
Chapter 3
Wave Propagation Along Spiny Dendrites

The majority of excitatory synapses that occur in the cerebral cortex are located
on tiny specialized protoplasmic protuberances called dendritic spines [607]; see
Fig. 3.1. They typically occupy 20–70 % of the total dendritic membrane. Since the
input impedance of a spine head is typically large, a small excitatory synaptic cur-
rent can produce a large local depolarization. Moreover, the thin stem neck con-
necting the spine to the main body of the dendrite provides an axial resistance that
partially decouples the spine-head dynamics from the dendritic tree. Hence, it has
long been theorized that the dendritic spine is a favorable site for the initiation of
an action potential [427, 572] and is thus a possible substrate for local computa-
tions [571]. Modeling studies also suggest that if the heads of dendritic spines have
excitable membrane properties, then the spread of current from one spine along
the dendrites could bring adjacent spines to their thresholds for impulse genera-
tion. The result would be a sequence of spine-head action potentials, representing
a saltatory propagating wave in the distal dendritic branches [19, 129]. Calcium-
imaging experiments provide strong evidence that the spine heads are endowed with
voltage-dependent Na+ and Ca2+ channels that can indeed support an all-or-nothing
response to an excitatory synaptic input [694].

Early theoretical studies of spines also considered their potential role in synaptic
plasticity and Hebbian learning. This was motivated by the idea that small changes
in spine morphology, such as changes in the width of the spine neck, could lead
to large changes in the amplitude of response to excitatory synaptic inputs on to
the spine. It is now known that spines are rich in actin filaments, which have the
capacity to drive such changes in spine shape [413]. Moreover, there is increasing
experimental evidence that the growth and removal of spines provides an impor-
tant substrate for structural changes during brain development [410, 480, 693]. It
is less clear whether changes in spine morphology play a significant role in adult
plasticity. Nevertheless, the basic geometry of a spine does provide an isolated bio-
chemical microenvironment for Ca2+ to accumulate, and Ca2+ is thought to be a
major chemical signal for the induction of synaptic plasticity [343, 462]. The dy-
namics of calcium diffusion in dendritic spines has been explored in a number of
computational models [202, 283].

P.C. Bressloff, Waves in Neural Media: From Single Neurons to Neural Fields,
Lecture Notes on Mathematical Modelling in the Life Sciences,
DOI 10.1007/978-1-4614-8866-8 3, © Springer Science+Business Media New York 2014

101



102 3 Wave Propagation Along Spiny Dendrites

Fig. 3.1 An example of a piece of spine-studded dendritic tissue (from rat hippocampal region
CA1 stratum radiatum). Magnified view on right-hand side shows a dendrite ∼5μm in length.
Taken with permission from SynapseWeb, Kristen M. Harris, PI, http://synapses.clm.utexas.edu/

Another important signaling molecule involved in the induction of synaptic
plasticity is Ca2+–calmodulin-dependent protein kinase II (CaMKII) [295, 386].
CaMKII is also found to be abundant within dendritic spines, where it can de-
tect changes in the local levels of Ca2+ entering the synapse following plasticity-
inducing stimuli, via binding of CaMKII to Ca2+/CaM. Confinement of CaMKII
within spines arises from the geometry of the spine and through interactions with
protein receptors and cytoskeletal elements within the postsynaptic density (PSD),
which is the protein-rich region at the tip of the spine head. Activated CaMKII phos-
phorylates substrates responsible for the expression of synaptic plasticity, namely,
the number and the conductivity of synaptic AMPA receptors [151, 370]. More-
over, once activated, CaMKII can transition into a Ca2+/CaM-independent, hyper-
activated state via the autophosphorylation of neighboring enzymatic subunits and
thus continue to phosphorylate its substrates even after the plasticity-inducing Ca2+

signal has ended [261, 427, 547, 689]. Experimentally, translocation of CaMKII
into spines can be induced in a local region of dendrite by exposing it to a puff
of glutamate, and this can initiate a wave of CaMKII translocation that spreads
towards the distal end of the dendrite with an average speed of ∼1μm/s [532].
It is found that the wave is preceded by a much faster Ca2+-mediated spike
that propagates along the dendrite (see above), which could provide a mecha-
nism for priming CaMKII outside the stimulus region for diffusion-based acti-
vation. Moreover, the CaMKII translocation wave is associated with an increase
in AMPA receptor numbers at both stimulated and nonstimulated synapses [532].
This suggests that it could provide a possible molecular substrate for heterosynaptic
plasticity.

http://synapses.clm.utexas.edu/
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In this chapter we consider two mathematical models of wave propagation along
spiny dendrites: (I) a spike–diffuse–spike model of spine-mediated spikes [129, 139]
and (II) a reaction–diffusion model of CaMKII translocation waves [72, 161]. The
former model introduces methods for analyzing solitary waves propagating in spik-
ing networks; see also Sect. 5.4. The latter model turns out to be identical in form to
the diffusive SI model introduced by Noble [464] to explain the spread of bubonic
plague through Europe in the fourteenth century. This, in turn, is a generalization
of the scalar Fisher–KPP equation [191, 345] which was originally introduced to
model the invasion of a gene into a population. One characteristic feature of such
equations is that they support traveling fronts propagating into an unstable steady
state, in which the wave speed and longtime asymptotics are determined by the
dynamics in the leading edge of the wave—so-called pulled fronts [544]. In par-
ticular, a sufficiently localized initial perturbation will asymptotically approach the
traveling front solution that has the minimum possible wave speed. Hence, pulled
fronts have very different properties from those found for the bistable equation in
Sect. 2.2. Another important topic raised by these models is how to use homog-
enization methods to approximate the discrete distribution of spines by a smooth
distribution.

3.1 Solitary Waves in a Spike–Diffuse–Spike Model
of Active Spines

The first theoretical study of active wave propagation along a dendritic cable that
is mediated by dendritic spines was carried out by Baer and Rinzel [19]. They con-
sidered a continuum model of a dendritic tree coupled to a distribution of excitable
dendritic spines. The active spine-head dynamics is modeled with Hodgkin–Huxley
kinetics, while the (distal) dendritic tissue is modeled with the cable equation. The
spine head is coupled to the cable via a spine-stem resistance that delivers a cur-
rent proportional to the number of spines at the contact point. There is no direct
coupling between neighboring spines; voltage spread along the cable is the only
way for spines to interact. Numerical studies of the Baer–Rinzel model [19] show
both smooth and saltatory traveling wave solutions, the former arising in the case
of uniform spine distributions and the latter when spines are clustered in groups.
The saltatory nature of a propagating wave may be directly attributed to the fact that
active spine clusters are physically separated. In this section we describe an alterna-
tive, analytically tractable treatment of saltatory waves based on the so-called spike–
diffuse–spike (SDS) model of active dendritic spines [129, 138, 624, 625], which
reduces the spine-head dynamics to an all-or-nothing action potential response.

In order to formulate the model, we first consider a continuum of spines with
ρ(x) representing the spine density per unit length along a uniform, passive dendritic
cable. Denoting the voltage at position x on the cable at time t by V = V (x, t), the
associated cable equation is given by (see Sect. 1.4)

∂V
∂ t

=− V
τm

+Dm
∂ 2V
∂x2 +ρ(x)

a−V
Cmrs

, (3.1)
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Fig. 3.2 Schematic diagram of a dendritic cable with active spines

where Dm = λ 2
m/τm with τm and λm the membrane time and space constants of the

cable, Cm is the membrane capacitance per unit length, and rs is the spine-stem resis-
tance of an individual spine. In the SDS model, the function a(x, t) represents the se-
quence of action potentials generated in the spine head at x whenever the associated
subthreshold spine-head potential U(x, t), driven by current from the shaft, crosses
some threshold h. Given the high resistance of the spine stem, we neglect subthresh-
old currents into the cable. The voltage U evolves according to the integrate-and-fire
(IF) equation (see Sect. 5.3)

Ĉs
∂U
∂ t

=−U
r̂s
+

V −U
rs

, (3.2)

such that whenever U crosses the threshold h it is immediately reset to zero. Here
Ĉs and r̂s are the membrane capacitance and resistance of the spine head; see
Fig. 3.2. Let T j(x) denote the jth firing time of the spine head at position x such
that U(x,T j(x)) = h. Then

a(x, t) = ∑
j

η(t −T j(x)), (3.3)

with η(t) = 0 for all t < 0. The shape of the action potential is specified by the
function η(t), which can be fitted to the universal shape of an action potential.

3.1.1 Existence of a Solitary Wave for a Uniform Density

Let us begin by considering the simplest case of a uniform spine density ρ(x) = ρ0

and a rectangular pulse shape of height η0 and duration τd . We define a solitary
wave as one that causes the spine head at x to reach threshold only once at the
time t = T (x)≡ x/c. We recognize c as the speed of the wave so that a(x, t) = η(t−
x/c), which suggests adopting a moving coordinate frame ξ = ct−x. Equation (3.1)
becomes

DmVξ ξ (ξ )− cVξ (ξ )− (τ−1
m +β )V(ξ ) =−β a(ξ/c), (3.4)
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where β = ρ0/(Cmrs), and

a(ξ ) =

⎧

⎪

⎨

⎪

⎩

0 −∞ < ξ < 0

η0 0 < ξ < cτd

0 ξ > cτd .

