
Chapter 2
Traveling Waves in One-Dimensional
Excitable Media

We now consider our first example of wave propagation in neural media, namely, the
propagation of an action potential along the axon of a neuron. Such a phenomenon
can be formulated mathematically in terms of finding a traveling pulse solution of
the spatially extended Hodgkin–Huxley equations (1.8) and (1.4). Formally speak-
ing, a traveling wave is a solution of a PDE on an infinite domain that travels at
constant velocity and fixed shape. For one-dimensional systems, one can distinguish
two types of solitary traveling wave: a traveling front linking a stable resting state to
a stable excited state and a traveling pulse that begins and ends at the resting state;
see Fig. 2.1. For the Hodgkin–Huxley model, a traveling front would occur if the
recovery variable n associated with K+ channels were frozen; otherwise repolariza-
tion ensures that the trailing edge of the wave returns to the resting state. In order to
develop the basic theory of wave propagation in one-dimensional excitable media,
we will consider a simplified version of the Hodgkin–Huxley equations given by the
FitzHugh–Nagumo (FN) equations [192, 446]:
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Fig. 2.1 Schematic illustration of (a) a traveling front, and (b) a traveling pulse
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64 2 Traveling Waves in One-Dimensional Excitable Media

∂v
∂ t

=
∂ 2v
∂x2 + f (v)−w≡ f (v,w), (2.1a)

∂w
∂ t

= ε(v−w)≡ εg(v,w). (2.1b)

with 0 < ε � 1 and
f (v) = v(v− a)(1− v). (2.2)

Here v represents a fast voltage variable and w is a slow recovery variable. The time
and space scales have been non-dimensionalized so that the effective diffusivity of
the cable is unity. A number of excellent reviews of waves in excitable systems can
be found elsewhere [242, 316, 322, 444].

2.1 Excitable Systems

Before consider traveling wave solutions, it is instructive to consider the excitable
behavior of the space-clamped (x-independent) FN model. The space-clamped FN
model takes the form of a planar dynamical system

dv
dt

= f (v,w), (2.3a)

dw
dt

= εg(v,w). (2.3b)

The fast variable has a cubic nullcline (along which v̇ = 0) and the slow variable
has a monotonically increasing nullcline (along which ẇ = 0). It is assumed that the
nullclines have a single intersection point at (v∗,w∗). This corresponds to a fixed
point of the system, which we identify with the resting state. A schematic diagram
of the phase plane is shown in Fig. 2.2. For a finite range of values of w, there
exist three solutions v = v(w) of the equation f (v,w) = 0, which we denote by
V−(w),V0(w), and V+(w). Whenever these solutions coexist, we have the ordering
V−(w) ≤ V0(w) ≤ V+(w). Let W∗ denote the minimal value of w for which V−(w)
exists, and let W ∗ denote the maximal value of w for which V+(w) exists.

First, suppose that the fixed point is located on the left-hand branch close to the
minimum of the cubic. It is straightforward to show that the fixed point is linearly
stable by evaluating the eigenvalues of the corresponding Jacobian. Moreover, the
system is excitable in the sense that sufficiently large perturbations of the resting
state result in a time-dependent trajectory taking a prolonged excursion through
state space before returning to the resting state; see Fig. 2.3. Such a trajectory rapidly
transitions to the right branch V+, after which it slowly moves upward in a neighbor-
hood of the branch before reaching the maximum. It then rapidly transitions back to
the left branch V− followed by a slow returns to the resting state along this branch.
The time-dependent plot of the variable v can be interpreted as an action potential.
Since the resting state is linearly stable, small perturbations simply result in small
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Fig. 2.2 Schematic diagram of the phase plane for the FitzHugh–Nagumo equations

excursions that decay exponentially in time. Hence, there is effectively a threshold
phenomenon in which subthreshold perturbations result in a simple return to the
resting state, whereas superthreshold perturbations generate an action potential.
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Fig. 2.3 Schematic diagram illustrating the trajectory of a single action potential in the phase
plane for the FitzHugh–Nagumo equations. The unique rest point is stable. Inset shows the action
potential as a function of time

A more mathematical description of the above events can be developed in terms
of singular perturbation theory [242, 322]. Due to the separation of time scales with
ε � 1, the fast variable v rapidly adjusts whenever it can to maintain the quasi-
equilibrium f (v,w) = 0. This can be captured by introducing the slow time scale
τ = εt such that (2.3) become

ε
dv
dτ

= f (v,w),
dw
dτ

= g(v,w). (2.4)
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Now setting ε = 0 and assuming that v is moving along the stable branches V±(w)
of f (v,w) = 0, the dynamics of the recovery variable reduces to

dw
dτ

= g(V±(w),w) ≡ G±(w). (2.5)

