
Chapter 6
Population Models and Neural Fields

In this chapter we show how to construct population-based models of synaptically
coupled neural networks, distinguishing between voltage-based and activity-based
versions [71, 168]. We also consider the important issue of how noise at the single-
cell level (Poisson-like spiking statistics) relates to noise at the population level. In
particular, we describe a neural master equation formulation of stochastic population
dynamics. One biological motivation for population-based models is that neurons in
cortex tend to be organized into tightly coupled groups known as cortical columns,
in which the cells share similar functional properties (Sects. 5.1 and 8.1). Another
important feature of cortex is that it is spatially organized at both the anatomical and
functional levels, which can be modeled in terms of spatially structured networks of
interacting populations. In the continuum limit, such models can be described in
terms of neural field equations. The advantage of a continuum rather than a discrete
representation of spatially structured networks is that various techniques from the
analysis of PDEs presented in Part I can be adapted to the study of neural field
models of cortex (Chaps. 7 and 8).

6.1 Population Averaging and Rate Models

Suppose that a network of synaptically coupled spiking neurons is partitioned into
a set of P homogeneous populations labeled α = 1, . . . ,P, with Nα = N neu-
rons in each population. (It is straightforward to relax this assumption by taking
Nα =O(N).) Let χ denote the population function that maps the single neuron index
i = 1, . . . ,N to the population index α to which neuron i belongs: χ(i) = α . Further-
more, suppose the synaptic interactions between populations are the same for all
neuron pairs. (Relaxing this assumption can lead to additional sources of stochastic-
ity as explored in [184, 632].) Denote the sequence of firing times of the jth neuron
by {T m

j , m ∈ Z}. The net synaptic current into postsynaptic neuron i due to inner-
vation by the spike train from presynaptic neuron j, with χ(i) = α,χ( j) = β , is
taken to have the general form N−1∑mΦαβ (t −T m

j ), where N−1Φαβ (t) represents
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234 6 Population Models and Neural Fields

the temporal filtering effects of synaptic and dendritic processing of inputs from any
neuron of population β to any neuron of population α; see Sect. 1.4.2. Assuming
that all synaptic inputs sum linearly, the total synaptic input to the soma of the ith
neuron is

ui(t) =∑
β

1
N ∑

j;χ( j)=β
Φαβ (t −Tm

j ) =

∫ t

−∞∑β
Φαβ (t − t ′)

1
N ∑

j;χ( j)=β
a j(t

′)dt ′

(6.1)

for all χ(i) = α , where a j(t) =∑m∈Z δ (t −T m
j ). That is, a j(t) represents the output

spike train of the jth neuron in terms of a sum of Dirac delta functions. In order
to obtain a closed set of equations, we have to determine the firing times T m

i given
by Eq. (5.2), where vi(t) evolves according to conductance-based model (5.1). It
follows that, since the right-hand side of (6.1) is independent of i, we can set ui(t) =
uα(t) for all p(i) = α with

uα(t) =
P

∑
β=1

∫ t

−∞
Φαβ (t − t ′)aβ (t ′)dt ′, (6.2)

and aα(t) is the output activity of the αth population:

aα(t) =
1
N ∑

j;χ( j)=α
a j(t). (6.3)

We now assume that each homogeneous population is close to a so-called asyn-
chronous state, in which the spike trains of different neurons within a homogeneous
population are uncorrelated (see Sect. 6.3.1). The population activity aα is then
approximately constant, which means that the synaptic currents are also slowly
varying functions of time. It follows that aα can track the input current accord-
ing to aα(t) = F(uα(t)), where F is a population gain function [2, 86, 87, 213].
Substituting this approximation into (6.2) leads to the closed system of equations

uα(t) =
P

∑
β=1

∫ t

−∞
Φαβ (t − t ′)F [uβ (t

′)]dt ′, (6.4)

(Note, however, the asynchronous state only exists in the thermodynamic limit
so that for finite N we expect statistical fluctuations around the asynchronous
state; see Sect. 6.4.) A rate equation identical in form to (6.4) was derived in
Sect. 5.3 for an IF network with slow synapses, except that it involved single neuron
labels rather than the population labels α,β . As highlighted elsewhere [71, 168],
Eq. (6.4) can be reduced to a system of ordinary differential equations provided that
we place rather mild restrictions on the time dependence of Φαβ (t). First, suppose
thatΦαβ (t) = wαβΦα (t) where wαβ denotes the mean synaptic strength of connec-
tions from population β to neuron α and Φα (t) determines the time course of the
input, which is assumed to depend only on properties of the postsynaptic population
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α . Furthermore, suppose that there exists a differential operator Lα such that (see
also (5.76))

LαΦα(t) = δ (t). (6.5)

Applying the operator Lα to both sides of equation (6.4) then leads to a system of
differential equations for the population currents uα(t):

Lαuα(t) =
P

∑
β=1

wαβFβ (uβ (t)). (6.6)

Note that we could easily convert the synaptic current uα(t) into an input volt-
age vα(t) = uα(t)/σ using an effective input conductance σ , for example. Thus
Eq. (6.6) is often referred to as a voltage equation and forms the basis of most classi-
cal neural networks such as the Hopfield model [288]. On the other hand, if the time
course of the inputs depends only on presynaptic parameters, Φαβ (t) = wαβΦβ (t),
with Φβ having inverse differential operator Lβ , then we obtain a system of differ-
ential equations for the so-called synaptic drives:

zα(t) =
∫ t

−∞
Φα(t − t ′)Fα(uα(t ′))dt ′. (6.7)

That is, applying the differential operator Lα to Eq. (6.7) and using uα(t) =
∑P
β=1 wαβ zβ (t) leads to the activity-based model

Lαzα(t) = Fα

(
P

∑
β=1

wαβ zβ (t)

)
. (6.8)

The differential operator Lα appearing in Eqs. (6.6) and (6.8) is often taken to be
first order in time:

Lα =
∂
∂ t

+
1
τα

, (6.9)

with inverse kernelΦα(t) =H(t)e−t/τα . In order to relate the effective time constant
τα to membrane and synaptic time constants, let us assume for simplicity that all
synapses are sufficiently close to the soma so that the dendrite simply acts as a
first-order low-pass filter and set (with Vrest = 0)

Φαβ (t) = σαrm,αVsyn,β ḡαβH(t)
∫ t

0
e−(t−s)/τm,αhβ (s)ds,

with
hβ (s) =

τd,β

τd,β − τr,β
(e−s/τd,β − e−s/τr,β ).

We have made explicit that the reversal potential Vsyn and synaptic rise/fall times
τr,d only depend on the particular class of synapses innervated by the presynaptic
population β , whereas the membrane time constant τm, resistance rm, and conduc-
tance σ are solely properties of the postsynaptic population α . Only the maximum
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conductance ḡ is specific to the particular synapses β→α . The various constant fac-
tors can be combined to define the synaptic weight wαβ . In particular, wαβ ∼Vsyn,β
so that the sign of Vsyn,β (relative to the resting potential) determines whether the
synapse is excitatory or inhibitory. If τm � τr,τd , then the time course is effectively
independent of the presynaptic label β , and we have the voltage-based model (6.6)
with first-order operator Lα and τα = τm. On the other hand, if τd � τm,τr, then
we obtain the activity-based model with τα = τd . Although the reduction to a rate-
based model is a major simplification of the full conductance-based model, it is still
possible to incorporate various additional physiological features.

1. Synaptic depression. In order to incorporate synaptic depression we need to
return to the single neuron level. Equation (6.1) is modified according to

ui(t) =∑
β

1
N ∑

j;χ( j)=β
Φαβ (t −T m

j )qi j(t −T m
j )

=

∫ t

−∞∑β
Φαβ (t − t ′)

[
1
N ∑

j;χ( j)=β
a j(t

′)qi j(t
′)

]
dt ′

with qi j evolving according to an equation of the form (1.45), which we write as

dqi j

dt
=

1− qi j

τq
− (1− γ)qi j(t)a j(t).

Averaging the latter equation with respect to j,χ( j) = β , and introducing the
compact notation

〈 f (t)〉β =
1
N ∑

j;χ( j)=β
f j(t),

we have the pair of equations

ui(t) =
∫ t

−∞∑β
Φαβ (t − t ′)〈a(t ′)qi(t

′)〉βdt ′ (6.10)

and
d〈qi〉β

dt
=

1−〈qi〉β
τq

− (1− γ)〈a(t)qi(t)〉β .

We now make the mean-field approximation

〈a(t)qi(t)〉β = aβ (t)〈qi(t)〉β (6.11)

Since all averaged depression variables 〈qi(t)〉β , i = 1, . . . ,N} for fixed β now
have a common input drive aβ (t), it follows that

τq
d(〈qi(t)〉β −〈qi′(t)〉β )

dt
=−[〈qi(t)〉β −〈qi′(t)〉β ],
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and thus 〈qi(t)〉β → 〈qi′(t)〉β = qβ (t) for all i, i′ = 1, . . . ,N. In other words,
after an initial transient of duration τq, we can identify all depression vari-
ables associated with a given presynaptic population β . If we now assume that
Φαβ (t) = wαβΦβ (t), we can introduce the synaptic drives (6.7) and derive the
modified activity-based model [25, 617, 637, 644]:

Lαzα(t) = Fα

(
P

∑
β=1

wαβqβ (t)zβ (t)

)
, (6.12)

with

dqα
dt

=
1− qα(t)
τq

− (1− γ)qα(t)Fα
(

P

∑
β=1

wαβqβ (t)zβ (t)

)
. (6.13)

The corresponding voltage-based model is

Lαuα(t) =
P

∑
β=1

wαβqβ (t)Fβ (uβ (t)). (6.14)

with
dqα
dt

=
1− qα(t)
τq

− (1− γ)qα(t)Fα (uα(t)) . (6.15)

2. Axonal propagation delays. In the above derivation of rate-based models, we
have assumed that the spiking of a presynaptic neuron has an instantaneous effect
on downstream postsynaptic neurons. This neglects the fact that action potentials
take time to propagate along an axon to innervate a synaptic terminal. Let us
denote the corresponding axonal delay of a synapse α → β by ταβ . The integral
equation (6.2) is modified according to

uα(t) =
P

∑
β=1

∫ t

−∞
Φαβ (t − t ′)aβ (t ′ − ταβ )dt ′. (6.16)

The corresponding voltage-based model then takes the form of a system of delay
differential equations,

Lαuα(t) =
P

∑
β=1

wαβFβ (uβ (t − ταβ )), (6.17)

and similarly for the activity-based model.

