
Chapter 7
Waves in Excitable Neural Fields

In Sect. 5, we showed how both solitary pulses and oscillatory phase waves could
occur in a synaptically coupled network of spiking neurons, where the fundamental
element of the network was a single neuron. Hence, whether the network acted as
an excitable or an oscillatory medium depended primarily on the intrinsic proper-
ties of the individual neurons. In this chapter, we focus on waves in excitable neural
fields, where the fundamental network element is a local population of cells (see
Sect. 6), and show how many of the PDE methods and results for the analysis of
waves in reaction–diffusion equations (see part I) can be extended to the nonlocal
integrodifferential equations of neural field theory. We begin by analyzing the ex-
istence and stability of solitary traveling fronts in a 1D scalar neural field. (Since
there is strong vertical coupling between layers of a cortical column, it is possible
to treat a thin vertical cortical slice as an effective 1D medium.) In order to relate
the models to experiments on disinhibited cortical slices (Sect. 5.1), we assume
that the weight distribution is purely excitatory. This is also motivated by the ob-
servation that epileptic seizures are often associated with greatly enhanced levels
of recurrent excitation [430] (Sect. 9.4). We then extend the analysis to the case of
traveling pulses, which requires the inclusion of some form of local negative feed-
back mechanism such as synaptic depression or spike frequency adaptation. Next
we describe two approaches to analyzing wave propagation failure in inhomoge-
neous neural media: one based on homogenization theory [79, 332] and the other on
interfacial dynamics [132]. This is followed by a discussion of wave propagation in
stochastic neural fields.

It is useful to emphasize here that there are two main approaches to analyzing
the spatiotemporal dynamics of neural field equations. The first method is based on
the original work of Amari [8], in which one establishes the existence of nonlinear
traveling wave solutions by explicit construction. This is possible if one takes the
firing rate function F to be the Heaviside (1.15). It is also possible to study the lin-
ear stability of such solutions by constructing an associated Evans function, whose
zeros determine the spectrum of the resulting linear operator [134, 552, 696]. The
constructive approach of Amari [8] has been particularly useful in providing ex-
plicit insights into how spatiotemporal network dynamics depends on the structure
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272 7 Waves in Excitable Neural Fields

of the synaptic weight kernel as well as various physiological parameters. More-
over, in certain cases, it is possible to use singular perturbation methods [504, 505]
or fixed-point theorems [172, 336] to extend results for neural fields with Heaviside
nonlinearities to those with more realistic sigmoidal nonlinearities; see also [136].
The second method is based on bifurcation theory, following the original work of
Ermentrout and Cowan [169], in which one investigates the emergence of spatially
periodic stationary and oscillatory patterns through a combination of linear stability
analysis, weakly nonlinear analysis, symmetric bifurcation theory, and numerical
simulations, as reviewed in [67, 71, 167]. Rigorous functional analytical techniques
combined with numerical bifurcation schemes have also been used to study the ex-
istence and (absolute) stability of stationary solutions for a general class of neural
field models with smooth firing rate functions [185, 642]. As far as we are aware,
these methods have not yet been applied to traveling wave solutions of neural field
equations.

7.1 Traveling Fronts in a Scalar Neural Field

7.1.1 Propagating Fronts in a Bistable Neural Field

We begin by using Amari’s constructive method [8] to analyze the existence of
traveling front solutions in a scalar neural field equation. Similar analyses are found
in Refs. [76, 134, 504]. We assume a Heaviside rate function (1.15) and an excitatory
weight distribution of the form w(x,y) = w(x−y) with w(x)≥ 0 and w(−x) = w(x).
We also assume that w(x) is a monotonically decreasing function of x for x ≥ 0. A
common choice is the exponential weight distribution

w(x) =
1

2σ
e−|x|/σ , (7.1)

where σ determines the range of synaptic connections. The latter tends to range
from 100μm to 1 mm. The resulting neural field equation is

∂u(x, t)
∂ t

= −u(x, t)+
∫ ∞

−∞
w(x− x′)F(u(x′, t))dx′, (7.2)

with F(u) = H(u− κ). We have fixed the units of time by setting τ = 1. If τ is
interpreted as a membrane time constant, then τ ∼ 10 msec. In order to construct
a traveling front solution of (7.2), we introduce the traveling wave coordinate ξ =
x−ct, where c denotes the wave speed, and set u(x, t) =U(ξ )with limξ→−∞ U(ξ )=
U+ > 0 and limξ→∞ U(ξ ) = 0 such that U(ξ ) only crosses the threshold κ once.
Here U+ =

∫ ∞
−∞ w(y)dy is a spatially uniform fixed-point solution of (7.2). Since

Eq. (7.2) is equivariant with respect to uniform translations, we are free to take the
threshold crossing point to be at the origin, U(0) = κ , so that U(ξ ) < κ for ξ > 0
and U(ξ ) > κ for ξ < 0. Substituting this traveling front solution into Eq. (7.2)
then gives
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− cU ′(ξ )+U(ξ ) =
∫ 0

−∞
w(ξ − ξ ′)dξ ′ =

∫ ∞

ξ
w(x)dx ≡W (ξ ), (7.3)

where U ′(ξ ) = dU/dξ . Multiplying both sides of the above equation by e−ξ/c and
integrating with respect to ξ leads to the solution

U(ξ ) = eξ/c
[

κ − 1
c

∫ ξ

0
e−y/cW (y)dy

]
. (7.4)

Finally, requiring the solution to remain bounded as ξ → ∞ (ξ →−∞) for c > 0 (for
c < 0) implies that κ must satisfy the condition

κ =
1
|c|
∫ ∞

0
e−y/|c|W (sign(c)y)dy. (7.5)

Thus, one of the useful aspects of the constructive method is that it allows us to
derive an explicit expression for the wave speed as a function of physiological pa-
rameters such as firing threshold and range of synaptic connections. In the case of
the exponential weight distribution (7.1), the relationship between wave speed c and
threshold κ is

c =
σ
2κ

[1− 2κ ] (for κ < 0.5), c =
σ
2

1− 2κ
1−κ

(for 0.5 < κ < 1). (7.6)

This establishes the existence of a unique front solution for fixed κ , which travels to
the right (c > 0) when κ < 0.5 and travels to the left (c < 0) when κ > 0.5. As we
will show below, the traveling front is stable.

Given the existence of a traveling front solution for a Heaviside rate function, it
is possible to extend the analysis to a smooth sigmoid nonlinearity using a continua-
tion method [172]. We briefly summarize the main result. Consider the scalar neural
field equation (7.2) with F given by the sigmoid function (1.14) and w(x) nonneg-
ative and symmetric with normalization

∫ ∞
−∞ w(x)dx = 1. Suppose that the function

F̃(u) = −u+ F(u) has precisely three zeros at u = U±,U0 with U− < U0 < U+

and F̃ ′(U±)< 0. It can then be shown that (modulo uniform translations) there ex-
ists a unique traveling front solution u(x, t) =U(ξ ), ξ = x− ct, with

− cU ′(ξ )+U(ξ ) =
∫ ∞

−∞
w(ξ − ξ ′)F(U(ξ ′))dξ ′, (7.7)

and U(ξ )→U± as ξ →∓∞ [172]. Moreover, the speed of the wave satisfies

c =
Γ∫ ∞

−∞ U ′(ξ )2F ′(U(ξ ))dξ
, (7.8)

where F ′(U) = dF/dU and

Γ =
∫ U+

U−
F̃(U)dU. (7.9)
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Since the denominator of Eq. (7.8) is positive definite, the sign of c is determined by
the sign of the coefficient Γ . In particular, if the threshold κ = 0.5 and the gain of the
sigmoid η > 4 (see Eq. (1.14), then there exists a pair of stable homogeneous fixed
points with U− = −U+, which in turn implies that Γ = 0 and the front solution
is stationary. Note that this analysis has been extended to a more general form of
nonlocal equations by Chen [108].

7.1.2 Wave Stability and Evans Functions

Suppose that the scalar neural field equation (7.2) has a traveling wave solution
u(x, t) = U(ξ ),ξ = x− ct with c > 0. Following Coombes and Owen [134], it is
convenient to rewrite the neural field equation in the integral form

u(x, t) =
∫ ∞

−∞

∫ ∞

0
w(y)Φ(s)F(u(x− y, t − s))dsdy, (7.10)

with Φ(t) = e−tH(t). For this representation, the front solution satisfies

U(ξ ) =
∫ ∞

−∞

∫ ∞

0
w(y)Φ(s)F(U(ξ − y+ cs)dsdy. (7.11)

In order to determine the stability of the front solutions, we transform to traveling
wave coordinates by setting u(x, t) =U(ξ , t) = U(ξ )+ϕ(ξ , t), and Taylor expand
to first order in ϕ . This leads to the linear integral equation

ϕ(ξ , t) =
∫ ∞

−∞

∫ ∞

0
w(y)Φ(s)F ′(U(ξ − y+ cs))ϕ(ξ − y+ cs, t− s)dsdy. (7.12)

We now seek solutions of Eq. (7.12) of the form ϕ(ξ , t) = ϕ(ξ )eλ t , λ ∈ C, which
leads to the eigenvalue equation ϕ = L(λ )ϕ . That is,

ϕ(ξ ) =
∫ ∞

−∞

∫ ∞

ξ−y
w(y)Φ((s+ y− ξ )/c)e−λ (s+y−ξ )/cF ′(U(s))ϕ(s)

ds
c

dy, (7.13)

where we have performed the change of variables cs+ξ −y→ s. The linear stability
of the traveling front can then be determined in terms of the spectrum σ(L(λ )).

Following appendix section 2.7, we assume that the eigenfunctions ϕ ∈ L2(R)
and introduce the resolvent operator R(λ ) = [L(λ )− I]−1, where I denotes the
identity operator. We can then decompose the spectrum σ(L ) into the disjoint sum
of the discrete spectrum and the essential spectrum. Given the spectrum of the linear
operator defined by Eq. (7.13), the traveling wave is said to be linearly stable if [551]

max{Re(λ ) : λ ∈ σ(L ), λ 	= 0} ≤ −K (7.14)
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for some K > 0, and λ = 0 is a simple eigenvalue of λ . The existence of at
least one zero eigenvalue is a consequence of translation invariance. Indeed, dif-
ferentiating equation (7.11) with respect to ξ shows that ϕ(ξ ) = U ′(ξ ) is an
eigenfunction solution of Eq. (7.13) with λ = 0. As in the case of PDEs (see
Sect. 2.4), the discrete spectrum may be associated with the zeros of an Evans func-
tion. A number of authors have applied the Evans function construction to neu-
ral field equations [134, 198, 506, 536, 552, 696], as well as more general non-
local problems [314]. Moreover, for neural fields with Heaviside firing rate func-
tions, the Evans function can be calculated explicitly. This was first carried out by
Zhang [696], who applied the method of variation of parameters to the linearized
version of the integrodifferential Eq. (7.2), and was subsequently extended using a
more direct integral formulation by Coombes and Owen [134].

Construction of Evans function. Setting F(U) = H(U − κ) in Eq. (7.12) and using the
identity

H ′(U(ξ )−κ) = δ (U(ξ )−κ) =
δ (ξ )
|U ′(0)| (7.15)

gives

ϕ(ξ ) =
ϕ(0)

c|U ′(0)|
∫ ∞

−∞
w(y)Φ((y−ξ )/c)e−λ (y−ξ )/cdy. (7.16)

In order to obtain a self-consistent solution at ξ = 0, we require that

ϕ(0) =
ϕ(0)

c|U ′(0)|
∫ ∞

0
w(y)Φ(y/c)e−λy/cdy, (7.17)

We have used the fact that Φ(y) = 0 for y < 0, which is a consequence of causality. Hence,
a nontrivial solution exists provided that E (λ ) = 0, where

E (λ ) = 1− 1
c|U ′(0)|

∫ ∞

0
w(y)Φ(y/c)e−λy/cdy. (7.18)

Equation (7.18) can be identified with the Evans function for the traveling front solution
of the scalar neural field equation (7.10). It is real valued if λ is real. Furthermore, (i) the
complex number λ is an eigenvalue of the operator L if and only if E (λ ) = 0, and (ii) the
algebraic multiplicity of an eigenvalue is equal to the order of the zero of the Evans func-
tion [134, 552, 696]. We briefly indicate the proof of (i) for Φ(t) = e−tH(t). Equation (7.16)
becomes

ϕ(ξ ) =
ϕ(0)

c|U ′(0)| e
(λ+1)ξ/c

∫ ∞

ξ
w(y)e−(λ+1)y/cdy,

= ϕ(0)

[
1− 1

c|U ′(0)|
∫ ξ

0
w(y)e−(λ+1)y/cdy

]
e(λ+1)ξ/c,

which in the limit ξ → ∞ gives

lim
ξ→∞

ϕ(ξ ) = ϕ(0)E (λ ) lim
ξ→∞

e(λ+1)ξ/c.

Assuming that Reλ >−1 (which turns out to be to the right of the essential spectrum), then
ϕ(ξ ) will be unbounded as ξ → ∞ unless E (λ ) = 0. That is, if E (λ ) = 0, then ϕ(ξ ) is
normalizable, the resolvent operator is not invertible and λ is an eigenvalue.
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It is also straightforward to show that E (0) = 0, which we expect from translation invari-
ance. First, setting F(U) = H(U − κ) in Eq. (7.11) and differentiating with respect to ξ
show that

U ′(ξ ) =−1
c

∫ ∞

−∞
w(y)Φ((y−ξ )/c)dy. (7.19)

Thus, defining

H (λ ) =
∫ ∞

0
w(y)Φ(y/c)e−λy/cdy, (7.20)

we see that c|U ′(0)|= H (0) and, hence,

E (λ ) = 1− H (λ )
H (0)

. (7.21)

It immediately follows that E (0) = 0.

