
Chapter 4
Calcium Waves and Sparks

Calcium (Ca2+) is one of the most important and well-studied cellular signaling
molecules. From a modeling perspective, it attracts a great deal of interest due to
the fact that calcium signaling often involves complex spatiotemporal dynamics,
including oscillations and waves. There are a number of excellent general reviews
on the modeling of calcium dynamics within cells, including Chap. 7 of Keener
and Sneyd [322] and Falcke [181]. In this chapter, we focus on the mathematical
modeling and analysis of calcium waves and their potential significance in neuronal
calcium signaling; see also the reviews by Berridge [43] and Ross [534]. Although
there are a number of very detailed whole-cell models of calcium signaling, we
will focus on simplified models that are analytically tractable. In particular, we will
highlight some of the mathematical methods used to characterize calcium waves.

4.1 Calcium Signaling in Neurons

In vertebrates, most of the Ca2+ is stored in bones, from where it can be released by
hormonal stimulation to maintain a high extracellular Ca2+ concentration (around
1 mM). On the other hand, active ion pumps and exchangers maintain the cytoplas-
mic Ca2+ concentration at relatively low levels (around 10–100 nM). The resulting
steep concentration gradient across the plasma membrane means that cells are able
to increase their cytoplasmic Ca2+ concentration rapidly by opening either voltage-
gated or ligand-gated Ca2+ ion channels. Within the context of neuronal processing,
the activation of voltage-gated calcium channels (VGCCs) at axon terminals trig-
gers the release of synaptic neurotransmitter (see Sect. 1.3); VGCCs also contribute
to the generation of dendritic action potentials (see Sects. 1.4.3 and 3.1). A classical
example of ligand gating in neurons is the entry of Ca2+ through NMDA receptors
on postsynaptic dendritic spines. The resulting transient Ca2+ signal is thought to
play a major role in the induction of changes in synaptic strength; see below.

Another major mechanism whereby cells, including neurons, regulate their cy-
toplasmic Ca2+ concentration is via the intracellular supply of Ca2+ from internal
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Fig. 4.1 Neural calcium signaling. The entry of Ca2+ from outside the cell is mediated by voltage-
gated (VGCC) and ligand-gated (LGCC) calcium channels. Stimulation of metabotropic glutamate
receptors (mGluRs) produces IP3 second messengers that bind to IP3 receptors (IP3Rs), which
subsequently release Ca2+ from the endoplasmic reticulum. Both IP3Rs and Ryanodine recep-
tors (RyRs) are sensitive to Ca2+, resulting in Ca2+-induced Ca2+-release (CICR). The latter can
sometimes result in the propagation of a Ca2+ wave along the dendrites

stores such as the endoplasmic reticulum (ER) and mitochondria. Inositol (1,4,5)-
trisphosphate (IP3) receptors and Ryanodine (Ry) receptors distributed throughout
the ER, for example, mediate the release of Ca2+ into the cytoplasm, whereas Ca2+

ion pumps maintain the relatively high Ca2+ concentration within the ER. The Ry
receptor plays a critical role in excitation–contraction coupling in skeletal and car-
diac muscle cells, but is also found in nonmuscle cells such as neurons. One im-
portant feature of Ry receptors is that they can undergo Ca2+-induced Ca2+-release
(CICR), in which elevated cytoplasmic Ca2+ activates Ry receptors that release fur-
ther Ca2+, which then activates other Ry receptors, resulting in a nonlinear regen-
erative feedback mechanism. The IP3 receptor is similar in structure to the Ry re-
ceptor, but is found predominantly in nonmuscle cells and is sensitive to the second
messenger IP3. The binding of an extracellular ligand such as a hormone or a neuro-
transmitter to a metabotropic receptor results in the activation of a G-protein and the
subsequent activation of phospholipase C (PLC). This then cleaves phosphatidyli-
nositol bisphosphate (PIP2) into diacylglycerol (DAG) and IP3. The water soluble
IP3 is free to diffuse throughout the cell cytoplasm and bind to IP3 receptors located
on the ER membrane, which then open and release Ca2+ from the ER. The opening
and closing of an IP3 receptor is also modulated by the concentration of cytoplasmic
Ca2+, so it too can undergo CICR. Yet another mechanism for controlling cytoplas-
mic Ca2+ is through buffering (binding) to large proteins. Indeed, it is estimated that
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Fig. 4.2 The endoplasmic reticulum (ER) is a single and continuous membrane-bound organelle
that is distributed throughout the dendrites and axon (not shown) of a neuron [516]. It is responsi-
ble for the synthesis and posttranslational modification of most secretory and membrane proteins,
as well as the regulation of Ca2+ levels. The shape of the ER is heterogeneous, but can be di-
vided into three domains: the nuclear envelope, the ribosome-bound rough ER (RER), and the
ribosome-free smooth ER (SER). The RER is constituted primarily by sheets or cisternae, whereas
the SER is predominantly composed of 60–100 nm diameter tubules that form irregular polygons
with a common luminal space connected via three-way junctions. The ER present in the soma and
proximal dendritic compartment is rich in ribosomes, corresponding to the RER, whereas the ER
distributed in distal dendrites and axons corresponds mostly to SER and contains only a few sparse
ribosomes. The ER comes into close proximity with the plasma membrane at various locations,
forming subsurface cisternae within the soma and axon initial segment, and the spine apparatus
within dendritic spines

at least 99 % of the total cytoplasmic Ca2+ is bound to buffers. A summary of the
basic extracellular and intracellular mechanisms for controlling the concentration of
cytoplasmic Ca2+ is shown in Fig. 4.1.

The signaling mechanisms and dynamics of Ca2+ release from the ER in neurons
have been much less well studied than extracellular sources of Ca2+. However, the
ER is a continuous network that is distributed throughout a neuron, extending all
the way into the dendrites and axon and coming into close contact with the plasma
membrane and synapses at many locations; see Fig. 4.2. Hence, as suggested by
Berridge [43], it is likely that the integrative and regenerative properties of the ER
and plasma membrane provide a binary membrane system that regulates a variety
of neuronal process via Ca2+ signaling, including excitability, neurotransmitter re-
lease, synaptic plasticity, and gene transcription.

(a) Within the soma and initial axonal segment, the ER forms flattened sheets
known as subsurface cisternae that come into close contact with the plasma
membrane. These internal structures are thought to play an important role in
regulating neuronal excitability. For example, many neurons exhibit significant
after-hyperpolarizations (AHPs) following either a single action potential or a
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burst of action potentials, which suppress subsequent firing of the cell (spike
frequency adaptation). Often AHPs have both a fast component and a slow
component, which arise from the opening of two separate Ca2+-activated K+

channels (gKCa1 and gKCa2). The fast activation of gKCa1 is due to the entry of
extracellular Ca2+ via VCCNs during the course of an action potential, whereas
the slow activation of gKCa2 is probably due to CICR from Ry receptors located
in the subsurface cisternae.

(b) Within the axon, the ER consists of connecting tubules that run parallel along
the axon. The axonal ER network extends into a synapse, coming into close
contact with the plasma membrane and associated neurotransmitter secretory
vesicles. It is thought that calcium release from Ry and IP3 receptors contributes
to the formation of localized high-concentration bursts of Ca2+ necessary for
the exocytosis (transport and fusion) of vesicles to the plasma membrane.

(c) The ER network is also distributed throughout the dendritic tree and into spines,
where it terminates at the so-called spine apparatus. The latter consists of
closely packed plates of ER that are located within the middle of the spine
and is thus well placed to contribute to Ca2+ signaling during synaptic plastic-
ity. The latter refers to the rapid and long-lasting changes in synaptic strength
that are thought to provide the subcellular substrate for learning and mem-
ory. Much of the information regarding synaptic plasticity in mammalian neu-
rons has been obtained from studies of hippocampal and cerebellar neurons
[120, 123, 385, 402]. In particular, it has been found that the same synapses
can be switched rapidly and reversibly from an enhanced state of long-term po-
tentiation (LTP) to a reduced state of long-term depression (LTD). Interestingly,
both LTP and LTD are induced by a transient increase in the local Ca2+ concen-
tration within a spine. It was originally thought that the bidirectional switch only
depended on the amplitude of the Ca2+ signal, with a stronger stimulus induc-
ing LTP and a weaker one LTD. Now, however, it appears likely that the detailed
spatial and temporal structure of the calcium signal may be important. Although
the influx of extracellular Ca2+ through NMDA receptors or voltage-gated
channels is still the major contributor to the induction of LTP and LTD, there
is increasing evidence that there is also a component arising from intracellular
stores [428, 447, 534]. Activation of the ER could be mediated either by Ca2+

itself via CICR or by stimulation of metabotropic glutamate (mGlu) receptors
in the plasma membrane, resulting in the production of IP3. The fact that CICR
requires both cytoplasmic IP3 and Ca2+ suggests that IP3 receptors could act
as coincidence detectors for mGluR activation and postsynaptic Ca2+ signaling
arising from back-propagating action potentials or dendritic Ca2+ spikes [658].

(d) One of the most dramatic consequences of CICR is the propagation of intra-
cellular Ca2+ waves mediated primarily by the opening of IP3 receptors. These
waves were first observed in nonneuronal cells such as Xenopus laevis oocytes
[367, 490], where the resulting changes in Ca2+ concentration across the whole
cell provided a developmental signal. The discovery of Ca2+ waves in neurons
is more recent [303, 428, 447, 534, 658]. Since these cells have extensive den-
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dritic and axonal arborizations, the distribution of the components of the Ca2+

signaling apparatus within the cell plays a crucial role in determining whether
or not local Ca2+ release transforms into a propagating wave, and how far it
travels. For example, in pyramidal neurons of the hippocampus and cortex,
Ca2+ waves are usually observed in the primary apical dendrite and perhaps the
soma, rarely reaching beyond the point where thick dendrites begin to branch.
Since the ER network is distributed throughout the cell, this suggests that there
is a heterogeneous distribution of mGlu receptors and IP3 receptors along the
dendrite. Ca2+ waves rarely propagate from the dendrite to the soma, unless
there is a sufficiently strong and sustained stimulation of a neuron that results
in high levels of cytoplasmic IP3 or higher concentrations of internally stored
Ca2+. If a Ca2+ wave did reach the soma, then it would generate a strong Ca2+

signal in the soma and nucleus due to the high concentration of IP3 receptors
in these regions. It has been suggested that a Ca2+ wave could allow a strongly
stimulated synapse in the dendrites to signal to the nucleus, where the large
increase in Ca2+ concentration could activate gene transcription, which is a
necessary step in more persistent forms of synaptic plasticity such as late long-
term potentiation (L-LTP). However, the role of Ca2+ waves in initiating gene
transcription is still controversial. On the other hand, the likely contribution of
IP3 receptor-mediated Ca2+ release during normal LTP and LTD indicates that
Ca2+ waves could be important in determining the spatiotemporal pattern of
synaptic changes.

(e) Many nonneuronal cell types exhibit spontaneous localized Ca2+ release events
known as sparks [110]. Calcium sparks, which are thought to be the building
blocks of the large regenerative Ca2+ signal that controls contraction in car-
diac and skeletal muscle cells, arise from the opening of clusters of RyRs by
local CICR. The frequency of calcium spark events is sensitive to changes in
membrane potential, although they rarely induce calcium waves [111]. Similar
events known as calcium puffs have been found in Xenopus laevis oocytes
[489, 490, 690]. They are also spatially and temporally localized, are fast, and
occur stochastically. However, in contrast to sparks, they are mediated by IP3Rs
and coalesce more easily to form calcium waves. Localized events in neurons
with spark-like and puff-like properties have recently been observed in slice
preparations, and their frequency can be modulated by synaptic activity and
changes in membrane potential [389, 403]. Although it is likely that they also
occur in vivo, it is not yet clear whether or not they have a specific function.

4.2 Reaction–Diffusion Models of Ca2+ Dynamics

One of the major challenges in modeling calcium waves is that the ER and cyto-
plasm comprise two highly interconnected three-dimensional domains (ignoring, for
simplicity, other intracellular compartments such as the mitochondria). Assuming
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that Ca2+ undergoes normal diffusion within each compartment, together with
buffering, we can write down the following pair of diffusion equations for the Ca2+

concentrations c,ce in the cytoplasm and ER [322]:

∂c
∂ t

= ∇ · (Dc∇c)− Jon+ Joff, r ∈ Ωc (4.1)

and
∂ce

∂ t
= ∇ · (De∇ce)− Ĵon+ Ĵoff, r ∈ Ωe, (4.2)

where Ωc and Ωe denote the cytoplasmic and ER domains, respectively, Dc and De

are the corresponding diffusivities in the two domains, and the on/off fluxes take into
account the binding/unbinding of Ca2+ to buffering proteins. These equations are
supplemented by various boundary conditions that take into account the exchange
of Ca2+ between the cytoplasm and the plasma membrane or ER. Let Jin denote the
total inward flux of Ca2+ from the plasma membrane to the cytoplasm via voltage-
gated and ligand-gated ion channels, and let Jp1 be the outward flux due to ATPase
ion pumps in the plasma membrane. Then

Dc∇c ·n = Jin − Jp1, r ∈ ∂Ωc,m, (4.3)

where ∂Ωc,m is the surface of the plasma membrane with unit normal n. Similarly,
let JIP and JRy denote the inward fluxes from the ER to the cytoplasm via IP3Rs and
RyRs, respectively, and let Jp2 denote the outward flux due to ion pumps in the ER.
This yields

Dc∇c · n̂ =−De∇ce · n̂ = JIP + JRy − Jp2, r ∈ ∂Ωe, (4.4)

where ∂Ωe is the boundary of the ER with unit normal n̂. A schematic diagram of
all the fluxes is shown in Fig. 4.3.