In the case of rapid transitions between the left and right branches, the dynamics
with respect to the fast time scale can be approximated by setting ε = 0 in (2.3),

dv
dt

= f (v,w),
dw
dt

= 0. (2.6)

Thus, on this time scale, w is constant and v converges to a stable solution of
f (v,w) = 0. Suppose that the system starts from a superthreshold initial condition
(v0,w0) such that v0 > V0(w0). After rapidly reaching the right branch, it takes a
finite time to reach the upper “knee” of the nullcline f (v,w) and is obtained by
integrating (2.5):

Te =

∫ W ∗

w0

dw
G+(w)

. (2.7)

On the other hand, the time taken to return to the resting state along the left branch
is infinite, since G−(w) vanishes at the fixed point.

It is possible to convert the FN equations from an excitable to an oscillatory
regime by adding a constant external current Iext to the right-hand side of the volt-
age equation in (2.3). For an intermediate range of values of Iext one finds that the
fixed point shifts to the middle branch V0(w) where it is unstable. The fixed point
now coexists with a limit cycle, along which the trajectory alternates periodically be-
tween the left and right branches, while w varies between W∗ and W ∗; see Fig. 2.4.
The resulting limit cycle behavior with fast jumps alternating with slow dynamics
is known as a relaxation oscillator. For small ε , the period T of the oscillator is
dominated by the times to move along the left and right branches. Hence

T =

∫ W ∗

W∗

(
1

G+(w)
− 1

G−(w)

)
dw, (2.8)

with G+ > 0 and G− < 0.
Another well-known planar model of an excitable neuron is the Morris–Lecar

(ML) model [440] (see Eq. (1.28)) which we write in the form

dv
dt

= a(v) fNa(v)+w fK(v)− g(v) (2.9a)

dw
dt

=
w∞(v)−w

τw(v)
, (2.9b)

where fi(v)= gi(vi−v) and w represents the fraction of open K+ channels. The frac-
tion of Na+ channels (or Ca2+ channels in the original formulation of the model) is
assumed to be in quasi steady state. Again we can analyze the generation of action
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Fig. 2.4 Schematic diagram illustrating the trajectory of a globally stable periodic orbit in the
phase plane for the FitzHugh–Nagumo equations. The unique rest point is unstable. Inset shows
the periodic orbit as a function of time

potentials using a slow/fast analysis of the deterministic system. However, it turns
out that this adiabatic approximation breaks down when stochastic fluctuations in
the opening and closing of K+ channels are taken into account. This can be estab-
lished by considering a stochastic version of the ML model [456] consisting of N
sodium and M potassium channels (see also Sect. 1.5):

dv
dt

= F(v,m,n)≡ n
N

fNa(v)+
m
M

fK(v)− g(v). (2.10)

We assume that each channel can either be open or closed and can switch between
each state according to the kinetic scheme

C
αi(v)
−→←−
βi(v)

O, i = Na, K, (2.11)

The Na+ channels open and close rapidly relative to the voltage and K+ dynam-
ics. The probability density function p(v,m,n, t) of the resulting stochastic hybrid
system (see Sect. 1.6) evolves according to the differential Chapman–Kolmogorov
(CK) equation,

∂ p
∂ t

=−∂ (F p)
∂v

+LK p+LNap. (2.12)

The jump operators L j, j = Na,K, are defined according to

L j = (E−n − 1)ω+
j (n,v)+ (E+

n − 1)ω−j (n,v), (2.13)

with E
±
n f (n) = f (n± 1), ω−j (n,v) = nβ j(v) and ω+

j (n,v) = (N− n)α j(v).
Introducing the small parameter ε with αNa,βNa,M = O(1/ε), one can extend

the WKB approximation method of Sect. 1.6 to analyze noise-induced transitions
in the phase plane [456]. The WKB potential Φ can be interpreted as the action
of an effective Hamiltonian dynamical system whose solutions determine charac-
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Fig. 2.5 Illustration of spontaneous action potentials (SAPs) for the stochastic ML model (2.10)
with a finite number of sodium and potassium ion channels [456]. Orange curves are SAP trajecto-
ries, shown until they reach the effective metastable separatrix (S). The dashed red curve is a SAP
that reaches S near the metastable saddle (SN). All of the SAP trajectories in the shaded region—
containing the most probable, observable SAP trajectories—are visually indistinguishable from the
dashed red line before crossing S. Deterministic trajectories are shown as black streamlines. Also
shown are a caustic (C), caustic formation point (CP), v nullcline (VN), and w nullcline (WN).
Parameter values are N = M = 10 and ε = 0.1