(3.5)

If one is looking for traveling pulses which satisfy limξ→±∞ V (ξ ) = 0, then the
solution to (3.4) takes the form

V (ξ ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

α1 exp(m+ξ ), −∞ < ξ < 0

α2 exp(m+ξ )+α3 exp(m−ξ )+ β η0

τ−1
m +β

, 0 < ξ < cτd

α4 exp(m−ξ ), ξ > cτd

(3.6)

with

m± =
c±
√

c2 + 4Dm(τ−1
m +β )

2Dm
. (3.7)

By ensuring the continuity of the solution and its first derivative at ξ = 0 and ξ = cτd

one may solve for the unknowns α1 . . .α4 as

α1 = α3
m−
m+

[1− exp(−m+cτd)], (3.8)

α2 =−α3
m−
m+

exp(−m+cτd), (3.9)

α3 =
β η0

τ−1
m +β

m+

(m−−m+)
, (3.10)

α4 = α3[1− exp(−m−cτd)]. (3.11)

As yet the speed of the pulse is undetermined. However, by demanding that
the IF process in the spine head reaches threshold at ξ = 0 and that limξ→±∞
U(ξ ) = 0, one can determine a self-consistent value for the speed of the traveling
wave along similar lines to the analysis of solitary waves in one-dimensional net-
works of IF neurons [62, 63, 167]; see Sect. 5.4. In the traveling coordinate frame,
(3.2) becomes

cĈsUξ =−gsU +
V
rs

(3.12)

with U(0) = h and gs = r−1
s + r̂−1

s . This first-order system may be solved as

U(ξ ) = exp(−ξ/[cτ̂])
[

h− 1

cĈsrs

∫ 0

ξ
V (ξ ′)exp(ξ ′/[cτ̂])dξ ′

]

, (3.13)
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Fig. 3.3 Speed of a traveling pulse as a function of uniform spine density ρ0 for τm = Dm = 1,
h = 2.5, rs = 2, r̂s = 0.8, Ĉs = 1, Cm = 1, τd = 2, η0 = 100. The crosses show the results of a direct
numerical simulation of the SDS model with N = 200 discrete spines uniformly distributed along
a cable of length L = 10

where τ̂ = Ĉs/gs. In order for this to be bounded as ξ → −∞, the term inside the
large parentheses must vanish as ξ → −∞. This yields the dispersion relationship
for the speed of the pulse as a function of system parameters:

h =
1

Ĉsrs

α1

τ̂−1 + cm+
(3.14)

In Fig. 3.3 we plot dispersion curves for the speed c of a traveling pulse as a function
of the spine density ρ0, which are obtained by numerically solving (3.14). Note that
there are two solution branches for a given density ρ0. Direct simulations suggest
that it is the upper (faster) branch that is stable, which can be confirmed analytically
using linear stability analysis (see below). Figure 3.3 also shows that for a wide
range of ρ0 the speed of the stable wave is approximately λm/τm in physical units,
in agreement with the original observations of Baer and Rinzel [19].

One useful feature of the SDS model is that it yields an exact expression for the
speed of the wave that can easily be solved to obtain the dependence in terms of
other system parameters such as the spine-stem resistance. Hence, one can find the
minimum spine density capable of supporting a traveling pulse as well as extract in-
formation about how the speed decays as a function of spine density. In Fig. 3.4(a)
we plot the speed of a traveling pulse as a function of the spine-stem resistance rs.
It is clear that for realistic choices of the biophysical parameters in the model, that
propagation failure can occur for too large a choice of the spine-stem resistance.
Moreover, for small rs, the speed of a stable pulse is very sensitive to rs, demon-
strating that a modifiable value of the spine-stem resistance could have important
ramifications for neural processing. Finally in Fig. 3.4(b) we show the dependence
of the wave speed on the width, τd , of a rectangular pulse generated in the spine
head. Interestingly, for a fixed pulse height, there is a minimum duration time below
which propagation cannot occur. This highlights the fact that it is crucial to model
the shape of an action potential in the reduced IF model with biologically realistic
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choices for the amplitude and duration of the spine-head pulse. For large values of
τd the speed of the wave approaches a constant value (i.e., the speed of the wave
becomes insensitive to the precise choice of τd).

3.1.2 Linear Stability Analysis

For the purposes of linear stability analysis it is more convenient to work in terms
of the original variables (x, t) rather than in the moving frame. Since the shape of
the traveling pulse is fixed by the function η(t), it is natural to consider local pertur-
bations of the firing times given by T (x) = x/c+Δ(x). A similar approach is used
to analyze the stability of traveling waves in IF networks with synaptic and passive
dendritic interactions [62, 63]; see Sect. 5.4. The membrane potential V (x, t) satisfy-
ing (3.1) with a(t) = η(t −T (x)) can be evaluated in terms of the Green’s function
G0 for the infinite cable equation. That is, setting Cm = 1 and taking τm � ρ0/rs,

V (x, t) =
ρ0

rs

∫ t

−∞

[
∫ ∞

−∞
G0(x− y, t − s)η(s−T(y))dy

]

ds (3.15)

with G0 given by (1.59). If we now demand that the IF process (3.2) driven by the
potential V (x, t) reaches threshold at time T (x), then we obtain the following self-
consistency condition for a traveling pulse (with Ĉs = 1):

h =U(x,T (x)) =
1
rs

∫ 0

−∞
et/τ̂V (x, t +T (x))dt. (3.16)
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Fig. 3.4 (a) Speed of a traveling pulse as a function of spine-stem resistance rs with ρ0 = 25 and
τd = 2. (b) Speed of a traveling pulse as a function of pulse width τd with ρ0 = 25 and rs = 2. All
other parameters are as Fig. 3.3. Note that for sufficiently large rs or small τd solitary waves cannot
propagate

We now expand (3.15) and (3.16) in powers of the perturbation Δ(x). The zeroth-
order term generates the self-consistency condition for the speed c of the unper-
turbed traveling pulse:
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h =
1
rs

∫ 0

−∞
et/τ̂ V (x, t + x/c)dt, (3.17)

where

V (x, t) =
ρ0

rs

∫ t

−∞

[
∫ ∞

−∞
G0(x− y, t − s)η(s− y/c)dy

]

ds. (3.18)

We can evaluate (3.18) using Fourier transforms without needing to restrict η to be
a rectangular pulse. That is, expand η(s) as

η(t) =
∫ ∞

−∞
eiωt η̃(ω)

dω
2π

, (3.19)

and then perform the integrations over y and s with
∫ ∞

−∞
e−ikxG0(x, t)dx = e−ε(k)t , ε(k) = τ−1

m +Dmk2, (3.20)

to obtain

V (x, t) =
ρ0

rs

∫ ∞

−∞
eiω(t−x/c) η̃(ω)

ε(ω/c)+ iω
dω
2π

. (3.21)

Substitution of (3.21) into (3.17) finally gives

h =
ρ0

r2
s

∫ ∞

−∞

η̃(ω)

[ε(ω/c)+ iω ][τ̂−1 + iω ]

dω
2π

. (3.22)

When one considers a rectangular pulse shape for the action potential waveform of
height η0 and duration τd such that

η̃(ω) = η0
1− e−iωτd

iω
, (3.23)

then it is a simple matter to check that the dispersion relationship (3.22) reduces to
(3.14).

The first-order term in the expansion of (3.16) yields a linear equation for the per-
turbations Δ(x) from which the linear stability of the traveling pulse can be deduced.
This linear equation takes the form

0 =
1
rs

∫ 0

−∞
et/τ̂ δΔV (x, t + x/c)dt, (3.24)

where (after integration by parts)

δΔV (x, t) =
ρ0

rs

∫ t

−∞

[
∫ ∞

−∞
G0(x− y, t − s)η ′(s− y/c)[Δ(x)−Δ(y)]dy

]

ds.

(3.25)
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Equations (3.24) and (3.25) have solutions of the form Δ(x) = eλ x with λ satisfying
the characteristic equation

I(λ )≡
∫ ∞

−∞

ikη̃(ω)

[ε(ω/c+ iλ )+ iω ][τ̂−1+ iω ]

dω
2π

− I(0) = 0. (3.26)

Asymptotic stability holds if all nonzero solutions of the characteristic equation
have negative real part. (The existence of a solution λ = 0 reflects the translation
invariance of the underlying system; see Sect. 2.4.) Equation (3.26) can be evaluated
by closing the contour in the lower-half complex ω-plane. Since η(s) = 0 for s < 0
it follows that any poles of η̃(ω) lie in the upper-half complex plane so that we only
have to consider poles arising from the zeros of the function ε(ω/c+ iλ )+ iω . The
latter are given explicitly by ω = iω±(λ ) where

ω±(λ )
c

=−
(

λ +
c

2Dm

)

±
√

R(λ ), (3.27)

where

R(λ ) =
c2

4D2
m
+ cλ/Dm+ 1/(Dmτm). (3.28)

Let us decompose λ into real and imaginary parts according to λ =α + iβ . Then

ω±(λ ) =−u±(α,β )− iv±(α,β ), (3.29)

with

u±(α,β )
c

= α +
c

2Dm
∓A(α,β ),

v±(α,β )
c

= β ∓B(α,β ), (3.30)

and (for β > 0)

A(α,β ) =

√

1
2

[

R(α)+
√

R(α)2 + c2β 2/D2
m

]

,

B(α,β ) =

√

1
2

[

−R(α)+
√

R(α)2 + c2β 2/D2
m

]

. (3.31)

One may now determine the linear stability of a solitary pulse by simultaneously
solving Re[I(λ )] =Re[I(0)] = 0 and Im[I(λ )] = Im[I(0)] = 0 for α and β , with c de-
termined by (3.22) (or equivalently (3.14) for the specific case of a rectangular pulse
shape). This is illustrated in Fig. 3.5 for a rectangular pulse, which shows solutions
with β = 0 and α < 0 along the upper branch of Fig. 3.3. Moreover, α changes sign
as it passes through the point where dρ0/dc = 0 in the (c,ρ0) plane while moving
from the upper solution branch to the lower. Hence, of the two possible traveling
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wave solutions, the faster one is stable. Other solutions with α < 0 and β > 0 are
also found for both the fast and slow branches but do not affect the above stability
argument.
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spine densityρ0

Fig. 3.5 A plot of the eigenvalues arising in the linearization of the SDS model shows that solutions
with α < 0 and β = 0 can be found for the branch of solutions with greatest speed. The graph
above shows the behavior of α = Re(λ ) with β = 0 for the upper solution branch of Fig. 3.3. Note
that α = 0 at the point in the (c,ρ) plane at which the speed of the two possible traveling waves
becomes equal. For the slower branch one finds that there exists solutions in the (α ,β ) plane with
α > 0 indicating that the slower branch is unstable

