loss just 4 days after stroke would 
undoubtedly compromise the ability of the humoral immune system to provide 
protection against invading microorganisms. 

 Second, CD4 + CD25 +  Tregs are considered to be “master regulators” of the 
immune system. Initial descriptions indicated that Treg cells expressed very high 
levels of the IL-2 receptor, CD25, and consequently these cells are often referred to 

  Fig. 10.3    Strongly reduced T-cell proliferation 96 h after MCAO. Splenocytes were obtained 
from naïve, sham MCAO, and MCAO mice 96 h after stroke and evaluated for proliferation 
responses 3 days after stimulation with 0.5 μg ConA, anti-CD3 mAb or medium.  Asterisk  indicates 
signifi cant reduction in response compared to naïve or sham-MCAO mice (Previously published, 
 The Journal of Immunology , 176:6523–6531, 2006. Copyright 2006. The American Association of 
Immunologists, Inc.)       
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as CD4 + CD25 +  or CD4 + CD25 bright . In normal mice, Tregs limit infl ammation and 
inhibit autoimmune diseases [ 11 – 13 ]. The forkhead/winged helix transcription factor 
gene,  FoxP3 , is strongly linked to the regulatory function of CD4 + CD25 +  Tregs [ 14 – 16 ] 
and has become a useful intracellular marker for their identifi cation. Although a 
normal complement of Tregs specifi c for self tissue determinants may maintain 
self-tolerance [ 17 ], it is now appreciated that an overabundance of Tregs may impede 
immunosurveillance against autologous tumor cells [ 18 ] and may suppress the ability 
of CD4 + CD25 −  effector T cells to eliminate parasites [ 19 ]. Taken together, these fi nd-
ings document the importance of the CD4 + CD25 +  Tregs subpopulation in regulating 
autoreactive as well as protective T-effector cells in vivo. 

 Third, the pronounced increase in the percentage of CD11b +  macrophages/
monocytes in blood may also be important. These circulating cells are clearly viable 
and do not express the VLA-4 traffi cking marker that would otherwise permit these 
cells to infi ltrate into the tissues, including the brain. Certain subtypes of macro-
phages and dendritic cells (that are also CD11b + ) can potentiate activation of Treg 
cells and reduce the activation of T-effector cells [ 20 ]. 

 The underlying process that results in widespread immunosuppression and 
concurrent systemic infections after stroke induction in animals or humans is not 
well understood. However, it is conceivable that sympathetic signaling to the spleen 
and thymus after MCAO hyperstimulates the activation of these immune organs, the 
local elaboration of massive amounts of cytokines/chemokines, and the precipita-
tion of further dangerous immunopathological sequelae. These sequelae include 
splenic apoptosis, selective splenocyte depletion (i.e., a relative overabundance of 
Tregs could inhibit protective immune cells, including CD4 +  and CD8 +  T cells, 
B cells, and natural killer cells), and consequent abnormal immune function.  

    Brain Antigens May Impact Post-stroke Immune Activation 

 A key assumption in studies of post-stroke immune activation is that the cellular 
adaptive immune response must be triggered through an encounter with brain- 
derived antigens, either in soluble form or as presented by macrophages or dendritic 
cells. Under ordinary circumstances, the CNS is uniquely “immune privileged” in 
that brain is isolated from the immune system by a functional blood–brain barrier. 
Following injury, antigen-presenting cells have long been thought to leave the brain 
and to be transported by the blood or cerebrospinal fl uid to lymphoid tissue, including 
the cervical lymph nodes. Consistent with this maxim is the observation that brain-
derived antigen immunoreactivities, to the NMDA receptor subunit NR-2A and to 
myelin, are present in palatine tonsils and cervical lymph nodes of patients after 
acute stroke [ 21 ]. This fi nding suggests that transfer of neural antigen to lymphoid 
tissue is an important mechanism of immune system activation and control. 

 Leakage of brain autoantigens such as myelin basic protein or myelin oligoden-
drocyte glycoprotein (MOG) to the periphery results in a variety of consequences 
for the immune system and for the injured brain. We have evaluated the functional 
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consequences of this autoimmune response in murine experimental stroke, using an 
adoptive transfer process and MOG reactive cells [ 22 ]. Transferring MOG-reactive 
splenocytes which secrete toxic Th1 cytokines (e.g., IFN-γ and TNF-α) into severe 
combined immunodefi cient (SCID) mice produced signifi cant exacerbation of infarct 
volume and neurological defi cits by 96 h post-MCAO. Furthermore, animals receiv-
ing MOG-stimulated splenocytes exhibited a higher percentage of immune cells in 
the ischemic hemisphere than did control mice. These data demonstrate clearly that 
MOG-stimulated splenocytes traffi c into injured brain in a selective manner and 
emphasize the role of CNS antigen in activation of peripheral immune cells.  

    Brain–Spleen–Brain Injury Cycling Hypothesis 

 This previous work has directed our working hypothesis that evolving cerebral 
ischemic injury elicits a cycle of injury from brain-to-spleen-to-brain (Fig.  10.4 ). 
We suggest that selected cell sources and mechanisms of deleterious brain–spleen–
brain pathobiology contribute in different ways to CNS outcomes and immune 
capacity. As shown in Fig.  10.4 , the evolving brain injury “signals” for splenic acti-
vation which leads to apoptosis and drastic loss of immune cells. The activated 
spleen also releases cells into the blood, followed by traffi cking across the micro-
vasculature replete with infl ammatory display of adhesion molecules and chemo-
kines. Cells released from the spleen and engaged in traffi cking into brain may also 
be temporally specifi c, different in intensity, and controlled by different mecha-
nisms as discussed below.

  Fig. 10.4    Concept of Brain–spleen–brain injury cycling       
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       The Adaptive Immune System Contributes to Stroke 
Lesion Development 

 We hypothesized that activated peripheral T and B lymphocytes would home to 
injured brain and alter the trajectory of the evolving infarct. To test this directly, we 
employed C.B-17  scid/scid   mice that lack T and B lymphocytes with a consequent loss 
of all immune functions that require these cells. The immunodefi ciency in SCID 
mice results from a mutation on chromosome 16, which causes defi cient recombi-
nase activity required for immunoglobulin and T-cell receptor gene rearrangement 
[ 23 ]. Despite the lack of T and B cells, SCID mice have normal functioning macro-
phages, dendritic cells, and Natural killer cells (   but not NK-T cells that have a rear-
ranged T-cell receptor (TCR)), as well as neutrophils. We compared early (22 h) 
histological outcomes in this strain versus the WT background strain, C57BL/6, as a 
means of determining the contribution of T and B cells to focal ischemia, while mini-
mizing the potential vulnerability of SCID mice to postoperative immune challenges 
that would confound stroke outcome. Intra-ischemic physiological parameters, 
anesthesia requirement and residual cortical perfusion as assessed by LDF were not 
different in SCID versus WT mice, suggesting that the insult was comparable. 

 We found that both cortical and total hemispheric infarct volumes were strikingly 
reduced at 22 h after MCAO by ~40 % in male SCID ( n  = 10) versus C57BL/6 con-
trol ( n  = 9) mice ( p  < 0.01) [ 24 ]. Striatal infarction was not altered in the SCID mice, 
suggesting that the core of the evolving infarction was not protected by the lack of T 
and B cells. One explanation may be that vascular collateralization is more pro-
nounced in cortex, offering an effective route for T-cell entry into brain during reper-
fusion. In accordance with our previous study [ 5 ,  6 ], WT mice had increased message 
levels in post-ischemic brain for TNF-α, IL-1β, IL-6, IL-10, IP-10, CCR1, CCR2, 
CCR3, and CCR5 as a relative expression of MCAO versus sham WT brains. In con-
trast, expression levels for most lymphocyte-derived cytokines, chemokines, and che-
mokine receptors in SCID mouse brains were greatly reduced in the ischemic 
hemisphere, particularly IL-10, CCR2, and CCR3. Only mRNA expression for IL-1β 
was signifi cantly elevated by ischemia in SCID brains, likely the product of resident 
or infi ltrating macrophages or CNS parenchymal cells rather than T or B cells. 

 As discussed above, focal cerebral ischemia in immunologically intact C57BL/6 
mice resulted in a marked reduction in spleen cell numbers when evaluated at 22 h 
post-ischemia (16 ± 3 million in MCAO versus 35 ± 5 million in sham versus 91 ± 8 
million in Naïve mice [ 5 ,  6 ]). Naïve SCID mice had an even greater reduction in 
splenocyte numbers (2.7 ± 1.4 million cells) as would be expected in the absence of 
T and B cells. Sham-treated SCID mice had only 1.8 ± 0.9 million cells per spleen, 
and MCAO treatment further reduced the cell number to 1.2 ± 0.6 million per spleen 
( p  < 0.05). It is noteworthy that the remaining cell population in spleen after MCAO 
in both WT and SCID mice included a striking increase in CD11b + VLA-4 −  macro-
phages. In contrast with WT C57BL/6 mice in which MCAO (22 h) induced marked 
increases in splenic mRNA expression for IFN-γ, TNF-α, IL-6, MIP-2, IP-10, 
CCR1, and CCR2, MCAO in SCID mice induced increases only in splenic IFN-γ 
and MIP-2 message and decreases in IP-10 and CCR5 message. The increased 
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expression of IFN-γ and MIP-2 in SCID splenocytes after MCAO may derive from 
the enriched population of CD11b + VLA-4 −  macrophages or other residual spleno-
cyte populations that are mainly natural killer cells, monocytes, macrophages, and 
dendritic cells. 

 This study demonstrated three important fi ndings. First, loss of T and B lympho-
cytes through a genetic mutation in SCID mice resulted in signifi cant improvement 
in early ischemic histological damage, thus indicating that lymphocytes are strongly 
involved in the size of the evolving infarct, and are a signifi cant source of selected 
infl ammatory mediators in brain. The target region is cortex, presumably in penum-
bral areas rather than in the core of the infarct. Second, when T and B cells are 
absent, post-ischemic induction of infl ammatory mediators in brain was largely 
suppressed within the window of our observations. Only IL-1β was elevated in isch-
emic SCID brain relative to sham-operated mice. Third, post-stroke loss of spleno-
cytes was blunted but not completely ablated in SCID mice. Further, post- stroke 
expression of intra-splenic cytokines/chemokines was also blocked with the excep-
tion of IFN-γ and MIP-2. Our data are consistent with a previous report that lym-
phocyte-defi cient Rag1 −/−  mice sustain smaller infarct volumes and improved 
neurological defi cits after MCAO [ 25 ]. Importantly, CD4 +  and CD8 +  T lymphocytes 
contributed largely to post-ischemic intravascular infl ammatory and prothrombotic 
responses in cerebral venules. 

 The early (24 h) appearance of T-cell infi ltration into brain after MCAO [ 26 ,  27 ] 
may indicate that recruitment of activated cells is antigen-nonspecifi c, perhaps gen-
erated by sympathetic signaling from brain to the periphery as discussed above. 
Alternatively, leakage of brain antigens across a compromised blood–brain barrier 
could initiate a peripheral immune response. Activated T cells have the capacity to 
infi ltrate brain and could contribute to expansion of the ischemic penumbra, an area 
that already contains infi ltrating neutrophils after 24 h. The functionality of this 
response has received much interest because of reports that tolerance to brain anti-
gens can be induced with benefi cial effects on stroke severity [ 28 ]. The context of 
lymphocyte activation is likely important, as pro-infl ammatory CD4 + CD28 −  lym-
phocyte subsets in blood are well recognized in clinical ischemic stroke, and rising 
CD4 + CD28 −  counts are associated with increased risk of stroke recurrence and 
death [ 29 ]. In summary, our study quantifi ed the relative contribution of T and B 
lymphocytes to production of infl ammatory mediators in the context of a developing 
infarct and emphasized that spleen-derived immunocytes are a potential target for 
therapeutic intervention.  

    B-Cell Defi ciency Exacerbates Stroke Outcomes and Alters 
Cerebral Infl ammatory Cell Invasion 

 As discussed above, MCAO triggers early signaling from the ischemic brain to 
spleen, resulting in a massive production of infl ammatory factors and transmigra-
tion of splenocytes to the circulation and brain. Whereas infl ammatory cells from 
the periphery have now been shown to contribute to CNS damage and cell death, 
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other regulatory immune cells can reduce infl ammation and limit damage within 
the brain. A major conundrum in the immunology of stroke is how to enhance the 
early immunoregulation that limits CNS infl ammation while preventing exces-
sive systemic suppression. To do this in a strategic manner requires a full under-
standing of the involved infl ammatory and regulatory immune pathways. To this end, 
we evaluated the ability of regulatory B cells from the peripheral immune system to 
exert immunosuppressive effects, diminish stroke lesion size, and protect from neu-
rological damage [ 30 ]. For this comparison, we induced MCAO in B-cell-defi cient 
μMT −/−  mice versus WT C57BL/6 mice. 

 Our studies demonstrated conclusively that the B-cell-defi cient mice sustained 
signifi cantly larger total hemispheric infarcts at 48 h ( p  < 0.05) and a worsened func-
tional outcome at 24 h ( p  = 0.02) and 48 h ( p  = 0.002) after reperfusion, indicating that 
the presence of functional B cells limited stroke severity. Leukocytes are major effec-
tors of infl ammatory damage after experimental brain ischemia [ 31 ,  32 ]. To deter-
mine if the lack of B cells altered leukocyte composition in brain after MCAO, 
numbers of infi ltrating Gr1 +  neutrophils, CD3 +  T cells, CD11b + CD45 low  microglia, 
and CD11b + CD45 high  macrophages were evaluated by fl ow cytometry. After 48 h 
reperfusion, accumulation of all of these leukocyte subtypes was signifi cantly greater 
in the affected hemisphere of MCAO-treated μMT −/−  mice as compared to MCAO-
treated WT mice. Lack of B cells in μMT −/−  mice further permitted signifi cant 
increases in the absolute number of IFN-γ- and TNF-α-secreting CD3 +  T cells and 
MHC class II +  and TNF-α-secreting microglia and macrophages in the lesioned ipsi-
lateral hemisphere of MCAO mice at 48 h reperfusion. In addition to the cell types 
mentioned above, we detected ~7,000 CD19 +  B cells per hemisphere in both naïve 
and sham-treated WT mouse brains and modest but signifi cant increases to ~10,000 
B cells in the non-ischemic hemisphere and 12,000 B cells in the ischemic hemi-
sphere of WT mice 48 h after MCAO.  

    Regulatory Effects of IL-10-Secreting B Cells on MCAO 

 To specifi cally implicate B cells as a key protective cell type, CD19 +  B cells were 
obtained and enriched to 99 % purity by negative selection from splenocytes of 
transgenic green fl uorescent (GFP + ) mice, and 50 million GFP + CD19 +  B cells were 
injected i.p. into μMT  −/−   B-cell-defi cient mice 1 day prior to MCAO. The B-cell- 
defi cient animals that received adoptively transferred GFP + CD19 +  B cells had 
reduced infarct volumes ( p  > 0.05) after 48 h reperfusion compared to no cell trans-
fer (PBS) controls (Fig.  10.5 , top panel), as well as a lower mortality rate. Consistent 
with smaller infarction size, neurological outcome scores were also improved in 
B-cell-restored μMT  −/−   mice with stroke after 48 h reperfusion compared to no cell 
(PBS) transferred control mice. These fi ndings clearly demonstrate that WT CD19 +  
B cells can restore improved ischemic outcomes in B-cell-defi cient μMT  −/−   mice.

   Because of the signifi cant B-cell-dependent activity in limiting stroke infarct size 
and functional outcome demonstrated above, we hypothesized that the protective 
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actions of CD19 +  B cells might be linked to IL-10 production, a major regulatory 
cytokine known to be produced by both B cells and T cells. Thus, intracellular stain-
ing of IL-10 was carried out in CD19 +  B cells and CD3 +  T cells harvested from 
immune organs after MCAO and stimulated ex vivo with LPS, PMA, and ionomy-
cin. We found an increased percentage of IL-10-secreting CD19 +  (CD3 negative) 
B cells in blood but not in spleen or lymph nodes in WT mice but not μMT  −/−   mice 
after 60 MCAO and 48 h reperfusion. These data demonstrated enhanced availabil-
ity of B cells with potential to limit ischemic and neurological outcomes after 
MCAO through secretion of IL-10. 

 To specifi cally address the mechanism of B cells as the protective cell type pro-
ducing IL-10, highly enriched populations of B cells were transferred from IL-10  −/−   
donors to B-cell-defi cient recipient mice prior to MCAO. As shown in Fig.  10.5  
(bottom panel), the B-cell-defi cient animals that received adoptively transferred 
IL-10  −/−   B cells did not exhibit signifi cantly reduced infarct volumes after 60 min 
MCAO followed by 48 h reperfusion compared to no cell transfer (PBS) controls. 
Moreover, there were no differences in mortality rates or neurological outcome 
scores after 24 or 48 h reperfusion between PBS and IL-10  −/−   B-cell transfer groups. 

  Fig. 10.5    Transfer    of IL-10 −/−  CD19 +  B cells does not alter infarct volume or improve behavioral 
outcome of μMT −/−  micecompared to transferred GFP B cells that reduced infarct size (top), transfer 
of 50 million CD19 +  B cells from IL-10 −/−  mice had no effect on infarct volume of total hemisphere 
(Mean ± SEM) at 48 h reperfusion after 60 min MCAO. Statistical analysis was performed using the 
Student’s  t -test. There was no signifi cant difference of infarct  volumes between no cell (PBS) trans-
ferred ( n  = 9) and IL-10 −/−  B-cell ( n  = 8)-transferred μMT −/−  mice. (Right) Representative TTC-stained 
cerebral sections of the MCAO modeled to analyze infarct volume. Localization of the ischemic 
lesion did not differ between no cell and IL-10 −/−  B-cell-transferred μMT −/−  mice. Transfer of 
IL-10 −/−  B cells did not signifi cantly improve functional outcome after 24 or 48 h reperfusion (not 
shown). The statistical analysis was performed using the Mann–Whitney  U -test (Previously published, 
 The Journal of Neuroscience , 2011;31(23):5886–8563)       
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Taken together, these data clearly demonstrate that WT CD19 +  B cells can restore 
improved ischemic outcomes that were shown to be lacking in B-cell- defi cient 
μMT  −/−   mice through the secretion of IL-10. 

 To further evaluate possible regulatory effects of B cells on T-cell cytokine pro-
duction during MCAO, infl ammatory factors were quantifi ed in blood and spleens 
after 60 min MCAO and 48 h reperfusion in WT mice, WT B-cell-restored μMT  −/−   
mice, and IL-10  −/−   B-cell-restored μMT  −/−   mice. We found that the percentages of 
both IFN-γ and TNF-α-secreting CD3 +  T cells were signifi cantly increased in blood 
and spleen from B-cell-defi cient versus WT mice, with a reduction to WT levels of 
these peripheral T cells in μMT  −/−   mice after restoration with WT B cells, but not 
with IL-10  −/−   B cells. Thus, WT B cells with the potential for IL-10 secretion limited 
both infl ammatory cytokine production of peripheral T cells and infi ltration of 
infl ammatory T cells into the MCAO-affected hemisphere during MCAO. 

 These novel observations demonstrated the previously unrecognized activity of 
WT B cells to limit infarct volume and functional neurological defi cits as well as to 
inhibit activation and recruitment of infl ammatory T cells, macrophages, and 
microglia into the growing CNS infarct after experimental stroke in mice. Regulatory 
activities were not only signifi cantly decreased in MCAO-treated B-cell-defi cient 
μMT  −/−   mice but also were fully restored after passive transfer of WT B cells, thus 
implicating unequivocally the protective activity of regulatory B cells. These regu-
latory functions were associated with increased percentages of IL-10-secreting 
CD19 +  B cells in blood, but not IL-10-secreting T cells, including Treg cells that 
have received much previous attention as possible immune regulators in stroke [ 33 ], 
suggesting that the Treg protective effects are likely mediated through alternative 
mechanisms. 

 A key function of B cells is their secretion of IL-10, an anti-infl ammatory cytokine 
that has been studied extensively in stroke [ 34 ]. IL-10-defi cient mice developed 
larger infarcts after permanent focal ischemia [ 35 ], whereas exogenous administra-
tion of IL-10 by multiple routes reduced infarct volumes after MCAO (discussed in 
[ 30 ]). In the clinic, early worsening of stroke was associated with lower IL-10 plasma 
levels in patients with subcortical infarcts or lacunar stroke, but not in patients with 
cortical lesions [ 36 ]. Conversely, excessive levels of IL-10 may predispose to increased 
infections [ 37 ]. Taken together, these fi ndings suggest that local secretion of IL-10 
by circulating or CNS-infi ltrating B cells may be preferable to systemic delivery. 
Recent studies have identifi ed a subpopulation of CD1d high CD5 + CD19 +  “regulatory 
B cells,” and we also investigated changes in these CD1d high CD5 +  Breg cells in 
stroke. We observed that the IL-10 secreting population was not restricted to either 
the CD1d high  or the CD5 +  population post-stroke. We thus concluded that IL-10 
secretion is more specifi c than the CD1d high CD5 + 19 +  B-cell subset markers for iden-
tifi cation of Breg cells in stroke. 

 In conclusion, our study provides new insights into the endogenous infl amma-
tory response after acute brain ischemia. Specifi cally, we have described a previ-
ously unknown role for B cells as cerebroprotective immunomodulators after stroke, 
a function that affects diverse cytokine-dependent and cellular infl ammatory targets 
through the anti-infl ammatory effects of IL-10.  
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    Regulatory Effects of the Programmed Death (PD)-1/
PD-Ligand Co-inhibitory Pathway in MCAO Involves 
PD-L +  B Cells That Inhibit PD-1 +  Infl ammatory Macrophages, 
Microglia, and T Cells 

 Our earlier studies demonstrating profound loss of immunocytes in the spleen and 
thymus after MCAO, accompanied by dramatic upregulation of apoptotic markers 
[ 5 ,  6 ], suggested stroke-induced aberrations in the PD-1/PD-L co-inhibitory path-
way. PD-1 (CD279) is an Ig-superfamily member containing an immunoreceptor 
tyrosine-based inhibitory motif [ 38 ] and an immunoreceptor tyrosine-based switch 
motif that are inducibly expressed by activated T cells, B cells, natural killer cells, 
monocytes, and some dendritic cell subsets [ 39 ,  40 ]. Binding of PD-1 to either of 
two ligands, PD-L1 or PD-L2 with overlapping expression patterns, induces inhibi-
tory signals that control induction and maintenance of peripheral T-cell tolerance 
and immune homeostasis [ 41 ,  42 ]. To assess the role of PD-1 in stroke development, 
infarct volume, neurological outcome, and infi ltration of infl ammatory cells into 
brain were evaluated in cohorts of PD-1-defi cient versus C57BL/6 WT mice treated 
with 60 min of focal cerebral ischemia and 96 h of reperfusion. Loss of PD-1 
resulted in signifi cantly larger hemispheric infarct volumes in cortex ( p  = 0.01), 
striatum ( p  = 0.01), and total hemisphere ( p  = 0.0001) relative to WT mice (Fig.  10.6 ). 
In a further cohort, there was signifi cant recovery of neurological scores in WT 
mice that did not occur in PD-1KO mice. These data clearly implicate the role of 

  Fig. 10.6    Defi ciency  of PD-1 exacerbates ischemic infarct volume and worsens behavioral recov-
ery after MCAO. (Left) Infarct volumes in the hemisphere, corrected for the presence of edema, as 
signifi cantly increased (*** p =  0.0001) in PD-1 KO ( n =  9) versus WT ( n =  9) mice after 60 min 
MCAO and 96 h reperfusion. Values represent mean ± SEM. (Right) Representative 2,3,5-triphen-
yltetrazolium chloride-stained cerebral sections of the MCAO modeled to analyze infarct volume. 
Neurological dysfunction scores (mean ± SEM) after reperfusion were signifi cantly worsened in 
PD-1 KO ( n  = 25) versus WT ( n  = 26) mice (not shown).  KO  knockout,  WT  wild-type (Previously 
published,  Stroke , 2011;42:2578–2583)       
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PD-1 in limiting functional and histological damage after MCAO in both cortex and 
striatum. This range of effects mediated through PD-1 is broader than with regula-
tory IL-10-secreting B cells that affect infarct size in only the cortex, suggesting that 
PD-1 protective mechanisms may affect brain parenchymal cells in addition to infi l-
trating immunocytes.

   As discussed above, leukocytes are major effectors of infl ammatory damage after 
experimental brain ischemia. To determine if the loss of PD-1 altered leukocyte 
composition, cytokine production and activation in brain after MCAO, numbers of 
infi ltrating CD3 +  T cells, Gr1 +  neutrophils, CD11b + CD45 low  microglia, and 
CD11b + CD45 high  macrophages were evaluated by fl ow cytometry. After 96 h reperfu-
sion, accumulation of all of these leukocyte subtypes was signifi cantly greater and 
there were three- to fi ve-fold increases in the absolute numbers of IFN-γ- and TNF-
α- secreting CD3 +  T cells in the ischemic versus non-ischemic hemisphere of MCAO- 
treated PD-1-KO mice as compared to MCAO-treated WT mice. Moreover, the 
percentages of CD3 +  T cells secreting TNF-α and IFN-γ were signifi cantly increased 
in both blood and spleen. PD-1 expression was strongly upregulated on both microg-
lia and macrophages within the ischemic CNS lesion after MCAO in WT mice and 
obviously could not be expressed similarly in PD-1-KO mice. The effect of the loss 
of PD-1 was to permit signifi cant two- to three-fold increases in the absolute num-
bers of MHC class II +  and TNF-α-secreting microglia and macrophages in the isch-
emic hemisphere after activation ex vivo. Of note, there was approximately two- to 
three-fold more infi ltrating macrophages present in the ischemic hemisphere than T 
cells or microglia after MCAO. These results clearly demonstrate enhanced infi ltra-
tion of infl ammatory cells into the affected CNS in PD-1-defi cient mice after MCAO. 

 This study demonstrated two important and novel fi ndings which have poten-
tially high impact in our understanding of immunological mechanisms of ischemic 
brain injury. First, a previously unrecognized activity of the PD-1/PD-L co- 
inhibitory pathway contributes to limit infarct volume and functional neurological 
defi cits, as well as to inhibit activation and recruitment of infl ammatory T cells, 
granulocytes, macrophages, and microglia into the growing infarct. These regula-
tory activities were signifi cantly diminished in MCAO-treated PD-1-defi cient mice, 
thus implicating unequivocally the protective activity of this regulatory pathway. 
Second, PD-L1 and 2 expression was increased on peripheral and CNS B cells and 
PD-1 expression was upregulated on CNS microglia and infi ltrating macrophages 
within the lesioned brain hemisphere 96 h after MCAO. Since peripheral B cells, 
T cells, and macrophages migrate across the blood–brain barrier to contribute to the 
ischemic injury, our novel results suggest a previously undescribed regulatory cir-
cuit in which PD-L1/2 + , IL-10-secreting B cells may directly inhibit T cells and 
regulate activation and release of neurotoxic factors by PD-1 +  microglia and macro-
phages. These putative interactions are illustrated in Fig.  10.7 . These fi ndings impli-
cate the PD-1/PD-L immunoregulatory pathway as a novel target for protection 
from CNS damage in experimental stroke.

   The cytoplasmic domain of PD-1 contains an immunoreceptor tyrosine-based 
switch motif (ITSM) sequence, and it was later demonstrated that the tyrosine 
within the ITSM motif is essential for binding the protein tyrosine phosphatases 
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SHP-1 and SHP-2 [ 42 ] that mediate inhibitory PD-1 function. In T cells, inhibition 
of activation requires co-ligation of the TCR [ 43 ]. In macrophages (and presumably 
microglia), PD-1 can be upregulated and cell activation inhibited by an interferon- 
sensitive response element (ISRE) [ 44 ], Toll-like receptor (TLR)-2, TLR3 and 
TLR4, and other agents [ 45 ]. This is of particular importance in stroke, where microg-
lia activation and release of CNS neurotoxic factors is known to occur through liga-
tion of TLR2 and TLR4 [ 46 – 48 ], possibly by heat-shock protein 60 released from 
CNS cells undergoing necrotic or apoptotic cell death [ 49 ]. Thus, ligation of PD-1 
expressed on macrophages and microglia by PD-L expressed by regulatory B cells 
could result in the inhibition of a key neurodestructive process in stroke.  

    Potential New Treatment Options for Stroke Include Estrogen 
(E2), G1, and Recombinant T-Cell Receptor Ligands 

 Reduced risk and severity of stroke in adult females is thought to depend on normal 
endogenous levels of estrogen (E2 + 17β-estradiol), a well-known neuroprotectant 
and immunomodulator currently in clinical trials in multiple sclerosis. In male 
mice, experimental stroke induces immunosuppression of the peripheral immune 
system, characterized by a reduction in spleen size and cell numbers and decreased 
cytokine and chemokine expression. However, stroke-induced immunosuppression 
has not been well studied in female mice. To test the hypothesis that estradiol 

  Fig. 10.7    B-cell regulation of microglial activation may occur both through release of IL-10 and 
the PD-1/PD-L co-inhibitory pathway. MCAO causes increased secretion of IL-10 and enhanced 
expression of PD-L1 and PD-L2 by peripheral B cells. When these B cells are attracted to the 
growing infarct, they cross the blood–brain barrier and inhibit activation (Previously published, 
 Stroke , 2011;42:2578–2583)       
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defi ciency exacerbates immunosuppression after focal stroke in females, we evaluated 
the effect of MCAO on infarct size and peripheral and central nervous system (CNS) 
immune responses in ovariectomized female mice with or without add-back of 
sustained, controlled levels of (1) 17-β-estradiol (E2) administered by subcutaneous 
implant or (2) the putative membrane estrogen receptor agonist, G1. Both E2- and 
G1-replacement 1 week prior to MCAO decreased infarct volume in brain cortex, 
striatum, and total hemisphere and partially restored splenocyte numbers [ 50 ]. 
Moreover, E2-replacement increased splenocyte proliferation in response to 
stimulation with anti-CD3/CD28 antibodies and normalized aberrant mRNA 
expression for cytokines, chemokines, and chemokine receptors, and percentage of 
CD4 + CD25 + FoxP3 +  Treg cells observed in E2-defi cient animals. These benefi cial 
changes in peripheral immunity after E2 and G1 replacement were accompanied by 
a profound reduction in expression of the chemokine, MIP-2, and a 40-fold increased 
expression of CCR7 in the lesioned brain hemisphere of E2-treated mice. These 
results demonstrate that both E2 and G1 replacement in ovariectomized female 
mice prior to MCAO reduced stroke volumes and ameliorated stroke-induced 
peripheral immunosuppression. As was observed with the PD-1/PD-L co-inhibitory 
pathway, treatment with E2 or G1 limited stroke volume in cortex, striatum, and 
total hemispheres, indicating protective effects on both CNS parenchymal cells and 
infi ltrating immunocytes. It is of potential importance that E2-mediated protection 
versus Experimental Autoimmune Encephalomyelitis (EAE) and its modulation of 
IL-17 requires B cells [ 51 ] and expression of estrogen receptor (ER)-α, the mem-
brane ER, GPR30 [ 52 ,  53 ], and PD-1 [ 52 – 54 ]. It now appears that this regulatory 
circuit involves E2 activation of PD-L on B cells through ER-α and GPR30, result-
ing in upregulation of PD-1 on CD4 + FoxP3 +  Treg cells [ 55 ] that block pathogenic 
T cells and possibly other infl ammatory immunocytes. Involvement of the same 
elements suggests that a similar regulatory circuit may be at play in stroke as well. 

  Recombinant T-cell Receptor Ligands  ( RTLs ) represent a second promising ther-
apeutic approach for treatment of experimental stroke. RTLs are comprised of a 
single exon containing covalently linked β1 and α1 domains of MCH class II mol-
ecules that may also have linked antigenic peptides (Fig.  10.8 ) [ 56 ]. These mole-
cules not only regulate cognate infl ammatory T cells but also bind to and 
downregulate expression of CD74 (the Class II invariant chain) that serves as the 
primary receptor for a key pathogenic cytokine called Macrophage Migration 
Inhibitory Factor (MIF). RTLs block MIF effects on monocytes, macrophages, and 
possibly microglia, resulting in loss of chemotactic infi ltration into tissues (e.g., the 
CNS during EAE), reduced survival of APC and decreased T-cell activation and 
cytokine release [ 57 ]. RTLs can reverse ongoing clinical signs of EAE [ 58 ,  59 ] and 
other autoimmune diseases and has been tested successfully in a Phase I clinical 
trial for multiple sclerosis [ 60 ,  61 ]. As discussed above, MCAO induces a biphasic 
effect on the immune response that involves early activation of peripheral leuko-
cytes followed by severe immunodepression and atrophy of spleen and thymus. 
In tandem, the developing infarct is exacerbated by infl ux of numerous infl amma-
tory cell types, including T and B lymphocytes. These features of stroke prompted 
our use of RTLs for therapy of MCAO. We tested the hypothesis that RTL would 
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improve ischemic outcome in brain without exacerbating defects in peripheral 
immune system function.

   Four daily doses of RTL were administered subcutaneously to C57BL/6 mice 
at onset of reperfusion after MCAO, and lesion size and cellular composition were 
assessed in brain, and cell numbers were assessed in spleen and thymus. Treatment 
with RTL551 (I-A b  molecule linked to MOG-35-55 peptide) reduced cortical and 
total stroke lesion size by ~50 %, inhibited the accumulation of infl ammatory 
cells, particularly macrophages/activated microglial cells and dendritic cells, and 
mitigated splenic atrophy [ 62 ]. Treatment with RTL1000 (HLA-DR2 moiety 
linked to human MOG-35-55 peptide) similarly reduced the stroke lesion size in 
HLA-DR2 transgenic mice. Subsequent studies [ 63 ] demonstrated that RTL551 
treatment produced a signifi cant reduction in cortex, striatum, and hemisphere 
infarct volumes as well as improved sensorimotor outcome when administered on 
four consecutive days beginning 3 h after MCAO. A third set of experiments dem-
onstrated that RTL551 given 4 h after MCAO could reduce infarct size in both 
cortex and striatum at 24 h and in cortex at 96 h after MCAO and inhibited the 
accumulation of infl ammatory cells in brain at both time points [ 64 ]. At 24 h post-
MCAO, RTL551 reduced the frequency of the activation marker, CD44, on T cells 
in blood and in the ischemic hemisphere. Moreover, RTL551 reduced expression 
of the chemokine receptors, CCR5 in lymph nodes and spleen, and CCR7 in the 
blood and lymph nodes. This treatment regime represents a more clinically 

  Fig. 10.8    A family of MHC class-II-derived RTL constructs that might be effective in the treat-
ment of MCAO and potentially human stroke. RTL constructs are comprised of an MHC class II 
β1 domain covalently linked to an MHC class II α1 domain linked (or not) to an antigenic peptide, 
thus providing a complementary shape to a cognate T-cell receptor. These partial MHC II con-
structs (pMHC) can be produced using any class II combination that restricts immunodominant 
antigenic peptides. The fi gure shows schematically RTLs made from DRB1*1501 MHC class II, 
including RTL1000 (pDR2/hMOG-35-55), pDR2/MBP-85-99 (a different neuroantigen-specifi c RTL), 
pDR2/no peptide, and DR-α1 (no DR-β1 domain)       
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relevant time point that would be compatible with the sole current stroke treat-
ment, thrombolytic recombinant tissue plasminogen activator (rtPA), and we are 
now in the process of determining if these two agents are compatible with each 
other to allow simultaneous treatment of stroke subjects within 4 h of infarction. 
Our results are the fi rst to demonstrate successful treatment of experimental stroke 
using immunomodulatory RTL constructs administered after ischemia, suggest-
ing therapeutic potential in human stroke. 

 We currently are in the process of determining if MCAO involves MIF attrac-
tion of immunocytes into the CNS, in which case we will test other RTL con-
structs that also bind to and downregulate CD74, the MIF receptor (Fig.  10.8 ). 
Such RTL constructs would include pMHC/MBP-85-99 directed at a different 
neuroantigen, pMHC/no peptide that has no bound neuroantigen peptide, and the 
DR-α1 domain that represents the current minimal CD74 binding moiety. Should 
DR-α1 or a subsumed determinant that can still bind to and downregulate CD74 
retain the ability to treat MCAO, this monomorphic DR-α1 sequence would ulti-
mately be the best choice for treatment of stroke subjects due to its universal 
tolerance among humans. That is, the DR-α1 construct could be injected into any 
patient without the need for tissue typing would otherwise be needed to match 
HLA-DR types between stroke recipients and polymorphic DR-β chains present 
in other two-domain RTL constructs.     
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    Abstract     Atherosclerosis and prothrombotic vascular states are complex pathologies 
of the tightly coupled immune and cardiovascular systems that, when dysregulated, 
synergistically act to elevate risk of acute cerebral ischemic events. Infectious expo-
sures are atypical cardiovascular risk factors requiring methodological and paradig-
matic departures from traditional risk factor investigation approaches. Several 
parameters of pathogen activity have been mechanistically mapped to immune and 
vascular processes that induce and aggravate atherosclerosis and can upregulate 
physiological states that are directly linked to triggering ischemic events. Elevated 
specifi c antibody titers in serum samples have been exploited to create objective 
measures of historical exposures to pathogens. This chapter reviews the following 
domains supporting Infectious Burden (IB) [or synonymously pathogen burden 
(PB)] and its association with stroke risk: (1) vascular, immune, and infectious 
dynamic frameworks for research; (2) hypothesized pathogen mechanisms infl uenc-
ing stroke risk, and important individual characteristics that may biologically inter-
act with infection; (3) molecular exposure measurement tools and single pathogen 
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association with stroke; (4) statistical measurement approaches to IB and selected 
evidence that evaluates IB associates with stroke; and (5) the current state in public 
health and clinical intervention strategies.  

        Introduction 

 Atherosclerosis and prothrombotic vascular states are complex pathologies of the 
tightly coupled immune and cardiovascular systems that, when dysregulated, syner-
gistically act to elevate risk of acute cerebral ischemic events. Stroke continues to 
exert a large societal burden, regardless of the metric used to assess burden— mor-
tality, morbidity, QALYs, economic productivity, and economic resources [ 1 ]. 
Approximately 795,000 persons suffer strokes annually in the USA (88 % are of 
ischemic stroke subtypes), with 137,000 resulting in death [ 2 ]. Of the remaining 
stroke cases, 10 % will require long-term care facilities, and 40 % will have long- 
term, moderate-to-severe impairment. In 2008, the economic burden of stroke was 
estimated to be USD $18.8 billion in direct costs and USD $15.5 billion in indirect 
costs, with costs projected to increase [ 3 ]. In global contexts, understanding alter-
nate prevention targets for intervening on cerebrovascular disease may align with 
broader development goals and efforts that seek to address the dual burden of non-
communicable and infectious diseases [ 4 ]. 

 Recently, chronic and acute infections have been implicated as exposures that 
impact systemic and local immune system functioning and are capable of triggering 
infl ammatory cascades that increase the initiation and progression of atherosclero-
sis; the destabilization of atherosclerotic plaque; and the creation pro-coagulant, 
prothrombotic states [ 5 – 7 ]. The notion of infectious agents playing an active role in 
the development of vascular lesions and increasing risk of thrombus formation to 
impact the risk of stroke dates back as early as 1911, when Frothingham wrote of 
atherosclerosis: “…it is not known whether these lesions were due to the actual 
presence of the infl uenza bacillus or to concentrated toxic action followed by throm-
bus formation and organization…” [ 8 ]. No single pathogen is believed to fulfi ll 
Koch’s postulates of suffi cient cause of stroke, and we know from experimental 
hyperlipidemic animal studies that atherosclerosis can develop even in microbe-free 
environments [ 9 ]. However, the impact of acute infection, the high frequency of 
recurrent acute infections, and exposure to chronic multiple infections over the life 
course are all active area of investigation to assess the relationship between “infec-
tious burden” and cerebrovascular ischemic injuries. The causal role of pathogens 
and atherosclerotic plaque remains controversial, and some have even referred to 
these pathogens as “innocent bystanders” that demonstrate a propinquity to site of 
acute infl ammation and are not causally related to disease severity [ 10 ]. 

 This chapter reviews the following domains supporting Infectious Burden (IB) 
[or synonymously pathogen burden (PB)] and its association with stroke risk: (1) 
vascular, immune, and infectious dynamic frameworks for research; (2) hypothe-
sized pathogen mechanisms infl uencing stroke risk, and important individual 
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characteristics that may biologically interact with infection; (3) molecular exposure 
measurement tools and single pathogen association with stroke; (4) statistical mea-
surement approaches to IB and selected evidence that evaluates IB associates with 
stroke; and (5) the current state in public health and clinical intervention strategies.  

    Dynamics of Infection and Cardiovascular Disease 

 Infectious exposures are atypical cardiovascular risk factors requiring methodological 
and paradigmatic departures from traditional risk factor investigation approaches. 
In dissimilarity to vascular risk factors such as hypertension, infectious agents are 
contagious exposures that can be transmitted between individual subjects in clinical 
and population studies. Infections, when treated as exposures, can give rise to 
endogenous effects, emergent properties, and dynamic feedback loops, such as in the 
case of herd immunity in vaccine effectiveness trials [ 11 ]. It should be noted in this 
context that several noninfectious but contagious risk factors, such as obesity and 
smoking, are already under investigation in cardiovascular research through use of 
social network models, notably by Christakis et al. [ 12 ,  13 ] (see Table  11.1 ).

       Pathogen Mechanisms Affecting Cerebrovascular Risk 

 Several parameters of pathogen activity have been mechanistically mapped to 
immune and vascular processes that induce and aggravate atherosclerosis and can 
upregulate physiological states that are directly linked to triggering ischemic events. 
Several mechanisms identifi ed in molecular, cell culture, and animals models of 
research can affect cerebrovascular risk, including blood coagulopathies and fi bri-
nolysis [ 14 – 21 ]; infl ammatory cytokine profi les [ 22 – 25 ]; heightened adhesion and 
chemokine molecules expression [ 26 – 28 ]; impaired lipid metabolism [ 29 ,  30 ]; 
hemodynamic stress [ 31 ]; repeated exposure to acute phase response proteins, metal-
loproteases, and plasminogen activator inhibitors that weaken fi brous cap stability 
[ 32 – 41 ]; enhanced smooth muscle cell growth [ 30 ,  42 ,  43 ]; self-antigen responses 
resulting from pathogen epitope cross-reactivity [ 44 – 50 ]; and infection- related 
immune senescence linked to chronic low-grade infl ammation [ 51 – 54 ].  

    Host Factor Determinants of Vascular Response 
to Infectious Stimuli 

 Host factors commonly studied in cardiovascular disease research may play important 
roles in governing progression of both IB and atherosclerosis, due to biologically 
confounding and interacting effects on immune cells and infl ammatory processes. 

11 Infectious Burden and Risk of Stroke
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Evidence of complex pathogen involvement with cardiovascular risk factors is 
mounting, and existing studies have found correlations with  depressive symptoms  
[ 55 – 64 ],  stress  [ 65 ,  66 ],  genotypic variants of human immune system  [ 67 – 79 ], 
 health seeking behaviors  [ 116 ,  117 ],  and social vulnerability and low socioeco-
nomic position  [ 80 – 86 ].  

    Measurement of Infection: Molecular Tools 

 Elevated specifi c antibody titers in serum samples have been exploited to create 
objective measures of historical exposures to pathogens. Antibody-based serologic 
tests are designed to be sensitive and specifi c for clinical diagnostics in acute infection 
cases. The utility of these tests with regard to identifying chronic infections has not 
been extensively validated [ 87 ]. A study that comparatively assessed community- 
acquired  C. pneumoniae  molecular testing specifi city, sensitivity, and positive 
predictive values from a range of molecular detection modalities—PCR methods, 
tissue cultures, complement fi xation test, microimmunofl uorescence (MIF), and 
immunosorbent assay (ELISA) serology tests—recommended MIF as most effi cient 
to determining  C. pneumoniae  prevalence in a community [ 88 ]. Infectious Disease 
Society of America guidelines have called for widespread etiological identifi cation 
of pathogens involved in community-acquired pneumonia, with specifi c testing 
guidance calls for use of MIF and ELISA assays to differentiate acute primary 
infection, as compared to reinfection, with MIF considered the gold standard serol-
ogy test [ 89 ,  90 ]. These practices have increased epidemiologic understanding of 
the prevalence of pathogens associated with vascular risk [ 91 ]. Many published 
studies have also used enzyme immunoassay (EIA) to assess history of pathogen 
exposures [ 92 ]. These defi nitions from infectious disease research have been 
adopted by cardiovascular researchers seeking to measure histories of pathogen 
infections and investigate associations with stroke events. 

 Acute primary infection is characterized by an increase in immunoglobulin M 
(IgM) and a subsequent rise of immunoglobulin G (IgG) in convalescent samples 
(IgM levels dissipate in 2–3 months after infection); in contrast, reinfection is 
marked by increases in IgG or immunoglobulin A, without elevated IgM levels; and 
chronic infection is indicated by persistent IgG and IgA elevated titers [ 93 ]. There 
has been limited use of repeated serum sampling in CVD research to establish acute, 
chronic, and colonization assessments of pathogen infection. Biomarker specimens 
and testing are subject to general measurement error from common study proce-
dures that include circadian timing and type of biological specimen collection; stor-
age and manipulation; laboratory variation, error, and batching; and within 
individual changes over time [ 94 ]. Additionally, unmeasured individual parameters 
at the time of sampling, such as prevalent infections, autoimmune conditions, med-
ication status, or even fasting requirements, may induce bias if associated with 
exposure status [ 95 ].  
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    Measurement of Burden: Statistical Tools 

 Epstein et al. noted that increasing levels of multiple coinfections align with 
biological plausibility and dose–response mechanisms believed to impact vascular 
disease [ 96 ]. The notion of IB encapsulates pro-infl ammatory factors, such as time 
dynamics in the length of infectious exposure, extent of immune response provoked 
by multiple coinfections, measurement of infl ammatory biomarkers, and frequency 
and severity of recurrent infections over time. We defi ne IB using a life-course 
epidemiology lens to be the cumulative life-course exposure to infectious agents 
eliciting strong infl ammatory responses that are most likely to lead to advanced 
atherosclerosis and be at the greatest risk for vascular events. 