In order to determine the essential spectrum, consider the inhomogeneous equation

ϕ(ξ )− ϕ(0)
c|U ′(0)|

∫ ∞

−∞
w(y)Φ((y−ξ )/c)e−λ (y−ξ )/cdy = h(ξ ) (7.22)

for some normalizable smooth function h on R. Assuming that λ does not belong to the
discrete spectrum, E (λ ) 	= 0, we can expresses the constant ϕ(0) in terms of h(0) by setting
ξ = 0 in Eq. (7.22): ϕ(0) = h(0)/E (λ ). Thus,

ϕ(ξ ) = h(ξ )+
1

E (λ )
h(0)

c|U ′(0)|
∫ ∞

−∞
w(y)Φ((y−ξ )/c)e−λ (y−ξ )/cdy. (7.23)

Fourier transforming this equation using the convolution theorem gives

ϕ̂(k) = ĥ(k)+
1

E (λ )
h(0)

c|U ′(0)| ω̂(k)Φ̂(kc+ iλ ), (7.24)

where

ϕ̂(k) =
∫ ∞

−∞
ϕ(y)eikydy (7.25)

etc. Now suppose that for a given value of k, there exists λ = λ (k) for which [Φ̂(kc +
iλ (k))]−1 = 0. It follows that the right-hand side of Eq. (7.24) blows up if λ = λ (k), that
is, the dispersion curve belongs to the essential spectrum.

For the sake of illustration, let us calculate the zeros of the Evans function in the
case of the exponential weight function (7.1). Substituting Φ(t) = e−t and w(y) =
e−|y|/σ/2σ in Eq. (7.20) gives

H (λ ) =
1

2σ
1

σ−1 +λ/c+ 1/c

so that [134]

E (λ ) =
λ

c/σ + 1+λ
. (7.26)

It follows that λ = 0 is the only zero of the Evans function and it is a simple
root (since E ′(0) > 0). Furthermore, in the particular case Φ(t) = e−t , we have
[Φ̃(kc + iλ )]−1 = 1− ikc+ λ so that the essential spectrum is λ (k) = −1+ ikc,
that is, a vertical line in the complex plane at Reλ = −1. It follows that the
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corresponding traveling front (it it exists) is stable. This example illustrates one
of the powerful features of the constructive method based on Heavisides. Not only
is it possible to construct exact traveling wave solutions and derive formulae for
the speed of the wave, but one can also explicitly construct the Evans function that
determines wave stability. The method extends to multi-population neural field mod-
els, neural fields with axonal propagation delays, and adaptive neural fields [134].
(Although taking the high-gain limit of a smooth firing rate function is not very
realistic from a biological perspective, one finds that many of the basic features of
traveling waves persist for finite gain.) In the particular case of axonal delays, it
can be shown that delays reduce the speed of a wave but do not affect its stability
properties. For example, given a right-moving traveling front solution of the scalar
neural field equation (6.118) with τ = 1 and exponential weights, one finds that the
speed of the wave is [134, 139]

c = σ
1− 2κ

2κ +σ(1− 2κ)/v
,

where v is the propagation speed along an axon, and the Evans function is

E (λ ) =
λ

c/σ +(1− c/v)+λ
.

7.1.3 Pulled Fronts

So far we have assumed that the scalar neural field operates in a bistable regime anal-
ogous to the FitzHugh–Nagumo equations; see Sect. 2. However, as we explored
within the context of CaMKII translocation waves (Sect. 3.2), Fisher-like reaction–
diffusion equations support traveling waves propagating into unstable states, result-
ing in pulled fronts (Sect. 3.3). It turns out that it is also possible to observe pulled
fronts in an activity-based version of a scalar neural field equation [70, 132]:

τ
∂a(x, t)

∂ t
= −a(x, t)+F

(∫ ∞

−∞
w(x− x′)a(x′, t)dx′

)
. (7.27)

with a(x, t) ≥ 0 for all (x, t). Note that the restriction to positive values of a is a
feature shared with population models in ecology or evolutionary biology, for ex-
ample, where the corresponding dependent variables represent number densities. In-
deed, Eq. (7.27) has certain similarities with a nonlocal version of the Fisher–KPP
equation, which takes the form [238]

τ
∂ p(x, t)

∂ t
= D

∂ 2 p(x, t)
∂x2 + μ p(x, t)

(
1−

∫ ∞

−∞
K(x− x′)p(x′, t)dx′

)
. (7.28)
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One major difference from a mathematical perspective is that Eq. (7.28) supports
traveling fronts even when the range of the interaction kernel K goes to zero, that is,
K(x)→ δ (x), since we recover the standard local Fisher–KPP equation (3.44) [191,
345]. In particular, as the nonlocal interactions appear nonlinearly in Eq. (7.28), they
do not contribute to the linear spreading velocity in the leading edge of the front.
On the other hand, nonlocal interactions play a necessary role in the generation of
fronts in the neural field equation (7.27).

Suppose that F(a) in Eq. (7.27) is a positive, bounded, monotonically increasing
function of a with F(0) = 0, lima→0+ F ′(a) = 1 and lima→∞ F(a) = κ for some
positive constant κ . For concreteness, we take

F(a) =

⎧⎨
⎩

0, a ≤ 0
a, 0 < a ≤ κ
κ , a > κ .

(7.29)

A homogeneous fixed-point solution a∗ of Eq. (7.27) satisfies

a∗ = F(W0a∗), W0 =

∫ ∞

−∞
w(y)dy. (7.30)

In the case of the given piecewise linear firing rate function, we find that if W0 > 1,
then there exists an unstable fixed point at a∗ = 0 (absorbing state) and a stable fixed
point at a∗ = κ ; see Fig. 7.1(a). The construction of a front solution linking the stable
and unstable fixed points differs considerably from that considered in neural fields
with sigmoidal or Heaviside nonlinearities [8, 167], where the front propagates into
a metastable state; see Fig 7.1(b). Following the PDE theory of fronts propagating
into unstable states [544] (see Sect. 3.3), we expect there to be a continuum of front
velocities and associated traveling wave solutions.

Recall that a conceptual framework for studying such solutions is the linear
spreading velocity c∗, which is the asymptotic rate with which an initial localized
perturbation spreads into an unstable state based on the linear equations obtained by
linearizing the full nonlinear equations about the unstable state. Therefore, lineariz-
ing equation (7.27) about a = 0 gives

activity a

F
(W

0a
)

/W0

a

activity a

F
(W

0a
)

b

/W0

Fig. 7.1 Plots of firing rate function. Intercepts of y=F(W0a) with the straight line y= a determine
homogeneous fixed points. (a) Piecewise linear rate function (7.29) showing the existence of an
unstable fixed point at a = 0 and a stable fixed point at a = κ . (b) Sigmoidal rate function F(a) =
2/(1+ e−2[a−κ]) showing the existence of two stable fixed points separated by an unstable fixed
point
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∂a(x, t)
∂ t

= −a(x, t)+
∫ ∞

−∞
w(x− x′)a(x′, t)dx′. (7.31)

Note that if a(x,0) ≥ 0 for all x, then Eq. (7.31) ensures that a(x, t) ≥ 0 for all
x and t > 0. One way to see this is to note from Eq. (7.31) that a(x, t + Δ t) =
(1−Δ t)a(x, t)+Δ t

∫ ∞
−∞ w(x− x′)a(x′, t)dx′. Assuming positivity of the solution at

time t and using the fact that the neural field is purely excitatory (w(x) ≥ 0 for all
x), it follows that a(x, t +Δ t) is also positive. An arbitrary initial condition a(x,0)
will evolve under Eq. (7.31) as

a(x, t) =
∫ ∞

−∞
G(x− y, t)a(y,0)dy, (7.32)

where G(x, t) is Green’s function

G(x, t) =
∫ ∞

−∞
eikx−iω(k)t dk

2π
, ω(k) = i[w̃(k)− 1], (7.33)

and w̃(k) is the Fourier transform of the weight distribution w(x). Hence, the solution
can be written in the form of Eq. (3.102):

a(x, t) =
∫ ∞

−∞
ã0(k)e

i[kx−ω(k)t]) dk
2π

. (7.34)

with ã0, the Fourier transform of the initial condition a(x,0).
Given a sufficiently steep initial condition, for which the Fourier transform ã(k)

is analytic, the asymptotic behavior of a(x, t) can be obtained from the large-time
asymptotics of G(x, t) based on steepest descents. It immediately follows from the
analysis of the Fisher equation in Sect. 3.3 that the linear spreading velocity c∗ is
given by c∗ = c(λ ∗) where

c(λ ) =
Im(ω(iλ ))

λ
,

dc(λ )
dλ

∣∣∣∣
λ=λ ∗

= 0. (7.35)

Using the fact that the Fourier transform of the weight distribution is real valued,
we find that

c(λ ) =
1
λ
[W (λ )− 1] , (7.36)

where W (λ ) = Ŵ (λ )+Ŵ(−λ ) and Ŵ (λ ) is the Laplace transform of w(x):

Ŵ (λ ) =
∫ ∞

0
w(y)e−λ ydy. (7.37)

We are assuming that w(y) decays sufficiently fast as |y| → ∞ so that the Laplace
transform Ŵ (λ ) exists for bounded, negative values of λ . This holds in the case of
a Gaussian weight distribution
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w(x) =
W0√
2πσ2

e−x2/2σ 2
, (7.38)

since

W (λ ) =
∫ ∞

−∞
w(y)e−λ ydy =

W0√
2πσ2

∫ ∞

−∞
e−y2/2σ 2

e−λ ydy =W0eλ 2σ 2/2.

Hence,

c(λ ) =
W0eλ 2σ 2/2 − 1

λ
. (7.39)

If W0 > 1 (necessary for the zero activity state to be unstable), then c(λ ) is a positive
unimodal function with c(λ ) → ∞ as λ → 0 or λ → ∞ and a unique minimum at
λ = λ0 with λ0 the solution to the implicit equation

λ0
2 =

W0 − e−λ0
2σ 2/2

σ2W0
. (7.40)

Example dispersion curves are shown in Fig. 7.2(a) for various values of the
Gaussian weight amplitude W0. Combining Eqs. (7.39) and (7.40) shows that

c0

λ0
= σ2W0eλ0

2σ 2/2 = σ2(λ0c0 + 1), (7.41)

so that

λ0 =
1
2

[
− 1

c0
+

√
1

c0
2 +

4
σ2

]
. (7.42)

Assuming that the full nonlinear system supports a pulled front (see Sect. 3.3), then
a sufficiently localized initial perturbation (one that decays faster than e−λ0x) will
asymptotically approach the traveling front solution with the minimum wave speed
c0 = c(λ0). Note that c0 ∼ σ and λ0 ∼ σ−1. In Fig. 7.2(b), we show an asymp-
totic front profile obtained by numerically solving the neural field equation (7.27)
when W0 = 1.2. The corresponding displacement of the front is a linear function
of time with a slope consistent with the minimal wave speed c0 ≈ 0.7 of the cor-
responding dispersion curve shown in Fig. 7.2(a). This wave speed is independent
of κ .

The asymptotic analysis of the linear equation (7.31) also shows that, given a
sufficiently localized initial condition, |a(x, t)| ∼ e−λ ∗ξ ψ(ξ , t) as t → ∞, where ξ =
x− c∗t and the leading-edge variable ψ(ξ , t) is given by

ψ(ξ , t)≈ e−ξ 2/(4Dt)

√
4πDt

(7.43)

with

D =−ω ′′
i (iλ ∗)

2
=

λ ∗

2
d2c(λ )

dλ 2

∣∣∣∣
λ ∗

. (7.44)
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Fig. 7.2 (a) Velocity dispersion curves c = c(λ ) for a pulled front solution of the neural field
equation (7.27) with piecewise linear firing rate function (7.29) and a Gaussian weight distribution
with amplitude W0 and width σ . Here σ = 1.0, κ = 0.4 and W0 = 1,2,1.5,2.0,2.5,3.0. Black dots
indicate minimum wave speed c0 for each value of W0. (b) Snapshots of the front profile evolving
from an initial condition consisting of a steep sigmoid function of unit amplitude (gray curve).
Here W0 = 1.2

Positivity of D follows from the fact that λ ∗ is a minimum of c(λ ). However, as
shown by Ebert and van Saarloos [162], although the spreading of the leading edge
under linearization gives the right qualitative behavior, it fails to match correctly the
traveling front solution of the full nonlinear system. In particular, the asymptotic
front profile takes the form A (ξ ) ∼ ξ e−λ ∗ξ for ξ � 1. The factor of ξ reflects
the fact that at the saddle point the two branches of the velocity dispersion curve
c(λ ) meet, indicating a degeneracy. In order to match the ξ e−λ ∗ξ asymptotics of the
front solution with the leading-edge solution, it is necessary to take the leading-edge
function ψ(x, t) to be the so-called dipole solution of the diffusion equation [162]:

ψ(x, t) =−∂ξ
e−ξ 2/(4Dt)

√
4πDt

= ξ
e−ξ 2/(4Dt)

√
2π(2Dt)3/2

. (7.45)

Putting all of this together, if the neural field equation supports a pulled front, then
the leading edge should relax asymptotically as

|a| ∼ ξ e−λ ∗ξ e−ξ 2/(4Dt)t−3/2 (7.46)

with ξ = x− c∗t. Finally, writing

e−λ ∗ξ t−3/2 = e−λ ∗[x−v∗t−X(t)], X(t) =− 3
2λ ∗ lnt (7.47)

suggests that to leading order, the velocity relaxes to the pulled velocity c∗ according
to (see also [162])

v(t) = c∗+ Ẋ(t) = c∗ − 3
2λ ∗t

+ h.o.t. (7.48)
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7.2 Traveling Pulses in Adaptive Neural Fields