teristic paths in the phase plane (see also Sect. 4.4). The latter correspond to the
paths a stochastic trajectory is most likely to follow during a metastable transition
(i.e., a path of maximum likelihood [160]). Based on the fast/slow analysis of the
deterministic system (2.9), one might expect w to be approximately constant along
a stochastic trajectory that jumps between the left and right branches of the voltage
nullcline, since the K+ channels open and close slowly. In fact this does not hold
for spontaneous action potentials arising from K+ channel fluctuations [456] (see
Fig. 2.5), which is in contrast to the effects of noise in the voltage or fast sodium
channels. In general, it is difficult to solve FPT problems in more than one dimen-
sion. In the case of a metastable state with a well-defined basin of attraction, one has
to calculate the MFPT to cross the separatrices forming the boundary of the basin
of attraction. There is an additional level of complexity for an excitable system, due
to the fact that there is no well-defined deterministic separatrix. Interestingly, as il-
lustrated in Fig. 2.5, the stochastic ML model has an effective separatrix that any
stochastic trajectory has to cross in order to generate a stochastic action potential
[456]; see also [327]. Another commonly observed feature of the WKB approxima-
tion in two or more dimensions is the formation of caustics, where characteristic
projections of the Hamiltonian intersect. There is now quite an extensive literature
on the effects of noise in excitable systems, as reviewed in [383]. Most of these stud-
ies consider extrinsic Gaussian noise in the voltage dynamics and phenomena such
as stochastic and coherence resonance. In Sect. 2.6 we will consider the effects of



2.2 Traveling Fronts in a Scalar Bistable Equation 69

Gaussian noise on wave propagation in a spatially extended excitable system. One
can motivate this form of noise by considering diffusion approximations of models
of stochastic ion channels. However, as the above example shows, certain caution
must be exercised when considering such approximations.

Finally, we note that fast/slow decomposition has been applied extensively in re-
cent years to the study of rhythmic activity patterns in single neurons and in synap-
tically coupled relaxation oscillators (see also Sect. 5). In the latter case, if synapses
turn on and off on the fast time scale, then geometric singular perturbation theory
can be used to investigate how synaptic inputs modify geometric structures such as
null surfaces in the phase spaces of individual neurons, as reviewed by Rubin and
Terman [537]; see also Chap. 9 of [173]. Moreover, such methods have been used to
study a three-dimensional version of the Hodgkin–Huxley model, in which there is
one fast variable and two slow variables [539, 540]. In addition to the transition from
excitable to regular oscillatory behavior, as observed in classical relaxation oscilla-
tors, the model neuron also exhibits more complex dynamics such as mixed-mode
oscillations that are associated with slow action potentials.

2.2 Traveling Fronts in a Scalar Bistable Equation

In the absence of a recovery variable, the FN equations reduce to the so-called scalar
bistable equation

∂v
∂ t

=
∂ 2v
∂x2 + f (v), −∞ < x < ∞ (2.14)

with f (v) given by the cubic (2.2). For such a choice of nonlinearity, the correspond-
ing ODE, dv/dt = f (v), has stable equilibria at v = 0,1 separated by an unstable
equilibrium at x = a. We define a traveling front solution according to

v(x, t) = v(x− ct) =V (ξ ), ξ = x− ct (2.15)

for some yet to be determined wave speed c, supplemented by asymptotic bound-
ary conditions ensuring that the front links the two stable fixed points of the x-
independent system. For concreteness, we take

V (ξ )→ 1 as ξ →−∞, V (ξ )→ 0 as ξ → ∞. (2.16)

Substituting the traveling front solution into the bistable Eq. (2.14) yields the ODE

Vξ ξ + cVξ + f (V ) = 0, (2.17)

where Vξ = dV/dξ .
Classical phase-plane analysis can be used to find a traveling front solution by

rewriting the second-order equation in the form

Vξ = Z, Zξ =−cZ− f (V ). (2.18)
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Fig. 2.6 Shooting method for constructing a front solution in the (V,Z) phase plane with Z =Vξ .
See text for details