3.1.3 Discrete Distribution of Spines

So far we have assumed that the spine density is uniform. Although wave propaga-
tion failure is known to occur if the spine density is below some critical level, the
numerical studies of Baer and Rinzel [19] suggest that propagation may be recov-
ered by redistributing the spines into equally spaced dense clusters. Since interspine
distances are of the order of μm and electronic length λm is typically measured in
mm, we shall consider spine-head voltage at a cluster site to be the local spatial
average of membrane potential in adjacent spines. Hence, we consider a discrete
distribution of spines for which

ρ(x) = n∑
m

δ (x− xm), (3.32)

where xm is the location of the mth spine cluster and n is the number of spines in
a cluster. Such a distribution breaks continuous translation symmetry so that salta-
tory or lurching waves are expected rather than traveling waves of constant profile.
(Saltatory waves are also found in myelinated axons; see Sect. 2.5.) We define a
saltatory wave as an ordered sequence of firing times . . .Tm−1 < Tm < Tm+1 in which
each spine cluster only fires once. Substituting the discrete density (3.32) into (3.1)
with

ρ(x)a(x, t) = n̄∑
m

η(t −Tm)δ (x− xm),
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and making the approximation n � rs so that the term ρ(x)V/rs can be neglected,
we obtain the equation (using physical units)

∂V
∂ t

=− V
τm

+Dm
∂ 2V
∂x2 +

n̄
rs

∑
n

δ (x− xn)η(t −Tn), (3.33)

where we have absorbed a factor of rm/τm into η and Dm = λ 2
m/τm. This can be

solved using the Green’s functions G0 of the cable equation:

V (x, t) =
n
rs

∞

∑
m=0

H(x− xm, t −Tm), (3.34)

where we assumed the initial condition V (x,0) = 0 for all x.

H(x, t) =
∫ t

0
G0(x, t − s)η(s)ds, G0(x, t) =

1√
4πDmt

e−t/τm−x2/4Dmt . (3.35)

Suppose that the spine clusters are uniformly distributed along the cable such
that xm = md, where d is the spacing between clusters. We will derive a condition
for the existence of a saltatory wave solution given by Tm = mΔ for large m. The
parameter Δ measures the time between successive threshold crossings at adjacent
spine-head clusters such that the speed c = d/Δ . First, using the causality condition
H(x, t) = 0 for t < 0, it follows from (3.34) that

V (Nd,NΔ) =
n
rs

N

∑
n=1

H(nd,nΔ), (3.36)

The wave speed of a saltatory wave (if it exists) is then determined self-consistently
from the threshold condition

h = lim
N→∞

V (Nd,NΔ) =
n
rs

∞

∑
n=1

H(nd,nΔ). (3.37)

In order to calculate the wave speed, it is useful to rewrite (3.35) in the form

H(x, t) =
∫ ∞

−∞

dk
2π

eikxe−ε(k)tη(k, t), (3.38)

where η(k, t) =
∫ t

0 η(s)eε(k)sds. One may then exploit the convolution structure of
(3.38) to evaluate it in closed form for a given η(t). For the sake of illustration,
consider again the rectangular pulse shape η , for which

η(k, t) = η0(e
ε(k)min(t,τd )− 1)/ε(k),

so that H(x, t) = η0[A(x, t −min(t,τd))−A(x, t)], with

A(x, t) =
∫ ∞

−∞

dk
2π

eikx−ε(k)t

ε(k)
. (3.39)
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This is a standard integral given explicitly by

A(x, t) =
1
4

√

τm

Dm

{

e−|x|/√τmDm erfc

(

− |x|√
4Dmt

+

√

t
τm

)

+ e|x|/
√

τmDmerfc

( |x|√
4Dmt

+

√

t
τm

)}

. (3.40)

Finally, we may write the threshold condition in the form

h =
n
r2

s

∞

∑
m=1

Ĥ(md,mΔ), (3.41)

where Ĥ(x, t) = η0[Â(x, t − τd)− Â(x, t)], and

Â(x, t) =
∫ 0

−∞
es/τ̂ A(x, t − s)ds. (3.42)

The sum in (3.41) can then be performed numerically to obtain the speed of a salta-
tory wave c = c(d,h).

In Fig. 3.6(a) we plot the speed c as a function of cluster spacing d for fixed
threshold h, which shows that if the spine clusters are separated beyond some crit-
ical spacing, on the order of the electronic length λm = 1, a saltatory pulse will
fail to propagate. Again linear stability analysis establishes that, as in the contin-
uum model, it is the faster of the two branches that is stable. It is also instructive
to consider the region in the (d,h) parameter plane where saltatory pulses exist.
This may be obtained by continuing the limit point defining propagation failure of
a saltatory pulse in the (d,c) plane as a function of h. The resulting phase diagram
is shown in Fig. 3.6(b) and establishes that with increasing d the critical threshold
for propagation failure decreases. Interestingly, the minimum wave speed of a stable
saltatory pulse is found to be relatively insensitive to variation in cluster spacing d
and threshold h. Now that the speed of a saltatory pulse has been determined as a
function of system parameters it is possible to close the expression for the shape of a
solitary pulse given by V (x, t) = (n/rs)∑m H(x−md, t −md/v). A plot of this ana-
lytical expression is shown in Fig. 3.7, which clearly demonstrates that the saltatory
pulse has a nonconstant profile.

Finally, note that there have been a number of recent extensions of the spike–
diffuse–spike model. These include taking into account the branching structure of
the dendritic tree [625], in which the Green’s function G0 is replaced by the Green’s
function of the tree, and incorporating active processes within the dendritic cable.
In the latter case, each infinitesimal cable compartment is modeled as a quasi-linear
LRC circuit, where the membrane resistance rm is in series with an inductance L
[624]; see Fig. 1.11. It should also be pointed out that from a mathematical perspec-
tive, the spike–diffuse–spike model is very similar in structure to the fire–diffuse–
fire model of calcium puffs; see Sect. 4.3.
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Fig. 3.6 (a) Plot of wave speed c for a saltatory pulse as a function of cluster spacing d. Here,
τ̂ = τd = 1, h = 2.5, rs = 2, η0 = 100, and n̄ = 2. The upper (lower) branch is stable (unstable).
(b) Continuation of the limit point in (a) showing the region in the (d,h)-plane where stable salta-
tory traveling waves exist

Fig. 3.7 Plot of the analytically obtained saltatory solution V (x, t) in the dendritic cable with
parameters as in Fig. 3.6 and d = 1. The x axis covers 10 lattice sites and the t axis 10d/c

3.2 Reaction–Diffusion Model of CaMKII Translocation Waves

As we indicated at the beginning of this chapter, CaMKII (Ca2+–calmodulin-
dependent protein kinase II) is a key regulator of glutamatergic synapses and plays
an essential role in many forms of synaptic plasticity. It has recently been observed
experimentally that chemically stimulating a local region of dendrite not only in-
duces the local translocation of CaMKII from the dendritic shaft to synaptic targets
within spines, but also initiates a wave of CaMKII translocation that spreads distally
through the dendrite with an average speed of order 1μm/s [532]. In Fig. 3.8, we
provide a cartoon of the mechanism for translocation waves hypothesized by Rose
et al. [532]. Before local stimulation using a glutamate/glycine puff, the majority of
CaMKII is in an inactive state and distributed uniformly throughout the dendrite.
Upon stimulation, all CaMKII in the region of the puff (∼30μm of dendrite) is
converted to an active state, probably the autonomous state of CaMKII (see
Fig. 3.8a), and begins translocating into spines. Simultaneously, a Ca2+ spike is
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initiated and rapidly travels the length of the dendrite (as modeled in Sect. 3.1),
causing CaMKII to bind Ca2+/CaM along the way. In this primed or partially phos-
phorylated state, CaMKII does not yet translocate into spines. In the meantime, a
portion of the activated CaMKII from the stimulated region diffuses into the region
of primed CaMKII and the two types interact, with the result that primed CaMKII
is activated. Some of these newly activated holoenzymes translocate into spines
while others diffuse into more distal regions of the dendrite containing primed
CaMKII, and the wave proceeds in this fashion. In certain cases one also finds a
second wave propagating proximally from the stimulated site to the soma [532].
A schematic diagram illustrating the progression of a translocation wave along a
dendrite following the rapid priming phase is shown in Fig. 3.8b.

b

x = Lx = 0

2

soma dendrite

a Δx

Fig. 3.8 Proposed mechanism of CaMKII translocation waves. (a) A glutamate/glycine puff acti-
vates CaMKII locally and initiates a fast Ca2+ spike that propagates distally (indicated by larger
horizontal arrow) and primes CaMKII in the remainder of the dendrite. In certain cases one also
finds a second wave propagating proximally from the stimulated site to the soma (indicated by
smaller horizontal arrow). (b) Activated CaMKII (gray dots) both translocates into spines and dif-
fuses into distal regions of the dendrite where it activates primed CaMKII (black dots). The net
effect is a wave of translocated CaMKII propagating along the dendrite

A simple mathematical model of the above mechanism can be constructed us-
ing a system of reaction–diffusion equations for the concentrations of activated and
primed CaMKII in the dendrite and spines [72, 161]. These equations incorporate
three major components of the dynamics: diffusion of CaMKII along the dendrite,
activation of primed CaMKII, and translocation of activated CaMKII from the den-
drite to spines. For simplicity, consider a uniform one-dimensional, nonbranching
dendritic cable as shown in Fig. 3.8a. Suppose that a region of width 30 μm is stim-
ulated with a glutamate/glycine puff at time t = 0. The center of the stimulated
region is taken to be at x = 0 and the distal end of the dendrite is at x = L = 150μm.
The diffusion, activation, and translocation of CaMKII along the dendrite following
stimulation are modeled according to the following system of equations:

∂P
∂ t

= D
∂ 2P
∂x2 − k0AP (3.43a)
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∂A
∂ t

= D
∂ 2A
∂x2 + k0AP− hA (3.43b)

∂S
∂ t

= hA, (3.43c)

where D is the diffusivity of CaMKII within the cytosol. Here P(x, t) and A(x, t)
denote the concentration of primed and activated CaMKII at time t > 0 and location
x along the dendrite. S(x, t) denotes the corresponding concentration of CaMKII in
the population of spines at the same time and distance. For simplicity, all parameters
are constant in space and time. The reaction term kAP represents the conversion of
CaMKII from its primed to active state based on the irreversible first-order reaction
scheme

A+P → 2A

with mass action kinetics, where k0 is the rate at which primed CaMKII is activated
per unit concentration of activated CaMKII. The decay term hA represents the loss
of activated CaMKII from the dendrite due to translocation into a uniform distri-
bution of spines at a rate h. The model assumes that translocation is irreversible
over the time scale of simulations, which is reasonable given that activated CaMKII
accumulation at synapses can persist for several minutes [569].