Traveling fronts are not particularly realistic, since populations of cells do not
stay in the excited state forever. Hence, rather than a traveling front, propagat-
ing activity in cortex is usually better described as a traveling pulse. (One exam-
ple where fronts rather than pulses occur is wave propagation during binocular ri-
valry [83, 312, 369, 678]; see Sect. 8.) One way to generate a traveling pulse is
to include some form of synaptic inhibition, provided that it is not too strong [8].
However, even in the absence of synaptic inhibition, most neurons possess intrinsic
negative feedback mechanisms that slowly bring the cell back to resting voltages
after periods of high activity. Possible nonlinear mechanisms include synaptic de-
pression or spike frequency adaptation as discussed in Sect. 6.1. However, most
analytical studies of traveling pulses in neural field models have been based on a
simpler linear form of adaptation introduced by Pinto and Ermentrout [504]. (For
an analysis of waves in neural fields with nonlinear adaptation, see, e.g., [135, 329].)
The linear adaptation model is given by

∂u(x, t)
∂ t

= −u(x, t)+
∫ ∞

−∞
w(x− x′)F(u(x′, t))dx′ −β q(x, t) (7.49a)

1
ε

∂q(x, t)
∂ t

= −q(x, t)+ u(x, t), (7.49b)

where ε and β determine the rate and amplitude of linear adaptation. We first
show how to construct a traveling pulse solution of Eq. (7.49) in the case of a
Heaviside rate function F(u) = H(u − κ), following the particular formulation
of [198, 696]. We then indicate how singular perturbation methods can be used
to construct a traveling pulse for smooth F , as carried out by Pinto and Ermen-
trout [504]. The introduction of adaptation means that the neural field can sup-
port fronts or pulses, depending on whether there exist one or two stable homo-
geneous fixed points; see Fig. 7.3. We will focus on the latter here. Note, how-
ever, that linear (or nonlinear) adaptation can have a nontrivial effect on the prop-
agation of traveling fronts [76, 80]. This is due to the occurrence of a symme-
try breaking front bifurcation analogous to that found in reaction–diffusion sys-
tems [251, 252, 524, 561]. That is, a stationary front can undergo a supercritical
pitchfork bifurcation at a critical rate of adaptation, leading to bidirectional front
propagation. As in the case of reaction–diffusion systems, the front bifurcation acts
as an organizing center for a variety of nontrivial dynamics including the forma-
tion of oscillatory fronts or breathers. The latter can occur, for example, through a
Hopf bifurcation from a stationary front in the presence of a weak stationary input
inhomogeneity [76].
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7.2.1 Exact Traveling Pulse Solution

Without loss of generality, let us consider a right-moving traveling pulse solution
of the form (u(x, t),q(x, t)) = (U(x− ct),Q(x− ct)) with U(±∞),Q(±∞) = 0 and
U(−Δ) = U(0) = κ ; see Fig. 2.1(b). Here c,Δ denote the speed and width of the
wave, respectively. We also assume that U(ξ ) > κ for ξ ∈ (−Δ ,0) and U(ξ ) < κ
for ξ < −Δ and ξ > 0. Substituting this solution into Eq. (7.49) with ξ = x− ct
then gives

− cU ′(ξ )+U(ξ )+β Q(ξ ) =
∫ 0

−Δ
w(ξ − ξ ′)dξ ′

−cQ′(ξ )+ ε[Q(ξ )−U(ξ )] = 0. (7.50)

It is useful to rewrite Eq. (7.50) in the matrix form
(

1 β
−ε ε

)(
U
Q

)
− c∂ξ

(
U
Q

)
= [W (ξ )−W(ξ +Δ)]

(
1
0

)
(7.51)

with W (ξ ) =
∫ ∞

ξ w(x)dx. We proceed by diagonalizing the left-hand side of
Eq. (7.51) using the right eigenvectors v of the matrix

M =

(
1 β
−ε ε

)
. (7.52)

These are given by v± = (ε −λ±,ε)T with corresponding eigenvalues

λ± =
1
2

[
1+ ε ±

√
(1+ ε)2 − 4ε(1+β )

]
. (7.53)
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We will assume that ε is sufficiently small so that β < (1−ε)2/4ε and consequently
λ± are real. (For a discussion of the effects of complex eigenvalues λ± see [580].)
Note that v±eλ±ξ/c are the corresponding null vectors of the linear operator on the
left-hand side of Eq. (7.51). Performing the transformation

(
Ũ
Q̃

)
= T−1

(
U
Q

)
, T =

(
v+ v−

)
, (7.54)

then gives the pair of equations

− c∂ξŨ +λ+Ũ = η+[W (ξ )−W(ξ +Δ)]

−c∂ξ Q̃+λ−Q̃ = η−[W (ξ )−W(ξ +Δ)]

with η± =∓1/(λ+−λ−). Integrating the equation for Ũ from −Δ to ∞, we have

Ũ(ξ ) = eλ+ξ/c
[
Ũ(−Δ)eΔλ+/c − η+

c

∫ ξ
−Δ e−λ+ξ ′/c[W (ξ ′)−W(ξ ′+Δ)]dξ ′

]
.

Finiteness of Ũ in the limit ξ → ∞ requires the term in square brackets to cancel.
Hence, we can eliminate Ũ(−Δ) to obtain the result

Ũ(ξ ) =
η+

c

∫ ∞

0
e−λ+ξ ′/c[W (ξ ′+ ξ )−W(ξ ′+ ξ +Δ)]dξ ′. (7.55)

Similarly,

Q̃(ξ ) =
η−
c

∫ ∞

0
e−λ−ξ ′/c[W (ξ ′+ ξ )−W(ξ ′+ ξ +Δ)]dξ ′. (7.56)

Performing the inverse transformation U = (ε −λ+)Ũ +(ε −λ−)Q̃ we have

U(ξ ) =
1
c

∫ ∞

0

[
χ+e−λ+ξ ′/c + χ−e−λ−ξ ′/c

]
[W (ξ ′+ ξ )−W(ξ ′+ ξ +Δ)]dξ ′,

(7.57)

with χ± = (ε −λ±)η±. The threshold conditions U(−Δ) = κ and U(0) = κ then
yield a pair of equations whose solutions determine existence curves relating the
speed c and width Δ of a pulse to the threshold κ [134, 198, 504].

For the sake of illustration, let w be given by the exponential function (7.1). In
the domain ξ > 0, there is a common factor of e−ξ/σ in the integrand of Eq. (7.57)
so that U(ξ ) = κe−ξ/σ for ξ > 0 provided that

κ =
1
2

σ(c+ εσ)(1− e−Δ/σ)

c2 + cσ(1+ ε)+σ2ε(1+β )
. (7.58)

(Note that for zero negative feedback (β = 0), Eq. (7.58) reduces to the formula
for wave speed of a front in the limit Δ → ∞.) On the other hand, when ξ < 0,
one has to partition the integral of Eq. (7.57) into the separate domains ξ ′ > |ξ |,



7.2 Traveling Pulses in Adaptive Neural Fields 285

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6
0

10

20

30

0.2 0.4 0.6

pu
ls

e 
w

id
th

 

threshold κ threshold κ

w
av

e 
sp

ee
d 

c

a b

Fig. 7.4 Existence of right-moving traveling pulses in the case of the excitatory network (7.49)
with linear adaptation for an exponential weight distribution (7.1). Here σ = 1,ε = 0.01 and β =
2.5. (a) Plot of pulse width Δ against threshold κ . (b) Plot of wave speed c against threshold κ .
Stable (unstable) branches indicated by black (gray) curves

|ξ | − Δ < ξ ′ < |ξ | and ξ ′ < |ξ | −Δ . This then determines the second threshold
condition as well as the asymptotic behavior of U(ξ ) in the limit ξ →−∞:

U(ξ ) = A+eλ+ξ/c +A−eλ−ξ/c +A0eσξ . (7.59)

where the amplitudes A± and A0 can be determined from matching conditions at
the threshold crossing points [198, 504]. Note that the leading edge of the pulse
is positive, whereas the trailing edge is negative due to the effects of adaptation.
One finds that for sufficiently slow negative feedback (small ε) and large β there
exist two pulse solutions: one narrow and slow and the other wide and fast. This is
illustrated in Fig. 7.4. Note that a numerical value of c ∼ 1 in dimensionless units
(σ = τ = 1) translates into a physical speed of 60–90 mm/s if the membrane time
constant τ = 10 msec and the range of synaptic connections is σ = 600–900μm.
Numerically, the fast solution is found to be stable [504], and this can be confirmed
analytically using an Evans function construction [134, 198, 507]; see below. Fi-
nally, note that one of the predictions of the neural field model is that the speed of
wave propagation should increase as the threshold decreases [504]. Interestingly,
this has been confirmed experimentally by applying electric fields to a disinhibited
rat cortical slice [521]. The experimental setup is shown in Fig. 7.5. A positive (neg-
ative) electric field increases (decreases) the speed of wave propagation by altering
the effective excitability of layer V pyramidal neurons. Such neurons have long api-
cal dendrites and are easily polarizable by the electric field.

Construction of Evans function. Rewrite the neural field equation (7.49) in the integral form

u(x, t) =
∫ ∞

−∞

∫ ∞

0
w(y)Φ(s)F (u(x− y, t − s))dsdy−β

∫ ∞

0
Ψ(s)u(x, t − s)ds, (7.60)
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Fig. 7.5 (a) Rat cortical slices are bathed in picrotoxin (a GABAA blocker) and a stimulation
electrode (SE) is placed in layers 5–6 to initiate epileptiform bursts. An electric field is applied
globally or locally across the slice using Ag/AgCl electrodes (FE1,FE2). Layer five neurons have
long apical dendrites and are easily polarizable by an electric field, which controls the effective
firing threshold of the neuron. (b) The time for an activity pulse to travel between two recording
electrodes R1 and R2 depends on the applied electric field, reflecting the dependence of wave speed
on the effective firing threshold. [Adapted from Richardson, Schiff and Gluckman [521]]

with Φ(t) = e−tH(t) and Ψ(t) =
∫ t

0 Φ(s)e−ε(t−s)ds. Linearizing about the pulse solution by
setting u(x, t) =U(ξ )+ϕ(ξ )eλ t gives

ϕ(ξ ) =
∫ ∞

−∞

∫ ∞

ξ−y
w(y)Φ((s+ y−ξ )/c)e−λ (s+y−ξ )/cF ′(U(s))ϕ(s)

ds
c

dy

−β
∫ ∞

ξ
Ψ((s−ξ )/c)e−λ (s−ξ )/cϕ(s)

ds
c
. (7.61)

Proceeding along similar lines to the analysis of front stability in Sect. 7.1, we set F(U) =
H(U −κ) and use the identity

H ′(U(ξ )−κ) = δ (U(ξ )−κ) =
δ (ξ )
|U ′(0)| +

δ (ξ +Δ)

|U ′(−Δ)| . (7.62)
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This gives

ϕ(ξ )+β
∫ ∞

ξ
Ψ((s−ξ )/c)e−λ (s−ξ )/cϕ(s)

ds
c

(7.63)

=
ϕ(0)

c|U ′(0)|H (λ ,ξ )+
ϕ(−Δ)

c|U ′(−Δ)|H (λ ,ξ +Δ)

where

H (λ ,ξ ) =
∫ ∞

ξ
w(y)Φ((y−ξ )/c)e−λ (y−ξ )/cdy. (7.64)

Let Ĥ (λ ,k) denote the Fourier transform of H (λ ,ξ ) and Ĝ (λ ,k) denote the Fourier trans-
form of Ψ(ξ/c)e−ξ/c. Using Fourier transforms and the convolution theorem, Eq. (7.63)
can then be rewritten as

ϕ(ξ ) =
ϕ(0)

c|U ′(0)|B(λ ,ξ )+
ϕ(−Δ)

c|U ′(−Δ)|B(λ ,ξ +Δ), (7.65)

with B(λ ,ξ ) the inverse transform of

B̂(λ ,k) =
Ĥ (λ ,k)

[1+β Ĝ (λ ,−k)/c]
. (7.66)

Finally, the eigenvalues λ are determined by setting ξ = 0,−Δ and solving the resulting
matrix equation f = M (λ )f with f = (ϕ(0),ϕ(−Δ)) and

M (λ ) =
1
c

(
B(λ ,0)
|U ′(ξ1)|

B(λ ,Δ)
|U ′(−Δ)|

B(λ ,−Δ)
|U ′(0)|

B(λ ,0)
|U ′(−Δ)|

)
. (7.67)

It follows that the eigenvalues λ are zeros of the Evans function

E (λ ) = Det[1−M (λ )], (7.68)

where 1 denotes the identity matrix.