Let us first consider a space-clamped version of this model, in which one treats
the cytoplasm and ER as two well-mixed homogeneous compartments. In that case,
the various surface and volume fluxes are combined as follows:

dc
dt

=−Jon + Joff +
|∂Ωc,m|
|Ωc| [Jin − Jp1]+

|∂Ωe|
|Ωc| [JIP + JRy − Jp2] (4.5)

and
dce

dt
=−Ĵon + Ĵoff − |∂Ωe|

|Ωe| [JIP + JRy − Jp2]. (4.6)

Each of the fluxes in these equations corresponds to a component of the so-called
Ca2+-signaling toolkit [44]. Thus, the equations for Ca2+ dynamics have to be cou-
pled to additional biochemical equations describing the dynamics of ion pumps, the
Ca2+-dependent gating of the Ry and IP3 receptors, and how the latter are regu-
lated by the second messenger IP3. Often the external flux Jin is simply taken to be
a linear increasing function of the IP3 concentration. There have been many stud-
ies of space-clamped Ca2+ models with particular focus on calcium oscillations
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Fig. 4.3 Schematic diagram showing various fluxes in reaction–diffusion model of Ca2+ dynamics

[181, 322]. Although the models differ in their degree of complexity with regards
the component fluxes, they can often be reduced to simpler models that have similar
structure to the FitzHugh–Nagumo (FN) model of excitability. For example, sup-
pose that we ignore fluxes through the plasma membrane so that the total intracel-
lular Ca2+ is conserved, that is, |Ωc|c+ |Ωe|ce is a constant. Furthermore, suppose
that there are only two intracellular fluxes, JIP and Jp2, and the IP3 concentration is
fixed. Ignoring the effects of buffering, one can write down an analogous equation
to (2.3) of the form

dc
dt

= f (c,h), τ(c)
dh
dt

= h∞(c)− h, (4.7)

where c is the concentration of free cytosolic Ca2+, f (c,h) represents the net flux
into the cytoplasm from the ER, and h is an inactivation variable that plays a similar
role to the recovery variable w of the original FN equations. One interpretation of h
is the fraction of IP3 receptors that are not inactivated by bound Ca2+. Li and Rinzel
[381] derived such a two-variable model by reducing the classical kinetic model of
Ca2+-gated IP3 receptors due to De Young and Keizer [692]; see Sect. 4.4.1.

Unfortunately, the complex geometry and heterogeneity of the ER means that
the spatially distributed model given by (4.1)–(4.4) is far too complicated to ana-
lyze, even when simplified models of the various fluxes are considered. A common
strategy is to ignore the detailed structure of the ER by assuming that the concen-
trations c and ce coexist at every point in space. This is motivated by the idea that
since diffusion is fast over short distances, local variations due to heterogeneities
are smoothed out. Phenomenologically speaking, this leads to the calcium bidomain
equations

∂c
∂ t

= ∇ · (Dc∇c)− Jon + Joff + χc[JIP + JRy − Jp2] (4.8)

and



144 4 Calcium Waves and Sparks

∂ce

∂ t
= ∇ · (De∇ce)− Ĵon + Ĵoff − χe[JIP + JRy − Jp2]. (4.9)

Here χc = |∂Ωe|/|Ωc|,χe = |∂Ωe|/|Ωe| are surface to volume ratios, and Dc,De

are effective diffusion coefficients. Note, however, that in order to determine the
effective diffusion coefficients, which will depend on the geometry of the ER, and
justify the precise form of the factors χc,χe, it is necessary to derive these equations
from first principles using homogenization theory [224, 322]. Elements of the theory
are described in appendix section 4.6. Now suppose that only the fluxes JIP and Jp2

are included along the lines of the space-clamped model. However, in contrast to
the latter, it is now necessary to keep track of both the cytoplasmic and ER Ca2+

concentrations, since they are spatially varying. A one-dimensional bidomain model
with constant diffusion coefficients then takes the form

∂c
∂ t

= Dc
∂ 2c
∂x2 + f (c,ce,h) (4.10a)

∂ce

∂ t
= De

∂ 2c
∂x2 − χe f (c,ce,h) (4.10b)

τ(c)
∂h
∂ t

= h∞(c)− h, (4.10c)

where f (c,ce,h) represents the net Ca2+ flux from the ER to the cytoplasm the
spatial dimensions have been fixed such that χc = 1. Analysis of traveling wave
solutions of (4.10) proceeds along very similar lines to that of the Hodgkin–Huxley
equations for membrane voltage excitability; see Chap. 2. Depending on parameter
values, the model system can support solitary waves when the physiological state of
the cytoplasm is excitable, periodic waves when it is oscillatory, and traveling fronts
when it is bistable [322].

However, one important feature that needs to be taken into account in the case
of calcium excitability is buffering. Insights into the effects of buffering can be
obtained by looking at reduced models of excitability such as the bistable equation
or the FN equations [592, 635, 636, 653]. Following [592, 653], consider a simple
extension of the bistable equation (Sect. 2.2). First, note that the basic chemical
reaction for Ca2+ buffering takes the form

P+Ca2+ k+�
k−

B,

where P is the buffering protein and B is the protein/Ca2+ complex. Let c and b
denote, respectively, the concentration of free cytosolic Ca2+ and buffered Ca2+.
The extended bistable equation is then (in one spatial dimension)

∂c
∂ t

= Dc
∂ 2c
∂x2 + f (c)+ k−b− k+c(bt − b), (4.11a)

∂b
∂ t

= Db
∂ 2b
∂x2 − k−b+ k+c(bt − b). (4.11b)
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Here bt is the total buffer concentration, f (c) takes into account all Ca2+ fluxes, and
the diffusion coefficients of free and buffered Ca2+ are assumed to be constants.
Suppose that the buffer reaction rates k± are faster than the time constants of Ca2+

dynamics. The buffer concentration b can be taken to be in the quasi steady state
k−b− k+c(bt − b) = 0, that is,

b =
btc

K + c
, K =

k−
k+

. (4.12)

Adding (4.11a) and (4.11b) and eliminating b using (4.12) gives [653]

∂c
∂ t

=
1

1+θ (c)

(
∂ 2w(c)

∂x2 + f (c)

)

=
Dc +Dbθ (c)

1+θ (c)
∂ 2c
∂x2 − 2Dbθ (c)

(K + c)(1+θ (c))

(
∂c
∂x

)2

+
f (c)

1+θ (c)
,

where

w(c) = Dcc+Dbbt
c

K + c
, θ (c) =

btK
(K + c)2 . (4.13)

It is clear that a mobile buffer (Db > 0) generates a nonlinear advection–diffusion
equation for c; the advection term vanishes if the buffer is immobile (Db = 0).

The form of the effective reaction–diffusion equation for c suggests making then
change of variables w = w(c), with w, a monotone increasing function of c since
w′(c) = Dc + Dbθ (c) > 0. Denoting the unique inverse of the function w(c) by
c = φ(w), we can write

∂w
∂ t

=
Dc +DbΘ(w)

1+Θ(w)

(
∂ 2w
∂x2 + f (φ(w))

)
, (4.14)

where Θ(w) = btK/(K + φ(w))2. Now suppose that f (c) has two stable zeros c±
separated by an unstable zero c0 with c− < c0 < c+. It immediately follows that
f (Θ(w)) has three corresponding zeros w±,w0 with w− < w0 < w+ and w± stable.
A traveling front solution of wave speed v, w(x, t) =W (x− vt), satisfies the ODE

Vξ ξ +
v

De f f (W )
Wξ + f (φ(W )). (4.15)

Proceeding as in Sect. 2.2, multiply both sides of this equation by Wξ and integrate
to show that

v
∫ ∞

−∞

W 2
ξ

Deff(W (ξ ))
dξ =

∫ w+

w−
f (φ(w))dw.

Since the integral on the left-hand side is positive definite, the sign of v is determined
by the sign of the integral on right-hand side. In particular, a right-moving wave
(v > 0) exists provided that

∫ c+

c−
(Dc +Dbθ (c)) f (c)dc > 0, (4.16)
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where we have converted back to the original variable c. It can be seen that immobile
buffers (Db = 0) have no effect on the existence of a traveling wave; this result also
holds true for wave stability and uniqueness. On the other hand, mobile buffers can
eliminate a traveling wave when they are of high affinity (small K ) or have a large
diffusion coefficient (large Db).

4.3 Discrete Calcium Sources and the Fire–Diffuse–Fire Model

4.3.1 Discrete Calcium Sources and Averaging

The above reaction–diffusion models assumed that Ca2+ release from the ER is ho-
mogeneous in space. This neglects the fact that IP3 receptors (as well as Ry recep-
tors) tend to be arranged in clusters. For example, in Xenopus oocytes, the density
of clusters is around 1 per 30 μm2, with each cluster containing about 25 IP3 re-
ceptors [322]. Consequently, the propagation of Ca2+ waves tends to be saltatory,
jumping from one cluster to the next. (Clustering of IP3 receptors is also thought to
occur along dendrites [534]). We have previously encountered saltatory waves due
to discreteness effects, namely, action potential propagation along myelinated axons
(Sect. 2.5) and solitary Ca2+ spikes propagating along spiny dendrites (Sect. 3.1).
The latter waves depend on the action of VGCCs and other voltage-gated ion chan-
nels and are thus distinct from the Ca2+ waves considered in this chapter, which
depend on Ca2+ release from internal pools. Nevertheless, the analytical techniques
used to study these other examples can be adapted to the present case. First, we
will discuss how the averaging method of Sect. 2.5 can be used to study wave prop-
agation failure in the presence of discrete release sites, following [318]. We will
then describe an alternative, fire–diffuse–fire (FDF) model of saltatory Ca2+ waves,
which is identical in structure to the spike–diffuse–spike (SDS) model of Sect. 3.1.
(In contrast to other chapters, we will use c to denote cytosolic Ca2+ concentration
and v to denote wave speed.)

Consider a one-dimensional model of Ca2+ diffusion and release of the
form [318]

∂c
∂ t

=−kcc+Dc
∂ 2c
∂x2 +L∑

n
δ (x− nL) f (c), (4.17)

where f (c) represents the Ca2+-dependent rate of release from each cluster (taken
to be identical), and the decay term represents the effects of ion pumps. The clus-
ters are assumed to be evenly spaced with spatial separation L. For simplicity, the
ER concentration ce and IP3 concentration p are taken to be fixed. It is tempting to
apply homogenization theory to this problem (see appendix section 4.6), assuming
diffusion is fast on the length scale L, that is, L2kc/Dc � 1. Intuitively, one would
expect the L-periodic function g(x) = L∑n δ (x−nL) to be replaced by its spatial av-
erage

∫ L
0 g(x)dx/L= 1. However, as highlighted by Keener [318, 319] and discussed

in Sect. 2.5, the homogenized system cannot account for the fact that discreteness
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effects can lead to wave propagation failure in regimes that the continuous model
would predict traveling waves exist. This reflects the fact that wave solutions are
not structurally stable. The occurrence of propagation failure can be established by
constructing standing wave-front solutions [318, 322]. The latter are stationary so-
lutions of (4.17). On the intervals nL < x < (n+ 1)L, this gives

0 =−kcc+Dc
∂ 2c
∂x2 , (4.18)

which is supplemented by jump conditions at x = nL,

Dc
∂c
∂x

∣∣∣∣
nL+

nL−
+L f (cn) = 0. (4.19)

The latter is obtained by integrating the stationary equation on either side of x = nL.
The general solution of (4.18) is

c(x) = cn cosh(β (x− nL)/L)+ ĉn sinh(β (x− nL)/L), nL < x < (n+ 1)L,

where β 2 = kcL2/Dc, cn = c(nL) and β ĉn/L = c′(nL+). Continuity of the solution
at x = (n+ 1)L shows that

cn cosh(β )+ ĉn sinh(β ) = cn+1,

that is,

ĉn =
cn+1 − cn cosh(β )

sinh(β )
.

It follows that

c′(nL+) = (cn+1 − cn cosh(β ))
β

Lsinh(β )
and

c′(nL−) =−(cn−1 − cn cosh(β ))
β

Lsinh(β )
.

Substituting these results into the jump condition yields the difference equation

ks

β sinh(β )
(cn+1 − 2cn cosh(β )+ cn−1)+ f (cn) = 0. (4.20)

It is usually not possible to obtain an explicit solution of a nonlinear difference
equation. One exception is if f (c) is piecewise linear,

f (c) = f0H(c− c∗), (4.21)

where c∗ is a release threshold. Without loss of generality, suppose that the standing
wave solution crosses threshold from below in the interval 0 < x < L. Try a solution
of the form cn = A−μ−n for n ≤ 0 and cn = C −A+μn for n ≥ 0 with 0 < μ < 1.
The constant C is determined by taking the limit n → ∞ in (4.20) with cn →C > c∗:
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ks

β sinh(β )
(C− 2C cosh(β )+C)+ f0 = 0,

so that

C =
β sinh(β )

2cosh(β )− 2
f0

kc
=

β cosh(β/2)
2sinh(β/2)

f0

kc
.