As a further simplification we will only consider the distal transport of CaMKII
from the stimulated region by taking 0 ≤ x ≤ L and imposing closed or reflect-
ing boundary conditions at the ends x = 0,L. Hence, no CaMKII can escape from
the ends. In reality activated CaMKII could also diffuse in the proximal direction
and trigger a second proximal translocation wave. However, the choice of boundary
condition has little effect on the properties of the wave. Taking the distal half of
the stimulated region to be 0 ≤ x ≤ 15μm, consider the following initial conditions:
P(x,0) = 0 and A(x,0) = P0 for 0≤ x≤ 15μm, whereas P(x,0) = P0 and A(x,0) = 0
for x ≥ 15μm, where P0 is the uniform resting concentration of CaMKII in the den-
drite. Typical values of C range from 0.1 to 30μM [605], covering two orders of
magnitude. We also set S(x,0) = 0 everywhere. In other words, we assume that
all the CaMKII is activated within the stimulated region at t = 0, but none has yet
translocated into spines nor diffused into the nonstimulated region. We also neglect
any delays associated with priming CaMKII along the dendrite. This is a reasonable
approximation, since the Ca2+ spike travels much faster than the CaMKII translo-
cation wave [532]; see Sect. 3.1. Thus by the time a significant amount of activated
CaMKII has diffused into nonstimulated regions of the dendrite, any CaMKII en-
countered there will already be primed. The benefit of this assumption is that it
eliminates the need to model the Ca2+ spike. However, a more detailed model that
takes into account the initial transient associated with the priming phase could be
constructed by coupling the reaction–diffusion equations with the spike–diffuse–
spike model of Sect. 3.1.

Note that the system of equations (3.43) is identical in form to the diffusive SI
model introduced by Noble [464] to explain the spread of bubonic plague through
Europe in the fourteenth century. In the latter model, P(x, t) and A(x, t) would rep-
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resent the densities of susceptible and infective people at spatial location x at time t,
respectively; k0 would be the transmission rate and h the death rate. In the absence
of translocation into spines (h= 0), the total amount of CaMKII is conserved so that
A(x, t)+P(x, t) = P0 for all x and t ≥ 0. Equations (3.43) then reduce to the scalar
Fisher–KPP equation

∂A
∂ t

= D
∂ 2A
∂x2 + k0A(P0 −A), (3.44)

which was originally introduced to model the invasion of a gene into a population.
The Fisher–KPP equation and its generalizations have been widely used to describe
the spatial spread of invading species including plants, insects, genes, and diseases;
see, for example, [285, 444, 575, 648] and references therein. One characteristic
feature of such equations is that they support traveling fronts propagating into an
unstable steady state, in which the wave speed and longtime asymptotics are de-
termined by the dynamics in the leading edge of the wave—so-called pulled fronts
[544]. In particular, a sufficiently localized initial perturbation (such as the stimulus
used to generate CaMKII waves) will asymptotically approach the traveling front
solution that has the minimum possible wave speed. (If we perform the change of
variables Q = P0 −P in the CaMKII model, then the traveling wave solution con-
structed below propagates into the unstable state A = 0,Q = 0.) An overview of the
theory of pulled fronts is presented in appendix section 3.3.

3.2.1 Translocation Waves for a Uniform Distribution of Spines

A traveling wave solution of (3.43a) and (3.43b) is P(x, t) = P(ξ ) and A(x, t) =
A(ξ ), ξ = x− ct, where c,c > 0, is the wave speed, such that

P(ξ )→ P0, A(ξ )→ 0 asξ → ∞

and
P(ξ )→ P1 < P0, A(ξ )→ 0 asξ →−∞.

Here P1 is the residual concentration of primed CaMKII following translocation of
activated CaMKII into spines. The minimum wave speed can be calculated by sub-
stituting the traveling wave solution into (3.43a) and (3.43b) and linearizing near the
leading edge of the wave where P → P0 and A → 0. In the traveling wave coordinate
frame (3.43a) and (3.43b) are transformed to

−c
dP
dξ

= D
d2P
dξ 2 − k0AP (3.45a)

−c
dA
dξ

= D
d2A
dξ 2 + k0AP− hA (3.45b)

This is a system of two second-order ordinary differential equations in the
variable ξ . A global view of the nature of traveling wave solutions can be ob-
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tained by identifying (3.45a) and (3.45b) with the equation of motion of a classical
particle in two spatial dimensions undergoing damping due to “friction” and subject
to an “external force.” Thus we identify A and P with the “spatial” coordinates
of the particle, ξ with the corresponding “time” coordinate, and the speed c as a
“friction coefficient.” If we ignore boundary effects by taking −∞ < ξ < ∞, then
we can view a traveling wave solution as a particle trajectory that connects the point
(P,A) = (0,0) at ξ = −∞ to the point (P,A) = (P0,0) at ξ = ∞. A restriction on
the allowed values of c can now be obtained by investigating how the point (1,0) is
approached in the large-ξ limit.

Linearizing Eqs. (3.45a) and (3.45b) about the point (P,A) = (P0,0) we obtain a
pair of second-order linear equations, which have solutions of the form (P−P0,A) =
Ve−λ ξ where λ and V satisfy the matrix equation

cλ V =

(

Dλ 2 −k
0 Dλ 2 + k− h

)

V, (3.46)

where k = k0P0. Solving for the eigenvalue λ leads to the four solutions

λ = 0,
c
D
,

c±√c2 − 4D(k− h)
2D

(3.47)

and these, along with their corresponding eigenvectors V, determine the shape of
the wave as it approaches the point (1,0). Note that the last two eigenvalues have a
nonzero imaginary part when c2 < 4D(k−h), implying that as ξ becomes large the
wave oscillates about the point (1,0). This cannot be allowed since it would imply
that the activated CaMKII concentration A takes on negative values (inspection of
the corresponding eigenvectors shows that their components in the A-direction are
nonzero and so A would indeed oscillate). Therefore, we must have

c ≥ cmin = 2
√

D(k− h), (3.48)

which implies that k > h. Note that the minimum wave speed can be identified with
the linear spreading velocity of a pulled front; see appendix section 3.3. This then
yields a more direct method for obtaining the minimum wave speed. That is, the
characteristic equation obtained from (3.46) yields the dispersion relation

c(λ ) = Dλ +
k− h

λ
. (3.49)

The theory of pulled fronts shows that the minimum wave speed is obtained by
minimizing c(λ ). The equation c′(λ ) = 0 gives Dλ = (k − h)/λ , which has the
solution λ0 =

√

(k− h)/D, so that cmin = c(λ0) = 2Dλ0 = 2
√

D(k− h).
An example of a numerically determined traveling wave solution with minimal

speed cmin is shown in Fig. 3.9 for parameter values consistent with experimental
studies of CaMKIIα , which is one of the two main isoforms of CaMKII. In its in-
active state CaMKIIα tends to be located in the cytosol, whereas the other isoform,
CaMKIIβ , is weakly actin bound [570]. One finds empirically that D ∼ 1μm2/s,
h ∼ 0.05 s−1 and c ∼ 1μm/s [532, 569, 570] for CaMKIIα . (CaMKIIβ has a
diffusivity and translocation rate an order of magnitude smaller but exhibits compa-
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Fig. 3.9 Three successive snapshots of a numerically simulated translocation wave propagating
along a homogeneous dendrite. Solutions of (3.43a) and (3.43b) are plotted for parameter values
consistent with experimental data on CaMKII [532, 569, 570]. The translocation rate h = 0.05 s,
diffusivity D = 1μm2/s and the activation rate k0P0 = 0.21 s. At time t = 0 all of the CaMKII
within the stimulated region (indicated by thick bar) is in the activated state, whereas all of the
CaMKII within the nonstimulated region is in the primed state. Concentrations are normalized
with respect to the initial concentration of primed CaMKII. Composite wave consists of a pulse
of activated CaMKII (gray curve) moving at the same speed as a front of primed CaMKII (black
curve). Also shown is the total CaMKII concentration along the dendrite (dashed black curve),
which decreases with time due to translocation into spines. As indicated in the center plot, the
front forms an interface between a quiescent region containing a uniform concentration of primed
CaMKII and a region dominated by translocation of activated CaMKII into spines. The dynamics
in the interfacial (shaded) region is dominated by diffusion–activation of primed CaMKII

rable wave speeds.) The formula for the wave speed then gives an estimate for the
unknown activation rate, k ∼ 0.2 s−1. It can be seen in Fig. 3.9 that the wave profile
of primed CaMKII is in the form of a front, whereas the co-moving wave profile of
activated CaMKII is a localized pulse.