7.2.2 Singularly Perturbed Pulse Solution

In the case of slow adaptation (ε � 1), Pinto and Ermentrout [504] showed how to
construct a traveling pulse solution of Eq. (7.49) for a smooth firing rate function F
by exploiting the existence of traveling front solutions of the corresponding scalar
equation (7.2). The method is analogous to the construction of traveling pulses in
the FitzHugh–Nagumo equation [316]; see Sect.2.3. The basic idea is to analyze
separately the fast and slow time behavior of solutions to Eq. (7.49) expressed in
traveling wave coordinates:

− c
dU(ξ )

dξ
= −U(ξ )−β Q(ξ )+

∫ ∞

−∞
w(ξ − ξ ′)F(U(ξ ′))dξ ′, (7.69)

−c
dQ(ξ )

dξ
= ε[−Q(ξ )+U(ξ )]. (7.70)
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We will assume the normalization
∫ ∞
−∞ w(y)dy = 1. In the case of fast time, the slow

adaptation is taken to be constant by setting ε = 0 so that we have the inner layer
equations

− c
dU(ξ )

dξ
= −U −β Q0 +

∫ ∞

−∞
w(ξ − ξ ′)F(U(ξ ′))dξ ′, (7.71)

−c
dQ(ξ )

dξ
= 0. (7.72)

Since Q(ξ ) = Q0 is a constant, the term β Q0 can be absorbed into the threshold of
the firing rate function F by making the shift U(ξ )→U(ξ )+β Q0. Hence Eq. (3.55)
is equivalent to the scalar equation (7.7), which supports the propagation of traveling
fronts. In the case of slow time, we introduce the compressed variable ζ = εξ so
that

− cε
dU(ζ )

dζ
= −U(ζ )−β Q(ζ )+

1
ε

∫ ∞

−∞
w([ζ − ζ ′]/ε)F(U(ζ ′))dζ ′, (7.73)

−c
dQ(ζ )

dζ
= −Q(ζ )+U(ζ ). (7.74)

In the limit ε → 0, we have

1
ε

w([ζ − ζ ′]/ε)→ δ (ζ − ζ ′)

so that first equation becomes

β Q(ζ ) =−U(ζ )+F(U(ζ )) (7.75)

Inverting this equation yields two branches U = g±(Q). Hence we obtain a slow
time or outer layer equation on each branch (see Fig. 7.6):

dQ
dζ

=
1
c
[Q− g±(Q)] (7.76)

The construction of the traveling pulse now proceeds by matching inner and outer
solutions [504]. This can be visualized by considering the nullclines of the space-
clamped version of Eq. (7.49); see Fig. 7.6. We assume that the gain of F and the
strength β of adaptation are such that there is only a single fixed point of the space-
clamped system:

I Starting at the unique fixed point, use the fast inner equations and the existence
results of [172] to construct a leading front solution at Q = Q0 with speed c0

and matching conditions limξ±∞ U(ξ ) = g±(Q0).
II Use the slow outer equations to determine dynamics of Q along upper branch

U = g+(Q)
III The solution leaves upper branch at some point Q1. Once again use the fast

inner equations and [172] to construct a trailing front solution with speed c1

and matching conditions

lim
ξ±∞

U(ξ ) = g∓(Q1)
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IV Finally, use the slow outer equations to determine the return to the fixed point
along the lower branch.

In order to establish the existence of a traveling pulse solution, it remains to find a
value Q1 for which c1 =−c0 so that the leading and trailing edges of the pulse move
at the same speed and thus the pulse maintains its shape as it propagates. (Since Q0

is known, so is c0.) Adapting the formula for the wave speed obtained in [172], we
have

c1 =− Γ∫ ∞
−∞ U ′2(ξ )F ′(U(ξ ))dξ

, Γ =

∫ g+(Q1)

g−(Q1)
[−U −Q1 +F(U)]dU. (7.77)

Unfortunately, it is not possible to derive a closed form expression for the wave
speed. However, the existence of a matching speed can be established provided that
certain additional assumptions are made regarding the shape of the firing rate func-
tion; see [504] for more details.
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Fig. 7.6 Singular perturbation construction of a traveling pulse in (a) the phase plane and (b)
traveling wave coordinates. See text for details

7.3 Wave Propagation in Heterogeneous Neural Fields

Most studies of neural field theory assume that the synaptic weight distribution
only depends upon the distance between interacting populations, that is, w(x,y) =
w(|x− y|). This implies translation symmetry of the underlying integrodifferential
equations (in an unbounded or periodic domain) and an excitatory network can sup-
port the propagation of solitary traveling waves. However, if one looks more closely
at the anatomy of cortex, it is clear that its detailed microstructure is far from ho-
mogeneous. For example, to a first approximation, primary visual cortex (V1) has a
periodic-like microstructure on the millimeter length scale, reflecting the existence
of various stimulus feature maps; see Sect. 8.1. This has motivated a number of
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studies concerned with the effects of a periodically modulated weight distribution
on wave propagation in neural fields [64, 132, 332].

We first consider the voltage-based neural field equation (6.115) with periodi-
cally modulated weight distribution

w(x,y) = w(x− y)[1+ρK(y/ε)], (7.78)

where ρ is the amplitude of the periodic modulation and ε is the period with
K(x) = K(x+1) for all x. It will also be assumed that if ρ = 0 (no periodic modula-
tion), then the resulting homogeneous network supports a traveling front solution of
speed c0 as analyzed in Sect. 7.1.1. We will describe two alternative methods for an-
alyzing the effects of periodic wave modulation: one based on averaging theory for
small ε [79], which adapts the method use to study the propagation failure in myeli-
nated axons (Sect. 2.5), and the other based on analyzing interfacial dynamics [132].
Both approaches make use of the observation that for sufficiently small ρ , numerical
simulations of the inhomogeneous network show a front-like wave separating high
and low activity states. However, the wave does not propagate with constant speed,
but oscillates periodically in an appropriately chosen moving frame. This pulsating
front solution satisfies the periodicity condition u(x, t) = u(x+ ε, t +T ) so that we
can define the mean speed of the wave to be c = ε/T . We will then consider the
effects of periodically modulated weights on the propagation of pulled fronts in an
activity-based neural field equation, extending the Hamilton–Jacobi method used in
the analysis of CaMKII waves in Sect. 3.2.

7.3.1 Averaging Theory

Suppose that the period ε of weight modulations is much smaller than the range
of synaptic interactions ε � σ . (We fix the length scales by setting σ = 1.) Fol-
lowing the analysis of saltatory waves along myelinated axons (Sect. 2.5) and [318,
319], we want any inhomogeneous terms to be O(ε). Therefore, after substituting
Eq. (7.78) into (6.115), we integrate by parts to obtain the equation

∂u(x, t)
∂ t

= −u(x, t)+
∫ ∞

−∞
w(x− x′)F(u(x′, t))dx′ (7.79)

+ε
∫ ∞

−∞
K (x′/ε)

[
w′(x− x′)F(u(x′, t))−w(x− x′)

∂F(u(x′, t))
∂x′

]
dx′.

Here K ′(x) = ρK(x) with K only having to be defined up to an arbitrary constant.
Motivated by the existence of pulsating front solutions, we perform the change of
variables ξ = x−φ(t) and τ = t. Equation (7.79) becomes
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∂u
∂τ

= −u(ξ ,τ)+
∫ ∞

−∞
w(ξ−ξ ′)F(u(ξ ′,τ))dξ ′+φ ′ ∂u(ξ ,τ)

∂ξ
(7.80)

+ε
∫ ∞

−∞
K

(
ξ ′+φ

ε

)[
w′(ξ−ξ ′)F(u(ξ ′,τ))−w(ξ−ξ ′)

∂F(u(ξ ′,τ))
∂ξ ′

]
dξ ′.

Next perform the perturbation expansions

u(ξ ,τ) =U(ξ )+ εu1(ξ ,τ)+ ε2u2(ξ ,τ)+ . . . , (7.81)

φ ′(τ) = c0 + εφ ′
1(τ) (7.82)

where U(ξ ) is the unique traveling wave solution of the corresponding homoge-
neous equation (7.7) with unperturbed wave speed c = c0. The first-order term u1

satisfies the inhomogeneous linear equation

− ∂u1(ξ ,τ)
∂τ

+Lu1(ξ ,τ) =−φ ′
1(τ)U ′(ξ )+ h1(ξ ,φ/ε) (7.83)

where

Lu(ξ ) = c0
du(ξ )

dξ
− u(ξ )+

∫ ∞

−∞
w(ξ − ξ ′)F ′(U(ξ ′))u(ξ ′)dξ ′ (7.84)

and

h1 =

∫ ∞

−∞
K

(
ξ ′+φ

ε

)[
−w′(ξ − ξ ′)F(U(ξ ′))+w(ξ − ξ ′)

dF(U(ξ ′))
dξ ′

]
dξ ′.

(7.85)

The linear operator L has a one-dimensional null-space spanned by U ′. The ex-
istence of U ′ as a null vector follows immediately from differentiating both sides of
Eq. (7.7) with respect to ξ , whereas its uniqueness can be shown using properties
of positive linear operators [172]. Therefore, a bounded solution of Eq. (7.83) with
respect to ξ and τ will only exist if the right-hand side of Eq. (7.83) is orthogonal to
all elements of the null-space of the adjoint operator L†. The latter is defined with
respect to the inner product

∫ ∞

−∞
u(ξ )Lv(ξ )dξ =

∫ ∞

−∞

[
L

†u(ξ )
]

v(ξ )dξ (7.86)

where u(ξ ) and v(ξ ) are arbitrary integrable functions. Hence,

L
†u(ξ ) =−c

du(ξ )
dξ

− u(ξ )+F′(U(ξ ))
∫ ∞

−∞
w(ξ − ξ ′)u(ξ ′)dξ ′. (7.87)
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It can be proven that L† also has a one-dimensional null-space [172], that is, it is
spanned by some function V (ξ ). Equation (7.83) thus has a bounded solution if and
only if

B0φ ′
1(τ) =

∫ ∞

−∞
V (ξ )h1(ξ ,φ/ε)dξ (7.88)

where
B0 =

∫ ∞

−∞
V (ξ )U ′(ξ )dξ . (7.89)

Note that B0 is strictly positive since V and U ′ can be chosen to have the same
sign [172]. Substituting for h1 using Eqs. (7.85) and (7.82) and performing an inte-
gration by parts leads to a differential equation for the phase φ :

dφ
dτ

= c+ εΦ1

(
φ
ε

)
, (7.90)

where

Φ1

(
φ
ε

)
=

1
B0

∫ ∞

−∞

∫ ∞

−∞
w(ξ − ξ ′)K

(
ξ ′+φ

ε

)
(7.91)

×
[
V ′(ξ )F(U(ξ ′))+V(ξ )

dF(U(ξ ′))
dξ ′

]
dξ ′dξ .

The phase equation (7.90) is identical in form to the one derived in Sect. 2.5 for
wave propagation along myelinated axons; see Eq. (2.72). It implies that there are
two distinct types of behavior. If the right-hand side of Eq. (7.90) is strictly positive,
then there exists a pulsating front of the approximate form U(x − φ(t)) and the
average speed of propagation is c = ε/T with

T =

∫ ε

0

dφ

c+ εΦ1

(
φ
ε

) . (7.92)

On the other hand, if the right-hand side of Eq. (7.90) vanishes for some φ , then
there is wave propagation failure.

In the case of a Heaviside firing rate function F(u) = H(u− κ), it is possible
to derive an explicit expression for the wave speed c [64]. The solution for the
unperturbed wave front U(ξ ) was derived in Sect. 7.1, so it is only necessary to
determine the solution V (ξ ) of the adjoint equation (7.87), which becomes

cV ′(ξ )+V(ξ ) =− δ (ξ )
U ′(0)

∫ ∞

−∞
w(ξ ′)V (ξ ′)dξ ′. (7.93)

This can be integrated to give

V (ξ ) =−H(ξ )e−ξ/c. (7.94)
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Given the solutions for U(ξ ) and V (ξ ), it can then be shown that (7.91) reduces to
the form

B0Φ1

(
φ
ε

)
=W (0)K

(
φ
ε

)
+
∫ ∞

0
K

(
φ − ξ

ε

)[
W (ξ )

c
−w(ξ )

]
dξ , (7.95)

where

W (ξ ) =
∫ ∞

0
e−y/c0w(y+ ξ )dy ≡−cU ′(ξ ), (7.96)

and

B0 =
1
c0

∫ ∞

0
e−ξ/c0W (ξ )dξ . (7.97)

Keeping only the lowest-order contribution to Φ1, Eq. (7.92) reduces to

T =
∫ ε

0

dφ

c0 + εΓ (c0)A
(

φ
ε

) (7.98)

with Γ (c0) =W (0)/B0. For the sake of illustration, suppose that the periodic mod-
ulation functions K and A are pure sinusoids. Setting A(x) = ρ sin(2πx)/(2π) in
Eq. (7.98) we find that

T =
ε√

c2
0 − ε2ρ2Γ (c0)2

(7.99)

and, hence,

c =
√

c2
0 − ε2ρ2Γ (c0)2/(2π)2. (7.100)

This establishes that a sinusoidally varying heterogeneous neural medium only sup-
ports a propagating wave if the velocity c0 of the (unique) solution of the corre-
sponding homogeneous medium satisfies the inequality

c0 ≥ ερΓ (c0). (7.101)

For the particular example of an exponential distribution (7.1) with σ = 1, we have
c0 = (1− 2κ)/(2κ) and Γ (c0) = 1+ c0 so that

c = c0

√
1− γ0ρ2ε2, γ0 =

1
2π(2κ − 1)

. (7.102)

The above averaging method can also be extended to the case of periodically
modulated traveling pulses (pulsating pulses) (see [332]), in which there are two
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Fig. 7.7 Pulsating pulse solutions in a 1D excitatory neural field with linear adaptation and
Heaviside firing rate function; see Eq. (7.49). The threshold is κ = 0.2, strength of adapta-
tion is β = 2.0, and adaptation rate constant is ε = 0.04. The weight distribution is given
by w(x,y) = ρw(x − y)sin(2πx/ε) with 2πε = 0.3 and w(x) an exponential weight function.
(a) Single-bump solution for ρ = 0.3. The interior of the pulse consists of non-propagating, tran-
sient ripples. (b) Multi-bump solution for ρ = 0.8. The solitary pulse corresponds to the envelope
of a multiple bump solution, in which individual bumps are non-propagating and transient. The
disappearance of bumps at one end and the emergence of new bumps at the other end generate the
propagation of activity [332]

threshold crossing points. One simplifying assumption of the analysis is that, in the
presence of periodically modulated weights, additional threshold crossing points
do not occur. However, numerical solutions of a neural field equation with linear
adaptation have shown that in the case of large amplitude modulations, a pulsating
pulse can develop multiple threshold crossing points [332]. That is, the traveling
wave represents the envelope of a multi-bump solution, in which individual bumps
are non-propagating and transient; see Fig. 7.7. The appearance (disappearance) of
bumps at the leading (trailing) edge of the pulse generates the coherent propaga-
tion of the pulse. Wave propagation failure occurs when activity is insufficient to
maintain bumps at the leading edge.