3. Adaptive threshold dynamics. Another biophysical process that can be incor-
porated into rate-based models is spike frequency adaptation. Spike frequency
adaptation causes a neuron’s firing rate to decay to a submaximal level and
occurs when a potassium current, presumably activated by elevated intracellular
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calcium, hyperpolarizes the membrane voltage [35, 396, 604]. This afterhyper-
polarization current has a time constant of around 40–120 ms. Spike frequency
adaptation can be introduced as a negative current −ci on the right-hand side of
the conductance-based model equation (5.1). Assuming that ci(t) varies slowly
relative to the voltage vi(t), it can be shown that ci effectively acts as an adaptive
threshold that varies linearly with the firing rate [35]. In the case of a network
of homogeneous populations, each neuron within a given population fires at the
same mean rate so that we can identify ci = cα for all i such that χ(i) =α . Hence,
the voltage-based model becomes

Lαuα(t) =
P

∑
β=1

wαβFβ (uβ (t)− cβ (t)). (6.18)

with
dcα
dt

=−cα(t)
τc

+ γcFα(uα(t)− cα(t)). (6.19)

6.2 E–I Oscillator Networks

One of the simplest population-based networks, which is often taken to be a fun-
damental module in large-scale models of cortex, is a pair of mutually coupled
local populations of excitatory and inhibitory neurons known as an E–I network;
see Fig. 6.1. An E–I network has the important property of exhibiting limit cycle
oscillations and can thus act as a basic oscillatory element in network models of
cortical phase waves, as an alternative to single spiking neurons (Sect. 5.2). An
activity-based version of an E–I network takes the form (for first-order synapses)

daE

dt
=−aE +F (wEE aE −wEIaI + hE)

daI

dt
=−aI +F (wIE aE −wIIaI + hI) , (6.20)

E I

wEE

wII

wIE

wEI

hE

hI

Fig. 6.1 Two-population E–I network
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where hE ,hI represent constant background inputs. For simplicity, we set τE = τI =
1. The bifurcation structure of the two-population model given by Eq. (6.20) has
been analyzed in detail elsewhere [55]. An equilibrium (a∗E ,a

∗
I ) is obtained as a

solution of the pair of equations

a∗E = F (wEEa∗E −wEIa
∗
I + hE)

a∗I = F (wIE a∗E −wIIa
∗
I + hI) . (6.21)

These can be inverted to yield

hE = F−1(a∗E)−wEEa∗E +wEIa
∗
I

hI = F−1(a∗I )−wIEa∗E +wIIa
∗
I . (6.22)

As a further simplification, take the gain function F to be the simple sigmoid F(u) =
(1 + e−u)−1. Using the fact that the sigmoid function then satisfies F

′
= F(1 −

F) and applying the fixed-point equations allows one to represent the associated
Jacobian in the form

Δ =

(−1+wEEa∗E(1− a∗E) −wEIa∗E(1− a∗E)
wIE a∗I (1− a∗I ) −1−wIIa∗I (1− a∗I )

)
.

An equilibrium will be stable provided that the eigenvalues λ± of Δ have negative
real parts, where

λ± =
1
2

(
TrΔ ±

√
[TrΔ ]2 − 4DetΔ

)
. (6.23)

This leads to the stability conditions TrΔ < 0 and DetΔ > 0. In order to construct
a phase diagram in the (hE ,hI)-plane for a fixed weight matrix w, we express a∗I as
a function of a∗E by imposing a constraint on the eigenvalues λ± and then substitute
the resulting function into Eq. (6.22). This yields bifurcation curves in the (hE ,hI)-
plane that are parameterized by a∗E , 0 < a∗E < 1; see Fig. 6.2. For example, the
constraint

TrΔ ≡−2+wEEa∗E(1− a∗E)−wIIa
∗
I (1− a∗I ) = 0 (6.24)

with DetΔ > 0 determines Hopf bifurcation curves where a pair of complex con-
jugate eigenvalues cross the imaginary axis. Since the trace is a quadratic function
of a∗E ,a

∗
I , we obtain two Hopf branches. Similarly, the constraint DetΔ = 0 with

TrΔ < 0 determines saddle–node or fold bifurcation curves where a single real
eigenvalue crosses zero. The saddle–node curves have to be determined numeri-
cally, since the determinant is a quartic function of a∗E ,a∗I .

Now consider a network of synaptically coupled E–I modules or subnetworks,
with each module labeled by the discrete index n:

dan
E

dt
= −an

E

τE
+F

(
∑
m
[wEE(n,m)am

E −wEI(n,m)am
I + hE]

)
(6.25a)
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Fig. 6.2 Phase diagram of two-population Wilson–Cowan model (6.20) for fixed set of weights
wEE = 11.5,wIE = wEI = 10, ,wII = −2. The dots correspond to Takens–Bogdanov bifurcation
points

dan
I

dt
= −an

I

τI
+F

(
∑
m
[wIE(n,m)am

E −wII(n,m)am
I + hI]

)
, (6.25b)

Suppose that synaptic interactions within a local E–I network are stronger than those
between E–I networks. That is, we write

wab(n,m) = wabδnm + εJab(n,m)(1− δnm)

with ε � 1. Substituting into (6.25) and Taylor expanding to O(ε) then gives

dan
E

dt
= −an

E +F ([wEEan
E −wEIa

n
I + hE]) (6.26a)

+εF ′ ([wEE an
E −wEIa

n
I + hE ]) ∑

m�=n

[JEE(n,m)am
E − JEI(n,m)am

I ]

dan
I

dt
= −an

I +F ([wIE an
E −wIIa

n
I + hI]) (6.26b)

+εF ′ ([wIE an
E −wIIa

n
I + hE ]) ∑

m�=n

[JIE(n,m)am
E − JII(n,m)am

I ]

One can view the synaptic interaction between E–I modules as weak perturba-
tions of the underlying limit cycle oscillators, which suggests carrying out a phase
reduction of (6.26) along the lines of Sects. 1.2 and 5.2. In order to proceed, it is
first necessary to determine the phase-resetting curve (PRC) of an individual E–I
network. Suppose that each uncoupled E–I network operates in a parameter regime
where the mean-field equations (6.20) support a stable limit cycle. For concreteness,
take a point in parameter space between the two Hopf curves in Fig. 6.2, namely,



6.2 E–I Oscillator Networks 241

(hE ,hI) = (0,−4). A plot of the oscillation in phase space is shown in Fig. 6.3(a)
and the components ZE ,ZI of the corresponding PRC are shown in Fig. 6.3(b). Note
that both components are approximately sinusoidal so that the E–I network acts as
a type II oscillator.
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Fig. 6.3 (a) Trajectories along the limit cycle of an E–I network: xE(t) (solid curve) and xI(t)
(dashed curve). Parameters are wEE = 11.5,wIE = −wEI = 10, wII = −2, hE = 0, and hI = −4.
Also F(u) = 1/(1+ e−u). (b) Corresponding components ZE and ZI of the phase-resetting curve

The next step is to rewrite (6.26) in the more compact form

dan

dt
= −an + f(an)+ εg(an)T ∑

m�=n

J(n,m)am, (6.27)

where an = (an
E ,a

n
I )

T , f = ( fE , fI), g = (gE ,gI),

fp(a) = F(wpEaE −wpIaI + hp), gp(a) = F ′(wpEaE −wpIaI + hp), p = E, I.

Phase reduction now proceeds using the method of isochrones as described in
Sect. 1.2. Let Θ(a) represent the isochronal mapping in a neighborhood of an un-
coupled limit cycle oscillator and denote the natural frequency by ω0. Then

ZE(θ ) =
∂Θ(a∗(θ ))
∂aE

, ZI(θ ) =
∂θ (a∗(θ ))
∂aI

, (6.28)

where a∗ is a point on the limit cycle. Applying the phase reduction procedure to
(6.27) with θn =Θ(an), we have

dθn

dt
= ω0 + ε ∑

p,q=E,I
Zp(θn)gp(θn)∑

m
Jpq(n,m)a∗q(θm). (6.29)

Here, all quantities are evaluated on the limit cycles so that gp(θn) = gp(a∗(θn)) etc.
Finally, averaging over one period Δ0 = 2π/ω0 gives the phase equations

dθn

dt
= ω0 + ε ∑

p,q=E,I

[
∑
m

Jpq(n,m)Hpq(θm −θn)

]
, (6.30)



242 6 Population Models and Neural Fields

with phase interaction functions

Hpq(φ) =
1

2π

∫ 2π

0
Zp(θ −φ)gp(θ −φ)a∗q(θ )dθ . (6.31)

Given the phase equations, one can investigate the existence and stability of phase-
locked states, including phase waves, along identical lines to the analysis of waves
on a chain in Sect. 5.2.2. Note that phase-coupled E–I networks have been used to
study the phenomenon of stimulus-induced oscillations and synchrony in primary
visual cortex model, where each E–I network is interpreted as a cortical column
consisting of reciprocally coupled populations of excitatory and inhibitory neurons
[239, 560].