The above analysis predicts wave propagation failure when the translocation rate
h is greater than the effective activation rate k. Experimentally, h is determined by
globally activating CaMKII along a dendrite and determining the rate at which the
level of CaMKII decays [569, 570]. The detailed microscopic mechanism whereby
CaMKII is translocated into spines is currently not known, so it is difficult to re-
late h to individual spine properties. A simple hypothesis is that the translocation
rate depends on the spine density according to h = ρ0ν0, where ν0 is an effective
“velocity” associated with translocation into an individual spine. Since the activa-
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tion rate k = k0 P0, where P0 is the initial concentration of primed CaMKII in the
nonstimulated region of the dendrite, the model predicts that CaMKII translocation
waves will fail to propagate when

ρ0ν0 > k0P0. (3.50)

For example, this inequality predicts that dendrites with a high density of spines are
less likely to exhibit translocation waves than those with a low spine density. It also
predicts that dendrites with a larger initial concentration of primed CaMKII in the
shaft are more likely to exhibit translocation waves than those with a smaller initial
concentration. Since the initial concentration P0 of primed CaMKII depends on the
effectiveness of the Ca2+ spike in both propagating along the dendrite and priming
the inactive state, the model agrees with the experimental finding that translocation
waves fail to propagate when L-type Ca2+ channels are blocked [532]. One also
finds that Ca2+ spikes are less likely to propagate towards the soma, which could
explain why translocation waves are more often observed propagating towards the
distal end of a dendrite.

3.2.2 Pulsating Waves in the Presence of Discretely
Distributed Spines

One of the major simplifications of the above model is that the discrete nature of
dendritic spines is ignored by treating the spine density ρ and, hence, the transloca-
tion rate h as uniform. Given the fact that the radius of the spine neck is typically
at the submicron level, which is much smaller than any other length scale of the
system, one can take into account the discreteness of spines by representing the
spine density as the sum of Dirac delta functions (3.32), which represents clusters
of n̄ spines at discrete locations xn; see Sect. 3.1. It immediately follows that the
translocation rate h is itself space-dependent and (3.43a) and (3.43b) become het-
erogeneous. For the sake of illustration, consider the case of a set of spine clusters
that are uniformly spaced with xn = nΔ where Δ is the spine cluster spacing. In or-
der to separate the effects of discreteness from the effects of spine density, we will
assume that the size of a cluster scales with Δ so that n = ρ0Δ with ρ0 fixed. Thus,
setting h = ρ0ν0, we have the space-dependent translocation rate

h(x) = hΔ ∑
n∈Z

δ (x− nΔ), (3.51)

such that L−1 ∫ L
0 h(x)dx = h for L � Δ .

In recent years, there has been an increasing interest in studying biologi-
cal invasion in heterogeneous environments using reaction–diffusion equations
[40, 102, 212, 335, 574, 575, 587, 664, 687]. Heterogeneity is often incorporated
by assuming that the diffusion coefficient and the growth rate of a population are
periodically varying functions of space. One of the simplest examples of a sin-
gle population model in a periodic environment was proposed by Shigesada et al.
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[574, 575], in which two different homogeneous patches are arranged alternately
in one-dimensional space so that the diffusion coefficient and the growth rate are
given by periodic step functions. The authors showed numerically that an invading
population starting from a localized perturbation evolves to a traveling periodic
wave in the form of a pulsating front. The population density u(x, t) of such a wave
is defined by the condition u(x, t) = u(x+σ , t +T ) such that limx→∞ u(x, t) = 0 and
limx→−∞ u(x, t) = p(x), where p(x) is a spatially periodic stationary solution of the
corresponding reaction–diffusion equation. This form of solution repeats itself in
a time interval T if it is observed at two successive points separated by a distance
σ . The speed of the wave is then taken to be c = σ/T . Shigesada et al. [574] also
used linearized information within the leading edge of the pulsating front to derive
wave speed estimates, generalizing the analysis of pulled fronts in homogeneous
media [544]. An interesting recent extension of this approach has been used to
study pulsating fronts in periodically modulated nonlocal neural field equations
[132]. The theory of pulsating fronts has also been developed in a more general and
rigorous setting [40, 212, 587, 664, 687].

The analysis of CaMKII translocation waves developed in [72] follows the basic
formulation of Shigesada et. al. [574] by linearizing (3.43b) at the leading edge of
the wave where A(x, t)→ 0 and P(x, t)→ P0:

∂A
∂ t

= D
∂ 2A
∂x2 + kA− h(x)A, (3.52)

with h(x) given by the Δ -periodic function (3.51). Assume a solution of the form
A(x, t) = a(ξ )P(x), ξ = x− ct, and set

∂
∂ t

→−c
∂

∂ξ
,

∂
∂x

→ ∂
∂x

+
∂

∂ξ
.

Substitution into (3.52) then gives

−cP(x)a′(ξ )=D
[

a′′(ξ )P(x)+2a′(ξ )P ′(x)+a(ξ )P ′′(x)
]

+[k−h(x)]a(ξ )P(x).

Dividing through by a(ξ )P(x) and rearranging yields

D
a′′(ξ )
a(ξ )

+

[

2D
P ′(x)
P(x)

+ c

]

a′(ξ )
a(ξ )

=−D
P ′′(x)
P(x)

− k+ h(x). (3.53)

Applying the operator ∂x∂ξ to both sides of (3.53) implies that either P ′(x)/P(x)
is a constant or a′(ξ )/a(ξ ) is a constant. Only the latter condition is consistent
with P(x) being a periodic function. Thus, a(ξ ) = A0e−λ ξ with λ determined by
solutions to the damped Hill equation

P ′′(x)− 2λP ′(x)+
[

λ 2 +
k− h(x)− cλ

D

]

P(x) = 0. (3.54)

Note that if P(x) = eλ xU(x) then U(x) satisfies the undamped Hill equation



3.2 Reaction–Diffusion Model of CaMKII Translocation Waves 121

DU ′′(x)+ [k− h(x)− cλ ]U(x) = 0. (3.55)

In order to determine the minimal wave speed cmin, it is necessary to find a bounded
periodic solution P(x) of (3.54), which yields a corresponding dispersion relation
c = c(λ ), whose minimum with respect to λ can then be determined (assuming it
exists). Unfortunately, for general periodic functions h(x), it is not possible to solve
(3.54) explicitly, and some form of approximation scheme is required as described
in the next section.

3.2.3 Homogenization of Pulsating Waves for a Fast Periodic
Modulation of Spine Density

Since the spine cluster spacing Δ is at least an order of magnitude smaller than
the width of the traveling wave of the homogeneous system, one can use homog-
enization theory to approximate the discrete effects of spines by a corresponding
continuum model [72]. Such a method has also been applied to studying varia-
tions in electrical voltage/conductance [424] and the distribution of protein recep-
tors [68] along spiny dendrites. Interestingly, Smaily et al. [587] independently
applied the same homogenization procedure to analyze wave speed in the pop-
ulation model of Shigesada et. al. [574]. A more general discussion of homog-
enization techniques applied to traveling fronts can be found in the review by
Xin [687].

As a first step, we introduce a macroscopic length scale σ and set Δ = εσ with
ε � 1. We identify σ with the effective width of the primed CaMKII front, which
turns out to be around 20–30 μm in the given parameter regimes. Equation (3.55)
can then be rewritten in the form

d2U
dx2 +

[

Γ −ΔΓ
( x

ε

)]

U(x) = 0, (3.56)

where
Γ = [k− cλ − h]/D (3.57)

and

ΔΓ (y) =
h
D

(

σ ∑
n∈Z

δ (y− nσ)− 1

)

(3.58)

such that ΔΓ (y) is a σ -periodic function of y. Applying the homogenization proce-
dure outlined below leads to the result

U(x) = 〈U(x)〉[1+ ε2ΔU(x/ε)
]

+O(ε3), (3.59)
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where 〈U〉 satisfies the averaged equation

d2〈U〉
dx2 +Γε〈U〉= 0, (3.60)

and

Γε = Γ − ε2Γ2 +O(ε3), Γ2 =
1
12

(

hσ
D

)2

, (3.61)

ΔU(y) =
hσ2

D

[

y
2σ

− y2

2σ2 − 1
12

]

. (3.62)

Homogenization method for discrete spines. The basic idea of multi-scale homogenization
is to expand the solution of Eq. (3.56) as a power series in ε , with each term in the expansion
depending explicitly on the “slow” (macroscopic) variable x and the “fast” (microscopic)
variable y = x/ε [68, 424, 587]:

U(x,y) =U0(x)+ εU1(x,y)+ ε2U2(x,y)+ . . . , (3.63)

where Uj(x,y), j = 1, . . . are σ -periodic in y. The perturbation series expansion is then sub-
stituted into Eq. (3.56) with x,y treated as independent variables so that derivatives with
respect to x are modified according to ∂x → ∂x +ε−1∂y. This generates a hierarchy of equa-
tions corresponding to successive powers of ε :

∂ 2U1

∂ y2 = 0 (3.64)

d2U0

dx2 +2
∂ 2U1

∂ x∂ y
+

∂ 2U2

∂ y2 +
[

Γ −ΔΓ (y)
]

U0 = 0 (3.65)

at powers ε−1,1 and

∂ 2Un

∂ x2 +2
∂ 2Un+1

∂ x∂ y
+

∂ 2Un+2

∂ y2 +
[

Γ −ΔΓ (y)
]

Un = 0 (3.66)

at O(εn),n ≥ 1.