7.3.2 Interfacial Dynamics

The averaging method provides a reasonable estimate for the mean wave speed and
the critical amplitude ρ for wave propagation failure, provided that the spatial period
ε � 1. As shown by Coombes and Laing [132] in the case of a Heaviside firing rate
function, a more accurate estimate for the wave speed for larger values of ε can be
obtained by analyzing the dynamics of the interface between high and low activity
states, provided that the amplitude of periodic modulations is not too large [132].
The basic idea is to change to a co-moving frame of the unperturbed system, u =
u(ξ , t) with ξ = x− c0t such that Eq. (6.115) becomes

− c0uξ + ut =−u+
∫ ∞

−∞
w(ξ + c0t,y)F(u(y− c0t, t)dy, (7.103)
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with w given by Eq. (7.78) and F(u) = H(u−κ). The moving interface (level set)
is then defined according to the threshold condition

u(ξ0(t), t) = κ . (7.104)

Differentiating with respect to t then determines the velocity of the interface in the
co-moving frame according to

dξ0

dt
=− ut(ξ0(t), t)

uξ (ξ0(t), t)
. (7.105)

As in the previous averaging method, suppose that for ρ = 0, there exists a traveling
front solution U(ξ ) of the homogeneous equation (7.7) with speed c0. Now make
the approximation uξ (ξ0(t), t) = U ′(0), which is based on the assumption that for
small amplitudes ρ , the slope of the traveling front varies sufficiently slowly. Setting
ξ = ξ0(t) in Eq. (7.103) and using Eq. (7.3), it is then straightforward to show
that [132]

dξ0

dt
= ρc0

∫ ∞

0
w(y)K(ξ0 + c0t − y)

κ −
∫ ∞

0
w(y)dy

. (7.106)

In order to match up with the previous method, let K(x) = sin(2πx/ε) and w(x) =
e−|x|/2. Then c0 = (1− 2κ)/(2κ) and [132]

dξ0

dt
= c0ργ(ε)sin

[
2π
ε
(ξ0(t)+ c0t)+φ0(ε)

]
, (7.107)

with

γ(ε) =
1

2κ − 1
1√

1+(2π/ε)2
, tanφ0(ε) =

2π
ε
. (7.108)

The final step is to look for a T -periodic solution of Eq. (7.107) such that ξ0(t) =
ξ0(t +T ). Setting x0 = ξ0 + c0t with x0 ∈ [0,ε] and integrating gives

∫ x0

0

dx
1+ργ sin(2πx/σ +φ)

= c0t. (7.109)

This may be evaluated using a half-angle substitution,

c0t =
ε
π

1√
1−ρ2γ2

tan−1 z√
1−ρ2γ2

∣∣∣∣∣
z0(t)+ργ

z0(0)+ργ

, (7.110)
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where z0(t) = tan[(2πx0(t)/ε + φ)/2] and x0(0) = 0. A self-consistent pulsating
front solution is then obtained by imposing the condition ε = x0(T ), which then
determines the effective speed c = ε/T to be

c = c0

√
1−ρ2γ(ε)2. (7.111)

Note that on Taylor expanding γ(ε) to first order in ε , Eq. (7.111) recovers the cor-
responding result (7.102) obtained using averaging theory. However, the expression
derived using interfacial dynamics is more accurate when the period ε increases,
provided that the amplitude ρ does not become too large.

7.3.3 Hamilton–Jacobi Dynamics and Slow Spatial Heterogeneities

We now turn to the effects of periodically modulated weights on the propagation of
pulled front solutions of the activity-based neural field equation (7.27). In the case
of high-frequency modulation, Coombes and Laing [132] adapted previous work by
Shigesada et al. on pulsating fronts in reaction–diffusion models of the spatial spread
of invading species into heterogeneous environments [574, 575]. (In Sect. 3.2.2 we
applied the theory of pulsating fronts to CaMKII translocation waves along spiny
dendrites.) We briefly sketch the basic steps in the analysis. First, substitute the
periodically modulated weight distribution (7.78) into Eq. (7.27) and linearize about
the leading edge of the wave where a(x, t)∼ 0:

∂a(x, t)
∂ t

= −a(x, t)+
∫ ∞

−∞
w(x− y)[1+K(y/ε)]a(y, t)dy. (7.112)

Now assume a solution of the form a(x, t) = A(ξ )P(x), ξ = x− ct with A(ξ )→ 0
as ξ → ∞ and P(x+ 2πε) = P(x). Substitution into Eq. (7.112) then gives

− cP(x)A′(ξ ) =−P(x)A(ξ )+
∫ ∞

−∞
w(x− y)[1+K(y/ε)]P(y)A(ξ − [x− y])dy.

(7.113)

Taking A(ξ )∼ e−λ ξ and substituting into the above equation yields a nonlocal ver-
sion of the Hill equation:

(1+ cλ )P(x) =
∫ ∞

−∞
eλ [x−y]w(x− y)[1+K(y/ε)]P(y)dy. (7.114)

In order to determine the minimal wave speed, it is necessary to find a bounded
periodic solution P(x) of Eq. (7.114), which yields a corresponding dispersion rela-
tion c = c(λ ), whose minimum with respect to λ can then be determined (assum-
ing it exists). One way to obtain an approximate solution to Eq. (7.114) is to use
Fourier methods to derive an infinite matrix equation for the Fourier coefficients of
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Fig. 7.8 Space–time contour plots of a pulsating front solution of the neural field equation (7.112)
with piecewise linear firing rate function (7.29), Gaussian weight distribution (7.38), and a 2πε-
periodic modulation of the synaptic weights, K(x) = cos(x/ε). (a) ε = 0.5 and (b) ε = 0.8. Other
parameters are W0 = 1.2, σ = 1.0, and κ = 0.4

the periodic function P(x) and then to numerically solve a finite truncated version
of the matrix equation. This is the approach followed in [132]. The matrix equation
takes the form

(1+ cλ )Pm = W (λ − im/ε)Pm +W (λ − im/ε)∑
l

KlPm−l , (7.115)

where K(x/ε) =∑n Kneimx/ε , P(x) =∑n Pneimx/ε , and W (p) = Ŵ (p)+Ŵ (−p) with
Ŵ (p), the Laplace transform of w(x). One finds that the mean velocity of a pulsat-
ing front increases with the period 2πε of the synaptic modulations [132]. This is
illustrated in Fig. 7.8, which shows space–time plots of a pulsating front for ε = 0.5
and ε = 0.8.

Now suppose that there is a slowly varying spatial modulation of the synaptic
weight distribution (relative to the range of synaptic interactions). (Although we do
not have a specific example of long-wavelength modulations in mind, we conjecture
that these might be associated with inter-area cortical connections. For example, it
has been shown that heterogeneities arise as one approaches the V1/V2 border in
visual cortex, which has a number of effects including the generation of reflected
waves [688].) In the case of slow modulations, one can extend the Hamilton–Jacobi
theory of sharp interfaces developed originally for PDEs (see [178, 203, 204, 212,
421] and Sect. 3.3.2) to the case of neural fields [70]. In order to illustrate this,
consider a heterogeneous version of the activity-based neural field equation (7.27)
of the form

∂a(x, t)
∂ t

= −a(x, t)+F

(∫ ∞

−∞
w(x− x′)J(εx′)a(x′, t)dx′

)
, (7.116)

in which there is a slow (nonperiodic) spatial modulation J(εx) of the synaptic
weight distribution with ε � 1.
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Recall from Sect. 3.3.2 that the first step in the Hamilton–Jacobi method is to
rescale space and time in Eq. (7.116) according to t → t/ε and x → x/ε [178, 204,
421]:

ε
∂a(x, t)

∂ t
= −a(x, t)+F

(
1
ε

∫ ∞

−∞
w([x− x′]/ε)J(x′)a(x′, t)dx′

)
.

(7.117)

Under this hyperbolic rescaling, the front region where the activity a(x, t) rapidly
increases as x decreases from infinity becomes a step as ε → 0; see Fig. 7.2(b). This
motivates introducing the WKB approximation

a(x, t)∼ e−G(x,t)/ε (7.118)

with G(x, t) > 0 for all x > x(t) and G(x(t), t) = 0. The point x(t) determines the
location of the front and c = ẋ. Substituting (3.85) into Eq. (7.117) gives

−∂tG(x, t) =−1+
1
ε

∫ ∞

−∞
w([x− x′]/ε)J(x′)e−[G(x′ ,t)−G(x,t)]/ε dx′. (7.119)

We have used the fact that for x > x(t) and ε � 1, the solution is in the leading edge
of the front so that F can be linearized. Equation (7.119) can be simplified using the
method of steepest descents [70]; see below. This yields the equation

−∂tG(x, t) =−1+ w̃(i∂xG(x, t))J(x), (7.120)

where w̃(k) is the Fourier transform of w(x):

w(x) =
∫ ∞

−∞
w̃(k)eikx dk

2π
. (7.121)

Equation (7.120) is formally equivalent to the Hamilton–Jacobi equation

∂tG+H(∂xG,x) = 0 (7.122)

with corresponding Hamiltonian

H(p,x) =−1+ w̃(ip)J(x) (7.123)

where p = ∂xG is interpreted as the conjugate momentum of x, and w̃(ip) = W (p).
It follows that the Hamilton–Jacobi equation (7.122) can be solved in terms of the
Hamilton equations

dx
ds

=
∂H
∂ p

= J(x)W ′(p) = J(x)[Ŵ ′(p)−Ŵ ′(−p)] (7.124)

d p
ds

=−∂H
∂x

=−J′(x)W (p). (7.125)
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Let X(s;x, t),P(s;x, t) denote the solution with x(0) = 0 and x(t) = x. We can then
determine G(x, t) according to

G(x, t) =−E(x, t)t +
∫ t

0
P(s;x, t)Ẋ(s;x, t)ds. (7.126)

Here
E(x, t) = H(P(s;x, t),X(s;x, t)), (7.127)

which is independent of s due to conservation of “energy,” that is, the Hamiltonian
is not an explicit function of time.

Steepest descent calculation of G. The derivation of Eq. (7.120) using steepest descents pro-
ceeds as follows. First, substituting the Fourier transfer (7.121) into (7.119) and reversing
the order of integration gives

−∂tG(x, t) =−1+
1
ε

∫ ∞

−∞

∫ ∞

−∞
w̃(k)J(x′)e−S(k,x′ ;x,t)/εdx′

dk
2π

, (7.128)

where
S(k,x′;x, t) = ik(x′ − x)+G(x′, t)−G(x, t). (7.129)

Exploiting the fact that ε is small, we perform steepest descents with respect to the x′ vari-
able with (k,x, t) fixed. Let x′ = z(k, t) denote the stationary point for which ∂ S/∂ x′ = 0,
which is given by the solution to the implicit equation

ik+∂xG(x′, t) = 0. (7.130)

Taylor expanding S about this point (assuming it is unique) gives to second order

S(k,x′;x, t)≈ S(k, z(k, t);x, t)+
1
2

∂ 2S
∂ x′2

∣∣∣∣
x′=z(k,t)

(x′ − z(k, t))2

= ik[z(k, t)− x]+G(z(k, t), t)−G(x, t)

− 1
2

∂xxG(z(k, t), t)(x′ − z(k, t))2. (7.131)

Substituting into Eq. (7.128) and performing the resulting Gaussian integral with respect to
x′ yields the result

−∂tG(x, t) =−1+
1
ε

∫ ∞

−∞

√
2πε

∂xxG(z(k, t), t)
w̃(k)J(z(k, t))

× e−(ik[z(k, t)− x]+G(z(k, t), t)−G(x, t))/ε dk
2π

. (7.132)

This can be rewritten in the form

−∂tG(x, t) =−1+
1√
2πε

∫ ∞

−∞
w̃(k)J(z(k, t))e−Ŝ(k;x,t)/ε dk, (7.133)

where

Ŝ(k;x, t) = ik[z(k, t)− x]+G(z(k, t), t)−G(x, t)+
ε
2

ln∂xxG(z(k, t), t). (7.134)
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The integral over k can also be evaluated using steepest descents. Thus, Taylor expand Ŝ to
second order about the stationary point k = k(x, t), which is the solution to the equation

0 =
∂ Ŝ
∂ k

= i[z(k, t)− x]+
∂ z(k, t)

∂ k

[
ik+∂xG(z(k, t), t)+

ε
2

∂xxxG(z(k, t), t)
∂xxG(z(k, t), t)

]
.