6.3 Firing Rates, Asynchronous States, and Spiking Statistics

6.3.1 The Asynchronous State in a Homogeneous Spiking Network

One of the major assumptions in the derivation of rate-based population models in
Sect. 6.1 was that each homogeneous population is in an asynchronous state. Here
we consider the existence and stability of an asynchronous state in a large, globally
coupled network of IF neurons [2, 213]. Consider the following synaptically coupled
network of nonlinear IF neurons (see also Sect. 5.3):

dvi

dt
= G(vi)+

ε
N

N

∑
j=1

∫ ∞
−∞
Φ(t ′ − τd)∑

m
δ (t − t ′ −Tm

j )dt ′, (6.32)

with Φ given by the alpha function (5.23), τd a discrete axonal delay and ε deter-
mines the strength of coupling. We take a threshold vκ = 1 and a reset vr = 0. In the
case of global coupling, we can express the sum over delta functions in terms of the
population activity variable

a(t) =
N

∑
j=1
∑
m
δ (t −Tm

j ) (6.33)

so that
dvi

dt
= G(vi)+ εu(t), (6.34)

where u(t) =
∫ ∞
−∞Φ(t ′ − τd)a(t − t ′)dt ′. Now suppose that there exists an asyn-

chronous state a(t) = a0. (Strictly speaking, such a state only exists in the thermo-
dynamic limit N → ∞.) Since Φ is normalized to unity it follows that u(t) = a0 as
well (ignoring transients). An implicit equation for a0 is then obtained by integrating
equation (6.34) between successive firing times:
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1
a0

=
∫ 1

0

du
G(u)+ εa0

. (6.35)

We will assume that there exists a unique solution to this equation for given G and ε .
If G depends on a uniform external input I, then this yields the population gain
function F with a0 = F(I).

In order to study the stability of the asynchronous state, it is convenient to carry
out the change of variables

yi = a0

∫ vi

0

du
G(u)+ εa0

, (6.36)

with 0 < yi < 1 such that Eq. (6.34) becomes

dyi

dt
= a0 +Γ (yi)[u(t)− a0] (6.37)

and
Γ (y) =

a0ε
G(y)+ a0ε

. (6.38)

We also incorporate the effects of synaptic noise by including an additive white
noise term ξi(t),

dyi

dt
= a0 +Γ (yi)[u(t)− a0]+ ξi(t), (6.39)

with

〈ξi(t)〉= 0, 〈ξi(t)ξ j(t
′)〉= σ2δi jδ (t − t ′). (6.40)

(Note that diffusive fluctuations of the membrane potential due to stochastic back-
ground activity would lead to an additive white noise term in Eq.(6.34) rather than
in Eq. (6.40). The corresponding stochastic equation for yi would then involve mul-
tiplicative noise, which is much harder to analyze.) In the presence of noise the
variable yi can become negative so −∞< yi < 1. The Langevin equation (6.40) has
an associated Fokker–Planck equation

∂
∂ t

p(y, t) =− ∂
∂y

J(y, t), (6.41)

where J(y, t) is the probability flux

J(y, t) = [a0 +Γ (y)[u(t)− a0]] p(y, t)− σ
2

2
∂
∂y

p(y, t). (6.42)

This is supplemented by the boundary conditions arising from reset:

p(1, t) = 0, J(1, t) = a(t), (6.43)

p(0+, t) = p(0−, t), J(0+, t)− J(0−, t) = a(t). (6.44)
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We also require p(−∞, t) = 0 and J(−∞, t) = 0. The steady-state solution of the
Fokker–Planck equation is J(y, t) = a0 and p(y, t) = p0(y) with

p0(y) =

{
e2a0y/σ2 − e2a0(y−1)/σ2

, y < 0
1− e2a0(y−1)/σ2

, 0 < y < 1
. (6.45)

The stability of the steady state can be determined by setting

p(y, t) = p0(y)+ρ(y)eλ t , a(t) = a0 + a1eλ t (6.46)

and expanding to first order in ρ ,a1. This gives the eigenvalue equation

λρ(y) =
σ2

2
∂ 2

∂y2 ρ(y)− a0
∂
∂y
ρ(y)− a1Φ̃(λ )

∂
∂y

[Γ (y)p0(y)], (6.47)

where Φ̃(λ ) is the Laplace transform

Φ̃(λ ) =
∫ ∞

0
Φ(t − τd)e

−λ t =
α2

(λ +α)2 eτdλ . (6.48)

Defining the function

h(y) = a1Φ̃(λ )
∂
∂y

[Γ (y)p0(y)], (6.49)

we can write Eq. (6.47) as the inhomogeneous equation

[L ρ(y)≡
[
σ2

2
∂ 2

∂y2 − a0
∂
∂y

]
ρ(y) = λ1]ρ(y)+ h(y;λ ). (6.50)

This inhomogeneous equation can be solved in terms of the associated one-
dimensional Green’s function satisfying [L − λ1]G (y,y′;λ ) = δ (y − y′) and
G (1,y′,λ ) = 0:

ρ(y) =
∫ 1

−∞
G (y,y′;λ )h(y′;λ )dy′ − a1G (y,0;λ ) (6.51)

with

G (y,y′;λ ) =

⎧⎨
⎩

A
(

eμ+(λ )[y−1]− e−μ−(λ )[y−1]
)

eμ−(λ )[y
′−1], y′ < y < 1

A
(

eμ−(λ )[y
′−1]− e−μ+(λ )[y′−1]

)
eμ+(λ )[y−1], y < y′,

(6.52)

where

A =
2
σ2

1
μ++ μ−

, (6.53)

μ±(λ ) =
1
σ2

[√
a2

0 + 2λσ2± a0

]
. (6.54)
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Note that the term a1G (y,0;λ ) ensures that the flux discontinuity at y= 0 is satisfied.
Finally, an implicit equation for the eigenvalues λ can be obtained by substituting
Eq. (6.49) into (6.51) and imposing the boundary condition J(1, t) = a(t), which
corresponds to the following first-order condition:

− σ
2

2
∂
∂y
ρ(y, t)|y=1 = a1. (6.55)

The resulting characteristic equation is [2]

(
eμ−(λ )− 1

)
= μ−(λ )Φ̃(λ )

∫ 1

−∞
p0(y)Γ (y)eμ−(λ )ydy. (6.56)

In the zero noise limit σ → 0, we have μ−(λ ) → λ/a0 and p0(y) → 1 for 0 <
y < 1 and is zero otherwise. Thus, Eq. (6.56) becomes

(
eλ/a0 − 1

)
=
λ
a0
Φ̃(λ )

∫ 1

0
Γ (y)eλ y/a0dy. (6.57)

In the weak coupling regime, solutions of Eq. (6.57) are of the form λ = 2π ina0 +
Λn for integer n with Λn = O(ε). The term Λn can be calculated by performing a
perturbation expansion in the coupling ε . The lowest-order contribution is simply
determined by setting λ = 2π ina0 on the right-hand side of Eq. (6.57). In the case
of a linear IF model with G(u) = I− u, we have Γ (y) = ey/a0 so that

Λn = ε
(

2π ina0

1+ 2π ina0

)
Φ̃(2π ina0)+O(ε2). (6.58)

We then have the following stability results in the absence of noise [2, 213]:

(i) For zero axonal delays (τd = 0) and excitatory coupling (ε > 0), the asyn-
chronous state is stable with respect to excitation of the nth mode if and only
if α < αn where

αn =−1+
√

1+ 4n2π2a2
0 (6.59)

Hence, it is stable for sufficiently slow synapses, that is, α < α1. The asyn-
chronous state is always unstable in the case of inhibitory coupling since the
condition for stability with respect to the nth harmonic is now α > αn, which
cannot be satisfied for all n.

(ii) The asynchronous state is almost always unstable for nonzero delays (in the
noise-free case).

(iii) For large n, |Λn| ∼ 1/n2 so that higher harmonics grow or decay slowly.

Note that although the zero delay case is a singular limit in the absence of noise,
it becomes non-singular for arbitrarily small amounts of noise, where instabilities
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with respect to higher harmonics are suppressed [2, 213]. One finds that for suffi-
ciently high noise levels the asynchronous state is always stable. Reducing the noise
for fixed delay induces an instability due to excitation of one of the harmonic modes
with frequencyω ≈ ωn = 2πna0. A bifurcation at ω ≈ω1 implies that the period of
the resulting collective oscillation is identical to the period of the individual oscil-
lators. Higher harmonics correspond to instabilities of the asynchronous state that
lead to the formation of cluster states [213, 231]: each neuron fires with mean rate
a0, but the population of neurons splits up into several groups that fire in sequence so
that the overall activity exhibits faster oscillations. Finally, note that fast oscillations
are also found in sparsely connected random networks [87].

6.3.2 Balanced Networks and Neural Variability

It is well known that the spike trains of individual cortical neurons in vivo tend
to be very noisy, having interspike interval (ISI) distributions that are close to
Poisson [179, 593]. Indeed, one observes trial-to-trial variability in spike trains,
even across trials in which external stimuli are identical. This raises a number of
important issues. First, neurons are continuously bombarded by thousands of synap-
tic inputs, many of which are uncorrelated, so that an application of the law of large
numbers would suggest that total input fluctuations are small. This would make it
difficult to account for the Poisson-like behavior of individual neurons, even when
stochastic ion channel fluctuations (Sect. 1.5) or random synaptic background ac-
tivity is taken into account. For example, in the homogeneous spiking network an-
alyzed above, the spike trains of individual neurons can be quite regular even when
the population activity is asynchronous. Conversely, irregularity in spiking at the
single-cell level can coexist with regular firing rates at the population level. How-
ever, there is growing evidence that noise can play a significant role at the network
level. For example, noise appears to be present during perceptual decision making
[656] and bistable perception, the latter being exemplified by perceptual switching
during binocular rivalry [436, 578, 663]; see Sect. 8. Noise also contributes to the
generation of spontaneous activity during resting states [148, 152]. At the level of
large-scale neural systems, as measured with functional MRI (fMRI) imaging, this
ongoing spontaneous activity reflects the organization of a series of highly coherent
functional networks that may play an important role in cognition. Another issue is
the possible computational role of pairwise and higher-order statistical correlations
between the spike trains of distinct neurons, that is, whether or not it is necessary to
go beyond firing rates.