Equation (3.64) and boundedness of U1 imply that U1 is independent of y and can thus be
absorbed into U0(x). Thus the leading-order corrections arising from small-scale fluctua-
tions in the spine density occur at O(ε2). Define the spatial average of a periodic function
F(y), denoted by 〈F〉, according to

〈F〉= 1
σ

∫ σ

0
F(y)dy. (3.67)

Taking the spatial average of (3.65) with U0 = 〈U0〉 then gives

d2U0

dx2 +ΓU0 = 0. (3.68)

We have exploited the fact that U2 is periodic in y so 〈∂ 2U2/∂ y2〉= 0. In order to calculate
U2, we first subtract the averaged Eq. (3.68) from (3.65) to obtain

∂ 2U2

∂ y2 = ΔΓ (y)U0(x). (3.69)
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It follows that U2(x,y) = U0(x)χ(y) with χ ′′(y) = ΔΓ (y) and χ a σ -periodic function of
y. Integrating once with respect to y gives χ ′(y) = χ ′(0)+

∫ y
0 ΔΓ (z)dz. We can eliminate

the unknown χ ′(0) by spatially averaging with respect to y and using 〈χ ′〉 = 0. This gives
χ ′(y) =

∮ y
0 ΔΓ (z)dz with

∮ y

0
f (z)dz ≡

∫ y

0
f (z)dz−

〈
∫ y

0
f (z)dz

〉

(3.70)

for any integrable function f . Another integration with respect to y shows that

χ(y) = χ(0)+
∫ y

0

∮ y′

0
ΔΓ (z)dzdy′ .

Spatially averaging this equation with respect to y in order to express χ(0) in terms of 〈χ〉
and multiplying through by U0(x) finally gives

ΔU2(x,y) ≡ U2(x,y)−〈U2〉(x) (3.71)

= U0(x)
∮ y

0

∮ y′

0
ΔΓ (z)dzdy′.

It remains to determine the equation satisfied by 〈U2〉. Spatially averaging Eq. 3.66) for
n = 2 gives

d2〈U2〉
dx2 +Γ 〈U2〉= 〈ΔΓ (y)U2(x,y)〉. (3.72)

Substituting (3.71) into (3.72) and reordering the resulting multiple integral yields the result

d2〈U2〉
dx2 +Γ 〈U2〉 =−

〈

(
∮ y

0
ΔΓ (z)dz

)2
〉

U0(x). (3.73)

Finally, writing 〈U〉 = U0 + ε2〈U2〉+ . . . we obtain the homogenized version of the Hill
equation (3.55):

d2〈U〉
dx2 +Γε〈U〉 = 0, (3.74)

where

Γε = Γ + ε2Γ2 +O(ε3), Γ2 =

〈

(
∮ y

0
ΔΓ (z)dz

)2
〉

. (3.75)

It is straightforward to calculate the integrals in (3.71) and (3.75) for a periodic spine density
with ΔΓ (y) given by (3.58) [424]:

Γ2 =

〈

(
∮ y

0
ΔΓ (z)dz

)2
〉

=
1
12

(

hσ
D

)2

, (3.76)

∮ y

0

∮ y′

0
ΔΓ (z)dzdy′ =

hσ 2

D

[

y
2σ

− y2

2σ 2 − 1
12

]

. (3.77)

We thus obtain (3.59) and (3.60).

Note that it is possible to extend the above homogenization scheme to the case of ran-
domly rather than periodically distributed spines, provided that the resulting heterogeneous
medium is ergodic. That is, the result of averaging over all realizations of the ensemble of
spine distributions is equivalent to averaging over the length L of the dendrite in the infinite-
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L limit. If such an ergodic hypothesis holds and L is sufficiently large so that boundary
terms can be neglected, then the above analysis carries over with 〈·〉 now denoting ensem-
ble averaging [424].

Recall from our discussion of (3.54) that the solution P(x) = eλ xU(x) has to be a
bounded Δ -periodic function of x. It follows from (3.59) and (3.60) that eλ x〈U(x)〉
should be a finite constant. Writing the solution of (3.60) as 〈U(x)〉 ∼ e−

√−Γε x,
yields the characteristic equation

λ =

√

cλ − k+ h
D

− ε2Γ2, (3.78)

where we have substituted for Γ using (3.57). Squaring both sides and rearranging
thus leads to the following dispersion relation for the wave speed c:

c = c(λ )≡ Dλ +
k− h+ ε2DΓ2

λ
. (3.79)

Minimizing with respect λ then shows that

cmin = 2
√

D(k− h)+ ε2D2Γ2, (3.80)

For sufficiently small ε , we can Taylor expand (3.80) to obtain

cmin ≈ c+
2D2Γ2

c
ε2, (3.81)

with c = 2
√

D(k− h) the wave speed of the corresponding homogeneous distribu-
tion of spines. Hence, a periodic variation in the spine density due to clustering leads
to an O(ε2) increase in the wave speed. An analogous result was obtained by Smaily
et. al. [587] for the Shigesada et. al. model [574]. Note that (3.59) also implies that
there are small-scale fluctuations of the wave profile in the leading edge of the wave

ΔP(x/ε)
〈P〉 = ε2ΔU(x/ε)+O(ε3). (3.82)

Since ε = Δ/σ , it follows from (3.62) that fluctuations in the wave profile vary
between −hΔ 2/(12D) at spine clusters and hΔ 2/(24D) between spine clusters. In
terms of physical parameters, the minimum wave speed is

cmin = 2
√

D(k− h)+Δ 2h
2
/12. (3.83)

It immediately follows that for fixed h,k,D (and hence c), spine clustering increases
the speed of a translocation wave. This is illustrated in Fig. 3.10, where we plot the
minimal wave speed cmin given by (3.83) as a function of the activation rate k for
various values of the cluster spacing Δ . An additional important consequence of
clustering is that it reduces the threshold for the existence of a translocation wave.



3.2 Reaction–Diffusion Model of CaMKII Translocation Waves 125

That is, there exists a critical value of the activation rate, k = κ(Δ), below which
translocation waves do not exist and κ(Δ) is a decreasing function of Δ . In the
homogenization limit Δ → 0, we recover the result κ = h.

The existence of a pulsating wave due to spine clustering and the associated in-
crease (decrease) in the minimal speed (threshold) of the wave can also be confirmed
numerically. For the sake of illustration, consider a dendrite of length L = 300μm
with reflecting boundary conditions at both ends x = 0,L. The initial conditions are
taken to be

P(x,0) = P0,A(x,0) = 0 for allx /∈ [0,δL]

P(x,0) = 0,A(x,0) = P0 for allx ∈ [0,δL],

with δL = 15μm. We discretize space by setting x = mδx, where δx is the step
length and m = 0,1, . . . ,M with M = L/δx. In discrete spatial units the spine cluster
spacing is taken to be Δ = Pδx. The spine cluster distribution is then represented
numerically by the discrete sum

ρ(mδx) =
1

δx

M/P

∑
j=0

δm, jP,

where δm, j is the Kronecker delta and δx is chosen so that M,P and M/P are inte-
gers. An example of a pulsating wave is shown in Fig. 3.11. Comparison between
waves for a spatially uniform distribution of spines and a spatially discrete distri-
bution of spine clusters shows that the wave is periodically modulated and faster in
the latter case. This is a consequence of the fact that translocation is less effective
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Fig. 3.10 Plot of minimal wave speed cmin as a function of activation rate k = k0 P0 for various val-
ues of the spine cluster spacing Δ . Also shown is the corresponding wave speed for a homogeneous
spine distribution (black curve). Other parameters are h = 0.1 s−1 and D = 1μm2/s. Note that wave
propagation failure occurs as k → κ(Δ) from above where κ(Δ) is the propagation threshold
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Fig. 3.11 Numerical traveling wave solution of (3.43a) and (3.43b) for an inhomogeneous distri-
bution of spine clusters with Δ = 8μm. The translocation rate h = 0.1 s, diffusivity D = 1μm2/s
and the activation rate k = 0.19 s. At time t = 0 all of the CaMKII within the stimulated region (in-
dicated by thick bar) is in the activated state, whereas all of the CaMKII within the nonstimulated
region is in the primed state. Concentrations are normalized with respect to the initial concentra-
tion of primed CaMKII. The resulting wave profiles for activated (gray curve) and primed (black
curve) CaMKII along the dendrite are shown at four successive snapshots in time. The numerically
estimated wave speed cmin ≈ 0.66μm/s, which is faster than the wave speed c = 0.6μm/s of the
corresponding uniform spine distribution

in the presence of spine clusters. Although doubling the degree of clustering only
leads to a change in wave speed of order 0.05μm/s (consistent with the analytical
calculations), it leads to a significant difference in propagation times along a 300 μm
dendrite.

3.2.4 Wave Speed for a Slowly Modulated Spine Density

So far we have considered the effects of heterogeneity at a microscopic length scale
comparable to the spacing of individual spines. In particular, we took the homog-
enized translocation rate h to be constant over the length of a dendrite. However,
it is found experimentally that there is a slow proximal to distal variation in the
density of spines [22, 346]. An illustration of a typical spine density found in pyra-
midal neurons of mouse cortex [22] is shown in Fig. 3.12. Such a variation in spine
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density can be incorporated into (3.43a) and (3.43b) by setting h = h+ Δh(εx),
where h denotes the translocation rate at the initiation point x0 of the wave and
Δh(εx) represents the slow modulation of the (homogenized) translocation rate over
the length of a dendrite with ε � 1. The general problem of biological invasion in
slowly modulated heterogeneous environments can be analyzed using a Hamilton–
Jacobi method for front velocity selection [421, 687]; see Sect. 3.3. This method
was originally applied to homogeneous media by Freidlin using large deviation the-
ory [203, 204, 212] and was subsequently formulated in terms of PDEs by Evans
and Sougandis [178]. We will illustrate the method by applying it to the reaction–
diffusion model of CaMKII translocation waves with slow periodic modulation; see
also [72]
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Fig. 3.12 Illustrative example of the spine density variation along the basal dendrite of a pyramidal
cell in mouse cortex (black curve). Density is calculated as the number of spines per 10 μm segment
of the dendrite from the soma to the tip of the dendrite. Abstracted from experimental data in [22].
Also shown is a simplified piecewise linear approximation of the spine density variation (gray
curve)

The first step in the analysis is to rescale space and time in (3.43a) and (3.43b)
according to t → t/ε and x → x/ε; see [178, 204, 421]:

ε
∂P
∂ t

= Dε2 ∂ 2P
∂x2 − k0AP (3.84a)

ε
∂A
∂ t

= Dε2 ∂ 2A
∂x2 + k0AP− [h+Δh(x)]A. (3.84b)

Under the spatial rescaling the front region where A (P) rapidly increases (decreases)
as x decreases from infinity becomes a step as ε → 0. This motivates the introduction
of solutions of the form

P(x, t)∼ P0

[

1− e−Gε (x,t)/ε
]

, A(x, t)∼ A0(x)e
−Gε (x,t)/ε (3.85)

with Gε (x, t)> 0 for all x > x(t) and Gε(x(t), t) = 0. The point x(t) determines the
location of the front and c = ẋ. Substituting (3.85) into (3.84a) and (3.84b) gives
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−∂Gε
∂ t

= D

[

∂Gε
∂x

]2

−Dε
∂ 2Gε
∂x2 − k0A0(x)

[

1− e−Gε (x,t)/ε
]

−A0(x)
∂Gε
∂ t

= A0(x)

[

D

[

∂Gε
∂x

]2

−Dε
∂ 2Gε
∂x2 +k0P0

[

1−e−Gε (x,t)/ε
]

−[h+Δh(x)]

]

+ ε2A′′
0(x)Gε − 2εA′

0(x)
∂Gε
∂x

.