 Several serology-based statistical approaches to quantifying IB have been pro-
posed, but the lack of standardized or validated approaches remains a major impedi-
ment to cross-study comparisons and generalized causal inference. Pathogen 
selection for inclusion into “burden” measures has often been arbitrary, based on 
convenience samples of available serology measures, and simple aggregation into 
burden measure may not always be sensitive to possible pathogen subtype cluster-
ing, such as viral vs. bacterial burden, or mechanistic subtypes, such as endothelial 
reactivity burden, plaque progression burden, or plaque destabilization burden. In the 
majority of studies that assessed IB, seropositivity has been assessed as a dichoto-
mous variable (positive or negative) for infection and each seropositive value was 
included in burden measures with untested assumptions of equal weight in the ability 
to impact vascular risk. The most common serology IB measure is constructed as a 
 sum of any seropositivity  with varying parameters of (1) MIF, ELISA, and EIA testing 
types, (2) variable number of pathogens, ranging from 3 to 8 pathogens, and (3) dif-
ferential usage of IgG, IgA, and IgM antibodies to establish positivity according to 
commercial manufacturer cutoffs. The construct validity of measuring sum of serology 
as a surrogate measure of persistent infection remains controversial [ 97 ]. 

 Alternative statistical summary measures have been utilized that may minimize 
measurement error of chronic infection. Aiello et al. utilized the continuous antibody 
concentration measures available from MIF testing to create upper quantile concen-
trations of serum IgG as cutoffs to indicate chronic infl ammation [ 98 ]. Elkind et al. 
formulated an individual pathogen stroke-associated IgG weight combined into an 
index measure of IB, allowing for an empirically derived index value based on long-
term stroke risk [ 99 ]. Aging research into the “allostatic load” hypothesis has adopted 
several alternate algorithms to cluster or group measurements from multiple domains, 
using methods like recursive partitioning, k-means cluster analysis, and even genetic 
programming-based symbolic regression algorithms [ 100 ]. 

 Other examples of IB measurements are derived from clinical history measures. 
Dental pathogen studies utilize measures that can include sum of dental caries, along 
with direct plaque bacterial testing that correlate with “burden” [ 101 ]. Administrative 
databases—mined for histories of acute infection clinical encounters—have provided 
time-varying exposure measurements that serve as surrogate measures of disease 
chronicity and have been associated with vascular outcomes [ 102 ].  
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    Chronic Infectious Burden and Non-stroke Associations: 
Socioeconomic Position, Cytokines, Insulin Resistance, 
CAD, PAD, and Non-stroke CVD Endpoint 

 IB has been correlated with many factors associated with cardiovascular risk. IB 
measured as sum of serology with equal weighting was found to be associated with 
 socioeconomic position , with fi ndings showing that IB was associated with greater 
BMI, waist/hip ratio, blood pressure, and incidence of diabetes in the Whitehall II 
study [ 103 ] and IB was found to be associated with low educational attainment in 
the MESA study (this study used variable IB measure that incorporated sum of serol-
ogy with >median titer value) [ 98 ]. IB was not linked with cytokine markers CRP, 
IL6, or fi brinogen levels [ 104 ]. IB was found to explain 42 % of variance of insulin 
resistance, with an association that dissipated after adjustment for CRP [ 105 ]. IB was 
associated with reduced percent change in coronary blood fl ow ( p  < 0.01), reduced 
ability to decrease vascular resistance ( p  < 0.02) [ 106 ], and reduced brachial 
fl ow-mediated vasodilation ( p  < 0.05) [ 107 ], but not in all studies [ 108 ]. IB was 
also associated with PAD in women [ 109 ]. Among cardiac outcomes, some studies 
have found association between IB and CAD [ 96 ,  110 ,  111 ], but not in all CAD 
studies [ 112 ], as well as associations between IB and MI [ 113 ,  114 ] and IB and 
cardiovascular mortality [ 115 ].  

    Selected Studies of Chronic and Recurrent IB 
and Carotid Atherosclerosis 

 Cross-sectional investigations of infectious burden have found association with 
presence of carotid plaque using weighted indexes [ 116 ], but associations were 
not detected using equal weighting sum of serology scores [ 10 ,  117 ]. Prospective 
studies of incident carotid plaque found associations with sum of IB (serology and 
equal weight) [ 118 ], and studies of progression of carotid plaque found association 
with IB (sum of serology and highest quartile) [ 119 ]. It may be that unweighted sum 
of serologies may be associated with incident carotid plaque (infection to initiate 
lesions), but elevated titers in highest quantiles may be associated with progression 
(chronic infl ammation). Weighted index measures may be more sensitive and detect 
associations even in cross-sectional studies. We highlight examples of chronic IB 
and recurrent IB studies that detected association with carotid plaque. 

    Chronic Infectious Burden and Carotid Atherosclerosis 

 In a cross-sectional analysis of the Northern Manhattan study (NOMAS)—a 
population- based prospective stroke risk factor study—the authors evaluated the 
association between maximal carotid plaque thickness (MCPT) and weighting 
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approach to create an index of IB. The IB measure was comprised of two bacterial 
and three viral pathogens (ELISA IgG assays were conducted for  C. pneumoniae , 
 H. pylori , CMV, HSV1 and 2) and the relationship with stroke was assessed in a 
multiracial population with heterogeneous levels of SEP. Individual pathogen 
weights were estimated from Cox model regression associations with incident 
stroke events. An IB index was then created as sum of weights for each positive 
serology for an individual and used as an independent predictor of stroke risk 
( n  = 891; mean age = 67.2) [ 116 ]. Carotid atherosclerotic plaque thickness was esti-
mated from off-line assessments of high-resolution B-mode ultrasonography 
images, as the maximum of measured MCPT bilaterally, in both common and inter-
nal carotid arteries. The IB index (IBI) was moderately associated with increased 
carotid plaque (adjusted change in MCPT, mm per SD = 0.09, 95 % CI, 0.02–0.15) 
among a subset of the NOMAS cohort. Adjusting for CRP and leukocyte count did 
not modify estimates. A secondary analysis reviewing cross-sectional associations 
of IBI with high-risk plaque subtypes, such as unstable irregular plaque, found 
increasing IBI to be linked with irregular plaque (adjusted OR per SD IBI = 1.76, 
95 % CI, 1.1–2.8). Positive cross-sectional associations of the novel weighted burden 
measurement and two measures of carotid atherosclerosis support the hypothesis 
that prevalent IBI may work through atherogenic processes to increase atheroscle-
rosis, and in particular rupture-prone irregular plaque formations. Irregular plaque 
is thought to be linked to unstable plaque formations that can lead to ischemic or 
procoagulant states. The NOMAS    study samples from an urban, largely Hispanic 
population may have greater variability of socioeconomic position and ethnicity 
that are postulated to be upstream causal factors of IB, enabling the detection of the 
IB and atherosclerosis association.  

    Recurrent Infectious Burden and Carotid Atherosclerosis 

 An analysis of the Bruneck cohort by Kiechl et al. ( n  = 826; mean age = 54.1; mean 
follow-up = 5 years) added further domains of IB termed “chronic infection” status 
through use of clinical history investigation that included recurrent chronic respira-
tory, urinary tract (recurrent lower tract and pyelonephritis), dental pathogen, and 
other infectious conditions (chronic pancreatitis, diverticulitis, periodontitis, recur-
rent bacterial skin infections, and diabetic foot ulcers) [ 50 ]. The association of 
chronic infection status and the development of carotid plaques were estimated by 
logistic regression analysis, after adjusting for clinical risk factor and social status. 
Chronic infection was associated with an increase of relative odds of incident 
carotid atherosclerosis among those individuals without plaque at baseline 
(adjusted OR = 4.10, 95 % CI, 2.37–7.10). Analysis for interaction with CRP levels 
showed elevated relative odds of incident atherosclerosis among those with >1 mg/
dL hsCRP levels ( p  < 0.001). Identifying and staging individuals as free of carotid 
atherosclerosis at baseline allow this prospective study to provide support for an 
atherogenic role of recurrent respiratory infection through use of clinical 
databases.   
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    Chronic Infectious Burden and Composite Cardiovascular 
Endpoints, Stroke 

 This section reviews available literature evaluating IB and composite cardiovascular 
endpoints that include stroke or stroke events directly. The review includes case–
control, cohort, and nested-cohort analytic designs with various methods of con-
structing IB. A concise summary of this section is presented in Table  11.2 .

      Case–Control Studies 

 A case–control study ( n  cases/controls = 91/86) evaluated the relationship between 
prevalent antibodies for three atypical respiratory pathogens (positive IgG or IgM 
serology for  C. pneumoniae ,  M. pneumoniae,  and  L. pneumoniae  according to man-
ufacturer thresholds) with imaging-confi rmed total stroke or TIA cases, and concur-
rently admitted non-cardiovascular disease patients [ 120 ]. This small study found 
that individuals with a burden of all three pathogens as measured by IgG serologies 
were at increased risk of all stroke or TIA (adjusted OR Score 3 vs. Score 1), but the 
categorical modeling of the variable (with all four levels) was not overall signifi cant 
in the model ( p  = 0.15). Notably, this study utilized samples that excluded infective 
conditions for control, but no screen was applied to case introducing possible biases; 
the reference group ( n  = 21) and high-risk group ( n  = 10) were very small in size 
inducing large confi dence intervals and did not provide variable estimates for fi rst 
stroke event or recurrent stroke although status was available. 

 Another case–control study of non-cardiogenic stroke patients ( n  case/con-
trols = 59/53) evaluated the impact of IB in younger individuals aged <65. The 
authors imposed age as a selection criterion to increase the likelihood that stroke 
would be driven by infl ammatory factors, and not traditional risk factors [ 71 ]. IB 
(created by summing seropositive ELISA for IgG HSV1 and 2, IgM IgG CMV, IgG 
EBV, IgG HHV-6, and IgG IgA  C. pneumoniae , whose quantitative OD values were 
in the highest tertile) and IL-8 and CD14 promoter polymorphisms were assessed 
for their relationship to stroke. No association between IB or immune polymor-
phisms and stroke risk was found, but this study sample may have been 
underpowered.  

    Cohort Studies 

 In 1999, a cohort study explored multiple coinfections and risk of combined cardio-
vascular outcomes, including stroke events [ 121 ]. Ridker et al. selected 122 case- 
patients who had experienced an incident vascular event (MI, stroke, cardiovascular 
death, or coronary revascularization), and 244 controls, from the underlying 
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Women’s Health Study cohort, matched on age and smoking status. This study used 
multivariate conditional logistic regression to estimate the rate ratio (RR) for future 
cardiovascular events and the number of pathogens detected in serum samples 
(based on seropositivity for MIF IgG CPNEU; ELISA IgG HPY, HSV and CMV), 
but found no association between seropositivity for 4 coinfections (adjusted 
RR = 1.2, 95 % CI 0.6–2.7) and vascular events. This analysis was adjusted for 
 traditional cardiovascular risk factors, overcame possible survival biases of case–
control studies and potential confounding by socioeconomic position due to selec-
tion from a uniform pool of female health professionals. A similar analysis by 
Ridker et al. based on the Physician Health Study cohort did not aggregate impacts 
of multiple coinfections [ 122 ]. 

 A 2002 analysis, among patients admitted for diagnostic heart catheterization, 
classifi ed study population according to stage of atherosclerosis (no atherosclerosis, 
limited disease, or advance disease) at baseline and evaluated both progression of 
atherosclerosis (based on sonography imaging of both peripheral arteries and carotid 
arteries) with logistic models and time to cardiovascular mortality using Cox pro-
portional hazard models [ 123 ]. This analysis used an 8-item IB construct (seroposi-
tivity for ELISA IgG measurements for HSV-1, HSV-2, CMV,  H. influenza , 
 H. pylori , and EBV; and EIA IgA measurements for  M. pneumoniae  and  C. pneu-
moniae ) [ 119 ]. Models were adjusted for clinical risk factors and baseline stage of 
atherosclerosis, although adjustments for indicators of socioeconomic status were 
not included. Individuals in the highest total IB group (adjusted OR = 2.45, 95 % CI, 
1.18–5.10) and bacterial IB group (adjusted OR = 2.12, 95 % CI, 1.32–3.41) were at 
increased risk of atherosclerosis progression, when compared to the referent group. 
When analysis was stratifi ed by baseline severity of atherosclerotic disease, those 
with advanced disease and 6–8 total infections experienced a higher risk of cardio-
vascular mortality (adjusted HR = 10.82, 95 % CI 2.00–58.54), relative to those with 
limited disease and only 0–3 total pathogen burden. 

 Findings from the Framingham Heart Study in an analysis from 2002 ( n  = 1187; 
mean age = 69; mean follow-up = 10 years) showed no association between chronic 
coinfection, as evidenced through serology markers, and time to incident cardiovas-
cular events (combined MI, coronary artery death, and atherothrombotic stroke) 
[ 124 ]. A three IB measure was created, with positive serology established by serum 
ELISA IgG HPY,  C. pneumoniae  CMV. Seropositivity for one (adjusted HR = 0.88, 
95 % CI, 0.50–1.56), two (adjusted HR = 0.78, 95 % CI, 0.45–1.37), or three patho-
gens (adjusted HR = 0.77, 95 % CI, 0.44–1.35) was not associated with time to 
vascular endpoints, after adjustment for clinical risk factors. Additionally, Haider 
et al. demonstrated that variable cutoffs for infection positivity did not meaningfully 
impact associations with cardiovascular disease, but they did not specify whether 
the IB measure used normal or high threshold cutoffs. This study found no associa-
tion between IB and composite vascular outcomes, but did not report stroke-specifi c 
hazard ratios or a pathogen-weighting scheme. The homogenous composition of the 
Framingham population may enhance internal validity, but it may limit detection of 
IB associations with stroke. IB and stroke mechanistic linkages may require vari-
ability in complex social and biological processes such as socioeconomic position, 
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   Table 11.2    Select studies review association between chronic, recurrent, 
and acute infectious burden and composite cardiovascular endpoints and stroke   

 Reference  Author  Year  Location  Design  Follow-up 
 Sample size 
[Sample age]  Infect burden 

 Chronic infectious burden, composite cardiovascular endpoints and stroke 
 [ 120 ]  Ngeh 

et al. 
 2005  UK  Case–control 

 (Hosp. stroke 
patients) 

 N/A  Case  n  = 91 
[Median 
80 years] 

 Control  n  = 86 
[Median 
82 years] 

 Sum of score, 
 Equal 
weight 

 [ 71 ]  Kis et al  2007  Hungary  Case–control 
 (Young stroke 

patients) 

 N/A  Case  n  = 59 
[Mean 
52.8 
years] 

 Control  n  = 53 
[Median 
50.4 
years] 

 Sum of score, 
 Upper 
tertile 

 [ 121 ]  Ridker 
et al. 

 1999  USA  Nested 
Case–control 

 (Woman Health 
Study) 

 3 years  Case  n  = 122 
[Mean 
59.3 
years] 

 Control 
 n  = 244 
[Mean 
59.3 
years] 

 Sum of score, 
 Equal 
weight 

 [ 119 ]     Espinola-
Klein 
et al. 

 2002  Germany  Prospective 
 (Heart 

catheteriza-
tion patients) 

 3.2 years   n  = 572 [Mean 
62.8 
years] 

 Sum of score, 
 Equal 
weight 

 [ 124 ]  Haider 
et al. 

 2002  USA  Prospective 
 (Framingham) 

 10 years   n  = 1,187 
[Mean 
age = 69] 

 Sum of score, 
 Equal 
weight 
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 Pathogens  Outcome  Findings 

 Adjustment Variables 

 Diabetes  Immune  SEP 

 ELISA IgG IgM 
LPNEU, 
MPNEU, 
CPNEU 

 (i) CT confi rmed 
stroke/TIA 

 (i) Infectious burden 3 vs. 
0: 

 Adj. RR = 6.67, 95 % CI, 
1.22–37.04 

 YES  NO  NO 

 ELISA IgG 
HSV1&2, IgM 
IgG CMV, IgG 
EBV, IgG 
HHV-6, & IgG 
IgA CPNEU 

 (i) Non- standardized, 
non-cardiogenic 
stroke 

 (i) Infectious burden 
categorical: 

 Chi-sqr  p  = 0.657 

 NO  NO  NO 

 ELISA IgG 
HPY,HSV, 
CMV 

 MIF IgG CPNEU 

 (i) CVD Composite: 
MI, stroke, 
cardiovascular 
death, or 
coronary 
revascularization 

 (i) Infectious burden 4 vs. 
0–1: 

 Adj. RR = 1.2, 95 % CI, 
0.6–2.7 

 YES  NO  NO 

 ELISA IgG 
HSV1&2, 
CMV, H. 
infl uenza, 
HPY, EBV; 

 EIA IgA MPNEU, 
CPNEU 

 (i) Atheroprogression 
to stenosis: Units 
in increase in 1 
SD per pathogen 

 (ii) CVD Death: MI, 
stroke, cardiovas-
cular death, or 
coronary 
revascularization 

 (i) Infectious burden 6–8 
vs. 0–3: 

 Adj. OR = 2.45, 95 % CI, 
1.18–5.10 

 (i) Bacterial Burden 3–4 
vs. 0–1: 

 Adj. OR=2.12, 95 % CI, 
1.32–3.41 

 (i) Viral Burden 3–4 vs 
0–1: 

 Adj. OR=0.99, 95 % CI, 
0.58–1.69 

 (ii) Infectious burden 6–8 
vs. 0–3: 

 Adj. OR = 2.87, 95 % CI, 
1.21–9.65 

 (ii) Infectious burden 6–8 
advanced disease vs. 
0–3 limited disease: 

 Adj. HR = 10.82, 95 % CI 
2.00–58.54 

 YES  CRP  NO 

 ELISA IgG HPY, 
CPNEU, CMV 

 (i) CVD Composite: 
MI, coronary 
artery death, and 
atherothrombotic 
stroke 

 (i) Infectious burden 3 vs. 
0: 

 Adj. HR = 0.77, 95 % CI, 
0.44–1.35 

 YES  NO  NO 

(continued)
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 Reference  Author  Year  Location  Design  Follow-up 
 Sample size 
[Sample age]  Infect burden 

 [ 125 ]  Smieja  2003  Canada  Prospective 
 (High-risk 

cohort) 

 4.5 years   n  = 3,618 
[Mean 
age = 65.4] 

 Sum of score, 
 Equal 
weight 

 [ 126 ]  Corrado 
et al. 

 2006  Italy  Prospective 
 (High-risk 

cohort) 

 5 years   n  = 668 [Mean 
age = 63.2] 

 Sum of score, 
 Equal 
weight 

 [ 105 ]  Dai et al.  2007  Taiwan  Prospective 
 (High-risk 

cohort) 

 3 years   n  = 568 [Mean 
age = 62.5] 

 Sum of score, 
 Equal 
weight 

 [ 116 ]  Elkind 
et al. 

 2010  US  Prospective 
 (NOMAS) 

 Median 
 7.6 years 

  n  = 1,625 
[Mean 
age = 69.5] 

 Index, 
 Weighted 
 Sum of 

score, 
 Equal 

weight 
 Recurrent infectious burden, composite cardiovascular endpoints and stroke 
 [ 127 ]  Grau 

et al. 
 2009  Germany  Case–control 

 (Hosp. stroke 
Patients) 

 N/A  Case  n  = 370 
[Mean 
age = 60.7] 

 Control 
 n  = 370 
[Mean 
age = 60.6) 

 Chronic 
bronchitis 

 Frequent 
FLU-like 
illness 

 Acute infectious burden, composite cardiovascular endpoints and stroke 

Table 11.2 (continued)
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 Pathogens  Outcome  Findings 

 Adjustment Variables 

 Diabetes  Immune  SEP 

 MIF IgG CPNEU 
 EIA IgG HPY, 

CMV, and 
HAV 

 (i) CVD Composite: 
MI, Stroke, CVD 
death, 
revascularization 

 (ii) Stroke 

 (i) Infectious burden 4 vs. 
0–1: 

 Adj. HR = 1.41, 95 % CI, 
1.02–1.96 

 (ii) Infectious burden 4 
vs. 0–1 

 Adj. HR = 0.75, 95 % CI, 
0.37–1.50 

 YES  NO  NO 

 ELISA IgG 
antibodies 
against 
CPNEU, HPY, 
CMV, 
HSV1&2, 
HAV, HBV, 
HCV 

 (i) CVD 
Composite:TIA, 
Stroke, AMI, 
PAD, CVD death 

 (ii) Severity of 
Carotid Plaque 
(3-Level) 

 (i) Infectious burden 
continuous: 

 Adj. HR = 10.9, 95 % CI, 
6.2–19.5 

 (ii) Infectious burden 
continuous: 

 Chi-Sqr  p  = <0.0001 

 YES  NO  NO 

 ELISA IgG 
CPNEU, HPY, 
CMV, 
HSV1&2, 
HAV, HBV, 
HCV 

 (i) CVD Composite: 
MI, Stroke, CVD 
death 

 (i) Infectious burden 
continuous: 

 Adj. HR = 1.13, 95 % CI, 
0.85–1.51) 

 YES 
 Met 

Synd 

 CRP  NO 

 ELISA IgG 
CPNEU ,  H. 
pylori , CMV, 
HSV1&2 

 (i) Risk of Total 
Stroke 

 (i) Infectious Burden 
Index per SD: 

 Adj. HR = 1.40, 95 % CI, 
1.03–1.91 

 YES  CRP  YES 

 (i) Total Stroke 
Outcome 

 (ii) Ischemic Stroke 
Subtype 

 (iii) Large artery 
atherosclerosis 
Stroke Subtype 

 (iv) Stroke or TIA 

 (i) ≥3Month per year 
chronic bronchitis: 

 Adj. OR = 2.63, 95 % CI, 
1.17–5.94 

 (ii) >3 Month per year 
chronic bronchitis: 

 Adj. 2.45, 95 % CI, 
1.10–5.46 

 (iii) >3 Month per year 
chronic bronchitis: 

 Adj. OR = 4.77, 95 % CI, 
1.18–19.3) 

 (iv) >2 Flu-like illness 
per year: 

 Adj. OR = 3.54, 95 % CI, 
1.52–8.27 

 YES  NO  NO 

(continued)
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 Reference  Author  Year  Location  Design  Follow-up 
 Sample size 
[Sample age]  Infect burden 

 [ 128 ]  Elkind 
et al. 

 2011  US  Case-crossover 
 Prospective 

 Hazard 
period 

 14–90 
days 

 Case- 
Crossover 
 n  = 669 
[Mean 
age = 74] 

 Prospective 
 n  = 5,888 
[mean 
age = 72.8] 

 Hospitali-
zation for 
infection 

Table 11.2 (continued)
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 Pathogens  Outcome  Findings 

 Adjustment Variables 

 Diabetes  Immune  SEP 

 ICD9 code for 
Respiratory, 
Assorted, 
Urinary, Skin, 
Bacteremia, 
and 
Osteomyelitis 

 (i) Ischemic Stroke  (i) Case- crossover 
14-days: 

 OR = 8.0, 95 % CI, 
1.6–77.3 

 (i) Case-crossover 
30-days: 

 OR = 7.3, 95 % CI, 
1.9–40.9 

 (i) Case-crossover 
90-days: 

 OR = 3.4, 95 % CI, 
1.8–6.5 

 (i) Survival analysis 
14-days: 

 Adj. HR = 3.9, 95 % CI, 
1.9–7.9) 

 (i) Survival analysis 
30-days: 

 Adj. HR = 2.4, 95 % CI, 
1.3–4.4 

 (i) Survival analysis 
90-days: 

 Adj. HR = 2.4, 95 % CI, 
1.6–3.4). 

 N/A  NO  NO 
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stress, race-ethnicity, and pathogen strain exposures. Homogenous populations 
like Framingham may not detect IB associations because sampling may lack 
variability in causal antecedents of IB to stroke pathways. The analogy for the 
Framingham results would be akin to trying to detect an association between HA1C 
with stroke using homogenously nondiabetic populations—there would be no 
detectable association. 

 Secondary analysis of the Heart Outcome Prevention Study (HOPE) Canadian 
trial evaluated an IB measure using summation of four positive serologies (MIF IgG 
for  C. pneumoniae  and EIA IgG for HPY, CMV, and HAV). This study population 
was recruited from individuals previously experiencing high-risk conditions such as 
CAD, stroke, PAD, or diabetes [ 125 ]. Individuals with the highest pathogen score, 
relative to the lowest score group, were at increased risk for time to incident MI, 
stroke, or CV mortality (adjusted HR = 1.41, 95 % CI, 1.02–1.96), with adjustments 
for clinical risk factor but not socioeconomic indicators. Total pathogen score was 
associated with MI (adjusted HR Score 4 vs. Score 0–1 = 1.57, 95 % CI, 1.08–2.30), 
but not stroke (adjusted HR Score 4 vs. Score 0–1 = 0.75, 95 % CI, 0.37–1.50), rela-
tive to lowest score group. The magnitude of effect for total pathogen proved to be 
a stronger predictor than any single serological marker. 

 An Italian prospective study created three categories of carotid plaque severity 
based on intima-media thickness using color duplex Doppler scanning and mea-
sured a 4-pathogen IB score (sum of positive ELISA IgG serologies for  C. pneu-
moniae  HPY, cytotoxic  H. pylori , CMV) at baseline. The cohort was prospectively 
followed for 5 years and found individuals positive for all four pathogen antibodies 
were at increased risk of combined clinical events (TIA, stroke, MIA, or vascular 
death) in logistic models (adjusted OR = 10.9, 95 % CI, 6.2–19.5) [ 126 ]. Cross- 
sectional analysis from the study indicated IB was associated with baseline severity 
of carotid atherosclerosis, as measured by IMT thickness ( p  < 0.0001). 

 A Taiwanese study of coronary angiography patients compared summary score 
measures of metabolic syndrome and IB and the relationship with time to major 
adverse cardiovascular events (including cardiovascular mortality, MI, and stroke) 
defi ned by standard criteria and imaging. The IB score was comprised of the sum of 
seven pathogens (seropositivity for ELISA IgG antibodies against  C. pneumoniae  
HPY, CMV, HSV1 and 2, HAV, HBV, and HCV). IB score, modeled as a continuous 
variable, was not found to be associated with a composite CVD outcome (adjusted 
HR = 1.13, 95 %CI, 0.85–1.51) in models that adjusted for metabolic syndrome and 
CRP. The authors claimed that metabolic syndrome was more prominent in the 
model, but it may be possible that infl ammation as measured by CRP and individual 
elements of the metabolic syndrome, like diabetes, may be mediators of the causal 
pathway of IB. Adjustment for mediator and exposure in the same model dimin-
ished the observed effect of IB. Estimates of IB without CRP were not presented. 

 A prospective analysis of the NOMAS cohort data evaluated the association 
between ischemic stroke and IB index. The IB index created as sum of weights for 
each positive serology for an individual was used as an independent predictor of 
stroke risk. IB index was found to be associated with an increased risk of ischemic 
stroke (adjusted HR = 1.40, 95 % CI, 1.03–1.91) in fully adjusted models [ 99 ]. 
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Key factors may have enabled detection of IBI effect on stroke, such as weighted 
measures to capture the impact of the “pathogen burden” construct without a prior 
assumption of association strength, allowing for bacterial pathogens and viral 
pathogen to contribute differently to overall risk. The NOMAS study offered long- 
term periods of observation, with minimal loss to follow-up, perhaps permitting 
suffi cient time to discern an impact of baseline IB on atherosclerosis progression 
and plaque rupture Similar to the Framingham results, the sum of positive pathogen 
serologies in NOMAS was not associated with vascular endpoints (not shown in 
paper), but a reinterpretation of IB with empirically derived weights did establish an 
association. The constituency of NOMAS—sampled from the general population 
and with greater variability of determinants of socioeconomic position, such as 
race/ethnicity—may also play a role in detection of an association. This analysis    
also detected effect of heterogeneity for the IB–stroke association by diabetes 
status, with elevated risk among diabetics (adjusted HR per SD HR = 1.63, 95 % CI, 
1.16–2.29). This interaction is suggestive that diabetes status may infl uence how IB 
may promote stroke events. 

 The set of available analysis in the arena of infectious burden and stroke risk 
provides a compelling but incomplete analysis of causal relationships. Many impor-
tant questions remain unanswered by existing observational study designs. Key 
limitations include but are not limited to  measurement issues  (optimal measurement 
of chronic infection: upper quantile, weighted index, and combining clinical histo-
ries),  selecting counterfactuals  (appropriateness of reference groups: small size and 
comparability of individuals who have no burden),  modeling considerations  (com-
pleteness and suitability of adjustment variables: SEP, healthy behaviors, immune 
factors, genetic, as well as limitation of models to capture dynamics),  incomplete 
causal models  (issues include using confounders and mediators in same models, 
limited attempted to falsify proposed mechanisms linking burden to stroke risk, and 
clarity in designating clear atherosclerotic and thrombosis outcomes: initiation, pro-
gression, or rupture),  pathogen heterogeneity and natural histories  (unclear effects 
of strain pathogenicity and limited understanding of aberrant microbiome behav-
ior), and fi nally  time dynamics  (issues include timing of exposure, effect of immune 
senescence, and staging of atherosclerosis at the time of study observation).   

    Recurrent Infectious Burden and Stroke 

 The high recurrence of respiratory infections can be designated an alternate form of 
IB. A German study of stroke patients (defi ned by TOAST criteria) and randomly 
selected controls matched on age, sex, and area of residence measured burden as 
self-reported frequency of chronic bronchitis or recurrence of fl u-like symptoms 
[ 127 ]. Chronic bronchitis was assessed by questionnaire and recurrent fl u-like 
symptoms were assessed by inquiring for the frequency of respiratory infection in 
the past 5 years. The study found that chronic bronchitis ≥3 months per year was 
associated with total stroke (adjusted OR = 2.63, 95 % CI, 1.17–5.94) and found 
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ischemic stroke subtypes (adjusted 2.45, 95 % CI, 1.10–5.46) and large artery 
atherosclerosis subtypes (adjusted OR = 4.77, 95 % CI, 1.18–19.3) associated with 
recurrent respiratory infections in multivariate conditional logistic regression 
models, adjusted for school education. Additionally, recurrent exposure to fl u-like 
illness (nonspecifi c measure of respiratory infection) was associated with stroke and 
TIA (adjusted OR = 3.54, 95 % CI, 1.52–8.27). This study found the association 
between chronic bronchitis and stroke was modifi ed by education levels, with those 
in the low-level education having a twofold increase in pathogen burden–stroke 
association, compared to those with higher educational attainment. Additionally, 
the study found that health seeking behavior during infection was associated with 
stroke events, and healthy behaviors may be an important covariate for adjustment. 
This study did not validate self-reports with medical records and may be subject to 
differential recall of exposure by case subjects.  

    Acute Infectious Burden and Stroke 

 Acute infection has been implicated in elevated short-term stroke risk. Predictors of 
short-term stroke risk, operating in the range of days and weeks, operate under 
different dynamic mechanisms, as compared to traditional vascular risk factors, 
whose processes are in the scale of decades [ 129 ]. Study designs that can evaluate 
short- term temporal associations between infection and stroke have used various 
time- series, time-varying Cox models, and case-crossover analytic designs. 

 A study from Toschke et al. utilized a 3H-algorithm time-series algorithm to 
analyze 2,874 incident strokes from South London Stroke Registry (SLSR) with a 
capture area of 271,817 inhabitants [ 130 ]. The analysis was able to detect increases 
in ischemic stroke incidence with 2 weeks of peak infl uenza epidemic curves and 
increases in hemorrhagic stroke at 4-week post-peak infl uenza periods. This study 
is suggestive of increased hazard periods in the populations during infl uenza 
epidemics can persist 2–4-week post-peak transmission periods. 

 Individual cohort data also provides temporal evidence of acute hazard experi-
ences immediately following exposure to acute infections and suggests a role for 
pathogens as acute precipitants of cerebral infarctions. A dual analysis of case-
crossover ( n  = 669; mean age = 74; hazard periods = 14–90 days) and survival analy-
sis ( n  = 5,888; mean age = 72.8; hazard period = 14–90 days) approaches using 
collected data from the Cardiovascular Health Study found strong associations 
between short-term hazard periods and incident ischemic strokes. Case-crossover 
analysis utilizes an earlier exposure period of an individual as his own control, to 
minimize possible confounding of exposure and outcomes associations, under the 
assumption of major changes in the individual between exposure periods and is 
modeled using conditional logistic models [ 131 ]. Time-dependent exposure in 
survival analysis allows investigators to specify functional form of predictors over 
time (i.e., short-term exposure immediately after infection, no exposure post an a 
priori cutoff period) and also adjust for possible residual confounding factors, such as 
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age, that may remain in case-crossover analysis [ 102 ]. The CHS case-crossover 
analysis found a strong association of increased risk for ischemic stroke in periods 
immediately following infection at 14 days (OR = 8.0, 95 % CI, 1.6–77.3), 30 days 
(OR = 7.3, 95 % CI, 1.9–40.9), and 90 days (OR = 3.4, 95 % CI, 1.8–6.5), with risk 
declining as time progressed. Risk of ischemic stroke in time intervals after acute 
hospitalization for infection, as assessed by Cox models, was increased at 14 days 
(adjusted HR = 3.9, 95 % CI, 1.9–7.9), 30 days (adjusted HR = 2.4, 95 % CI, 1.3–4.4), 
and 90 days (adjusted HR = 2.4, 95 % CI, 1.6–3.4). Associations were found to be 
inversely modifi ed by IMT, suggesting that thicker, older plaque may represent 
more stable plaque formation with decreased ischemic risk, as compared to new or 
intermediate plaque. Small limitations, such as small exposure sizes, use of admin-
istrative data for exposure assessment, or possible carryover effects of infection-
driven plaque remodeling, would likely not impact large effect size, dose–response 
associations.  

    Risk Mitigation Strategies and Interventions 

 The data presented in this chapter is suggestive that chronic exposure to infectious 
agents, through asymptomatic, persistent infections or clinically acute manifestations, 
may elevate cerebrovascular risk. Further etiological and epidemiological investiga-
tions are warranted to develop more refi ned models of causal effect of joint infections 
and vascular disease, and in particular studies that can compare and contrast measure-
ment of burden. Current available data does generate tempting intervention targets 
and suggest possible clinical strategies to affect cerebrovascular risk. 

    Current Clinical and Population Health Approaches 

 A series of randomized placebo-controlled trials of macrolide antibiotics were the 
fi rst large-scale attempts to intervene on the hypothesized infectious pathways that 
infl uence coronary artery and myocardial infarction risk [ 132 ]. Antibiotic trials    that 
evaluated stroke outcomes data found no preventative effects on stroke among 
patients with stable CAD in the ACADEMIC trial (nonfatal stroke outcome, 
 p  = 0.31) and the ACES trial (composites outcome risk reduction =−0.13 %, 95 % 
CI, −0.73 to 0.26) or among patients with acute coronary syndrome within the 
CLARIFY (stroke events HR = 0.69, 95 % CI, 0.9–5.1), the ANTIBIO [stroke events 
during inpatient period ( p  = 0.060) or stroke events during 12-month follow-up 
( p  = 0.634) with effect estimates not available], and PROVE-IT trials (% Risk 
Change= +0.02, with  p -values or confi dence intervals not available) [ 133 – 136 ]. 
The results of these trials corroborated with large observational studies of claims 
databases ( n  = 354,358) that found no association between antibiotic use and myo-
cardial infarction [ 137 ]. The trials and recent meta-analysis surrounding these trials 
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show a lack of effi cacy of macrolide antibiotics to reduce coronary and cerebrovascu-
lar events [ 132 ]. More recent reevaluations of these antibiotic trials suggest the 
null- fi ndings of the trial do not falsify a causal role for pathogen burden. The trials 
have been criticized for several shortcomings, including not addressing the role of 
pathogens in progression versus plaque stability; failure to target viral pathogens; 
and the possibility of decreased effectiveness of antibiotics to impact bacteria in 
protective latent phase as observed in biofi lm formations [ 138 ]. Recent studies have 
suggested previously unknown serum variability in complement C4 defi ciencies 
may modify antibiotic effectiveness, with demonstrable risk reduction in random-
ized trials of clarithromycin among complement C4 defi cient individuals [ 139 ]. 

 An alternate risk reduction strategy has focused on infl uenza. The infl uenza 
vaccine has proven an effective strategy at reducing overall risk of MI and cardio-
vascular death, as documented in some studies case–control studies [ 140 ,  141 ] and 
cohort studies [ 142 ], but many other studies found no protective effect among older 
high- risk adults [ 143 – 145 ]. Recent large-scale cohort studies conducted in China 
( n  = 36,636) reported a large effi cacy associated with joint inoculation of 23-valent 
pneumococcal and infl uenza vaccination on reducing stroke events (adjusted HR, 
0.67; 95 % CI, 0.54–0.83) [ 146 ]. Recent meta-analysis of existing of four random-
ized clinical trials from Netherlands [ 147 ], Argentina [ 148 ], Poland [ 149 ], and 
Thailand [ 150 ] found the fl u vaccine provided an approximate halving of risk for 
MACE events (OR = 0.52;  p  = 0.0002) and has prompted recommendation for both 
MI and stroke prevention purposes in high-risk individuals. The evidence prompted 
the American Heart Association and American College of Cardiology to issue a 
scientifi c advisory, recommending seasonal infl uenza vaccines for individuals with 
coronary artery disease and severe atherosclerosis [ 151 ]. However, mismatch of 
infl uenza vaccine against prevalent strains due to antigenic drift or emergence of 
new strain through antigenic shift can limit the effectiveness of infl uenza vaccines 
on any given year [ 152 ]. Many researchers have questioned the effi cacy of infl u-
enza vaccines when administered to elderly populations with senesced immune 
systems [ 153 ].  

    Novel Applications: Retooling Pharmacotherapies 

 Recent developments in the use of statins have suggested their anti-infl ammatory 
and positive immunomodulatory impacts may have broader clinical applications 
than lipid regulation alone [ 154 ]. Enthusiasm with regard to expanded use of statins 
stems from studies that observed protective benefi ts during acute infection. Reviews 
of bacterial sepsis studies found several observational studies detected protective 
effects against mortality among statins users [ 155 ]. A multistate evaluation of 
patients hospitalized with laboratory-confi rmed infl uenza in the USA found statin 
users had a 50 % reduction in mortality (adjusted OR = 0.59, 95 % CI, 0.38–0.92) 
after adjusting for age; race; cardiovascular, lung, and renal disease; infl uenza vac-
cination status; and antiviral administration [ 156 ]. Use of statins has been suggested 
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as a possible prophylaxis in the event of a pandemic [ 157 ], and secondary analysis 
of the JUPITER trial found that incident pneumonia was reduced in the statin arm 
[ 158 ]. It is possible that statin administration during acute phases of infection may 
reduce atherothrombotic risk and reduce ischemic cerebrovascular event risk in 
patients. Similar investigations of antiplatelet therapies for cardiovascular risk 
reduction postinfection may warrant investigation, although effects of antiviral 
drugs agents such as oseltamivir have been shown to be inhibited by clopidogrel 
[ 159 ]. Antivirals such as oseltamivir have been found to reduce stroke/TIA risk in 
large claims databases and may represent another strategy for stroke–risk reduction 
that is currently implementable [ 160 ]. Finally, recent studies suggest infl uenza 
infection may complicate acute stroke treatments, such as tissue plasminogen 
activator [ 161 ] and may alter post-stroke survival [ 162 ]. 

 Downstream, pleiotropic, and pro-infl ammatory cytokines have been identifi ed as 
drug targets for anti-infl ammatory treatment trials using human monoclonal anti-
body therapies directed at high vascular risk individuals [ 163 ]. Canakinumab, a 
biopharmaceutical drug inhibiting interleukin-1β directly, has been shown to sig-
nifi cantly reduce hs-CRP ( p  < 0.02), fi brinogen ( p  < 0.001), and IL6 levels ( p  < 0.008), 
with adverse events very similar to the placebo group [ 164 ]. An alternate strategy 
under evaluation is low-dose methotrexate, an inexpensive treatment for rheuma-
toid arthritis, with effi cacy to reduce homocysteine levels, TNFα, IL-6, and CRP 
[ 165 ,  166 ]. Trials of these two infl ammatory targets intend to link changes in sur-
rogate outcome with reduction in cardiovascular events, and evaluation of possible 
interaction with high IB may elucidate possible roles of infectious agent and infl am-
mation. Upstream immune cells targets are also trending areas of research, but are 
further from clinical application. Recent fi ndings demonstrate that infusion of CD8+ 
Treg cells, involved in dampening immune response postinfection, can downregu-
late cytokine production and stimulation of new T cells to reduce symptoms of 
autoimmune conditions [ 167 ]. Research into drug compounds to expand naturally 
occurring populations of CD8+ Treg cells may allow for future top-down immune 
modulatory approaches.  

    Novel Applications: Optimizing Clinical Practice 

 Associations between hospitalizations for infectious syndromes and prospective 
stroke risk are increasingly studied, but inpatient strategies to mitigate stroke risk 
are not. Leveraging biomedical informatics databases may be an opportunity to 
optimize care of high-risk cardiovascular patients by increasing clinical cognition 
of elevated risk [ 168 ]. Risk stratifi cation for cardiovascular events, based on the 
prospective Framingham Risk Scores [ 169 ] or similar predictive measures, for 
patients hospitalized for infection may be one way to identify high-risk vascular 
patients and target them for prophylaxis, such as high-dose statins. The positive 
predictive value of Framingham Risk Scores in the acute infection setting has not 
been validated, and combination with inpatient severity indexes that include 
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mechanical ventilation, septic shock, acute respiratory distress syndrome, and 
CURB-65 scores (a mortality prediction tool that incorporates measures of confusion 
onset, urea concentrations, respiratory rates, blood pressure and >65 years age) 
warrant further investigation [ 170 ,  171 ]. New risk detection algorithms can be 
incorporated into decision support prompts for high-risk vascular inpatients at criti-
cal care junctions, such as during care provider order entry (CPOE) and may be 
another point of intervention to optimize screening and possible therapeutic inter-
vention [ 172 ]. Ensuring continuity of medication for comorbid cardiovascular risk 
factors through use of medical reconciliation strategies can serve as platform for 
reducing stroke risk [ 173 ]. Presently, medication discrepancies remain prevalent 
even in elite medical institutions (unintentional medication discrepancies at 1.4 per 
patient) [ 174 ] and cardiovascular drugs are also the most frequent drug class 
involved in medical reconciliation errors at discharge [ 175 ]. Discontinuation of 
statins has been implicated in elevated MI risk [ 176 ] and increased mortality fol-
lowing stroke [ 177 ]; and ensuring medication adherence during hospitalization 
and post-discharge may reduce discontinuation-associated morbidity and mortal-
ity. The prospective impact of discharge medical reconciliation errors on long-term 
vascular outcomes remains understudied. Finally, patient–physician encounters 
for infectious exposure represent another opportunity for cardiovascular risk fac-
tor screening and opportunity to provide care, but current scope of specialist prac-
tices remains increasing stove-piped. Surveys of infectious disease-certifi ed 
physicians that evaluate infl uenza patients report less comfort in prescribing med-
ications for common comorbid conditions than general medicine physicians [ 178 ]. 
Broader sensitivity training of infectious disease specialists to update treatment 
decisions, in light of cardiovascular comorbid conditions, may create opportunities 
to provide care.   

    Conclusion 

 In summary, emerging molecular, clinical, and epidemiological evidence evaluating 
infectious burden constructs provide suggestive, but not irrefutable, evidence 
linking (1) multiple, chronic coinfection, (2) acute infections, and (3) recurrent 
infection to carotid plaque and stroke risk. This chapter has focused on clinical 
measurements tools, as well as prevalent study designs, as important precursors 
for valid causal inference. Minimizing measurement error of the infection burden 
construct and identifi cation of gold standards for measuring chronic infection is a 
requisite for any serious attempts to falsify the IB hypothesis. Future developments 
in the fi eld may feature trials that investigate infl uence IB by mitigating infl amma-
tory and prothrombotic downstream pathways, or by evaluating large payer datasets 
with precise tracking of lab testing and outpatient clinical visits, or by further efforts 
to link IB with in vivo imaging of plaque progression or unstable plaque. In the 
interim, lesson learned from investigating IB suggests there are ample opportuni-
ties to optimize clinical care practices to reduce risk of cerebrovascular events.     
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    Abstract     Acute brain injury as a result of stroke and traumatic brain injury are 
leading causes of disability and mortality. Methods to improve patient diagnosis and 
prognosis for these common conditions are needed. Molecular biomarkers are one 
method that has been evaluated to diagnose acute brain injury, determine its cause, 
and predict outcomes and response to therapy. Markers that have been identifi ed 
include a variety of proteins, nucleic acids, and lipids that relate to the pathophysiology 
of acute brain injury. Infl ammation plays an important role in acute brain injury and 
several molecules involved in infl ammation have been identifi ed as biomarkers. 
However, biomarkers for acute brain injury is a developing fi eld that requires addi-
tional study is to identify markers for use in clinical practice. These studies will 
include evaluating a larger number of candidate markers using proteomic, genomic, 
metabolomic, and lipidomic approaches. Additionally, novel markers such as 
microRNA and the use of panels that integrate multiple markers may also prove to be 
valuable tools in acute brain injury. In this chapter, we provide a summary of identi-
fi ed infl ammatory biomarkers in acute brain injury, and how these biomarkers could 
add to patient care.  