One paradigm for exploring these various issues is the so-called balanced net-
work [567, 645, 650]. In such networks, each neuron is driven by a combination
of strong excitation and strong inhibition, which mainly cancel each other out, so
that the remaining fluctuations occasionally and irregularly push the neuron over the
firing threshold. Even in the absence of any external sources of noise, the resulting
deterministic dynamics is chaotic and neural outputs are Poisson-like. Interestingly,
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there is some experimental evidence that cortical networks can operate in a bal-
anced regime [391]. Another emergent feature of balanced networks is that they
can support an asynchronous state characterized by large variability in single neu-
ron spiking and yet arbitrarily small pairwise correlations even in the presence of
substantial amounts of shared inputs [519]. Thus there is a growing consensus that
the trial-to-trial irregularity in the spiking of individual neurons is often unimpor-
tant, and that information is typically encoded in firing rates. (Such rates could be
a measure of population activity as in Sect. 6.1 or correspond to the rates of indi-
vidual neurons modeled as inhomogeneous Poisson processes; see below.) There
is then another level of neural variability, namely, trail-to-trial variations in the fir-
ing rates themselves. Recent physiological data shows that the onset of a stimulus
reduces firing rate fluctuations in cortical neurons while having little or no effect
on spiking variability [119]; see Fig. 6.4. Litwin-Kumar and Doiron have recently
shown how these two levels of stochastic variability can emerge in a chaotic bal-
anced network of randomly connected spiking neurons, in which a small amount of
clustered connections induces firing rate fluctuations superimposed on spontaneous
spike fluctuations [387].
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Fig. 6.4 Neurons can exhibit double stochasticity. Trial-to-trial variability in spike trains (shown
as raster plots) can coexist with trial-to-trial variability in the firing rate (shown as continuous gray
curves). Trial-averaged firing rate is the black curve. Following stimulus onset, the variability in
the firing rate is reduced

6.3.3 Spike Statistics and the Poisson Process

Given the ubiquity of Poisson processes in spiking neuron models and its rele-
vance to neural master equations (see Sect. 6.4), it is useful to consider these pro-
cesses in a little more detail. Suppose that a neuron emits a sequence of spikes at
times t1, t2, . . . , tn. One way to characterize this sequence statistically is in terms
of the probability density ρ(t1, . . . tn) of finding such a sequence over many exper-
imental trials. In other words, the probability of having a sequence of n spikes
in the interval [0,T ] with the ith spike falling between the times ti and ti + Δ t
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is P[t1, . . . tn] = ρ(t1, . . . tn)Δ tn. In principle, the probability of an event occurring,
namely, the firing of the next spike, could depend on the entire history of past spikes.
If this dependence only extends to the previous spike so that the interspike intervals
are statistically independent, then the stochastic process is said to be a renewal pro-
cess. If there is no dependence at all on preceding spikes so that the firing times are
themselves independent, then we have a Poisson process.

Consider a sequence of spikes generated by a homogeneous Poisson process,
that is, one with a time-independent mean firing rate r. Divide a given time interval
T into M bins of size Δ t = T/M and assume that ΔT is small enough so that the
probability of finding two spikes within any one bin can be neglected. Then the
probability PT [n] of finding n spikes over the interval T is given by

PT [n] = lim
Δ t→0

M!
(M− n)!n!

(rΔ t)n(1− rΔ t)M−n

This consists of the probability (rΔ t)n of finding n spikes in n specific bins multi-
plied by the probability (1− rΔ t)M−n of not finding spikes in the remaining bins.
The binomial factor is the number of ways of choosing n out of M bins with spikes.
Using the approximation M− n ≈ M = T/Δ t and defining ε =−rΔ t, we have that

lim
Δ t→0

(1− rΔ t)M−n = lim
ε→0

(
(1+ ε)1/ε

)−rT
= e−rT .

For large M, M!/(M−n)! ≈ Mn = (T/Δ t)n, so that we obtain the Poisson distribu-
tion

PT [n] =
(rT )n

n!
e−rT

Given that there are n independent spikes over the interval [0,T ], the probability that
these spikes lie within specified bins of size Δ t is n!(Δ t/T )n. Hence

ρ(t1, . . . tn) = n!

(
1
T

)n

PT [n] = rne−rT (6.60)

Also note that the fastest way to generate a sequence of Poisson spikes for constant r
is to iterate the firing times tn+1 = tn − log(xrand)/r with xrand uniformly distributed
over [0,1].

A simple method for calculating the moments of the Poisson distribution is to
introduce the moment-generating function

g(s) =
∞

∑
n=0

PT [n]e
sn

Differentiating with respect to s shows that

dkg(s)
dsk

∣∣∣∣
s=0

= 〈nk〉
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The generating function for the Poisson process can be evaluated explicitly as

g(s) = exp(−rT )exp(rT es)

from which we deduce that

〈n〉= rT, σ2
n = rT

Another useful quantity is the interspike interval (ISI) distribution. Suppose that
a spike was last fired at time T n. The probability of a homogeneous Poisson process
generating the next spike in the interval T n + τ ≤ T n+1 ≤ T n + τ +Δτ is equal to
the probability that no spike is fired for a time τ , which is Pτ [0] = e−rτ multiplied
by the probability rΔτ of generating a spike within the following interval Δτ:

Pr[τ ≤ T n+1 −T n ≤ τ+Δτ] = rΔτe−rτ

The ISI probability density is thus an exponential, ρ(τ) = re−rτ . It follows that the
mean interspike interval is

〈τ〉 =
∫ ∞

0
re−rτ τdτ =

1
r

and the variance is

σ2
τ =

∫ ∞
0

re−rττ2dτ−〈τ〉2 =
1
r2

The ratio of the standard deviation to the mean is called the coefficient of variation

CV =
στ
〈τ〉

It follows that for a homogeneous Poisson process CV = 1.
How well do Poisson statistics describe experimentally measured spike trains?

One often finds that for ISIs longer than about 10 msec, the ISI distribution is indeed
approximately exponential. However, for shorter intervals, there is a rapid decrease
in the distribution reflecting the fact that neurons are refractory immediately after

Fig. 6.5 (a) Interspike interval distribution from a neuron from the MT cortical visual area of a
macaque monkey responding to a moving image. (b) Interspike interval generated with a Poisson
model with a stochastic refractory period. Redrawn from [20]
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firing. This is illustrated in Fig. 6.5. The data can be fitted more accurately by a
gamma distribution

p[τ] =
r(rτ)ke−tτ

k!
(6.61)

Alternatively, one can introduce a refractory period into a standard Poisson model.
Note that CV values extracted from the spike trains of cortical neurons also take
values around unity, provided that the mean interspike interval is not too small [593].

It is possible to generalize the above Poisson model to the case of a time-
dependent rate r(t). The simplest way to analyze this inhomogeneous Poisson pro-
cess is to consider the probability distribution ρ(t1, . . . tn). This is given by the
product of the probabilities r(ti)Δ t that the neuron fires within the time intervals
ti ≤ t ≤ ti +Δ t and the probabilities of not firing during the interspike intervals.
The latter is given by

Pr[no spikes in (ti, ti+1)] =
M

∏
m=1

(1− r(ti+mΔ t)Δ t)

where we have partitioned the interval (ti, ti+1) into M bins of size Δ t. Taking the
logarithm,

logPr[no spikes in (ti, ti+1)] =
M

∑
m=1

log(1− r(ti +mΔ t)Δ t)≈−
M

∑
m=1

r(ti +mΔ t)Δ t

Taking the limit Δ t → 0 and exponentiating again shows that

Pr[no spikes in (ti, ti+1)] = exp

(
−
∫ ti+1

ti
r(t)dt

)

Hence

ρ(t1, . . . tn) =
n

∏
i=1

r(ti)exp

(
−
∫ T

0
r(t)dt

)
(6.62)

In the case of a time-dependent rate, one generates xrand at each time step and a
spike is fired if r(t)Δ t > xrand .

6.4 Stochastic Population Models

The discussion of neural variability in Sect. 6.3 motivates the incorporation of noise
directly into rate-based models, without explicitly modeling spike variability. One
approach is to introduce noise into a rate-based network model using extrinsic noise
sources [21, 84, 184, 297]. An alternative approach is to assume that noise arises in-
trinsically as a collective population effect. A number of methods involve carrying
out some form of dimension reduction of a network of synaptically coupled spiking
neurons. These include population density methods [395, 468, 477], mean-field the-
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ories [21, 86, 87], and Boltzmann-like kinetic theories [90, 100, 517]. However, such
methods tend to consider either fully connected or sparsely connected networks and
simplified models of spiking neurons such as the integrate-and-fire (IF) model. Nev-
ertheless, as discussed in Sect. 6.3, one important feature of spiking networks is that
they can support an asynchronous state in which individual neurons exhibit Poisson-
like statistics, whereas the total population activity can be expressed in terms of a
characteristic activation or gain function [2, 86, 87, 213, 519]. Formally speaking,
the asynchronous state only exists in the thermodynamic limit N → ∞, where N de-
termines the size of the population. This then suggests a possible source of intrinsic
noise at the network level arises from fluctuations about the asynchronous state due
to finite size effects [57, 220, 412, 425, 597]; this is distinct from intrinsic noise
at the single-cell level due to channel fluctuations and it is assumed that the latter
is negligible at the population level. The presence of finite size effects has moti-
vated the development of a closer analogy between intrinsic noise in biochemical
networks (including ion channel kinetics) and neural networks [68, 69, 72], based
on extensions of the neural master equation introduced by Buice et al. [91, 92]; see
also [473]. In this section, we describe the master equation framework for stochastic
neural population dynamics.

6.4.1 Neural Master Equations

One way to incorporate intrinsic noise at the population level is to treat the output
activity of a local homogeneous population as a discrete stochastic variable Aα(t)
rather than the instantaneous firing rate aα = F(uα) [68, 91, 92]:

Aα(t) =
Nα(t)
NΔ t

, (6.63)

where Nα(t) is the number of neurons in the αth population that fired in the time
interval [t −Δ t, t] and Δ t is the width of a sliding window that counts spikes. The
discrete stochastic variables Nα(t) are taken to evolve according to a one-step jump
Markov process:

Nα(t)→ Nα(t)± 1 : transition rate ω±(Uα(t),Nα (t)), (6.64)

with the synaptic current Uα(t) given by (for exponential synapses)

τdUα(t) =

[
−Uα(t)+

M

∑
β=1

wαβAβ (t)

]
dt, (6.65)

where, for convenience, we have rescaled the weights according to wαβ → wαβ/τ .
The transition rates are taken to be (cf. [68])
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ω+(uα ,nα)→ ω+(uα) =
NΔ t
τa

F(uα), ω−(uα ,nα)→ ω−(nα) =
nα
τa

. (6.66)

We see that the transition rate ω+ depends on Uα , with the latter itself coupled to
the associated jump Markov according to Eq. (6.65), which is only defined between
jumps, during which Uα(t) evolves deterministically. Hence, the resulting stochastic
process defined by Eqs. (6.63), (6.64), (6.65) and (6.66) provides an example of a
stochastic hybrid system at the population neuron level, just as stochastic ion chan-
nel gating provides an example at the molecular level (Sect. 1.5). It is important to
note that the time constant τa cannot be identified directly with membrane or synap-
tic time constants. Instead, it determines the relaxation rate of a local population to
the instantaneous firing rate.