Since e−Gε (x,t)/ε → 0 as ε → 0 for Gε > 0, it follows that the limiting function
G(x, t) = limε→0 Gε(x, t) satisfies

−∂G
∂ t

= D

[

∂G
∂x

]2

− k0A0(x) (3.86a)

−∂G
∂ t

= D

[

∂G
∂x

]2

+ k− [h+Δh(x)], (3.86b)

where k = koP0 as before. It immediately follows that

A0(x) =

[

k− h−Δh(x)
k

]

P0. (3.87)

The remaining equation (3.86b) can be analyzed along identical lines to a pre-
vious study of the heterogeneous Fisher–KPP equation [421]. Formally compar-
ing (3.86b) with the Hamilton–Jacobi equation ∂tG+H(∂xG,x) = 0, we define the
Hamiltonian

H = Dp2 + k− [h+Δh(x)], (3.88)

where p = ∂xG is interpreted as the conjugate momentum of x. It now follows that
(3.86b) can be solved in terms of the Hamilton equations

dx
ds

= 2Dp,
d p
ds

=
dΔh
dx

. (3.89)

Combining these equations yields the second-order ODE

ẍ− 2DΔh(x)′ = 0. (3.90)

This takes the form of a Newtonian particle moving in a “potential” V (x) =
−2DΔh(x). Given the solution x(s) = φ(s;x, t) with φ(0;x, t) = x0 and φ(t;x, t) = x,
we can then determine G(x, t) according to

G(x, t) =−E(x, t)t +
1

2D

∫ t

0
φ̇(s;x, t)2ds. (3.91)

Here
E(x, t) = H(φ̇ (s;x, t)/2D,φ(s;x, t)), (3.92)

which is independent of s due to conservation of energy.
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For certain choices of the modulation function Δh(x), (3.90) can be solved
explicitly [421]. In particular, suppose that the spine density curve in Fig. 3.3 is
approximated by a piecewise linear function, in which the density increases linearly
with distance from the soma to some intermediate location κ along the dendrite and
then decreases linearly towards the distal end. Assuming that the right-moving wave
is initiated beyond the point κ , x0 > κ , then we can simply take Δh(x) =−β (x−x0)
for β > 0. Substituting into (3.90) and integrating twice with respect to s using the
Cauchy conditions gives

φ(s;x, t) = x0 +(x− x0)s/t +Dβ ts−Dβ s2. (3.93)

The corresponding “energy” function is then

E(x, t) =
(x− x0)

2

4Dt2 + k− h+
β
2
(x− x0)+

β 2

4
Dt2 (3.94)

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

time t [sec]

w
av

es
pe

ed
 c

k=0.28

k=0.35

k=0.4

Fig. 3.13 Plot of time-dependent variation in wave speed c given by (3.96) for various values of the

activation rate k. Other parameters are h= 0.24 s−1 and D = 1μm2/s. At t = 0, c(0) = 2
√

D(k−h)

and (3.91) shows that

G(x, t) =
(x− x0)

2

4Dt
− [k− h]t − β

2
(x− x0)t − β 2

12
Dt3. (3.95)

We can now determine the wave speed c by imposing the condition G(x(t), t) = 0.
This leads to a quadratic equation with positive solution
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x(t) = x0 +Dβ t2+ 2Dt

√

k− h
D

+
β 2

3
t2

= x0 + ct

√

1+
4β 2D2t2

3c2 +Dβ t2

with c = 2
√

D(k− h). Finally, differentiating both sides with respect to t yields

c ≡ ẋ(t) = c
√

1+Γ0β 2t2 +
cΓ0β 2t2

√

1+Γ0β 2t2
+ 2Dβ t, (3.96)

where Γ0 = 4D2/(3c2). For sufficiently small times such that Dβ t � 1, we have the
approximation

c ≈ c+ 2Dβ t +
2(Dβ t)2

c
. (3.97)

Figure 3.13 shows example plots of the time-dependent wave speed for various
choices of the activation rate k. It can be seen that there are significant changes
in speed over a time course of 100 s, which is comparable to the time a wave would
travel along a dendrite of a few hundred microns. In principle, it should be possible
to test experimentally the predictions of the above analysis by initiating a translo-
cation wave at different points along a dendrite and determining the corresponding
wave speed.

3.3 Appendix: Pulled and Pushed Fronts

In this appendix, we review some of the basic properties of fronts propagating into
unstable states. For a much more detailed account, see the review by van Saarloos
[544] and Chap. 4 of [422]. For concreteness, we focus on a slight generalization of
the Fisher–KPP equation

∂u
∂ t

=
∂ 2u
∂x2 + f (u), f ∈C1[0,1], f (0) = f (1) = 0, (3.98)

for which the homogeneous fixed point u = 0 is unstable ( f ′(0) > 0) and u = 1 is
stable ( f ′(1)< 0). We also assume that f (u)> 0 for all u ∈ (0,1). We are interested
in determining the longtime asymptotics of a front propagating to the right into the
unstable state u = 0, given initial conditions for which u(x,0) = 0 for sufficiently
large x. It is not possible to carry out an asymptotic analysis by simply moving to
a traveling coordinate frame, since there is a continuous family of front solutions.
However, considerable insight into the evolution of a localized initial condition can
be obtained by linearizing about the unstable state.
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Fig. 3.14 Illustrative sketch of the growth and spreading of a solution u(x, t) of the Fisher equation
linearized about the unstable state u = 0, given a localized initial condition u(x, t0)

3.3.1 The Linear Spreading Velocity

Linearizing (3.98) about u = 0,

∂u
∂ t

=
∂ 2u
∂x2 + f ′(0)u. (3.99)

Substitution of the Fourier mode e−iωt+ikx gives the dispersion relation

ω(k) = i( f ′(0)− k2). (3.100)

The state u = 0 is then said to be linearly unstable if Im[ω(k)] > 0 for some range
of k-values. In the case of the Fisher–KPP equation, after writing k = kr + iki, this
will occur when f ′(0) + k2

i > k2
r . Consider some generic initial condition u(x,0)

that is sufficiently localized in space (to be made precise later). Since there exists
a range of unstable linear eigenmodes, we expect the localized initial condition to
grow and spread out within the linear regime, as illustrated in Fig. 3.14. Tracking
the evolution of a level curve xa(t) with u(xa(t), t) = a, the linear spreading velocity
c∗ is defined to be the asymptotic speed of the point xa(t) in the rightward moving
edge (assuming it exists):

c∗ = lim
t→∞

dxa(t)
dt

. (3.101)

The linearity of the underlying evolution equation (3.99) means that c∗ is indepen-
dent of the value a. (Note that for an isotropic medium, the leftward moving edge
moves with the same asymptotic speed but in the opposite direction.) Suppose that
c∗ is finite. If we were to move in the traveling coordinate frame ξ = x−c∗t, then the
leading rightward edge would neither grow nor decay exponentially. Imposing this
condition on the Fourier expansion of the solution u(x, t) then determines c∗ in terms
of the dispersion curve ω(k). More specifically, denoting the Fourier transform of
the initial condition u0(x) = u(x,0) by ũ0(k), we have
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C

Fig. 3.15 Method of steepest descents. Sketch of Re(ψ) contours in the complex k-plane for an
analytic function in the region of a saddle point at k∗. The integration contour C is deformed so
that it passes through the saddle point

u(x, t) =
∫ ∞

−∞
ũ0(k)e

i[kx−ω(k)t]) dk
2π

=

∫ ∞

−∞
ũ0(k)e

ikξ e−i[ω(k)−c∗k]t) dk
2π

=

∫ ∞

−∞
ũ0(k)e

ikξ eψ(k)t dk
2π

, (3.102)

where

ψ(k) =−i[ω(k)− c∗k] = ωi(k)− c∗ki − i[ωr(k)− c∗kr] (3.103)

In the limit t → ∞ with ξ finite, we can approximate this integral using steepest de-
scents. For the moment, we assume that ũ(k) is an entire function (analytic in every
finite region of the complex plane) so that we can deform the contour in the complex
k-plane, that is, (−∞,∞)→C, with C linking points at infinity in the complex plane
where Re(ψ)< 0.