        Introduction 

 Acute brain injury due to stroke and traumatic brain injury (TBI) are leading causes 
of morbidity and mortality [ 1 ]. To reduce the impact of these common disorders, 
blood-based biomarkers have been evaluated as tools to improve patient diagnosis 
and prognosis. As such they may help direct patients as quickly as possible to the 
care they require to reduce disability and improve outcomes. The pathophysiology 
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of brain injury has guided the development of biomarkers in stroke and brain trauma, 
including markers of brain tissue damage, markers of immune response and infl am-
mation, markers of endothelial dysfunction, and markers of hemostasis. Evaluated 
markers have included a variety of proteins, nucleic acids, and lipids which have 
been studied both as individual markers and in biomarker panels. 

 Biomarkers are important tools to aid in the diagnosis and prognosis of patients 
with neurological disease. A clinical diagnosis is often imperfect, with variable 
agreement on fi nal diagnoses. Improving diagnostic methods can reduce healthcare 
costs by directing patients to appropriate therapy earlier, and thus potentially 
preventing irreversible neurological defi cits. Patients who otherwise would be 
misdiagnosed can be identifi ed and obtain treatment. Improving prognostic abilities 
is also important, as it has implications to patients and families making decisions 
regarding care. Prognosis can also alter treatment, either by identifying patients 
most likely to benefi t or patients who may experience harmful side effects. 

 Identifying biomarkers of acute brain injury that can meet the rigorous require-
ments of a clinical biomarker has been challenging. Indeed such a clinical bio-
marker must not only be suffi ciently sensitive and specifi c but also cost-effective, 
feasible to use in a clinical setting, provide timely results, maintain discriminatory 
ability between different laboratories, and importantly address a relevant clinical 
need. Though progress has been made, further investigation is required. 

 Infl ammation plays an important role in acute brain injury and several molecules 
involved in infl ammation have been identifi ed as biomarkers for the diagnosis and 
prognosis of acute brain injury. Acute injury of brain tissue elicits both an innate 
and adaptive immune response. Following injury a number of molecules termed 
damage-associated molecular pattern molecules (DAMPs) are release and lead to 
the activation of cerebral microglia. Injury also results in the release of a number of 
cytokines and chemokines that lead to the activation of circulating leukocytes. 
Cerebral endothelium also express adhesion molecules in response to injury that 
promote leukocyte adhesion and migration across the blood–brain barrier into brain 
tissue. Damaged cerebral tissue also exposes a number of new antigens to the 
peripheral immune system, eliciting an adaptive immune response. Furthermore, 
in ischemic stroke, infl ammation also plays an important role in atherosclerosis, 
vascular disease, hemostasis, and vascular risk factors important to disease patho-
genesis. In this chapter, we provide a focused review of infl ammatory biomarkers 
in acute ischemic stroke and acute traumatic brain injury. For each condition, we 
highlight infl ammatory biomarkers that may improve diagnosis or prognosis and 
how these biomarkers could add to patient care.  

    Diagnostic Biomarkers in Ischemic Stroke 

 Biomarkers in blood for the diagnosis of ischemic stroke have long been sought; 
however, to date none have been implemented in clinical practice. A biomarker to 
identify cerebral infarction is similar in concept to the use of troponin to identify 
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myocardial infarction. Troponin is a useful marker in a patient with chest pain to 
distinguish cardiac ischemia from other common causes. Likewise, in a patient 
presenting with acute focal neurological defi cits, a marker of focal brain ischemia 
could distinguish ischemic stroke from other common causes of neurological 
dysfunction such as hemorrhagic stroke, traumatic brain injury, migraine, seizure, 
brain neoplasm, and other neurological events that mimic ischemic stroke. This could 
aid in the triage of stroke patients and implementation of additional diagnostic tests 
and therapies specifi c to ischemic stroke. Such a marker would likely be comple-
mentary to neurovascular imaging, just as troponin is complementary to electrocar-
diogram and cardiac imaging in myocardial ischemia. 

 Several biomarkers have been identifi ed for diagnosis of ischemic stroke and 
have been well reviewed by others [ 2 – 4 ]. A summary of these diagnostic markers is 
shown in Table  12.1 . Of interest are antibodies to the glutamate NMDA-receptor 
(NMDA-R, NR2A/NR2B subunits) that have been shown to distinguish ischemic 
stroke from controls at 3 h with 97 % sensitivity and 98 % specifi city [ 5 ,  6 ]. Though 
NMDA-R antibodies have also been associated with hypertension, atherosclerosis, 
prior stroke, epilepsy, systemic lupus erythematosus, and encephalitis, it is possible 
that specifi c immunogenic epitopes to the NMDA-R may be present in stroke and 
thus permit its identifi cation [ 7 – 10 ]. More recently a NMDA-receptor peptide in 

   Table 12.1    Biomarkers in blood to distinguish ischemic stroke from controls and other 
neurological disorders   

 Biomarker  Description of biomarker 

 S100B [ 12 ,  167 ]  Calcium-binding protein from glial cells 
 GFAP [ 15 ,  16 ,  168 ,  169 ]  Intermediate fi lament protein, astrocyte marker 
 NSE [ 167 ]  Neuronal glycolytic enzyme 
 NMDA-R-Ab [ 5 ,  6 ,  11 ]  Antibody to the NMDA-receptor 
 MBP [ 168 ,  170 ]  Myelin sheath protein 
 C-reactive protein [ 32 ,  171 ]  Acute phase protein 
 VCAM-1 [ 12 ]  Adhesion molecule 
 MMP-9 [ 12 ,  13 ,  50 ]  Proteolytic enzyme 
 ApoC-I ApoC-III [ 17 ]  Lipoproteins 
 D-dimer [ 27 ,  28 ,  172 ]  Fibrin degradation product 
 von Willebrand factor [ 12 ,  13 ]  Glycoprotein 
 PARK7 [ 173 ]  RNA-binding protein 
 NDKA [ 173 ]  Nucleoside kinase 
 BDNF [ 13 ]  Growth factor 
 LDL-oxidized [ 174 ]  Oxidized lipoprotein 
 Malondialdehyde [ 175 ]  Oxidized lipid product 
 H-FABP [ 176 ]  Lipid-binding protein 
 RNA Profi le [ 19 – 22 ,  177 ,  178 ]  Nucleic acid 

   ApoC  apolipoprotein C,  BDNF  brain-derived neurotrophic factor,  CRP  C-reactive protein, 
 GFAP  glial fi brillary acid protein,  H-FABP  heat fatty acid binding protein,  LDL  low-density 
lipoprotein,  MBP  myelin basic protein,  NMDA-R-Ab N -methyl  d -aspartate receptor anti-
body,  NSE  neuron- specifi c enolase,  PARK7  Parkinson’s disease 7,  RNA  ribonucleic acid, 
 VCAM-1  vascular cell adhesion protein 1  
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blood has been shown to distinguish ischemic stroke from controls, stroke mimics, 
and patients with vascular risk factors with 92 % sensitivity and 96 % specifi city [ 11 ]. 
These interesting results require further study in larger cohorts.

   Though most individual biomarkers identifi ed to date have not had suffi cient 
sensitivity or specifi city to identify ischemic stroke on their own, panels of biomarkers 
may show promise. A panel of four biomarkers (S100B, vWF, MMP9, and VCAM) 
was able to separate ischemic stroke from controls with 90 % sensitivity and speci-
fi city [ 12 ]. Likewise, a panel of fi ve biomarkers [S100B, vWF, MMP9, B-type neu-
rotrophic growth factor (BNGF), and MCP-1] was able to distinguish ischemic 
stroke from healthy controls with 92 % sensitivity and 93 % specifi city [ 13 ]. 

 Biomarkers that distinguish ischemic stroke from other neurological disorders is 
of greater clinical utility. Several disorders can be challenging to distinguish from 
ischemic stroke, including hemorrhagic stroke, seizure, migraine, and brain neo-
plasm [ 14 ]. Separating ischemic stroke from stroke mimics has generally been more 
diffi cult because many of the diseases that mimic stroke can also infl uence markers 
studied. Distinguishing hemorrhagic stroke from ischemic stroke is of great impor-
tance, particularly in the acute setting where thrombolysis can benefi t ischemic 
stroke but worsen hemorrhagic stroke. In this regard, the protein GFAP has shown 
promise [ 15 ,  16 ] as have apolipoprotein CI and apolipoprotein CIII [ 17 ]. Few 
infl ammatory markers have been able to distinguish ischemic from hemorrhagic 
stroke. When MMP-9 was included in a panel of four biomarkers (S100B, MMP9, 
D-dimer, and BDNF), ischemic stroke could be distinguished from stroke mimics 
including hemorrhagic stroke with 85 % sensitivity but only 34 % specifi city [ 18 ]. 

 Studies of RNA expressed in circulating leukocytes have been carried out to distin-
guish ischemic stroke from controls and patients with vascular risk factors. The use of 
RNA as a diagnostic marker is an emerging fi led that is supported by its clinical use 
in the diagnosis of breast cancer (Mammaprint and Oncotype), coronary artery dis-
ease (CardioDx), and infectious diseases (SARS, HIV, Hepatitis C, and HPV). RNA 
could be evaluated in the form of a microarray, as in the case of Mammaprint, or using 
a PCR-based assay. A microarray study of RNA isolated from peripheral blood 
mononuclear cells identifi ed 190 genes differentially expressed in ischemic stroke 
compared to controls. A 22 gene panel of the 190 genes could separate ischemic 
stroke from controls with 78 % sensitivity and 80 % specifi city [ 19 ]. A subsequent 
study of whole blood RNA identifi ed 1,335 genes expressed in acute ischemic 
stroke compared to controls [ 20 ]. An 18-gene panel of the 1,335 genes could distin-
guish ischemic stroke from controls in all patients at 24 h. This 18-gene panel has 
more recently been shown to distinguish ischemic stroke ( n  = 70, 199 samples) from 
controls with 93.5 % sensitivity and 89.5 % specifi city [ 21 ]. A panel of 9 genes (5 of 
which are in the 18 gene panel) has also been shown to distinguish stroke from 
controls [ 22 ]. Thus, a multigene approach shows promise as a method to identify 
acute ischemic stroke, though further larger studies comparing to stroke mimics are 
required. 

 Whole proteome studies of ischemic stroke have also begun to be performed. 
As with whole genome RNA studies, the technology to perform whole proteome 
analysis continues to develop [ 23 ,  24 ]. In microdialysates of 6 patients with 
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ischemic stroke, 53 proteins including a number of infl ammatory markers were 
found to be associated with cerebral infarction [ 25 ]. In a separate study of 6 isch-
emic strokes, 132 protein spots were found to be different in ischemic stroke com-
pared to controls, 39 of which were evaluated by mass spectrometry [ 26 ]. It is likely 
that larger whole proteome studies will be conducted as the technology improves, 
and potentially identify sensitive and specifi c markers to diagnose ischemic stroke.  

    Diagnostic Biomarkers to Determine Cause of Stroke 

 Identifying the cause of ischemic stroke is a critical step to preventing future stroke, 
as cause guides treatment. Patients with a stroke due to cardiac disease such as atrial 
fi brillation benefi t from anticoagulation, whereas patients with a large vessel stroke 
due to carotid stenosis benefi t from revascularization either with endarterectomy or 
stenting. However, the cause of stroke remains unknown or cryptogenic in about 
35 % of ischemic strokes despite extensive investigation. Biomarkers to predict a 
cause of stroke may have applications to identify cause in cryptogenic stroke. The 
three major causes of stroke where blood biomarkers have been evaluated are car-
dioembolic, large vessel atherosclerotic, and small vessel lacunar. These are 
reviewed below and summarized in Table  12.2 .

   Cardioembolic stroke comprise a number of cardiac disorders that are known to 
be high risk for ischemic stroke. Several biomarkers show potential to distinguish 
cardioembolic from non-cardioembolic ischemic stroke. Brain Natriuretic Peptide 
(BNP) and D-dimer have shown some ability to identify cardioembolic stroke, 
though sensitivity and specifi city may not suffi cient for clinical use [ 27 – 31 ]. An 
RNA profi le of 37 genes mostly associated with immune response has been shown 
to separate cardioembolic stroke due to atrial fi brillation from non-atrial fi brillation 
causes with >90 % sensitivity and specifi city. 

   Table 12.2    Biomarkers to predict cause of ischemic stroke   

 Biomarker  Cause of stroke  Description of biomarker 

 IL-6 [ 179 ]  Cardioembolic, lacunar  Infl ammatory cytokine 
 TNF-α [ 179 ]  Cardioembolic, lacunar  Infl ammatory cytokine 
 ICAM-1 [ 38 ,  180 ,  181 ]  Lacunar, large vessel  Adhesion molecule 
 BNP [ 27 – 31 ]  Cardioembolic  Vasoactive peptide hormone 
 Fibrinogen [ 32 ,  182 ]  Large vessel  Glycoprotein 
 D-dimer [ 28 ,  29 ,  183 ]  Cardioembolic, large vessel  Fibrin degradation product 
 Von Willebrand factor [ 184 ]  Cardioembolic  Glycoprotein 
 C-reactive protein [ 32 ,  36 ]  Cardioembolic, large vessel, lacunar  Acute phase protein 
 Thrombomodulin [ 38 ]  Lacunar  Thrombin cofactor 
 RNA Profi les [ 34 ,  35 ,  39 ]  Cardioembolic, large vessel, lacunar  Nucleic Acid 

   BNP  brain natriuretic peptide,  ICAM-1  intracellular adhesion molecule 1,  IL-6  interleukin-6,  RNA  
ribonucleic acid,  TNF-α  tumor necrosis factor alpha  
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 Large vessel atherosclerosis is considered to be the cause of stroke in patients 
with either occlusive or stenotic (≥50 % diameter reduction or <50 % diameter 
reduction with plaque ulceration or thrombosis) arterial disease of presumed athero-
sclerosis origin occurring in a clinically relevant extracranial or intracranial artery. 
In patients with large vessel disease that also have a second cause of stroke, it 
remains diffi cult to determine whether large vessel atherosclerosis is the responsible 
cause of stroke. Additionally, in stroke patients with atherosclerotic plaque causing 
mild stenosis (<50 %) without ulceration or thrombosis, it remains uncertain 
whether large vessel disease is the cause of stroke. In such patients, biomarkers 
indicating if large vessel disease is the likely cause of stroke may have utility. In this 
regard, the infl ammatory marker C-reactive protein has been combined with 
D-dimer, D-dimer/fi brinogen ratio, and erythrocyte sedimentation to separate large 
vessel from cardioembolic stroke [ 32 ]. A profi le of RNA differentially expressed in 
circulating leukocytes has also been shown to distinguish cardioembolic from large 
vessel ischemic stroke [ 33 ,  34 ]. In a study of 194 samples from 76 acute ischemic 
strokes, a 40-gene panel was able to distinguish cardioembolic from large vessel 
ischemic stroke with >95 % sensitivity and specifi city at each of 3, 5, and 24 h after 
stroke onset [ 34 ]. The identifi ed genes relate to differences in infl ammation between 
cardioembolic and large vessel stroke. When these panels were applied to patients 
with cryptogenic stroke, 17 % were predicted to be large vessel and 41 % to be 
cardioembolic stroke [ 34 ,  35 ]. Of the cryptogenic strokes predicted to be cardioem-
bolic, 27 % were predicted to have atrial fi brillation. 

 Small vessel lacunar stroke is considered in patients with a brain infarct <15–
20 mm in diameter occurring in regions of the penetrating cerebral arteries and 
associated with a lacunar syndrome. Frequently, however, infarcts larger than 
20 mm in diameter occur in the same regions, and it remains unclear whether these 
are due to small vessel lacunar disease or other pathophysiology. A biomarker may 
provide supporting evidence that such a stroke is due to small vessel disease. Only 
a few biomarkers have been associated with small vessel ischemic strokes. CRP has 
been shown to be lower in small vessel lacunar stroke compared to large vessel 
stroke ( n  = 116) [ 36 ]. Lacunar stroke has also been shown to have higher levels of 
thrombomodulin, ICAM-1, tissue factor, and homocysteine compared to controls. 
However, it remains unclear whether these markers are different compared to other 
stroke subtypes [ 37 ,  38 ]. RNA expressed in circulating leukocytes has been shown 
to differ between lacunar and non-lacunar strokes [ 39 ]. Identifi ed genes correspond 
to differences in infl ammation and endothelial function in lacunar stroke. White 
matter hyperintensities (WMH) on MRI are may also be a manifestation of cerebral 
small vessel disease. WMH have been associated with a higher plasma level of 
intercellular adhesion molecule 1 (ICAM-1) [ 40 ]. Additionally, a profi le of differ-
entially expressed RNA in blood has also been associated with WMH, and many of 
the genes were associated with infl ammation [ 41 ]. Cerebral microbleeds are also 
considered a manifestation of cerebral small vessel disease. Several infl ammatory 
markers have been shown to be increased in patients with microbleeds, including 
hsCRP, IL-6, and IL-18 [ 42 ].  
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    Prognostic Biomarkers in Ischemic Stroke 

 Predicting an outcome based on a blood sample acquired at time of stroke presentation 
could have practical value in the clinical setting. Patients at increased risk for a 
specifi c outcome could have therapy altered or an intervention performed in an 
attempt to shift this risk. A number of stroke outcomes have been evaluated to deter-
mine whether a blood biomarker may have utility to stratify patients and identify 
target groups for therapy. 

    Biomarkers to Predict Poor Stroke Outcome 

 Identifying stroke patients likely to have a poor outcome may help in patient man-
agement. Those likely to have a poor outcome might benefi t from more aggressive 
early therapy, or rehabilitation. Levels of IL-6 have been associated with worse 
outcomes in stroke. In 250 ischemic strokes, IL6 levels were increased in the 14 
patients who died at 1 year [ 43 ]. In another study, poor stroke outcome was also 
associated with IL-6 (OR 2.4, 95 % CI 1.4–4.2) and Ln NT pro-BNP (OR 2.2, 95 % 
CI 1.2–4.0) [ 44 ]. However, neither IL-6 nor Ln NT pro-BNP were able to improve 
upon outcome prediction achieved by the NIHSS score and age alone (c-statistic 
0.84). Furthermore, IL-6 may be a marker of systemic comorbid disease, and thus 
may not specifi cally relate to ischemic stroke outcome. 

 Infarct volume is often used as a surrogate measure of outcome, with larger 
infarcts being associated with worse outcomes. Several biomarkers have been asso-
ciated with infarct volume, including S-100B, MMP, IL-6, TNF-α, ICAM-1, and 
glutamate. A larger infarct volume would be expected to increase release of brain- 
specifi c markers into the circulation. This is supported by studies that show levels of 
S-100B [ 45 ,  46 ] and NSE [ 46 – 48 ], tau [ 47 ], and glutamate [ 49 ], each correlates 
with fi nal infarct volume [ 45 ,  48 ]. A larger infarct volume might also lead to a larger 
infl ammatory response to ischemic brain tissue. This is supported by studies show-
ing infl ammatory markers correlate with infarct volume, including TNF-α [ 50 ], 
IL-6 [ 51 ,  52 ], ICAM-1 [ 50 ], MMP-2, and MMP-9 [ 50 ,  53 ].  

    Biomarkers to Predict Hemorrhagic Transformation 

 Hemorrhagic transformation (HT) is a major complication in ischemic stroke that is 
increased when thrombolysis (tissue plasminogen activator, tPA) is used. Preventing 
HT is important to improve stroke outcomes, as it is associated with both increased 
morbidity and mortality. Identifying patients at increased risk of HT could identify 
a patient group where management is modifi ed to reduce the risk of HT. For example, 
in high-risk patients, the dose of tPA could be altered or an additional therapy such 
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as minocycline could be administered [ 54 ,  55 ]. Several blood biomarkers have been 
evaluated for their ability to predict HT in ischemic stroke including MMP-9, c-FN, 
PAI-1, TAFI, and S100B [ 55 – 60 ]. 

 The infl ammatory marker MMP-9 has been found to be increased in strokes that 
develop hemorrhagic transformation, both before and after treatment with t-PA [ 56 , 
 61 – 65 ]. Serum MMP-9 levels ≥140 ng/ml predicted hemorrhagic transformation in 
ischemic stroke patients with a sensitivity of 87 % and specifi city of 90 % [ 61 ]. 
MMP-9 activity may also be promoted by hyperglycemia which also is associated 
hemorrhagic transformation [ 66 ,  67 ]. MMP-9 levels also correlate with disruption 
of the blood–brain barrier, a key feature in HT [ 68 ].  

    Biomarkers to Predict Early Neurological Deterioration 

 Early neurological deterioration (END) is defi ned as worsening of neurological status 
from admission to 48–72 h after admission. Identifying patients at risk of END may be 
useful to initiate therapies early to potentially prevent or reduce deterioration. Several 
biomarkers have been associated with END including ferritin, TNF-α, ICAM-1, 
MMP-9, MMP-13, nitric oxide, glutamate, GABA, and S100B [ 69 ,  70 ]. Among the 
infl ammatory biomarkers, predictors of END included a plasma ferritin > 275 ng/ml 
[ 71 ] and plasma IL-6 > 21.5 pg/ml [ 51 ]. Both MMP-9 and MMP-13 have been associ-
ated with infarct volume expansion in stroke [ 53 ]. In lacunar stroke, TNF-α > 14 pg/ml 
and ICAM-1 > 208 pg/ml have also been shown to correlate with END [ 72 ].  

    Biomarkers to Predict Risk of Future Stroke 

 Biomarkers have shown some success to identify patients at risk for a fi rst stroke as 
well as those who are more likely to have a recurrent ischemic stroke. The enzyme 
lipoprotein-associated phospholipase A2 (Lp-PLA2) is produced by immune cells. 
Increased levels have been associated with an increase in primary stroke occurrence 
and risk of recurrent stroke [ 73 – 78 ]. C-reactive protein (CRP) has also been shown 
to be predictive of stroke risk [ 75 ]. Despite the increased risk of stroke predicted by 
Lp-PLA2 and CRP, the benefi t in terms of reducing stroke has yet to be demon-
strated. Trials of the Lp-PLA2 inhibitor Darapladib may provide additional insight 
to the role of Lp-PLA2 in stroke.  

    Biomarkers to Identify Candidates for Decompressive 
Hemicraniectomy 

 Decompressive hemicraniectomy following stroke can improve stroke outcomes 
in selected patients with large cortical ischemic infarcts when performed early [ 79 ]. 
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A biomarker to identify ischemic strokes at risk for malignant cerebral infarction 
and those likely to benefi t from decompressive hemicraniectomy would be useful. 
MMP-9 when combined with cellular-fi bronectin (c-Fn) has been shown to be pre-
dictive of malignant cerebral infarction [ 70 ]. Admission MMP-9 level >140 ng/ml 
predicted malignant MCA infarction with 64 % sensitivity and 88 % specifi city. 
The protein S-100B has also been associated with malignant infarction [ 80 ].  

    Biomarkers to Predict Response to Stroke Prevention Therapy 

 Biomarkers might be useful to guide decisions regarding stroke prevention thera-
pies [ 81 ]. Often it is unclear which antiplatelet agent a stroke patient should fi rst be 
started on. A recent study showed that in stroke patients with a monocyte chemotac-
tic protein-1 (MCP-1) > 217 pg/ml, outcomes were better at 90 days in those treated 
with aspirin plus extended release dipyridamole (aggrenox), compared to aspirin 
alone [ 82 ]. Though the reasons for this difference remain unclear, biomarkers may 
have a role to select antiplatelet agent.   

    Traumatic Brain Injury 

 Brain trauma can result from direct impact to the head (blunt force trauma and 
falls), by shearing forces from a rapid change in acceleration/deceleration (motor 
vehicle accident), a rapid change in pressure (blast exposure), or by penetrating 
injury by a high-velocity object (bullet and blast shrapnel). Traumatic brain injury 
(TBI) is a major health issue with over 1.5 million persons experiencing a TBI 
annually in the USA alone. Of these about 50,000 patients die, and 500,000 are 
hospitalized [ 83 – 85 ]. In patients with mild TBI, 40–50 % experience persistent neu-
rological problems for months–years following injury. Defi cits include impairment 
in cognition, behavioral function, and depression. Every year, an estimated 90,000 
patients with TBI suffer permanent disabilities [ 86 ]. A biomarker of TBI would 
provide a needed indicator of brain tissue damage. Being able to measure changes 
in tissue injury at a molecular level during the event would add to TBI management 
and therapeutic development. 

 In TBI, mechanical damage to neuronal and vascular structures results in a primary 
brain injury. A secondary injury can subsequently occur as a result of molecular 
events that further promote cell death. In primary injury prevention is the key, 
through combined use of education programs, safety devices (seat belts and safety 
laws) and protective equipment (helmets and armor). Medical intervention may be 
able to reduce secondary injury by reducing further neural injury,  complications, 
and promoting processes of repair. Infl ammation following TBI is an important 
component of TBI that is involved not only in brain damage but also in repair. 
Several studies have evaluated infl ammatory biomarkers in TBI to aid in the diag-
nosis, prediction of complications, and prognosis of TBI. 
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    Diagnostic Biomarkers for TBI 

 The diagnosis of TBI relies on history of injury, physical exam, and diagnostic 
investigations. Neuroimaging is frequently used to identify parenchymal injury, 
edema, ischemia, and hemorrhage. Electroencephalogram (EEG) can identify 
changes associated with brain injury and the presence of seizure activity. Biomarkers 
may have a role to aid in the diagnosis of TBI. For example, a biomarker may aid in 
distinguishing mild TBI from posttraumatic stress disorder. Biomarkers may also 
aid in the detection of TBI that may be otherwise missed, and/or enable a more rapid 
diagnosis of TBI to permit earlier implementation of treatment. 

 Several molecules released as a result of brain injury have evaluated as biomark-
ers to identify TBI including S100B [ 87 – 89 ], GFAP [ 90 – 94 ], NSE [ 95 – 97 ], and 
MBP [ 98 ,  99 ] (Table  12.3 ). However, these markers have also been associated with 
ischemic and hemorrhagic stroke, and thus are not specifi c to TBI. A number of 
additional markers have also been associated with TBI, including brain-type fatty 

   Table 12.3    Biomarkers for the diagnosis of TBI   

 Biomarker  Description of biomarker 

 S100B [ 87 – 89 ]  Calcium-binding protein from glial cells 
 GFAP [ 90 – 94 ]  Intermediate fi lament protein, astrocyte 

marker 
 NSE [ 95 – 97 ]  Neuronal glycolytic enzyme 
 MBP [ 98 ,  99 ]  Myelin sheath protein 
 Brain type-fatty acid binding protein [ 100 ]  Carrier protein for fatty acid 
 Alpha II spectrin [ 101 – 105 ]  Neuronal cytoskeletal molecule 
 Cleaved tau [ 106 – 109 ]  Protein to stabilize microtubules 
 Phosphorylated neurofi lament H [ 110 – 112 ]  Neuronal intermediate fi laments 
 Ubiquitin C-terminal hydrolase [ 113 – 116 ]  Neuronal deubiquitnating enzyme 
 IL-6 [ 117 – 121 ]  Cytokine 
 IL-1β [ 121 ,  123 ,  127 ]  Cytokine 
 TNF-α [ 117 ,  121 ,  128 – 133 ]  Cytokine 
 IL-8 [ 121 ,  134 – 136 ]  Chemokine 
 IL-10 [ 117 ,  137 ,  138 ]  Cytokine 
 TGF-β [ 118 ]  Cytokine 
 C-reactive protein [ 139 ]  Acute phase protein 
 ICAM-1 [ 140 ]  Adhesion molecule 
 MCP-1 [ 141 ]  Chemokine 
 F2-isoprostane [ 142 – 144 ]  Lipid peroxidation product 
 RNA profi le [ 145 ]  Nucleic acid 
 miR-16, miR-92a, and miR-765 [ 147 ]  Nucleic acid 
 mir671-5p, mir-US4, mir1285, and mir455-3p [ 148 ]  Nucleic acid 

   GFAP  glial fi brillary acid protein,  ICAM-1  intracellular adhesion molecule 1,  IL  interleukin,  miR  
microRNA,  MBP  myelin basic protein,  NSE  neuron-specifi c enolase,  RNA  ribonucleic acid,  TGF  
transforming growth factor,  TNF  tumor necrosis factor  
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acid binding protein [ 100 ], alpha II spectrin [ 101 – 105 ], cleaved tau [ 106 – 109 ], phos-
phorylated neurofi lament H [ 110 – 112 ], and ubiquitin C-terminal hydrolase [ 113 –
 116 ]. Several of these markers have been combined into panels and are currently 
undergoing validation studies to determine their ability to identify TBI.

   A number of infl ammatory cytokines may also serve as biomarkers of TBI. 
Cytokines contribute to the infl ammatory response to damaged brain tissue, activat-
ing microglial cells and recruiting circulating leukocytes to site of brain injury. 
Among the most studied are IL-6, IL-1β, and TNF-α. IL-6 is increased in the CSF 
of TBI patients [ 117 ], and this increase is greater than that observed in the serum 
[ 118 ,  119 ]. Levels of IL-6 in the CSF peak between days 3 and 6 after TBI [ 120 ]. 
IL-6 has also been shown to be elevated in brain tissue obtained from patients with 
TBI [ 121 ]. IL-1β is increased in the CSF and microdialysates of patients with TBI 
[ 122 – 126 ]. IL-1β is also increased in brain tissue of patients with TBI, and this 
increase occurs within hours of injury [ 121 ,  123 ,  127 ]. TNF-α is also increased in 
the CSF and serum of patients with TBI [ 117 ,  128 – 133 ], and elevated in brain tissue 
obtained from TBI patients [ 121 ]. 

 Other cytokines that are increased in TBI include IL-8, IL-10, IL-2, and INF- gamma. 
IL-8 is increased in the CSF [ 134 ,  135 ] and brain tissue of patients with TBI [ 121 ,  136 ]. 
IL-10 is increased in the CSF of patients with TBI [ 117 ,  137 ,  138 ]. Levels of TGF-β are 
also increased in the CSF of TBI, with levels peaking at 24 h and remaining elevated 
for several weeks [ 118 ]. Thus, in patients with TBI, there is extensive infl ammation 
both in the central nervous system and in the peripheral circulation. 

 As our understanding of the infl ammatory response in TBI has increased, studies 
evaluating infl ammatory molecules as biomarkers of TBI have begun to be per-
formed. One study has shown a panel of cytokines measured in CSF can distinguish 
patients with TBI from controls. Among the cytokines measured were IL-1β, IL-6, 
IL-12p70, IL-10, IL-8, and MIP-1α [ 122 ]. Other infl ammatory markers that have 
been studied include CRP, ICAM-1, MCP-1, and F2-isoprostane. C-reactive protein 
(CRP) in combination with serum amyloid A has been shown to distinguish TBI 
from healthy control subjects [ 139 ]. However, CRP also increases as a result of 
injury to other non-brain tissue and thus is not specifi c to TBI. Intracellular adhe-
sion molecule 1 (ICAM-1) levels are increased in TBI and correlate with degree of 
BBB disruption [ 140 ]. The chemokine monocyte chemoattractant protein-1 (MCP-
1) also is increased at least in experimental TBI [ 141 ]. F2-isoprostane, which is a 
marker of lipid peroxidation in infl ammatory disease, has also been shown to be 
increased in the serum and CSF of TBI subjects [ 142 – 144 ]. Thus, a number of 
infl ammatory markers are associated with TBI, and with further validation may 
serve as biomarkers to identify TBI. 

 A question that requires further evaluation is whether the infl ammatory response 
to brain injury in TBI differs from the infl ammatory response observed in other 
acute brain injuries such as ischemic stroke. In a small study of whole genome 
RNA expression in TBI, some differences between immune response in TBI and 
stroke were identifi ed. The study compared 15 acute TBI subjects to 20 acute isch-
emic strokes and 15 healthy controls using U133A Affymetrix microarrays [ 145 ]. 

12 Infl ammatory Biomarkers in Patients with Acute Brain Injuries



222

RNA was isolated from peripheral blood mononuclear cells, thus identifi ed genes 
refl ect aspects of the immune response to TBI. TBI subjects compared to controls 
had a number of genes in common to stroke subjects including MMP9, CD36, 
CD14, IL13RA1, TLR2, and CD163. This suggests that features of the peripheral 
immune response to acute brain injury in TBI are similar to that in ischemic stroke. 
However, there were differences in RNA expression between TBI and stroke, includ-
ing differential expression of MMP25 and CLC (eosinophil lysophospholipase) 
[ 145 ]. Differences in immune response between cerebral trauma and ischemia are 
supported by a rodent study demonstrating increased levels of p43/pro-EMAPII (a 
proinfl ammatory cytokine) in TBI compared to ischemic stroke [ 146 ]. Further study 
evaluating differences in immune response to brain injury in TBI compared to isch-
emic stroke and forms of acute brain injury are required. 

 Preliminary studies have also identifi ed differences in plasma microRNA in TBI. 
A study of 10 TBI compared to 10 healthy controls suggested differences in several 
plasma miRNA in TBI including miR-16, miR-92a, and miR-765 [ 147 ]. Another 
study comparing 9 TBI subjects to 9 non-TBI subjects identifi ed different levels of 
4 miRNA (mir671-5p, mir-US4, mir1285, and mir455-3p), 13 snoRNA, and 1 
scaRNA [ 148 ]. The presence of miRNA differentially present in TBI is supported 
by a rodent study reporting several miRNA in the serum and CSF of rats with TBI 
including miR-let7i, mir-122, mir200b, and mir-340-5p [ 149 ,  150 ].  

    Prognostic Biomarkers of TBI 

    Biomarkers of TBI Outcome 

 Markers of poor outcome following TBI could add to the information used by 
physicians, patients, and families making decisions regarding patient care. A bio-
marker of TBI outcome could also identify patients likely to benefi t from a specifi c 
therapy or rehabilitation program. Several biomarkers in blood have been associ-
ated with outcome in TBI. Increase baseline serum levels of S100B, NSE, GFAP, 
and tau have all been associated with a poor TBI outcome at 6 months [ 89 ,  97 ,  109 , 
 151 ,  152 ]. 

 A number of infl ammatory markers have also been associated with outcome in 
TBI. Peak levels of IL-1α in the CSF have been shown to correlate with TBI outcome 
at 3 months [ 153 ]. IL-1α levels in the CSF have also been shown to correlate with 
Glasgow outcome score [ 154 ]. The severity of TBI also correlates with the ratio of 
venous to arterial IL-6 levels [ 155 ]; IL-6 measured by microdialysis correlates with 
Glasgow outcome score [ 156 ]. Mortality as a result of TBI has been associated with 
several infl ammatory biomarkers measured at baseline. IL-6 in CSF was found to be 
predictive of survival [ 156 ]. In children with TBI, increased IL-10 levels correlated 
with mortality [ 137 ]. Though TNF-α is increase in TBI, it does not appear to correlate 
with mortality in TBI [ 128 ].  
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    Biomarkers of Response to Hypothermia 

 Hypothermia is frequently induced in patients with TBI as a treatment to mini-
mize brain injury. Hypothermia has widespread effects including modulation 
of inflammatory response. Indeed in TBI patients treated with hypothermia, 
IL-6 levels were decreased [ 157 ]. Biomarkers may have a role in the use of 
hypothermia, though further study is required. A biomarker may be able to 
identify patients likely to benefi t from hypothermia, to help determine optimal 
duration of cooling, or time of rewarming. Of interest, levels of F2-isoprostane 
have been shown to be higher in males with TBI compared to females [ 158 ]. This 
fi nding may relate to gender differences that have been observed in response to 
hypothermia [ 159 ].  

    Biomarkers of Intracranial Pressure 

 Elevated intracranial pressure can increase morbidity and mortality in TBI [ 160 ]. 
A biomarker of intracranial pressure could be used to identify subjects in greater 
need of ICP reduction therapy, potentially prior to a rise in ICP. Serum levels of 
cleaved-tau have been shown to distinguish TBI patients with ICP > 30 mm Hg from 
those with ICP < 30 mm Hg [ 109 ]. Other markers associated with increased ICP 
include GFAP, S100B [ 92 ], retinal binding protein [ 139 ]. Of interest, levels of ceru-
loplasmin and total serum copper measured within the fi rst 24 h of TBI were able to 
identify subjects whose ICP remained <20 mm Hg for the duration of study with 
100 % specifi city and 67 % sensitivity [ 161 ]. IL-1β has been shown to induce ceru-
loplasmin expression in TBI and is affected by IL-1R1 receptor [ 162 ]. Thus, the 
immune response to TBI may be a method to monitor ICP in TBI.  

    Biomarkers to Predict Multiple Organ Failure and Acute Respiratory 
Distress Syndrome in TBI 

 TBI frequently occurs in the setting of injury to other body organs. Multiple organ 
failure (MOF) and acute respiratory distress syndrome (ARDS) are two common 
causes of death in TBI patients with polytrauma [ 163 ,  164 ]. Both MOF and ARDS 
have been associated with a systemic infl ammatory response. Identifying patients at 
risk for MOF prior to organ failure, or ARDS prior to respiratory distress, may pro-
vide a window to intervene and prevent or reduce the effects of these complications. 
IL-6 has been shown to correlate with MOF and ARDS [ 165 ]. Likewise, serum 
levels of sTNF-R p55 and sTNF-R- p75 are associated with the development of 
MOF [ 165 ]. A genome-wide study of RNA expressed in peripheral blood mono-
cytes in trauma patients also suggests a proinfl ammatory response is associated with 
MOF [ 166 ]. In 13 trauma subjects, the 3 who died had overexpressed proinfl amma-
tory mRNA patterns. These changes were observed as early as 90 min after trauma.    
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    Conclusions 

 The translation of a blood-based biomarker in acute brain injury to clinical practice 
has proven diffi cult. This challenge may relate in part to the heterogeneity of stroke 
and traumatic brain injury, as well as to the presence of the blood–brain barrier which 
restricts release of brain-specifi c markers into the circulation. However, biomarkers 
studies have provided insight into the pathophysiology of acute brain injury. The 
role of the immune system in stroke and TBI is of recognized importance, and 
human studies of infl ammatory markers are often cited as supportive evidence. 
Though progress in the development of clinical biomarkers for stroke and TBI has 
been challenging, there are several markers that show promise, such as LpPLA2 and 
CRP for risk stratifi cation in stroke, and cytokine profi le, cleaved-tau, and ubiquitin 
C-terminal hydrolase in TBI. High-throughput screening of RNA and protein 
infl ammatory markers are being performed and may identify novel markers with 
suffi cient sensitivity and specifi city to be of clinical use. With further study, bio-
markers will likely will play a larger role in the management of stroke and TBI and 
continue to provide insight into the pathophysiology of these common disorders.     
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    Abstract     Neuroinfl ammation is a dynamic process which undergoes signifi cant 
changes in spatial distribution and intensity within hours and days after an acute 
brain injury. At present non-invasive in vivo imaging methods like positron emission 
tomography (PET) offer the only possibility to capture this dynamics longitudinally 
in the same subject and the entire brain. Amongst the multitude of cellular and non-
cellular mechanisms which constitute the complex neuroinfl ammatory reaction, 
microglia and macrophages have been the primary targets for developing non- 
invasive imaging methods. This chapter is an introduction into the basic principles 
of microglia imaging with PET, its application to ischaemic stroke and traumatic 
brain injury in both animal models and clinical imaging in patients. Future develop-
ments towards magnetic resonance imaging (MRI) of neuroinfl ammation and imag-
ing of specifi c enzyme activity in the neuroinfl ammatory cascade are discussed.  

        Activated Microglia and Macrophages as Imaging Target 

 Neuroinfl ammation is a complex reaction of the brain to acute or chronic injuries 
comprising many cellular (e.g. macrophages, astrocytes, lymphocytes, etc.) and 
non-cellular (e.g. cytokines, antibodies, etc.) components and their responses to 
noxious stimuli. Whether neuroinfl ammation as such should be regarded as a ben-
efi cial physiological response or a pathological process is still unsettled and seems 
to depend on the context in which the infl ammatory reaction takes place, its temporal 
and spatial relationships to the injury and the mediators involved [ 1 ]. Imaging neu-
roinfl ammation in vivo and non-invasively is thus of signifi cant scientifi c and clinical 
interest but appears challenging because these processes are not linked to a single 
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specifi c cell type or metabolic or enzymatic reaction but rather constitute a complex 
cascade of such mechanisms. In addition, the activity of these mechanisms varies in 
space and time thus rendering identifi cation of a representative surrogate maker as 
suitable imaging target even more diffi cult [ 2 ]. 

 Morphological imaging methods like computed tomography (CT) or MRI pro-
vide information about tissue composition (e.g. water or lipid content), water move-
ment (e.g. diffusion) or permeability of the blood–brain barrier (e.g. contrast 
agents). Although these tissue properties are altered during the course of an infl am-
matory process, they are not infl ammation specifi c and have thus traditionally been 
used to monitor infl ammation activity (e.g. contrast enhancement to differentiate 
acute from chronic demyelinating lesions in multiple sclerosis) rather than to char-
acterize the infl ammatory process per se [ 3 ]. Similarly, unspecifi c PET or SPECT 
parameters are cerebral blood fl ow (CBF), or cerebral metabolic rate for glucose 
(CMRGlu) which are in general correlated with infl ammation activity without being 
specifi c surrogate markers [ 4 ]. 

 More specifi c targets are cellular components of neuroinfl ammation which, espe-
cially in case of an acute injury, are present early after the injury and whose activity 
level and spatial distribution may allow a more specifi c quantifi cation of infl amma-
tion intensity. Macrophages invading the injured brain from the blood or microglia, 
the resident macrophages of the brain, constitute such imaging targets [ 5 ,  6 ]. In the 
normal healthy brain, microglia cells are constantly monitoring the microenviron-
ment and as such are thought to play a role in extracelluar homeostasis. In case of an 
injury, microglia as well as blood macrophages undergo a transformational change 
into phagocytes, proliferate, release pro-infl ammatory compounds and increase 
expression of immunomodulatory surface antigens. This transformational change is 
usually referred to as “activation” and is observed in microglia as well as blood mac-
rophages alike (Fig.  13.1 ). Since at present it is not possible to distinguish between 
resident macrophages (microglia) and blood macrophages with in vivo imaging 
methods [ 7 ], the term “activated microglia” (AMG) will be used for both entities.

       The TSPO-Receptor System 

 One of the molecular changes which happen during the transformation of microglia 
cells in to phagocytes is the expression of surface proteins on the outer mitochon-
drial membrane (Fig.  13.1 ). AMG expresses the 18 kDa translocator protein (TSPO) 
which acts as transport molecule for cholesterol over the mitochondrial membrane 
and consists of a voltage-gated anion channel and an adenine nucleotide carrier, the 
mitochondrial transition pore [ 8 ]. Outside the brain, it is frequently expressed in 
steroid synthesizing tissue (e.g. adrenal glands) and has fi rst been discovered in the 
rat kidney as a high-affi nity binding site for diazepam [ 9 ] and thus also been named 
“peripheral benzodiazepine receptor” (PBR). The exact role of TSPO in cells of the 
CNS remains to be elucidated, it has however been implied in regulation of endog-
enous steroid synthesis as well as in blocking certain apoptosis pathways. Microglia 
and macrophages are not the only CNS cells that express TSPO, an upregulation can 
also be observed in astrocytes [ 10 ]. 
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 In acute brain injury (e.g. stroke), the time course of TSPO expression in microg-
lia and astrocytes appears to be different with microglia TSPO expression being 
observed early in the course of an injury and late expression in astrocytes (Fig.  13.2 ). 
As far as human pathology is concerned, immunostaining for TSPO was co- 
localized with microglia rather than astrocytes in a range of different pathologies. 
The time course of in vivo binding of TSPO ligands also appears to correlate with 
TSPO expression on microglia and macrophages rather than astrocytes, indicating 
that either TSPO expression in microglia is higher than TSPO expression in 

  Fig. 13.1    After exposure to noxious stimuli, a resting microglia cell ( left ) starts expressing the 
18 kDa translocator at the outer mitochondrial membrane ( middle ) and undergoes morphological 
transformation into phagocytes ( right ). From Banati, Glia 2002 Nov;40(2):206–17       

  Fig. 13.2    Presence of microglia cells peaks early after an ischaemic injury and stays elevated for 
several weeks, followed by invasion of macrophages from the blood. TSPO-expressing astrocytes 
only occur later in the course of the disease       
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astrocytes or that the ligand affi nity is higher for TSPO receptors from microglia 
than for astrocyte TSPO receptors [ 11 ].

   A differential interplay between astrocytes and microglia has been postulated 
based on animal experiments using models for neurodegenerative diseases or spe-
cifi c toxins. Here, irreversible neuronal damage seemed to induce strong TSPO 
expression in microglia but not in astrocytes, whereas reversible neuronal damage 
is supposed to cause TSPO expression in astrocytes thus possibly indicating a role 
of astrocytes in neuroprotection [ 12 ,  13 ]. Further work in this direction and evi-
dence from studies in human brain tissue is however required before fi rm conclu-
sions as per the role of TSPO expressing astrocytes in human diseases can be drawn.  