A. Case τ → 0 (fast synapses). In the limit τ → 0, Eq. (6.65) implies that the con-
tinuous variables Uα(t) can be eliminated by setting Uα(t) = ∑β wαβAα(t). This
then leads to a pure birth–death process for the discrete variables Nα(t). That is,
let P(n, t) = Prob[N(t) = n] denote the probability that the network of interacting
populations has configuration n = (n1,n2, . . . ,nM) at time t, t > 0, given some ini-
tial distribution P(n,0) with 0 ≤ nα ≤ N. The probability distribution then evolves
according to the birth–death master equation [68, 91, 92]

dP(n, t)
dt

=∑
α

[
(Tα − 1)

(
ω−
α (n)P(n, t)

)
+(T−1

α − 1)
(
ω+
α (n)P(n, t)

)]
, (6.67)

where

ω+
α (n) =

NΔ t
τa

F

(
∑
β

wαβnα/NΔ t

)
, ω−

α (n) =
nα
τa

, (6.68)

and Tα is a translation operator: T±1
α F(n) = F(nα±) for any function F with nα±

denoting the configuration with nα replaced by nα ± 1. Equation (6.67) is supple-
mented by the boundary conditions P(n, t)≡ 0 if nα = N + 1 or nα =−1 for some
α . The neural master equation (6.67) has two versions depending on the choice of
Δ t. First, fixing Δ t = 1 leads to the Bressloff version of the master equation. For
large but finite N, the master equation (6.67) can be approximated by a Fokker–
Planck equation using a Kramers–Moyal or system-size expansion, so that the pop-
ulation activity Aα evolves according to a Langevin equation [68]. Introduce the
rescaled variables aα = nα/N and corresponding transition rates Ω−

α (a) = aα/τa

and Ω+
α (a) = τ−1

α F
(
∑β wαβaβ

)
. Carrying out a Kramers–Moyal expansion to sec-

ond order then leads to the multivariate FP equation

∂P(a, t)
∂ t

=−
M

∑
α=1

∂
∂aα

[Aα(a)P(a, t)]+
1

2N

M

∑
α=1

∂ 2

∂a2
α
[Bα (a)P(a, t)] (6.69)

with

Aα(a) =Ω+
α (a)−Ω−

α (a), Bα (a) =Ω+
α (a)+Ω−

α (a). (6.70)
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The solution to the Fokker–Planck equation (6.69) determines the probability den-
sity function for a corresponding stochastic process A(t)=(A1(t), . . . ,AM(t)), which
evolves according to a neural Langevin equation or SDE of the form

dAα = Aα(A)dt +
1√
N

bα(A)dWα(t). (6.71)

with bα(x)2 =Bα(x). Here Wα(t) denotes an independent Wiener process such that

〈dWα(t)〉= 0, 〈dWα(t)dWβ (s)〉 = δα ,β δ (t − s)dtds. (6.72)

In the thermodynamic limit N → ∞, we recover the activity-based mean-field
equation

τα
daα
dt

= Aα(a) =−aα(t)+F(∑
β

wαβaα(t)). (6.73)

Note that the multiplicative noise in Eq. (6.71) is interpreted in the sense of Ito,
which follows from the form of the FP equation (6.69); see Sect. 1.7.

A rigorous probabilistic treatment of the thermodynamic limit of the neural mas-
ter equation has also been developed [89], extending previous work on chemical
master equations [351]. However, as we noted within the context of stochastic ion
channels in Sect. 1.5, the diffusion approximation breaks down when considering
noise-induced transitions between multistage states. It is then necessary to use a
WKB approximation of the master equation together with matched asymptotics
[69]. The second version of the neural master equation, which was introduced by
Buice et al. [91, 92], is obtained by taking the limit N → ∞,Δ t → 0 such that
NΔ t = 1. In this case there is no small parameter that allows one to construct a
Langevin approximation to the master equation. Nevertheless, it is possible to de-
termine the moment hierarchy of the master equation using path integral methods or
factorial moments, based on the observation that the network operates in a Poisson-
like regime. The role of the sliding window size Δ t is crucial in understanding the
difference between the two versions of the master equation. First, it should be em-
phasized that the stochastic models are keeping track of changes in population spik-
ing activity. If the network is operating close to an asynchronous state for large N,
then one-step changes in population activity could occur relatively slowly, so there
is no need to take the limit Δ t → 0. On the other hand, if population activity is char-
acterized by a Poisson process, then it is necessary to take the limit Δ t → 0 in order
to maintain a one-step process. However, given the existence of an arbitrarily small
time scale Δ t, it is no longer clear that one is justified in ignoring synaptic dynamics
by taking the limit τ → 0 in Eq. (6.65).

B. Case τ � τa > 0 (stochastic hybrid system). Now suppose that τ > 0 in
the full stochastic model given by (6.63)–(6.66), with N → ∞, Δ t → 0 such that
NΔ t = 1. Denote the random state of the full model at time t by {(Uα(t),Nα (t));α =
1, . . . ,M}. Introduce the corresponding probability density
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Prob{Uα(t) ∈ (uα ,uα + du),Nα(t) = nα ;α = 1, . . . ,M}= p(u,n, t)du, (6.74)

with n = (n1, . . . ,nM) and u = (u1, . . . ,uM). It follows from Eqs. (6.63)–(6.66) that
the probability density evolves according to the Chapman–Kolmogorov (CK) equa-
tion [82]

∂ p
∂ t

+
1
τ ∑α

∂ [vα (u,n)p(u,n, t)]
∂uα

(6.75)

=
1
τa
∑
α

[
(Tα − 1)(ω−(nα)p(u,n, t))+ (T−1

α − 1)(ω+(uα)p(u,n, t))
]
,

with

ω+(uα) = F(uα), ω−(nα) = nα , vα(u,n) =−uα+∑
β

wαβnβ . (6.76)

Equation (6.75) can be rewritten in the more compact form (see also (1.143))

∂ p
∂ t

=−1
τ

M

∑
α=1

∂
∂uα

(vα(u,n)p(u,n, t))+
1
τa
∑
m

A(n,m;u)p(u,m, t). (6.77)

The drift “velocities” vα(u,n) for fixed n represent the piecewise deterministic
synaptic dynamics according to

τ
duα
dt

= vα(u,n), α = 1, . . . ,M, (6.78)

and A represents the u-dependent transition matrix for the jump Markov process.
For fixed u, the matrix A(n,m;u) is irreducible (which means that there is a

nonzero probability of transitioning, possibly in more than one step, from any state
to any other state in the jump Markov process) and has a simple zero eigenvalue.
In particular, ∑n A(n,m;u) = 0 for all m, that is, n = (1,1, . . . ,1)T is the left null
vector of A. The Perron–Frobenius theorem (for large but finite N) ensures that all
other eigenvalues of A are negative and the continuous-time Markov process for
fixed u,

d p(u,n, t)
dt

=
1
τa
∑

m∈I

A(n,m;u)p(u,m, t),

has a globally attracting steady-state ρ(u,n) such that p(u,n, t)→ ρ(u,n) as t →∞.
The steady-state equation is

0 =∑
m

A(n,m;u)ρ(u,m)

=
M

∑
α=1

[(nα + 1)ρ(u,n+ eα)− nαρ(u,n)+F(uα)(ρ(u,n− eα)−ρ(u,n))] ,
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where [eα ]β = δα ,β . The solution can be factorized as ρ(u,n) = ∏M
β=1ρ1(uβ ,nβ )

with

0 =
M

∑
α=1

[
∏
β �=α

ρ1(uβ ,nβ )

]
[J(uα ,nα + 1)− J(uα,nα)] ,

where
J(u,n) = nρ1(u,n)−F(u)ρ1(u,n− 1).

Since ρ1(u,−1)≡ 0, it follows that J(u,n) = 0 for all n. Hence,

ρ1(u,n) = ρ(u,0)
n

∏
m=1

F(u)
m

= ρ(u,0)
F(u)n

n!
, (6.79)

and the corresponding normalized density is a Poisson process with rate F(u)

ρ1(u,n) = e−F(u) F(u)n

n!
. (6.80)

There are two time scales in the CK equation (6.75), the synaptic time constant τ
and the time constant τa, which characterizes the relaxation rate of population activ-
ity. In the limit τ → 0 for fixed τa, Eq. (6.75) reduces to the neural master equation
(6.67) with u = u(n) such that vα(u(n),n) = 0. On the other hand, if τa → 0 for
fixed τ , then we obtain deterministic voltage- or current-based mean-field equations

τ
duα
dt

= 〈vα〉(u(t))≡∑
n

vα(u(t),n)ρ(u(t),n)

= −uα(t)+
M

∑
β=1

wαβ ∑
n

nβρ(u(t),n). (6.81)

Since ρ(u,n) is given by product of independent Poisson processes with rates
F(uα), consistent with the operating regime of the Buice et. al. master equation
[91, 92], it follows that

〈nβ 〉= F(uβ ), (6.82)

and (6.81) reduces to the standard voltage- or current-based activity equation. Now
suppose that the network operates in the regime 0 < τa/τ ≡ ε � 1, for which there
are typically a large number of transitions between different firing states n while
the synaptic currents u hardly change at all. This suggests that the system rapidly
converges to the (quasi) steady state ρ(u,n), which will then be perturbed as u
slowly evolves. The resulting perturbations can be analyzed using a quasi-steady-
state (QSS) diffusion or adiabatic approximation, in which the CK equation (6.75)
is approximated by a Fokker–Planck equation [82]; see Sect. 1.6. However, when
considering escape from a metastable state, it is necessary to use the WKB method
outlined in Sect. 1.6, as will be illustrated below.
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6.4.2 Metastability in a One-Population Model

One of the useful features of the master equation formulation of stochastic pop-
ulation dynamics is that one can apply methods previously used to analyze jump
Markov processes at the cellular level. We will illustrate this by considering a
first passage time (FPT) problem for a one-population version of the CK equation
(6.75), which exhibits bistability in the deterministic limit [82]. This is analogous
to the problem of spontaneous action potential generation presented in Sect. 1.6.
In the case of a single homogeneous population of excitatory neurons, (6.75)
becomes

∂ p
∂ t

+
∂ [v(u,n)p(u,n, t)]

∂u
=

1
ε ∑m

A(n,m;u)p(u,m, t) (6.83)

with drift term
v(u,n) =−u+ n, (6.84)

and tridiagonal transition matrix

A(n,n− 1;u) = F(u), A(n,n;u) =−F(u)− n, A(n,n+ 1;u) = n+ 1. (6.85)

As shown in Sect. 6.4.1, the steady-state density for A is given by a Poisson process,

ρ(u,n) =
[F(u)]ne−F(u)

n!
, (6.86)

and the mean-field equation obtained in the ε → 0 limit is

du
dt

=
∞

∑
n=0

v(u,n)ρ(u,n) =−u+F(u). (6.87)

If F is given by the sigmoid (1.14), it is straightforward to show that (6.87) exhibits
bistability for a range of thresholds and gains; see Fig. 6.6.