The constant μ then satisfies the quadratic equation μ − 2λ + μ−1 = 0 with λ =
cosh(β ). Choosing the root that is less than one, we have μ = λ −√

λ 2 − 1 = e−β .
Finally, the factors A± can be determined by considering the difference equation for
n = 0,1, which gives [322]

A−(β ) =
μ(β )C(β )
1+ μ(β )

, A+(β ) = eβ A−(β ).

Given that C,A± and μ± are all functions of β (assuming that f0/kc is fixed), the
conditions for the existence of a standing wave-front solution are

A−(β )< c∗, C(β )−A+(β )μ(β ) = eβ A−(β )≥ c∗. (4.22)

For a given β , a traveling wave exists if the threshold c∗ lies beneath the curve
A−(β ), whereas a standing wave exists if c∗ lies between A−(β ) and eβ A−(β ); in
the latter case propagation failure occurs. Note, in particular, that increasing the
threshold c∗ or increasing β makes propagation failure more likely. Moreover, in-
creasing β corresponds to increasing the cluster spacing L or decreasing the Ca2+

diffusion coefficient Dc.
Having established that wave propagation failure can occur, we now describe

how to calculate the wave speed as a function of “discreteness” using the averaging
method of Keener [318, 319]. The analysis proceeds along identical lines to the
study of inhomogeneous diffusivity in the discrete bistable equation; see Sect. 2.5.
First, rewrite (4.17) in the dimensionless form

∂c
∂ t

=−c+
∂ 2c
∂x2 +(1+ g′(x/ε)) f (c), (4.23)

where ε =
√

L2kc/D � 1, a factor of k−1
c has been absorbed into f , and g(x) is the

periodic sawtooth function, g(x) = 1/2−x for 0 < x < 1 and g(x+n) = g(x). (More
precisely, g(x) is assumed to be the sum of Gaussians (2.69) of width σ , with the
limit σ → 0 taken at the end of the calculation.) Suppose that the nonlinear function
f (c) is one for which there exists a traveling front solution c(x, t) = C(x− vt) of
the homogeneous equation (g ≡ 0). The main result of the averaging method is that
for ε sufficiently small, there exists a wavelike solution or pulsating wave of the
form [318]

c(x, t) =C(x−φ(t))+O(ε), (4.24)

where the phase φ(t) evolves according to [see also (2.72)]

dφ
dt

= v−Φ(φ/ε) (4.25)



4.3 Discrete Calcium Sources and the Fire–Diffuse–Fire Model 149

with

Φ(φ/ε) =
1
Λ

∫ ∞

−∞
g′([ξ +φ ]/ε) f (C(ξ ))C′(ξ )evξ dξ , (4.26)

and
Λ =

∫ ∞

−∞
evξC′(ξ )2dξ . (4.27)

Equation (4.25) implies that the solution is not translationally invariant, rather it
moves with a time-dependent velocity φ ′. If v−Φ(φ/ε) is strictly positive then
φ ′(t) is a positive, periodic function of t with period

T =

∫ ε

0

dφ
v−Φ(φ/ε)

. (4.28)

The mean speed of the wave is v̄ = ε/T . On the other hand. if v−Φ(φ/ε) vanishes
for some φ , then propagation failure is expected to occur.

Averaging method for discrete Ca2+ release sites. The first step is to rewrite (4.23) as the
first-order system

cx = u, ux = ct − (1+g′(x/ε)) f (c)+ c. (4.29)

Introducing the exact change of variables u = w− εg(x/ε) f (u) yields the new system

cx = w− εg(x/ε) f (c), wx = ct − f (c)+ c+ εg(x/ε) f ′(c)cx. (4.30)

It can be seen that if the O(1) system of equations is independent of x/ε , then the lowest-
order averaged system reduces to the homogeneous equation, which we are assuming sup-
ports a traveling front solution C(x − vt). Including the inhomogeneous factors g(x/ε)
means that the system is no longer translationally invariant. However, we can look for so-
lutions that are close to a traveling front by going to a traveling coordinate system with
ξ = x−φ (t) to give [318]

cξ −w =−εg([ξ +φ ]/ε) f (c) (4.31a)

−ct +wξ +φ ′cξ + f (c)− c = εg([ξ +φ ]/ε) f ′(c)cξ . (4.31b)

We now seek a perturbative solution of the form

c =C(ξ )+ εc1(ξ , t)+ . . ., w(ξ ) =C′(ξ )+ εw1(ξ , t)+ . . ., φ ′(t) = v+ εφ ′
1(t)+ . . .

Substituting into equations (4.31) and collecting terms of equal powers in ε yields a hierar-
chy of equations, the first of which is

∂ξ c1 −w1 =−g([ξ +φ ]/ε) f (C) (4.32a)

−∂t c1 +∂ξ w1 + vw1 + f ′(C)c1 − c1 = vg([ξ +φ ]/ε) f (C)−φ ′
1(t)C

′ +g([ξ +φ ]/ε) f ′(C)C′ .
(4.32b)

Equations (4.32) can be rewritten as

−
(

0
∂t c1

)
+L

(
c1
w1

)
=

(
hc

−φ ′
1C′ +hw

)
, L=

(
∂ξ −1

f ′(C)− c ∂ξ + c

)
, (4.33)

with hc and hw determined by inhomogeneous terms on the right-hand side of equations
(4.32a) and (4.32b), respectively. Following our analysis of the linear operator (2.62), we
know that the matrix operator appearing in equation (4.33) has a null space spanned by
(C′,C′′). Similarly, the adjoint operator
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L
† =

(−∂ξ f ′(C)−C

−1 −∂ξ + c

)

has the null vector ecξ (−C′′ ,C′). Hence, applying the Fredholm alternative, it follows that
φ ′(t) must satisfy the phase equation (4.25) with φ (t) = v+ εφ1(t).

For the particular choice f (c) = H(c−c∗) used in the analysis of standing waves
with f0/kc = 1, the homogeneous equation is identical to the one analyzed at the end
of Sect. 2.2. Thus, there exists a unique traveling front solution of the form (2.23)
with corresponding wave speed (2.24). The mean wave speed can then be calculated
explicitly along similar lines to Sect. 2.5, so that

v̄ =
ε
2

1

ln
(

v+ε/χ
v−ε/χ

) . (4.34)

with v = (1− 2c∗)/
√

c∗ − c∗2 and χ = 4[c∗ − c∗2]. This would predict propagation
failure when ε ≥ χv, that is,

ε ≥ 4(1− 2c∗)(
√

c∗ − c∗2). (4.35)

Since the analysis is based on the assumption that ε is small, we expect this
condition to be reasonable when c∗ ≈ 0.5. Taylor expanding about this point the con-
dition for propagation failure is approximately ε > 2(1− 2c∗). Similarly, the con-
dition (4.22) based on the standing wave analysis predicts propagation failure when
ε/(2(eε − 1))< c∗, which reduces to ε > 2(1− 2c∗) when c∗ ≈ 1/2. Thus the two
approaches agree for small ε and yield qualitatively similar results for large ε . Fi-
nally, as in the analysis of myelinated axons, a cubic nonlinearity for the release
function f (c) yields an expression for the mean wave speed that involves exponen-
tially small terms so it is necessary to include higher-order terms in the perturbation
analysis in order to obtain sufficient accuracy [318].

4.3.2 The Fire–Diffuse–Fire Model of Ca2+ Release

An alternative approach to studying the effects of discrete Ca2+ release sites is to
consider the so-called FDF model [127, 137, 140, 325, 497, 511]. The basic idea of
the model is that once the Ca2+ concentration reaches a threshold value c∗ at a given
release site, that site fires and instantaneously releases a fixed amount σ of Ca2+

into the cytoplasm [325, 497, 511]. It is also straightforward to take into account the
effects of ion pumps by including a decay term and replacing instantaneous release
by a fixed pulse of finite width [127]. The FDF model is then almost identical to
the SDS model of Ca2+ spikes propagating along spiny dendrites [129, 130]. Since
the latter model was analyzed in detail in Sect. 3.1, we can carry over the previous
results after minor modifications. Therefore, consider the following version of the
FDF model [127]:
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∂c
∂ t

=− c
τc

+Dc
∂ 2c
∂x2 +∑

n
δ (x− xn)η(t −Tn), (4.36)

where Tn is the firing time of the site xn, which only fires once:

Tn = inf{t |c(xn, t)≥ c∗}. (4.37)

For concreteness, let
η(t) = (σ/τd)H(t)H(τd − t),

so that each Ca2+ puff or spark is of size σ and duration τd . Suppose that the Ca2+

release sites are regularly spaced, xm = mL, and consider a saltatory wave solution
Tm = mΔ with speed v = L/Δ . The existence of such a wave can be determined
straightforwardly by noting that (4.36) is identical to (3.33) under the mapping

V → c,
n̄
rs

η0 → σ
τd

.

The one major difference between the two models is that thresholding in the SDS
model is mediated by an IF process (3.2), which introduces an additional time con-
stant τ̂ . Therefore, in order to apply the analysis of saltatory waves along a spiny
dendrite to the FDF model (see in Sect. 3.1.3), we need to take the limit τ̂ → 0. This
then gives the following threshold condition for the existence of a saltatory wave:

c∗ =
∞

∑
n=1

H(nL,nΔ), (4.38)

with

H(x, t) =
σ
τd

∫ τd

0
G0(x, t − s)ds, G0(x, t) =

1√
4πDct

e−t/τc−x2/4Dct . (4.39)

In the limit τd → 0, H(x, t)→ σG0(x, t) and the threshold condition becomes

c∗ = σ
∞

∑
n=1

G0(nL,nΔ)

= σ
∞

∑
n=1

1√
4πDcnΔ

exp

(
−n

[
L2t

4DcΔ
+

Δ
τc

])
≡ g(Δ). (4.40)

In the additional limit τc → ∞ (i.e., neglecting the flux due to ion pumps), the results
of [497] are recovered. In particular, g(Δ) becomes a monotone function of Δ , and
the speed of the traveling waves scales linearly as Dc/L. The latter follows after in-
troducing the dimensionless threshold c̃∗ = c∗L/σ and noting that Lg/σ is then only
a function of the dimensionless quantity ΔDc/L2. However, this result is inconsis-
tent with the analysis of standing waves, which showed that propagation failure can
occur by decreasing the diffusion coefficient. The discrepancy is resolved by taking
into account the effects of ion pumps, that is, taking τc to be finite. Moreover, g(Δ)
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is now non-monotone and consequently one finds two solution branches with the
faster one corresponding to stable waves [127]. This result also holds in the case of
finite pulse width τd , for which

H(x, t) =
σ
τd

[A(x, t −min(t,τd))−A(x, t)] , (4.41)

with A(x, t) given by (3.40). In summary, the main qualitative results of the SDS
model carry over to the FDF model, for example, one finds that propagation failure
occurs if the spacing between release sites becomes too large.

One of the limitations of the above FDF model is that it neglects variations in the
Ca2+ concentration within the ER. However, in many cells, Ca2+ release can result
in a significant local depletion of ER Ca2+. In order to take this into account, the
FDF model has been extended in the form of a bidomain threshold-release model
[621, 622]:

∂c
∂ t

= Dc
∂ 2c
∂x2 + Jrel(c,ce)− J2(c,ce) (4.42a)

∂ce

∂ t
= De

∂ 2c
∂x2 − χe [JIP(c,ce)− J2(c,ce)] , (4.42b)

where the release and uptake fluxes, Jrel(c,ce)− J2(c,ce), are functions of the cy-
tosolic and ER Ca2+ concentrations. For simplicity, assume that there is a continu-
ous and uniform distribution of Ca2+ release sites and that the release flux depends
on the difference in the cytosolic and ER Ca2+ concentrations:

Jrel(x, t)≡ Jrel(c(x, t),ce(x, t)) = (ce(x, t)− c(x, t))η(t −T (x)), (4.43)

with
T (x) = inf{t |c(x, t)≥ c∗}. (4.44)

The release sites could be either RyRs or IP3Rs; in the latter case the IP3 concentra-
tion p is held fixed. Finally, the reuptake flux due to the action of ion pumps is taken
to have the linear form

J2(c,ce) =
c
τc

− ce

τe
. (4.45)

The existence and stability of a solitary pulse solution of (4.42) can be investigated
along similar lines to Sect. 3.1.1.

4.4 Stochastic Models of Ca2+ Release

The fluorescent imaging of localized Ca2+ puffs and sparks has established that
Ca2+ release is a stochastic process that occurs at spatially discrete sites consisting
of clusters of IP3Rs and RyRs, respectively. In Xenopus oocytes, Ca2+ puffs have
an amplitude ranging from around 50 to 600 nM, a spatial spread of approximately
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6 μm and a typical duration of 1 s [489, 490, 690]. For sufficiently high levels of
IP3 concentration, the amplification of Ca2+ puffs by CICR can lead to the forma-
tion of Ca2+ waves. Ca2+ sparks in heart and skeletal muscle tend to be of shorter
duration and less spatial spread and are less likely to result in wave propagation
[110, 111]. As we have already mentioned Ca2+ puffs and sparks have also been
observed in neurons [534], suggesting that one needs to take into account stochas-
tic release events when modeling Ca2+ waves. Typically, one combines a stochastic
model of localized release through RyRs or IP3Rs with a deterministic reaction–
diffusion model of Ca2+ waves such as the FDF model [137, 320]. The stochastic
modeling of the Ca2+-dependent opening and closing of these receptors proceeds
along analogous lines to the modeling of voltage-gated ion channels considered in
Sect. 1.5.