    TSPO Ligands 

 Given the fact that TSPO expression in microglia is correlated with their activation 
state, there has been considerable interest in developing ligands for TSPO to quan-
tify this subpopulation of infl ammatory cells [ 14 ]. At present, TSPO ligands are 
divided into seven different chemical classes (Table  13.1 ). Substances from only 
three classes (Isoquinolines, Phenoxyarylacetamides and Pyrazolopyrimidines) are 
currently being used or developed for imaging purposes.

   The fi rst, and still most widely used substance is the [R]-enantiomer of the iso-
quinolinecarboxamide PK11195 [ 15 ]. This ligand has been labelled with [ 3 H] for 
autoradiography and [ 11 C] for PET imaging and most microglia imaging studies to 
date have been performed with PK11195. A disadvantage of PK11195 is its rela-
tively low sensitivity due to high unspecifi c ligand binding as well as its limited 
availability as in vivo imaging agent due the short radioactive half-life of [ 11 C] 
(20 min). The latter requiring a radiochemistry facility with cyclotron at the imag-
ing site. These limitations have prompted the development of alternative TSPO 
ligands. Among those, [ 18 F]-labelled compounds are of special interest because of 
the longer half-life of the fl uorine isotope (110 min). Especially, the  18 F-labelled 
Phenoxyarylacetamides PBR06 and FEPPA as well as the [ 11 C]-labelled derivatives 
PBR28 and DAA1106 have been used for imaging studies in humans [ 16 – 19 ]. 

   Table 13.1    Classes of TSPO-receptor ligands and radioligands with reported use in humans   

 Chemical class  Radioligand for human in vivo imaging 

 1. Benzodiazepines 
 2. 3-Isoquinolinecarboxamides  [ 11 C]PK11195 
 3. Indoleacetamides 
 4. Vinca alkaloids  [ 11 C]vinpocetine 
 5. Oxodihydropurines 
 6. Phenoxyarylacetamides  [ 11 C]DAA1106, [ 18 F]DAA1106, [ 18 F]PBR06, 

[ 11 C]PBR28, [ 18 F]FEPPA 
 7. Pyrazolo-[1,5-a]-pyrimidines  [ 11 C]DPA-713, [ 18 F]DPA-714 
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Other second-generation TSPO ligands which have so far been characterized in 
biodistribution studies in humans are the vinca alkaloid [ 11 C]-vinpocetine [ 20 ] and 
the Pyrazolopyrimidines [ 11 C]-DPA713 and [ 18 F]-DPA-714 [ 21 ]. 

 The higher in vivo specifi c binding of these new generation ligands under non- 
pathological conditions, where AMG activity is low, does however not always seem 
to translate into higher sensitivity to detect a disease associated increase in TSPO 
receptors when compared to PK11195 [ 22 ,  23 ]. This discrepancy between the high 
in vitro affi nity of these new ligands and the specifi c binding properties in vivo may 
hint towards certain, yet to be fully understood properties of the TSPO receptor 
rather than the design of the ligands themselves [ 6 ].  

    Genetic Polymorphisms of the TSPO Receptor System 

 In fi rst human, in vivo imaging studies with second-generation TSPO ligands spe-
cifi c binding was absent in about 10 % of normal control subjects [ 24 ]. Further in 
vitro binding studies on post-mortem human brain tissue identifi ed dual binding 
sites at the TSPO receptor for these second-generation ligands, one with high 
(4.0 nM) and one with low (313 nM) affi nity. Subjects with two high-affi nity bind-
ing sites were classifi ed as high-affi nity binders (HABS), those with two low- affi nity 
binding sites as low-affi nity binders (LABS). About 40 % of subjects expressing 
one high- and one low-affi nity binding site, resulting in an intermediate overall 
affi nity, were thus classifi ed as mixed-affi nity binders (MABS) [ 25 ]. The existence 
of two receptor binding sites, which are responsible for three binding affi nity classes, 
seemed to point towards a genetic polymorphism with codominant inheritance. 

 Subsequent genetic association studies with known TSPO polymorphisms con-
fi rmed this hypothesis [ 26 ]. The rs6971 polymorphism in the TSPO gene on chro-
mosome 22 leads to substitution of the major allele Alanine at position 147 by the 
minor allele Threonine. Subjects homozygous for Threonine are LABS, HABS are 
homozygous for Alanine and heterozygous subjects (Ala147Thr) are MABS. 
Prevalence of this polymorphism appears to depend on ethnicity with 30 % 
Caucasians carrying the minor allele but only 4–5 % of the Asian population. These 
variations in binding affi nity were observed for all second-generation TSPO ligands 
to varying degrees and necessitate identifi cation of binding class prior to imaging 
using either genotyping or thrombocyte binding assays.  

    Imaging the TSPO-Receptor System Using PET 

 Measuring receptor concentrations in different tissues quantitatively and non- 
invasively has always been the domain of nuclear medicine methods like positron 
emissions tomography (PET) and—to a lesser extent—that of single photon emis-
sion tomography (SPECT). In PET, very small concentrations (traces) of a receptor 
ligand labelled with a positron emitting isotope (radiotracer) are injected into the 
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blood. The temporal and spatial distribution of the radioactivity in the target tissue 
(e.g. brain) is recorded using tomographic principles and three-dimensional images 
of the radioactivity distribution in the tissue are reconstructed allowing the measure-
ment of regional radioactivity concentrations which represent the tissue concentra-
tion of the radiotracer (usually in units of kBq/ccm). 

 The imaging process itself exploits the fact that positrons emitted during beta- 
decay of the isotope label annihilate when encountering their antiparticles the elec-
trons. During this annihilation event, a pair of gamma photons is emitted with both 
photons travelling in opposite directions under a 180° angle. A coincidence detector 
pair records this event only if both detectors register the photons at the same time. 
In modern PET scanners, thousands of such detectors are aligned in detector rings 
around the scanner aperture and each detector is connected to several detectors in 
the opposite side of the ring and the neighbouring rings in a fan-like geometry. All 
parallel detector lines thus record a profi le of the radioactivity distribution within a 
transaxial section of the scanned object. Using fi ltered back-projection algorithms 
or iterative methods, a three-dimensional image of the radioactivity distribution in 
the scanned object can be reconstructed. 

 From the activity concentration in a certain brain region, quantitative informa-
tion about the receptor occupancy can be derived by relating tissue activity con-
centrations of the ligand to its plasma concentration in steady state [ 27 ]. Such 
quantitative models to assess the specifi c binding of e.g. [ 11 C]-PK11195 to TSPO 
require repeated arterial blood sampling for the time of the scan to generate a time–
activity curve of the radioligand concentration in the plasma. This plasma 
time–activity curve describes the delivery of the radiotracer to the brain tissue and 
is thus also called “input function,” while the tissue radioactivity concentration mea-
sured with the PET camera comprises the concentration of unbound (free) radio-
tracer, radiotracer bound to the TSPO (specifi c binding) and radiotracer that binds to 
other non-receptor carrying cells or cell structures (unspecifi c binding) [ 28 ]. 

 Applying a model to these data allows recovering the specifi cally bound radio-
tracer concentration from the input function and the measured tissue activity con-
centration. Since the requirement for arterial blood sampling limits a broader 
applicability of the method, analytic models have been developed which estimate 
the combined free and unspecifi cally bound radiotracer concentrations from brain 
regions where no specifi c binding is supposed to occur (so-called reference region) 
[ 29 ]. This method, however, poses problems to TSPO ligands with high unspecifi c 
binding (like [ 11 C]-PK11195) or in case of non-focal spread out infl ammatory 
pathology (such as experimental encephalitis), where a region devoid of specifi c 
binding might be diffi cult to defi ne. In case of unilateral focal pathologies (like 
stroke) where only receptor binding in a defi ned target region is of interest, refer-
ence tissue methods may still be applicable (e.g. identical mirror region in the con-
tralateral hemisphere) depending on the research question [ 30 ]. In such cases, the 
sensitivity limit to detected increased TSPO binding is given by the physiological 
TSPO binding in unaffected normal tissue.  
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    Imaging Neuroinfl ammation in Stroke 

 Next to tissue necrosis which constitutes the hallmark of acute focal ischaemic brain 
injury, neuroinfl ammation is the typical tissue reaction in the late acute and through-
out the sub-acute phase and has been one of the fi rst and most widely studied 
 neuroinfl ammatory processes using TSPO-based imaging methods [ 31 ]. 
Autoradiography [ 3 H]-PK11195 was fi rst used to study the temporal dynamic of the 
neuroinfl ammatory response to ischaemia. Ligand binding fi rst occurred in the bor-
derzone of the infarct where microglia and macrophages invaded the necrotic 
regions from neighbouring blood vessels, with peak activity about 4–8 days post- 
ischaemia [ 32 ]. The intensity of the infl ammatory reaction was found to be related 
to the duration of the ischaemia. Comparing studies of transient and permanent 
middle cerebral artery occlusion (MCAO), the evolution of microglia activation was 
found to follow the development of the ischaemic lesions. In transient MCAO, 
microglia activation starts in the ischaemic core. If ischaemia becomes permanent, 
the infl ammatory processes spread into the non-ischaemic borderzone but leaving 
the necrotic core devoid of infl ammatory cells [ 33 ,  34 ]. 

 The development of Micro-PET cameras facilitated this kind of experiments. In 
contrast to autoradiography, PET allowed to perform true longitudinal studies in the 
same animal as well as the non-invasive assessment of related parameters like CBF 
or CMRGlu in close temporal proximity. Transient MCAO induced ischaemia for 
2 h causes a signifi cant increase in TSPO binding for 21 days with a peak around 11 
days post-ischaemia [ 35 ]. Multitracer studies, using [ 18 F]-fl uor-desoxyglucose in 
conjunction with [ 11 C]-PK11195 also demonstrate an increased metabolic demand 
in the infl ammatory borderzone [ 4 ]. This increased demand in an already undersup-
plied infarct borderzone, may actually proof detrimental to surviving neurons and 
cause secondary infarct growth beyond the originally ischaemic region thus giving 
a rational to anti-infl ammatory treatment strategies. 

 While this centrifugal spread of highly increased TSPO binding within the fi rst 
days after ischaemia could clearly be attributed to microglia activity, a centripetal 
migration of TSPO expressing astrocytes was observed later in the course of the 
disease consistent with the formation of a peri-infarct scar. TSPO binding during 
this period however was considerably lower than in the early phase, dominated by 
microglia activity [ 11 ]. 

 The temporal dynamics of a spreading neuroinfl ammatory response observed in 
animal models of focal ischaemia also seems to apply to some extent to human 
ischaemic stroke [ 36 ]. Activated microglia can be found in the infarct core as early 
as 24–48 h post-ischaemia and spreads into the borderzone over the following 20 
days [ 37 ]. Microglia cells in the area of the infarct have in common that they mostly 
express the major histocompatibility complex antigen type 1 (MHC1) and seem to 
act as phagocytes in removing debris from the site of the infarct. Additional microg-
lia activity has been observed in human ischaemia also in regions remote from the 
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infarct which share common fi bre tract connections with the ischaemic area. 
Activated microglia has been reported in the ipsilateral thalamus following isch-
aemia of the somatosensory cortex, or along the pyramidal tract down to the spinal 
cord in primary motor cortex ischaemia. These remote microglia cells differ from 
their counterparts surrounding the infarct in that they mainly express MHC2 anti-
gens [ 38 ,  39 ]. 

 The advent of diffusion tensor imaging (DTI), an MRI method to measure water 
diffusion, has played an important role in clarifying the differential roles of local 
and remote microglia. This MRI technique, based on the restricted diffusion of 
water molecules along fi bre bundles, allows the exact delineation of fi bre tracts in 
an individual brain and thus the measurement of microglia activity along defi ned 
tract portions. In addition, altered diffusion properties of fi bre tracts are surrogate 
markers of direct or indirect tract damage. Combined DTI and [ 11 C]-PK11195 PET 
imaging studies thus suggest that ischaemic tract damage (e.g. subcortical isch-
aemic infarct at the level of the internal capsule) has an immediate impact on the 
microstructure of the entire tract [ 40 ]. Microglia activity however is only detected 
in the infarct and along the portion of the tract distal to the lesion (Fig.  13.3 ). While 
in most patients infl ammation around the infarct usually subsides over the following 
weeks and months, remote microglia activity can persist (Fig.  13.4 ). Only in patients 
where the infl ammatory activity in the infarct itself persists over several weeks and 
months, a further degeneration of tract portions distal to the infarct was observed 
and those patients tended to have a poorer recovery of motor function [ 41 ]. This 
indicates that persistent infl ammatory activity around the infarct seems to drive 

  Fig. 13.3    Activated microglia in a patient with left subcortical stroke imaged with [ 11 C]-PK11195 
PET. Tracer binding is high in the infarct but extends along the pyramidal tract into the midbrain 
( arrow ). The tract is visualized in the fractional anisotropy image from diffusion tensor MRI ( right ). 
From Thiel and Heiss, Stroke 2011 Feb 1;42(2):507–12       
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anterograde (i.e. Wallerian) degeneration of fi bre tracts while remote microglia 
activity may be associated with a protective or repair function.

    Interestingly, motor rehabilitation after experimental ischaemia in rats does not 
only improve motor function but also appears to reduce peri-infarct microglia activ-
ity compared to control animals not receiving rehabilitation after stroke [ 42 ]. 
Translation of these results to human post-stroke recovery however remains subject 
to further investigations.  

    Imaging Neuroinfl ammation in TBI 

 Despite the wealth of neuroinfl ammation research and especially microglia research 
in TBI, in vivo imaging technologies have not yet been as widely used as in isch-
aemic stroke or neurodegenerative diseases. In contrast to ischaemic stroke, where 
necrotic neuronal death precedes the peak of the infl ammatory reaction, autoradiog-
raphy with [ 3 H]-PK11195 indicated an increase of tracer binding in the ipsilateral 
thalamus between 3 and 14 days after injury. Towards the end of the observation 
period, around 14 days, thalamic neurons died. Again tracer binding was mainly 
caused by microglia and macrophages and to a tenfold lesser degree by astrocytes. 
Similar results were obtained with [ 3 H]-DAA1106 in a controlled cortical impact 
model of TBI where increased tracer binding was observed in the vicinity of the 

  Fig. 13.4    Time course of microglia activation after stroke. In the subacute phase ( left ) tracer 
uptake is seen in the infarct ( yellow arrow ) as well as along the pyramidal tract ( red arrow ). After 
6 months ( right ) infl ammation in the infarct subsides but persists along the pyramidal tract. From 
Thiel and Heiss, Stroke 2011 Feb 1;42(2):507–12       
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injury [ 43 – 45 ]. This neuroinfl ammatory response came along with excitatory neu-
rotransmitter release leading to neuronal apoptosis. 

 The limitations of in vivo microglia imaging discussed above so far prevented a 
more widespread use of the technology in humans. Human TBI, although caused by 
a more or less focal injury, affects the entire brain and can cause a diffuse disruption 
of the blood–brain barrier, especially in the fi rst days following a trauma. This pro-
hibits the use of reference tissue models in the acute and sub-acute phase after 
injury because they tend to overestimate specifi c binding [ 46 ]. However, arterial 
blood sampling, as required for plasma-input function based models, is invasive and 
can often not be completed in acute TBI patients. In the chronic phase, these limita-
tions do not apply but microglia response, even 6 months after TBI appears to be 
relatively widespread [ 47 ] and reference regions devoid of specifi c binding may be 
diffi cult to defi ne.  

    Imaging Neuroinfl ammation in Acute Infl ammatory Diseases 

 CNS infections are the prototype of acute neuroinfl ammatory CNS diseases and 
experimental encephalitis models have been used for developing new imaging 
agents [ 48 ]. In patients, MRI showing typical alterations of signal behaviour in 
T2-weighted and FLAIR imaging sequences is routinely used for the clinical diag-
nosis of HSV or VZV encephalitis. Direct quantifi cation of the cellular response 
with in vivo imaging methods in those cases is more challenging. In patients with 
HSV encephalitis, an increase of microglia activation in limbic brain regions has 
been demonstrated with [ 11 C]-PK1195 PET. Microglia activity persisted for several 
months following the treatment and spread into other brain regions [ 49 ]. Those 
brain regions with initially high microglia activity underwent atrophy later in the 
course of the disease pointing towards a possible neurodegenerative process sparked 
by the infl ammatory reaction. The relatively widespread tracer uptake, indicating a 
more generalized infl ammatory response, may however limit the use of reference 
tissue methods for quantifi cation for similar reasons as discussed above for trau-
matic brain injury.  

    Future Developments: MR Imaging of Neuroinfl ammation 
and New Imaging Targets 

 Since imaging of the TSPO-receptor system for quantifi cation of neuroinfl amma-
tion is subject to certain limitations and requires a thorough understanding of the 
imaging methods, recent work in the fi eld has focused on alternative, TSPO- 
independent surrogate markers of microglia activity. A possible target could be 
Cyclooxygenase 1 (COX1) which is also expressed in activated microglia and mac-
rophages. A recent study using [ 11 C]-Ketoprofen as selective COX1 ligand was able 
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to demonstrate a tracer accumulation 6 h post-intracerebral injection of quinolinic 
acid in a rat model which was associated with accumulation of COX1 expressing 
microglia at the injection site [ 50 ]. 

 Another imaging approach aims at neurohumoral components of the infl amma-
tory cascade. β-glucuronidase is a lysosomal enzyme which is released from 
microglia into extracellular space and hydrolyses glycosaminoglycans on the cell 
surface. It thus participates in the degradation of the extracellular matrix and is 
thought to constitute a biomarker for infl ammation-associated neurodegeneration. 
[ 18 F]-FEAnGA is a prodrug carrying the radioactively labelled [ 18 F]-fl uoroethylamine 
([ 18 F]-FEA) group. [ 18 F]-FEA is cleaved from the molecule by β-glucuronidase and 
because it is less hydrophilic than [ 18 F]-FEAnGA, its clearance from the tissue is 
slower than for its parent compound. Uptake in experimental HSV1 encephalitis has 
been demonstrated which was correlated with the uptake of [ 11 C]-PK11195; how-
ever, uptake of [ 18 F]-FEAnGA over the intact BBB was low because of its relatively 
high hydrophilicity [ 51 ]. 

 MRI has also been considered for in vivo imaging of specifi c neuroinfl ammatory 
processes. Most MR strategies rely on labelling monocytes ex vivo with iron oxide 
particles and then inject those labelled monocytes into the blood. These monocytes 
will eventually circulate and leave the blood stream at the infl ammation site as mac-
rophages. The problem with this ex vivo labelling approach however is that iron 
introduced into monocytes might not necessarily stay there in vivo. If the labelled 
cells die, iron is released and may be taken up by other cells or the labelled cells 
themselves may be subject to phagocytosis. To overcome those problems, ultrasmall 
superparamagnetic iron oxide nanoparticles (USPIO) can be injected directly and 
are taken up by the reticuloendothelial system and circulating cells. USPIO however 
do not cross the BBB and are subject to non-specifi c vascular egress (in case of 
disrupted BBB) or endothelial uptake and may thus give more information about 
infl ammation-related changes of the vasculature rather than the infl ammatory pro-
cess in the tissue. Newer MRI probes with microparticles of iron oxide (MPIO) 
which aim at targeting the vascular (endothelial) component of infl ammation are 
under investigation [ 52 – 54 ], but a reliable MRI marker for cellular components of 
neuroinfl ammation remains to be developed.  

    Conclusion 

 At present TSPO-based imaging of microglia activity with PK11195 or a second- 
generation TSPO ligand is the method of choice for in vivo quantifi cation of neuro-
infl ammatory processes. Selection of the appropriate research question and target 
pathology (focal rather than generalized), knowledge about the specifi cs of the 
radioligand (necessity of genotyping for TSPO polymorphisms) as well as the 
appropriate model for quantifi cation of specifi c tracer binding (reference tissue 
model versus plasma input function) are key to a valid application of these methods 
and proper interpretation of study results.     
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    Abstract     Subarachnoid hemorrhage (SAH) results from the rupture of an intracranial 
aneurysm, and the fi rst consequent events are increased intracranial pressure (ICP), 
reduced cerebral perfusion pressure (CPP), and decreased cerebral blood fl ow 
(CBF). The resultant hypoxic state alters autoregulation, ionic homeostasis, and 
excitotoxicity as well as initiates secondary injuries such as cytotoxic edema, blood-
brain barrier (BBB) disruption, infl ammation, and apoptotic cell death. Infl ammation 
persists through hemorrhage degradation in the subarachnoid space. Several differ-
ent aspects of the infl ammatory response have been demonstrated in stroke patho-
genesis, including cellular response (e.g., leukocyte adherence and microglia 
activation), expression of adhesion molecules (e.g., selectins, integrins, and immu-
noglobulin superfamily), production of infl ammatory mediators (e.g., cytokines, 
nitric oxide/nitric oxide synthase (NO/NOS), and free radicals), and accumulation 
of platelet aggregates. Since all of these infl ammatory aspects lead to brain edema 
and cell death, infl ammation could be a particularly important target for designing 
therapeutic strategies against secondary injuries after SAH. Given these infl amma-
tory contributions could be seen in large vessels, a plethora of research has been 
intended to reduce cerebral vasospasm (CVS) after SAH. The main research fi eld, 
however, is moving toward studying early brain injury (EBI) because some human 
research demonstrated the morphological alleviation of CVS alone might not 
improve the functional recovery in patients after SAH. This chapter provides the 
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current knowledge of the infl ammatory response, translational research, and human 
clinical trials in SAH as well as discusses emerging opportunities for novel thera-
peutic strategies for clinical management of SAH.  

        Introduction 

 Numerous studies have recently accumulated supporting the role of the innate and 
adaptive immune mechanisms in acute brain injuries, such as neurotrauma [ 1 ,  2 ], 
ischemic stroke [ 3 – 6 ], and hemorrhagic stroke [ 5 ,  7 – 9 ]. Different infl ammatory 
mechanisms are involved in post-stroke pathogenesis, including cellular responses 
(e.g., leukocyte adherence, microglia/macrophage activation, and astrocyte activa-
tion), adhesion molecule expression (e.g., selectins, integrins, and immunoglobulin 
superfamily), pro-infl ammatory mediator production (e.g., cytokines, chemokines, 
nitric oxide/nitric oxide synthase, and free radicals), and platelet aggregate accumu-
lation. Since these responses lead to brain edema and cell death, infl ammation could 
be a particularly important target for designing therapeutic strategies against sec-
ondary injuries. 

 Stroke has enormous clinical, social, and economic implications, and it demands 
a signifi cant effort from both the basic and clinical sciences in searching for suc-
cessful therapies. Subarachnoid hemorrhage (SAH) is a common and frequently 
devastating condition, accounting for 5 % of stroke subtypes [ 10 ]. Each year, 
approximately 1 in 10,000 North Americans suffer from aneurysmal SAH with a 
greater than 50 % combined morbidity and mortality rate [ 11 ]. Despite advances in 
diagnosis and surgical treatment of SAH, effective therapeutic interventions are still 
limited and clinical outcomes remain disappointingly unimproved. Increasing evi-
dence suggests infl ammatory mechanisms are some of the pivotal pathological 
events during both delayed cerebral vasospasm and acute brain injury after SAH 
although the infl ammatory response is an important pathophysiologic processes 
after stroke [ 12 ]. This chapter provides a thorough review of the current knowledge 
in the infl ammatory response, translational research, and human clinical trials in 
SAH as well as discusses the emerging opportunities for novel therapeutic strategies 
in clinical management of SAH.  

    The Pathological Mechanism in SAH 

    Cerebral Vasospasm and Early Brain Injury after SAH 

 Cerebral vasospasm (CVS) after SAH usually occurs on day 3, peaks between 
days 6–8, and lasts for 2–3 weeks in SAH patients [ 13 ]. Delayed cerebral ischemia 
is thought to be induced by CVS because radiologically confi rmed vasospasm is 
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strongly associated with delayed ischemic neurological defi cits (DIND) [ 14 – 16 ]. 
Hence, CVS is widely assumed to be a major cause of the high mortality and poor 
outcomes after an otherwise successful treatment of a ruptured intracranial aneu-
rysm [ 17 ]. On the other hand, the recently coined term early brain injury (EBI) is 
defi ned as the period that spans from the moment of initial bleeding to the onset of 
CVS. EBI describes the immediate injury to the brain after aneurysmal SAH as a 
whole [ 18 ]. Although clazosentan, a selective endothelin receptor type A antago-
nist, decreased angiographic vasospasm in SAH patients, mortality and clinical out-
comes were not improved in the CONSCIOUS-1 trial (clazosentan to overcome 
neurological ischemia and infarction occurring after SAH) [ 19 ]. The CONSCIOUS-1 
trial failure indicated the multifactorial pathophysiology underlying CVS and other 
pathophysiological factors, independent of angiographic vasospasm, contributes to 
clinical outcomes [ 20 ]. Additionally, pathological mechanisms, which are activated 
within minutes after SAH and lead to EBI, play an important role in CVS develop-
ment. For instance, vascular injury from acute ischemia, infl ammation, and blood 
products may result in damage of NO-releasing neurons [ 21 ]. Therefore, recent 
intensive research efforts aimed to reveal mechanisms of EBI.  

    Acute Physiological Events after SAH 

 EBI was reported as a primary cause of mortality in SAH patients [ 22 ], and many 
important pathological mechanisms are initiated within minutes after aneurysmal 
SAH [ 23 ,  24 ]. The most immediate event following an intracranial aneurysm rup-
ture is an arrest in intracranial circulation caused by a peak of intracranial pressure 
(ICP), which rises as high as mean arterial blood pressure within 1 min of ictus. The 
ICP then falls over several minutes to a much lower baseline but remains higher 
than normal [ 25 ]. The temporary intracranial circulatory arrest promotes hemostasis 
and contributes to severe global ischemic injury, resulting in loss of autoregulation, 
reduction in cerebral perfusion pressure (CPP), secondary raised ICP, and decreased 
cerebral blood fl ow (CBF) [ 23 ,  24 ,  26 ]. This hypoxic state culminates in energy 
failure in neurons and glia and initiates a cascade of events leading to cytotoxic 
edema [ 23 ,  24 ]. Ischemia also results in apoptosis of cells constituting the blood-
brain barrier (BBB) [ 27 ]. Death of endothelial cells and perivascular astrocytes 
causes increased diffusion of serum from the vascular lumen into cerebral tissue 
(vasogenic edema). These secondary injuries also cause infl ammatory responses 
mentioned below. 

 Therefore, factors stemming from the initial bleeding in SAH include: raised 
ICP, decreased CBF and CPP, BBB disruption, brain swelling, brain edema, infl am-
mation, and dysfunction of autoregulation. All factors result in cell death and dys-
function following SAH [ 23 ,  24 ,  28 ] (Fig.  14.1 ).
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        The Infl ammatory Response in SAH 

    The Main Cellular Participants 

 Blood-derived leukocytes, macrophages, and resident microglia are activated and 
accumulate in the brain after hemorrhagic stroke [ 9 ]. All leukocytes respond to 
activation signals by altering the composition, expression, and/or functional activity 
of their traffi cking molecules [ 29 ]. Neutrophils are the most abundant blood-borne 
leukocytes, and they infi ltrate the brain as early as 10 min after SAH [ 30 ]. Neutrophils 
express abundant adhesion molecules for rapid binding to infl ammation-induced 
counter-receptors on activated endothelial cells, and their chemoattractant receptors 
sense the release of tissue “distress signals” and pathogen-derived or pathogen- 
induced molecules. Neutrophils, in particular, mediate secondary tissue damage by 
releasing cytotoxic mediators. Neutrophil infi ltration persists for 3 days after SAH, 
implicating neutrophil infi ltration as a factor leading to delayed CVS development 
[ 31 ,  32 ]. Monocytes, which express a broad range of adhesion molecules and che-
moattractant receptors, are long lived and differentiate into tissue-resident macro-
phages or dendritic cells [ 29 ]. Microglias are resident macrophages of the brain and 
constitute approximately 12 % of the cells in the central nerve system (CNS). 
Microglial activation via CD14 induces release of a variety of substances, many of 
which are cytotoxic and/or cytoprotective [ 33 ,  34 ]. Microglias also induce heme 
oxygenase-1 (HO-1) expression, which metabolizes heme. Heme contributes to 
vasospasm and increased oxidative stress after SAH [ 35 ]. Dendritic cells are abun-
dant in lymphoid and certain nonlymphonoid tissues, and they are the quintessential 
antigen-presenting cells [ 36 ]. Mast cells have immunomodulatory properties. They 
are activated by neuropeptides and cytokines, and they release pro-infl ammatory 
mediators with or without degranulation [ 37 ], which enhance venular permeability 
and leukocyte recruitment [ 29 ]. Although the role of lymphocytes in SAH is largely 
unknown, autoreactive and antigen-dependent regulatory T-cell activation may sup-
press the release of pro-infl ammatory cytokines and microglial activation, prevent-
ing secondary infarct growth in acute cerebral ischemia as a result [ 38 ].  

Rupture of an aneurysm

ICP↑, CPP↓, CBF↓
(Global ischemia)

Inflammatory response
(microglial activation, leukocyte infiltration)

Cell death

Cytotoxic edema, BBB disruption

  Fig. 14.1    The infl ammation 
plays a crucial role in the 
pathophysiology of cerebral 
injury following 
subarachnoid hemorrhage. 
 ICP  intracranial pressure, 
 CPP  cerebral perfusion 
pressure,  CBF  cerebral blood 
fl ow,  BBB  blood–brain barrier       
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    Cell Adhesion Molecules at the Infl amed Sites 

 Cell adhesion molecules are grouped into selectin, integrin, or immunoglobulin 
superfamily members. Selectins are type I transmembrane glycoproteins that bind 
to sialylated carbohydrate structures in a calcium-dependent manner [ 39 ]. The 
selectins, E-selectin (CD62E), P-selectin (CD62P), and  L -selectin (CD62L), are 
involved in the tethering and rolling of leukocytes at infl amed sites on the vessel 
lumen in microcirculation, and this process is a prerequisite for fi rm adhesion and 
subsequent transendothelial migration of leukocytes into tissues [ 40 ]. With few 
exceptions, P- and E-selectin expressions are inducible in endothelial beds and are 
important determinants for leukocyte recruitment [ 41 ].  L -selectin, expressed on cir-
culating leukocytes, can also bind to leukocyte ligands, particularly P-selectin gly-
coprotein ligand 1 (PSGL-1), and this interaction enhances capturing of leukocytes 
by intravascular adherent leukocytes [ 42 ]. 

 Integrins are transmembrane adhesion receptors that mediate cell-cell and cell-
extracellular matrix adhesion as well as induce bidirectional signaling across the 
cell membrane to regulate cell proliferation, activation, migration, and homeostasis 
[ 43 ]. Each integrin contains one α subunit and one β subunit. The integrins include 
lymphocyte function-associated antigen-1 (LFA-1; α L β 2 ; or CD11a/CD18), 
expressed on lymphocytes, granulocytes, and monocytes [ 44 ], and Macrophage 
antigen-1 (Mac-1; α M β 2 ; CR3; CD11b/CD18), expressed on granulocytes, mono-
cytes, and, with the highest expression levels, neutrophils [ 45 ]. A humanized mono-
clonal antibody (mAb), Hu23F2G, targeting CD11/CD18 prevents vasospasm by 
inhibiting leukocyte adhesion to endothelial cells in the rabbit model of SAH [ 46 ]. 
Since integrins mediate both leukocyte crossing of the basement membrane under-
lying blood vessels and interstitial migration into the extracellular matrix (ECM), 
they play an important role in adhesion strengthening and diapedesis across the 
vessel wall. The immunoglobulin superfamily, such as intercellular cell adhesion 
molecules (ICAMs) and vascular cell adhesion molecule 1 (VCAM-1), is expressed 
on endothelial cells. LFA-1 and Mac-1 expressed on circulating leukocytes bind to 
ICAM-1 and cause transmigration of leukocytes and macrophages across the endo-
thelium into the periadventitial space [ 47 ]. A known ligand for LFA-1, ICAM-1 
appears to be involved in acute infl ammation and is expressed on normal cerebral 
vessel endothelium in both humans and rodents. ICAM-1 has been implicated in 
vasospasm; experimental studies determined ICAM-1 is upregulated in the cerebral 
vasculature after SAH [ 48 ] and in blood-exposed vessels that subsequently develop 
chronic vasospasm [ 49 – 51 ]. Human clinical studies indicated elevated levels of 
soluble ICAM-1 in patients after aneurysmal SAH [ 52 ,  53 ]. 

 Chemoattractants provide directional cues for the movement of leukocytes in 
development, homeostasis, and infl ammation. Their molecular diversity, selective 
action on distinct leukocyte subsets, and restricted temporal and spatial expression 
patterns provide a key mechanism for “fi ne-tuning” cellular immune responses [ 29 ]. 
Cytokines are a diverse group of soluble short acting proteins, glycoproteins, and 
peptides produced by various immune cells and vascular cells. Cytokines act in 

14 Infl ammation as a Therapeutic Target after Subarachnoid Hemorrhage…



254

picomolar to nanomolar concentrations to activate specifi c receptors and modulate 
the functions of many cells and tissues [ 54 ]. Generally, cytokines can be classifi ed 
into the following categories: (1) tumor necrosis factors (TNFs), (2) interleukins 
(ILs; cytokines made by one leukocyte and acting on other leukocytes), (3) lympho-
kines, (4) monokines, (5) interferons (IFNs; include IFN-α, -β, -γ), (6) colony- 
stimulating factors (CSFs), (7) transforming growth factors (TGFs), (8) chemokines 
[thought to be involved in chemotaxis and divided into four subfamilies (XC, CC, 
CXC, and CX3C)], and (9) other proteins. Chemokines comprise macrophage 
infl ammatory protein (MIP)-1α (CCL3), MIP-1β (CCL4), RANTES (regulated on 
activation, normal T-expressed and secreted, CCL5), and monocyte chemoattractant 
proteins (MCP)-1 (CCL2) [ 54 ]. In an experimental SAH model, increased expres-
sion levels of IL-8 and MCP-1 in the basilar artery (BA) were associated with CVS 
development [ 33 ,  34 ,  55 ]. SAH induces transcription of infl ammatory genes, such 
as IL-6, TNFα, IL-1β, CXCL1, CXCL2, and CCL20 [ 56 ], and increases mRNA 
expression of IL-1α, IL-6, IL-8, and ICAM-1 in the BA [ 57 ].  

    Multistep Leukocyte Recruitment 

 The temporary intracranial circulatory arrest resulting from increased ICP promotes 
hemostasis from the ruptured aneurysm, which contributes to severe global isch-
emic injury and leads to EBI. Infl ammation is characterized by the accumulation of 
infl ammatory cells, such as blood-derived leukocytes and microglia that secrete 
cytokines. Leukocyte extravasation and transmigration from the blood into the tis-
sues is a regulated multistep process involving a series of coordinated interactions 
between leukocytes and endothelial cells [ 29 ,  58 ]. 

 After an aneurysm rupture, global ischemia and subarachnoid blood induce the 
infl ammatory response. Infl ammation causes the release of cytokines and infl amma-
tory chemoattractants by resident tissue cells, resident and recruited leukocytes, and 
cytokine-activated endothelial cells. These signals upregulate expression of endo-
thelial selectins and immunoglobulin superfamily members (e.g., ICAM-1 and/or 
VCAM-1). Chemokine signaling activates leukocyte integrins, such as LFA-1 and 
Mac-1. After initial tethering, leukocytes roll along the vascular wall with greatly 
reduced velocity, leading to adhesion and eventual arrest of movement. Subsequently, 
leukocytes polarize and move by diapedesis across the venular wall. The recruited 
leukocytes are activated by local pro-infl ammatory cytokines and may become 
desensitized to further chemokine signaling because of high local chemokine con-
centrations. These infl ammatory signals also induce maturation of tissue-resident 
dendritic cells. In lymph nodes, antigen-loaded mature dendritic cells activate naïve 
T-cells and expand pools of effector lymphocytes, which enter the blood and migrate 
back to the infl amed site. Enhanced phagocytosis, cell death, and subsequent 
degranulation cause these infl ammatory cells to release endothelins [ 59 – 61 ] and 
infl ammatory mediators [ 31 ,  57 ,  61 ], which cause delayed CVS. Leukocytes also 
die within a few days, releasing endothelins and oxygen free radicals that inactivate 
nitric oxide, resulting in CVS in 4–14 after SAH [ 49 ].  
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    Nitric Oxide/Nitric Oxide Synthase Pathway 

 The nitric oxide (NO)/nitric oxide synthase (NOS) pathway plays a major role in 
regulating cerebral hemodynamics. After SAH, the subarachnoid clot is lysed into 
erythrocyte breakdown products, such as hemoglobin and bilirubin. A time- 
dependent alteration in the NO/NOS pathway occurs after a hemorrhagic event. 
Hemoglobin, which has a high affi nity for NO [ 62 ], scavenges free NO [ 63 ] and 
disrupts many components of NO-mediated vasodilation. Pluta explained the puta-
tive involvement of NO in delayed vasospasm development [ 21 ]. First, oxyhemo-
globin (oxyHb) destroys NO-releasing neurons, leading to diminished availability 
of NO in the vessel wall and consequent constriction of the vessels. Next, increased 
shear stress, evoked by the narrowing of the arterial lumen, stimulates endothelial 
nitric oxide synthase (eNOS). Further metabolism of hemoglobin to bilirubin- 
oxidized fragments (BOXes) increases asymmetric dimethylarginine, an endoge-
nous inhibitor of eNOS, in the arterial vicinity, further decreasing NO availability 
and sustaining vasospasm. Finally, when elimination of BOXes commences, 
increased NO production by eNOS leads to the recovery of endothelium dilatory 
activity [ 21 ]. NO, in the form of peroxynitrite (powerful oxidant), also attacks cell 
membranes, which damage mitochondria, vascular endothelium, and smooth mus-
cle cells [ 64 ], resulting in cell death [ 65 ]. 

 Endogenous NO is generated from the precursor amino acid  l -arginine, NADPH, 
and oxygen by a family of three distinct isoforms of NOS [ 66 ]. The Ca 2+ -dependent 
eNOS and neuronal NOS (nNOS) produce small quantities of NO, while inducible 
NOS (iNOS), which is expressed by leukocytes and vascular smooth muscle cells in 
response to infl ammatory stimuli and cytokines, generates large amounts of NO in 
a Ca-independent manner [ 54 ,  67 ]. Previous studies in ischemic brain injury models 
showed n- and iNOS isozymes are detrimental due to NO-induced neurotoxicity, 
while eNOS activity is protective because of vasodilatory effects, at least in the 
early stages of ischemia [ 68 – 70 ]. Although iNOS inhibition did not ameliorate 
brain edema and neuronal cell death 24 h after SAH in rats [ 71 ], eNOS upregulation 
was benefi cial to the brain after SAH [ 72 ,  73 ]. Recently, monomer formation 
(uncoupling) of eNOS expression is reportedly increased after SAH, which results 
in decreased NO levels and superoxide anion radical production [ 74 ,  75 ].  

    Free Radical and Oxidative Stress 

 The brain becomes exposed to hemoglobin and erythrocyte lysis after SAH 
because of the extravasated blood in the subarachnoid space. Clot-derived hemo-
globin liberates oxyHb, which generates superoxide anions (O 2  −• ) upon its conver-
sion to  methemoglobin (metHb) [ 76 ]. Superoxide anions react with NO to form a 
very powerful oxidant, peroxynitrite (ONOO − ) [ 77 ]. Peroxynitrite is a major 
mediator of nitric oxide (NO • ) toxicity and breaks down into hydroxyl radicals 
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(OH • ) [ 78 ]. As oxyHb undergoes auto-oxidation to metHb, O 2  −  is also produced, 
followed by dismutation into hydrogen peroxide (H 2 O 2 ) [ 79 ]. OxyHb reduces Fe 3+  
to Fe 2+ , catalyzing the formation of OH •  from H 2 O 2 , which is called the superoxide-
driven Fenton reaction [ 80 ,  81 ]. Enhanced production of O 2  −•  started at day 2 after 
SAH in a double hemorrhage dog model [ 82 ]. After brain injury, these reactive 
oxygen species (ROS) are also released by neutrophils, vascular endothelium, and 
activated microglia/macrophages [ 83 ,  84 ]. Accordingly, ROS damage endothelial 
cells, vascular smooth muscle cells, astrocytes, and neurons through lipid peroxi-
dation promotion, protein breakdown, DNA damage, and hemoglobin auto-oxida-
tion. Additionally, ROS induce oxidative stress that contributes to ischemic injuries 
[ 23 ,  24 ,  85 ]. These events lead to neuronal apoptosis, BBB breakdown, and CVS 
after SAH. 

 There are several protective enzymatic systems against free radical production. 
Superoxide dismutases (SODs), glutathione peroxidases, and catalases are signifi cant 
enzymatic scavengers in brain tissue [ 86 ]. These enzymatic activities, however, are 
downregulated 6–48 h after SAH in rats, which is associated with increased enzy-
matic lipid peroxidation via the lipoxygenase pathway [ 87 ]. NADPH oxidase 
expression, an enzymatic source of O 2  −•  production, increased 24 h after SAH in rats 
[ 23 ,  24 ]. Additionally, mutant mice defi cient in Mn-SOD dismutase had more abun-
dant cytosolic cytochrome  c  and increased cell death within 24 h after subarachnoid 
hemolysate injection when compared to wild-type mice [ 88 ].  

    Intraluminal Platelet Aggregates 

 Platelet granules contain many infl ammatory and adhesion molecules that are 
either released or expressed upon activation [ 89 ]. After SAH, a variety of patho-
physiological stimuli trigger endothelial reorganization, expression of different 
prothrombotic factors, and activation of platelets and leukocytes that lead to blood 
cell adhesion to the endothelial monolayer, aggregation as thrombi, and formation 
of numerous spasmogenic substances [ 90 ]. Platelet aggregates are broadly abun-
dant in the microvasculature within 10 min after SAH in animals, leading to 
mechanical obstruction [ 91 ]. Intraluminal platelet aggregates also cause biochemi-
cal constriction via release of platelet-derived serotonin, adenosine diphosphate 
(ADP), and platelet-derived growth factor (PDGF), leading to decreased cerebral 
blood fl ow and ischemic injury promotion [ 92 – 94 ]. Hence, platelet aggregates 
contribute to endothelial cell antigen loss, vascular matrix metalloproteinase 
(MMP)-9 activation, and collagen IV (the major vascular basal lamina protein) 
degradation after SAH in rats [ 91 ,  95 ,  96 ], leading to increased vascular permeability 
and access to the brain parenchyma [ 92 ,  93 ]. Thus, platelets activate additional 
infl ammatory mechanisms in the parenchyma that further aggravate brain injury 
after SAH [ 28 ].  
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    MMP Increase and BBB Disruption 

 MMPs are zinc-dependent endopeptidases that are secreted in response to both 
exogenous insults and infl ammatory cytokines, such as TNF-α and IL-1β, and 
degrade many components of the extracellular matrix. MMPs are normally found in 
the cytosol in a pro- or inactivated state, and they are activated when cleaved by 
proteases, such as plasmin or other MMPs [ 97 ]. Active MMP expression disrupts 
the BBB by degrading junctional complex proteins [ 98 ]. Thus, MMPs increase cap-
illary permeability. Immunostaining determined collagen IV decreases and MMP-9 
increases at 3 h after SAH in rats [ 95 ]. 

 Endothelin (ET) is a potent, long-lasting, endogenous vasoconstrictor and is 
implicated in vasospasm pathogenesis [ 99 ,  100 ]. ET-1 is also a pro-infl ammatory 
factor [ 101 ]. ET-1 directly activates neutrophils and endothelial cells, stimulates 
MCP-1 production, and increases soluble ICAM-1 synthesis [ 102 ]. ET-1 also opens 
the BBB by inducing cyclooxygenase (COX-2) expression [ 103 ]. High levels of 
free radicals also damage the brain endothelium and affect BBB permeability [ 104 , 
 105 ]. BBB disruption, increased cytokine expression, and subsequent endothelial 
and neutrophil adhesion molecule upregulation lead to leukocyte transmigration 
across the endothelium and BBB [ 106 ,  107 ]. Activated leukocytes enhance BBB 
permeability by expressing and secreting infl ammatory cytokines, soluble factors, 
ROS, and MMPs. Hence, BBB dysfunction amplifi es infl ammation, leading to fur-
ther parenchymal damage and increased brain edema that contribute to ischemic 
secondary injuries after SAH [ 23 ,  24 ].   