One now has to look for a heteroclinic connection that links the excited state
(V,Z) = (1,0) at ξ →−∞ to the resting state at ξ → ∞. This can be achieved using
a geometric argument based on a shooting method, as illustrated in Fig. 2.6. For the
sake of illustration, suppose that 0 < a < 1/2 so that c > 0 (see below). First note
that irrespective of the speed c, the fixed points (1,0) and (0,0) are saddles, each
with one-dimensional stable and unstable manifolds. By looking at trajectories in
the phase plane, it is straightforward to see that when c� 1, the unstable manifold
of (1,0) lies below the stable manifold of (0,0) when 0 < V < 1, whereas the op-
posite holds when c is very large. Since these manifolds depend continuously on c,
it follows that there must exist at least one value of c for which the manifolds cross,
and this corresponds to the heteroclinic connection that represents the traveling front
solution. It can also be established that this front is unique. A useful formula for de-
termining the sign of the wave speed can be obtained by multiplying both sides of
(2.17) by Vξ and integrating with respect to ξ :

c
∫ ∞

−∞
(Vξ )

2dξ = −
∫ ∞

−∞
Vξ f (V (ξ ))dξ −

∫ ∞

−∞
VξVξ ξ dξ ,

=

∫ 1

0
f (V )dV, (2.19)

since V (ξ ) is monotone, and
∫ ∞
−∞ VξVξ ξ dξ =

∫ ∞
−∞

d[V 2
ξ /2]

dξ dξ = 0. As the integral
on the left-hand side is positive, it follows that the sign of c is determined by the
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sign of the area of f between the two stable equilibria. If 0 < a < 1/2, then the
latter is positive and the wave moves to the right, converting the medium from the
resting state to the excited state. On the other hand, a left-moving front occurs when
1/2< a < 1, converting the medium from the excited state to the resting state. If the
negative and positive areas exactly cancel, then the front is stationary.

The numerical construction of the traveling front using a shooting method does
not depend on the precise form of f . However, if f is given by the cubic (2.2),
then it is possible to construct the front explicitly. That is, we substitute the ansatz
Z =−AV(1−V) into (2.17) to obtain the condition A2(2V −1)+ cA− (V−a) = 0.
Collecting terms linear in V and terms independent of V requires A = 1/

√
2 and

c = (1− 2a)/
√

2. This immediately establishes that c switches sign at a = 1/2.
Since W =Vξ , it follows that the corresponding wave profile is

V (ξ ) =
1
2

[
1− tanh(ξ/2

√
2)
]
.

Finally, recall that we have non-dimensionalized the units of space and time in the
bistable equation by setting the membrane time and space constants of the cable to
unity (τm = 1,λm = 1); see (1.55). Hence, in physical units, the speed of the wave is

ĉ =
cλm

τm
=

c
2Cm

√
d

RmR
, (2.20)

where d is the cable diameter. Based on empirical estimates, one finds that ĉ ∼√
d mm/sec. In the case of a squid axon of diameter d = 500μm, the estimated

propagation speed is of around 20mm/ms.
Another choice of nonlinearity for which an explicit front can be calculated is

the piecewise linear function

f (v) =−v+H(v− a). (2.21)

Substituting into Eq. (2.17) gives

Vξ ξ + cVξ −V +H(V − a) = 0. (2.22)

Translation symmetry of the system means that we are free to choose V to cross the
threshold a at ξ = 0 so that V (ξ )> a for ξ < 0 and V (ξ )< a for ξ > 0. Solving the
resulting linear equation on either side of the threshold point ξ = 0 and imposing
the threshold condition V (0) = a yields the explicit solution

V (ξ ) =
{

aeλ−ξ , ξ > 0
1+(a− 1)eλ+ξ , ξ < 0,

(2.23)

where λ± are the roots of the characteristic equation λ 2 + cλ − 1 = 0. The wave
speed is then obtained by imposing continuity of Vξ at ξ = 0, (a− 1)λ+ = aλ−,
which after rearranging gives
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c =
1− 2a√
a− a2

. (2.24)

2.3 Traveling Pulses in the FitzHugh–Nagumo Equations

The bistable equation cannot support a traveling pulse solution because there is
no recovery variable, that is, it does describe an excitable system. In order to
obtain traveling pulse solutions, it is necessary to consider the full FitzHugh–
Nagumo equations (2.1). Suppose that the unique fixed point (v∗,w∗) lies on the
left-hand branch as in Fig. 2.2. Assume a traveling wave solution of the form
(v(x, t),w(x, t)) = (V (ξ ),W (ξ )) with ξ = x− ct so that (2.1) reduce to the system
of ODEs

Vξ ξ + cVξ + f (V,W ) = 0, (2.25a)

cWξ + εg(V,W) = 0. (2.25b)

These are supplemented by the asymptotic boundary conditions

lim
ξ→±∞

(V (ξ ),W (ξ )) = (v∗,w∗). (2.26)