(7.135)

It follows from Eqs. (7.130) and (7.135) that z(k(x, t), t) = x+O(ε) and so

k(x, t) = i∂xG(x, t)+O(ε). (7.136)

Moreover,

Ŝ(k;x, t)≈ 1
2

∂ 2Ŝ
∂ k2

∣∣∣∣
k=k(x,t)

(k− k(x, t))2 . (7.137)

Substituting into Eq. (7.133) and performing the Gaussian integral with respect to k gives
to leading order in ε

−∂tG(x, t) =−1+
1√

i∂xxG(x, t)∂kz(k(x, t), t)
w̃(k(x, t))J(x). (7.138)

Finally, setting x′ = z(k, t) in Eq. (7.130) and differentiating with respect to k show that
∂xxG(z(k, t), t)∂kz(k, t) =−i and we obtain Eq. (7.120).

Given G(x, t), the location x(t) of the front at time t is determined by the equation
G(x(t), t) = 0. Differentiating with respect to t shows that ẋ∂xG+ ∂tG = 0. Let us
begin by rederiving the wave speed for a homogeneous neural field by setting J(x)≡
1. In this case, d p/ds = 0 so that p = λ0 independently of s. Hence, x(s) = xs/t,
which implies that

ẋ =
dx
ds

= W ′(λ0). (7.139)

On the other hand,

ẋ =− ∂tG
∂xG

=
−1+W (λ0)

λ0
. (7.140)

Combining these two results means that λ0 is given by the minimum of the function

c(λ ) =
−1+W (λ )

λ
(7.141)

and c0 = c(λ0). This recovers the result of Sect. 7.1.3. Thus, in the case of a Gaus-
sian weight distribution, λ0 is related to c0 according to Eq. (7.42). Now sup-
pose that there exists a small-amplitude, slow modulation of the synaptic weights
J(x) = 1 + β f (x) with β � 1. We can then obtain an approximate solution of
Hamilton’s Eqs. (7.124) and (7.125) and the corresponding wave speed using reg-
ular perturbation theory along analogous lines to a previous study of the F–KPP
equation [421]. We find (see below) that
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x(t) = c0t +
βW (λ0)

c0λ0

∫ c0t

0
f (y)dy+O(β 2). (7.142)

Here c0 is the wave speed of the homogeneous neural field (β = 0), which is given by
c0 = c(λ0) with λ0 obtained by minimizing the function c(λ ) defined by Eq. (7.141);
see Eq. (7.42). Finally, differentiating both sides with respect to t and inverting the
hyperbolic scaling yields

c ≡ ẋ(t) = c0 +
βW (λ0)

λ0
f (εc0t)+O(β 2). (7.143)

The analytical results agree reasonably well with numerical simulations, pro-
vided that ε is sufficiently small [70]. In Fig. 7.9(a) we show snapshots of a pulled
front in the case of a homogeneous network with Gaussian weights (7.38) and piece-
wise linear firing rate function (7.29). Space and time units are fixed by setting the
range of synaptic weights σ = 1 and the time constant τ = 1. A corresponding
space–time plot is given in Fig. 7.9(b), which illustrates that the speed of the front
asymptotically approaches the calculated minimal wave speed c0. (Note that pulled
fronts take an extremely long time to approach the minimal wave speed at high levels
of numerical accuracy, since the asymptotics are algebraic rather than exponential
in time [162].) In Figs. 7.9(c,d) we plot the corresponding results in the case of an
inhomogeneous network. For the sake of illustration, the synaptic heterogeneity is
taken to be a linear function of displacement, that is, J(x) = 1+ε(x− l), and β = ε .
Equation (7.142) implies that

x(t) = l + c0t +
ε2W (λ0)

2c0λ0
[(c0t)2 − 2c0lt]

= l +

[
c0 − ε2l(c0λ0 + 1)

λ0

]
t +

ε2c0(c0λ0 + 1)
2λ0

t2, (7.144)

where we have used Eq. (7.141) and assumed that the initial position of the front
is x(0) = l. Hence, the perturbation theory predicts that a linearly increasing mod-
ulation in synaptic weights results in the leading edge of the front tracing out a
downward parabola in a space–time plot for times t � O(1/ε2). This is consistent
with numerical simulations for ε2 = 0.005, as can be seen in the space–time plot of
Fig. 7.9(d).

Perturbation calculation of wave speed. Introduce the perturbation expansions

x(s) = x0(s)+β x1(s)+O(β 2), p(s) = p0(s)+β p1(s)+O(β 2) (7.145)

and substitute into Eqs. (7.124) and (7.125). Taylor expanding the nonlinear function f (x)
about x0 and W (p) = Ŵ (p)+Ŵ (−p) about p0 then leads to a hierarchy of equations, the
first two of which are

ṗ0(s) = 0, ẋ0(s) = W ′(p0), (7.146)

and
ṗ1(s) =− f ′(x0)W (p0), ẋ1(s) = W ′′(p0)p1(s)+ f (x0)W

′(p0), (7.147)
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Fig. 7.9 (a) Propagating front in a homogeneous network with Gaussian weights (7.38) and piece-
wise linear rate function (7.29). Parameter values are W0 = 1.2,σ = 1,κ = 0.4. The initial condi-
tion is taken to be a steep sigmoid a(x,0) = 0.5/(1+ exp(−η(x− l))) with η = 5 and l = 10.
(a) Snapshots of wave profile at time intervals of width Δt = 5 from t = 10 to t = 40. (b) Space–
time contour plot. Wave speed asymptotically approaches the minimum c0 of the velocity disper-
sion curve given by Eq. (7.39). (c,d) Propagating front in a network with a linear heterogeneity in
the synaptic weights, J(x) = 1+ ε(x− l), l = 10, and ε2 = 0.005. Other parameters as in (a,b).
(c) Snapshots of wave profile at time intervals of width Δt = 5 from t = 10 to t = 40. (d) Space–
time contour plot. Wave speed increases approximately linearly with time, so the position x(t) of
front evolves according to a downward parabola. Theoretical curve based on the perturbation cal-
culation is shown by the solid curve. The trajectory of the front in the corresponding homogeneous
case is indicated by the dashed curve

These are supplemented by the Cauchy conditions x0(0) = 0,x0(t)= x and xn(0) = xn(t) = 0
for all integers n ≥ 1. Equations (7.146) have solutions of the form

p0(s) = λ , x0(s) = W ′(λ )s+B0 (7.148)

with λ ,B0 independent of s. Imposing the Cauchy data then implies that B0 = 0 and λ
satisfies the equation

W ′(λ ) = x/t. (7.149)
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At the next order,

p1(s) =−W (λ )
t
x

f (xs/t)+A1, (7.150)

x1(s) =−W ′′(λ )W (λ )
t2

x2

∫ xs/t

0
f (y)dy

+
∫ xs/t

0
f (y)dy+W ′′(λ )A1s+B1, (7.151)

with A1,B1 independent of s. Imposing the Cauchy data then implies that B1 = 0 and

A1 = A1(x, t) = W (λ )
t

x2

∫ x

0
f (y)dy− 1

tW ′′(λ )

∫ x

0
f (y)dy. (7.152)

Given these solutions, the energy function E(x, t) is

E(x, t) =−1+[1+β f (x0+β x1 + . . .)]W (λ +β p1 + . . .)

=−1+W (λ )+β [W ′(λ )p1(s)+ f (x0(s))W (λ )]+O(β 2). (7.153)

Substituting for x0(s) and p1(s) and using the condition W ′(λ ) = x/t , we find that

E(x, t) =−1+W (λ )+β
x
t

A1(x, t)+O(β 2), (7.154)

which is independent of s as expected. Similarly,

∫ t

0
p(s)ẋ(s)ds = λ x+βW ′(λ )

∫ t

0
p1(s)ds+O(β 2)

= λ x+β
W ′(λ )
W ′′(λ )

∫ t

0

[
ẋ1(s)−W ′(λ ) f (W ′(λ )s)

]
ds+O(β 2)

= λ x−β
W ′(λ )
W ′′(λ )

∫ x

0
f (y)dy+O(β 2). (7.155)

Hence, to first order in β ,

G(x, t) = t −W (λ )t +λ x−βW (λ )
t
x

∫ x

0
f (y)dy. (7.156)

We can now determine the wave speed c by imposing the condition G(x(t), t) = 0 and per-
forming the perturbation expansions x(t) = x0(t) + β x1(t)+O(β 2) and λ = λ0 + β λ1 +
O(β 2). Substituting into Eq. (7.156) and collecting terms at O(1) and O(β ) leads to
Eq. (7.142).

7.4 Wave Propagation in Stochastic Neural Fields

In Sect. 6.4 we constructed stochastic neuronal population models based on a mas-
ter equation formulation. However, continuum versions of these models are difficult
to analyze even under a diffusion approximation, due to the nonlocal nature of the
multiplicative noise terms; see Eq. (6.71). Therefore, in this section, we analyze the
effects of noise on wave propagation in stochastic neural fields with local multiplica-
tive noise, extending the PDE methods outlined in Sect. 2.6. This form of noise can
also be interpreted in terms of parametric fluctuations in the firing threshold [58].
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7.4.1 Spontaneous Front Propagation

Consider the following stochastic neural field equation: U(x, t)

dU(x, t) =

[
−U(x, t)+

∫ ∞

−∞
w(x− y)F(U(y, t))dy

]
dt + ε1/2g(U(x, t))dW (x, t).

(7.157)
We assume that dW (x, t) represents an independent Wiener process such that

〈dW (x, t)〉= 0, 〈dW (x, t)dW (x′, t ′)〉= 2C([x− x′]/λ )δ (t − t ′)dtdt ′, (7.158)

where 〈·〉 denotes averaging with respect to the Wiener process. Here λ is the spa-
tial correlation length of the noise such that C(x/λ ) → δ (x) in the limit λ → 0,
and ε determines the strength of the noise, which is assumed to be weak. Moreover,
the multiplicative noise term is taken to be of Stratonovich form. The analysis of
Eq. (7.157) proceeds along similar lines to the analysis of the stochastic bistable
equation in Sect. 2.6; see also [70]. First, using Novikov’s theorem, we rewrite
Eq. (7.157) so that the fluctuating term has zero mean:

dU(x, t) =

[
h(U(x, t))+

∫ ∞

−∞
w(x− y)F(U(y, t))dy

]
dt + ε1/2dR(U,x, t), (7.159)

where
h(U) =−U + εC(0)g′(U)g(U) (7.160)

and
dR(U,x, t) = g(U)dW (x, t)− ε1/2C(0)g′(U)g(U)dt. (7.161)

The stochastic process R has the variance

〈dR(U,x, t)dR(U,x′, t)〉= 〈g(U(x, t))dW (x, t)g(U(x′, t)dW (x′, t)〉+O(ε1/2).
(7.162)

The next step in the analysis is to express the solution U of Eq. (7.159) as a com-
bination of a fixed wave profile U0 that is displaced by an amount Δ(t) from its
uniformly translating position ξ = x− cε t and a time-dependent fluctuation Φ in
the front shape about the instantaneous position of the front:

U(x, t) =U0(ξ −Δ(t))+ ε1/2Φ(ξ −Δ(t), t). (7.163)

The wave profile U0 and associated wave speed cε are obtained by solving the mod-
ified deterministic equation

− cε
dU0

dξ
− h(U0(ξ )) =

∫ ∞

−∞
w(ξ − ξ ′)F(U0(ξ ′))dξ ′, (7.164)
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As in Sect. 2.6, Eq. (7.164) is chosen so that that to leading order, the stochastic
variable Δ(t) undergoes unbiased Brownian motion with

〈Δ(t)〉= 0, 〈Δ(t)2〉= 2D(ε)t (7.165)

where the diffusion coefficient D(ε) = O(ε) can be calculated using perturbation
analysis (see below).

Perturbation calculation of diffusivity D(ε). Substitute the decomposition (7.163) into
Eq. (7.159) and expand to first order in O(ε1/2):

−cεU ′
0(ξ −Δ(t))dt −U ′

0(ξ −Δ(t))dΔ(t)+ ε1/2 [dΦ(ξ −Δ(t), t)− cε Φ ′(ξ −Δ(t), t)dt
]

−ε1/2Φ ′(ξ −Δ(t), t)dΔ(t)

= h(U0(ξ −Δ(t)))dt +h′(U0(ξ −Δ(t)))ε1/2Φ(ξ −Δ(t), t)dt

+

∫ ∞

−∞
w(ξ −ξ ′)

(
F(U0(ξ ′ −Δ(t)))+F ′(U0(ξ ′ −Δ(t)))ε1/2Φ(ξ ′ −Δ(t), t)

)
dξ ′dt

+ε1/2dR(U0(ξ −Δ(t)),ξ , t)+O(ε).