    Translational Trials in Experimental SAH and Clinical Trials 

 Infl ammation causes tissue injury by diverse mechanisms (noted above) and has 
detrimental effects on cerebral vessels and brain parenchymal cells after SAH. 
Since delayed CVS alone is considered the most important cause of DIND and poor 
outcomes, the aim of basic and clinical research on SAH focused on fi nding strate-
gies to prevent cerebral vasospasm. Major interventions generated involve leuko-
cyte traffi cking inhibition, vessel contraction prevention, oxidative stress reduction 
by antioxidants (free radical scavengers), NO/NOS pathway intervention, and anti-
platelet agent administration in experimental SAH. Clinical studies in human SAH 
patients produced some promising drugs that showed vasospasm attenuation after 
SAH. Here, we focus on clinical human trials with the use of anti-infl ammatory 
drugs, the putative effects of which are based on translational animal trials in experi-
mental SAH. 
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    Inhibition of Leukocyte Traffi cking 

 Since the magnitude and character of the infl ammatory process are determined in 
part by leukocyte traffi cking into injured and infected sites, leukocyte traffi cking 
prevention may be a promising anti-infl ammatory treatment. Patients with poorer 
outcomes have higher soluble ICAM-1 levels than patients with better outcomes 
over the fi rst 2 weeks after SAH [ 52 ]. Intrathecal anti-ICAM-1 antibody delivery 
decreased CVS in rabbit BA [ 108 ]. Blockage of endothelial ICAM-1 receptors 
with anti-ICAM-1 monoclonal antibody (mAb) inhibited delayed CVS, which 
correlated with reduced periadventitial infi ltrated macrophages and granulocytes 
in rats [ 47 ,  50 ]. Systemic administration of anti-LFA-1 mAb prevented vasospasm 
and reduced periadventitial leukocytes in a rat femoral artery model [ 47 ]. 
Therefore, inhibition of leukocyte infi ltration into the periadventitial space ame-
liorates CVS after SAH. Administration of an E-selectin mAb or blockage of 
neutrophil/macrophage adhesion molecule CD11/CD18 decreased vasospasm 
severity after SAH by inhibiting neutrophil and macrophage adhesion and migra-
tion into the periadventitial space [ 46 ,  109 ,  110 ]. Ly6G/C is a surface marker 
found on cells of myeloid lineage. Recently, Provencio et al. reported administra-
tion of myeloid cell-depleting mAb against Ly6G/C ameliorated angiographic 
vasospasm and normalized neurological behavior in a murine SAH model, sug-
gesting myeloid cells are involved in delayed CVS development [ 111 ]. Wang et al 
demonstrated blockage of CD34, a key adhesion molecule responsible for mono-
cyte/macrophage recruitment and leukocyte attachment to endothelial cells, by a 
CD34 monoclonal antibody attenuated vasospasm in BA after SAH in rats [ 112 ]. 
Recently, Wu et al. found inhibition of Toll- like receptor 4 by peroxisome prolif-
erator-activated receptor (PPAR) gamma agonist, rosiglitazone, ameliorated CVS 
by suppressing SAH-induced ICAM-1 and myeloperoxidase (MPO) activation in 
BA after SAH [ 113 ]. 

 Statins are inhibitors of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reduc-
tase, which possesses pleiotropic activity, including anti-infl ammatory properties 
beyond lipid-lowering. Lovastatin reportedly inhibits CD11b expression and 
CD11b-dependent monocyte adhesion to the endothelium [ 114 ]. Lovastatin also 
blocks LFA-1 and ICAM-1 interaction by binding to the highly conserved LFA-1 
I-domain [ 115 ]. McGirt et al demonstrated subcutaneous simvastatin administration 
ameliorated CVS in BA by attenuating perivascular granulocyte migration after 
experimental SAH in rabbits [ 116 ]. Ibuprofen is also an anti-infl ammatory agent 
that inhibits expression of certain cell adhesion molecules and, therefore, disrupts 
leukocyte–endothelial cell interactions. In experimental animal models, ibuprofen 
application within 6 h of adventitia inhibited vasospasm in femoral arteries after 
blood exposure by, possibly, decreasing the number of macrophages and granulo-
cytes in the periadventitial space [ 117 ].  
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    Prevention of Vessel Contraction 

 One treatment modality for CVS is aimed to improve cerebral blood fl ow by dilating 
affected vessels. One potent vasoconstrictor related to infl ammation is ET-1 as previ-
ously described above. ET-A receptors are found on smooth muscle cells and medi-
ate vasoconstriction. Many experiments showed endothelin receptor antagonists 
ameliorated CVS [ 118 – 132 ]. Roux et al. reported clazosentan, a selective endothelin 
receptor type A antagonist, effectively decreased CVS after experimental SAH 
[ 125 ]. Endothelin converting enzyme inhibitors also ameliorated CVS [ 133 – 137 ]. 

 To date, clinical studies were conducted to ascertain if ET-1 inhibition amelio-
rates CVS and improves outcomes after SAH. Macdonald et al. demonstrated SAH 
patients treated with clazosentan had a 65 % reduced relative risk in angiographic 
vasospasm. However, mortality and clinical outcomes were not improved in this 
randomized, double-blind, placebo-controlled phase II trial named CONSCIOUS-1 
(clazosentan to overcome neurological ischemia and infarction occurring after 
SAH) [ 19 ]. CONSCIOUS-2 trial, a randomized, double-blind, placebo-controlled, 
phase III study, demonstrated clazosentan administration at 5 mg/h had no signifi -
cant effects on mortality, vasospasm-related morbidity, and functional outcomes 
[ 138 ]. One possible reason for the negative results is successful CVS amelioration 
is not enough to attenuate poor outcomes in SAH patient. These observations indi-
cate the pathophysiology underlying delayed cerebral ischemia is multifactorial and 
other pathophysiological factors contribute to poor outcomes that are independent 
of angiographic vasospasm [ 20 ]. Additionally, pathological mechanisms activated 
within minutes after SAH and lead to EBI may play an important role in delayed 
ischemic stroke pathogenesis and poor outcome [ 26 ].  

    Reduction of Oxidative Stress by antioxidants 

 Macdonald et al. showed intrathecal SOD (a potent endogenous antioxidant) and 
catalase administration failed to attenuate MCA vasospasm in the oxyHb-induced 
vasospasm model that simulates erythrocyte lysis after SAH without any difference 
in malondialdehyde (MDA), which indicates lipid peroxidation [ 139 ]. However, 
Shishido et al. demonstrated intracisternal Cu–Zn SOD administration did not 
reduce BA diameter between 2 and 11 days after SAH in the rabbit intracisternal 
blood injection model [ 140 ]. They observed endothelial injuries in the SAH group 
were minimized with SOD treatment in the BA. Mori et al. demonstrated Cu–Zn 
SOD reduced talc-induced contraction of the BA in a beagle dog model. Pathological 
changes seen in talc injection group, such as myonecrosis, cytoplasmic vacuolations, 
and detached intercellular junctions, were almost abolished in the Cu–Zn SOD treat-
ment group [ 141 ]. Kamii et al. showed Cu–Zn SOD overexpressing transgenic mice 
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had signifi cant amelioration of SAH-induced decrease in MCA diameter at day 3 in 
the endovascular perforation of the left anterior cerebral artery (ACA) model [ 142 ]. 
N-acetylcysteine, an antioxidant, administration inhibited vasospasm development 
after SAH in rabbits at day 5 and increased SOD enzymatic activity levels [ 143 ]. 
Moreover, curcumin-treated SAH rats had less mortality and BA contraction as well 
as higher neurological scores when compared to saline-treated SAH with increased 
SOD activity in a double hemorrhage rat model [ 144 ]. 

 Systemic antioxidant administration in experimental SAH reduced oxidative 
stress, protected the BBB, and improved neurological scores [ 145 – 147 ]. Kanamaru 
et al. demonstrated 21-aminosteroid U-74006 F reduced vasospasm and MDA con-
tent of the clot in the subarachnoid clot-placement monkey model at day 7 [ 148 ]. 
Lipid peroxidation inhibitor, U74006F (21-aminosteroid tirilazad mesylate) or 
U74389G, administration also ameliorated vasospasm after SAH in other animal 
models [ 122 ,  123 ,  149 – 151 ]. Suzuki et al. demonstrated Tirilazad mesylate attenu-
ated SAH-induced vasospasm by eliminating phosphatidylcholine hydroperoxide in 
the cerebral arteries in an SAH monkey model [ 152 ]. Hall reported a major neuro-
protective mechanism of methylprednisolone is free radical-induced lipid peroxida-
tion inhibition [ 153 ]. In vitro production of eicosanoids by brain slices, which is 
normally increased after SAH, was reduced in rats with high-dose methylpredniso-
lone treatment every 8 h after SAH [ 154 ]. Ecdysterone, an insect steroid hormone, 
attenuated CVS and neurological defi cits in SAH rabbits by suppressing vascular 
adventitial fi broblast proliferation [ 155 ]. 

 Moreover, Ebselen, an antioxidant that inhibits arachidonic acid lipoxygenase 
activity through glutathione peroxidase-like action, ameliorated delayed vasospasm 
in experimental SAH models [ 156 ,  157 ]. Nakagomi et al. demonstrated Edaravone, 
a free radical scavenger, attenuated BA narrowing in a canine double hemorrhage 
model [ 158 ]. Nicaraven, a hydroxyl radical scavenger, ameliorated CVS after SAH 
in rats via synergistic HO-1 induction, which is a protective oxidative stress-inducible 
enzyme [ 159 ]. Aladag et al. demonstrated caffeic acid phenethyl ester, a nontoxic 
oxygen free radical scavenger, prevented BA vasospasm at day 5 while both reduc-
ing lipid peroxidation and increasing NO bioavailability in the double hemorrhage 
rat SAH model [ 160 ]. 

 To date, clinical studies have been conducted to ascertain if antioxidants or free 
radical scavengers ameliorated SAH outcomes. Saito et al. evaluated the effects of 
oral administration of Ebselen for 2 weeks in 286 SAH patients in a multicenter, 
double-blind, clinical trial. Ebselen treatment did not reduce clinically diagnosed 
DIND, but it improved Glasgow neuroscores when compared to placebo treat-
ment [ 161 ]. Edaravone treatment for vasospasm was also clinically examined in 
91 SAH patients. Cerebral infarction incidence and poorer outcomes caused by 
vasospasm were signifi cantly reduced in the Edaravone group when compared to 
the control group [ 162 ]. In larger randomized, double-blind, vehicle-controlled 
trials in SAH patients, Kassell et al. demonstrated Tirilazad mesylate (6 mg/kg/
day) reduced mortality and improved outcomes without reducing symptomatic 
vasospasm [ 163 ], but Haley et al. showed Tirilazad mesylate did not improve the 
mortality rate, vasospasm incidence and severity, and outcomes at 3 months [ 164 ]. 
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On the contrary, Nicaraven, a hydroxyl radical scavenger, reduced DIND incidence, 
improved outcomes at 1 month, and reduced the mortality rate at 3 months after 
SAH in a prospective, placebo-controlled, double-blind, multicenter trial [ 165 ]. 

 No evidence supports the routine use of steroids in SAH patients. Hashi et al. 
demonstrated glucocorticoid administration after DIND emergence improved mental, 
speech, and motor functions rapidly, but it did not ameliorate mortality and out-
comes [ 166 ]. Although Chyatte et al. showed high-dose methylprednisolone 
reduced DIND in a retrospective case–control study of 21 patients [ 167 ], a small, 
double-blind, placebo-controlled, randomized trial revealed methylprednisolone 
(16 mg/kg/day, iv, started within 24–48 h after SAH for 3 days) did not reduce 
symptomatic vasospasm incidence, but it improved functional outcomes after 1 year 
[ 168 ]. This study supports the idea that starting treatment before DIND emergence 
may improve outcomes in SAH patients.  

    Nitric Oxide/Nitric Oxide Synthase Pathway 

 Since irregular change in the NO/NOS pathway may be detrimental to the brain 
after SAH, another treatment strategy for CVS or EBI is NO donor administration, 
iNOS inhibition, or eNOS upregulation. Sehba et al. showed an NO donor, 
N-nitrosoglutathione, injected 5 min after SAH ameliorated SAH-induced vessel 
diameter decrease and increased vessel wall thickness 60 min after SAH in an endo-
vascular perforation rat model [ 169 ]. Pluta et al. demonstrated  l -arginine, the sub-
strate of the NO-producing enzyme NOS, administration increased CBF but did not 
affect the incidence or degree of CVS in a primate SAH model [ 170 ]. Sehba et al. 
found intravenous NO donor S-nitrosoglutathione infusion attenuated brain paren-
chymal microvessel permeability by preserving collagen IV and endothelial barrier 
antigens as well as decreasing collagenase activity when compared to saline-treated 
rats [ 96 ]. Marbacher et al. showed continuous NO donor glyceroltrinitrate infusion 
into the cisterna magna from days 0–5 did not signifi cantly reduce vasospasm in an 
autologous blood injection rabbit model [ 171 ]. 

 In an endovascular perforation rat model, Yatsushige et al. demonstrated iNOS 
inhibition did not improve neurological scores and mortality as well as reduce 
BBB breakdown, brain edema, and neuronal cell death 24 h after SAH [ 71 ]. 
However, Zheng et al. showed aminoguanidine, an iNOS inhibitor, administration 
reversed CVS after SAH via eNOS upregulation, indicating a regulatory cross talk 
between eNOS and iNOS in SAH pathogenesis [ 172 ]. One action of statins is 
eNOS upregulation and NO production. Simvastatin treatment before or after SAH 
attenuated cerebral vasospasm and neurological defi cits in experimental animal 
models, and the mechanisms involved may in part be attributed to eNOS upregula-
tion [ 72 ,  73 ] as well as phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway 
activation [ 73 ]. However, attempted NO generation by eNOS gene transfection 
into subarachnoid space cells using an adenovirus-expressing eNOS vector did not 
prevent vasospasm [ 173 ]. Recently, monomer formation (uncoupling) of eNOS 
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expression is reportedly increased after SAH, resulting in decreased NO levels and 
reduced superoxide anion radical production [ 74 ,  75 ]. To date, a few randomized 
clinical trials reported statins attenuated SAH-induced vasospasm, but results from 
a larger trial are unknown [ 174 – 176 ]. One randomized clinical trial, however, 
reported statins did not ameliorate transcranial Doppler vasospasm and DIND inci-
dences as well as improve outcomes [ 177 ].  

    Antiplatelet Agents 

 Since platelet aggregation plays a role in secondary ischemic pathogenesis, experi-
mental studies were performed to evaluate the effectiveness of antiplatelet agents. 
Aspirin inhibits platelet function and thromboxane production. Linder and Alksne 
demonstrated aspirin ameliorated persistent BA contraction in dogs [ 178 ]. One 
clinical retrospective study showed aspirin reduced delayed cerebral ischemia risk 
after SAH [ 179 ]. Bilginer et al. demonstrated Cilostazol signifi cantly attenuated 
cerebral BA vasospasm after SAH in rabbits [ 180 ]. Nishino et al. showed Cilostazol 
decreased perivascular macrophage/dendritic cell infi ltration 7 days after SAH in 
rats [ 181 ]. Since platelet-activating factor (PAF) is an infl ammatory mediator and 
has been demonstrated to promote CVS genesis after SAH, Hirashima et al. exam-
ined the effects of platelet-activating factor antagonist, E5880, administration after 
SAH in rabbits [ 182 ]. E5880 administration reduced BA constriction by reducing 
plasma thromboxane B2 concentrations [ 182 ]. Meta-analysis in randomized con-
trolled trials comparing any antiplatelet agent to controls in aneurysmal SAH 
patients concluded antiplatelet treatment prevented secondary ischemia and 
improved outcomes. Antiplatelet treatment, however, cannot be recommended on 
the basis of current evidence because trial results did not reach statistical signifi -
cance, although the results showed a strong trend towards better outcomes [ 183 ].  

    Anti-infl ammation Therapy in Early Brain Injury After SAH 

 The term EBI refers to the period that spans from the moment of the initial bleed to 
the onset of CVS [ 184 ]. Since EBI is infl uenced by the immediate injury to the brain 
from aneurysmal rupture in SAH, the main pathophysiological stage is not in the 
large arteries, but in the brain parenchyma. Because EBI experimental modeling 
began simulating the intracranial arterial rupture, the common experimental model 
changed to the rodent “endovascular puncture” model. This model was indepen-
dently described by Bederson et al. and Veelken et al. [ 185 ,  186 ], and the surgical 
procedure aims to perforate the internal carotid bifurcation without craniotomy by 
means of a sharp-ended suture inserted through the external carotid artery. Maximal 
CVS is observed in rats at 48 h after SAH, and the 24-h time point after SAH seems 
to be best for EBI analysis [ 71 ]. 
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 Many reports focused on acute brain edema (shown by brain water content or 
Evans blue extravasation assay, for example) after EBI was fi rst reported by Kusaka 
et al. in 2004 because brain edema is a major symptom of EBI [ 18 ]. However, the 
mechanisms involved between brain edema attenuation and anti-infl ammatory 
treatment have not been suffi ciently demonstrated. Sozen et al. administered an 
IL-1β converting enzyme inhibitor, N-Ac-Tyr-Val-Ala-Asp-chloromethyl ketone 
(Ac-YVAD-CMK), in SAH mice, which ameliorated neurological defi cits, mortal-
ity, and brain edema by inhibiting c-Jun N-terminal kinase (JNK) phosphorylation, 
MMP-9 induction, and tight junction protein degradation [ 187 ]. SAH-induced neu-
rological defi cits and upregulated IL-1β were also ameliorated by argatroban (a 
direct thrombin inhibitor) or osteopontin (extracellular matrix protein) administra-
tion in SAH rats [ 188 ,  189 ]. Suzuki et al. also showed recombinant osteopontin 
prevented post-SAH BBB disruption by suppressing nuclear factor-kappaB activa-
tion SAH rats [ 189 ]. Endo et al. demonstrated Cu–Zn SOD transgenic rats had 
decreased mortality and apoptotic cell death at 24 h. Moreover, survival signals, 
such as phosphorylation of Akt and glycogen synthase kinase-3beta (GSK3beta), 
were more enhanced in the cerebral cortex of Cu–Zn SOD transgenic rats after SAH 
[ 190 ]. Gao et al. demonstrated Edaravone ameliorated neurological defi cits, 
decreased MDA levels and apoptotic cell death, and increased SOD activity in the 
brains of SAH rats [ 191 ]. Erşahin et al. demonstrated SAH-induced MDA upregula-
tion and MPO activity were inhibited at 48 h after SAH by Ghrelin treatment into 
forebrain tissue in a single blood injection SAH rat model [ 192 ]. Although many 
preclinical animal experiments demonstrated anti-infl ammatory treatments for SAH 
had positive outcomes, these treatments have not been translated to randomized, 
blinded, human clinical trials for EBI management after SAH.   

    Future Directions of SAH Research 

 Since it is widely accepted that CVS is a major cause of high mortality and poor 
outcomes after an otherwise successful treatment of a ruptured intracranial aneu-
rysm [ 17 ], the majority of research performed worldwide has focused on strategies 
limiting arterial narrowing and delayed cerebral ischemia following SAH [ 193 ]. 
Hence, most experiments examined restoration of narrowed large arteries using 
pharmacological agents. The most common SAH-induced vasospasm model for 
observing pathophysiology or morphological changes in large arteries is the canine 
“two-hemorrhage” model, where two blood injections into the dog’s basal cistern 
are performed 48 h apart [ 194 ]. 

 Based on CVS amelioration by Endothelin receptor antagonists, CONSCIOUS-1 
and CONSCIOUS-2 have been conducted. These studies demonstrated clazosentan 
did not attenuate mortality or functional outcomes, although it reduced angiographic 
vasospasm risk. One possible interpretation is successful intervention preventing 
CVS is not enough for attenuating outcomes in SAH patients. Delayed cerebral isch-
emia may be multifactorial and other pathophysiological factors may contribute to 

14 Infl ammation as a Therapeutic Target after Subarachnoid Hemorrhage…



264

outcomes that are independent of angiographic vasospasm [ 20 ]. Additionally, animal 
modeling of CVS by injecting blood to make large vessels constrict in order to 
observe DIND may not be adequate. Furthermore, measures for neurological out-
comes in experimental studies may be insuffi cient. The discrepancy amongst SAH 
survivors is 21 % develop delayed ischemic injury without vasospasm and only 
20–30 % who do develop vasospasm suffer from delayed ischemic injury [ 195 ], 
which suggests researchers should seek new concepts toward the treatment of SAH 
patients instead of targeting CVS alone [ 196 ]. Currently, targeting EBI has great 
potential for implementing new treatment modalities in SAH patients by attenuating 
some of the observed long-term, devastating secondary injuries [ 26 ,  184 ]. Mortality 
and neurological functions in preclinical, animal SAH models should be examined to 
estimate treatment effectiveness because this information is very important for trans-
lating preclinical studies into a clinical application. The endovascular perforation 
model is more suitable for acute SAH research than the double blood injection model 
because the endovascular perforation model produces more severe pathophysiologi-
cal changes and a comparable insult to a ruptured aneurysm [ 197 ]. 

 So far, anti-infl ammatory research after SAH is limited, and further studies are 
needed to clarify the exact mechanisms involved. First, natural courses after SAH, 
such as spatial and temporal histories, are unclear. Utilizing an effective therapeutic 
window may be one of the biggest challenges. Second, additional basic work is 
required to investigate SAH-induced changes in the peripheral immune system. 
Because cytokines, neutrophils, T cells, and macrophages in the peripheral immune 
system may, theoretically, enter the CNS via an impaired BBB after brain ischemia, 
changes in the peripheral immune system may signifi cantly affect ischemic brain 
injury [ 3 ]. Third, appropriate target organs must be selected for inhibiting excessive 
pro-infl ammatory reactions. Pro-infl ammatory reactions are critically important for 
removing pathogenic substances and promoting growth, repair, and functional 
recovery. However, extreme infl ammatory responses may be deleterious to tissues 
injured by ROS and cytokines. Fourth, pharmacokinetic and pathogenic differences 
between genders must also be considered. Finally, further investigation into the 
infl ammatory responses in stroke patients must be made because of the differences 
between the immune systems of humans and experimental animals [ 3 ]. Considering 
the potential anti-infl ammatory therapeutic development for SAH, further experi-
mental studies are needed to discern key mechanisms underlying the role of infl am-
mation in brain damage.  

    Conclusion 

 Since infl ammation plays an important role in SAH, many experimental studies 
targeting anti-infl ammation successfully reversed vessel constrictions. However, the 
reversal of CVS did not improve outcomes in human clinical trials. EBI treatment 
could be argued to successfully attenuate some of the devastating secondary injuries 
following SAH. Further studies targeting anti-infl ammation may lead to  development 
of novel therapies that improve outcomes for SAH patients.     
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    Abstract     Minocycline and doxycycline, second-generation tetracyclines that have 
superior tissue penetration into the brain and cerebrospinal fl uid, were reported to 
provide neuroprotection in global brain ischemia in 1998. Since then these com-
pounds, especially minocycline has been widely studied in numerous in vivo and in 
vitro models of chronic and acute brain diseases. While the exact mechanism of 
minocycline’s neuroprotective effect is not clear, minocycline has been shown to 
have anti-infl ammatory, anti-apoptotic, and anti-oxidative effects. Currently, mino-
cycline is in clinical trials for several indications, including ischemic stroke. Here, 
we review the mechanisms found to be behind minocycline’s benefi cial effect so far 
in models relevant for stroke. We also discuss the importance of using a wide range 
of stroke models and addressing the comorbidity and gender issues when evaluating 
minocycline’s potential for treating patients with acute stroke. The chapter also cov-
ers the current status of clinical trials of minocycline for treating ischemic stroke.  

        Minocycline as a Neuroprotective Tetracycline Derivative 

 Minocycline is a second-generation, broad-spectrum tetracycline antibiotic, which has 
widely been used for the treatment of various types of bacterial infections for decades 
[ 1 ]. Minocycline is distinguished by its lipophilicity, leading to superior blood–brain 
barrier permeability [ 1 ,  2 ]. Because minocycline does not cause severe toxicity even 
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in a long-term use, it is commonly used chronically for nonlife-threatening conditions 
such as acne vulgaris [ 3 ] and rheumatoid arthritis [ 4 ] in many countries. 

 Minocycline is known to have many biological effects that potentially possess 
neuroprotective features in acute brain injuries such as stroke [ 5 – 7 ]. While minocy-
cline’s antimicrobial activity is helpful in reducing infections, such as urinary tract 
infections and pneumonia, resulting from stroke or other acute brain injury-induced 
immunosuppression, the major benefi cial effects of minocycline in stroke are inde-
pendent of its antimicrobial properties. Minocycline’s neuroprotective action is 
rather explained by various other effects on biological processes, including apopto-
sis, oxidative stress, iron toxicity, and neuroinfl ammation [ 5 – 9 ]. The cellular and 
molecular mechanisms behind these benefi cial effects have been extensively 
explored, yet the exact mechanisms of action of minocycline are not clear. 

 Past studies have revealed that its  anti-infl ammatory action  is due to the modula-
tion or prevention of microglial activity, immune cell activation, and subsequent 
release of cytokines, chemokines, lipid mediators of infl ammation, matrix metallo-
proteinases, and nitric oxide (NO) [ 10 – 19 ]. Microglial, astrocytic, neutrophilic, and 
macrophagic production of proinfl ammatory cytokines, such as TNF-α, IL-β, and 
IL-6, which are major contributory factors to infl ammation and subsequent immune 
response, are reported to be depressed by minocycline at least partially by inhibition 
of p38 MAPK and transcription factor nuclear factor kappa-light-chain-enhancer of 
activated B cells (NFκB) [ 16 ,  20 – 23 ]. Minocycline reduces production of NO, pros-
taglandins, and eicosanoid   infl ammatory mediators     by inhibiting expression or 
activity of the corresponding enzymes responsible for these products, namely induc-
ible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and   5-lipoxygenase     
[ 11 ,  18 ,  19 ]. Finally, minocycline reduces infi ltration of blood-derived infl amma-
tory cells, such as monocytes, neutrophils, and T cells, into the CNS upon brain 
injury [ 24 – 28 ]. Infi ltration of leukocytes to the injured CNS is associated with 
increased expression of matrix metalloproteases 2 and 9 (MMP2 and MMP9), 
which are effi ciently inhibited by minocycline [ 10 ,  14 ,  21 ,  24 ,  29 ]. 

 Both cell culture and in vivo studies have revealed a clear anti-apoptotic effect 
for minocycline in context relevant for stroke. Minocycline reduces the number of 
apoptotic neurons in experimental injury model [ 5 ,  7 ,  30 ,  31 ]. Again, inhibition of 
MAP kinases, especially p38 MAPK, and alterations in the activity of extracellular 
signal-related kinase (Erk), phosphatidylinositol 3-kinase (PI 3-kinase)/Akt, as well 
as c-jun N-terminal kinase (JNK) signaling pathways appear to directly contribute 
to neuronal survival [ 16 ,  22 ,  32 ,  33 ]. Reported anti-apoptotic in vitro effects of 
minocycline include caspase-1 inhibition, upregulation of anti-apoptotic Bcl-2 pro-
tein, blockade of pro-apoptotic cytochrome c (CytC) and SMAC/Diablo release 
from the mitochondria [ 34 – 36 ], and inhibition of poly (ADP-ribose) polymerase 
(PARP) PARP-1 at least in certain conditions [ 37 ]. Some in vitro studies suggest 
that minocycline may have a dual effect on the apoptotic role of CytC: fi rst by 
decreasing the peroxidase activity of CytC in the early stages of apoptosis and sec-
ond, by competing with CytC-Apaf-1 binding interaction in the cytosol [ 38 ]. 
Moreover, minocycline has been reported to be able to upregulate nuclear factor 
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erythroid 2-related factor 2 (Nrf2), a transcription factor regulating the expression 
of a number of antioxidant genes, and induce release of paracrine factors, including 
brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), glial cell- 
derived neurotrophic factor (GDNF), and vascular endothelial growth factor 
(VEGF), all of them being relevant for neuronal survival in acute brain injury [ 39 ]. 
Besides these specifi c activities, minocycline may act more generally as an antioxi-
dant protecting against oxidative stress and possessing direct radical-scavenging 
activity [ 40 ,  41 ]. 

 As acute brain injury such as cerebral stroke involves considerable infl ammation 
and robust cell death, which to at least some extent includes apoptosis or apoptotic- 
like neuronal death [ 34 ,  35 ,  42 – 44 ], it is evident that minocycline can be considered 
as an excellent drug candidate for the treatment of acute stroke [ 6 ,  34 ,  35 ,  43 – 46 ]. 
This mechanism-of-action-based conclusion is further supported by minocycline’s 
ability to chelate iron that may be released from hemoglobin to brain tissue upon 
brain injury [ 8 ,  9 ], as well as minocycline’s ability to pass the blood–brain barrier 
and reach suffi cient brain concentrations [ 1 ,  2 ,  7 ]. 

    Effect of Minocycline in Commonly Used Preclinical 
Models of Stroke 

 Neuroprotective effect of minocycline was fi rst described in a gerbil model of global 
cerebral ischemia in 1998 [ 19 ]. Since then more than 30 publications have sup-
ported its neuroprotective properties in various rodent models of stroke, including 
suture or mechanical models of transient and permanent occlusion of the middle 
cerebral artery (MCAo) and thromboembolic models [ 45 ]. Overall, according to a 
systemic review in 2011 [ 45 ], 31 of 33 studies have yielded positive effect for mino-
cycline in rodent models of stroke. Importantly, the effi cacy of minocycline has 
been proven when administered intraperitoneally or intravenously several hours 
after the onset of ischemia. Dose–response and therapeutic time window experi-
ments on rat models of transient MCAo have demonstrated that an intravenous 
3 mg/kg dose provides over 30 % reduction in the infarct size and improves neuro-
logical function even when administered 4–5 h after the onset of brain ischemia 
[ 47 ]. It is of great interest that minocycline may be benefi cial even with far wider 
therapeutic time window. Using a mouse model of MCAo, Hayakawa et al. [ 48 ] 
found that long-term minocycline treatment started at 24 h after the ischemic insult 
resulted in reduced mortality, ischemic damage and improved neurological function 
and survival when followed up to 14 days. Two studies on rat model of transient 
MCAo have demonstrated that minocycline administration started 4 days after isch-
emic insult improved neurological recovery when assessed at 1 month time point 
[ 31 ,  49 ]. The improved recovery was associated with enhanced ischemia-induced 
neurogenesis and reduced microgliosis. Thus, the preclinical data on common ani-
mal models of stroke is robust.   
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    Minocycline, Gender Issues, and Comorbidities in Stroke 

 The vast majority of stroke studies have been carried out in healthy, young, male 
rodents. As stroke obviously is a common disorder among both sexes in the elderly 
and typically coexists with atherosclerosis, diabetes, or infection, it is evident that 
preclinical studies of promising drug candidates for stroke should be extended to 
include studies on both genders as well as clinically relevant risk factors [ 50 – 53 ]. 
The ischemic infarct size is consistently found to be smaller in young female than 
young male mice when using transient MCAo model and this difference correlates 
with overall outcome [ 54 ]. Because ovariectomy and post-reproductive age results 
in the loss of gender difference in brain infarct size and outcome, the use of aged 
mice in stroke models appears to be more translational and clinically relevant than 
the use of young mice [ 55 ,  56 ]. Moreover, some studies indicate that the gender 
difference is not seen in stroke outcome when using permanent MCAo model, sug-
gesting that the impact of gender is related to the pathomechanisms involved with 
the reperfusion [ 57 ]. These observations become crucial when evaluating the effi -
cacy of drug candidates for treating stroke. Minocycline was reported to have ben-
efi cial effect in male, but not in female mice after transient MCAo [ 58 ,  59 ]. This 
gender difference in the effi cacy of minocycline appears to be due to the dominant 
role of NO and PARP in female but not male young mice in transient MCAo model 
when abrupt reperfusion is taking place [ 60 ]. These results emphasize the impor-
tance of not only including both male and female rodent but also various ways of 
inducing the ischemic infarct in experimental stroke studies as recommended also 
by the Stroke Therapy Academic Industry Roundtable (STAIR) [ 60 ,  61 ]. 

 While stroke studies on aged rodents predisposed to comorbid conditions are 
gradually increasing, minocycline has not yet been thoroughly investigated in such 
models. An interesting study was carried out by Hoda et al. [ 60 ], who tested the 
effect of minocycline in both sexes and aged, 18-month-old mice using a thrombo-
embolic stroke model. As pointed out by Hoda et al. [ 60 ], thromboembolic models 
can be seen to mimic quite well the clinical situation, since reperfusion is gradually 
and partially restored spontaneously but not until 6–12 h when the ischemic cascade 
is already well advanced. Such gradual and spontaneous reperfusion may represent 
the vast majority of human MCA territory strokes where treatment with recombi-
nant tissue plasminogen activator (rt-PA) or mechanical removal is not performed. 
Importantly, minocycline was found to be effective in reducing infarct size and 
improving short-term neurological outcome in young male and female mice, ovari-
ectomized female mice and aged male and female mice [ 60 ]. Moreover, stroke- 
induced mortality in aged mice was signifi cantly reduced by minocycline treatment. 
Even though the translationality of this study was limited because of administration 
of minocycline immediately after stroke onset and a single endpoint at 24 post- 
stroke hours, this study increases clinically relevant evidence for minocycline’s 
validity as a neuroprotectant for acute stroke. 

 So far, there are two studies on young spontaneously hypertensive [ 62 ,  63 ]. One 
of them was carried out using a thromboembolic model and showed neuroprotection 
by minocycline when administered intravenously 4 h after the onset of stroke 
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(Murata et al. 2008). There are also several studies showing benefi cial effect of 
minocycline on stroke outcome in either drug-induced hyperglycemic or genetic 
type 2 diabetic rats [ 64 – 66 ]. Studies on aged mice predisposed to infection or ath-
erosclerosis are still lacking.  

    Minocycline and Tissue Plasminogen Activator 

 Tissue plasminogen activator (tPA) is an effective therapy for acute ischemic stroke. 
Time from the stroke onset is the major determinant for selecting patients eligible 
for thrombolytic therapy and the effi cacy of intravenous tPA is established only up 
to 4.5 h after symptom onset [ 67 ,  68 ]. The benefi t of intravenous tPA gradually 
declines with longer durations between symptom onset and tPA therapy in part due 
to increased risks of brain edema, excitotoxicity, and hemorrhagic conversion [ 69 , 
 70 ]. Therefore, reduction of tPA-associated BBB injury with other neuroprotective 
compounds may extend the time window for safe and effective thrombolysis. 

 Using a thromboembolic clot model in male spontaneously hypertensive rats, 
Murata et al. (2008) were able to show that minocycline 3 mg/kg intravenously 
combined with delayed tPA treatment starting at 6 h reduced infarct size, amelio-
rated tPA-related intracerebral hemorrhage, and reduced plasma MMP-9 levels. In 
another study, Machado et al. [ 71 ] used a suture model of transient 3-h MCAo to 
test the effect of combined minocycline and tPA treatment. They reported that mino-
cycline, again at 3 mg/kg intravenously, did not affect tPA fi brinolysis, but decreased 
the incidence of hemorrhages, improved neurological outcome, and appeared to 
decrease mortality. In addition, minocycline decreased protein expression of 
MMP-2 and MMP-9 and these expression changes were associated with decreased 
degradation in collagen IV and laminin-α1. As both of these studies of minocy-
cline—tPA combination therapy were limited to 24-h follow-up time, it remains to 
be investigated whether the benefi t of minocycline administration to patients treated 
with tPA results in long-term or permanent improvement of stroke outcome. 
Nevertheless, these studies provide evidence that minocycline protects the BBB 
during thrombolysis with tPA and could extend the therapeutic time window for 
safe reperfusion therapy of acute stroke.  

    Minocycline Towards Clinical Use in Stroke 

 While the effi cacy and neuroprotective potential of minocycline in acute ischemic 
stroke still needs to be established, this antibiotic has been used in clinical practice 
for many decades without serious safety concerns. The fi rst study on the effect of 
minocycline treatment in human acute ischemic stroke was published by Lampl 
et al. [ 42 ]. In their open-label, evaluator-blinded study minocycline at a dose of 
200 mg per day was administered orally for 5 days to 74 patients with the therapeu-
tic time window of 6–24 h after onset of stroke. Seventy-seven patients received 
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placebo. Patients were screened for any prior infections before recruitment for the 
study and no post-stroke complications were observed. In this study, NIH Stroke 
Scale (NIHSS) and modifi ed Rankin Scale (mRS) scores that measure symptomatic 
impairment and the degree of disability or dependence in the daily activities, respec-
tively, were signifi cantly lower in minocycline group and Barthel Index (BI) scores 
that indicate a person’s daily activities of daily living and mobility were signifi -
cantly higher in minocycline-treated patients. These improvements were observed 
as early as 7 and 30 days during the 90-day follow-up period. On the other hand, 
deaths, myocardial infarctions, recurrent strokes, and hemorrhagic transformations 
during the follow-up did not differ between the treatment groups. 

 Another, smaller randomized single-blinded open-label study including 23 
patients receiving oral minocycline 200 mg/day for 5 days and 27 control patients 
receiving oral vitamin B capsules was reported by Padma Srivastava et al. [ 72 ]. The 
clinical outcome was assessed using NIHSS, modifi ed BI and mRS scores, as well 
as Magnetic Resonance Imaging (MRI) of the brain at days 1, 7, 30, and 90. Also, 
in this study, NIHSS score showed statistically signifi cant improvement in patients 
receiving minocycline at days 30 and 90 as compared with the controls. Similarly, 
mRS scores and BI showed signifi cant improvement in patients receiving minocy-
cline at 3 months as compared to the control group. No mortality, myocardial infarc-
tions, recurrent strokes, and hemorrhagic transformations were noted in either 
group. In spite of the small sample size, lack of stroke subtype classifi cation, oral 
delivery instead of intravenous delivery, and unblinded nature of these studies, these 
pilot trials indicate tolerance of minocycline at the prescribed dosage and suggest 
favorable effects of minocycline treatment in acute stroke. 

 Based on the promising preclinical and pilot clinical studies of minocycline in 
acute stroke, Fagan et al. [ 73 ] evaluated its safety, tolerability, and pharmacoki-
netics in a dose escalation trial in patients with acute ischemic stroke. Minocycline 
was administered intravenously within 6 h of stroke symptom onset to 60 patients 
daily over 72 h. The results indicated that minocycline infusion is safe and well 
tolerated up to doses of 10 mg/kg alone and in combination with tPA. Intravenous 
minocycline at doses between 3 and 10 mg/kg daily achieved concentrations in 
the serum that have been shown to be neuroprotective in experimental stroke mod-
els. Because the half-life of minocycline was confi rmed to be approximately 24 h 
in humans, dosing once a day would be suffi cient and convenient treatment proto-
col even with the use of tPA. The encouraging results from these trials have led to 
the ongoing double-blind, multicenter Neuroprotection with Minocycline Therapy 
for Acute Stroke Recovery Trial (NeuMAST) sponsored by Singhealth Foundation.  

    Conclusion 

 Considering numerous cell culture studies and more than 40 studies on rodent 
models of stroke, minocycline is apparently one of the most promising drug candi-
dates for treating patients with acute stroke. In addition, both preclinical and small 
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open- label clinical studies indicate that minocycline treatment is safe when com-
bined with tPA in the acute phase of the disease. One of the challenges in clinical 
development of neuroprotective agents for acute stroke is the lack of predictive, 
validated response biomarkers for evaluating the proof-of-relevance and therapeutic 
effects. While clinicians are capable of assessing stroke and reliably score recovery 
after stroke, identifi cation of a biomarker that measures minocycline’s effect on 
biological function responsible for its benefi cial effect in acute stroke is diffi cult as 
long as the exact mechanism behind minocycline-mediated neuroprotection remains 
unknown. However, it is of great interest that plasma levels of MMP-9 and interleu-
kin- 6 were found to be decreased in stroke patients receiving minocycline [ 46 ]. 
MMP-9 is an important mediator of BBB disruption, edema, and hemorrhage in 
acute ischemic stroke. The expression of MMP-9 is increased after cerebral isch-
emia and its levels are further amplifi ed by tPA treatment [ 74 – 77 ]. In addition, ele-
vations in plasma MMP-9 correlate with stroke severity and are predictive of 
tPA-related intracerebral hemorrhage [ 78 ]. Considering that MMP-9 is a well- 
characterized biological target of minocycline, plasma levels of MMP-9 might well 
have value as a predictive response biomarker. Similar to MMP-9, plasma levels of 
IL-6 are elevated within hours following an acute stroke and remain upregulated up 
to 7 days. Importantly, increased IL-6 correlates with larger infarct volume, greater 
stroke severity, and worse clinical outcome. Preclinical studies have also demon-
strated minocycline’s ability to inhibit IL-6 production among its other anti- 
infl ammatory effects. Whether the ongoing or future phase III trials of minocycline 
in acute stroke proves the drug to be benefi cial or not, it is likely that minocycline 
remains as a prototype for further development of novel candidate molecules for 
treating acute stroke and other brain injuries.     
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    Abstract     The immune response can contribute to the risk of stroke as well as to 
brain injury following stroke. Directed modulation of the immune response to atten-
uate risk or injury is thus a potential therapeutic strategy for treating stroke. Inducing 
a population of antigen-specifi c regulatory T cells is one such strategy and can be 
used to locally modulate the immune response to the organs in which the antigen is 
present, thereby limiting potential side effects. This chapter addresses the use of 
mucosal tolerance to both prevent and treat ischemic stroke.  

        Introduction 

 Following stroke there is compromise of the blood–brain barrier (BBB) that allows 
for cells of the peripheral immune system to enter brain [ 1 – 4 ]. In addition, this 
compromise of the BBB allows for dying brain cells to release their contents into 
the systemic circulation. For instance, proteins associated with astrocytes (S100, 
glial fi brillary acidic protein [GFAP]), oligodendrocytes (myelin basic protein 
[MBP]), and neurons (neuron-specifi c enolase [NSE]) are all found in the in the 
bloodstream after stroke [ 5 ,  6 ]. It is thus possible for central nervous system (CNS) 
antigens to be presented to lymphocytes in either the brain or in peripheral lym-
phoid organs following stroke. Indeed, there is evidence of CNS antigen presenta-
tion in the cervical lymph nodes within hours after experimental stroke and in the 
palatine tonsils of stroke patients within days after stroke onset [ 7 ,  8 ]. The possibil-
ity of developing autoimmune response to brain antigens thus exists, and the type of 

    Chapter 16   
 Tolerization to Brain and Vascular Antigens: 
Targeting Autoimmunity After Acute Brain 
Injuries and Preventing Stroke 

             Kyra     J.     Becker      and     John     Hallenbeck   

        K.  J.   Becker      (*) 
  Neurology and Neurological Surgery ,  University of Washington School 
of Medicine ,   Seattle ,  WA ,  USA   
 e-mail: kjb@u.washington.edu   

    J.   Hallenbeck    
  Stroke Branch ,  NINDS, NIH ,   Bethesda ,  MD ,  USA    



288

ne
ur

on
al

an
tig

en
s

gl
ia

l
an

tig
en

s
m

ic
ro

gl
ia

(o
r  

AP
C)

ly
m

ph
oc

yt
e

gl
ia

ne
ur

on

TH TH TH Fo
x

p+

Fo
x

p-

na
ïv

e 
T 

ce
ll

ly
m

ph
no

de

IF
N

-g

IL
-4

TG
F-
b1

+ 
IL

-6

IL
-1

0

IF
N

-g

IL
-4

IL
-5

IL
-1

3

IL
-1

7

TG
F-
b1

-IL
-6

TG
F-
b1

IL
-1

0

ef
fe

ct
or

 c
el

ls

re
gu

la
to

ry
 c

el
ls

  F
ig

. 1
6.

1  
  Fo

llo
w

in
g 

st
ro

ke
, t

he
 im

m
un

e 
sy

st
em

 c
an

 e
nc

ou
nt

er
 n

ov
el

 C
N

S 
an

tig
en

s 
bo

th
 in

 th
e 

br
ai

n 
an

d 
in

 th
e 

pe
ri

ph
er

y 
(i

nc
lu

di
ng

 th
e 

ly
m

ph
 n

od
es

).
 T

he
 ty

pe
 

of
 T

-c
el

l 
re

sp
on

se
 (

ef
fe

ct
or

 o
r 

re
gu

la
to

ry
) 

th
at

 d
ev

el
op

s 
fo

llo
w

in
g 

su
cc

es
sf

ul
 a

nt
ig

en
 p

re
se

nt
at

io
n 

de
pe

nd
s 

on
 t

he
 m

ic
ro

en
vi

ro
nm

en
t 

at
 t

he
 s

ite
 o

f 
an

tig
en

 
en

co
un

te
r       

 

K.J. Becker and J. Hallenbeck



289

immune response that develops to these antigens (T h 1, T h 2, T h 17, or T reg ) 
depends upon the microenvironment at the site of antigen presentation (Fig.  16.1 ).

   That autoimmune responses to CNS antigens occur following stroke was fi rst 
documented decades ago when patients with stroke were recruited as “other neuro-
logic disease controls” for studies of classic autoimmune diseases like multiple scle-
rosis (MS) and acute infl ammatory demyelinating polyneuropathy (AIDP) [ 9 – 11 ]. 
These initial studies focused on the cellular responses to MBP and “nervous tissue 
antigens” and found increased lymphocyte reactivity to these antigens among 
patients with a history of stroke. The possibility that these responses could contrib-
ute to ischemic brain injury or affect outcome from stroke was not considered at the 
time, and the fact that lymphocytes could have such profoundly different phenotypes 
was not yet appreciated. 

 In recent decades, however, there has been increased interest in the post- ischemic 
immune response with efforts to better understand the effects of the immune 
response on ischemic brain injury and how it can be manipulated to improve out-
come. Importantly, it is now known that not only does the immune response contrib-
ute to ischemic brain injury but that stroke itself alters the systemic immune 
response. Through activation of the sympathetic nervous system, stroke induces 
dysfunction in the systemic immune response, and this sympathetically mediated 
immunodepression is associated with increased risk of infection [ 12 ,  13 ]. Given this 
immunodepression, it is not surprising that T h 1 type immune responses to CNS 
antigens appear to be distinctly uncommon in both experimental models of stroke as 
well as in patients who experience stroke [ 14 ,  15 ]. Despite what appears to be a 
protective mechanism to prevent CNS autoimmunity after stroke, however, T h 1 
type immune responses to CNS antigens (MBP, PLP, and NSE) are seen in some 
animals after experimental stroke [ 16 ]. The predisposition to developing T h 1 type 
immune responses to these antigens (and MBP in particular) can be increased by 
systemic administration of lipopolysaccharide (LPS). LPS, a component of the 
Gram- negative bacterial cell wall, contains a highly conserved “pathogen-associ-
ated molecular pattern” (PAMP) that potently initiates the innate immune response 
by stimulating dendritic/antigen-presenting cells (APCs) through toll-like receptor 
(TLR) 4. (Other PAMPS are able to initiate the innate immune response by stimulat-
ing other TLRs.) Similar to the increase in T h 1 type immune responses seen in 
animals following treatment with LPS, the predisposition to developing T h 1 
responses to MBP in patients with stroke is increased in patients who develop sys-
temic infections (especially severe infections like pneumonia) [ 17 ]. Notably, T h 1 
type immune responses to MBP are associated with worse outcome from experi-
mental stroke [ 15 ,  16 ,  18 ,  19 ] as well as clinical stroke [ 17 ]. 