4.4.1 Stochastic Model of Ca2+ Puffs in a Cluster of IP3Rs

Stochastic models of Ca2+ puffs typically treat a cluster of IP3Rs as a set of N chan-
nels that open and close independently, but are indirectly coupled by the common
cytoplasmic Ca2+ concentration [180, 182, 579, 612]. Models differ in the level of
detail regarding individual receptors. The first deterministic kinetic model of Ca2+-
gated IP3Rs was proposed by De Young and Keizer, in their study of agonist-induced
Ca2+ oscillations. This model assumes that the IP3 receptor consists of three equiv-
alent receptor subunits, all of which have to be in a conducting state in order to
generate a Ca2+ flux. Each subunit is taken to have an IP3-binding site, an activat-
ing Ca2+-binding site, and an inactivating Ca2+-binding site; the conducting state
corresponds to the state in which all subunits have the first two binding sites oc-
cupied but the third unoccupied. Although the De Young–Keizer model is simple
to describe, it involves a relatively large number of variables that have to be cou-
pled to the Ca2+ and IP3 concentrations. A simplified version of the model was
subsequently developed by Li and Rinzel [381]. They exploited the fact that the
binding of IP3 and activating Ca2+ are fast relative to inactivating Ca2+ and used
a quasi-steady-state argument to reduce the eight-state subunit model to a model
that simply keeps track of whether or not the inactivating Ca2+-binding site of a
subunit is occupied. More specifically, the Li–Rinzel model is a two-variable model
given by

dc
dt

= JIP + Jleak − Jp2 (4.46a)

dh
dt

= αh(1− h)−βhh, (4.46b)

where c is the cytoplasmic Ca2+ concentration, h is the fraction of receptors in a
cluster not inactivated by Ca2+, and p is the IP3 concentration, which is assumed
fixed. The three Ca2+ fluxes included in the model are the channel flux JIP and
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leakage flux Jleak from the ER to the cytoplasm, and the flux Jp2 pumped back into
the ER; see also Fig. 4.2. The expressions for the various fluxes are

JIP = f (c, p)h3[ce − c], Jleak = ν0[ce − c], JP2 =
ν1c2

k2
3 + c2

, (4.47)

with

f (c, p) =

(
p

p+ k4

)3

·
(

c
c+ k5

)3

, αh = ν2
p+ k4

p+ k6
, βh = ν3c. (4.48)

The various cubic terms reflect the existence of three subunits. Parameter values
of the model can be found in [381]. We see that the simplified model resembles
the Hodgkin–Huxley model (see Sect. 1.1), after replacing Ca2+ concentration c by
membrane voltage v and ce by a reversal potential.

We now describe a stochastic version of the Li–Rinzel model for a cluster of
IP3Rs due to Shuai and Jung [579]. For stochastic versions of the full De Young–
Keizer model, see, for example, [180, 182, 244, 612]. The deterministic equations
(4.46) describe the mean behavior of a large cluster of Ca2+ channels, just as
the Hodgkin–Huxley equations for membrane voltage apply to a large number of
voltage-gated ion channels. As we discussed in Sect. 1.5, if the number of channels
is relatively small, then it is necessary to take into account thermally driven fluctua-
tions in the opening and closing of individual channels. In the case of the Li–Rinzel
model, one only needs to consider the opening and closing process for the gating
variable h of each subunit. The latter is modeled as the two-state Markov process

C(closed)
αh�

βh(c)
O(open). (4.49)

Suppose that there are N independent IP3Rs, each with three independent subunits
labeled i = 1,2,3 that are described by the above two-state Markov process. Let
Ni(t) (i = 1,2,3) denote the number of receptors at time t that have the ith subunit
open. Under the adiabatic assumption that the Ca2+ concentration c evolves much
more slowly than the state transitions of the channels, we can write down a master
equation for the probability P(ni, t) = Prob[Ni(t) = ni|Ni(0) = n0] according to

dP(ni, t)
dt

= (N − ni+ 1)αhP(ni − 1, t)+ (ni+ 1)βhP(ni + 1, t) (4.50)

− (niβh +(N − ni)αh)P(ni, t), i = 1,2,3.

As with voltage-gated ion channels, we have a stochastic hybrid system, since the
transition rate βh depends on the Ca2+ concentration c(t), which evolves according
to a piecewise deterministic equation of the form (4.46a). The latter, in turn, couples
to the discrete stochastic variables Ni(t) through the flux

JIP = f (c(t), p)[ce − c(t)]
3

∏
i=1

Ni(t)
N

. (4.51)
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[Note that one should really write down a differential Chapman–Kolmogorov
equation for the joint probability density p(n1,n2,n3,c, t) along the lines of
(1.126)]. Finally, for large N, one can obtain a further simplification by carry-
ing out a Kramers–Moyal expansion of the master equation (4.50) along the lines
of Sect. 1.5.2. This yields the following SDE for Hi(t) = Ni(t)/N with Hi treated as
a continuous stochastic variable:

dHi = αh(1−Hi)−βhHi +
1√
N

b(Hi)dWi, (4.52)

where
b(Hi) =

√
αh(1−Hi)+βhHi,

and Wi(t) is an independent Wiener process with

〈dWi(t)〉= 0, 〈dWi(t)dWj(t
′)〉= δ (t − t ′)dt dt ′δi, j.

Shuai and Jung [579] simulated the stochastic Li–Rinzel model in order to inves-
tigate the effects of noise on Ca2+ oscillations in a space-clamped model. They
assumed that the deterministic system (4.46) was monostable at low and high IP3

concentrations and exhibited limit cycle oscillations (occurring via a Hopf bifurca-
tion) at intermediate concentrations. They showed that noise can enlarge the range
of IP3 concentrations over which oscillations occur—an effect known as coherence
resonance. They also found a broad distribution of puff amplitudes, lifetimes, and
interpuff intervals. In particular, at low IP3 concentrations, the amplitude distribu-
tion is a monotonically decaying function, whereas at higher concentrations, it is
unimodal. This suggests that Ca2+ puffs become more significant as IP3 concentra-
tion is increased and hence could impact the spontaneous generation of Ca2+ waves.
This issue was investigated numerically by Falcke [180] using a stochastic version of
the De Young–Keizer model that was incorporated into a reaction–diffusion model
of spatially distributed channel clusters. He showed that there is indeed a transi-
tion from Ca2+ puffs to waves as the IP3 concentration is increased. At low con-
centrations, only puffs occur, since there is not enough Ca2+ released to stimulate
neighboring clusters, which means that the response is purely local. However, as IP3

concentration increases, global Ca2+ waves can emerge from local nucleation sites
of high Ca2+ concentration. At intermediate levels of IP3, global events are rare
and waves only progress a short distance before dying out. On the other hand, for
higher IP3 concentrations, global waves occur regularly with a well-defined period.
Again this oscillatory-like behavior can occur in parameter regimes for which the
deterministic model is non-oscillatory.

4.4.2 Stochastic Model of Ca2+ Sparks in a Cluster of RyRs

We now turn to a stochastic model of Ca2+ sparks due to Hinch [276]; see also [241].
This model was originally developed for cardiac myocytes (heart muscle cells) and
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includes details of the geometry of Ca2+ release units, in particular, the narrow
junctional gap known as the diadic space that separates the sarcoplasmic reticulum
(SR) from the plasma membrane; see Fig. 4.4. (In smooth muscle cells the smooth
ER is referred to as the sarcoplasmic reticulum.) However, it is possible that a sim-
ilar mechanism occurs in neurons at the specialized subsurface cisternae of the ER,
which also form narrow junctions with the plasma membrane; see Fig. 4.2. In a typ-
ical myocyte, there could be up to 10,000 Ca2+ release units, each one containing
a cluster of around N = 50 RyRs on the surface of the SR. The cluster of RyRs
is apposed to L-type Ca2+ channels located on so-called t-tubules, which are in-
vaginations of the plasma membrane into the myocyte. (The Ca2+ channels are not
involved in the spontaneous generation of Ca2+ sparks so are ignored in the model.)
The diadic space separating the SR from the t-tubules is a region of the mytoplasm
(intracellular fluid of myocytes), which is approximately cylindrical in shape with
width 10 nm and radius 100 nm. Since the diadic space is a small enclosed volume,
it supports an elevation in Ca2+ concentration relative to the bulk mytoplasm fol-
lowing the release of Ca2+ from an RyR. Such a local elevation plays a crucial role
in the Ca2+-induced Ca2+-release (CICR) that results in a Ca2+ spark. The SR in a
neighborhood of the RyRs is known as the junctional SR (JSR), which may have a
different Ca2+ concentration from the bulk or network SR (NSR).

We now briefly introduce the model of Hinch in nondimensional form; details of
model approximations and estimates of experimentally based model parameters can
be found in [276]. First, the diadic space is modeled as a single compartment with
Ca2+ concentration c satisfying the current conservation equation

τD
dc
dt

= JRyR − JD. (4.53)

Here τD is a time constant, JRyR is the total Ca2+ current through the RyRs, and JD

is the diffusive current from the diadic space to the bulk mytoplasm. The latter is
modeled as the Fickian current

JD = c− cm, (4.54)

where cm is the bulk mytoplasm Ca2+ concentration. The total current through the
RyRs is taken to be proportional to the number n of open RyRs times the Ca2+

concentration csr in the JSR:

JRyR = csrx, x =
n
N
, (4.55)

with N the total number of RyRs in the cluster. Each RyR has Ca2+-binding sites,
which can be activating or deactivating. When an RyR is in an activated state it is
promoted to a mode where it continuously opens and closes according to a Markov
process (see Sect. 1.5), with a mean open time of 1 ms [695]. The opening of an
RyR channel results in an extra Ca2+ current flowing into the diadic space, which
increases the rate at which Ca2+ binds to the other RyRs via CICR, thus creating
a positive feedback loop. This feedback loop provides a mechanism for bistability.
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Note that the RyRs also contain inactivating Ca2+-binding sites, but these do not
play a role in initiating a Ca2+ spark so are not included in the model. For simplicity,
the RyRs are modeled using a two-state Markov process involving a single closed
state and a single open state (see also [324]):

C(closed)
k+(c)�

k−
O(open), (4.56)

with transition rates

k+(c) =
1

kτo

cα

cα + 1
, k− =

1
τo
. (4.57)

diadic
space

RyRs
junctional SR

bulk
mytoplasm

JD

JRyR

t-tubules

JD

JSR

network SR

Fig. 4.4 Schematic diagram of a Ca2+ release unit in a cardiac myocyte. It is divided into four
compartments: the network SR, the junctional SR, the diadic space, and the bulk mytoplasm. See
text for details

Here τo is the mean open time of an RyR, α is the number of Ca2+ ions that are
needed to open an RyR, and k determines the proportion of time the RyRs are open.
It is assumed that the RyRs are gated independently of each other. They are, how-
ever, indirectly coupled via the Ca2+ concentration in the diadic space. The time
constant τD of diffusive flux from the diadic space is several orders of magnitude
smaller than the mean open time τo of an RyR, that is, τD ∼ 3μs whereas τo ∼ 1 ms.
Therefore, the Ca2+ concentration in the diadic space can be taken to be in quasi-
equilibrium, τD → 0, so that

c = cm + csrx. (4.58)

It follows that the transition rate can be reexpressed as a function of the fraction of
open channels and the Ca2+ concentration in the SR, k+ = k+(cm + csrx).

Now consider N independent RyRs within a Ca2+ release unit, each described
by the above two-state Markov process. Let N(t) be the number of open channels at
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time t and set pn(t) = Prob[N(t) = n|N(0) = n0]. Following along similar lines to
Sect. 1.5.1, it can be shown that pn(t) evolves according to a master equation with
transitions rates ω±(n/N) : n → n± 1:

ω+(x) = N(1− x)
(cm + csrx)α

k((cm + csrx)α + 1)
, ω−(x) = Nx. (4.59)

For the moment, it is assumed that cm and csr are fixed so that ω+ can be treated as
a function of x alone. (In Sect. 4.4.4, the dynamics of csr following initiation of a
Ca2+ spark will also be taken into account.) The units of time are fixed by setting
τo = 1. The master equation for the RyR cluster is then

d pn

dt
= ω+((n− 1)/N)pn−1+ω−((n+ 1)/N)pn+1− (ω+(n/N)+ω−(n/N))pn,

(4.60)
with boundary conditions pN+1 = p−1 ≡ 0. Multiplying both sides of the master
equation (4.60) by n/N and summing over n gives

d〈n/N〉
dt

= 〈Ω+(n/N)〉− 〈Ω−(n/N)〉, (4.61)

where ω± =NΩ±, and the brackets 〈. . .〉 denote a time-dependent ensemble averag-
ing over realizations of the stochastic dynamics, that is, 〈A(n/N)〉 = ∑n pnA(n/N)
for any function of state A(n/N). In the thermodynamic limit N → ∞ (infinite clus-
ter size), statistical correlations can be ignored so that one can take the mean-field
limit 〈Ω±(n/N)〉 → Ω±(〈n/N〉). This then yields a deterministic equation for the
fraction x of open RyRs:

dx
dt

= Ω+(x)−Ω−(x) = (1− x)
(cm + csrx)α

k((cm + csrx)α + 1)
− x. (4.62)

It can be shown that, for physiologically reasonable parameter values, this equation
exhibits bistability [276], that is, there exists a pair of stable fixed points x± sepa-
rated by an unstable fixed point x0. The fixed point x− ≈ 0 represents a quiescent
state, whereas the other fixed point x+ represents a Ca2+ spark in which a signifi-
cant fraction of RyRs are in the active mode and can be interpreted as a burst phase.
Hence, this model operates in a completely different regime to the model consid-
ered by Shuai and Jung [579], which was in a monostable state (a fixed point or
limit cycle) in the deterministic limit. Bistability of the Hinch model means that a
Ca2+ spark is a distinct event rather than a broad distribution of events.