Mathematically speaking, one needs to find a trajectory in the phase space (V,Z,W )
with Z = Vξ that is homoclinic to the resting state (v∗,0,w∗). (Although the rest-
ing state is stable in the space-clamped system, it is a saddle in the phase plane
(V,Z,W ) of the spatially extended system.) The existence of such an orbit can be
demonstrated using geometric singular perturbation theory [104, 267]. The basic
idea is to formally set ε = 0 and construct a singular homoclinic orbit. This will
consist of four parts: the jump-up from the resting state to the right branch V+(w),
an active phase along V+(w), the jump-down to the left branch V−(w), and a qui-
escent phase as it returns to the resting state along V−(w); see Fig. 2.7. Given the
existence of a singular homoclinic orbit, one can then prove that such an orbit per-
sists for ε > 0 provided that ε is sufficiently small. In this section we will focus
on the construction of the singular solution, exploiting the fact that the jumps take
place on a fast spatial scale ξ , whereas the active and quiescent phases occur on a
slow spatial scale z = εξ .x

In order to analyze the jump-up from the resting state to the active phase, we set
ε = 0 in (2.25) to obtain the reduced system

Vξ ξ + cVξ + f (V,W ) = 0, (2.27a)

Wξ = 0. (2.27b)

Thus the recovery variable is a constant w and V evolves according to the bistable
equation

Vξ ξ + cVξ + f (V,w) = 0, (2.28)
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Fig. 2.7 Phase portrait of the fast traveling solitary pulse for the FN equations in the singular limit
ε→ 0. The arrow directions are for increasing time (decreasing ξ )

for f (V,w) = v(v− a)(1− v)−w. Following Sect. 2.2, we know that for fixed w
there exists a unique traveling front solution of (2.28) with associated wave speed
c = c(w) that is a heteroclinic connection with V →VL(w) as ξ →∞ and v→VR(w)
as ξ →−∞. Moreover,

c(w) =

∫ V+(w)
V−(w) f (V,w)dV∫ ∞

−∞ V 2
ξ dξ

. (2.29)

Setting w = w∗ with VL(w∗) = v∗ we obtain the wave speed c∗ = c(w∗). Next con-
sider the slow active phase with c = c∗. Introducing the slow time scale z = εξ we
have

ε2Vzz + cεVz+ f (V,W ) = 0, (2.30a)

cWz + g(V,W) = 0. (2.30b)

Setting ε = 0 then leads to the reduced system

f (V,W ) = 0, (2.31a)

Wz =
1
c∗

g(V,W). (2.31b)

Taking the solution V =VR(W ) of f (V,W ) = 0, it follows that the trajectory moves
along the right branch at a rate determined by G+(W ) = g(VR(W ),W ).

Now suppose that the trajectory leaves the branch at some value W =Wd < W ∗
(where W ∗ is at the maximum of the cubic f (V,W ) = 0) and jumps back down to the
left branch. Similar to the jump-up phase, the recovery variable is constant, and V
evolves according to the bistable Eq. (2.28) with w = Wd . Again using Sect. 2.2,
we can construct a unique traveling wave solution with associated wave speed
c(Wd)< 0 that is a heteroclinic connection from VR(Wd) to VL(Wd). The wave speed
is negative, since the jump-down starts from an active state rather than a quiescent
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state; it is thus referred to as a wave back. The requirement that the solution be a
steadily propagating pulse means that the speeds of the jump-up and jump-down
solutions must be the same, which implies that

c(w∗) =−c(Wd). (2.32)

This condition uniquely determines the transition point Wd . Finally, the trajectory
returns to the resting state by moving along the left branch at a rate determined by
G−(W )/c∗.

A number of comments are in order. First, from the perspective of matched
asymptotics in the slow variable z, the active and quiescent phases correspond to
outer solutions that are slowly varying, whereas the jump-up and jump-down phases
correspond to transition layers or inner solutions. Denote the wave-front and wave-
back solutions by V±(ξ ). Matching the inner and outer solutions then leads to the
following asymptotic conditions:

lim
ξ→−∞

V+(ξ ) =VR(W (0)), W (0) = w∗

lim
ξ→∞

V+(ξ ) = lim
z→∞

VL(W (z)) = v∗

lim
ξ→−∞

V−(ξ ) =VL(W (zT )), W (zT ) =Wd

lim
ξ→∞

V−(ξ ) =VR(W (zT ))

The location zT where the jump-down occurs is determined from the slow dynamics
according to

zT = c∗
∫ Wd

w∗
dW

G+(W )
dW. (2.33)

One can interpret zT as the width of the pulse. Second, it may be the case that there is
no solution of c(w∗) =−c(Wd) such that Wd <W ∗. The jump-down transition then
occurs at the upper knee, and the solution is referred to as a phase wave, that is, the
jump occurs at a time or phase determined solely by the outer dynamics. The wave
behavior is then qualitatively different, since the wave can travel at any speed above
some minimum, analogous to the well-known Fisher–KPP equation of population
genetics [191, 345]; see Sect. 3.3.