 It takes time for a clinically meaningful immune response to develop to an anti-
gen, as is illustrated by the delay in protection afforded by immunization. Generally, 
the antigen must be appropriately presented to lymphocytes and there must be per-
sistence of the antigen to promote expansion of these lymphocytes to detectable 
levels. As might be expected, then, we were unable to detect a T h 1 response to MBP 
until 1 month after experimental stroke [ 15 ]. And in patients, clinically important 
antigen-specifi c T h 1 responses were not seen until 3 months after stroke onset [ 17 ]. 
In speaking about the contribution of  antigen-specifi c  immune responses to stroke 
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outcome, it is thus the effect on long-term outcome that is of interest. For patients 
with a prior history of stroke, however, it is possible that T h 1 responses induced by 
the previous stroke(s) could contribute to early ischemic brain injury following a 
recurrent stroke through the phenomenon of immunological memory. 

 The data thus suggest that stroke-induced immunodepression serves to limit the 
development of T h 1 type immune responses to MBP (and other antigens) after 
stroke, but that induction of systemic infl ammation by infection (or LPS) circum-
vents this immunodepressive effect and supports the development of autoimmunity. 
Similarly, onset of autoimmune diseases following infectious illnesses is commonly 
reported and often attributed to “bystander activation” of the immune response to 
self-antigens [ 20 ]. Given that infections occur in roughly 30% of patients who 
experience stroke, “bystander activation” of the immune response in patients with a 
compromised BBB and circulating brain antigens could contribute to the develop-
ment of CNS autoimmunity [ 21 ]. 

 Post-stroke infection is associated with an increased risk of death and disability 
at long-term follow-up [ 22 – 24 ]. Since stroke severity is the most important risk fac-
tor for post-stroke infection, it could be assumed that the relationship between 
infection and stroke outcome is confounded [ 25 – 27 ]. Patients with the most severe 
strokes are thus at the highest risk of infection and, subsequently, at the highest risk 
of developing autoimmune responses to CNS antigens exposed by the stroke. 
Multivariate models, however, show that the detrimental effect of infection (espe-
cially pneumonia) persists even after controlling for stroke severity and other prog-
nostic variables [ 23 ,  27 – 29 ]. These autoimmune responses may explain (at least in 
part) how infection mediates a long-lasting detrimental effect on stroke outcome. 

 Despite the potent effect of infection (or infection mimics) on the development of 
T h 1 responses to brain antigens after stroke, T h 1 type immune responses to brain 
antigens are also seen in patients without infection (and in animals that do not 
receive LPS) [ 15 ,  17 ]. Apart from infection (and infection mimics), the major risk 
factor for developing such responses seems to be stroke severity/infarct volume [ 17 ]. 
Necrotic cells release molecules known as alarmins, and similar to LPS, alarmins 
are able to activate the innate immune response through stimulation of TLRs [ 30 ]. 
Common alarmins include heat shock proteins (HSPs), uric acid, and high-mobility 
group box protein (HMGB)-1. PAMPs and alarmins are collectively referred to as 
danger-associated molecular patterns (DAMPs). By initiation of the innate immune 
response, DAMPs increase the likelihood of successful antigen presentation; when 
these antigens are self-antigens, autoimmunity may develop [ 31 ,  32 ].  

    Prevention of Autoimmune Post-ischemic 
Autoimmune Responses 

 One strategy to prevent the development of post-ischemic autoimmune responses to 
brain would be to prevent infection. Animal studies suggest that prophylactic 
 antibiotic therapy prevents infection and improves outcome after stroke [ 33 ]. 
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There have been three prospective randomized controlled trials of prophylactic anti-
biotic therapy aimed at preventing post-stroke infection; these studies have had very 
mixed results [ 34 – 36 ]. Whether preventing infection with prophylactic antibiotics 
would prevent the development of CNS-specifi c immune responses after stroke is 
unknown. Another potential strategy to prevent the development of CNS autoim-
munity following stroke is the use of immunomodulatory therapies. Many tradi-
tional approaches to immunomodulation increase the risk of infection under the best 
of circumstances; their use in a population prone to infection could be particularly 
dangerous. A more selective immunomodulatory strategy would thus be needed—
one that could limit the development of CNS autoimmune responses without affect-
ing the ability of the immune system to respond to infectious pathogens. One such 
selective approach would be to expand the compartment of  CNS antigen-specifi c  
T reg  cells. There are several different methods by which this expansion could be 
accomplished, including treatment with immunomodulatory peptides like 
α-melanocyte-stimulating hormone (MSH) [ 37 ]. Another method to expand the 
compartment of antigen-specifi c T reg  cells is through the process of mucosal toler-
ance. By inducing T reg  responses to MBP prior to experimental stroke (and treat-
ment with LPS), we found that animals could be prevented from developing T h 1 
type immune response to MBP [ 18 ]. The concept behind induction of mucosal tol-
erance is that the presence of the antigen to which tolerance is induced will lead to 
activation of antigen-specifi c T reg  cells that secrete immunomodulatory cytokines 
which lack antigen specifi city (Fig.  16.2 ). Thus, wherever the antigen is present, 
there will be a local response that suppresses the activation of lymphocytes to that 

TCR CD28 lymphocyte microglia
(or  APC)TLR MHC II MBP

antigen specific activation

TREG TREG

secretion of antigen non-specific
immunomodulatory cytokines

IL-10
TGF-b1

  Fig. 16.2    T reg  cells are activated in an antigen-specifi c fashion, but the cytokines they secrete 
(IL-10 and TGF-β1) act in an antigen-nonspecifi c fashion. This fact means that induction of T reg  
responses to a given antigen can also affect the immune response to antigens in the nearby vicinity, 
a phenomenon referred to as “bystander suppression”       
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antigen as well as to neighboring/unrelated antigens (“bystander suppression”) [ 38 ]. 
Induction of tolerance to MBP prior to stroke, for instance, could theoretically 
prevent the development of autoimmune responses to MBP and modulate responses 
to other CNS antigens as well.

       Mucosal Tolerance to Treat Acute Stroke 

 The fact that CNS antigens are present in the brain as well as in the periphery after 
stroke can be capitalized upon for treatment of acute stroke. For instance, expansion 
of either MBP or oligodendrocyte glycoprotein (MOG) T reg  cells prior to experi-
mental stroke is associated with decreased infarct volume and improved clinical 
outcome [ 39 – 41 ]. Further, adoptive transfer of the T reg  cells generated through 
induction of mucosal tolerance leads to similar neuroprotective benefi ts in naïve 
recipient animals [ 40 ]. Regulatory T cells secrete cytokines like TGF-β1 and IL-10, 
both of which are neuroprotective [ 42 – 47 ]. Thus, independent of the effect of T reg s 
in preventing the development of detrimental T h 1 type responses after stroke, 
induction of T reg  responses can be used to treat acute stroke. T reg s primed to CNS 
antigens will secrete TGF-β1 and IL-10 when encountering their cognate antigen, 
an effect which is most likely to happen in brain where the antigen concentration is 
the highest.  

    Mucosal Tolerance to Prevent Stroke 

 Exposure of the blood–endothelial interface of the CNS vascular tree to DAMPS 
can also participate in stroke initiation. The localized Shwartzman reaction is an 
intriguing model of focal blood vessel activation initially observed in rabbits [ 48 ]. 
In the  preparatory step  of the Shwartzman reaction, endotoxin, a PAMP, is injected 
intradermally where it acts through TLRs to release proinfl ammatory cytokines that 
activate skin blood vessels [ 49 ]. This process leads to local erythema that subsides 
unless there is further stimulation. If, however, there is a  provocative step  induced 
by a small nontoxic dose of intravenous endotoxin 18–24 h after the  preparatory 
step , hemorrhagic necrosis develops in the  prepared  skin [ 50 ]. This dramatic effect 
is restricted to the  prepared  skin; all other tissues in the body appear to be spared. In 
rat models, established risk factors for stroke can act locally to prepare blood vessels 
in the brain for a “modifi ed Shwartzman reaction” in response to a provocative 
infl ammatory stimulus, such as endotoxin, injected intracisternally or intravenously 
[ 48 ]. Stroke risk factors such as hypertension, diabetes, advanced age, and genetic 
predisposition to stroke are also suffi cient to prepare rat brainstem vessels so that a 
single injection of endotoxin can provoke the “modifi ed Shwartzman” reaction [ 48 ]. 
Affected rats manifest neurologic defi cits accompanied by pathologic lesions while 
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brain infarcts develop in only a small proportion of risk factor-free rats. The fraction 
of animals that develop infarcts in response to the provocative step varies directly 
with the relative importance of the stroke risk factors. These data suggest that one 
role of stroke risk factors is to prime vessels for activation and promote endothelial 
dysfunction in conformity with the local Shwartzman reaction, but that a second 
time critical systemic activation of infl ammation and/or hemostatic potential is 
necessary to precipitate local thrombosis or hemorrhage in the vessel. 

 Related studies show that Spontaneously Hypertensive, genetically Stroke Prone 
(SHR-SP) and Spontaneously Hypertensive (SHR) rats have elevated numbers of 
activated blood monocytes (as detected by nitroblue tetrazolium staining indicating 
the production of superoxide) when compared to normotensive Wistar-Kyoto 
(WKY) and Sprague-Dawley (SD) rats [ 51 ]. In addition, carotid arteries from the 
hypertensive strains show patchy endothelial expression of ICAM-1 with 
endothelium- adherent monocytes/macrophages, while those from normotensive 
strains do not. Further, incubation of carotid rings with endotoxin induces a 
concentration- dependent expression of interleukin (IL)-1β mRNA and release of 
tumor necrosis factor (TNF)-α to a signifi cantly greater degree in SHR than WKY 
rats. Hypertension thus appears to be associated with activation of both monocytes 
and endothelium, increased monocyte/macrophage adhesion to endothelium, and an 
increased capacity for blood vessels to produce proinfl ammatory cytokines. In 
aggregate, these studies implicate immune and infl ammatory mechanisms as inte-
gral to the stroke initiation process. Indeed, Rosenberg et al. characterized endothe-
lium in discrete vascular segments within an organ and found it to be continuously 
integrating signals from the blood, blood vessel wall, and surrounding parenchymal 
tissue to modify the hemostatic potential of each vessel segment in a cyclic and 
asynchronous fashion [ 52 ]. 

 Based on the foregoing fi ndings and analyses, it was reasoned that because 
infl ammatory and immune mediators drive cyclic changes of local hemostatic poten-
tial that stroke in stroke-prone individuals might also occur when a homeostatic 
threshold is exceeded and local thrombosis or hemorrhage occurs. If this hypothesis 
is true, immunomodulation of blood vessel activation might be an effective approach 
to stroke prevention. The challenge of this approach to stroke prevention is directing 
the immunomodulatory therapy to the activating blood vessels. As described above, 
induction of mucosal tolerance to a priming antigen could potentially be used to 
target these activating segments. The expression of E-selectin, for instance, is con-
fi ned to the luminal surface of endothelium; it is not constitutively expressed but is 
upregulated in vessel segments that are becoming activated [ 53 ]. Using the paradigm 
of mucosal tolerance to induce E-selectin-specifi c T reg  cells, a robust suppression 
of spontaneous strokes was found in stroke-prone rats (SHR-SP/Izm) [ 54 ]. In com-
parison to control groups, the SHR-SP rats repeatedly tolerized to recombinant 
human E-selectin (rhES) over the course of 56 weeks had a marked reduction in the 
incidence of ischemic strokes and the absence of parenchymal hemorrhages [ 54 ]. 

 In addition to stroke prevention, induction of E-selectin T reg  cells is also neuro-
protective leading to smaller infarcts and better outcome following MCAO [ 55 ]. 
Further, E-selectin T reg  cells reduce vascular cognitive impairment, prevent 
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vasospasm following subarachnoid hemorrhage, suppress experimental autoimmune 
encephalomyelitis (EAE), and inhibit the development of atherosclerosis in ApoE 
null mice fed a hyperlipidemic diet (reviewed in [ 56 ]). Interestingly, post- ischemic 
adult neurogenesis is enhanced by repetitive intranasal instillation of E-selectin in 
SHR rats subjected to permanent middle cerebral artery occlusion [ 57 ]. On the basis 
of this laboratory work, a strategy for induction of T reg  cells to E-selectin is being 
developed for prevention of recurrent strokes in patients at risk.  

    Potential Dangers of Mucosal Tolerance 

 The data suggest that induction of T reg s prior to stroke onset is associated with 
decreased infarct volume and improved neurological outcome immediately after 
stroke onset [ 39 ,  41 ,  55 ]. By preventing the induction of T h 1 responses, improved 
outcomes are also seen 1 month after experimental stroke [ 18 ]. Additional follow-
 up, however, showed at least some of the animals undergoing induction of mucosal 
tolerance to MBP had developed T h 1 responses to MBP at 3 months after experi-
mental stroke [ 19 ]. As it turns out, there is not much that separates the requirements 
for induction of T reg  cells and T h 17 cells, the latter of which secrete IL-17 and are 
associated with autoimmune disease. TGF-β1 is needed for the development of both 
cell lines; in the presence of IL-6, lymphocytes will become T h 17 cells, and in the 
absence of IL-6, they will become T reg  cells (Fig.  16.1 ) [ 58 ]. Further, it is becom-
ing increasingly apparent that the T reg  phenotype is not stable, and cells originally 
committed to a T reg  phenotype can convert to T h 1 or T h 17 phenotypes [ 59 ]. 

 Efforts to move immunomodulatory therapies into clinical trials must thus 
address potential adverse effects (like those that might be related to unstable T reg  
cells) thorough careful preclinical studies. For instance, there are reports of mucosal 
administration of antigen-exacerbating infl ammation in EAE and oral administra-
tion of insulin-inducing autoimmune diabetes [ 60 ,  61 ]. Mucosal administration of 
antigen can also promote a humoral response to the administered antigen, as seen in 
a nonhuman primate model of EAE where animals treated with soluble MOG devel-
oped detrimental antibodies to MOG [ 62 ]. Minimal requirements for preclinical 
studies include prolonged monitoring for evidence of rebound immune activation 
after termination of procedures to induce T reg  responses (or after cessation of other 
immunomodulatory therapies). Further, the risks of long term immunosuppression, 
even if localized to the target organ, are largely unknown and a wide range of pos-
sible effects must be considered. 

 Human studies of mucosal tolerance have been conducted for treatment of a 
variety of autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, 
autoimmune diabetes, uveitis, and infl ammatory bowel disease [ 63 – 72 ]. The effi -
cacy of mucosal tolerance for the diseases treated thus far is unclear, but the safety 
of the approach does not appear to be an issue in any of the studies. Based on these 
safety data and the extensive preclinical studies of E-selectin in a variety of stroke/
animal models, an NINDS workshop on immunomodulation supported the early 
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translation of mucosal tolerance to E-selectin from animal to clinical studies (predi-
cated on the successful completion of preclinical toxicology and immunotoxicology 
studies) [ 73 ]. The primary goals of the early human E-selectin studies are to deter-
mine the safety and appropriate dosing of E-selectin in humans and to explore 
potential biomarkers that would indicate success of the immunologic manipulation 
(i.e., induction of E-selectin T reg  cells) as well as the success of the overall strategy 
for preventing/treating vascular disease and stroke. These initial studies will be 
small with very closely monitored. And importantly, as mentioned, these clinical 
studies will only occur after adequate preclinical toxicology and immunotoxicology 
have been completed. If unanticipated problems arise, the hope is to minimize the 
harm done and to not repeat the well-publicized disaster of the TGN1412 study. In 
the Phase I study of TGN1412, a novel antibody that acts as an agonist of CD28, all 
6 treated patients rapidly developed a systemic infl ammatory syndrome with multi-
organ failure [ 74 ]. Because preclinical animal studies did not predict this systemic 
infl ammatory response, it is important to consider species differences in the immune 
system and to be certain that initial human dosing is done one individual at a time 
to prevent multiple volunteers from being unnecessarily exposed to harm. 

 In addition to the “escape of tolerance” that can occur following induction of 
T reg  cells, there are other potential detrimental long-term effects of protracted 
immunomodulation for which patients will need to be monitored closely. These 
long-term effects include susceptibility to infection and malignancies. While muco-
sal tolerance is not expected to have profound effects on systemic immunity, the 
experience with natalizumab, a monoclonal antibody directed towards the α subunit 
of very late antigen (VLA)-4 for the treatment of multiple sclerosis highlights the 
potential risks. This antibody blocks lymphocyte adhesion to and transit from the 
vasculature and is associated with an increased likelihood of developing progressive 
multifocal leukoencephalopathy (PML), a central nervous infection caused by the 
JC virus [ 75 – 77 ].  

    Conclusion 

 Induction of antigen-specifi c regulatory T-cell responses is an immunomodulatory 
strategy that can be used to both prevent and treat stroke. While these T reg  cells are 
activated in an antigen-specifi c fashion, the cytokines secreted by these cells act in 
an antigen nonspecifi c fashion, modulation of the immune response is thus limited 
to wherever the relevant antigen is present, irrespective of whether that antigen pro-
voked an immune response. Antigen-specifi c T reg  cells can therefore be used to 
target immunomodulatory responses in a site and time-dependent manner, hope-
fully limiting potential side effects associated with systemic immunomodulatory 
therapies. The utility of expanding the T reg  compartment with mucosal administra-
tion of antigen for prevention and treatment of stroke in humans is unknown, but 
preclinical data suggest reasons for optimism.     
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    Abstract     Over the last decade, the transcription factor PPARγ, previously known 
for its essential role in regulation of metabolic processes in adipose tissue, emerged 
as highly promising new target for the treatment of many neurological conditions, 
including ischemic and hemorrhagic stroke. Based on many cell culture and animal 
studies, activation of PPARγ was demonstrated to be associated with a broad range 
of biological effects (via genomic and non-genomic mode of action in virtually all 
brain cell types) which could effectively ameliorate pathogenic processes triggered 
by stroke, including infl ammation, oxidative damage, edema, BBB preservation, 
and excitotoxicity, as well as help in the post-stroke recovery process by modulating 
the macrophage-mediated brain cleanup process. Some key aspects of PPARγ as 
target for stroke treatment are reviewed in this chapter.  

        Introduction 

 The peroxisome proliferator-activated receptors (PPARs), including α, γ, and δ/β, 
are encoded by separate genes and are members of the nuclear hormone receptor 
superfamily of ligand-activated nuclear transcription factors.  PPARγ , also known 
as NR1C3 (nuclear receptor subfamily 1, group C, member 3), is a pleiotropic type 
II   nuclear receptor    , which was termed for its ability to induce proliferation of 
hepatic peroxisomes in response to xenobiotic stimuli in mice [ 1 ]. Three different 
PPARγ transcripts (PPARγ 1, 2, and 3), each a derivative of the PPARγ gene through 
differential promoter usage and alternative splicing, have been identifi ed [ 2 ,  3 ]. 
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While PPARγ 2 is the form primarily expressed in adipose tissue, PPARγ 1 has 
broader tissue distribution including presence in the brain [ 2 ]. As a transcription 
factor that regulates target gene expression through binding to the conserved DNA 
sequence termed  peroxisome-proliferator response element  ( PPRE ) [ 2 ,  4 ,  5 ], 
PPARγ was initially described in adipose tissue as a key regulator of metabolic 
processes [ 6 – 9 ]. Soon after, PPARγ was shown to be a unique therapeutic target for 
the treatment of metabolic disorders, e.g., diabetes (insulin resistance), obesity, 
  hyperlipidemia    , and   hyperglycemia     [ 10 – 12 ]. Among many compounds, ligands for 
PPARγ activation include fatty acids (especially the oxidized form) [ 13 – 15 ], cyclo-
pentanone prostaglandins (e.g. ,  15-deoxy-Δ12,14-prostaglandin J 2 ; -15d-PGJ 2 ) 
[ 16 ], lipoxygenase products [ 17 ,  18 ], the nonsteroidal anti-infl ammatory drugs 
(NSAIDs) [ 19 ,  20 ], and a class of clinically relevant compounds, the thiazolidine-
diones ( TZDs ) [ 10 ,  21 ]; of which pioglitazone and rosiglitazone are used to treat 
the type 2 diabetes mellitus [ 22 – 25 ]. In addition, PPARγ transactivation is regu-
lated by its phosphorylation [ 26 ,  27 ]. Specifi cally, phosphorylation of PPARγ by 
the extracellular signal-regulated kinase ( ERK1/2 ) and C-Jun N-terminal kinase 
( JNK ) reduces PPARγ activity [ 26 ,  27 ]. Since JNK is activated by H 2 O 2 , oxygen–
glucose deprivation ( OGD ), NMDA or ischemic stroke and acts as pro-death signal 
[ 28 – 32 ], the deleterious JNK functions may be secondary to the phosphorylation-
mediated PPARγ inhibition. 

 Later studies on the mechanism of PPARγ action in other than fat tissue demon-
strated its important role in regulation of anti-oxidative and anti-infl ammatory pro-
cesses [ 33 – 35 ]. It is primarily the anti-infl ammatory properties of PPARγ ligands 
that ultimately brought the closer attention to PPARγ and PPARγ-activating agents 
to vascular diseases process [ 36 – 38 ]. PPARγ (and primarily PPARγ1) expression is 
ubiquitous regarding the type of tissues and cells it is expressed. In terms of neuro-
logical conditions, PPARγ in preclinical studies was shown to act as potential target 
for the treatment of ischemic stroke [ 39 – 51 ], intracerebral hemorrhage [ 52 ], neu-
rotrauma [ 53 – 58 ], Alzheimer’s and neurodegenerative diseases [ 59 – 69 ], autoim-
mune encephalomyelitis ( EAE ), a model for multiple sclerosis [ 70 – 72 ]. In this 
chapter, our focus is mainly on the role of PPARγ in ischemic stroke, attempting to 
discuss the interactions of PPARγ with the NF-E2-related factor 2 ( Nrf2 ) and the 
nuclear factor kappa B ( NF-κB ) signaling pathways in regulating pro- and anti- 
infl ammatory responses in the brain.  

    Pleiotropic Effect of PPARγ Agonists in Ischemic Stroke 

 Based on the known function of gene targets, PPARγ acts as a key regulator in a broad 
range of processes virtually in all brain cells including neurons [ 45 ,  73 ], astroglia 
[ 74 – 76 ], oligodendroglia [ 77 – 79 ], microglia [ 54 ,  80 ,  81 ], and   endothelial cells     [ 82 , 
 83 ]. Primarily through the use of various PPARγ agonists but also through the use of 
cell-specifi c PPARγ knockouts, PPARγ was demonstrated to protect brain from 
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damages caused by ischemic [ 41 ,  42 ,  45 ,  84 – 87 ] and hemorrhagic stroke [ 53 – 55 ]. The 
benefi cial effects of PPARγ activation was linked to (1) repression of pro- infl ammatory 
mediators production (at least in part through inhibition of NF-κB either directly or by 
upregulation of endogenous NF-κB inhibitor, IκB [ 33 ,  34 ,  53 ,  88 – 95 ]), (2) upregula-
tion of antioxidant enzymes including CuZn-superoxide dismutase ( SOD ) and cata-
lase [ 41 ,  54 ], (3) inhibition of excitotoxicity [ 96 ,  97 ], and (4) activation of phagocytotic 
activities by microglia and macrophages via mechanism involving the PPARγ-target 
gene—scavenger receptor CD36, the molecule that assists in cleanup of damaged 
brain tissue, a process necessary for effi cient recovery and the termination of deleteri-
ous pro-infl ammatory cascade (Fig.  17.1 ) [ 54 ,  98 – 101 ].
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  Fig. 17.1    PPARγ regulated pathways after stroke—role of PPARγ activators. PPARγ transcrip-
tionally controls expression of numerous genes including the anti-oxidative enzymes, such as cata-
lase and superoxide dismutase (SOD), as well as the transcription factor Nrf2. Nrf2 plays a key 
role in amplifying the expression of many anti-oxidative genes including catalase and SOD, simi-
lar to PPARγ. This anti-oxidative feature of PPARγ is critical in combating oxidative damage 
imposed by cerebral ischemia. Importantly, since PPARγ and Nrf2 are ubiquitously expressed, this 
anti-oxidative mechanism may apply to all brain cell types affected by stroke. In addition, both 
PPARγ and Nrf2 regulate expression of CD36, a scavenger receptor that is abundant on microglia/
macrophages. CD36 plays important role in endocytosis of oxidized lipids and phagocytosis of 
dead (including apoptotic) cells and other cellular debris, thereof aiding in cleanup—process 
allowing for a faster infl ammation resolution and more effi cient tissue repair. Another important 
task of PPARγ is to inhibit NF-κB, a proinfl ammatory transcription factor implicated in BBB dis-
ruption and brain edema formation. Ultimately, augmented PPARγ activation improves infl amma-
tion resolution, tissue repair, and functional recovery after stroke       
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       PPARγ and Neuroprotection 

 In response to the prolonged ischemia, neurons that are localized in the ischemic 
core die rapidly as consequence of ischemia-induced energy failure, anoxic depolar-
ization, and excitotoxicity, which is the result of glutamate receptors overactivation, 
calcium overload, and a breakdown of ion homeostasis [ 102 – 109 ]. Using oxygen–
glucose deprivation (OGD) or glutamate/NMDA toxicity (in vitro models of isch-
emia) to study the neuroprotective capacity of PPARγ agonists [including 
pioglitazone, rosiglitazone, or cyclopentanone prostaglandins ( CyPG )], we and 
other groups demonstrated that activation of PPARγ potently reduces the neuronal 
death in the primary neurons [ 96 ,  97 ,  110 ], implying that PPARγ may act as pro- 
survival factor for neurons under the ischemic/excitotoxic stress. The anti- excitotoxic 
effect of PPARγ agonists was observed not only in cultured neurons but also in the 
animal injury model that assess the extent of brain damage caused by intracortical 
injection of NMDA [ 97 ]. Finally, we have established that neurons derived from 
animals engineered to lack PPARγ, selectively in neurons, demonstrated signifi -
cantly increased susceptibility to excitotoxic damage and to OGD [ 84 ]. In agree-
ment with the in vitro data, mice lacking PPARγ in neurons were signifi cantly more 
susceptible to the ischemic damage caused by focal cerebral ischemia [ 84 ]. 

 Reactive oxygen species ( ROS ) are well known to represent one of the most 
important components of brain injure in response to ischemia/reperfusion insult. 
ROS are generated by the ischemia-affected brain cells, the activated microglia, and 
infi ltrating neutrophils that collectively impose oxidative stress to cells located in 
proximity to the ischemia [ 111 – 114 ]. To combat the oxidative stress, cells have 
developed a number of self-defense mechanisms including upregulation of enzymes 
with anti-oxidative functions. Superoxide dismutase along with catalase and gluta-
thione peroxidase plays key roles in eliminating ROS through catalytic decomposi-
tion of superoxide or H 2 O 2  [ 84 ,  115 ,  116 ]. Catalase is a large homotetrameric 
protein that is usually localized in peroxisomes (the membrane-bound organelles 
that house β-oxidation of very long chains of fatty acids, in which toxic peroxides 
are generated as side products) [ 117 ], where it acts to protect the cells from the toxic 
effects of H 2 O 2  by catalyzing its decomposition. As a ubiquitous enzyme to most 
cells in our body including neuroglia and neurons [ 118 ], catalase expression is 
 regulated by PPARγ and Nrf2 [ 115 ,  119 ]. The distribution pattern of catalase-
immunopositive neurons throughout the brain inversely corresponds to increased 
susceptibility to damage induced by global cerebral ischemia [ 118 ], suggesting that 
catalase plays important role in cell survival. Overexpression of catalase in rat stria-
tum through virus-mediated gene transfer decreases the vulnerability to ischemic 
stroke [ 120 ]. In response to PPARγ activation, expression of catalase rapidly 
increased in the ischemia- affected brain [ 118 ,  121 ] and in the OGD-injured neurons 
[ 122 ], which likely refl ect an adaptive response aiming at improving the antioxidant 
buffering capacity under the pathological scenarios. In agreement with this notion, 
treatment with catalase of neurons in culture subjected to H 2 O 2 -induced injury pro-
vided a robust cytoprotection [ 123 ,  124 ]. Thus, catalase upregulation by PPARγ 
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may refl ect a self-protective mechanism to combat oxidative stress in stroke. It is 
important to point out that in addition to catalase, PPARγ regulates expression of 
superoxide dismutase (including in neurons), an enzyme well recognized for 
decades as a key player in mitigating oxidative injury and brain damage after cere-
bral ischemia [ 41 ,  84 ,  125 ,  126 ].  

    PPARγ-Induced CD36 Expression on Phagocytes 
and the Endogenous Cleanup Mechanism 

 After cerebral ischemia, the infarcted/dead tissue not only acts as a reservoir of vari-
ous cytotoxic and pro-infl ammatory molecules that harm the adjacent healthy brain 
tissue, but it also forms a biological and physical barrier hampering neural reorga-
nization, repair, and ultimately, neurological recovery. Thus, in order to minimize 
such detrimental effects, infarcted tissue needs to be removed to facilitate recovery. 
Microglia and hematogenous macrophages ( MMΦ ) are the cells primarily respon-
sible for such cleanup and repair processes. Successful removal of the disintegrated 
and apoptotic brain cells or debris (including the neutrophils that accumulate in 
brain in response to injury and consequently die through apoptosis) by MMΦ is also 
essential in achieving resolution of infl ammation. While apoptotic cells appear to be 
considerably benign to the surrounding brain tissue, an apoptotic cells non- 
phagocytosed in a timely manner may undergo secondary necrosis causing spill of 
the intracellular toxic content, leading to the damage to the neighboring cells and 
causing infl ammation. Several macrophage scavenger receptors that mediate 
cleanup process have been identifi ed. These include not only CD36 but also CD91, 
SR-A, and several others [ 54 ,  127 – 133 ]. Regarding apoptotic cell efferocytosis by 
macrophages, the phosphatidyl serine on the sickle red blood cells, symmetric red 
cell ghosts [ 134 – 136 ], or apoptotic neutrophils was suggested to act as the recogni-
tion molecule for CD36, a class II scavenger receptor on macrophages [ 137 – 139 ]. 
Expression of CD36 on macrophages ( MΦ ) is transcriptionally regulated by both 
PPARγ [ 98 ,  140 ,  141 ] and Nrf2 [ 142 – 145 ]. Although CD36 has various functions, 
one of its primary roles is to mediate endocytosis of (oxidized) fatty acids and 
phagocytosis of dead/apoptotic cells [ 129 ,  137 ,  146 – 148 ]. Defi ciency of CD36 in 
macrophages due to genetic deletion of PPARγ leads to delayed uptake of oxidized 
LDL by macrophages and aggravation of atherosclerotic lesions [ 149 ]. In CD36-KO 
mice, aberrant phagocytotic capacity of macrophages was proposed to explain the 
defi ciency in remyelination in response to sciatic nerve crush injury [ 150 ]. In addi-
tion, transfection of non-phagocytic cells with CD36 renders these cells capable of 
ingesting apoptotic neutrophils, lymphocytes, and fi broblasts [ 138 ], further con-
fi rming the important role of CD36 in phagocytosis. As pointed above, since CD36 
transcription is under control of Nrf2 and PPARγ, the upregulation of CD36 by 
MMΦ in response to Nrf2 and/or PPARγ activators may ensure a more effi cient 
interaction between the MMΦ and their targets for phagocytosis. This may allow 
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for more effi cient phagocytosis-mediated clearance of dead cells/tissues from the 
ischemic brain. However, despite its benefi cial role in the cleanup process, CD36 
may have detrimental effect which is normally characterized by increased oxidative 
stress and pro-infl ammatory responses, as adult animals defi cient in CD36 suffer 
from the less profound damage in response to cerebral ischemia [ 151 ,  152 ]. The 
nature of these responses is not known; however, the likelihood is that upon engulf-
ment of cellular debris including oxidized lipids, the MMΦ generate damaging lev-
els of oxidative stress during degradation of debris in the phagolysosomes. 
Interestingly, CD36 knockout neonates subjected to cerebral ischemia experienced 
more damage (suggesting benefi cial function of CD36), which was suggested to be 
in part due to the impaired cleanup mechanism [ 153 ]. Independent of the natural 
responses that were tested in experiments using CD36 knockout mice, we suggest 
that under conditions using pharmacologic agents to activate PPARγ, MMΦ not 
only express higher levels of CD36 for a more effi cient phagocytosis but also pro-
duce more anti-oxidative enzymes (e.g., catalase) that are regulated by PPARγ. 
Recently, we provided the evidence that MMΦ in culture challenged with PPARγ or 
Nrf2 activators, despite expressing CD36 at much higher level and demonstrating 
the augmented phagocytosis, experienced less oxidative damage and showed 
reduced pro-infl ammatory gene expression [ 54 ]. 

 Thus, in response to PPARγ in activated microglia, the upregulation of the anti-
oxidant enzymes (in addition to CD36) may play a protective role allowing for 
effective and safe phagocytosis. Consequently, cleaning the apoptotic/dislocated/
damaged cells or debris will help to reestablish the nurturing environment necessary 
for restoring tissue structure and neurological function recovery [ 154 ,  155 ].  

    PPARγ Activation and the Interaction of PPARγ and RXR 

 PPARγ regulates target gene expression by binding to PPRE as heterodimers with 
the retinoic acid receptor ( RXR ). Interestingly, existing studies indicate that activa-
tion of PPARγ–RXR complex can be achieved with either PPARγ and/or by RXR 
ligand (e.g., 9- cis  retinoic acid), indicating some level of the promiscuity in activa-
tion of PPARγ [ 156 ,  157 ]. Although each ligand can initiate transactivation inde-
pendently, the effect of co-activation appears to be stronger [ 9 ], suggesting that the 
occupancy of both PPARγ and RXR ligand (e.g., 15d-PGJ 2  plus 9- cis  retinoic acid) 
is needed for the maximal receptor activity [ 9 ,  158 – 160 ]. In agreement with this 
notion, we found that co-treatment of cultured neurons with 15d-PGJ 2  and 9- cis  
retinoic acid was more effective in reducing the OGD-induced damage, as com-
pared to each ligand alone [ 53 ]. This benefi cial interaction between PPARγ and 
RXR ligands in our neuroprotection assay is consistent with an earlier report show-
ing that combination use of 15d-PGJ 2  and 9- cis  retinoic acid was superior to each 
drug alone in reducing behavioral dysfunction in a mouse model of experimental 
autoimmune encephalomyelitis [ 161 ].  
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    Interaction of PPARγ and Nrf2 and NF-κB 

 The pro-survival role of PPARγ includes the non-genomic inhibition of deleterious 
pro-infl ammatory transcription factor, nuclear factor kappa B, NF-κB. In the 
ischemia- injured brain, the delayed cell death is in part triggered by the overproduc-
tion of pro-infl ammatory molecules including pro-infl ammatory cytokines (such as 
tumor necrosis factor alpha,  TNF-α  or interleukin-1 beta,  IL-1β ), adhesion mole-
cules (such as intercellular adhesion molecule 1,  ICAM-1  or vascular cell adhesion 
molecule,  VCAM ), matrix metalloproteinases (including  MMP9 ) or the pro- 
oxidative inducible form of nitric oxide synthase ( iNOS ) capable of generating large 
quantities of nitric oxide, that in presence of superoxide generated by NADPH oxi-
dase is converted to a highly cytotoxic peroxynitrites [ 109 ,  162 – 165 ]. Once per-
petuated by ischemia, these potentially deleterious factors act in concert to damage 
blood–brain barrier (BBB) and cause edema and/or hemorrhage [ 166 – 168 ]. 
Interestingly, the expression of all these factors is tightly regulated by NF-κB. The 
activation of PPARγ can antagonize these harmful effects through inhibition of 
NF-κB [ 33 ,  34 ], which may be achieved by at least three independent mechanisms 
(Fig.  17.1 ) [ 33 ,  34 ,  53 ,  88 – 95 ]. First, PPARγ may directly bind to the NF-κB sub-
units, p50 and p65, resulting in NF-κB inactivation [ 169 ]; second, PPARγ may 
indirectly inhibit NF-κB by sequestering the common transcription co-activators 
such as SRC-1 [ 170 ] and p300/CBP (CREB-binding protein) [ 88 – 90 ]; and third, 
PPARγ may upregulate the production of inhibitor kappa B ( IκB ) [ 91 ,  93 – 95 ], the 
protein that directly inhibit NF-κB activation. Inhibition of NF-κB by PPARγ ago-
nists may reduce generation of pro-infl ammatory mediators involved in the second-
ary brain damage. 

 Nrf2 is a ubiquitous pleiotropic transcription factor and a key genomic homeo-
static regulator of intracellular stress [ 171 ]. By combining with Mif family proteins, 
Nrf2 forms heterodimeric complexes capable of transactivating the antioxidant 
response elements  (ARE ) within the regulatory region of many cytoprotective target 
genes including catalase, superoxide dismutase, glutathione- S -transferase, thiore-
doxin, NQO1, and many other proteins with important role in neutralization of oxi-
dative stress and detoxifi cation [ 172 ]. In most cells, Nrf2 is present at low 
concentrations due to continuous Nrf2 degradation through the proteasome pathway 
[ 173 ,  174 ]. Nrf2 contributes to cytoprotection and amelioration of tissue damage 
through reducing the oxidative stress in many pathogenic conditions including cere-
bral ischemia [ 175 – 181 ], neurodegenerative diseases [ 182 ], and mitochondrial met-
abolic stress [ 183 ]. The growing body of evidence suggests that PPARγ may play 
important role in regulation of Nrf2 and thus Nrf2 target genes (Fig.  17.1 ). The 
interaction between PPARγ and Nrf2 may involve several layers of interaction. 
Most importantly, PPARγ was demonstrated to regulate Nrf2 gene expression and 
Nrf2-regulated genes containing putative PPREs [ 184 ]. Interestingly, it appears that 
Nrf2 also regulates PPARγ and PPARγ-regulated genes containing the ARE [ 185 ]. 
Next, PPRE and ARE coexist in the same genes, such as CD36 and catalase, sug-
gesting an interactive function of Nrf2 and PPARγ in expression of these genes. 
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Finally, an interaction between PPARγ and Nrf2 may be through NF-κB inhibition. 
Since NF-κB activation requires the presence of oxidative stress [ 186 ], the effect of 
Nrf2 in ameliorating oxidative stress was proposed to inhibit NF-κB [ 187 ]. As dif-
ferent mechanisms are used by Nrf2 and PPARγ in inhibiting NF-κB, it is likely that 
the mutual effect may lead to a synergistic role [ 188 – 190 ].  

    Adverse Effects of PPARγ Agonists 

 There is a small number of observations reporting the dose-dependent neurotoxic 
effects of the endogenous PPARγ ligand 15d-PGJ 2  in cerebellar granule cells [ 191 ], 
primary cortical neurons [ 192 ], and spinal cord motor neurons [ 193 ]. The mecha-
nism that underlies this neurotoxicity is unclear and some reports indicate that these 
harmful actions are probably not directly linked to PPARγ [ 191 ]. In our studies 
using mouse and rat neurons in culture, we have not observed neurotoxicity using 
PPARγ activating ligands to date. In fact, all the tested PPARγ agonists including 
15d-PGJ 2 , 15d-PGD 2 , ciglitazone, rosiglitazone, and pioglitazone demonstrated 
potent cytoprotective effects in models of OGD and excitotoxicity [ 45 ,  50 ,  97 ]. The 
only instance showing toxicity was when the doses of the agonists were higher than 
these needed for the cytoprotection. Unlike synthetic TZDs that display rather sig-
nifi cant levels of PPARγ specifi city, prostaglandin D 2  derivatives, including 15d- 
PGJ 2   , have a limited selectivity toward PPARγ and many of their biological 
activities are independent of PPARγ [ 92 ,  194 – 198 ]. However, the clinical use of 
PPARγ ligands, and primarily rosiglitazone, was associated with hemodilution, 
peripheral edema, increase in body weight, as well as cardiomyopathies and heart 
failure [ 46 ,  199 – 201 ]. Again, these are the known side effects of long-term use of 
these medications and as such should not necessarily infl uence the safety of patients 
subjected to short-term treatment. The study evaluating the safety of pioglitazone in 
patients with hemorrhagic stroke is currently ongoing [ 52 ].  

    PPARγ Agonists and Clinical Trials 

 Two of the thiazolidinediones (TZDs), pioglitazone and rosiglitazone, are currently 
approved by the FDA for treatment of type 2 diabetes mellitus. These insulin- 
sensitizing PPARγ agonists are unique among all the glucose-lowering agents as 
they act independent of secretion of insulin from pancreas (TZDs do not change 
blood insulin levels, rather make cells more sensitive to its effect) [ 22 ,  202 ]. The 
glucose-lowering effect of TZDs is of clinical importance since hyperglycemia dur-
ing ischemia/reperfusion may worsens the brain damage and neurological outcome, 
including by increasing incidence of hemorrhage in patients subjected to throm-
bolysis with rt-PA [ 203 – 206 ]. A fi rst case-matched controlled study reporting 
improved functional recovery in stroke patients with type 2 diabetes receiving 
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pioglitazone or rosiglitazone (vs. control type 2 diabetes patients not receiving 
TZDs) yields a promising outlook [ 207 ]. Subsequently, PROACTIVE ( PRO spective 
pioglit A zone  C linical  T rial  I n macro V ascular  E vents; NCT00174993), a random-
ized, double-blinded, placebo-controlled study looked at the impact of pioglitazone 
on total mortality and macrovascular morbidity in 5,238 patients with diabetes and 
macrovascular disease. This secondary prevention study showed safety and a mac-
rovascular benefi t with pioglitazone in terms of major adverse cardiovascular events 
including all-cause mortality, nonfatal myocardial infarction, acute coronary syn-
drome, cardiac intervention (including coronary artery bypass graft or percutaneous 
coronary intervention), and stroke [ 208 – 210 ]. The higher benefi cial rates were 
observed in patients with prior stroke compared with those without prior stroke 
[ 211 ,  212 ]. A meta-analysis of 19 randomized clinical trials with pioglitazone 
revealed a statistical difference regarding the favorable outcome including mortal-
ity, nonfatal MI, and stroke when using pioglitazone [ 201 ]. However, a recent study 
suggests that use of rosiglitazone may impose 1.4-fold increase in risk of acute MI 
and death from cardiovascular diseases compared with non-TZDs therapies [ 213 ]. 
As compared to pioglitazone, rosiglitazone signifi cantly increased the risk of stroke, 
heart failure, and death in elderly patients [ 214 ]. In contrast, from the stroke preven-
tion point, pioglitazone has shown signifi cant protection from both micro- and mac-
rovascular cardiovascular events and plaque progression [ 215 – 217 ].     
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    Abstract     Stroke is a major leading cause of death and disability in the human 
population. The pathology of stroke-induced brain injury involves multifactorial 
pro-death processes. Among them, infl ammation is an important contributor to 
stroke pathology as indicated by the close association between excessive infl amma-
tion and exacerbation of the disease process. Considerable experimental evidence 
indicates that disease outcome is modulated by several factors including predispos-
ing clinical conditions. Stroke compromises vascular permeability and leads to 
breakdown of the blood–brain barrier. While the pathology primarily occurs in the 
CNS, the presence of peripheral immune cells in the infarcted area suggests their 
potential role in post-ischemic infl ammation. Given recent advances highlighting 
the heterogeneity of peripheral immune cells and diversity of their function, we 
review neuroimmune interaction in the setting of acute cerebral ischemia, post- 
ischemic infl ammation, and the traffi cking of peripheral immune cells to infl amed 
tissue, with specifi c focus on the involvement of the class B scavenger receptor, 
CD36. We discuss CD36 expression and functions, the contribution of the receptor 
to stroke pathology, its relevance to peripheral infl ammatory conditions, and poten-
tial strategies to target the CD36-associated neuroinfl ammatory pathway.  
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  CCR2    c–c chemokine receptor type 2   
  DAMP    Damage-associated molecular pattern   
  EAE    Experimental autoimmune encephalitis   
  fΑβ    Fibrillar beta-amyloid   
  ICAM    Intercellular adhesion molecule   
  MCP-1    Monocyte chemotactic protein-1   
  mLDL    Modifi ed low-density lipoprotein   
  oxLDL    Oxidized low-density lipoprotein   
    ox  PC  CD36      Oxidized choline glycerophospholipid species   
  PAMP    Pathogen-associated molecular pattern   
  PPAR-γ    Peroxisome proliferator-activated receptor-γ   
  PRR    Pattern recognition receptor   
  TLR    Toll-like receptors   
  TSPs    Thrombospondins   
  SAB    Salvianolic acid B   

         CD36, A Multifunctional Scavenger Receptor 

   Overview 

 CD36 is an 88 kDa heavily N-linked glycosylated membrane protein [ 1 ,  2 ]. It has to 
date defi ed crystallization, so we can only imagine its structure based on protein 
prediction and modeling. Short intracellular tails extend from the two transmem-
brane domains (the N-terminal tail results from an uncleaved signal peptide), 
anchoring the protein, and exposing a large extracellular loop. There is a hydropho-
bic region that is predicted to dip back towards or into the plasma membrane, and 
disulfi de bonds of the 6 extracellular cysteines constrain the molecule [ 3 ,  4 ]. Two 
cysteine residues that are palmitoylated characterize both cytoplasmic domains, and 
both cytoplasmic tails are necessary for effi cient plasma membrane CD36 expres-
sion [ 5 ,  6 ]. Posttranslational disulfi de bond formation, glycosylation, and palmi-
toylation are all essential in targeting CD36 to the plasma membrane, and the latter 
is also required for positioning CD36 in caveolae, detergent-resistant membranes, 
or lipid rafts [ 4 ,  7 ,  8 ]. In some cell types, expression of caveolin-1 has been shown 
to be mandatory for plasma membrane targeting of CD36, and disruption of caveo-
lae may affect some CD36-dependent functions [ 9 – 11 ]. The partitioning of CD36 
to specifi c plasma membrane domains may facilitate interaction with signaling part-
ners and interacting proteins that are a requirement for CD36-dependent responses. 