Noise-induced transitions from x− to x+ determine the distribution of inter-spark
intervals, just as noise-induced transitions from x+ to x− determine the distribu-
tion of spark lifetimes. Hence, estimating the mean time for the occurrence of a
spark event reduces to the problem of calculating the MFPT to reach x+, starting
from a neighborhood of x−, by crossing x0. (The dominant contribution to this
MFPT is the time to reach x0, since the system then quickly relaxes to x+.) We
encountered an analogous problem in Sect. 1.5, where we considered the mean time
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for spontaneous action potential initiation due to ion-channel fluctuations. We first
estimated the MFPT by carrying out a diffusion approximation of the underlying
master equation (1.104), and calculating the MFPT of the corresponding Fokker–
Planck equation. However, the diffusion approximation resulted in exponentially
large errors. Therefore, we considered an alternative approach in Sect. 1.6, which
was based on WKB methods and asymptotic analysis. Here we consider a corre-
sponding WKB approximation of the master equation (4.60). Such an approach has
been used increasingly to analyze escape problems in chemical and biological sys-
tems [160, 164, 175, 176, 256, 339, 340], including the Ca2+ release model of Hinch
[277]. Note, however, that in contrast to the analysis of membrane voltage fluctu-
ations in Sect. 1.6, the analysis of calcium sparks is performed with respect to the
small parameter 1/N rather than ε . That is, we carry out a system-size expansion
rather than assuming fast kinetics. For the moment, we simply state the results and
leave the details to Sect. 4.4.3.

If x− is not on the boundary x = 0 then a standard analysis shows that the mean
time τi to initiate a Ca2+ spark starting from the quiescent state x− is

τi =
2π

Ω+(x−)
√|γ(x0)|γ(x−)

eN[Φ(x0)−Φ(x−)]. (4.63)

with

γ(x) =
Ω ′−(x)
Ω−(x)

− Ω ′
+(x)

Ω+(x)
, Φ(x) =

∫ x
ln

(
Ω−(y)
Ω+(y)

)
dy.

Similarly, the mean duration τ f of a spark, which corresponds to the mean time to
transition back from x+ to x−, is given by

τ f =
2π

Ω+(x+)
√|γ(x0)|γ(x+)

eN[Φ(x0)−Φ(x+)]. (4.64)

Note that at a fixed point x j, Ω+(x j) = Ω−(x j) so that sign(γ(x j)) = sign(Ω ′−(x j)−
Ω ′

+(x j)). Thus, γ(x0) < 0 (unstable) and γ(x±) > 0 (stable). One also finds that
Φ(x0) > Φ(x±) so that τi,τ f are exponentially large. It turns out that in the case of
Ca2+ release, the quiescent state x− is in an O(1/N) neighborhood of the bound-
ary x = 0, so that the prefactor of the MFPT has to be modified accordingly; see
[276, 277] for details. Nevertheless, the leading order exponential is unchanged.
From the perspective of modeling stochastic Ca2+ waves using the FDF model of
Sect. 4.3.2, the main result that emerges from the analysis of Ca2+ sparks is that the
deterministic threshold mechanism needs to be replaced by a probabilistic mecha-
nism. In the deterministic case, a cluster of receptors fires whenever the intracellular
Ca2+ crosses a fixed threshold. On the other hand, in a stochastic FDF model, Ca2+

release is a probabilistic process. Given the MFPT τi, the probability of a spark event
in a time interval t is given by

Pi(t) = 1− e−t/τi . (4.65)
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Recall that the transition rates Ω±, and thus τi, are functions of the Ca2+

concentration cm of the mytoplasm, which has so far been assumed fixed. Indeed,
one finds that the probability of release in a given time interval t is a sigmoidal
function of cm [276]. This stochastic release process can now be incorporated into
a stochastic version of the FDF model by taking the sequence of release times Tn

in (4.36) to be generated according to a sigmoidal probability distribution that is
parameterized by the Ca2+ concentration in the mytoplasm, which itself evolves
according to (4.36); see [137, 320] for details. The resulting model can be used to
simulate the spontaneous occurrence of Ca2+ waves.

4.4.3 WKB Method and Quasistationary Approximation

We now present the details of how to calculate the rate of escape from a metastable
state. Although, we focus here on the particular problem of Ca2+ release, the ba-
sic approach applies to the master equation of any bistable system in the large N
(weak noise) limit. Throughout the analysis we will switch between n/N and x,
with x treated as a continuous variable; this is a reasonable approximation when
N is large. First, note that the master equation (4.60) with the given reflecting
boundary conditions at x = 0,1 has a unique stationary state given by (see also
Sect. 1.5.1)

p∗n = p∗k
n

∏
m=k+1

Ω+((m− 1)/N)

Ω−(m/N)
= p∗k exp

(
n

∑
m=1

ln

(
Ω+((m− 1)/N)

Ω−(m/N)

))
. (4.66)

The functions Ω±(x) are smooth and the second derivatives of lnΩ±(x) are bounded
(except in the limits x → 0 and x → 1). Therefore, away from the boundaries, the
sums can be approximated by the trapezium rule [276]

n

∑
m=k

ln( f (m/N)) =
ln( f (k/N)+ ln f (n/N)

2
+N

∫ n/N

k/N
ln( f (y))dy+O(1/N),

so that

p∗n =
N√

Ω+(x)Ω−(x)
e−NΦ(x), x = n/N, (4.67)

where Φ(x) is the effective potential

Φ(x) =
∫ x

ln

(
Ω−(y)
Ω+(y)

)
dy, (4.68)

and N is a normalization factor such that ∑N
n=0 p∗n = 1.

Now suppose that we place an absorbing boundary at the unstable fixed point
x0 = n0/N. Although there no longer exists a stationary solution, the flux through
the absorbing boundary is exponentially small for large N, so that we can use a
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spectral projection method analogous to Sect. 1.6. First, rewrite the master equation
(4.60) for n = 0, . . . ,n0 as the linear system

dp
dt

= Qp, (4.69)

where p = (p0(t), p1(t), . . . , pn0(t))
T , Q is the matrix of transition rates, and

pn0(t) = 0 (absorbing boundary condition). Suppose that the eigenvalues of Q
are ordered according to 0 > λ0 ≥ Re[λ1]≥ Re[λ2]≥ . . . with corresponding eigen-

functions φ ( j)
n , and consider the eigenfunction expansion

pn(t) =
n0

∑
r=0

Cre−λrtφ (r)
n . (4.70)

We assume that |λ0| ∼ e−ηN for η = O(1), whereas λr for r > 0 are only weakly
dependent on N. It follows that all other eigenmodes decay to zero much faster than
the perturbed stationary density. Thus at large times, we have the quasistationary
approximation

pn(t)∼C0e−λ0tφ (0)
n . (4.71)

One can now use a WKB ansatz (see below) to generate a quasistationary solu-
tion φε

n for which Qφε = 0 and φε
n0
∼ O(e−ηN). Since the WKB solution does not

satisfy the absorbing boundary condition, it is necessary to perform an asymptotic
expansion in order to match the quasistationary solution with the solution in a neigh-
borhood of x0. In the process this determines λ0, whose inverse can be identified as
the MFPT to escape from the basin of attraction of the metastable state x−.

Dropping exponentially small terms and writing φε
n = φε (x) with x treated as a

continuous variable, we have

0 = Ω+(x− 1/N)φε(x− 1/N) (4.72)

+Ω−(x+ 1/N)φε(x+ 1/N)− (Ω+(x)+Ω−(x))φε (x).

We seek a WKB solution of the form

φε (x)∼ K(x;ε)e−Φ(x)/ε , (4.73)

with K(x;ε) ∼ ∑∞
m=0 εmKm(x). Substituting (4.73) into (4.72), Taylor expanding

with respect to ε , and collecting the O(1) terms gives

Ω+(x)(eΦ ′
(x)− 1)+Ω−(x)(e−Φ ′

(x)− 1) = 0, (4.74)

where Φ ′ = dΦ/dx. Solving this quadratic equation in eΦ ′
shows that

Φ =

∫ x
ln

Ω−(y)
Ω+(y)

dy or Φ = constant. (4.75)
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Proceeding to the next level, equating terms at O(ε) gives

Ω+eΦ ′
(
−K′

0

K0
+

φ ′′

2

)
+Ω−e−Φ ′

(
K′

0

K0
+

φ ′′

2

)
−Ω ′

+eΦ ′
+Ω−e−Φ ′

= 0.

Substituting for Φ using (4.74) and solving for K0 yields the following leading order
forms for φε :

φε (x) =
A√

Ω+(x)Ω−(x)
e−NΦ(x). (4.76)

with Φ given by (4.75), which is sometimes called the activation solution, and

φε (x) =
B

Ω+(x)−Ω−(x)
, (4.77)

which is sometimes called the relaxation solution. The constants A,B are determined
by matching solutions around x0. Clearly, (4.77) is singular at any fixed point x j,
where Ω+(x j) = Ω−(x j), so is not a valid solution for the required quasistationary
density. On the other hand, it does have an interpretation in terms of a corresponding
Hamiltonian–Jacobi formulation of the WKB ansatz.

The WKB ansatz was also used in the analysis of metastability in stochastic
ion-channel models in Sect. 1.6 and in the analysis of sharp interfaces for slowly
modulated pulled fronts; see Sect. 3.2.4. Following along similar lines to the latter
example, we can formally interpret (4.74) as a stationary Hamilton–Jacobi equation
H(x,Φ ′

(x)) = 0 for Φ , with Hamiltonian

H(x, p) = ∑
r=±

Ωr(x) [erp − 1] . (4.78)

This suggests a corresponding classical mechanical interpretation, in which H de-
termines the motion of a particle with position x and conjugate momentum p.
A trajectory of the particle is given by the solution of Hamilton’s equations

ẋ =
∂H
∂ p

= ∑
r=±1

rΩr(x)erp (4.79)

ṗ =−∂H
∂x

= ∑
r=±1

∂Ωr

∂x
(x) [erp − 1] . (4.80)

Here the time t should be viewed as a parameterization of paths rather than as a real
time variable. Introducing the Lagrangian

L(x, ẋ) = p · ẋ−H(x, p), (4.81)

it follows that Φ(x) with Φ(x̄) = 0 corresponds to the classical action evaluated
along the least-action trajectory from x̄ to x:

Φ(x) = inf
x(t0)=x̄,x(T )=x

∫ T

0
L(x, ẋ)dt. (4.82)
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Fig. 4.5 Phase portrait of Hamiltonian equations of motion for Ω± = ω±/N given by equation
(4.59) with cm = 0.01,ce = 4,α = 4 and k = 0.8. The zero-energy solutions are shown as thicker
curves

In terms of the underlying stochastic process X(t), the least-action path can be
interpreted as the most probable fluctuational path from x̄ to x (in the large-N limit)
[205, 398]. Since p = S′ everywhere along this path, we have

Φ(x) =
∫ x

x̄
p(x′)dx′, (4.83)

with the integral taken along the trajectory. It follows that the leading order term in
the WKB approximation is determined by finding zero-energy solutions p = p(x)
such that H(x, p(x)) = 0. One solution is p = 0 or Φ = constant, which represents
the classical action along a deterministic (or relaxation) trajectory. For example,
once the system escapes from the metastable state x−, it tends to rapidly converge to
the other metastable state x+ along such a deterministic path. (The contribution of
relaxation trajectory to the mean escape time is usually neglected.) Another solution
for Φ is (4.75), which can be interpreted as the action along a non-deterministic
path that represents the most probable path of escape from x− to x0 [160, 164, 175,
176]. In Fig. 4.5 we illustrate the Hamiltonian phase space for the model showing
the constant energy solutions of the Hamiltonian given by (4.78); the zero-energy
activation and relaxation trajectories through the fixed points of the deterministic
system are highlighted as thicker curves

Given the quasistationary approximation, the rate of escape from the metastable
state centered about x = x− can be calculated by matching it with an appropriate
inner solution in a neighborhood of the point x = x0 [160, 164, 175, 256, 277]. This
is necessary since the quasistationary solution (4.76) does not satisfy the absorbing
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boundary condition at the point x0 separating the two metastable states. There are a
number of different ways of carrying out the matched asymptotics; see, for exam-
ple, [277]. Here we will follow an approach based on fixing the probability flux J0

through x0 and then matching the activation solution for x < x0 with the relaxation
solution for x> x0 using a diffusion approximation of the full master equation (4.60)
in the vicinity of x0 [164, 175, 256]. The latter yields the Fokker–Planck equation
(1.111), which can be rewritten in the form of a conservation equation

∂
∂ t

P(x, t) =− ∂
∂x

J(x, t) (4.84)

with

J(x, t) = (Ω+(x)−Ω−(x))P(x, t)− 1
2N

∂
∂x

[(Ω+(x)+Ω−(x))P(x, t)] .