The CK equation (6.83) is identical in form to (1.143) under the change of vari-
ables u → v, where v is voltage, and v(u,n) → F(v,n). It follows that the general
analysis developed in Sect. 1.6 can be applied directly to the stochastic neural popu-
lation model. In particular, the escape rate λ0 from the low activity state u− is given
by (1.191). As in the case of stochastic ion channels, there are three basic steps
needed in order to evaluate λ0 using the particular form of the drift v and transition
matrix A [72]:

(1) Find the unique nontrivial positive eigenfunction ψn(u) = R(0)(u,n) and as-
sociated eigenvalue μ(u) = −Φ ′

0(u). In the case of the neural population model,
Eq. (1.171) takes the explicit form

F(u)ψn−1(u)− (F(u)+ n)ψn(u)+ (n+ 1)ψn+1(u) = μ(−u+ n)ψn(u). (6.88)
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Fig. 6.6 Bistability in the deterministic network satisfying u̇ = −u+F(u) with F given by the
sigmoid (1.14) for gain η = 4 and threshold κ = 1.0, F0 = 2. There exist two stable fixed points
u± separated by an unstable fixed point u0. As the threshold κ is reduced the network switches to
a monostable regime

Trying a solution for ψ of the form

ψn(u) =
Λ(u)n

n!
(6.89)

yields the following equation relating Λ and the corresponding eigenvalue μ :
[

F(u)
Λ

− 1

]
n+Λ−F(u) = μ(u)(−u+ n).

We now collect terms independent of n and linear in n, respectively, to obtain the
pair of equations

μ =

[
F(u)
Λ

− 1

]
, Λ = F(u)− μu.

We deduce that

Λ = u, μ =

[
F(u)

u
− 1

]
, (6.90)

and the normalized eigenfunction is

ψn(u) =
un

n!
e−u. (6.91)

Note that μ(u) vanishes at the fixed points u−,u∗ of the mean-field equation (6.87)
with μ(u)> 0 for 0 < u < u− and μ(u)< 0 for u− < u < u∗. Moreover, comparing
Eq. (6.86) with (6.91) establishes that ψn(u) = ρ(u,n) at the fixed points u∗,u±. In
conclusion R(0)(u,n) = ψn(u) and the effective potentialΦ0 is given by
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Φ0(u) =−
∫ u∗

u−
μ(y)dy. (6.92)

The effective potential is defined up to an arbitrary constant, which has been fixed
by setting Φ0(u−) = 0.

(2) Determine the null eigenfunction ηn(u) = S(u,n) of Eq. (1.174), which becomes

F(u)ηm+1 − (F(u)+m)ηm +mηm−1 = μ(u)[−u+m]ηm. (6.93)

Trying a solution of the form ηm = Γm yields

(F(u))Γ − (F(u)+m)+mΓ−1 = μ(u)[−u+m]. (6.94)

Γ is then determined by canceling terms linear in m, which finally gives

ηn(u) =

(
u

F(u)

)n

. (6.95)

(3) Calculate the generalized eigenvector ζn = Ŝ(u∗,n) of Eq. (1.186), which
reduces to

F(u∗)ζn+1 + nζn−1 − (F(u∗)+ n)ζn = u∗ − n. (6.96)

It is straightforward to show that this has the solution ζn = n (up to an arbitrary con-
stant that does not contribute to the principal eigenvalue). It follows from Eq. (6.86)
that the factor B(u∗) defined by (1.190) is

B(u∗) =
∞

∑
n=0
ρ(u∗,n)

[−u∗n+ n2]

=
[−u∗〈n〉+ 〈n2〉] . (6.97)

Recall that ρ(u,n) is given by a Poisson density with rate F(u), which implies that
〈n2〉= 〈n〉+ 〈n〉2 with 〈n〉= F(u). Therefore,

B(u∗) = F(u∗) [2F(u∗)− u∗] , (6.98)

which reduces to B(u∗) = F(u∗)2 since u∗ = F(u∗) at a fixed point.

It is instructive to compare the effective potential Φ0 obtained using the WKB
approximation with the potential obtained using the FP equation (1.146) based on
the QSS approximation. First, substitute (6.86), (6.84), and (6.85) into Eqs. (1.147)
and (1.148) under the change of variables u → v and v(u,n)→ F(v,n). We find that
Z(u,n) = nρ(u,n) so that

D(u) = [−u〈n〉+w〈n2〉] = B(u). (6.99)

The steady-state solution of the FP equation (1.146) takes the form C(u) ∼
exp−Φ̂0(u)/ε with stochastic potential
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Φ̂0(u) =−
∫ u F (y)

D(y)
dy =−

∫ u −y+F(y)
wF(y)[2F(y)− y]

dy. (6.100)

Note that Φ̂0 differs from the potential Φ0, Eq. (6.92), obtained using the more
accurate WKB method. Equations (6.90) and (6.92) show that the latter has the
integral form

Φ0(u) =−
∫ u 1

w

[
wF(y)

y
− 1

]
dy. (6.101)

Thus, there will be exponentially large differences between the steady states for
small ε .

Fig. 6.7 Comparison of the double-well potentials Φ0(u) and Φ̂0(u) obtained using the quasista-
tionary approximation and the QSS diffusion approximation, respectively [82]. Parameter values
are chosen so that deterministic network is bistable: F0 = 2.3, γ = 4, and κ = 1

In Fig. 6.7, we plot the potential function Φ0 of Eq. (6.101), which is obtained
using the quasistationary approximation in a parameter regime for which the un-
derlying deterministic network is bistable. We also plot the corresponding potential
function Φ̂0 of Eq. (6.100), under the QSS diffusion approximation. The differences
between the two lead to exponentially large differences in estimates for the mean
exit times when ε is small. The mean exit time from the left and right well is shown
in Fig. 6.8. Solid curves show the analytical approximation T ∼ 1/λ0, where λ0 is
given by (1.191), as a function of 1/ε . For comparison, the mean exit time com-
puted from averaged Monte Carlo simulations of the full stochastic system is shown
as symbols. As expected, the log of the mean exit time is an asymptotically linear
function of 1/ε , and this is confirmed by Monte Carlo simulations. The slope is
determined by the depth of the potential well, and the vertical shift is determined
by the prefactor. Also shown is the corresponding MFPT calculated using the QSS
diffusion approximation (dashed curves), which is typically several orders of mag-
nitude out and validates the relative accuracy of the quasistationary approximation.

One of the applications of noise-induced transitions between metastable states
in a stochastic population model is to the study of switching between up and down
states during slow-wave sleep; see Sect. 5.1. For example, Holcman and Tsodyks
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Fig. 6.8 Mean exit time from the left and right well calculated using the quasistationary approx-
imation (solid line) and the QSS diffusion approximation (dashed line) [82]. The open circles
represent data points obtained by numerically solving the corresponding jump velocity Markov
process using the Gillespie algorithm. Parameter values are the same as in Fig. 6.7

[282] consider an extension of the deterministic one-population model (6.87) by
including the effects of synaptic depression and extrinsic noise. The voltage-based
model equations take the form

τ
du
dt

= −u+ qwχF(u)+
√
τσξ (t)+ I(t) (6.102a)

dq
dt

=
1− q
τq

− χqF(V ), (6.102b)

where q(t) is the depression variable, ξ (t) is a white noise term, I(t) is an external
input, and the constant χ is known as a utilization parameter. The firing rate function
is taken to be a linear threshold function F(V ) = η [u−κ ]+. In the absence of noise
(σ = 0) and external inputs (I = 0), the deterministic system undergoes a series
of bifurcations as the weight w is increased. For sufficiently small w, there exists
a globally attracting stable fixed point which is a low activity or down state. At a
critical value of w, a saddle and unstable node appear, with the latter undergoing a
subcritical Hopf bifurcation at a second critical value of w—this generates a stable
up state inside an unstable limit cycle. The system then exhibits bistability such
that noise-induced transitions from the down to the up state have to cross both the
separatrix of the saddle and the unstable limit cycle. The resulting fluctuations in
activity are suggestive of slow-wave oscillations observed in cortical slices [549].