Imposing Eq. (7.164), after shifting ξ → ξ −Δ(t), and dividing through by ε1/2 then gives

dΦ(ξ −Δ(t), t) = L̂◦Φ(ξ −Δ(t), t)dt + ε−1/2U ′
0(ξ −Δ(t))dΔ(t)

+dR(U0(ξ −Δ(t),ξ , t)+O(ε1/2), (7.166)

where L is the non-self-adjoint linear operator

L◦A(ξ ) = cε
dA(ξ )

dξ
+h′(U0(ξ ))A(ξ )+

∫ ∞

−∞
w(ξ −ξ ′)F ′(U0(ξ ′))A(ξ ′)dξ ′ (7.167)

for any function A(ξ ) ∈ L2(R). Finally, for all terms in Eq. (7.166) to be of the same order,
we require that Δ(t) = O(ε1/2). It then follows that U0(ξ −Δ(t)) =U0(ξ )+O(ε1/2) and
Eq. (7.166) reduces to

dΦ(ξ , t) = L◦Φ(ξ , t)dt + ε−1/2U ′
0(ξ )dΔ(t)+dR(U0(ξ ),ξ , t)+O(ε1/2). (7.168)

It can be shown that for a sigmoid firing rate function and exponential weight distribution,
the operator L has a 1D null-space spanned by U ′

0(ξ ) [172]. (The fact that U ′
0(ξ ) belongs

to the null-space follows immediately from differentiating equation (7.164) with respect
to ξ .) We then have the solvability condition for the existence of a nontrivial solution of
Eq. (7.168), namely, that the inhomogeneous part is orthogonal to all elements of the null-
space of the adjoint operator L†. The latter is almost identical in form to Eq. (7.87):

L
†B(ξ ) =−cε

dB(ξ )
dξ

+h′(U0(ξ ))B(ξ )+F ′(U0(ξ ))
∫ ∞

−∞
w(ξ −ξ ′)B(ξ ′)dξ ′. (7.169)

Hence, L† has a one-dimensional null-space that is spanned by some function V (ξ ). Tak-
ing the inner product of both sides of Eq. (7.168) with respect to V (ξ ) then leads to the
solvability condition

∫ ∞

−∞
V (ξ )

[
U ′

0(ξ )dΔ(t)+ ε1/2dR(U0,ξ , t)
]

dξ = 0. (7.170)
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Thus Δ(t) satisfies the stochastic differential equation (SDE)

dΔ(t) =−ε1/2

∫ ∞

−∞
V (ξ )dR(U0 ,ξ , t)dξ
∫ ∞

−∞
V (ξ )U ′

0(ξ )dξ
. (7.171)

Using the lowest-order approximation dR(U0,ξ , t) = g(U0(ξ ))dW (ξ , t), we deduce that
Δ(t) is a Wiener process with effective diffusion coefficient

D(ε) = ε

∫ ∞

−∞

∫ ∞

−∞
V (ξ )V (ξ ′)g(U0(ξ ))g(U0(ξ ′))〈dW (ξ , t)dW(ξ ′, t)〉dξ dξ ′

[∫ ∞

−∞
V (ξ )U ′

0(ξ )dξ
]2

(7.172)

In the case of a Heaviside rate function F(U) = H(U − κ) and multiplicative
noise g(U) = g0U , the effective speed cε and diffusion coefficient D(ε) can be cal-
culated explicitly [70]. (The constant g0 has units of

√
length/time.) The determin-

istic equation (7.164) for the fixed profile U0 then reduces to

− cε
dU0

dξ
+U0(ξ )γ(ε) =

∫ ∞

−∞
w(ξ − ξ ′)H(U0(ξ ′)−κ)dξ ′, (7.173)

with
γ(ε) = (1− εg2

0C(0)), (7.174)

This is identical in structure to Eq. (7.3) for the deterministic neural field modulo
the rescaling of the decay term. The analysis of the wave speeds proceeds along
similar lines to Sect. 7.1. Thus, multiplying both sides of Eq. (7.173) by e−ξ γ(ε)/cε

and integrating with respect to ξ gives

U0(ξ ) = eξ γ(ε)/cε

[
κ − 1

cε

∫ ξ

0
e−yγ(ε)/cε W (y)dy

]
. (7.175)

Finally, requiring the solution to remain bounded as ξ → ∞ (ξ → −∞) for cε > 0
(for cε < 0) implies that κ must satisfy the condition

κ =
1
|cε |

∫ ∞

0
e−yγ(ε)/|cε |W (sign(cε)y)dy. (7.176)

Hence, in the case of the exponential weight distribution (7.1), we have

cε =
σ
2κ

[1− 2κγ(ε)] (7.177)

for cε > 0, and

cε =
σγ(ε)

2
1− 2κγ(ε)
1−κγ(ε)

, (7.178)



7.4 Wave Propagation in Stochastic Neural Fields 307

1.2

1.0

0.8

0.6

0.4

0.2

0.0

2.5

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

50403020100 50403020100

5040302010050403020100

U U

U U

x

x x

x

a

c d

b

Fig. 7.10 Numerical simulation showing the propagation of a front solution of the stochastic neural
field equation (7.157) for Heaviside weight function F(U) =H(U −κ) with κ = 0.35, exponential
weight function (7.1) with σ = 2, and multiplicative noise g(U) = U . Noise strength ε = 0.005
and C(0) = 10. The wave profile is shown at successive times (a) t = 0 (b) t = 12 (c) t = 18
and (d) t = 24, with the initial profile at t = 0 given by the solution to Eq. (7.164). In numerical
simulations we take the discrete space and time steps Δx = 0.1,Δt = 0.01. The deterministic part
U0 of the stochastic wave is shown by the solid gray curves and the corresponding solution in the
absence of noise (ε = 0) is shown by the dashed gray curves

for cε < 0. Assuming that 0 ≤ γ(ε) ≤ 1, we see that multiplicative noise shifts the
effective velocity of front propagation in the positive ξ direction.

In order to calculate the diffusion coefficient, it is first necessary to determine the
null vector V (ξ ) of the adjoint linear operator L† defined by Eq. (7.169). Setting
F(U) = H(U −κ) and g(U) = g0U , we obtain an adjoint equation almost identical
to (7.93):

cεV
′(ξ )+ γ(ε)V (ξ ) =− δ (ξ )

U ′
0(0)

∫ ∞

−∞
w(ξ ′)V (ξ ′)dξ ′. (7.179)

Hence, this has the solution

V (ξ ) =−H(ξ )exp(−Γ (ε)ξ ) , Γ (ε) =
γ(ε)
cε

, (7.180)
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Fig. 7.11 Plot of (a) mean X(t) and (b) variance σ 2
X (t) of front position as a function of time,

averaged over N = 4096 trials. Same parameter values as Fig. 7.10

and Eq. (7.172) reduces to the form

D(ε) = ε

∫ ∞

0
e−2Γ (ε)ξU0(ξ )2dξ

[∫ ∞

0
e−Γ (ε)ξU ′

0(ξ )dξ
]2 . (7.181)

In the case of an exponential weight distribution, U0(ξ ) has the explicit form

U0(ξ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2cε

σe−ξ/σ

1+σΓ (ε) ξ ≥ 0

1
2cε

[
2eξΓ (ε)

Γ (ε)
(−1+σ2Γ (ε)2) + 2

Γ (ε) +
σeξ/σ

1−σΓ (ε)

]
ξ < 0,

(7.182)

and the integrals in (7.181) can be evaluated explicitly to give

D(ε) =
1
2

εσg2
0(1+σΓ (ε)). (7.183)

In Fig. 7.10 we show the temporal evolution of a single stochastic wave front,
which is obtained by numerically solving the stochastic neural field equation (7.157)
for F(U) = H(U −κ), g(U) =U and an exponential weight distribution w. In order
to numerically calculate the mean location of the front as a function of time, we carry
out a large number of level set position measurements. That is, we determine the po-
sitions Xa(t) such that U(Xa(t), t) = a, for various level set values a ∈ (0.5κ ,1.3κ)
and then define the mean location to be X(t) = E[Xa(t)], where the expectation is
first taken with respect to the sampled values a and then averaged over N trials.
The corresponding variance is given by σ2

X (t) = E[(Xa(t)− X̄(t))2]. In Fig. 7.11 we
plot X(t) and σ2

X(t) as a function of t. It can be seen that both vary linearly with
t, consistent with the assumption that there is a diffusive-like displacement of the
front from its uniformly translating position at long time scales. The slopes of these
curves then determine the effective wave speed and diffusion coefficient according
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Fig. 7.12 Plot of (a) wave speed cε and (b) diffusion coefficient D(ε) as a function of threshold
κ . Numerical results (solid dots) are obtained by averaging over N = 4,096 trials starting from the
initial condition given by Eq. (7.182 ). Corresponding theoretical predictions (solid curves) for cε
and D(ε) are based on Eqs. (7.177) and (7.181), respectively. Other parameters as in Fig. 7.10

to X(t) ∼ cε t and σ2
X(t) ∼ 2D(ε)t. In Fig. 7.12 we plot the numerically estimated

speed and diffusion coefficient for various values of the threshold κ and compare
these to the corresponding theoretical curves obtained using the above analysis. It
can be seen that there is excellent agreement with our theoretical predictions pro-
vided that κ is not too large. As κ → 0.5, the wave speed decreases towards zero so
that the assumption of relatively slow diffusion breaks down.

7.4.2 Stimulus-Locked Fronts

So far we have assumed that the underlying deterministic neural field equation is
homogeneous in space so that there exists a family of traveling front solutions re-
lated by a uniform shift. Now suppose that there exists an external front-like in-
put that propagates at a uniform speed v, so that the deterministic equation (7.2)
becomes

∂u(x, t)
∂ t

=−u(x, t)+
∫ ∞

−∞
w(x− x′)F(u(x′, t))dx′ + I(x− vt), (7.184)

where the input is taken to be a positive, bounded, monotonically decreasing func-
tion of amplitude I0 = I(−∞)− I(∞). The resulting inhomogeneous neural field
equation can support a traveling front that locks to the stimulus, provided that the
amplitude of the stimulus is sufficiently large [198]. Consider, in particular, the case
of a Heaviside firing rate function F(u) = H(u− κ). (See [174] for an extension
to the case of a smooth sigmoid function F .) We seek a traveling wave solution
u(x, t) =U (ξ ) where ξ = x−vt and U (ξ0) = κ at a single threshold crossing point
ξ0 ∈R. The front is assumed to travel at the same speed as the input (stimulus-locked
front). If I0 = 0, then we recover the homogeneous equation (7.2) and ξ0 becomes
a free parameter, whereas the wave propagates at the natural speed c(κ) given by
Eq. (7.6). Substituting the front solution into Eq. (7.184) yields
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− v
dU (ξ )

dξ
=−U (ξ )+

∫ ξ0

−∞
w(ξ − ξ ′)dξ ′+ I(ξ ). (7.185)

This can be solved for v > 0 by multiplying both sides by the integrating factor
v−1e−vξ and integrating over the interval [ξ ,∞) with U(ξ )→ 0 as ξ → ∞ to give

U (ξ ) =
1
v

∫ ∞

ξ
e(ξ−ξ ′)/v[W (ξ ′ − ξ0)+ I(ξ ′)]dξ ′,

with W (ξ ) defined according to Eq. (7.3). Similarly, for v < 0, we multiply by the
same integrating factor and then integrate over (−∞,ξ ] with U(ξ )→W0 as ξ →−∞
to find

U (ξ ) =−1
v

∫ ξ

−∞
e(ξ−ξ ′)/v[W (ξ ′ − ξ0)+ I(ξ ′)]dξ ′.

The threshold crossing condition U (ξ0) = κ then determines the position ξ0 of the
front relative to the input as a function of speed v, input amplitude I0, and thresh-
old κ .

One of the interesting features of stimulus-locked fronts is that they are much
more robust to noise [70]. In order to show this, consider the following stochastic
version of Eq. (7.184):

dU(x, t) =

[
−U(x, t)+

∫ ∞

−∞
w(x− y)F(U(y, t))dy+ I(x− vt)

]
dt

+ε1/2g(U(x, t))dW(x, t). (7.186)

Proceeding along identical lines to the case of freely propagating fronts, Eq. (7.186)
is first rewritten so that the fluctuating term has zero mean:

dU(x, t) =

[
h(U(x, t))+

∫ ∞

−∞
w(x−y)F(U(y, t))dy+I(x−vt)

]
dt+ε1/2dR(U,x, t),

(7.187)

and h and R are given by Eqs. (7.160) and (7.161), respectively. The stochastic field
U(x, t) is then decomposed according to Eq. (7.163) with U0 a front solution of

− v
dU0

dξ
− h(U0(ξ ))− I(ξ ) =

∫ ∞

−∞
w(ξ − ξ ′)F(U0(ξ ′))dξ ′. (7.188)

It is assumed that the fixed profile U0 is locked to the stimulus (has speed v). How-
ever, multiplicative noise still has an effect on U0 by generating an ε-dependent
threshold crossing point ξε such that U0(ξε ) = κ .

Proceeding to the next order and imposing equation (7.188), we find that Δ(t) =
O(ε1/2) and
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dΦ(ξ , t) = L◦Φ(ξ , t)dt + ε−1/2U ′
0(ξ )dΔ(t)+ dR(U0,ξ , t)+ ε−1/2I′(ξ )Δ(t)dt

(7.189)

where L is the non-self-adjoint linear operator (7.167) with cε → v. The last term
on the right-hand side of Eq. (7.189) arises from the fact that in Eq. (7.163), U0

and Φ are expressed as functions of ξ − Δ(t) and I(ξ ) = I(ξ − Δ(t) + Δ(t)) ≈
I(ξ −Δ(t)) + I′(ξ −Δ(t))Δ(t). A nontrivial solution of Eq. (7.189) exists if and
only if the inhomogeneous part is orthogonal to the null vector V (ξ ) of the ad-
joint operator L

† defined by Eq. (7.169) with cε → v. Taking the inner product
of both sides of Eq. (7.189) with respect to V (ξ ) thus leads to the solvability
condition

∫ ∞

−∞
V (ξ )

[
U ′

0(ξ )dΔ(t)+ I′(ξ )Δ(t)dt + ε1/2dR(U0,ξ , t)
]

dξ = 0. (7.190)

It follows that, to leading order, Δ(t) satisfies the Ornstein–Uhlenbeck equation

dΔ(t)+AΔ(t)dt = dŴ (t), (7.191)

where

A =

∫ ∞

−∞
V (ξ )I′(ξ )dξ

∫ ∞

−∞
V (ξ )U ′

0(ξ )dξ
, (7.192)

and

Ŵ (t) =−ε1/2

∫ ∞

−∞
V (ξ )g(U0(ξ ))W (ξ , t)dξ
∫ ∞

−∞
V (ξ )U ′

0(ξ )dξ
. (7.193)

Note that A > 0 for I0 > 0, since both U0(ξ ) and I(ξ ) are monotonically decreasing
functions of ξ . Moreover

〈dŴ (t)〉= 0, 〈dŴ (t)dŴ (t)〉= 2D(ε)dt (7.194)

with D(ε) given by Eq. (7.172). Using standard properties of an Ornstein–
Uhlenbeck process [210], we conclude that

〈Δ(t)〉= Δ(0)e−At , 〈Δ(t)2〉− 〈Δ(t)〉2 =
D(ε)

A

[
1− e−2At] . (7.195)

In particular, the variance approaches a constant D(ε)/A in the large t limit, rather
than increasing linearly with time as found for freely propagating fronts.