Substituting the quasistationary solution p(x, t)=C0e−λ0tΠ(x) into (4.84) and using
the fact that λ0 is exponentially small give

J0 = (Ω+(x)−Ω−(x))Π(x)− 1
2N

∂
∂x

[(Ω+(x)+Ω−(x))Π(x)] ,

where J0 is the constant flux through x0. In a neighborhood of x0, this equation can
be Taylor expanded to leading order in x− x0 and integrated to obtain the solution

Π(x) =
J0N

Ω+(x0)
e(x−x0)

2/σ 2
∫ ∞

x
e−(y−x0)

2/σ 2
dy, (4.85)

where

σ =

√
2Ω+(x0)

N[Ω ′
+(x0)−Ω ′

−(x0)]
(4.86)

determines the size of the boundary layer around x0.
In order to match the activation and relaxation solutions, the following asymp-

totic behavior of the inner solution (4.85) is used:

Π(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

NJ0σ2

(x− x0)Ω+(x0)
, x− x0 � σ

NJ0σ
√

π
Ω+(x0)

e(x−x0)
2/σ 2

, x0 − x � σ .

(4.87)

The solution to the right of the saddle matches the relaxation solution (4.77) since
Ω+(x)−Ω−(x) ≈ (x− x0)[Ω ′

+(x0)−Ω ′−(x0)] for x ≈ x0 such that B = J0. In order
to match the solution on the left-hand side of x0 with the activation solution (4.76),
Taylor expand Φ(x) about x0 using Φ ′

(x0) = 0 and Φ ′′
(x0) = 2/Nσ2. It follows that

J0 =
AΩ+(x0)√

Ω+(x0)Ω−(x0)

√
|Φ ′′

(x0)|
2πN

e−NΦ(x0). (4.88)
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The final step in the analysis is to link the flux J0 with the escape rate λ0. This is
achieved by substituting the quasistationary solution into the continuity equation
(4.84) and integrating over the interval x ∈ [0,x0] with a reflecting boundary condi-
tion at x = 0:

1
λ0

=
1
J0

∫ x0

0
φε(y)dy. (4.89)

Since the activation solution is strongly peaked around the fixed point x−, a Gaussian
approximation of φε (x) around x− yields the final result

λ0 =
Ω+(x−)

2π

√
|Φ ′′

(x0)|Φ ′′
(x−)e−N[Φ(x0)−Φ(x−)]. (4.90)

Hence, we obtain (4.63) with τi = λ−1
0 and

Φ ′′(x) =
d
dx

ln

(
Ω−(x)
Ω+(x)

)
=

Ω ′−(x)
Ω−(x)

− Ω ′
+(x)

Ω+(x)
= γ(x).

Similarly, we can obtain (4.64) for the mean time τ f to terminate a spark.

4.4.4 Stochastic Phase-Plane Analysis

In the above analysis of Ca2+ sparks, the concentration csr in the JSR was held fixed.
This is a reasonable approximation when considering the initiation of a Ca2+ spark.
However, following Ca2+ release from the RyRs, the Ca2+ concentration csr slowly
changes according to

τsr
dcsr

dt
=−csrx+ ksr[c0 − csr]. (4.91)

where τsr � τo � τD. The first term on the right-hand side is the loss of Ca2+

through the RyRs, whereas the second terms are the influx JSR of Ca2+ from the
NSR with fixed Ca2+ concentration c0; see Fig. 4.4. The variation of csr means that
one has to modify the analysis of the time to terminate the Ca2+ spark. Following
Hinch [276], this can be achieved by combining the theory of stochastic transitions
outlined in Sect. 4.4.2 with the classical phase-plane analysis of slow–fast excitable
systems such as the FitzHugh–Nagumo equations (see Sect. 2.1). That is, (4.62) and
(4.91) form an excitable system with the fraction x of open RyRs acting as the fast
variable and csr acting as the slow variable. In Fig. 4.6 we sketch the nullclines of
the deterministic system in a parameter regime where there is a single, stable fixed
point (x∗,c∗sr). In the full stochastic model, the initiation of a Ca2+ spark induces a
transition to the right-hand x-nullcline according to x−(c∗sr) → x+(c∗sr) as outlined
in Sect. 4.4.2. The slow variable then moves down the right-hand nullcline x+(csr)
according to the equation

τsr
dcsr

dt
=−csrx+(csr)+ ksr[c0 − csr]. (4.92)
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Fig. 4.6 Sketch of nullclines in the deterministic planar Ca2+ spark model with x denoting the
fraction of open RyRs and cSR the Ca2+ concentration in the junctional SR. The csr nullcline is a
monotonically decreasing function x(csr), whereas the x nullcline is cubic-like with three branches
x±(csr) and x0(csr). (Note that the branch x−(csr) ≈ 0; we have moved it away from the vertical
axis for the sake of illustration.) In the given diagram there is a single, stable fixed point on the left-
hand branch. In the stochastic version of the model a Ca2+ spark initiates a jump to the right-hand
branch x+(csr) along the lines outlined in Sect. 4.4.2. This is followed by a stochastic trajectory
in which the slow variable csr(t) moves down the nullcline until it undergoes a noise-induced
transition back to the left-hand branch before the knee at x = xc. In the deterministic case, the
return transition occurs at the knee (dashed curve)

That is, although x is a stochastic variable, it fluctuates much faster than the dynam-
ics of csr so one can substitute a time-averaged value of x in (4.91).

Suppose that csr(t) is the solution of (4.92) with csr(0) = c∗sr, that is, the Ca2+

spark occurs at t = 0. In principle, the spark can terminate at any time t > 0 due to
fluctuations in the number of open RyRs. Again using a separation of time scales,
we can estimate the rate of transition back to the left-hand branch at time t using

λ (t) =
Ω+(x+(t))

√|γ(x0(t))|γ(x+(t))
2π

eN[Φ(x+(t))−Φ(x0(t))], (4.93)

where x+(t) = x+(csr(t)), etc. One can now calculate the distribution of spark dura-
tions T . Let P(τ) = P(T > τ) and introduce the spark duration probability density

p(τ) =−dP
dτ

.

The probability that a spark terminates in an infinitesimal time interval δτ is
λ (τ)δτ , so that

P(τ + δτ) = P(τ)(1−λ (τ)δτ).
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Taking the limit δτ → 0 and integrating gives P(τ) = exp
(−∫ τ

0 λ (t)dt
)
, and hence

p(τ) = λ (τ)exp

(
−
∫ τ

0
λ (t)dt

)
. (4.94)

4.4.5 Whole-Cell Model of Ca2+ Sparks

One of the major simplifications of the Hinch model [276] is that the background
Ca2+ concentrations in the mytoplasm (cm) and the NSR (cnsr) are held fixed. It thus
fails to capture the collective behavior of a large population of Ca2+ release units
(CaRUs) that are coupled via global changes in these background concentrations
(assuming diffusion can be neglected on the relevant time scales). This has moti-
vated the development of a whole-cell model of calcium-induced calcium release
in cardiac myocytes, based on a system of N globally coupled CaRUs [672, 673].
We will describe a simplified version of the model in which Ca2+ pumps, leakage
currents, and voltage-gated Ca2+ channels are not modeled explicitly. Let c j and
ĉ j denote the Ca2+ concentration in the dyadic space and JSR of the jth CaRU,
j = 1, . . . ,N . Then

τD
dc j

dt
= J j

RyR − J j
D, τsr

dĉ j

dt
= J j

sr − J j
RyR, (4.95)

where J j
RyR is the total Ca2+ current through the RyRs, J j

D is the diffusive current

from the diadic space of the jth CaRU to the bulk mytoplasm, and J j
sr is the current

from the NSR to the JSR of the jth CaRU. The various fluxes are given by

J j
D = c j − cm, J j

RyR = x jĉ j, J j
sr = ksr[cnsr − ĉ j], (4.96)

where x j is the fraction of open RyRs in the jth CaRU. Finally, from conservation
of Ca2+ ions, the bulk concentrations cm and cnsr evolve according to

τm
dcm

dt
=−

N

∑
j=1

J j
D + Jm, τsr

dcnsr

dt
= Jnsr −

N

∑
j=1

J j
sr. (4.97)

Here Jm and Jnsr are the total external currents into the mytoplasm and NSR, respec-
tively, arising from Ca2+ pumps and other factors.

When the number N of CaRUs is large, one can develop a probability den-
sity version of the above model, which takes the form of a differential Chapman–
Kolmogorov (CK) equation describing the evolution of a single equivalent stochas-
tic CaRU [672]. The basic idea is to introduce a probability density p(c, ĉ,n, t),
with p(c, ĉ,n, t)dcdĉ interpreted as the fraction of CaRUs at time t that have Ca2+

concentrations in the range c ≤ c(t) ≤ c+ dc, ĉ ≤ ĉ(t) ≤ ĉ+ dĉ and are in the in-
ternal state n, with the latter determined by the number of open RyRs, for example.
Introduce the single CaRU equations
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τD
dc
dt

≡ F(c, ĉ,n) =
n
N

ĉ+ cm − c

τsr
dĉ
dt

≡ F̂(ĉ,n) = ksr[cnsr − ĉ]− n
N

ĉ. (4.98)

The probability density p then evolves as

∂ p
∂ t

=−∂ (F p)
∂c

− ∂ (F̂ p)
∂ ĉ

+∑
n′

A(n,n′;c, ĉ)p(c, ĉ,n′, t), (4.99)

with A(n,n′,c, ĉ) constructed from the transition rates of the master equation de-
scribing the opening and closing of RyRs within each CaRU. Note that the CK
equation (4.99) is formally similar to the CK equation (1.143) for membrane volt-
age fluctuations considered; see Sects. 1.5 and 1.6. However, the solution of (1.126)
represents the distribution of state trajectories with respect to repeated trails of a
single neuron, whereas the solution of (4.99) represents the distribution of state tra-
jectories with respect to a large ensemble of identical CaRUs. Moreover, the latter
are globally coupled due to the dependence of F, F̂ and A on the Ca2+ concentrations
cm,cnsr. Within the probabilistic framework these evolve according to the equations

τm
dcm

dt
=−

∫ ∞

0

∫ ∞

0
ρ(c, ĉ, t)[cm − c]dcdĉ+ Jm (4.100)

τsr
dcnsr

dt
= Jnsr − ksr

∫ ∞

0

∫ ∞

0
ρ(c, ĉ, t)[cnsr − ĉ]dcdĉ, (4.101)

with ρ(c, ĉ, t) = ∑n p(c, ĉ,n, t). The probability density formulation of CaRUs can
increase computational efficiency compared to Monte Carlo simulations of the full
ODE model [672, 673].

4.5 Intercellular Calcium Waves in Astrocytes

So far we have considered intracellular Ca2+ waves that propagate within a sin-
gle cell. However, one also finds intercellular Ca2+ waves (ICWs) consisting of
increases in cytoplasmic Ca2+ concentration that are communicated between cells
and appear as waves that spread out from an initiating or trigger cell. The speed and
size of ICWs depend on the initiating stimulus and the particular propagation mech-
anism. An ICW often propagates at a speed of 10–20 μm/s and lasts for periods of up
to tens of seconds, indicating that it can involve the recruitment of hundreds of con-
tiguous cells. ICWs were first observed in cultures of astrocytes (discussed below)
in response to extracellular glutamate [143], and in airway epithelial cells following
mechanical stimulation [550]. They have subsequently been found in a wide range
of cell types and under a variety of stimulus conditions, as reviewed in [380, 554].
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4.5.1 Astrocytes and the Tripartite Synapse

Within the context of the central nervous system (CNS), ICWs are emerging as a
major long-range signaling mechanism of a particular type of glial (nonneuronal)
cell known as an astrocyte; see Fig. 4.7. Other types of glial cells include oligoden-
drocytes and radial glial cells. The former are responsible for myelination in the
CNS just as Schwann cells are responsible for myelination in the peripheral ner-
vous system; see also Sect. 2.5. On the other hand, radial glial cells play a pivotal
role during development, with regard to both neuronal migration and neurogene-
sis [101]; see Sect. 9.1. Radial glial cells usually disappear post-development, but
some cells, such as Bergmann glia in the cerebellum and Muller glia in the retina,
maintain their radial glia-like properties into adulthood.

Traditionally, astrocytes were thought to be physiologically passive cells that
only play a supporting role in the CNS by regulating and optimizing the environ-
ment within which neurons operate. Their housekeeping duties include maintaining
local ion and pH homeostasis, delivering glucose and providing metabolic support
via contacts with the vasculature, and clearing neuronal waste such as metabolic
products and excess neurotransmitters in the synaptic cleft. However, over the past
20 years there has been an increasing amount of empirical data indicating that as-
trocytes play an active role in modulating synaptic transmission [253, 268, 449].
That is, astrocytes respond to synaptic neurotransmitters such as glutamate by ele-
vating their intracellular Ca2+ levels. This then results in the release of glutamate
and other signaling molecules from the astrocytes (gliotransmission), which in turn
influences synaptic activity. Thus, astrocytes could potentially contribute to higher
brain function and, consequently, behavior. This is consistent with the fact that the
number of astrocytes relative to the number of neurons increases dramatically with

Fig. 4.7 Left: Astrocyte in vitro stained with GFAP to show filaments. Right: Astrocytes stained for
GFAP, with end-feet ensheathing blood vessels [Public domain figure from Wikipedia Commons]
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brain complexity, ranging from 1:25 in the leech, 1:6 in C elegans, 1:3 in lower
mammals, to 1.4:1 in the human cortex. Conversely, it is known that following in-
jury to the nervous system or under pathological conditions such as Alzheimer’s
disease, epilepsy, and schizophrenia, the structure and protein expression of astro-
cytes are altered [564]. One interpretation of these structural changes is that they are
indicative of the supportive action of astrocytes following injury. On the other hand,
given that many CNS disorders are correlated with alterations in synaptic transmis-
sion and gliotransmission regulates synaptic processing, it is possible that changes
in gliotransmission contribute to these disorders; see Chap. 9.