 The human CD36 gene (including all variants) extends about 77 kb on chromo-
some 7q11.2 and encodes a predicted protein of 471 amino acids with a predicted 
molecular weight of 53 kDa (  http://www.ncbi.nlm.nih.gov/gene/948    ). Human 
CD36 has ten potential N-linked glycosylation sites, and thus the actual molecular 
weight varies from ~80–100 kDa [ 12 ]. The thick complex carbohydrate coat of 

S. Cho and M. Febbraio

http://www.ncbi.nlm.nih.gov/gene/948


323

CD36 may protect it from proteolysis in harsh environments. Variant transcripts and 
a multitude of single nucleotide polymorphisms (SNP) mostly in noncoding regions 
have been identifi ed [ 13 ,  14 ]. Mutations which result in absence of CD36 expres-
sion in platelets (Type II CD36 defi ciency) or in monocytes and platelets (Type I 
CD36 defi ciency) have been found at a frequency of 3–10 % in Asian and African 
populations and may persist as a result of selective pressure by the malaria parasite 
[ 15 – 18 ]. There is controversy as to whether absence of CD36 leads to or predis-
poses to human pathology, or is protective against malaria or other disease states. 
This may relate to whether CD36 is absent from all cells and tissues or some subset 
that differs depending upon the particular polymorphism, and the presence or 
absence of other interacting gene products.  

   Signaling 

 CD36 binding sites for oxidized low-density lipoprotein (oxLDL), growth 
hormone- releasing peptide and the family of thrombospondins (TSPs) are well 
defi ned, while the site for fatty acid binding is less precise and has not been tested 
defi nitively [ 19 – 22 ]. Other ligands have been assigned to the immunodominant 
domain (amino acids 155–183) by virtue of antibody blockade [ 23 ]. Alternatively, 
antibody binding to this domain may lead to a disruptive conformational change. 
There are two potential phosphorylation sites, both on the extracellular face of 
CD36, threonine 92 and serine 237. To date, phosphorylation at serine 237 has not 
been observed. However, there is data suggesting important biological conse-
quences with regard to the phosphorylation of threonine 92. On platelets, phos-
phorylation reduces palmitate uptake and inhibits binding of TSP-1 and perhaps 
platelet activation [ 24 – 26 ]. Although it was long presumed that the “default” status 
in resting platelets was the phosphorylated state, recent evidence points towards a 
low basal level of CD36 phosphorylation in both platelets and microvascular endo-
thelial cells [ 26 ]. Thus, why there is little platelet TSP binding and activation 
remains an open question. Threonine 92 is recognized by protein kinase C and to a 
lesser extent by protein kinase A [ 25 ,  27 ]. Recent work in transfected cell lines 
suggests that phosphorylation may also occur intracellularly as a posttranslational 
modifi cation under certain conditions [ 26 ]. 

 CD36 facilitates fatty acid uptake, but not by a classical transporter mechanism. 
Fatty acids probably bind transiently in the hydrophobic domain, and this facilitates 
fl ip-fl op across the membrane, followed by rapid esterifi cation or sequestration by 
cytoplasmic fatty acid binding proteins [ 28 ,  29 ]. Alternatively, CD36 may provide 
a hydrophobic pore facilitating fatty acid entry into membranes, analogous to the 
hypothesized mechanism by which scavenger receptor B1 facilitates cholesterol 
exchange between high-density lipoprotein and cells [ 30 ]. In contrast, uptake of 
oxLDL is via a caveolin-independent endocytic pathway and depends upon CD36- 
mediated lyn activation of the vav family of guanine exchange factors for Rho 
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family GTPases, for subsequent vesicle maturation [ 31 ,  32 ]. There is recent evi-
dence suggesting that CD36 is also expressed on mitochondrial membranes, but its 
 function remains controversial [ 33 – 35 ]. While all groups consistently show that 
increased fatty acid oxidation is accompanied by increased CD36-mediated fatty 
acid uptake at the plasma membrane, there has been no defi nitive evidence that 
CD36 plays a direct role in fatty acid delivery into mitochondria.  

   Expression and Function in the CNS and Periphery 

 Initially characterized as a platelet receptor for thrombospondin-1 (TSP-1, desig-
nated glycoprotein IV), CD36 expression has subsequently been found on many 
types of cells and tissues [ 36 ]. CD36 is expressed on blood cells and cells of the 
vasculature, including platelets, reticulocytes, monocytes and macrophages, den-
dritic cells, endothelial cells, and smooth muscle cells [ 37 – 44 ]. It is found in spe-
cialized epithelium, including mammary epithelium, retinal pigment epithelium, 
apical enterocytes of the proximal small intestine, and the proximal tubule epithe-
lium of the kidney [ 45 – 50 ]. CD36 is expressed in insulin-sensitive cells and tissues, 
including adipocytes, hepatocytes, cardiac and skeletal muscle, and pancreatic beta 
cell granules [ 28 ,  51 ]. CD36 is also found in taste receptors of the circumvallate 
papillae and steroidogenic cells of the adrenal, testes, and ovary [ 48 ,  52 ,  53 ]. 

 The functions of CD36 are dictated by the cell type, circumstances, and ligand 
(Fig.  18.1 ). For example, CD36 plays a major role in fatty acid uptake required for 
production of energy or heat, especially in heart, skeletal muscle, and brown adi-
pose tissue, and also in fat storage in white adipose tissue, and pathologically in 
liver and muscle [ 54 – 56 ]. CD36 also functions in recognition of malaria parasites 
and plays a role in fatty acid sensing by taste buds in the mouth and enterocytes in 
the gut [ 2 ,  48 ]. The uptake of oxLDLs by monocytes/macrophages leads to the for-
mation of “foamy” macrophages and is a key step in atherosclerotic lesion develop-
ment [ 57 ]. In binding the matricellular protein TSPs, CD36 may not only function 
as an adhesion receptor in platelets and between platelets, monocytes, tumor cells, 
sickled erythrocytes, and endothelium but can also modulate TGF-β activation, 
inhibit angiogenesis, and facilitate uptake of apoptotic cells [ 58 ]. CD36 is classifi ed 
as a pattern recognition receptor (PRR) because it recognizes pathogen-associated 
molecular patterns or PAMPs, and danger or damage-associated molecular patterns 
also known as DAMPs [ 59 ]. These are repetitive motifs found on pathogens, modi-
fi ed phospholipids, or oxidatively denatured cytoplasmic or nuclear constituents 
that present as nonself [ 59 ,  60 ]. Some examples include oxidatively modifi ed phos-
pholipids in rod outer segments, apoptotic cells and low- and high-density lipopro-
teins, advanced glycation end products (AGEs), neurotoxic prion protein, 
amyloid-beta (Αβ), and diacylglycerides in the cell walls of Gram-positive bacteria. 
The diverse responses by interacting with specifi c CD36 ligands often converge into 
endothelial dysfunction and infl ammation, common pathological features of cardio- 
and cerebrovascular diseases.
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     CNS 

 CD36 is expressed in neurons, microglia, astrocytes, and the endothelium of the 
blood–brain barrier. CD36 is expressed in neurons found in regions involved in 
pheromone responses and reproductive behavior. Specifi cally, it is found in neurons 
of the pyramidal layer of the ventral hippocampus, CA1 fi eld, amygdalopiriform 
transition area, the perirhinal cortex, and the ectorhinal cortex [ 61 ,  62 ]. Neurons of 
the ventromedial hypothalamic nucleus utilize both glucose and fatty acids as sig-
naling molecules and regulate energy homeostasis through central modulation of 
feeding behavior, hepatic glucose production, and hormone secretion. About 50 % 
of oleic acid sensing by ventromedial neurons of the hypothalamus was shown to be 
CD36 dependent, and this sensing was independent of fatty acid metabolism [ 62 ]. 
The mechanism of CD36-dependent fatty acid sensing is presumed to be analogous 
to that which has been defi ned in taste buds; CD36 binding by fatty acids is postu-
lated to cause neurotransmitter release by activation of a protein tyrosine kinase and 
liberation of inositol 1,4,5-triphosphate, leading to calcium-dependent membrane 
depolarization [ 62 ,  63 ]. Dysfunctional central fatty acid sensing by CD36 may play 
a role in insulin-resistant states and obesity. 

 Long chain fatty acid uptake by endothelial cells at the blood–brain barrier is at 
least partially receptor dependent, and the role of CD36 in this process has been 

  Fig. 18.1    CD36 as a multifunctional receptor. By recognizing a host of ligands, CD36 elicits 
myriad responses and the interaction between specifi c ligands and the receptor results in diverse 
physiological and pathological responses. CD36 forms a complex with α6β1 integrin and CD47 to 
elicit downstream function and also acts as a coreceptor for TLRs. Many CD36-associated path-
ways converge in infl ammatory responses.  LCFAs  long chain fatty acids,  TSPs  thrombospondins, 
 EC  endothelial cells,  ox(m)LDLs  oxidized (modifi ed) low-density lipoprotein,  AGEs  advanced 
glycation end products,  Glu-oxLDL  Glucose-oxLDL,  fAβ  fi brillar β amyloid,  TLR  toll- like 
receptor       
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evaluated. The uptake of monounsaturated fatty acids is probably partially CD36 
dependent; CD36 knockout mice have a signifi cant decrease in this class of fatty 
acids, and in cultured blood–brain barrier-derived endothelium, knockdown of 
CD36 signifi cantly decreased oleic acid uptake [ 64 ,  65 ]. Uptake of polyunsaturated 
fatty acids is most probably CD36 independent. The role of CD36 in fatty acid 
uptake within the brain remains to be elucidated. 

 CD36 expression was found in a subset of astrocytes in the post-ischemic brain 
[ 66 ]. The expression was temporally and spatially limited, only found 3 days fol-
lowing stroke and in the peri-infarct area, where the glial scar forms. Bao and col-
leagues subsequently showed a close relationship in the expression of CD36 and 
glial fi brillary acidic protein (GFAP). Inhibition of CD36 expression coincided with 
decreased GFAP expression and reduced glial scar, suggesting the involvement of 
CD36 in injury-induced scar formation [ 67 ]. 

 CD36 has been found to play a role in microglial activation induced by amyloid- 
beta (Αβ) in Alzheimer’s disease (AD) plaque and by the neurotoxic prion protein, 
leading to secretion of pro-infl ammatory cytokines [ 68 – 70 ]. There are apparently 
multiple mechanisms of microglial activation and downstream signaling that are 
CD36 dependent. Studies demonstrated that fi brillar amyloid beta (fΑβ) engaged 
microglia by a complex of receptors that included CD36, scavenger receptor A, 
α6β1 integrin, CD47, and toll-like receptors (TLRs) 2 and 4. These initiate a signal-
ing cascade that includes p38, src kinase, vav proteins, rac, and reactive oxygen 
species, leading to cytokine release and phagocytosis [ 71 ,  72 ]. Stewart et al. sug-
gested that TLR 4/6 and CD36 engaged Αβ and activated the infl ammasome, lead-
ing to release of infl ammatory cytokines. This group also found that CD36 was 
essential to a signaling cascade involving the src kinase fyn phosphorylating 
p130CAS, a focal adhesion scaffolding protein. This led to recruitment and phos-
phorylation of pyk2 and paxillin to the leading edge and membrane ruffl es, resulting 
in an increase in microglia migration [ 73 ].  

   Periphery 

 CD36 is highly expressed in mononuclear phagocytes, including monocytes, mac-
rophages, and dendritic cells [ 41 ,  74 ,  75 ]. Receptor-mediated uptake of oxidatively 
modifi ed LDL (mLDL)/oxLDL by monocytes increases transcription of CD36 and 
several other genes via activation of the nuclear hormone receptor peroxisome 
proliferator- activated receptor-γ (PPAR-γ) [ 76 ]. The activating ligand(s) for PPAR-γ 
are oxidized phospholipids, such as 9- and 13-HODE, and these and/or their precur-
sor lipids are delivered to the cell within the oxLDL particle. Similarly, in heart and 
liver, uptake of ligands for other members of the PPAR family is mediated by CD36 
and may contribute to cardiac lipotoxicity and hepatic steatosis [ 77 ,  78 ]. 

 On platelets, CD36 expression is variable in the population, and this is attributed 
to genetic polymorphisms but potentially may also relate to physiological status 
[ 79 ]. For example, both a high-fat diet and insulin resistance upregulate CD36 on 
monocytes/macrophages and could have similar effect on megakaryocytes. 
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Humans and mice defi cient in platelet CD36 do not have a signifi cant phenotype. 
However, recent studies using pathophysiological ligands of CD36, specifi cally, 
oxidized phospholipids and AGEs, support the hypothesis that platelet CD36 can 
modulate platelet reactivity by transducing prothrombotic signals [ 80 – 82 ]. The 
pathway in platelets follows a recurring theme: src kinase activation (in platelets, 
fyn and lyn are associated with CD36 following oxLDL binding), phosphorylation 
of vav family proteins, and Map kinase (in this case, MKK4), resulting ultimately in 
jnk activation. AGEs also trigger platelet CD36-mediated jnk2 activation [ 83 ]. In 
addition to activation of signaling pathways, CD36 may foster exchange of phos-
pholipids and fatty acids between platelets and lipoproteins. The type of fatty acid/
phospholipid, and whether it is oxidized, may alter platelet membranes rendering 
them more susceptible to aggregation [ 84 ]. Platelet CD36 has been shown to inter-
act with amyloids, and platelet aggregation was mediated by a p38 MAP kinase and 
thromboxane A2-dependent pathway [ 85 ]. Thus, increased platelet expression and 
sensitization by pathophysiological CD36 ligands may explain platelet hyperreac-
tivity in infl ammation and hyperlipidemic and insulin-resistant states, among oth-
ers, and lead to appreciable thrombosis in response to subthreshold platelet 
stimulating agents. In contrast to CD36-expressing mice, CD36 KO mice do not 
show platelet hyperreactivity in response to high-fat diet feeding or insulin-resistant 
states and have normal thrombosis profi les in experimental in vivo models that 
enrich for CD36 ligands [ 80 ,  84 ].    

   Neuroinfl ammation 

   Post-ischemic Infl ammation 

 Post-ischemic infl ammation is a contributing negative factor in stroke, exacerbating 
injury, and infl uencing outcome [ 86 ,  87 ]. Stroke increases infl ammatory mediator: 
free radical, cytokines/chemokines (IL-1β, TNF-α, IL-6, monocyte  chemotactic pro-
tein (MCP)-1, macrophage infl ammatory protein-1, C-C chemokine receptor type 2 
(CCR2), and infl ammatory proteins (inducible nitric oxide synthase, cyclooxygen-
ase, and matrix metalloproteinases). These mediators increase endothelial expres-
sion of adhesion molecules, such as intercellular adhesion molecule (ICAM)-1 and 
p-selectin, leading to leukocyte arrest and transendothelial migration at the injured 
site. These mediators either act in concert or converge into an infl ammatory response 
following activation of temporally and spatially separated cascades [ 88 ,  89 ]. A num-
ber of studies have shown that targeting specifi c neuroinfl ammatory mediators atten-
uates stroke-induced brain injury [ 90 – 92 ]. Mice defi cient in ICAM-1 or p-selectin 
displayed smaller infarct size compared to wild type [ 93 – 95 ]. Defi ciency in either 
MCP-1 or its cognate receptor, CCR2, also resulted in protection in murine stroke 
models [ 96 ,  97 ], while increased expression of MCP-1 exacerbated ischemic out-
come with enhanced recruitment of infl ammatory cells at the injury sites [ 98 ]. 
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Despite apparent benefi ts of attenuating neuroinfl ammatory  pathways in animal 
models, clinical trials in human stroke, using antibodies against adhesion molecules 
and neutrophils, were not effective [ 99 ,  100 ]. 

 Recent studies recognized the complexity in targeting neuroinfl ammatory path-
ways. Stroke-induced infl ammation is a double-edged sword in that it not only is 
necessary for containment and repair but can also lead to further damage. It has 
become increasingly clear that peripheral infl ammatory status and comorbidities are 
important factors in neuroinfl ammation and outcome [ 101 – 103 ]. Understanding the 
temporal sequence of activation of infl ammatory mediators, spatial localization of 
the cascade in the infarct (core vs. penumbra), and identifi cation of cell types acti-
vated remain to be investigated to selectively reduce adverse while preserving ben-
efi cial aspects of the infl ammatory response.  

   CD36: A Modulator of the Innate Immune System 

 In response to an encounter with microbes, the host elicits a rapid, specifi c, and self- 
constraining acute infl ammatory response to avoid infl ammatory-mediated damage 
to neighboring tissues [ 104 ]. This primordial defense response involves initial recog-
nition of the triggers, so-called PAMPs, through pattern recognition receptors (PRRs), 
which include scavenger receptors. Subsequently, triggered adaptive immune 
responses lead to resolution to reinstate tissue homeostasis in a timely manner. Sterile 
infl ammation occurs in post-ischemic tissues in the absence of microbes [ 105 ,  106 ]. 
The triggers of sterile infl ammation are elements of damaged tissue, including oxi-
dized lipids and cytoplasmic proteins, DNA, RNA, and proteolyzed or oxidized 
extracellular matrix components, which, as previously noted, are collectively termed 
DAMPs. Regardless of microbial or endogenous in nature, PRRs are believed to be 
involved in recognizing the triggers and eliciting infl ammatory responses (Fig.  18.2 ).

   In addition to playing a role in the endocytic uptake of modifi ed lipoproteins 
leading to foam cell formation, an important role for monocyte/macrophage CD36 
as a PRR in innate immune modulation has emerged [ 107 – 109 ]. This is both in 
association with and independent of TLRs. CD36 recognizes nonself, and this is 
one of the oldest and most conserved functions of these receptors, beginning with 
recognition of apoptotic cells during development as a result of normal homeostasis 
[ 110 ]. The recognition motif, altered fatty acid chains that become hydrophilic and 
more easily accessed by surface receptors, accounts for the crossover recognition to 
modifi ed lipoproteins carrying these ligands as a result of oxidative stress [ 111 , 
 112 ]. CD36 interaction with apoptotic cells invokes an anti- infl ammatory response, 
consistent with the maintenance of organism status quo. This response involves p38 
activation and transcriptional upregulation of the IL-10 promoter by Pbx-1 and 
Prep-1 [ 113 ,  114 ]. On dendritic cells, CD36 mediates uptake of apoptotic cells and 
is also involved in cross-presentation of antigens to cytotoxic T cells [ 41 ]. 

 In recognition of lipids in cell walls of bacteria, CD36 may play a role not only 
in endocytosis/phagocytosis but also in TLR signaling responses [ 73 ,  115 – 121 ] 
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(Fig.  18.1 ). This is an emerging topic in CD36 biology, and the exact mechanism 
is still under investigation. One hypothesis is that CD36 acts an accessory protein 
for TLRs to deliver ligands, while alternative data suggest that CD36 enhances 
downstream signaling. This may prove to be important in many of the infl amma-
tory responses mediated by CD36, as there is signifi cant crossover between TLR 
and CD36 ligands, including fatty acids, amyloid-beta, modifi ed LDL, and other 
PAMPs/DAMPs. Specifi cally, CD36 acts as a co-receptor for the recognition of 
bacteria-derived diacylglyceride    through a TLR2/6 complex [ 115 ,  122 ]. OxLDL 
and Αβ trigger infl ammatory signaling through TLR4/6 [ 73 ]. Abe and colleagues 
found that CD36 plays a key role in the infl ammatory response and tissue damage 
mediated by TLR2/1, but not TLR2/6, as a result of cerebral ischemia [ 121 ]. This 
differed from the accessory role of CD36 in monocyte/macrophages in the periph-
ery, where it was instead important for TLR 2/6 signaling. The explanation for 
this difference was not explored and may relate to differences in expression of 
other TLR accessory proteins. Nonetheless, these studies suggest that CD36 is 
involved in the pathogenesis of sterile infl ammation through convergence with 
TLR signaling.  

  Fig. 18.2    Innate immune receptors resolve pathogen-induced and sterile infl ammation. 
Convergence of innate immune system to resolve infl ammation. PAMPs or DAMPs are recognized 
through pattern recognition receptors such as TLRs and/or CD36. The interactions elicit appropri-
ate downstream responses to resolve infection and repair tissue damage.  TLRs  toll-like receptors, 
 PAMPs  pathogen-associated molecular patterns,  DAMPs  damage-associated molecular patterns       
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   CD36: An Infl ammatory Receptor 

 The pro-infl ammatory nature of CD36 has been implicated in atherosclerosis, vascular 
dysfunction, and neurodegenerative diseases [ 57 ,  69 ,  123 ,  124 ]. The concept that CD36 
is a prototypic infl ammatory receptor and contributes to stroke pathology also has been 
recognized [ 66 ,  102 ,  125 ]. In addition to elevated CD36 expression, CD36 ligands such 
as fAβ, mLDL, oxLDL, and TSPs are elevated in the post- ischemic brain [ 126 – 130 ]. 
Several studies showed CD36 activation is associated with elevated levels of free radi-
cals, IL-1β, TNF-α, IL-6, MCP-1, and CCR2 [ 66 ,  102 ,  131 ]. CD36 expression was 
found predominantly on CD11b+ cells within the infarct territory and the presence of 
the cells occurs throughout the course of infarct development. However, the identity of 
the CD11b+ cells as to resident microglia versus infi ltrated peripheral mononuclear 
phagocytes has not been explored. Although CD36 expression was not detected in 
neurons in the injured tissue, the expression was shown in the subsets of GFAP-
expressing astrocytes in the glial scar area [ 66 ]. As infl ammation is essential in glial 
scar formation [ 132 ], the involvement of CD36 in injury-induced scar formation was 
addressed. The study by Bao and colleagues reported that CD36 expression covaries 
with GFAP, an intermediated fi lament in astrocytes [ 67 ]. This study identifi ed CD36 as 
a novel mediator of GFAP expression and glial scar formation and suggested that tar-
geting CD36 may decrease the barring effect of scar tissue to promote regeneration.   

   Comorbidities Infl uencing CD36 Expression/Function 

 Cardiovascular and cerebrovascular diseases share many prevalent risk factors. 
These comorbid conditions include hyperlipidemia, insulin resistance associated 
with metabolic syndrome, obesity and diabetes, impaired vascular function, and 
hypertension. CD36 expression has been shown to be modulated in comorbid condi-
tions. Since comorbidities increase CD36 expression and a specifi c set of ligands in 
a feed-forward manner [ 76 ], excessive ligands/receptor interaction associated with 
risk factors presumably intensify CD36 pathways in disease conditions (Fig.  18.3 ).

     Dyslipidemia 

 Podrez and colleagues reported increased lipid-based CD36 ligands in ApoE KO 
mice fed a high-fat diet [ 80 ]. They demonstrated a profound upregulation of struc-
turally defi ned, oxidized choline glycerophospholipid species (  ox  PC  CD36  ), that serve 
as high-affi nity ligands for CD36 in lipoproteins in the plasma of hyperlipidemic 
mice and also in humans with low HDL levels [ 133 ]. The abundance of   ox  PC  CD36   in 
hyperlipidemia led to vascular foam cell formation, a key event in atherosclerotic 
lesion development [ 57 ]. Compared to controls, hyperlipidemic mice subjected to 
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cerebral ischemia displayed larger infarcts and heightened post- ischemic infl amma-
tion [ 131 ]. An underlying hypothesis is that “priming” of peripheral mononuclear 
phagocytes by CD36/ligands prior to stroke might account for the exacerbation. 
This study also showed higher expression of CD36 in peripheral monocytes/macro-
phages in hyperlipidemic mice prior to ischemia. Following stroke, the mice dis-
played elevated CD36 expression, foam cell area, and pro- infl ammatory cytokines/
chemokines (MCP-1, CCR2, IL-1β, TNFα, and IL-6) in the post-ischemic brain. 
The absence of CD36 reversed the hyperlipidemia-associated phenotype [ 131 ]. 
Clear indication from the study is CD36’s involvement in hyperlipidemia-induced 
exacerbation of ischemic infl ammation and injury and notably, its peripheral infl u-
ence on CNS injury development. The possibility that CD36-dependent stroke out-
comes could be infl uenced by the presence of other comorbidities at the time of 
stroke and also involvement of other factors such as developmental stage (neonatal 
vs. adult) remain to be investigated.  

   Insulin Resistance 

 Insulin resistance associated with diabetes is a predisposing risk factor for stroke as 
indicated by the fact that 70 % of new stroke victims were previously diagnosed 
with diabetes, occult diabetes, or were prediabetic with impaired insulin sensitivity 
[ 134 ,  135 ]. Diabetic conditions promote a chronic pro-infl ammatory state that 
increases the burden of CD36 ligands via modifi cations of LDL and AGEs, and 

  Fig. 18.3    CD36 exacerbates 
stroke-induced injury as a 
result of  disease modifying 
risk factors. Following stroke, 
interaction of CD36 with its 
ligand occurs in a feed-
forward manner. Vascular 
risk factors and cormodities 
such as hyperlipidemia, 
insulin resistance, vascular 
dysfunction, and 
hypertension enhance the 
generation of CD36 ligands 
and intensify CD36 pathways       
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 augments CD36 expression and function. Increased expression of CD36 in mono-
cytes/macrophages not only infl uences the peripheral infl ammatory state but also 
impacts at the localized site of cerebral ischemic injury. 

 A potential link between CD36 and impaired insulin sensitivity has been found 
experimentally in mice. However, in humans, studies are less equivocal, and this 
may depend upon which cells/tissues are affected by the specifi c CD36 mutation/
SNP, whether the mutation/SNP leads to reduced or increased CD36 expression, 
and expression of other gene products [ 136 – 138 ]. CD36 KO mice not only have 
overall increased insulin sensitivity, as a result of increased glucose uptake in mus-
cle, but also show liver-specifi c insulin resistance as a result of reduced capacity to 
utilize fatty acids in heart [ 139 ,  140 ]. Further studies showed that CD36 is linked to 
infl ammation in insulin resistance and defective insulin signaling [ 55 ,  141 ]. The 
increased burden of CD36 ligands in the diabetic state was shown to promote a pro- 
infl ammatory state and a CD36-dependent paracrine loop between adipocytes and 
macrophages that facilitated chronic infl ammation and contributed to insulin resis-
tance common in obesity and dyslipidemia [ 142 ]. 

 Moreover, there is abundant evidence that glucose/diabetes modulates CD36 
expression and thus impacts CD36 downstream effects. For example, glucose 
administration upregulates CD36 expression on macrophages [ 143 ] and in proximal 
renal tubular epithelia in humans [ 144 ]. Other studies have shown that CD36 expres-
sion is increased in monocytes from type 2 diabetic patients [ 145 ] and in diabetic 
mouse hearts [ 146 ]. In diabetes associated with atherosclerosis, increased plasma 
MCP-1 levels were associated with increased monocyte CCR2, CD68, and CD36 
and increased vessel wall monocyte number [ 147 ]. Liang and colleagues reported 
increased CD36 protein in macrophages as a response to defective insulin signaling 
[ 148 ]. Glucose was also shown to promote LDL oxidation, and the resulting 
glucose- oxLDLs stimulated macrophage proliferation in a manner that was depen-
dent on CD36 [ 149 ]. Human THP-1 macrophages that were exposed to glucoxi-
dized LDLs increased both CD36 gene expression and accumulation of cholesterol 
ester (an indicator of foam cell formation) to extents greater than those produced by 
glycated LDLs or oxLDLs [ 150 ]. 

 CD36 has been shown to be localized on insulin-containing granules in human 
pancreatic beta cells and mediates fatty acid effects on insulin secretion [ 151 ]. 
Handberg and colleagues identifi ed CD36 in plasma (later shown to be contained 
within microparticles) as a novel marker of insulin resistance [ 152 ,  153 ]. Thus, 
multiple lines of evidence show that CD36 is modulated by insulin and glucose 
pathways, and that CD36 has effects on these pathways.  

   Vascular Dysfunction 

 The deposition of Aβ in the microvasculature, a hallmark of AD, contributes to 
oxidative stress and compromises blood–brain barrier (BBB) integrity [ 154 ,  155 ]. 
Due to the nature of the ligand, many studies on CD36 relevant to fAβ were focused 
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on innate host response and infl ammation associated with AD [ 69 ,  71 ,  156 ]. A key 
role for CD36 was reported, as CD36 defi ciency attenuated fAβ-induced secretion 
of cytokines, chemokines, and reactive oxygen species in microglia. Macrophage or 
microglia recruitment into the peritoneum or brain, respectively, in response to 
injection of fAβ was attenuated in CD36 KO mice [ 69 ]. A multi-receptor complex 
comprised of CD36/α 6 β 1 -integrin/CD47 stimulates intracellular tyrosine kinase- 
based signaling cascades and cellular activation, as detailed previously, which leads 
to the secretion of pro-infl ammatory molecules [ 72 ]. In animal models of AD, inter-
action of Aβ with CD36 causes cerebrovascular oxidative stress and neurovascular 
dysfunction. The dysfunction was abrogated in the absence of CD36, suggesting 
that a strategy of CD36 inhibition to normalize cerebrovascular dysfunction might 
be effective [ 123 ,  157 ]. Lee and colleagues showed an increased level of circulating 
Aβ in patients with acute ischemic stroke and suggested that the ligand is derived 
from brain as a consequence of ischemic insult [ 158 ].  

   Hypertension 

 Hypertension is a major risk factor for stroke [ 159 ,  160 ]. Clinical  trials employing 
antihypertensive agents that aim at reducing blood pressure have been effective in 
management and prevention [ 161 ,  162 ]. CD36 has been implicated in blood pres-
sure control and modulated by hypertension. Pravenec and colleagues showed that 
CD36 mutation in the kidney can increase blood pressure and identifi ed renal CD36 
as a genetical determinant of blood pressure and risk factor for hypertension [ 163 ]. 
In the stroke prone spontaneous hypertensive rat, BBB impairment was associated 
with increased CD36 expression in the vessel [ 164 ]. Similar to what occurs in dia-
betics, macrophages from hypertensive subjects show signifi cant increase in CD36 
expression, and this was associated with enhanced adhesion to endothelial cells and 
greater production of ROS [ 165 ]. Circulating human endothelial cells also show 
increased CD36 expression in pulmonary hypertensive states [ 166 ]. In hypoxia-
induced pulmonary hypertension, CD36 expression increases on intrapulmonary 
arteries [ 167 ]. Human gene association studies have been equivocal with respect to 
CD36, probably for similar reasons described above in the case of insulin resis-
tance/diabetes.   

   Neuroimmune Interaction 

 The presence of granulocytes (neutrophils), subsets of T cells, and monocytes/mac-
rophages in the post-stroke brain suggests mobilization of peripheral immune cells 
to the injured tissue [ 88 ,  168 ]. There has been controversy regarding the order and 
timing among the types of immune cells for traffi cking. An early study reported that 
neutrophil infi ltration occurs prior to macrophages/activated microglia following 
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stroke [ 169 ], while others showed that the accumulation of microglia and/or macro-
phages in the infarct territory precedes neutrophils [ 170 ]. Despite disagreement 
regarding the order of infi ltrating cell types, it is believed that the accumulation of 
peripheral immune cells contributes to injury development during the acute phase of 
stroke. 

   MCP-1/CCR2 Axis for Monocyte Traffi cking 

 Experimental autoimmune encephalitis (EAE) in mice is an example of how infl am-
matory cells impact disease in the CNS and demonstrates the importance of the 
MCP-1/CCR2 axis in monocyte recruitment. Among the types of infi ltrating cells, 
monocytes was most tightly coupled to neurobehavioral severity in EAE [ 171 ]. 
Specifi c inhibition of monocyte recruitment reduced EAE lesion progression, while 
the presence of T cells was independent of disease severity, strongly implicating 
infi ltrating monocytes in EAE pathogenesis, and confi rming an earlier fi nding 
[ 172 ]. Through serial experimental manipulation using parabiosis (suturing a pair 
of mice to share circulation) and irradiation/bone marrow transplant of stem cells 
from genetically engineered mice, CCR2, a G-protein-linked membrane receptor, 
was found to be the essential mediator of monocyte traffi cking, as the study showed 
the absence of monocyte CCR2 profoundly attenuated paralytic progression of the 
disease [ 171 ]. 

 Monocytes exhibit distinct subsets that are reminiscent of macrophage pheno-
types [ 173 – 175 ]. The subset that expresses a high level of the hematopoietic cell 
differentiation antigen Ly-6C (Ly-6C hi ) also expresses CCR2. Ly-6C hi  (CCR2+) 
monocytes are specifi cally recruited to an injury site and become classically acti-
vated M1 macrophages. This CCR2+ subset is chemotactic to MCP-1, which is 
produced in the infl amed tissue. Recruitment of this subset to infl ammatory sites is 
believed to be CCR2 dependent since monocytes from CCR2-defi cient mice do not 
traffi c as effi ciently into areas of infl ammation [ 176 ,  177 ]. The Ly-6C low  monocyte 
subset expresses CX3CR1, a receptor for CX3CL1 (fractalkine), but is devoid of 
CCR2 expression. This anti-infl ammatory Ly-6C low  (CCR2-/CX3CR1+) subset is 
recruited to normal tissues and develops into resident M2 macrophages that func-
tion in host defense and repair after injury [ 174 ]. 

 Secreted by microvascular endothelial cells, monocytes/macrophages, and astro-
cytes upon injury [ 98 ,  178 – 180 ], MCP-1 is a member of the CC chemokine family 
and functions in the traffi cking of CCR2-expressing monocytes into an injury site. 
Previous work has established the importance of the MCP-1/CCR2 axis in mono-
cyte/macrophage traffi cking in cerebral ischemia. Stroke increases MCP-1 expres-
sion in the affected hemisphere. The overexpression of MCP-1 increases infarct 
volume and enhances the recruitment of monocytes to the injury site [ 98 ]. The 
absence of CCR2 or MCP-1 reduces infarct size [ 96 ,  97 ]. In the absence of CD36, 
CD36 ligands and injury-induced CC and CXC chemokine production were 
 attenuated [ 102 ,  131 ]. In other disease models that involve recruitment of 
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classically activated M1 macrophages, such as obesity and atherosclerosis, the 
absence of CD36 is associated with decreased monocyte/macrophage migration/
infi ltration and reduced overall numbers of macrophages [ 141 ,  181 – 183 ], suggest-
ing MCP-1/CCR2 as a major chemokine/ receptor axis for immune cell 
traffi cking.  

   CD36 in Monocyte/Macrophage Traffi cking 

 Studies indicate the involvement of CD36 in cell mortality and mobility, an impor-
tant function in cell traffi cking. CD36 has been shown to signal through the P130Cas 
complex to the actin cytoskeleton and regulate microglial migration [ 184 ]. Harb and 
colleagues addressed the role of CD36 in regulating mononuclear phagocyte traf-
fi cking to pro-infl ammatory atherosclerotic lesions. This study showed that inhibi-
tion of CD36 attenuated macrophage accumulation in atherosclerotic lesions, and 
this was associated with reduced expression of MCP-1 [ 182 ]. Cell polarization is 
essential for migration and mobility of leukocytes. Thus, studies by Park et al. 
showing that oxLDL/CD36 interaction induced loss of cell polarity and reduced 
macrophage migration through a vav-Rac-myosin II pathway provide a mechanistic 
framework to consider CD36 actions [ 185 ]. This work explains why macrophages 
become trapped in areas rich in CD36 ligands and promote further infl ammation. 

 CD36 ligands are elevated in hyperlipidemic conditions and in injured tissues 
where oxidative or damaged products from cells are released [ 80 ,  107 ]. Through the 
uptake of lipid-based ligands and foam cell formation in hyperlipidemic conditions, 
monocyte/macrophage CD36 has been shown to play a role in atherosclerosis and 
stroke pathology [ 102 ,  131 ,  182 ,  186 ]. In a recent study, Kim and colleagues showed 
that infi ltrating immune cells from the periphery are the major source of CD36 in 
the post-ischemic brain and contribute to stroke-induced brain injury in a hyperlip-
idemic condition. Mice receiving CD36-defi cient bone marrow showed attenuated 
infarct volume and MCP-1 and CCR2 expression in the brain. The reverse trans-
plantation study (transplantation of CD36-expressing bone marrow-derived cells to 
CD36 KO mice) showed no increase in infarct volume. The study suggested that 
CD36 in both host and periphery is required for peripheral CD36 to exert its effect 
on the hyperlipidemia-induced exacerbation in stroke injury. The underlying mech-
anism of the exacerbation presumably is that CD36 regulates immune cell traffi ck-
ing via modulation of the expression of MCP-1 and CCR2 [ 102 ].  

   Targeting CD36 to Attenuate Infl ammation 

 In light of the receptor’s pro-infl ammatory properties, downregulation of CD36 has 
been suggested as a strategy to reduce infl ammation-associated cerebro- and cardio-
vascular diseases including altherosclerosis and stroke. Several pharmacological 
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agents were identifi ed to attenuate CD36 expression and function. The antioxidant, 
α-tocopherol, reduces expression of CD36 and the uptake of oxLDL into macro-
phages [ 187 – 190 ]. Statins downregulate CD36 expression and suppress oxLDL 
uptake [ 187 ,  191 ,  192 ] and subsequently prevent oxLDL-induced macrophage foam 
cell formation [ 193 ]. Hexarelin is a member of the hexapeptide growth hormone-
releasing peptide family and binds to CD36 and inhibits its expression [ 20 ]. 
Treatment of mice with hexarelin or a structurally related analogue, EP80317, 
resulted in a marked decrease in atherosclerotic lesions [ 194 ]. Using a high-through-
put screening approach for CD36 antagonists based on competition in an oxLDL-
binding assay, salvianolic acid B (SAB) was identifi ed as a CD36 inhibitor [ 195 ]. 
SAB is a water-soluble polyphenolic antioxidant isolated from  Danshen , a Chinese 
herb that has been used for the prevention and treatment of atherosclerosis and 
stroke in Asian countries. The specifi city and effi cacy of SAB in the inhibition of 
CD36-mediated lipid uptake were confi rmed by binding studies for the physical 
interaction of SAB with CD36. SAB reduces oxLDL-induced CD36 gene expres-
sion in cultured cell lines and primary macrophages. Moreover, SAB reduces CD36 
gene expression and lipid uptake into macrophages in hyperlipidemic ApoE KO 
mice [ 196 ]. 

 Due to the issues regarding developmental compensatory changes with germ line 
deletions, investigation on the effi cacy of CD36 inhibitors has been complemented by 
genetic approaches. Besides fi nding from CD36 KO mice that displayed attenuated 
stroke-induced infl ammation and brain injury [ 66 ,  125 ], effects of a new class of anti-
oxidants peptide, SS31, has been tested against cerebral ischemia [ 197 ]. Mice treated 
with SS31 peptides had attenuated ischemia-induced glutathione (GSH) depletion in 
the cortex and showed smaller infarct size. The absence of stroke-induced glutathione 
depletion and no effect on infarct volume in CD36 KO mice treated with the peptide 
suggested that the protection occurred through the downregulation of CD36 path-
ways. Because CD36 is a multi-ligand and multifunctional receptor and its expression 
occurs in a positive feed-forward manner that promotes its functions, targeting at the 
level of the receptor by interrupting the feed-forward loop to downregulate the CD36 
pathway (a multimodal approach) has been suggested [ 125 ].   

   Conclusion 

 CD36 is an infl ammatory receptor that is at the junction of cardio and cerebral vas-
cular disease. Defi ning the role of CD36 in the CNS and periphery through neuroim-
mune interactions has been an important emerging area in understanding the 
pathophysiology of brain injury as a result of cerebral ischemia. CD36 expression is 
altered in peripheral infl ammatory conditions, including obesity, insulin resistance, 
hyperlipidemia, and hypertension, which also increase stroke incidence either singly 
or through clustering of these risk factors. Accumulating evidence suggests that 
CD36 regulates injury-induced mobilization of peripheral immune cells and infl u-
ences the outcome of stroke. Thus, stroke-induced injury is viewed as the summation 
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of intrinsic ischemic insult and peripheral infl uences through the neuroimmune 
 interaction. As less favorable outcomes are predicted in patients with various risk 
factors, targeting CD36-associated pathways may modulate the neuroinfl ammatory 
responses in comorbid conditions and serve as a potential approach to limit  secondary 
expansion of primary injury in the setting of acute ischemia.     
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    Abstract     While hypothermia has historically been appreciated as a possible cause 
of injury and mortality, its role as a therapeutic agent of choice in special circum-
stances has been less delineated in its origins. There are reports of ancient Egyptians, 
Greeks, and Romans possibly implementing it, including Hippocrates specifi cally 
recommending that wounded soldiers be surrounded by snow to improve survival 
(Polderman, Intensive Care Med 30:757–769, 2004). The fi rst clinical usages of 
hypothermia for brain injury were conducted by the neurosurgeon Temple Fay in 
the 1930s with subsequent pioneering reports of its therapeutic usage in various 
brain disorders (Fay, Ann Surg 101:76–132, 1959; Harris et al., Arch Neurol 
59:1077–1083, 2002). Over the last few decades, there have been various animal 
studies and clinical trials that have investigated the various indications and mecha-
nisms of therapeutic hypothermia, many of which implicate a role in curtailing the 
infl ammatory cascade. Only over the past decade, in the setting of adult and pedi-
atric post-anoxic encephalopathy, has hypothermia become an evidence-based 
therapy. Indications for treatment as well as mitigation of the infl ammatory pro-
cesses in other acute brain injuries such as ischemic and hemorrhagic strokes, trau-
matic brain injury, and status epilepticus remain controversial. This chapter reviews 
the role of therapeutic hypothermia, how “cooling the infl ammation” may or may 
not be indicated in a variety of acute brain injuries: ischemic stroke, neonatal 
hypoxia– ischemia, post-cardiac arrest global ischemia, traumatic brain injury, 
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intracerebral hemorrhage, subarachnoid hemorrhage, status epilepticus, meningitis/
encephalitis, and acute liver failure.  

        Introduction 

 While hypothermia has historically been appreciated as a possible cause of injury 
and mortality, its role as a therapeutic agent of choice in special circumstances has 
been less delineated in its origins. There are reports of ancient Egyptians, Greeks, 
and Romans possibly implementing it, including Hippocrates specifi cally recom-
mending that wounded soldiers be surrounded by snow to improve survival [ 1 ]. The 
fi rst clinical usages of hypothermia for brain injury were conducted by the neurosur-
geon Temple Fay in the 1930s with subsequent pioneering reports of its therapeutic 
usage in various brain disorders [ 2 ,  3 ]. Over the last few decades, there have been 
various animal studies and clinical trials that have investigated the various indica-
tions and mechanisms of therapeutic hypothermia, many of which implicate a role 
in curtailing the infl ammatory cascade. Only over the past decade, in the setting of 
adult and pediatric post-anoxic encephalopathy, has hypothermia become an 
evidence- based therapy. Indications for treatment as well as mitigation of the 
infl ammatory processes in other acute brain injuries such as ischemic and hemor-
rhagic strokes, traumatic brain injury, and status epilepticus remain controversial. 
This chapter reviews the role of therapeutic hypothermia, how “cooling the infl am-
mation” may or may not be indicated in a variety of acute brain injuries: ischemic 
stroke, neonatal hypoxia–ischemia, post-cardiac arrest global ischemia, traumatic 
brain injury, intracerebral hemorrhage, subarachnoid hemorrhage, status epilepti-
cus, meningitis/encephalitis, and acute liver failure.  