6.4.3 Metastability in a Two-Population Model

It turns out that the analysis of metastability in a one-population model can be ex-
tended to higher-dimensional networks [72]. Consider, for example, the E–I network
of Sect. 6.2. The corresponding CK equation (6.75) becomes
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∂ p
∂ t

=− ∂
∂x

(vp)− ∂
∂y

(ṽp)+
1
ε ∑m

A(n,m;x)p(x,n) (6.103)

where x = (x,y), n = (nx,ny), the drift terms are

v(x,nx,ny) = −x+[wEE nx −wEIny] , (6.104)

ṽ(y,nx,ny) = −y+[wIE nx −wIIny] , (6.105)

and A has the nonzero components

A(nx,ny,nx − 1,ny;x) = F(x), A(nx,ny,nx,ny − 1;x) = F(y), (6.106)

A(nx,ny,nx + 1,ny;x) = nx + 1, A(nx,ny,nx,ny + 1;x) = ny + 1, (6.107)

and

A(nx,ny,nx,ny;x) =−[F(x)+F(y)+ nx + ny]. (6.108)

Here x and y denote the excitatory and inhibitory population variables aE ,aI , respec-
tively. In the limit ε → 0, we recover the deterministic equations (6.20). However,
in contrast to Sect. 6.2, it is now assumed that the E–I network operates in a bistable
regime as illustrated in Fig. 6.9.

-0.8 0 0.8 1.6 2.4 3.2 4 4.8 5.6

2.5

Fig. 6.9 Bistability in an E–I network. The x-nullcline through the saddle is its stable manifold
and acts as the separatrix Σ between the two stable fixed points. Two deterministic trajectories
are shown (directed black curves), starting from either side of the unstable saddle and ending at
a stable fixed point. Parameter values are F0 = 1, γ = 3, κ = 2, wEE = 5, wEI = 1, wIE = 9, and
wII = 6

Again the MFPT can be identified as the inverse of the principal eigenvalue λ0

of the associated linear operator on the right-hand side of (6.103). However, now
the analysis is more complicated, since one has to consider stochastic trajectories
crossing different points along the separatrix Σ between the two metastable states.
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Nevertheless, the various steps in the calculation of λ0 proceed along similar lines
to the one-population model. That is, a spectral projection method can be used to
express λ0 in terms of the inner product of a quasistationary density with a corre-
sponding adjoint eigenfunction. The former can be calculated using a WKB approx-
imation, except that now one has to determine the stochastic potentialΦ0 by solving
an equation of the form [82]

H ≡−xPx−yPy−F(x)−F(y)+Λx(x,Px,Py)+Λy(y,Px,Py) = 0, (6.109)

where

Px =
∂Φ0

∂x
Py =

∂Φ0

∂y
, (6.110)

and

Λx =
F(x)

1−wEEPx −wIEPy
, Λy =

F(y)
1+wEIPx +wIIPy

(6.111)

Mathematically speaking, Eq. (6.109) is identical to a stationary Hamilton–Jacobi
equation for a classical particle with H identified as the Hamiltonian (see also
Sect. 4.4). A trajectory of the particle is given by the solution of Hamilton’s
equations

dx
dt

=
∂H
∂Px

,
dy
dt

=
∂H
∂Py

,

dPx

dt
=−∂H

∂x
,

dPy

dt
=−∂H

∂y
(6.112)

Here t is treated as a parameterization of trajectories rather than as a real-time vari-
able. Given a solution curve (x(t),y(t)), known as a ray, the potential Φ0 can be
determined along the ray by solving the equation

dΦ0

dt
≡ ∂Φ0

∂x
dx
dt

+
∂Φ0

∂y
dy
dt

= Px
dx
dt

+Py
dy
dt

. (6.113)

Thus,Φ0 can be identified as the action along a zero-energy trajectory. One numeri-
cally solves forΦ0 by considering Cauchy data in a neighborhood of the stable fixed
point (x−,y−) [82].

The rays (x(t),y(t)) (i.e., solutions to Hamilton’s equations (6.112) in the (x,y)
plane) have an important physical meaning. The trajectory of the ray is the most
likely trajectory or path leading away from a point in the neighborhood of a stable
fixed point [160]. The rays shown in Fig. 6.10 are obtained by integrating Hamil-
ton’s equations (6.112) . These trajectories are only valid in one direction: away
from the stable fixed points. For parameter values considered in Fig. 6.10, rays orig-
inating from the neighborhood of each stable fixed point cover separate regions, so
that the most likely paths between points in each region are connected by determin-
istic trajectories starting at the boundary between the two regions. Note that this
boundary is not the separatrix (gray curve). For example, a trajectory initially at the
left fixed point which crosses the separatrix at the saddle would most likely follow
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a

b

Fig. 6.10 (a) Characteristic paths of maximum likelihood for the 2D model. Rays originating from
the left (right) stable fixed point are shown in orange (cyan), with the ray connecting to the saddle
shown in red (blue). The gray curve is the separatrix Σ . Level curves of constant Φ0(x,y) are
shown as black dots. Each ray has four dots for different values of Φ0(x,y). Rays originating from
the left fixed point have dots at Φ = 0.1,0.2,Φ∗+ 0.01,Φ∗+ 0.02, and rays originating from the
right fixed point have dots at Φ0 = 0.19,0.23,0.28,0.30, where Φ∗ = Φ(x∗,y∗) = 0.28. All rays
terminate at Φ0 = Φ∗+0.02. (b) Sample trajectories of the two-population velocity jump Markov
process, whose associated probability density evolves according to (6.83), are computed using the
Gillespie algorithm with ε = 0.05 and NΔt = 1. (The maximum likelihood paths are independent
of ε .) Other parameter values are the same as in Fig. 6.9 [72]

a ray towards the saddle and then follow a deterministic trajectory to the right fixed
point. If a trajectory crosses the separatrix away from the saddle, it is most likely to
cross the separatrix above the saddle when starting from the left fixed point and be-
low the saddle when starting from the right fixed point. In Fig. 6.11, the probability
density function for the y coordinate of the point on the separatrix reached by an exit
trajectory is shown for each well (square symbols show the histogram for exit from
the left well and likewise, ‘o’ symbols for the right well). Each density function is
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Fig. 6.11 The probability density for the exit point (y coordinate) where the separatrix is crossed by
an exiting trajectory. Results are obtained by 102 Monte Carlo simulation with the same parameters
as used in Fig. 6.9, with ε = 0.08. The square symbols show trajectories from the left well, and ‘o’
symbols show trajectories from the right well

peaked away from the saddle point, showing a phenomena known as saddle point
avoidance [398, 559]. As ε→ 0, the two peaks merge at the saddle point. Although
one might expect the saddle point to be the most likely exit point, since it is the point
on the separatrix where the potential Φ0 takes its minimum value, Fig. 6.11 shows
that this is not necessarily true. Even though the most likely exit point is shifted
from the saddle, the value of the potential around the saddle point still dominates
the mean first exit time.

6.5 Spatially Structured Networks and Neural Fields

So far we have not made any assumptions about the topology of the underlying neu-
ral network, that is, the structure of the weight matrix W with components wi j . If one
looks at a region of cortex such as primary visual cortex (V1), one finds that it has
a characteristic spatial structure, in which a high density of neurons (105 per mm3

in primates) are distributed according to an approximately two-dimensional (2D)
architecture. That is, the physical location of a vertical column of neurons within
the two-dimensional cortical sheet often reflects the specific information processing
role of that population of neurons. For example, in V1 there is an orderly retino-
topic mapping of the visual field onto the cortical surface, with left and right halves
of the visual field mapped onto right and left visual cortices, respectively. Superim-
posed upon this are additional two-dimensional maps reflecting the fact that neurons
respond preferentially to stimuli with particular features such as local orientation
[613]. (A more detailed description of the functional architecture of V1 is given in
Sect. 8.1.) This suggests labeling neurons according to their spatial location in cor-
tex. We now give a heuristic argument for how such labeling leads to a continuum
neural field model of cortex, following along similar lines to Gerstner and Kistler
[214].
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For simplicity, consider a population of neurons distributed along a
one-dimensional axis. (Extensions to higher dimensions proceed in a similar fash-
ion.) Suppose that we partition space into segments of length d such that the number
of neurons in segment [nd,(n+1)d] is N = ρd where ρ is the cell density. We treat
neurons in that interval as a homogeneous population of cells (cortical column)
labeled by the integer n and assume that synaptic interactions between the nth and
mth populations only depend on the discrete locations of the populations on the
line. Writing Φnm(t) = ρdΦ(nd,md, t) and un(t) = u(nd, t), Eq. (6.4) becomes

u(nd, t) = ρd∑
m

∫ t

−∞
Φ(nd,md, t − t ′)F(u(md, t ′))dt ′.

Taking the limit d → 0, the summation on the right-hand side can be replaced by an
integral to give

u(x, t) =
∫ ∞
−∞

∫ t

−∞
Φ(x,y, t − t ′)F(u(y, t ′))dt ′dy, (6.114)

where we have absorbed the factor ρ intoΦ . Following our derivation of the discrete
voltage-based model (6.6), suppose that we can decompose the integral kernel as

Φ(x,y, t) = w(x,y)Φ(t), Φ(t) = e−t/τH(t).

That is, we assume that there is only one type of neuron so that the temporal kernel
Φ(t) is independent of the presynaptic label y and the postsynaptic label x. Applying
the differential operator Lt = ∂t +τ−1 to the integral equation for u then leads to the
scalar neural field equation

∂
∂ t

u(x, t) =−u(x, t)
τ

+

∫ ∞
−∞

w(x,y)F(u(y, t))dy. (6.115)

Alternatively, we could have applied the differential operator Lt to the correspond-
ing synaptic drive z(x, t) =

∫ t
−∞Φ(t − t ′)F(u(x, t ′))dt ′ to obtain the activity-based

neural field model

∂
∂ t

z(x, t) =− z(x, t)
τ

+F

(∫ ∞
−∞

w(x,y)z(y, t)dy

)
. (6.116)

Following the same basic procedure, it is straightforward to incorporate into the
neural field equation (6.115) or (6.116) additional features such as synaptic de-
pression [329–331], adaptive thresholds [135, 329], and axonal propagation delays
[16, 139, 296, 307, 382, 528, 603]. For example, a voltage-based neural field equa-
tion with synaptic depression takes the form

∂
∂ t

u(x, t) = −u(x, t)
τ

+

∫ ∞
−∞

w(x,y)q(y, t)F(u(y, t))dy,

∂
dt

q(x, t) =
1− q(x, t)
τq

−βq(x, t)F (u(x, t)) , (6.117)
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with β = 1− γ . In the case of axonal delays, τi j → τ(x,y) in the continuum limit.
Assuming that an action potential propagates with constant speed v along the axon,
then τ(x,y) = |x− y|/v so that the voltage-based equation (6.115) becomes

∂
∂ t

u(x, t) =−u(x, t)
τ

+

∫ ∞
−∞

w(x,y)F(u(y, t −|x− y|/v))dy. (6.118)

Two-dimensional versions of these various models are obtained by taking x → x =
(x1,x2) and y → y = (y1,y2) with dy = dy1dy2.