In order to illustrate the above analysis, take g(U) = g0U for the multiplicative
noise term and set F(U) = H(U −κ). The deterministic Eq. (7.188) for the profile
U0 then reduces to

−v
dU0

dξ
+U0(ξ )[1−εg2

0C(0)]+ I(ξ ) =
∫ ∞

−∞
w(ξ −ξ ′)H(U0(ξ ′)−κ)dξ ′. (7.196)
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Fig. 7.13 Plot of existence regions of a stimulus-locked front without noise (γ = 1, dark gray) and
in the presence of noise (γ = 0.9, light gray) with overlapping regions indicated by medium gray.
Stimulus taken to be of the form I(x, t) = I0H(−ξ ),ξ = x−vt with amplitude I0 and speed v. Other
parameter values as in Fig. 7.10. (a) κ = 0.95: spontaneous fronts exist in the absence of a stimulus
(I0 = 0). (b) κ = 1.25: there are no spontaneous fronts
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Fig. 7.14 Numerical simulation showing the propagation of a stimulus-locked wave-front solution
(black curves) of the stochastic neural field equation (7.186) for Heaviside weight function F(U) =
H(U −κ) with κ = 0.35, exponential weight function (7.1) with σ = 2, and multiplicative noise
g(U) =U . The external input (gray curves) is taken to be of the form I(x, t) = I0Erfc[x− vt] with
amplitude I0 = 0.4 and speed v = 1.5. Noise strength ε = 0.005 and C(0) = 10. The wave profile
is shown at successive times (a) t = 0 (b) t = 6 (c) t = 12 and (d) t = 24, with the initial profile at
t = 0 given by the solution U0 of Eq. (7.188). In numerical simulations we take the discrete space
and time steps Δx = 0.1,Δt = 0.01
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Fig. 7.15 Plot of (a) mean X(t) and (b) variance σ 2
X (t) of the position of a stimulus-locked front

as a function of time, averaged over N = 4096 trials. Smooth gray curve in (b) indicates theoretical
prediction of variance. Stimulus taken to be of the form I(x, t) = I(x − ct) = I0Erfc[x− vt] with
amplitude I−0 = 0.4 and speed v = 1.5. Other parameter values as in Fig. 7.10

Existence of front solution proceeds along identical lines to Sect. 7.1, except now
the speed v is fixed, whereas the threshold crossing point ξ0, say, is no longer ar-
bitrary due to the breaking of translation symmetry. The point ξ0 is determined by
the threshold condition U0(ξ0) = κ and will depend on the noise strength ε . In
Fig. 7.13 we show existence regions in the (v, I0)-plane for stimulus-locked fronts
when I(ξ ) = I0H(−ξ ), that is, for a step function input of speed v and amplitude
I0. This illustrates the fact that multiplicative noise leads to an ε-dependent shift
in the existence regions. In Fig. 7.14 we show the temporal evolution of a single
stimulus-locked front, which is obtained by numerically solving the Langevin equa-
tion (7.186) for F(U) = H(U −κ), g(U) = U and an exponential weight distribu-
tion w. Numerically speaking, it is convenient to avoid discontinuities in the input
by taking I(x, t) = I0Erfc[x− vt] rather than a Heaviside. The corresponding mean
X(t) and variance σ2

X (t) of the position of the front, which are obtained by aver-
aging over level sets as outlined in Sect. 7.4.1, are shown in Fig. 7.15. It can be
seen that, as predicted by the analysis, X(t) varies linearly with t with a slope equal
to the stimulus speed v = 1.5. Moreover, the variance σ2

X(t) approaches a constant
value as t → ∞, which is comparable to the theoretical value D(ε)/A evaluated for
the given input. Thus, we find that stimulus-locked fronts are much more robust to
noise than freely propagating fronts, since the variance of the mean position satu-
rates as t → ∞. Consequently, stimulus locking persists in the presence of noise over
most of the parameter range for which stimulus locking is predicted to occur.

7.4.3 Stochastic Pulled Fronts

In the case of the F–KPP equation with multiplicative noise, one finds that the
stochastic wandering of a pulled front about its mean position is subdiffusive with
varΔ(t) ∼ t1/2, in contrast to the diffusive wandering of a front propagating into a
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Fig. 7.16 (a) Plot of variance σ 2
X (t) of the position of a stochastic pulled front as a function of
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X(t) as a function of time t . Noise amplitude ε = 0.005 and

κ = 0.8. Other parameter values as in Fig. 7.2

metastable state for which varΔ(t) ∼ t [530]. Such scaling is a consequence of the
asymptotic relaxation of the leading edge of the deterministic pulled front. Since
pulled front solutions of the neural field equation (7.27) exhibit similar asymptotic
dynamics (see Eq. (7.46)), it suggests that there will also be subdiffusive wander-
ing of these fronts in the presence of multiplicative noise. In order to illustrate this,
consider the stochastic neural field equation

dA(x, t) =

[
−A(x, t)+F

(∫ ∞

−∞
w(x−y)A(y, t)dy

)]
dt+ε1/2g0A(x, t)dW (x, t) (7.197)

with W (x, t) a Wiener process satisfying Eq. (2.84). Note that the noise term has to
vanish when A(x, t) = 0, since the firing rate A is restricted to be positive. Hence, the
noise has to be multiplicative. Formally speaking, one can carry over the analysis of
the Langevin equation (7.157). First, decompose the solution along similar lines to
Eq. (2.96):

A(x, t) = A0(ξ −Δ(t))+ ε1/2Φ(ξ −Δ(t), t) (7.198)

with ξ = x−cεt, with the fixed front profile A0 satisfying the deterministic equation

− cε
dA0

dξ
+A0(ξ )[1− εg2

0C(0)] = F

(∫ ∞

−∞
w(ξ − ξ ′)A0(ξ ′)dξ ′

)
. (7.199)

The effective velocity cε of the front is given by the minimum of the dispersion
curve

cε(λ ) =
1
λ
[
Ŵ (λ )+Ŵ(−λ )− [1− εg2

0C(0)]
]
. (7.200)

Fluctuations thus shift the dispersion curve to higher velocities. However, it is no
longer possible to derive an expression for the diffusion coefficient D(ε) along the
lines of Eq. (7.172), since both numerator and denominator would diverge for a
pulled front. This reflects the asymptotic behavior of the leading edge of the front.
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It is also a consequence of the fact that there is no characteristic time scale for the
convergence of the front velocity to its asymptotic value, which means that it is not
possible to separate the fluctuations into a slow wandering of front position and fast
fluctuations of the front shape [162, 486]. Nevertheless, numerical simulations of
Eq. (7.197) with F given by the piecewise linear firing rate (7.29) are consistent
with subdiffusive wandering of the front. In Fig. 7.16(a), we plot the variance σ2

X (t)
of the position of a pulled front solution of Eq. (7.197), which are obtained by
averaging over level sets along identical lines to Sect. 7.4.1. It can be seen that the
variance appears to exhibit subdiffusive behavior over longer time scales. This is
further illustrated by plotting a log-log plot of σ2

X(t) against time t; see Fig. 7.16(b).
At intermediate time scales, the slope of the curve is approximately equal to one,
consistent with normal diffusion, but at later times the slope decreases, indicating
subdiffusive behavior.

7.5 Traveling Waves in 2D Oscillatory Neural Fields

Troy and Shusterman [580, 634] have shown how a neural field model with strong
linear adaptation (see Eq. (7.49)) can act as an oscillatory network that supports
2D target patterns and spiral waves consistent with experimental studies of tan-
gential cortical slices [292]. (For the analysis of spiral waves in the corresponding
excitable regime, see [354].) However, since the linear form of adaptation used in
these studies is not directly related to physiological models of adaptation, it is diffi-
cult to ascertain whether or not the strength of adaptation required is biologically
reasonable. This motivated a more recent study of spiral waves in a 2D neural
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Fig. 7.17 Limit cycle oscillations in the space-clamped system (7.202) for a piecewise linear firing
rate function (1.16) with threshold κ = 0.01 and gain η = 4. (a) Bifurcation diagram showing fixed
points u of the system as a function of β for τq = 80. (b) Corresponding phase-plane plot of q versus
u (gray curve) for β = 4, showing that the system supports a stable limit cycle [329]
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Fig. 7.18 Target patterns in a 2D neural field with synaptic depression induced by an initial con-
ditional stimulus specified by Eq. (7.203) at t = 0, where χ = 1 and ζ = 25. Initially, an activated
state spreads radially outward, across the entire medium as a traveling front. Then, the localized
oscillating core of activity emits a target wave with each oscillation cycle. Eventually, these target
waves fill the domain. Each target wave can be considered as a phase shift in space of the oscil-
lation throughout the medium; they travel with the same speed as the initial front. Parameters are
τq = 80, β = 4, η = 4, and κ = 0.01 [330]

medium involving a nonlinear, physiologically based form of adaptation, namely,
synaptic depression [330]. The latter model is given by

∂u(r, t)
∂ t

= −u(r, t)+
∫

w(|r− r′|)q(r′, t)F(u(r′, t))dr′

∂q(r, t)
∂ t

=
1− q(r, t)

τq
−β q(r, t)F(u(r, t)). (7.201)

The radially symmetric excitatory weight distribution is taken to be an exponential,
w(r) = e−r/2π . It can be shown that the space-clamped model

u̇(t) =−u(t)+ q(t)F(u(t)), q̇(t) =
1− q(t)

τq
−β q(t)F(u(t)), (7.202)

supports limit cycle oscillations provided that the firing rate function has finite
gain. For example, in the case of the piecewise linear firing rate function (1.16),
oscillations arise via a subcritical Hopf bifurcation of a high activity fixed point;
see Fig. 7.17. One then finds that the full network model (7.201) supports a spa-
tially localized oscillating core that periodically emits traveling pulses [330]. Such
dynamics can be induced by taking an initial condition of the form
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Fig. 7.19 Spiral wave generated by shifting the phase of the top and bottom halves of the target pat-
tern shown in Fig. 7.18. The period of the spiral wave oscillation is roughly the same as the period
of the oscillation in the space-clamped system. All patches of neurons are oscillating at the same
frequency, but phase-shifted as coordinates are rotated about the central phase singularity [330]

(u(r,0),q(r,0)) = (χe−(x2+y2)/ζ 2
,1), (7.203)

where χ and ζ parameterize the amplitude and spatial constant of the initial state.
An example of a pulse-emitting core is shown in Fig. 7.18, which oscillates at a
frequency of roughly 3 Hz. Pulses are emitted each cycle and travel at a speed of
roughly 30 cm/s, which is determined by the period of the oscillations; the latter is
set by the time constant of synaptic depression. The initial emission of spreading ac-
tivity appears as a traveling front which propagates from the region activated by the
input current into the surrounding region of zero activity; it travels at the same speed
as the subsequent target waves. The front converts each region of the network into an
oscillatory state that is phase-shifted relative to the core, resulting in the appearance
of a radially symmetric target pattern. Spiral waves can also be induced by breaking
the rotational symmetry of pulse emitter solutions [330]. More specifically, if the
target pattern produced by the emitter has the top and bottom halves of its domain
phase-shifted, then the dynamics evolves into two counterrotating spirals on the left
and right halves of the domain. Closer inspection of one of these spirals reveals that
it has a fixed center about which activity rotates indefinitely as shown in Fig. 7.19.

A very different mechanism for generating periodic waves in a 1D or 2D neu-
ral field model is through the combination of adaptation and a spatially localized
input [196, 197]. Recall from Sect. 7.2 that a 1D excitatory neural field with adap-
tation supports the propagation of solitary traveling pulse, which can be induced by
perturbing the system with a transient localized pulse. (In contrast to the previous
example, we are assuming that the neural field operates in an excitable regime.)
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In the case of a 2D network with radially symmetric weights, such a pulse will pro-
duce a single expanding circular wave. Now suppose that a 2D localized pulse per-
sists in the form of a radially symmetric Gaussian input I(r) = I0e−r2/σ 2

—this could
either represent an external stimulus or a localized region of depolarization. As one
might expect, for sufficiently large input amplitude I0, the neural field supports a ra-
dially symmetric stationary pulse or bump centered about the input. Such a bump is
not self-sustaining, however, since if the input is removed, then the bump disappears
as well. This then raises the question as to what happens to the stability of the bump
as the input amplitude is slowly decreased. One finds that the bump first undergoes
a Hopf instability as I0 is decreased, leading to the formation of a spatially localized
oscillating pulse or breather [196]. Interestingly, as the input amplitude is further
reduced, the breather can undergo a secondary instability such that it now acts as an
oscillating core that emits circular target waves. Thus, a spatially localized station-
ary input provides a mechanism for the formation of a network pacemaker oscillator.
A linear stability analysis establishes that the primary instability is due to the growth
of radially symmetric eigenmodes. A similar bifurcation scenario also occurs in a
neural field with lateral inhibition, except that now the Hopf bifurcation typically
involves the growth of nonradially symmetric eigenmodes, resulting in asymmetric
breathers and rotating waves [197].
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