2.3.1 Periodic Wave Trains

One of the characteristic features of excitable systems is that they exhibit refrac-
toriness. That is, once the system has responded to a superthreshold stimulus by
generating an action potential, there is a refractory period during which no subse-
quent stimuli can be evoked. From the singular construction of a traveling pulse, the
refractory period can be estimated as follows: after the jump-down there is a range
of values of the recovery variable, W0 ≤ w ≤Wd for which the front solution to the
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bistable Eq. (2.2) has negative wave speed, c(w) ≤ 0, with c(W0) = 0. The time
taken to reach W0 from Wd along the left branch is (for fixed x and rescaled time)

Tref =

∫ Wd

W0

dW
|G−(W )| . (2.34)

We can identify Tref as the refractory period. Once excitability has been restored, it is
possible to evoke another wave of excitation. However, the speed of the subsequent
pulse is expected to be slower due to the residual refractoriness of the system. Now
suppose that we periodically initiate action potentials at one end of a semi-infinite
cable. This will asymptotically produce a periodic wave train with the time between
successive pulses equal to the forcing period T . Assuming that the wave train travels
at a speed c, the spatial separation or wavelength of the pulses will be λ = cT .
The speed of the wave train is expected to be smaller than the speed of an isolated
pulse due to refractoriness, although this effect should decrease as T increases. In
other words, there exists a dispersion curve c = c(T ) with c(T ), a monotonically
increasing function of T .
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wt = G+(w)

wave front

wt = G-(w)

Fig. 2.8 Phase portrait for the fast periodic wave train for the FN equations in the singular limit
ε→ 0

It is possible to estimate the dispersion curve for the FitzHugh–Nagumo equa-
tions using the previous singular construction. A periodic wave train consists of
an alternating sequence of jump-ups and jump-downs, separated by regions of slow
dynamics. A phase portrait for such a solution is shown in Fig. 2.8. The major differ-
ence from an isolated pulse (see Fig. 2.7) is that the jump-up occurs before reaching
the resting state, with W =WP > w∗. Denoting the corresponding value at the jump-
down by WQ, we require that the speeds of the corresponding wave front and wave
back are the same, that is, c(WP) = −c(WQ). Since the time taken for the jumps is
negligible, the major contributions to the period T come from the time spent travers-
ing the right and left branches:

T =

∫ WQ

WP

dW
G+(W )

+

∫ WP

WQ

dW
G−(W )

. (2.35)
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Fig. 2.9 Illustration of typical dispersion curves c = c(T ) for T -periodic wave-train solutions of
the FN equations. A stable fast branch coexists with an unstable slow branch. They annihilate in a
saddle–node bifurcation

Solving for WQ in terms of WP using the matching of speeds and inverting the re-
lation c = c(WP) then generate the dispersion curve c(T ). It turns out that the dis-
persion curve breaks down when the wavelength λ ≡ cT = O(ε), because the tran-
sitional fronts and backs become arbitrarily close together so that it is no longer
possible to carry out matched asymptotics. In order to construct the true dispersion
curve, it is necessary to carry out a regular perturbation analysis in ε with c = O(ε)
[156]. One then finds that the dispersion curve consists of two branches that annihi-
late in a saddle–node bifurcation at T = Tc; see Fig 2.9. Hence there are no traveling
pulses for T < Tc. It can be shown that the upper branch of fast traveling pulses
is stable, whereas the lower branch of slow pulses is unstable. (The issue of wave
stability will be addressed in Sect. 2.4.) Note that as T → ∞, c→ c∞ on the upper
branch, where c∞ is the speed of an isolated pulse. Interestingly, c also approaches
a finite limit as T → ∞ on the lower branch, suggesting that there also exists a slow
unstable isolated pulse; this is indeed found to be the case.