Method of steepest descents. We briefly describe the method of steepest descents for a gen-
eral analytic function ψ(k); see also Fig. 3.15 and [275]. First, one would like to choose C so
that the maximum of ψr ≡ Re(ψ) along the contour at k0, say, is as large as possible, since
this point will dominate the integral. Recall, however, that one of the Cauchy–Riemann
conditions on an analytic function is that ∇2(Re(ψ)) = 0, which means that Re(ψ) cannot
have any maxima or minima (except at singularities or branch points where ψ would be
nonanalytic). Therefore ∇(Re(ψ)) = 0 only at saddle points. Second, for a general integra-
tion contour, evaluating the integral in a neighborhood of the point k0 will overestimate the
value of the integral, since it does not take into account cancellations due to the rapidly os-
cillating function eiIm(ψ(k)) . The latter issue can be eliminated by choosing the contour that
is the path of steepest ascent to a saddle point and the steepest descent away from the saddle.
(If there exists more than one saddle, then one chooses the “highest” one). By construction,
the path is parallel to Re(ψ). Hence, from the Cauchy–Riemann conditions, ∇(Im(ψ)) = 0
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so that ψi ≡ Im(ψ) is constant along the contour. In other words, there are no fast oscilla-
tions along the path of steepest ascent and descent and one can obtain a good estimate of
the integral by Taylor expanding about the saddle point. Thus, taking ψi(k) = ψi(k∗) along
C∗ , we have

I ≡
∫ ∞

−∞
ũ0(k)e

ikξ eψ(k)t dk
2π

=
∫

C∗
ũ0(k)e

ikξ eψ(k)t dk
2π

≈ ũ0(k
∗)eiψi(k

∗)t
∫

C∗
eikξ eψr(k)t dk

2π
.

Finally, we Taylor expand ψr(k) to second order in Δk = k−k∗, noting that ψ ′(k∗) = 0 and
ψ ′′

r (k
∗)< 0 at the saddle,

ψr(k) = ψr(k
∗)+

(Δk)2

2
ψ ′′

r (k
∗),

and approximate the remaining contour integral by a Gaussian. This then gives

I ≈ 1√
4πDt

ũ0(k
∗)ei[k∗ξ+ψi(k

∗)t ]e−ξ 2/4Dteψr(k∗)t , (3.104)

where D =−ψ ′′
r (k

∗)/2.

Let us now apply steepest descent to the integral (3.102) for ψ(k) given by
(3.103) such that ψr(k) = ωi(k)−c∗ki and ψi(k) =−[ωr(k)−c∗kr]. At the (unique)
saddle point k∗ at which ψ ′(k∗) = 0, we have

c∗ =
dω(k)

dk

∣

∣

∣

∣

k=k∗
. (3.105)

Moreover, equation (3.104) becomes

I ≈ 1√
4πDt

ũ0(k
∗)ei[k∗ξ−[ωr(k∗)−c∗k∗r ]t]e−ξ 2/4Dt , (3.106)

where

D =−1
2

ω ′′
i (k

∗). (3.107)

Finally, we can determine the linear spreading velocity c∗ by requiring that the
asymptotic solution neither grows nor decays with time, ψr(k∗) = 0, which implies

c∗ =
ωi(k∗)

k∗i
. (3.108)
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Note that equating real and imaginary parts in (3.105) and combining with (3.108)
means that we have three equations in the three unknowns c∗,k∗r ,k∗i . In the particular
case of the Fisher–KPP equation (3.98),

k∗r = 0, k∗i =
√

f ′(0), c∗ = 2
√

f ′(0), D = 1. (3.109)

Since k∗r = 0, we can combine (3.105) and (3.108) into the single condition c∗ =
c(λ ∗), λ ∗ = k∗i , where

c(λ ) =
ωi(iλ )

λ
,

dc(λ )
dλ

∣

∣

∣

∣

λ=λ ∗
= 0. (3.110)

It can also be seen that the modulus of u falls off as

|u(x, t)| ∼ 1√
t
e−λ ∗ξ e−ξ 2/4t . (3.111)

A more direct way to derive the function c(λ ) is to consider the linearized PDE in
the moving frame ξ = x− ct,

−c
dU
dξ

=
d2U
dξ 2 + f ′(0)U,

and to assume the leading-edge solution U(ξ )∼ e−λ ξ .
In the above analysis, it was assumed that the Fourier transform of the initial con-

dition u0(x) was an entire function. This would apply to cases for which u0(x) is a
Dirac delta function, has compact support, or decays faster than any exponential for
large enough x (e.g., a Gaussian). Now suppose that u0(x) falls off exponentially for
large x, u0(x) ∼ e−λ x for some λ . Then ũ0(k) has a pole in the upper-half complex
plane at k = k′ with Im(k′) = λ . It follows that when deforming the contour C in
the complex k-plane in order to perform steepest descents, we pick up a contribu-
tion from the pole. Taking this into account, it can be shown that, within the linear
regime, initial conditions whose exponential decay rate λ > λ ∗ lead to profiles that
asymptotically spread with the linear spreading velocity v∗. On the other hand, if
λ < λ ∗ then the profile advances at a speed faster than c∗ [544].

So far we have investigated the evolution of a localized initial condition in the
linear regime. It still remains to determine whether or not there are classes of initial
conditions under which the full nonlinear system converges to a unique asymptotic
front solution and how the speed of the front c is related to the linear spreading
velocity c∗. It turns out that for front propagation into a linearly unstable state, there
are only two possibilities when starting from sufficiently steep initial conditions,
that is, initial conditions that fall off faster than e−λ ∗x [544]:

Pulled front: c = c∗ so that the front dynamics is determined by the behavior in the
leading edge of the front where u(x, t) ≈ 0, that is, the front is pulled along by the
linear spreading of small perturbations into the linearly unstable state.
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Pushed front: c > c∗ so that nonlinearities play an important role in determining the
velocity of the front, pushing it into the unstable state.

In the special case of initial conditions with compact support, it can be proven that
the solution evolves into a front that propagates at the minimal possible wave speed
cmin, which is bounded above and below [15]:

c∗ = 2
√

f ′(0)≤ cmin < 2

√

sup
u

[

f (u)
u

]

. (3.112)

For any concave function, f (u)≤ u f ′(0), the lower and upper bounds coincide and
we have a pulled front; this applies to the standard Fisher–KPP equation where
f (u) = u(1− u). On the other, the upper and lower bounds do not coincide for
concave f (u). The minimal front velocity can then be larger than the linear velocity
indicative of a pushed front. An example of the latter is the Ginzburg–Landau term
f (u) = u(1−u)(1+αu) with α > 0. One finds that for compact initial conditions, a
pulled front is selected when α ≤ 2, whereas a pushed front is selected when α > 2
[33].

3.3.2 Variational Method for Front Velocity Selection

Over recent years a number of methods have been developed to tackle the general
problem of front velocity selection, that is, which of the infinity of possible wave
speeds is selected by a given initial condition. One method analyzes the dynamics
of the front position using Hamilton–Jacobi theory. Although it is only applicable
to pulled fronts, it has the advantage of being able to tackle the effects of hetero-
geneities, as illustrated in Sect. 3.2.4 for CaMKII translocation waves. Here we
briefly describe another method due to Benguria and Depassier [36], which is based
on a variational principle. The latter can be applied to both pulled and pushed fronts,
although in many cases it only provides lower and upper bounds for the front veloc-
ity. Consider a front solution of the reaction–diffusion Eq. (3.98) in traveling wave
coordinates,

uξ ξ + cuξ + f (u) = 0, (3.113)

with limξ→−∞ u(ξ ) = 1 and limξ→∞ u(ξ ) = 0, ξ = x− ct. Set q(u) = −uξ > 0 for
u ∈ (0,1), so that (3.113) becomes

q(u)
dq
du

− cq(u)+ f (u) = 0, q(0) = 0, q(1) = 0. (3.114)

Let g ∈C1[0,1] be a positive, monotonically decreasing function with
∫ 1

0 g(u)du <
∞, and set h = −g′ > 0. We denote the space of admissible functions g by the do-
main D . Multiplying (3.114) by g/q and integrating with respect to u gives (after
integration by parts)

∫ 1

0

(

h(u)q(u)+
f (u)

u
g(u)

)

du = c
∫ 1

0
g(u)du. (3.115)
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For fixed u, the functional

Φ[q] = qh+
f
q

g

has a minimum at q0 =
√

f g/h with Φ[q0] = 2
√

f gh. It follows that

c
∫ 1

0
g(u)du =

∫ 1

0
Φ[q(u)]du ≥ 2

∫ 1

0

√

f (u)g(u)h(u)du,

that is,

c ≥ 2

∫ 1
0

√

f (u)g(u)h(u)du
∫ 1

0 g(u)du
≡ I[g]. (3.116)

As we show below, there exists a function ĝ ∈ D that maximizes the lower bound
for c in such a way that the equality holds. Hence, we have the variational principle

c = max
g∈D

(

2

∫ 1
0

√

f (u)g(u)h(u)du
∫ 1

0 g(u)du

)

, (3.117)

which can be used to estimate c using a parameterized set of trial functions. This
result can also be used to derive the upper bound of (3.112) [36].

In order to establish the existence of the function ĝ, we first require Φ[q] = Φ[q0]
for all u, that is, hq = f ĝ/q. Combined with (3.114) this gives

− ĝ′

ĝ
=

c
q
− q′

q
,

which can be integrated to yield

ĝ(u) = q(u)exp

(
∫ u0

u

c
q(u′)

du′
)

(3.118)

for some u0, 0< u0 < 1. Since ĝ> 0 on (0,1) and h= ĝ f/q2 > 0 we deduce that ĝ∈
C1[0,1] and is a positive, decreasing function. It remains to check that

∫ 1
0 ĝ(u)du <

∞, which requires determining the behavior near u = 0. Linearizing (3.113) around
u= 0 shows that if u∼ e−λ ξ for ξ →∞ with λ =(c+

√

c2 − 4 f ′(0))/2, then q∼ λ u
for u ∼ 0. The integral solution for ĝ then implies that

ĝ ∼ λ
1

uc/λ−1
, u ∼ 0.

Therefore, if c< 2λ , that is, c> 2
√

f ′(0), then
∫ 1

0 ĝ(u)du<∞ and ĝ∈D . Finally, in
the special case c = 2

√

f ′(0), one can take the set of trial functions gα(u) = αuα−1

with gα ∈ D for 0 < α < 1 and show that I[gα ]→ 2
√

f ′(0) as α → 0. This means
c = 2

√

f ′(0)≥ maxg I[g]≥ 2
√

f ′(0), that is, c = maxg I[g].
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