In many higher organisms, astrocytes establish nonoverlapping anatomical and
functional domains of size around 100 μm, and their distribution is highly organized.

tripartite
synapse

astrocyte

blood
vessel

neuron

glutamateCa2+

A

B
C

glutamate

astrocyte

AMPAR

Fig. 4.8 Astrocytes modulate synaptic transmission and blood flow via Ca2+ signaling. Inset: the
tripartite synapse. Synaptic transmission of glutamate (A) activates not only postsynaptic recep-
tors such as AMPA but also astrocytic receptors that elevate astrocytic Ca2+ levels (B). This then
induces the local release of glutamate from the astrocyte (C), which can modulate the synapse. As-
trocytes also form a link between a neuron and the local vasculature. Increases in astrocytic Ca2+

concentration propagate via astrocyte end feet to small blood vessels, where they control vessel
diameter and blood flow
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The resulting astrocytic network parcellates the whole neutrophil such that a single
astrocyte can make contact with thousands of synapses. The processes of a single
astrocyte make contact with a synapse by wrapping around both the presynaptic and
postsynaptic domains to form what is known as a tripartite synapse [253, 268, 449];
see Fig. 4.8. Hence, from a geometrical perspective, it is well placed to modu-
late synaptic transmission. The first component of glial–neuronal interactions at a
synapse, namely, the metabotropic glutamate receptor 5 (mGluR5)-dependent eleva-
tion in astrocytic Ca2+ concentration in response to the release of glutamate neuro-
transmitters, was discovered in the early 1990s using Ca2+ imaging to study cultured
glial cells [106, 143]. Both intracellular Ca2+ oscillations and ICWs propagating be-
tween neighboring astrocytes were observed. Subsequent studies have established
that neuroglial signaling also occurs in astrocytes of isolated retina and brain slices
[265, 460]. (Note, however, that a recent study of adult rodents has called into ques-
tion the link between neuroglial Ca2+ signaling at the tripartite synapse [610]. It
would appear that the astrocytic expression of mGluR5 receptors is developmen-
tally regulated and, in particular, is undetectable in mature rodent brains; almost all
previous studies of the tripartite synapse have been in immature animals.) Follow-
ing the observation that neuronal activity increases Ca2+ levels in astrocytes, it was
subsequently discovered that the resulting Ca2+ elevation induces gliotransmission
of glutamate and a variety of other signaling molecules including ATP [249, 491].
Gliotransmission has been demonstrated to modulate synaptic transmission presy-
naptically and postsynaptically. For example, glutamate can enhance neurotransmit-
ter release presynaptically by binding to metabotropic (mGlu) receptors or kainate
receptors [189, 388]. Another example of enhanced synaptic transmission is the
binding of ATP to postsynaptic receptors, which induces elevations in Ca2+. This,
in turn, can drive the insertion of additional AMPA receptors, thus temporarily in-
creasing synaptic efficacy [236]. (The binding of ATP to postsynaptic receptors also
provides a mechanism for the propagation of ICWs via paracrine signaling; see be-
low.) On the other hand, hydrolysis of ATP results in the accumulation of adenosine,
causing a reduction of synaptic transmission [493].

In addition to directly modulating synaptic transmission, astrocytes appear to reg-
ulate NMDA-receptor function. Recall from Sect. 1.3 that NMDA receptors are cru-
cial for the induction of long-term synaptic plasticity, requiring both glutamate and
postsynaptic depolarization in order to activate. The opening of an NMDA channel
leads to a temporary increase of intracellular Ca2+ within the postsynaptic domain,
whose amplitude and temporal profile determine whether the synapse is potentiated
or depressed. It turns out that there is an additional glycine-binding site that regu-
lates NMDA-receptor activity, whose co-agonist D-serine is released by astrocytes
during gliotransmission. Increases in the level of D-serine appear to shift the bal-
ance point of long-term plasticity from depression to potentiation [485], a process
known as metaplasticity. Finally, not only does astrocytic Ca2+ signaling modulate
synaptic transmission and plasticity, it also controls blood flow, since intracellular
waves propagate to small blood vessels via astrocyte end feet, where they control
vessel diameter; see Fig. 4.8.
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Following the original studies of ICWs in astrocyte cultures [106, 143], intra-
cellular Ca2+ wave propagation between astrocytes has been observed in vitro in
brain slices and whole retina preparations [265, 460, 492]. These empirical findings,
combined with the structure of the tripartite synapse, have led to the suggestion that
networks of astrocytes could form an extraneuronal pathway for rapid long-distance
signaling within the CNS, which interacts reciprocally with neuronal networks. In
particular, ICWs could provide a potential mechanism for coordinating and synchro-
nizing the activity of a large group of neuronal and nonneuronal cells. It should be
pointed out, however, that the function of ICWs in astrocytes remains controversial,
since there have been very few in vivo observations of ICWs in the CNS, excluding
the case of spontaneous ICWs during early development where astrocytes play a
role in the generation, differentiation, and migration of neurons [666]; see Sect. 9.1.
One recent exception is a study demonstrating in vivo spontaneous ICWs (termed
glissandi) in mouse hippocampal astrocytes. (ICWs have also been observed in vivo
in other glial networks, e.g., Bergmann glia in the cerebellum of rodents [287].) An-
other concern regarding the functional role of ICWs, either in vitro or in vivo, is
whether they require strong inducing stimuli that do not have a normal physiolog-
ical counterpart. On the other hand, certain pathological conditions such as brain
trauma, brain ischemia (oxygen deprivation), and seizures are often associated with
strong stimuli. They are all coupled with the release of ATP and glutamate and re-
ductions in the level of extracellular Ca2+ that collectively could promote ICW gen-
eration. Such ICWs could exacerbate an injury by propagating signals that initiate

IP3
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Ca2+
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Fig. 4.9 Two mechanisms for the propagation of ICWs. Local stimulation of a single cell induces
an elevation in intracellular IP3 that generates an intracellular Ca2+ wave. Diffusion of IP3 through
gap-junction coupling with an adjacent cell initiates a second intracellular Ca2+ wave. In addi-
tion, or alternatively, stimulation of the first cell releases ATP via hemichannels in the plasma
membrane or vesicular release; this could also be dependent on intracellular Ca2+. The extracel-
lular diffusion of ATP to neighboring cells can activate metabotropic receptors that then stimulate
the production of IP3 and the production of downstream intracellular Ca2+ waves
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cell apoptosis (cell death) in surrounding cells [681]. There is also growing evidence
that ICWs provide a source of excitation during epileptic episodes [564, 647, 668];
see Sect. 9.4. For example, studies of a brain slice that exhibits epileptiform activ-
ity, showed that there was also a corresponding increase in the frequency of Ca2+

oscillations in astrocytes [623]. Moreover, the release of glutamate from astrocytes
has been observed to cause synchronous neuronal depolarizations [186].

4.5.2 Mechanisms and Models of Intercellular Calcium Waves

There are thought to be two basic mechanisms for the propagation of ICWs between
adjacent cells that occur in astrocytes and other cell types: (a) diffusion of the sec-
ond messenger IP3 and, to a lesser extent, Ca2+ via gap junctions; (b) paracrine
signaling via a diffusing extracellular messenger such as ATP. These mechanisms
are illustrated in Fig. 4.9.

Gap-Junction Signaling

Gap junctions are arrays of transmembrane channels that connect the cytoplasm of
two neighboring cells and thus provide a direct diffusion pathway between the cells.
Cells sharing a gap-junction channel each provides a hemichannel (also known as
a connexon) that connect head-to-head [545]. Each hemichannel is composed of
proteins called connexins that exist as various isoforms named Cx23 through Cx62,
with Cx43 being the most common. The physiological properties of a gap junction,
including its permeability and gating characteristics, are determined by the partic-
ular connexins forming the channel. Although gap junctions are readily permeable
to Ca2+ and IP3, the diffusion of Ca2+ through a channel is greatly restricted due
to buffering, so that the propagation of ICWs is primarily mediated by the diffu-
sion of IP3 when gap junctions are the main mechanism. The possible role of gap
junctions in the propagation of ICWs was initially suggested by the observation in
epithelial cells that waves only spread in adjacent cells from localized membrane
sites in direct contact with the initiating cell. Moreover, the ICWs were not influ-
enced by fluid flow over the apical surface of cells, that would have interfered with
extracellular signals [259]. Further evidence for the role of gap junctions came from
the study of glioma cells that lacked gap junctions [107]. These cells only supported
ICWs when they were transfected with connexins; however, the presence of connex-
ins could also enhance ATP and thus contribute to paracrine signaling (see below).
Subsequent experimental and modeling studies have established that the diffusion
of IP3 through gap junctions can support the propagation of ICWs [379, 591]. In
particular, ICWs could be initiated by an elevation of IP3 in a single cell followed
by diffusion to other cells without any regeneration of IP3. On the other hand, the
range of the waves tends to be limited to only a few cells, suggesting that some other
mechanism may be needed in order to generate longer-range waves.
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The first model of ICWs mediated by gap junctions was based on studies of
mechanical stimulation of cultured epithelial cells [590, 591]. It has subsequently
been extended to models of ICWs in networks of astrocytes of varying complexity
[163, 281, 310]. The models all have the same basic structure, but differ in terms of
whether or not regenerative mechanisms or extracellular signaling mechanisms are
included. A simple 1D version of an ICW model is shown in Fig. 4.10. Each cell is
treated as a square of size L with local coordinates (x,y), 0 ≤ x,y ≤ L. There are N
cells labeled n = 1, . . . ,N arranged on a regular lattice with nearest neighbor cou-
pling. The intracellular dynamics within each cell is described by reaction–diffusion
equations of the form given in Sect. 4.2. For example, in the original model of Sneyd
et al. [591], this included equations for cytoplasmic Ca2+ concentration (cn), IP3

concentration pn, and a slow variable hn representing the fraction of IP3 receptors
that have not been inactivated by Ca2+. An example of an intracellular model for
the nth cell is (see, e.g., [280])

∂ pn

∂ t
= Dp∇2 pn − kppn, (4.102a)

∂cn

∂ t
= Dc∇2 pn − kccn + f (cn,hn, pn), (4.102b)

τh
dhn

dt
= h∞(cn)− hn. (4.102c)

n-1 n+1n

cn, pn, hn

L

y

x

IP3
input Jn

Fig. 4.10 Schematic diagram of a 1D model of intercellular Ca2+ waves mediated by gap junctions

Here the nonlinear function f represents the net flux due to Ca2+ release from IP3

receptors. It is usually assumed that Dp � Dc due to Ca2+ buffering. Coupling
between adjacent cells in incorporated into the model using the boundary conditions
for IP3. Thus along the common vertical edge between cells n−1 and n, 1 < n < N,
the IP3 flux Jn is taken to be of the form

−Dp
∂ pn−1(x,y)

∂x

∣∣∣∣
x=L

= Dp
∂ pn(x,y)

∂x

∣∣∣∣
x=0

≡ K [pn−1(L,y)− pn(0,y)]. (4.103)

These are supplemented by no-flux boundary conditions for IP3 across all other
edges; all cell borders are assumed to be impermeable to Ca2+. In a 2D version of
the model arranged on a square grid, IP3 can also flow across common horizontal
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edges of neighboring cells, while no-flux boundary conditions are imposed along the
exterior boundary of the grid. A typical simulation of such a model is to inject IP3

in the cell at one end of the lattice, which is then allowed to diffuse from cell to cell,
resulting in the propagation of an intracellular calcium wave. It is important to note
that the ICW is not a traveling wave in the mathematical sense used throughout this
book. Rather, the spread of Ca2+ is mediated by passive diffusion of intracellular
Ca2+ and intra-/intercellular IP3. Thus the rate of spread decreases with distance
from the stimulated cell, and the arrival time of the wave increases exponentially
with distance. In order to create more persistent ICWs, it is necessary to incorporate
some regenerative mechanism. One example of such a mechanism is to assume that
the rate of production of IP3 can be amplified by intracellular Ca2+ so that (4.102a)
becomes [281]

∂ pn

∂ t
= Dp∇2 pn +

νc2
n

K + c2
n
− kppn.

Hofer et al. [281] showed that for an intermediate range of values of ν , partial re-
generation of IP3 supports ICWs that propagate further than those relying solely
on passive diffusion of IP3. Finally, an alternative mechanism for increasing the
range of ICWs, which does not require some form of regeneration or active process,
is to combine gap-junction coupling with an extracellular pathway involving ATP
[163, 310]; see below.

Paracrine Signaling

Early evidence for the involvement of an extracellular component to ICWs arose
from the observation that ICWs can propagate between disconnected groups of as-
trocytes, provided that the degree of separation does not exceed around 100 μm
[266]. More recently, advanced imaging techniques have revealed that ICWs are
associated with a cloud of extracellular ATP [249, 457]. There are a variety of
pathways that could mediate ATP release, including hemichannels in the plasma
membrane and vesicular discharge. Modeling studies suggest that a combination of
gap-junction and paracrine signaling can significantly increase the range of ICWs
[298]. It is also possible that there is a regenerative mechanism that boosts the propa-
gation of ICWs. One candidate for active rather than passive (diffusive) wave prop-
agation is Ca2+-dependent ATP release via connexin hemichannels [652]. In the
case of astrocytes, the dominant propagation mechanism depends on where they
are located within the nervous system. For example, ICWs in the neocortex tend to
be mediated by gap junctions, whereas in the hippocampus, both gap-junction and
paracrine signaling play a role.