2.3.2 Kinematics

It is also possible to have wave trains consisting of action potentials that are irreg-
ularly spaced and move at different speeds. Rinzel and Maginu [523] developed a
kinematic theory of wave propagation that uses the dispersion relation to determine
the instantaneous speed of a pulse. That is, suppose an initial pulse is generated
at x = 0 at time t1. The time at which the pulse reaches a given point x will be
T1(x) = t1 + x/c∞, where c∞ is the speed of a solitary pulse. Suppose that a second
spike is initiated at x = 0 at time t2. The instantaneous speed of the new pulse at x
will depend on the time difference T2(x)−T1(x) due to refractoriness. The Rinzel
and Maginu approximation is to take the instantaneous speed to be c(T2(x)−T1(x)),
where c(T ) is the dispersion curve for a periodic wave train. It then follows that
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dT2(x)
dx

=
1

c(T2(x)−T1(x))
, (2.36)

and the time interval φ = T2(x)−T1(x) between two action potentials initiated at
x = 0 will evolve in space according to

dφ
dx

=
1

c(φ)
− 1

c∞
≡ Γ (φ). (2.37)

If the function Γ (φ) has one or more zeroes φ̄ , then the phase difference between
the two action potentials will lock at φ̄ ; the phase-locked state will be stable if
Γ ′(φ) < 0. Note the kinematic approximation can be extended to multiple action
potentials under the assumption that the instantaneous speed only depends on the
relative phase of the preceding action potential. If Tn+1(x) is the arrival time of the
n+ 1th action potential, then

dTn+1(x)
dx

=
1

c(Tn+1(x)−Tn(x))
. (2.38)

Note that an explicit version of kinematic theory can be derived using the singular
solution of the FN equations [322], assuming that recovery always occurs via a
phase wave at the value W ∗. Suppose that wn(x) is the value of the recovery variable
along the wave front of the nth pulse when it is located at x. The instantaneous speed
of the front is thus c(wn). The time between fronts of successive action potentials is
then given by

Tn+1(x)−Tn(x) =
∫ w∗

wn

dw
G+(w)

+
∫ wn+1

w∗

dw
G−(w)

. (2.39)

Differentiating both sides with respect to x and using dTn/dx = 1/c(wn) yields

1
G−(wn+1)

dwn+1

dx
=

1
G−(wn)

dwn

dx
+

1
c(wn+1)

− 1
c(wn)

. (2.40)

This generates an iterative equation for wn(x), which can be solved to determine the
speed and arrival time of each successive action potential.

2.4 Wave Stability and Evans Functions

This section requires some basic definitions and results in functional analysis, in
particular, with regard to Banach spaces and the spectrum of linear differential op-
erators; see appendix section 2.7.
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2.4.1 Stability of Fronts in the Bistable Equation

In order to introduce some of the basic principles of wave stability, let us return to
the simple case of the scalar bistable Eq. (2.14). Let V (ξ ), ξ = x− ct, denote the
unique traveling front solution with speed c such that V (ξ )→ 1 as ξ →−∞ and
V (ξ )→ 0 as ξ → ∞. In order to investigate the linear stability of such a solution,
we set

v(x, t) =V (ξ )+φ(ξ , t), (2.41)

where φ is some small perturbation belonging to an appropriately defined Banach
space B (complete, normed vector space). It is convenient to use the moving coor-
dinate ξ so that we may see how the perturbation evolves in the moving frame of
the front. Substituting for v in (2.14) and keeping only terms linear in φ gives

∂φ
∂ t

= Lφ ≡ ∂ 2φ
∂ξ 2 + c

∂φ
∂ξ

+ f ′(V )φ , ξ ∈ R, t > 0. (2.42)

Equation (2.42) takes the form of a linear equation with associated linear differential
operatorL : D(L)→B with domain D(L)⊆B. Determining the linear stability of
the front thus reduces to the problem of calculating the spectrum σ(L) of L. That is,
the front will be asymptotically stable if ‖φ‖→ 0 as t→ ∞ for all φ ∈B, with ‖ ·‖
the norm on B. This is guaranteed if σ(L) lies strictly in the left-hand side of the
complex plane, that is, there exists β > 0 such that Re(λ ) ≤ −β for all λ ∈ σ(L).
The longtime asymptotics is then ‖φ‖ ∼ e−β t . However, differentiating both sides
of (2.17) with respect to ξ gives

Vξ ξ ξ + cVξ ξ + f ′(V )Vξ ≡ LVξ = 0,

which implies that zero is an eigenvalue of L with associated eigenfunction Vξ .
This is not a major issue, once one notices that Vξ is the generator of infinitesimal
translations of the front solution:

V (ξ + h) =V (ξ )+ hVξ(ξ )+O(h2).

Hence, such perturbations only cause a phase shift of the original front and can
thus be discounted. This motivates defining stability of the solution V in terms of
the stability of the family of waves obtained by rigid translations of V . In other
words, V is said to be stable if and only if v(x, t) = V (ξ ) + φ(ξ , t) converges to
V (ξ + h) for some constant, finite h as t → ∞. This will hold provided that zero
is a simple eigenvalue of L and the remainder of the spectrum lies in a half-space
{λ ,Re(λ )≤ −β} for some real β > 0. It is important to note that the spectrum of
L will depend on the choice of Banach space B. Restricting the class of admissible
functions can push the spectrum to the left-half complex plane. However, this may
exclude classes of perturbations that are physically relevant. A common choice is
thus L2(R), which includes all normalizable, continuous functions on R with respect
to the L2 norm:
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‖φ‖=
∫ ∞

−∞
|φ(ξ )|2dξ < ∞.