    Therapeutic Hypothermia: Methods of In Vivo 
Implementation 

 There are a few different methods to implement therapeutic hypothermia. External, 
noninvasive devices focus on surface cooling. Such methods include simple ice 
packs, cooling blankets, as well as more sophisticated pads that tightly bind a large 
amount of skin surface area and have feedback controls for continuous circulation 
of absorbed heat to maintain hypothermia [ 4 ]. Other attempted methods of imple-
menting hypothermia include the usage of cool air during ventilation and the simple 
infusion of cold saline through a peripheral intravenous catheter [ 4 ]. Intravascular, 
core-cooling invasive devices circulate cold liquid through closed circuit central 
venous catheters [ 5 ]. Surface cooling devices and intravascular cooling devices 
each have their own advantages and disadvantages depending on the scenario. For 
example, one study found that surface cooling can lead to higher incidence of hyper-
glycemia, whereas intravascular core cooling can lead to hypomagnesemia [ 6 ]. 
However, this study did not fi nd signifi cant differences in survival outcome or in the 
time required to achieve target temperature using either method. More recently, 
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there have been studies that demonstrate feasibility of achieving hypothermia using 
molecules or medication that affect central temperature regulation [ 7 ], such as cho-
lecystokinin octapeptide [ 8 ] and cannabinoids [ 9 ], as well as circulating cool air or 
evaporative concepts using the intranasal pathway [ 10 ]. The optimal depth of hypo-
thermia has traditionally been controversial, where severe hypothermia (15–22 °C), 
thought to be more neuroprotective at one time, actually led to more complications 
when compared to mild and moderate hypothermia (30–35 °C) [ 3 ]. This under-
scores the point that adverse effects may be a result of either the depth of hypother-
mia or the specifi c cooling method used to reach the targeted temperature. With 
mild hypothermia, however, complications specifi cally from cooling devices only 
involved 29 of 3,133 patients (1 %) and were related to infection, bleeding, pulmo-
nary edema, and deep vein thrombosis [ 5 ]. Complications from targeted tempera-
ture management (independent of the type of cooling method used), in a recent 
observational study on post-cardiac arrest patients, included pneumonia (41 %), 
hyperglycemia (37 %), cardiac arrhythmias (33 %), seizures (24 %), and electrolyte 
disturbances (19 %) [ 11 ]. As these data are specifi cally from cardiac arrest patients, 
the profi le and frequency of adverse events will vary not only on the depth of hypo-
thermia but likely also on the type of acute brain injury as well.  

    Ischemic Stroke 

    Mechanism of Injury: In Vitro and In Vivo Studies 

 After a series of studies in the 1980s on rodents undergoing brain ischemia demon-
strated that small decreases in temperature resulted in the prevention of neuronal 
death [ 12 ,  13 ], therapeutic hypothermia for ischemic stroke became a topic of inter-
est. Hypothermia impacts neurovascular pathophysiology in the acute, subacute, 
and chronic stages of ischemia. The mechanisms underlying therapeutic hypother-
mia’s neuroprotection have been investigated over the last few decades, and we have 
tremendously increased our knowledge of the fundamental effects on a cellular, 
tissue, and organ level. Hypothermia impacts various molecular cascades in infl am-
mation, mitochondrial dysfunction, oxidative stress, blood fl ow, energy metabo-
lism, and blood–brain barrier integrity, thus affecting neurogenesis and angiogenesis 
following an ischemic insult, leading to neurovascular protection [ 14 ,  15 ]. Here, we 
focus on these underlying pathophysiologic mechanisms in animal models of focal 
and global ischemia.

  It is important to realize that methods of cooling are distinct between animal in 
vivo and in vitro models of ischemia. Typical cooling experiments are conducted in 
animals by  application of cooling blankets or spraying water or alcohol on anesthe-
tized animals,  usually small rodents, for only a few hours, however if longer dura-
tion of cooling is pursued (i.e., more than 24 h) in awake animals, then automated 
systems have been developed [ 16 ]. Several studies on animals have demonstrated 
that relatively small decreases in temperature are neuroprotective without resulting 
in signifi cant side effects [ 17 ]. Although timing and duration of hypothermia are 
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important factors, the degree of hypothermia appears to be less critical. Mild-to-
moderate hypothermia to 30–34 °C provided similar protection to severe hypother-
mia below 25 °C in many settings [ 17 ]. Moreover, the effect of hypothermia in 
different animal stroke models appears to also be an important consideration. 
Whereas in global ischemia models the time window for therapeutic hypothermia is 
longer, in focal ischemia the window of opportunity for hypothermia appears to be 
shorter where it must be started within 2 h of ischemia onset [ 18 ]. However, initia-
tion of therapeutic hypothermia after 2 h may still be benefi cial if maintained for 
prolonged periods of time up to 48 h after ischemia onset [ 18 ]. Although some stud-
ies have shown long-term benefi ts of therapeutic hypothermia [ 19 ], the majority of 
animal studies have been conducted under shorter duration of ischemia and cooling 
with shorter follow-up testing for benefi cial outcomes. 

       The Role of Infl ammation and Hypothermia in Stroke 

 While ischemic brain injury leads to many different effects including infl ammatory 
cascades, therapeutic effects of hypothermia remain primarily a result of reductions 
in metabolism and cerebral blood fl ow during injurious periods in which the brain 
is susceptible to energy depletion and reperfusion injury [ 20 ]. Cooling results in 
decreases in brain glucose and oxygen consumption, thus maintaining ATP stores 
and leading to decreased lactic acidosis and oxidative stress. Cooling also prevents 
excitotoxicity by modulation of ATP production, thereby preventing the accumula-
tion of excitotoxic amino acids, including glutamate [ 21 ] and, consequently, affect-
ing calcium infl ux through glutamate receptor 2 subunit of AMPA receptor [ 22 ]. 
Moreover, hypothermia appears to affect early gene expression in ischemia by regu-
lating expression of inducible heat shock proteins in various ways [ 23 ,  24 ], though 
it remains unclear whether modulation of gene expression is involved in the neuro-
protective mechanisms of cooling. More recently, microRNA expression changes 
during acute brain injuries has garnered interest. Cooling appears to modulate a 
number of microRNAs during traumatic brain injury, and with ischemic stroke 
models showing a multitude of changes in microRNAs [ 25 ], it is reasonable to spec-
ulate that hypothermia may affect microRNAs in focal stroke models as well [ 26 , 
 27 ]. Nevertheless, these mechanisms during acute ischemic injury do not fully 
explain the neuroprotective effects and infl ammation-mediated effects of hypother-
mia, and further investigation is necessary. 

 Infl ammation-mediated effects of hypothermia are more apparent in the post- 
acute phases of focal ischemic strokes. The subacute phase of ischemia, which 
begins after many hours of the insult and can last up to 1–2 weeks, has a multitude 
of pro-infl ammatory effects. Though some aspects of these infl ammatory processes 
generated by an ischemic stroke may be evolutionarily advantageous, it appears that 
other aspects may worsen brain injury and outcome, especially during the acute and 
subacute phases of injury [ 28 ]. For example, hypothermia has been shown to 
 signifi cantly reduce microglia and neutrophils in the region of ischemia while also 
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reducing reactive oxygen species [ 29 ,  30 ]. Moreover, various cytokines are reduced 
by hypothermia, including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α 
(TNFα) [ 28 ]. Additionally, hypothermia has been shown in rodents to reduce induc-
ible nitric oxide synthase (iNOS) and reactive nitric oxide, and this reduction in 
reactive nitrogen species may mitigate ischemic infarct size [ 31 ]. 

 Some hypothermia-mediated mechanisms involving the infl ammatory cascade 
appear to show variable effects in different experimental paradigms, suggesting that 
further studies are needed. For example, while the mitogen-activated protein kinase 
(MAPK) pathway, also known as the extracellular-signal-regulated kinase (ERK) 
pathway, is important in modulating a number of infl ammatory molecules including 
intercellular adhesion molecule 1 (ICAM1), hypothermia has opposite effects in 
vitro versus in vivo: hypothermia reduces MAPK signaling in cultured microglia 
paradigms while stimulating the MAPK in CNS endothelial cells in in vivo stroke 
models [ 32 ,  33 ]. Moreover, not all of the effects of hypothermia appear anti- 
infl ammatory. For example, hypothermia appears to decrease IL-10, an anti- 
infl ammatory cytokine [ 34 ]. Thus, hypothermia-mediated mechanisms in ischemic 
stroke models are complex and need further clarifi cation. 

 Hypothermia also appears to have a multitude of effects on the apoptosis path-
way, which can be triggered after ischemic insults. Apoptotic pathways, in turn, 
may be affected by infl ammatory factors, though a review of hypothermia’s role 
with this interplay is beyond the scope of this chapter [ 14 ].  

    Clinical Applications Using Hypothermia in Stroke 

 Given the laboratory data showing benefi t of hypothermia in ischemic stroke  models 
with the various mechanisms being further clarifi ed, signifi cant optimism arose 
towards implementation of hypothermia during human ischemic stroke, including 
hope to reduce propagation of infl ammatory cascades involved therein. Initially, 
retrospective analysis of a prior prospective stroke study involving 390 stroke 
patients demonstrated an important correlation between body temperature and clini-
cal outcome after stroke; for every spontaneous reduction in body temperature of 
1 °C, there was a progressively signifi cant improvement in clinical outcome (i.e., 
relative risk improvement of 2.2), including improvements in infarct size, stroke 
severity, and mortality [ 35 ]. Over the last two decades, multiple prospective clinical 
trials have been conducted utilizing hypothermia during ischemic stroke, with a 
wide variety of clinical designs, including randomized and nonrandomized studies, 
safety and effi cacy studies, various time windows after stroke onset, and integration 
with intravenous (iv) thrombolysis (i.e., tissue plasminogen activator; tPA). 

 The fi rst clinical trial on the effect of moderate hypothermia to 33 °C in only 25 
patients with severe middle cerebral artery (MCA) infarction was reported in 1998 
[ 36 ]. The authors hoped to mitigate post-stroke cytotoxic edema while monitoring 
core and brain temperature, intracranial pressure (ICP), cerebral perfusion pressure, 
and other factors. They found that during the period of hypothermia, better control 
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of ICP was achieved, but that during the rewarming period, there was a rebound 
increase of the ICP. Overall, the study demonstrated a signifi cant reduction in mor-
tality from roughly 79 %, as expected from other studies at the time, down to 44 % 
along with a more favorable outcome in the survivors. A follow-up study on a 
slightly larger sample size of 50 patients demonstrated similar effi cacy even though 
it was mostly concerned with showing safety [ 37 ]. These studies demonstrated that 
side effects of hypothermia can include pneumonia, bradycardia, and thrombocyto-
penia. While these studies were not controlled, the fi rst case–control safety trial was 
conducted in 2000 on 17 patients and showed a good safety profi le [ 38 ]. Since these 
original studies and other subsequent studies that established safety and planted 
hope for effi cacy, there have been a number of additional clinical trials, including a 
few randomized controlled trials, which have failed to show statistically signifi cant 
improvements in stroke-related measures or clinical outcomes. In two of these tri-
als, there did appear to be a trend towards signifi cance, and it is possible that future 
studies with larger sample sizes and better designs may achieve statistical signifi -
cance and better establish effi cacy [ 39 ,  40 ]. One of these studies which focused on 
establishing safety, Cooling for Acute Ischemic Brain Damage (“COOL AID”), was 
an open controlled study on 19 patients, including patients who had received tPA for 
thrombolysis. COOL AID demonstrated a small (non-statistically signifi cant) trend 
towards improved clinical function at 3 months after the stroke [ 39 ]. However, a 
follow-up randomized multicenter study, COOL AID II, included 40 total patients 
who received endovascular cooling along with possible tPA and did not fi nd such a 
trend favoring hypothermia. Again, however, the main purpose of this study was to 
further establish feasibility and safety, a goal that was accomplished [ 41 ]. The other 
study that showed a possible non-statistically signifi cant benefi t was a prospective 
randomized study done by Els et al. [ 40 ] on 25 patients in which mild hypothermia 
to 35 °C was started immediately after decompressive hemicraniectomy for malig-
nant ischemic stroke [ 40 ]. In this study, there was a trend ( p  < 0.08) towards a very 
small functional benefi t in patients after 6 months when assessed by the National 
Institutes of Health Stroke Scale, a standardized quantitative clinical scoring scale. 
Another study on the usage of hypothermia in acute stroke was The Intravascular 
Cooling for the Treatment of Stroke (ICTuS) trial [ 42 ]. This was a multicenter 
uncontrolled study which involved 18 patients and included some post- thrombolysis 
patients who had received tPA within 3 h. ICTuS achieved its goal of demonstrating 
acceptable safety profi le [ 42 ]. The follow-up ICTuS-L study, a multicenter con-
trolled trial involving 59 patients which allowed for a longer window of time (up to 
3–6 h) after stroke, was unable to establish any benefi t for hypothermia in acute 
stroke [ 43 ].  

    Summary of Stroke, Infl ammation, and Hypothermia 

 In summary, even though a wealth of in vitro and in vivo animal studies demonstrate 
the benefi ts of hypothermia with regard to infl ammatory processes and functional 
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outcome of stroke models, there appears to be no convincing evidence in support of 
its use in humans with various different functional outcomes and survivability. While 
the clinical trials utilizing therapeutic hypothermia began only 15 years ago, and tri-
als have established safety, there are many factors that may account for the failed 
effi cacy. Along with variables such as depth, onset, and duration of hypothermia as 
well as patient selection criteria including size and location of the ischemic stroke, 
administration of thrombolysis, and presence of decompressive hemicraniectomy, 
the most critical limitation has been small sample size. Future studies are expected 
to minimize and control for variability while selecting and choosing optimal factors 
so as to standardize experimental designs. Then, increasing sample size may allow 
for any potential benefi t to manifest itself in the data. Subsequently, studies should 
assess the role of the infl ammatory cascade in achieving any possible benefi t.   

    Global Cerebral Ischemia: Neonatal Hypoxia–Ischemia 

    Mechanism of Injury and the Role of Infl ammation 

 While ischemic stroke constitutes a focal area of ischemia, when the insult is more 
proximal than a single cerebral artery such as bilateral carotid arteries or the heart, 
it can result in global ischemia. Also, if systemic hypoxia occurs, this can lead to 
brain hypoxia as well as an eventual reduction in cerebral blood fl ow, both of which 
can lead to brain injury recognized as hypoxic–ischemic. The acute brain injury and 
subsequent clinical syndrome thereafter may be called hypoxic–ischemic encepha-
lopathy. Neonatal hypoxic–ischemic episodes can happen during birth due to a vari-
ety of perinatal insults that may originate from the newborn infant, the mother, or 
environmental factors. 

 Though the exact pathophysiology of neonatal hypoxic–ischemic encephalopathy 
is not clear, it appears to involve some of the same cellular and subcellular mecha-
nisms involved in focal ischemic stroke. Infl ammation seems to have a signifi cant 
impact on the pathophysiology of neonatal hypoxia–ischemia and includes many of 
the same infl ammatory cascade components described in focal ischemia with some 
differences [ 44 ,  45 ].  

    Clinical Applications in Neonatal Hypoxia–Ischemia 

 Clinical trials of hypothermia in human neonates suffering from perinatal hypoxia–
ischemia have shown a signifi cant benefi t. A recent Cochrane Review scrutinized 11 
randomized controlled trials of infants suffering from moderate-to-severe hypoxic–
ischemic insults, including asphyxia, and demonstrated signifi cant improvement in 
survival as well as clinical function with lower neurodevelopmental disability up to 
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18 months of age [ 46 ]. In fact, the number needed to treat (NNT) to achieve a 
 clinical improvement in outcome was 7 while the NNT to achieve survivability as 
the outcome was 11, both of which are impressive when compared to other FDA-
approved neurologic treatments such as tPA for acute stroke. With tolerable side 
effects of bradycardia and thrombocytopenia, therapeutic hypothermia in neonatal 
hypoxia–ischemia has been embraced as a standard treatment. Much of this was 
achieved with two landmark studies [ 47 ,  48 ] in recent years, which are both included 
in the aforementioned Cochrane Review. Evidence for the mechanism of how hypo-
thermia may achieve such favorable outcome in this setting comes mostly from in 
vitro and in vivo animal studies, and more recently, from human serum markers that 
demonstrate various reductions in infl ammatory molecules [ 46 ,  49 – 51 ].   

    Global Cerebral Ischemia: Cardiac Arrest 

    Mechanism of Injury and Role of Infl ammation 

 Therapeutic hypothermia is the only defi nitive treatment to date after resuscitation 
is achieved for cardiac arrest. The literature in support of hypothermia after cardiac 
arrest is convincing, even though the mechanisms are not clearly understood, and 
may involve downregulation of the infl ammatory cascade. 

 During cardiac arrest-induced global ischemia, some infl ammatory processes in 
the brain are similar to focal ischemic strokes [ 14 ,  52 ]. However, even more so than 
neonatal hypoxia–ischemia, cardiac arrest can trigger a more generalized infl amma-
tory process with multiple organ-specifi c processes that occur alongside a brain- 
specifi c infl ammatory cascade. The infl ammation-related mechanistic effects of 
hypothermia on cardiac arrest have not been studied extensively, and some of the 
data that has been reported does not appear fully consistent, with some groups fi nd-
ing signifi cant changes in infl ammatory cascades and others fi nding minimal to 
none [ 53 – 55 ]. Many of the variation in reports may originate from different animal 
models and slight differences in the structure of the cardiac arrest and hypothermia 
design. Overall, as in other brain injury disorders reported in this chapter, hypother-
mia after cardiac arrest does appear to change the dynamics of infl ammation in the 
brain. More impressively, however, is that hypothermia after cardiac arrest modu-
lates the systemic infl ammatory process that is much more robust in cardiac arrest 
when compared to isolated brain injuries. 

 In vitro studies in human cell culture systems demonstrate that hypothermia 
modifi es NF-κB activity, a pro-infl ammatory transcription factor, including delay-
ing its induction and prolonging its duration while changing downstream cytokine 
activation [ 56 ]. Studies that focus on in vivo human data from serum of patients 
having undergone cardiac arrest and therapeutic hypothermia seem to show a more 
systematic infl ammatory increase in IL-6 during the latter part of a 24-h hypother-
mia period, which correlates with a slight rise in body temperature from the coldest 
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nadir, while the subsequent rewarming process led to complement activation [ 57 ]. 
In further support of hypothermia leading to a rise in IL-6, another human study that 
measured serum infl ammatory factors after resuscitation and therapeutic hypother-
mia also found a signifi cant increase in IL-6 alongside a large increase in bacterial 
colonization. Outcome data from this study showed that hypothermia-treated 
patients consistently had lower mortality despite higher bacterial colonization and a 
possible higher risk of infection [ 55 ]. This underscores the impressive improvement 
in outcome that hypothermia has after cardiac arrest, far outweighing any possible 
deleterious or adverse effect. More on its specifi c effects on the infl ammatory cas-
cade, a study of hypothermia on rats demonstrated a signifi cant reduction in IL-10 
[ 58 ]. On the other hand, a recent study in pigs demonstrated that hypothermia after 
cardiac arrest has minimal change on IL-6 and IL-10, but a signifi cant reduction in 
TNFα, which is dependent on NF-κB activity. Thus, it is important to realize that 
hypothermia may have varying effects on the infl ammatory cascade on different 
organs and different species during cardiac arrest. For example, one study in pigs 
focused on examining cardiac tissue and found that hypothermia after cardiac arrest 
led to decreased apoptosis, reduced infl ammatory markers (i.e., IL-1β and IL-6) and 
lower matrix metalloproteinase-9 (MM9) within the cardiac tissue itself [ 59 ]. 
Interestingly, although hypothermia appears to have an overall anti-infl ammatory 
response with human trials showing an increased risk of infection, some data exists 
to suggest that hypothermia may, at times, strengthen the immune response. For 
example, in a rat model of septic shock using lipopolysaccharide (LPS) injection to 
achieve endotoxemia, hypothermia improved mortality while increasing IL-10 [ 60 ]. 
Thus, even though confl icting data exists on the mechanistic role of hypothermia 
after cardiac arrest, the general anti-infl ammatory mechanisms of hypothermia may, 
in some particular circumstances, actually render the immune system stronger 
rather than weaker. This further demonstrates the complexity of hypothermia’s 
actions on the infl ammatory process and the body as a whole. 

 Post-cardiac arrest periods are further complicated by changes in the blood–
brain barrier. The interplay among multiple organs being affected, the release of 
various factors into the blood, and a possible breakdown in the blood–brain barrier 
magnifi es the complexity of the situation. This breakdown in the blood–brain bar-
rier can signifi cantly contribute to brain edema while also confounding assays for 
infl ammatory factors. Deciphering whether an infl ammatory process originated 
from the brain or other organs becomes challenging. Brain edema, which itself con-
tributes to breakdown of the blood–brain barrier, has been shown to be regulated by 
aquaporin-4, a membrane protein on glia that regulates water transport, and matrix 
metalloprotease-9 (MMP9) [ 61 ]. Cardiac arrest leads to upregulation of aquapo-
rin-4, contributing to brain edema, while hypothermia can downregulate this pro-
cess and thereby lessen brain edema [ 62 ]. Minimizing brain edema can help to 
maintain the blood–brain barrier, which in turn protects the brain from systemic 
infl ammatory factors. The rewarming period of therapeutic hypothermia leads to yet 
another shift in the infl ammatory balance. For example, complement activation can 
occur during this post-hypothermia period, and this activation can contribute further 
towards breakdown of the blood–brain barrier [ 57 ]. 
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 Regardless of the variability in studies above, hypothermia appears to be 
 convincingly neuroprotective after cardiac arrest. The mechanistic evidence for this 
is vast, and a detailed review of this is beyond the scope of this chapter. For further 
in-depth review of the neuroprotection literature, one can refer to other sources [ 14 , 
 63 ]. Briefl y, the mechanisms of neuroprotection appear to involve a decrease in 
overall metabolism of vulnerable neurons, reduction in excitotoxic pathways and 
infl ammatory cascades, less reactive oxygen species, and lower apoptosis.  

    Clinical Applications of Hypothermia After Cardiac Arrest 

 Two landmark studies, both prospective randomized controlled trials, have been 
conducted to date in strong support of therapeutic hypothermia after cardiac arrest 
[ 64 ,  65 ]. Based on these two trials, the American Heart Association along with the 
European Resuscitation Council advocated therapeutic hypothermia targeting 
32–34 °C for cardiac arrest due to ventricular fi brillation and pulseless ventricular 
tachycardia. There are also other clinical trials that are in support of these two land-
mark trials [ 66 ]. Though these studies support the use of therapeutic hypothermia 
for shockable cardiac rhythms, many clinicians go on to implement it for cardiac 
arrest due to pulseless electrical activity also despite the lack of convincing studies 
showing benefi t in non-shockable rhythms. Given the low side effect profi le and 
good tolerability of therapeutic hypothermia, it is not unreasonable to fathom its 
potential benefi t for cardiac arrest due to pulseless electrical activity. Because we do 
not fully understand the mechanisms of hypothermia’s benefi ts, this provides a 
dilemma with future investigations being randomized controlled trials, as it would 
be unethical not to initiate therapeutic hypothermia for a post-cardiac arrest patient 
in the setting of a shockable rhythm. Therefore, we may have to rely on animal stud-
ies and in vitro studies to allow us better experimental strategies in uncovering the 
mechanisms involved, including the role of the infl ammatory system. Such bench-
to- bedside approach will be key towards understanding and advancing neurologic 
treatments in this area. This also underscores the importance of focusing on the 
functional outcome and survivability in studies despite at times not clearly under-
standing the mechanisms.    

    Traumatic Brain Injury 

    Mechanism of Injury 

 Traumatic brain injury (TBI) induces cerebral damage through a variety of methods 
and can be classifi ed as primary or secondary insults. The primary insults are the 
direct result of trauma and result in parenchymal and vascular damage. These lead 
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to cell death from direct cell disruption and from cellular energetic dysfunction 
which may be ischemic and/or hypoxic in nature. Substrate deprivation results in a 
decrease of ATP production with resulting cellular energy starvation as well as loss 
of cellular integrity from dysfunction of membrane ATP-dependent Na + –K +  pumps. 
This in turn leads to the uncontrolled release of glutamate, an excitatory neurotrans-
mitter, which leads to injury from excitotoxicity [ 67 – 69 ] mediated principally 
through  N -methyl- d -aspartate (NMDA) receptors [ 70 ]. As part of this cascade of 
cellular injury, inhibitory neurotransmitters that normally dampen glutamate excito-
toxicity, such as γ-aminobutyric acid (GABA) and glycine [ 71 ], are decreased as 
well [ 72 ]. Glutamate excitotoxicity is mediated by activation of NMDA receptors, 
which create an intracellular calcium infl ux that in turn activates a number of second 
messengers that amplify cellular injury by increasing calcium permeability and 
increasing glutamate release leading to a vicious cycle [ 73 – 75 ]. There is also an 
activation of neuronal nitric oxide synthase (nNOS), which results in the production 
of oxygen-free radical species, which are also responsible for cellular injury by 
direct DNA fragmentation, protein oxidation, lipid peroxidation [ 76 ], and disrup-
tion of the mitochondrial respiratory chain. Oxidative stress mediated by these 
mechanisms also leads to further infl ammation and injury through complement acti-
vation and subsequent degradation [ 77 ,  78 ], cytokine production (IL-1, IL-6, IL-8, 
and TNF-α), expression of leukocyte adhesion molecules, and microvascular dys-
function [ 79 ]. Secondary injury is a delayed phenomenon and is mediated by cere-
bral edema with resulting elevations in intracranial pressure, non-convulsive 
seizures, and blood–brain barrier disruption. Cytotoxic edema is a result of previ-
ously discussed excitotoxicity and ionic pump failure, as well as cellular water shift 
across impaired aquaporin function [ 80 ]. Matrix metalloproteases (MMPs) are 
responsible for blood–brain barrier disruption and are decreased by therapeutic 
hypothermia in human studies [ 81 ].  

    Clinical Applications and Role of Hypothermia in TBI 

 Human TBI studies have shown that mild therapeutic hypothermia has positive 
effects on cerebral metabolic imbalance [ 82 ]. Energetic dysfunction and cellular 
metabolic crises have been shown to be important pathophysiologic processes in 
humans with TBI [ 83 ] and are predictors of outcome [ 84 ]. Studies in anesthetized 
patients have established that in humans the cerebral rate of oxygen consumption 
(CMRO 2 ) is decreased by 6.5 % per °C in temperature reduction [ 85 ], alleviating 
the oxygen deprivation encountered during both primary and secondary injuries. 

 A 2009 Cochrane systematic review by Sydenham et al. [ 86 ] found 23 trials with 
a total of 1,614 randomized patients in trials that utilized therapeutic hypothermia 
(<35 °C) for at least 12 h. The authors of this analysis concluded that there is no 
evidence that hypothermia is benefi cial in the treatment of head injury. Hypothermia 
may be effective in reducing death and unfavorable outcomes for traumatic head- 
injured patients, but signifi cant benefi t was only found in low-quality trials. As 
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evidenced by the number of reviews and studies [ 15 ,  87 – 89 ], there is great interest 
in therapeutic hypothermia for the treatment of TBI. Some of the criticisms against 
the negative trials in hypothermia for TBI have included delays in initiation of hypo-
thermia, as well as inadequate duration of hypothermia which has been shown to 
decrease ICP in these patients who then had rebound elevations in ICP upon rewarm-
ing [ 90 ]. Moreover, lack of positive results may also be partly due to heterogeneity 
in the variables of the treatment groups, in particular the presence and degree of 
intracranial hypertension. The 2007 Severe Traumatic Brain Injury Guidelines [ 91 ] 
state that there is insuffi cient data to support level 1 and 2 recommendations for the 
use of therapeutic hypothermia in TBI. At a level 3, the guidelines mention that 
while therapeutic hypothermia was not associated with decreased mortality com-
pared to normothermic controls, preliminary fi ndings suggest that a greater decrease 
in mortality is observed when target temperature is maintained for >48 h. A 2011 
multi-society consensus statement on Targeted Temperature Management (TTM) 
[ 92 ] concluded that existing data does not support a recommendation for or against 
the use of TTM (including TH) to treat TBI. Furthermore, it states that although 
existing data suggest that TH can decrease ICP in TBI, the relationship between ICP 
reduction and outcomes is indeterminate. The decision of whether to employ TH 
and how to do so in TBI must be individualized with particular attention paid to the 
presence of elevated ICP pending the results of the ongoing Eurotherm 3235 Trial 
[ 93 ], which aims to defi nitively address the impact of TH on 6-month mortality, 
outcomes, ICP control, and cost-effectiveness.   

    Subarachnoid Hemorrhage and Intracerebral Hemorrhage 

    Mechanism of Injury in SAH and ICH 

 Subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH) share the 
main pathophysiologic mechanisms for infl ammation and injury with other forms of 
brain injury. Some unique aspects of the infl ammatory process in SAH and ICH 
include the presence of signifi cant amounts of blood in and around the brain. 
Exposure of blood to the surface of the brain induces a series of infl ammatory 
changes including cytotoxic edema, breakdown of the blood–brain barrier, and 
delayed cerebral ischemia (DCI). Animal models have shown that free heme induces 
IL-1-mediated infl ammation [ 94 ]. As in other forms of brain injury, CSF and serum 
levels of interleukins and TNFα are elevated in SAH [ 95 ]. Delayed cerebral isch-
emia in SAH is thought to be mediated via the mitogen-activated protein kinase 
pathway (MAPK) which ultimately results in increases of IL-1β, IL-6, and TNFα 
[ 96 ]. Vasospasm seems to be partially mediated by dysregulation of endothelin-1 
(ET-1) and nitric oxide (NO) levels, as well as by asymmetric  d -methyl arginine 
(ADMA), which mediate endothelial dysfunction as well [ 97 ]. Also, matrix metal-
loprotease- 9 likely plays an important role in SAH-mediated blood–brain barrier 
disruption and infl ammatory mechanisms [ 96 ].  
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    Preclinical Data on Hypothermia and SAH 

 Animal studies of therapeutic hypothermia have shown promise and signifi cant 
effect on reducing infl ammation based on quantifi cation of infl ammatory markers as 
well as radiologic and clinical parameters [ 98 ]. Early animal studies showed 
decreases in pro-infl ammatory heat-shock proteins (hsp70) after treatment with 
mild therapeutic hypothermia [ 99 ]. Dog models of SAH have shown that hypother-
mia decreases angiographic vasospasm as well as clinical performance status that 
correlate with modulation of ET-1 and NO [ 100 ]. In a separate rat model of experi-
mental SAH, therapeutic hypothermia decreased metabolic stress and cytotoxic 
edema as measured by diffusion-weighted MRI and magnetic resonance spectros-
copy (MRS) [ 101 ]. A laser-Doppler and microdialysis study in a massive SAH rat 
model again demonstrated that hypothermia decreased early ischemia, improved 
cerebral vascular autoregulation and cellular metabolic crisis, and also decreased 
infl ammatory mediators [ 102 ].  

    Clinical Applications of Hypothermia in SAH 

 The Intraoperative Hypothermia for Aneurysm Surgery Trial (IHAST) is the main 
study of hypothermia in SAH [ 103 ]. Results from this large prospective multicenter 
trial of intraoperative hypothermia in patients with good grade SAH failed to show 
treatment benefi t with intraoperative hypothermia. In another publication stem-
ming from the same trial [ 104 ], therapeutic hypothermia failed to show benefi t in 
terms of neuropsychological outcomes between patients treated with and without 
hypothermia. Furthermore, in contrast to animal studies, data from the IHAST trial 
showed no difference in outcomes in patients with SAH treated with a combination 
of hypothermia and barbiturates [ 105 ]. Gasser et al. [ 106 ] evaluated the feasibility 
and safety of long-term hypothermia (>72 h) in the treatment of severe brain edema 
after poor-grade SAH. The functional independence at 3 months, defi ned as a 
Glasgow Outcome Scale (GOS) score of 4 or 5, did not differ between the two 
groups. 

 In the 2012 AHA Guidelines for the Management of Aneurysmal Subarachnoid 
Hemorrhage, it states that induced hypothermia during aneurysm surgery may be 
reasonable in some cases but is not routinely recommended (IIIb) [ 107 ]. In the same 
guidelines, no statement was provided on the use of therapeutic hypothermia out-
side of surgery. Nguyen et al. have shown, however, that perioperative hypothermia 
to 33 °C is safe from a cardiovascular standpoint [ 108 ]. However in Gasser et al.’s 
aforementioned study [ 106 ], there was a signifi cant increase in infectious complica-
tions in patients with hypothermia >72 h. More recent data seems to show that 
maintenance of normothermia (37 °C) may be safer and result in better outcomes 
post-SAH [ 109 ].  
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    Preclinical Data on Hypothermia and ICH 

 Animal models of infl ammation in ICH as well as human data point to the  majority 
of pathophysiologic mechanisms discussed previously. By the same token, studies 
in rats of therapeutic hypothermia in ICH models have shown stabilization of the 
blood–brain barrier as well as decreased infl ammatory signaling and oxidative 
stress [ 110 ,  111 ]. Another study again showed improvement in measures of 
infl ammation with hypothermia in rats, but failed to show clinically signifi cant 
improvements [ 112 ].  

    Clinical Applications of Hypothermia in ICH 

 At present, there is little evidence to support the use of therapeutic hypothermia in 
spontaneous ICH. The 2010 AHA Guidelines for the Management of Spontaneous 
Intracerebral Hemorrhage do not recommend the use of hypothermia given the lack 
of evidence in humans at this time [ 113 ]. However, since the publication of that 
guideline, a small study by Staykov et al. [ 114 ] reported the use of mild therapeutic 
hypothermia at 35 °C via endovascular cooling for 8–10 days in patients with ICH 
volumes >25 cm 3 . They demonstrated signifi cant decreases in the development of 
perihematomal edema between days 3 and 10 in the TH group, as well as a trend 
towards decreased mortality, though it is unclear if the mechanism of these fi ndings 
involves infl ammation-related changes. These results have led the same group to 
launch the prospective Cooling in IntraCerebral Hemorrhage (CINCH) trial in 
Europe [ 115 ], which aims to determine whether TH improves survival and decreases 
lesion volume after large ICH.   

    Seizures and Status Epilepticus 

    Mechanism of Injury, the Role of Infl ammation, 
and Preclinical Data 

 The immune and infl ammatory mechanisms of status epilepticus (SE) are in some 
ways similar to other acute brain injuries. As in other forms of brain injury, infl am-
matory mediators such as IL-1, IL-6, and TNFα play an essential role in the patho-
genesis of SE [ 116 ]. These fi ndings are corroborated by amelioration of 
seizure-induced infl ammation in rats treated with IL-1 receptor antagonists [ 117 ]. 
Inhibition of MAPK and cyclooxygenase-2 (COX-2) decreased markers of cellular 
injury and oxidative stress as well as mortality in a rat model of SE treated with an 
anti-infl ammatory and antioxidant compound [ 118 ]. NMDA receptor-1 upregula-
tion has been associated with increased neuronal death in the rat model, and mild 
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hypothermia delayed and decreased the amount of neuronal death [ 119 ]. In another 
rat model, the neuroprotective effect of hypothermia in SE was thought to be medi-
ated by a decrease in cerebral edema. Of note, in this study hypothermia also 
improved the cognitive function and decreased the recurrence of seizures in treated 
rats in comparison to controls [ 120 ].  

    Clinical Applications of Hypothermia in Seizures 

 The body of evidence for TH in status epilepticus is quite limited. In a recent review 
[ 121 ] the outcomes of therapies for refractory and super-refractory status epilepticus 
of nine patients in four reports were described. All cases achieved initial control and 
7/9 fully recovered. In a small case series of patients with refractory status epilepti-
cus, hypothermia of 30–31 °C was combined with barbiturate coma, and successful 
control of seizures was achieved [ 122 ]. The role of hypothermia in management of 
refractory seizures warrants further investigation [ 123 ]. Based on what little evi-
dence exists, reviews [ 121 ,  124 ] recommend using TH as a second-line agent, ideally 
after a combination of GABAergic and NMDA antagonist drugs is in place [ 125 ].   

    Meningitis and Encephalitis 

    Mechanism of Injury, Infl ammation, and Clinical 
Considerations 

 Bacterial meningitis and viral encephalitis share many of the underlying infl amma-
tory processes as the pathologic entities previously discussed in this chapter. 
However, the pathogen–host interaction adds another layer of complexity from a 
molecular and immune standpoint. The details of individual bacterial or viral species 
virulence factors and interactions with the human central nervous system are quite 
beyond the scope of this chapter. However, detailed information on the molecular 
mechanisms of infl ammation and pathogenicity of bacterial meningitis and viral 
encephalitis may be sought in other references [ 126 – 128 ]. Bacterial meningitis 
induces CNS immune activation by a variety of cell wall products that as a fi rst step 
require recognition by CD-14 membrane receptors, which eventually activate toll- 
like receptor-2 (TLR-2) among other mechanisms; this is accompanied by migration 
and proliferation of activated immune cells in the CNS. Bacterial products stimulate 
IL-1β, IL-6, and TNFα, as well as COX-2, MMP-8 and 9 and dysregulated iNOS, all 
of which by now constitute a form of common infl ammatory pathway for brain 
injury [ 129 – 132 ]. Viral encephalitis induces CNS infl ammation in much the same 
way as bacterial meningitis. Animal models of meningitis have shown that hypother-
mia decreases infl ammatory markers [ 129 ] as well as improving ICP and metabolic 

19 Cool Down the Infl ammation: Hypothermia as a Therapeutic Strategy…



364

measures in rats treated with hypothermia at 32–34 °C [ 133 ]. This data led to the 
IHPOTOTAM (Induced HyPOthermia TO Treat Adult Meningitis;   http://www.clini-
caltrials.org     #NCT00774631) trial of which results are pending at this time.   

    Acute Liver Failure and Hepatic Encephalopathy 

    Mechanism of Injury, Role of Infl ammation, 
and Animal Studies 

 While hypothermia has been investigated as a potential agent to reduce infl amma-
tion, cerebral edema, and resulting increases in intracranial pressure (ICP) due to 
several conditions resulting from direct (i.e. stroke, traumatic brain injury, and men-
ingitis) neurologic injuries, it is also investigated for indirect neurologic injuries, 
such as in cerebral edema secondary to liver failure. Therapeutic hypothermia (TH) 
for acute liver failure (ALF) concerns mainly the use of TH as a measure to decrease 
ICP as a bridge to defi nitive therapy, usually orthotopic liver transplantation (OLT) 
[ 134 ]. Purported mechanisms by which TH may be useful in ALF are reductions in 
cerebral edema mediated by decreased ammonia production, brain hyperosmolarity, 
oxidative stress, and cerebral hyperperfusion [ 135 ,  136 ]. 

 The pathophysiology of central nervous system dysfunction during hepatic 
encephalopathy, resulting from both acute and chronic liver failure, is not yet fully 
understood. Cerebral edema is usually absent in cases of chronic liver failure but 
frequent in acute liver failure. There are a variety of molecular mechanisms that 
have been implicated in the development of cerebral edema and resulting increased 
intracranial pressure, as well as in the onset of hepatic encephalopathy. Ammonia is 
believed to be the main neurotoxin in hepatic encephalopathy, as shown  in vitro  by 
vacuolization and cellular damage of cortical astrocytes exposed to ammonia [ 137 ] 
and confi rmed by human autopsy data [ 138 ,  139 ]. Additionally, serum ammonia 
levels have been correlated to herniation events and death in humans with acute liver 
failure [ 140 ]. Hepatic encephalopathy and resulting cerebral edema are also medi-
ated by cerebral metabolic imbalances. Animal experimental models have demon-
strated decreased brain glucose utilization, resulting in reduced production of  
adenosine-triphosphate (ATP) [ 141 ]. This is compounded by increases in lactate 
production in hyperammonemic states [ 141 – 144 ] that are at least partially mediated 
by inhibition of brain α-ketoglutarate dehydrogenase. Elevated levels of brain lac-
tate have been implicated in cytotoxic edema. Oxidative stress is another mecha-
nism by which hepatic encephalopathy induces brain injury. In a rat model, Murthy 
et al. [ 145 ] demonstrated astrocyte derived free radicals’ role in the pathophysiol-
ogy of hyperammonemic brain injury. Other animal studies have shown increased 
activity of inducible nitric oxide synthase I and II in hepatic encephalopathy [ 146 , 
 147 ]. In a rabbit model of acute liver injury [ 148 ], blood–brain barrier disruption 
was reported. This, in turn, can lead to many possible pathways for altered cerebral 
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metabolism and homeostasis leading to secondary brain injury. Matrix metallopro-
teases have been implicated in blood–brain barrier disruption in several forms of 
brain injury including hepatic encephalopathy [ 149 ]. Other pathophysiologic mech-
anisms of cerebral dysfunction and injury include increases in pro-infl ammatory 
cytokines (IL-1β, IL-6, and TNFα) and concomitant decreases in anti-infl ammatory 
mediators [ 136 ,  150 – 154 ]. 

 In a key study, Jiang et al. [ 155 ] demonstrated in a rat model that mild hypother-
mia to 35 °C decreased brain edema as measured by brain water content. They also 
found reduced serum and cerebrospinal fl uid ammonia concentrations as well as 
blunted serum protein levels and CNS mRNA levels of IL-1β, IL-6, and TNFα. This 
study shows several important mechanisms by which hypothermia attenuates neuro-
infl ammation in acute liver failure. Barba et al. [ 156 ] employed hydrogen nuclear 
MRI to perform functional metabolic analysis on a rat model of acute liver failure and 
demonstrated decreased levels of alanine and lactate, demonstrating decreased meta-
bolic dysregulation in the brains of hypothermic rats in comparison to normothermic 
controls. These results parallel those of Chatauret and colleagues [ 144 ] who demon-
strated improvement in brain glucose metabolism imbalance with hypothermia.  

    Clinical Applications of Hypothermia in Acute Liver Failure 

 A number of human studies regarding therapeutic hypothermia for treating hepatic 
encephalopathy and resulting cerebral edema comes from Jalan et al. from King’s 
College [ 157 – 159 ]. In these studies, TH was applied as part of a strategy to optimize 
and bridge patients with acute liver failure to liver transplantation by decreasing 
intracranial pressure. These small case series have led to enthusiasm for undertak-
ing a prospective study of therapeutic hypothermia in acute liver failure in the form 
of the “Hypothermia to Prevent High Intracranial Pressure in Patients With Acute 
Liver Failure” study (  http://www.clinicaltrials.org     #NCT00670124). Pending publi-
cation of the results of this study, there is no compelling evidence to recommend 
routine application of therapeutic hypothermia to patients with hepatic encepha-
lopathy; therapeutic hypothermia may be considered, however, in high-risk patients 
with refractory elevations in intracranial pressures [ 87 ,  160 ].   

    Fever 

    Mechanism of Injury, Role of Infl ammation, and Clinical 
Relevance 

 Fever is an infl ammatory reaction par excellence, and though its advantageous evo-
lution in animals is arguable, it can lead to deleterious reactions in cases of brain 
injury. The causes of fever are varied and numerous. Therefore, this section focuses 
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on those where brain injury is implicated: stroke, ICH and SAH, hypoxic–ischemic 
encephalopathy, seizures, and CNS infections. The preoptic region of the anterior 
hypothalamus is the principal center of the body’s thermoregulatory circuits. Direct 
lesions or infl ammation of this structure as well as its afferent and efferent pathways 
can result in impaired thermoregulation, including fever. Exogenous pyrogens 
include bacterial superantigens and lipopolysaccharide (LPS), and endogenous 
pyrogens include IL-1, IL-6, interferon γ (INFγ), TNFα, and ciliary neurotrophic 
factor (CNTF) which are normally counterbalanced by endogenous cryogens (inter-
leukin- 10, steroid hormones, and others). An imbalance of these factors can lead to 
fever or hypothermia. Interplay of the humoral (immune) and the neural fever path-
ways is required for the initiation and maintenance of fever [ 161 – 163 ]. 

 Fever exacerbates brain injury via a number of mechanisms. These include 
increasing vascular and blood–brain barrier permeability and increasing cellular 
metabolism which can increase CMRO 2 . A rise in CMRO 2  can precipitate an energy 
crisis which results in higher lactate/pyruvate ratios and decreases in pH. It can also 
lead to oxidative stress, increased cerebral edema, and consequently intracranial 
hypertension. These various steps are mediated by the infl ammatory mechanisms 
discussed over the course of this chapter. The exact mechanism of action of thera-
peutic hypothermia as a neuroprotectant is unclear but is most likely multifactorial: 
limiting excitotoxicity [ 69 ], reducing cerebral cellular metabolism [ 18 ,  164 ], 
decreasing tissue nitric oxide and oxidative stress [ 165 ], modulating transcription 
factors and microglial activation [ 166 ], decreasing cerebral edema [ 110 ,  167 ], and 
stabilizing the blood–brain barrier [ 168 ]. Fever has been clinically implicated in 
poor outcomes in neurologic conditions and is recognized as a signifi cant concern 
for brain-injured patients [ 15 ,  169 – 173 ]. For these reasons, normothermia or rela-
tive hypothermia compared to baseline fever states is often targeted clinically to 
mitigate infl ammatory processes that, in turn, can contribute to direct and indirect 
worsening of the various brain injuries discussed throughout this chapter.   

    Conclusion 

  In vitro  and animal studies provide us convincing experimental evidence that 
infl ammation has a central role in many aspects of acute brain injuries. Distinguishing 
when infl ammation may be detrimental versus benefi cial in physiologic processes is 
key. Hypothermia, for the most part, has a generalized anti-infl ammatory role. This 
is supported strongly by  in vitro  studies that show hypothermia curtailing injury and 
animal studies that demonstrate improved recovery from brain injury. Clinical trials 
in humans thus far, however, have only shown neurological benefi t in neonatal 
hypoxia–ischemia and post-cardiac arrest brain injury. Given that adverse side 
effects of therapeutic hypothermia appear tolerable, we await ongoing and future 
studies on whether hypothermia has a clinical role in other acute brain injuries, 
including ischemic stroke, subarachnoid hemorrhage, intracerebral hemorrhage, 
seizure disorders, meningitis/encephalitis, and acute liver failure. Some clinical 
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trials may have failed due to high variance in patient selection, suboptimal design, 
or small sample size.  In vitro  studies and preclinical studies on animals provide us 
the bench-to-bedside opportunity to design better human clinical trials, which hold 
promise towards allowing us potentially to apply therapeutic hypothermia in more 
types of acute brain injury.     
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