Here we will describe a mathematical model of paracrine signaling in astrocyte
networks due to Bennett et al. [37]. Suppose that a(t) denotes the extracellular con-
centration of ATP in the vicinity of a single cell. ATP binds to metabotropic P2Y
receptors in the cell membrane according to the first-order kinetic scheme
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AT P+R
k+�
k−

R.

In the case of fast binding kinetics, the fraction of P2Y receptors that are bound by
ATP is given by the quasi-equilibrium solution

r =
a

KR + a
, KR =

k−
k+

. (4.104)

This then drives activation of G-proteins according to the kinetic scheme

G0
ka(r+r0)�

kd

G1,

where G0,1 represent the inactive and active states of the G-protein. Denoting the
amount of activated protein by g and the total G-protein by gT , we have

dg
dt

= ka(r+ r0)(gT − g)− kdg. (4.105)

Again assuming fast kinetics, the quasi-equilibrium solution is

g = gT
r+ r0

KG + r+ r0
, KG =

kd

ka
. (4.106)

A major simplification of the model is to assume that the release of IP3 within the
cell is mainly driven by activation of G-protein so that Ca2+ dependence is ignored.
If p is the intracellular IP3 concentration then

d p
dt

= κg− kdegp, (4.107)

for constants κ ,kdeg. The next stage of paracrine signaling, namely, the release of
ATP by astrocytes is not yet well understood. However, IP3 as a triggering mech-
anism, possibly via Ca2+ release from intracellular stores, is probably involved. In
the model of Bennett et al. [37], IP3 is assumed to directly cause ATP release from
the cell surface into the extracellular space at the rate

JATP(p, t) = κATPχ(t)
[

p− pmin

Krel + p

]
0
. (4.108)

Here κATP and Krel are constants, [z]0 = z for z > 0 and [z]0 = 0 for z < 0, and χ(t)
takes into account depletion of ATP stores within the cell. That is χ(0) = 1 and

dχ
dt

=−γJATP(t). (4.109)

The rate of ATP release is thresholded in order to insure that very small levels of
ATP are not amplified, and the depletion factor χ(t) is included in order to terminate
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ATP release; the latter is motivated by the observation that ATP release is suppressed
by repeated stimulation of a cell.

Finally, coupling between cells is modeled in terms of a diffusion equation for the
extracellular ATP concentration that takes into account the IP3-mediated release of
ATP from the astrocytes. One way to proceed would be to use a continuum bidomain
model, in which astrocytes and extracellular ATP coexist at every point in space.
Taking a = a(x, t), p = p(x, t) and denoting the density of astrocytes by ρ(x), we
would then have

∂a
∂ t

= DATP∇2a+ρ(x)JATP(p, t)− a
Kdeg + a

. (4.110)

Alternatively, one could explicitly distinguish between extracellular space and the
intracellular space of astrocytes, in which case the fluxes JATP only exist at the
boundaries of the cells. The latter approach is used in the computer simulations of
Bennett et al. [37], who take a simplified cubic geometry for the astrocytes and also
allow for intracellular diffusion of IP3. Note that under a quasi-steady-state approx-
imation, (4.107) and (4.110) form a closed system of differential equations, since
(4.104) and (4.107) can be used to express g in terms of a. Hence, one can solve for
the ATP and IP3 concentrations independently of Ca2+ and then incorporate ICWs
by using the IP3 to drive a standard model of Ca2+ release from intracellular stores
such as Li–Rinzel. However, if there is regenerative Ca2+-dependent production of
IP3 or a Ca2+-dependent mechanism for gliotransmission of ATP, then it is neces-
sary to couple the Ca2+ dynamics to that of IP3 and ATP.

Ωc
Ωe

Γ

ε

Fig. 4.11 Illustration of a 2D periodic heterogeneous medium consisting of a cytosolic domain Ωc

and an ER domain Ωe separated by a boundary Γ
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4.6 Appendix: Homogenization

As we noted in Sect. 4.2, it is not practical to try modeling the detailed microstruc-
ture of the cytoplasmic and ER boundaries, which are highly interleaved. This moti-
vates consideration of a mean-field description of the Ca2+ concentrations, in which
the concentrations c,ce are taken to coexist at every point in space with effective dif-
fusion coefficients. As shown by Goel et al. [224], the resulting bidomain model can
be derived from first principles using homogenization theory. In this appendix we
sketch the basic steps in their derivation. Note that we also encountered a 1D ex-
ample of homogenization theory in Sect. 3.2.3, where we spatially averaged over a
discrete distribution of dendritic spines.

Consider a domain Ω ⊂R
3 in which the ER is treated as a periodic network that

occupies a fraction of Ω , as illustrated in Fig. 4.11. For simplicity, assume that the
unit cell is a cube of length ε . The ER Ca2+ occupies a connected domain Ω ε

e , and
the complementary connected domain Ω ε

c = Ω/Ω ε
e is occupied by cytosolic Ca2+.

The concentrations cε and cε
e satisfy the 3D diffusion equation in their respective

domains:

∂c
∂ t

= ∇ · (Aε(x/ε)∇c(x)), x ∈ Ω ε
c (4.111a)

∂ce

∂ t
= ∇ · (Bε(x/ε)∇ce(x)), x ∈ Ω ε

e , (4.111b)

where Aε and Bε are the diffusion tensors for Ca2+ in the cytosol and ER, respec-
tively. The boundary conditions on the membrane Γε separating the cytosol from the
ER take the form

Aε(x/ε)∇c(x) ·nε
c = ε f (cε ,cε

e), onΓε (4.112a)

−Bε(x/ε)∇ce(x) ·nε
c = ε f (cε ,cε

e), onΓε , (4.112b)

where nε
c ,n

ε
e denote the unit exterior normals to the boundaries ∂Ω ε

c and ∂Ω ε
e , re-

spectively, satisfying nε
c =−nε

e on Γε , and f determines the net flux from the ER to
the cytosol.

The basic idea of the homogenization method is to supplement the macro-
scopic spatial variables x = (x1,x2,x3) with a set of microscopic variables y =
(y1,y2,y3),0 ≤ yi ≤ 1, that are the coordinates of a unit cube [496, 630]. Denote
by Ωc (Ωe) the set of points y = x/ε in the unit cube for which x ∈ Ω ε

c (x ∈ Ω ε
e ).

The concentrations cε ,cε
e are then taken to be functions of x and y with x∈Ω ,y∈Ωc

for cε , and x ∈ Ω ,y ∈ Ωe for cε
e :

cε = c(x,y, t), cε
e = ce(x,y, t) (4.113)

with y = x/ε . The next step is to introduce formal asymptotic expansion for cε and
cε

e of the form

cε = c0(x,y, t)+ εc1(x,y, t)+ ε2c2(x,y, t)+ . . . (4.114a)

cε
e = c0

e(x,y, t)+ εc1
e(x,y, t)+ ε2c2

e(x,y, t)+ . . . , (4.114b)
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where ck and ck
e are 1-periodic functions of y. Setting

∇u = ∇xu(x,y)+ ε−1∇yu(x,y),

it follows that (4.111) becomes

∂cε

∂ t
=
(
ε−2∇y · (Aε(y)∇y)+ ε−1[∇x · (Aε(y)∇y)+∇y · (Aε(y)∇x)]+Aε(y)∇2

x
)

cε

forx ∈ Ω ,y ∈ Ωc (4.115a)

∂cε
e

∂ t
=
(
ε−2∇y · (Bε(y)∇y)+ ε−1[∇x · (Bε(y)∇y)+∇y · (Bε(y)∇x)]+Aε(y)∇2

x
)

cε
e

forx ∈ Ω ,y ∈ Ωe, (4.115b)

and the boundary conditions (4.112) become

Aε(y)
[
∇x + ε−1∇y

]
c ·nε

c = ε f (cε ,cε
e), forx ∈ Ω ,y ∈ Γε (4.116a)

−Bε(y)
[
∇x + ε−1∇y

]
ce ·nε

c = ε f (cε ,cε
e), forx ∈ Ω ,y ∈ Γε . (4.116b)

Substituting the asymptotic expansions for cε and cε
e and collecting terms of the

same order in ε then yields a hierarchy of equations for ck,ck
e. At O(ε−2), we have

∇y · (Aε(y)∇y)c
0 = 0, y ∈ Ωc (4.117a)

∇y · (Bε(y)∇y)c
0
e = 0, y ∈ Ωe. (4.117b)

together with the boundary conditions

Aε(y)∇yc ·n = 0 = Bε(y)∇yc0
e ·n, y ∈ Γ , (4.118)

where n is a unit normal on Γ . For fixed x, the only periodic solution to these equa-
tions is c0 = constant,c0

e = constant, that is,

c0 = c0(x, t), c0
e = c0

e(x, t). (4.119)

The O(ε−1) equations are

∇y ·
(
Aε(y)

[
∇xc0 +∇yc1])= 0, y ∈ Ωc (4.120a)

∇y ·
(
Bε(y)

[
∇xc0

e +∇yc1
e

])
= 0, y ∈ Ωe, (4.120b)

together with the boundary conditions

Aε(y)[∇xc0 +∇yc1] ·n = 0 = Bε(y)[∇xc0
e +∇yc1

e ] ·n, y ∈ Γ . (4.121)

The solutions for c1 and c1
e can be written in the form

c1(x,y, t) =
3

∑
i=1

V c
i (y)

∂c0(x, t)
∂xi

+ c̄1(x, t), (4.122a)
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c1
e(x,y, t) =

3

∑
i=1

V e
i (y)

∂c0
e(x, t)
∂xi

+ c̄1
e(x, t), (4.122b)

with the 1-periodic vectors Vc and Ve satisfying the “cell equations”

∇y · (Aε(y) [∇yV c
k (y)+ ek]) = 0, y ∈ Ωc (4.123a)

∇y · (Bε(y) [∇yV e
k (y)+ ek]) = 0, y ∈ Ωe, (4.123b)

and

Aε(y)[∇yV c
k (y)+ ek] ·n = 0 = Bε(y)[∇yV e

k (y)+ ek] ·n, y ∈ Γ , (4.124)

for k = 1,2,3, where ek is the vector with components e jk = δ jk.
In order to derive mean-field equations for the homogenized concentrations

c0,c0
e , it is necessary to proceed to O(1), for which

∇x ·
[
Aε(y)(∇xc0 +∇yc1)

]
+∇y ·

[
Aε(y)(∇xc1 +∇yc2)

]
=

∂c0

∂ t
, y ∈ Ωc

(4.125a)

∇x ·
[
Bε(y)(∇xc0

e +∇yc1
e)
]
+∇y ·

[
Bε(y)(∇xc1

e +∇yc2
e)
]
=

∂c0
e

∂ t
, y ∈ Ωe

(4.125b)

with boundary conditions

Aε(y)[∇xc1 +∇yc2] ·n = f (c0,c0
e), y ∈ Γ (4.126a)

Bε(y)[∇xc1 +∇yc2] ·n =− f (c0,c0
e), y ∈ Γ . (4.126b)

Integrating (4.125a) over Ωc gives

∫
Ωc

(
∇x ·

[
Aε(y)(∇xc0 +∇yc1)

]
+∇y ·

[
Aε(y)(∇xc1 +∇yc2)

])
dy = |Ωc|∂c0

∂ t
,

(4.127)
where |Ωc| is the volume fraction of the unit cell occupied by the cytosol. Using
(4.122a), the first term on the left-hand side becomes

∫
Ωc

∇x ·
[
Aε(y)(∇xc0 +∇yc1)

]
dy

=
∫

Ωc

∇x ·
[

Aε(y)(∇xc0 +∇y

(
3

∑
i=1

V c
i (y)

∂c0

∂xi

)]
dy

= ∇x ·
(
Ãε ∇xc0) ,

where

[Ãε ]ik =

∫
Ωc

∑
j

[Aε(y)]i j

[
∂V c

k (y)
∂y j

+ δ j,k

]
dy. (4.128)
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Finally, applying the divergence theorem to the second term on the left-hand side of
(4.127),

∫
Ωc

∇y ·
[
Aε(y)(∇xc1 +∇yc2)

]
dy =

∫
Γ

Aε(y)(∇xc1 +∇yc2) ·ndΓ (y)

=

∫
Γ

f (c0,c0
e)dΓ (y)

= |Γ | f (c0,c0
e).

Combining all of the results, we obtain a macroscopic equation for c0 given by

|Ωc|∂c0

∂ t
= ∇x ·

(
Ãε ∇xc0)+ |Γ | f (c0,c0

e). (4.129)

Proceeding in an identical fashion, we also obtain a macroscopic equation for c0
e :

|Ωe|∂c0
e

∂ t
= ∇x ·

(
B̃ε ∇xc0

e

)−|Γ | f (c0,c0
e), (4.130)

where B̃ε is defined according to (4.128) with Aε replaced by Bε on the right-hand
side. Equations (4.129) and (4.130) constitute a bidomain model with homogenized
diffusion tensors Ãε and B̃ε . The latter can be determined by solving the cell equa-
tions (4.123) and (4.124) for Vc and Ve. Goel et al. [224] calculated effective dif-
fusion tensors for several different ER microstructures. They found that diffusion in
the cytoplasm could be halved as the ER volume fraction increased from 0 to 0.9.
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