Now suppose that there are M classes of neuron distributed along the line labeled
by the population index a = 1, . . .M. Equation (6.114) then generalizes to the multi-
population integral equation

ua(x, t) =
∫ ∞
−∞

∫ t

−∞

M

∑
b=1

Φab(x,y, t − t ′)Fb(ub(y, t
′ − |x− y|/vab))dt ′dy. (6.119)

We have included axonal delays with vab the conduction velocity along axonal pro-
jections from neurons of type b to neurons of type a. Assuming that Φab(x,y, t) =
wab(x,y)Φ(t) with Φ(t) = e−t/τH(t), we obtain multi-population neural field
equations:

∂ua

∂ t
=−ua(x, t)

τ
+

M

∑
b=1

∫ ∞
−∞

wab(x,y)Fb(ub(y, t −|x− y|/vab))dy, (6.120)

and

∂ za

∂ t
=− za(x, t)

τ
+Fb

(
M

∑
b=1

∫ ∞
−∞

wab(x,y)zb(y, t −|x− y|/vab)dy

)
(6.121)

for a = 1, . . . ,M. The latter is a version of the Wilson–Cowan equations for cortical
dynamics [675, 676]. Note that all synapses innervated by a particular type of neu-
ron have the same sign. That is, if type b neurons are excitatory (inhibitory), then
wab(x,y) ≥ 0 (wab(x,y) ≤ 0) for all a = 1, . . . ,M and (x,y). Thus, one of the major
reasons for considering more than one class of neuron is to incorporate both exci-
tatory and inhibitory synapses. It can be argued that since excitatory and inhibitory
synapses tend to have different time courses in response to action potentials, one
should take Φab(x,y, t) = wab(x,y)Φb(t), suggesting that the activity-based model
(6.121) with τ → τa is more biologically realistic than the voltage-based model, at
least in the case of excitatory–inhibitory networks [173]. However, in practice, both
versions of the neural field equations are used to model cortical dynamics. Since
both versions exhibit very similar types of solution, and since most analytical re-
sults have been obtained for voltage-based neural fields, we will mainly focus on
the latter.

Under certain additional simplifying assumptions, it is possible to incorpo-
rate inhibition into the scalar neural field equations (6.115) or (6.116) [505]. For
example, consider a two-population model (M = 2) of excitatory (a = E) and
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inhibitory (a= I) neurons evolving according to the pair of continuum voltage-based
equations

∂uE

∂ t
= −uE(x, t)

τE
+

∫ ∞
−∞

wEE(x,y)FE(uE(y, t))dy+
∫ ∞
−∞

wEI(x,y)FI(uI(y, t))dy

(6.122a)
∂uI

∂ t
= −uI(x, t)

τI
+

∫ ∞
−∞

wIE(x,y)FE(uE(y, t))dy+
∫ ∞
−∞

wII(x,y)FI(uI(y, t))dy,

(6.122b)

with wEE ,wIE ≥ 0 and wEI ,wII ≤ 0. Now suppose that wII ≡ 0, FI(uI) = uI/τI and
τI � τE . It follows that we can eliminate uI by setting

uI(x)∼ τI

∫ ∞
−∞

wIE(x,y)FE(uE(y, t))dy,

which leads to a scalar equation for uE of the form (6.115) with effective weight
distribution

w(x,y) = wEE(x,y)+
∫ ∞
−∞

wEI(x,y
′)wIE(y

′,y)dy′. (6.123)

It is then possible for w(x,y) to change sign as a function of x,y. (Often w is mod-
eled as a difference of Gaussians or exponentials—the so-called Mexican hat weight
distribution.) The reduced model can be used to investigate the effects of inhibition
on stationary solutions and propagating waves. However, in contrast to the full two-
population model, it does not support oscillatory solutions (in the absence of axonal
delays, higher-order synapses, or some form of adaptation such as synaptic depres-
sion).

It is important to emphasize that there does not currently exist a multi-scale
analysis of conductance-based neural networks that provides a rigorous deriva-
tion of neural field equations, although some progress has been made in this di-
rection [100, 147, 184, 307, 675, 676]. One crucial step in the derivation of neu-
ral field equations presented here was the assumption of slowly varying synaptic
currents, which is related to the assumption that there is not significant coherent
activity at the level of individual spikes. This allowed us to treat the output of a
neuron (or population of neurons) as an instantaneous firing rate. A more rigor-
ous derivation would need to incorporate the mean-field analysis of local popula-
tions of stochastic spiking neurons into a larger-scale cortical model and to carry
out a systematic form of coarse graining or homogenization in order to generate
a continuum neural field model. Nevertheless, the heuristic approach does provide
a framework for relating parameters of neural field equations to biophysical pa-
rameters such as membrane/synaptic time constants and axonal delays and also
prescribes how to incorporate additional physiological processes such as synaptic
depression and spike frequency adaptation. Moreover, neural field models make it
possible to explore the dependence of cortical dynamics on the detailed anatomy of
local and long-range synaptic connections. It is often assumed that w depends on
the Euclidean distance between interacting cells within the 2D cortical sheet so that
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w(x,y) = w(|x−y|). However, this is an oversimplification of the detailed architec-
ture of cortex [64–66, 308, 526]; see Sect. 8.1. A related simplification is to take
axonal delays to depend on Euclidean distance according to |x−y|/v, where v is the
speed of propagation.

It is also possible to construct continuum neural field equations for stochastic
population models. For the sake of illustration, consider the Langevin equation
(6.71), except we simplify the multiplicative noise by additive noise σdWα for con-
stant noise strength σ . The continuum limit of Eq. (6.71) proceeds as follows. First,
set Aα(t) = A(αΔd, t) and wαβ = ρΔdw(αΔd,βΔd) where ρ is a synaptic den-
sity and Δd is an infinitesimal length scale. We also assume that the noise strength
σα = σ/

√
Δd and define Wα(t)/

√
Δd =W (αΔd, t). Taking the limit Δd → 0 with

τα = τ̂ for all α gives

τ̂dA(x, t) =

[
−A(x, t)+F(

∫
w(x− y)A(y, t)dy)

]
dt +σdW(x, t) (6.124)

with

〈dW (x, t)〉= 0, 〈dW (x, t)dW (y, t)〉= δ (x− y)dt. (6.125)

Similarly, we can write down a stochastic version of a voltage-based neural field
equation, namely,

τdU(x, t) = [−U(x, t)+
∫

w(x− y)F(U(y, t))dy]dt +σdW(x, t) (6.126)

From a numerical perspective, any computer simulation would involve rediscretiz-
ing space and then solving a time-discretized version of the resulting stochastic
differential equation. On the other hand, in order to investigate analytically the ef-
fects of noise on spatiotemporal dynamics, it is more useful to work directly with
stochastic neural fields. One can then adapt various PDE methods for studying noise
in spatially extended systems [546], as illustrated in Sect. 7.4. Recently, Buice and
Cowan [91] have used path integral methods and renormalization group theory to
establish that a stochastic neural field model based on a continuum version of a
birth–death master equation belongs to the universality class of directed percolation
and consequently exhibits power law behavior, suggestive of many measurements of
spontaneous cortical activity in vitro and in vivo [30, 508]; see Sect. 9.5. Although
the existence of power law behavior is still controversial [28], the application of
path integral methods provides yet another example of how analytical techniques
familiar in the study of PDEs are being adapted to studies of continuum neural
fields. (For reviews on path integral methods for stochastic differential equations
see [115, 618, 698].)

Finally, note that several groups have constructed equivalent PDE models for
neural fields with axonal propagation delays, which take the form of damped in-
homogeneous wave equations [307, 382, 467, 527, 528, 603]. The basic idea is to
assume a particular form for the synaptic weight distribution and to use Fourier
transforms. Consider, for example, a 2D version of the multi-population integral
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equation (6.119). Suppose that Φab(x,y, t) = wab(|x− y|)Φ(t) and introduce the
auxiliary field

Ψab(x, t) =
∫
R2

wab(|x− y|)Fb(y, t −|x− y|/vab)dy,

where we have set Fb(y, t) = Fb(ub(y, t)). Fourier transforming this equation with

Ψ̂ab(k,ω) =
∫
R2

∫ ∞
−∞

e−i(k·r+ωt)Ψab(x, t)dt dx,

and

wab(r) =
w0

ab

2π
e−r/σab ,

we find that

Ψ̂ab(k,ω) = w0
ab

Aab(ω)
(Aab(ω)2 + k2)3/2

F̂b(k,ω)

with Aab(ω) = 1/σab + iω/vab. If one now makes a long-wavelength approxima-
tion by Taylor expanding the denominator of the above equation about k = 0 and
rearranging to give (Aab(ω)2 +3k2/2)Ψ̂ab(k,ω) = F̂b(k,ω), one can then apply the
inverse Fourier transform to derive the damped wave equation

[(
1
σab

+
1

vab
∂t

)2

− 3
2
∇2

]
Ψab(x, t) = w0

abFb(ub(x, t)).

The current ua(x, t) is then related to the fieldΨab(x, t) according to

ua(x, t) =
∫ t

−∞
Φ(t − t ′)∑

b

Ψab(x, t
′)dt ′,

which can itself be converted to a PDE by applying the inverse operator Lt . There
have also been various extensions of the PDE theory including improvements upon
the long-wavelength approximation [142] and incorporation of network inhomo-
geneities [526]. The damped wave equation (6.127) and its generalizations have
been used extensively to study large-scale phenomena such as EEG rhythms, where
axonal propagation delays are important [60, 467]; see also Sect. 9.4. PDE models
have also been used to study single and multi-bump stationary solutions of scalar
neural field equations, in which the time-independent equations reduce to fourth-
order differential equations with a Hamiltonian structure [355, 356].
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