We now turn to the spectrum of the differential operator appearing in (2.42). As
explained in appendix section 2.7, σ(L) consists of isolated eigenvalues of finite
multiplicity combined with the essential spectrum, which includes any continuous
and residual spectrum. L is of the general form of the second-order operator con-
sidered in appendix section 2.7 (see (2.106)) with constant coefficient p = c and
x-dependent coefficient q(x) = f ′(V (x)). Moreover, q(x)→ q± as x→ ±∞ with
q+ = f ′(0) =−a and q− = f ′(1) =−1+ a. Since the essential spectrum is located
to the left of the parabolas defined by (2.108), and q± < 0, we deduce that the es-
sential spectrum is bounded to the left of Re(λ ) = min{−a,a− 1} and thus does
not contribute to any instabilities. The stability of the front thus depends on the
eigenvalues λ of L, where

Lφ ≡ φξ ξ + cφξ + f ′(V )φ = λ φ , (2.43)

with φ ∈ L2(R). Suppose that Re(λ ) ≥ 0 so φ(ξ ) ∼ e−β ξ as ξ → ∞ with β ≥ c.
(This follows from noting f ′(V ) → −a as ξ → ∞ and analyzing the resulting
constant-coefficient characteristic equation.) Performing the change of variables
ψ(ξ ) = φ(ξ )ecξ/2 yields the modified eigenvalue problem

L1ψ ≡ ψξ ξ +

(
f ′(V )− c2

4

)
ψ = λ ψ , (2.44)

with ψ ∈ L2(R), since it also decays exponentially as |ξ |→∞. The useful feature of
the modified operator is that it is self-adjoint, implying that any eigenvalues in the
right-half complex plane are real. Multiplying both sides of the self-adjoint eigen-
value Eq. (2.44) by ψ and integrating over R, we have

λ
∫ ∞

−∞
ψ2dξ =−

∫ ∞

−∞

[
ψ2

ξ −
(

f ′(V )− c2

4

)
ψ2

]
dξ . (2.45)

Recall that Vξ is an eigenfunction of L with λ = 0, so that if Φ(ξ ) = Vξ (ξ )ecξ/2,
then Φξ ξ +( f ′(ψ)− c2/4)Φ = 0. Hence, (2.45) can be rewritten as

λ
∫ ∞

−∞
ψ2dξ =−

∫ ∞

−∞

[
ψ2

ξ +
Φξ ξ ψ2

Φ

]
dξ

=−
∫ ∞

−∞

[
ψ2

ξ −
2ψψξ Φξ

Φ
+

Φ2
ξ ψ2

Φ2

]
dξ

=−
∫ ∞

−∞
Φ2

(
d

dξ
(ψ/Φ)

)2

dξ .
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This last result implies that λ ≤ 0, and if λ = 0, then ψ ∼ Φ = Vξ . We conclude
that there are no eigenvalues in the right-half complex plane and λ = 0 is a simple
eigenvalue. Thus the traveling front of the scalar bistable equation is stable.

2.4.2 The Evans Function

Determining the stability of traveling pulse solutions of the FN equations (2.1) or
the Hodgkin–Huxley equations (1.8) is much more complicated. One general re-
sult, however, is that the discrete spectrum of the differential operator obtained by
linearizing about a traveling wave solution may be associated with the zeros of a
complex analytic function known as the Evans function. Indeed, Evans [177] orig-
inally developed the formalism within the context of the stability of solitary pulses
in Hodgkin–Huxley-type equations for action potential propagation. Since then, the
Evans function construction has been extended to a wide range of PDEs; see the re-
view [551]. The basic construction of the Evans function can be illustrated relatively
easily by considering a higher-dimensional version of the bistable equation [173].

Consider a general class of reaction–diffusion equations of the form

∂u
∂ t

= D
∂ 2u
∂x2 +F(u), (2.46)

where u(x, t) ∈ R
N and F : RN → R

N . Moreover, D is assumed to be a diagonal
matrix with positive definite entries corresponding to the diffusion coefficients of
the various component fields. Suppose that the system exhibits bistability, that is,
there are two stable fixed points u = u j, j = 1,2, with F(u j) = 0. We will assume
that there exists a traveling front solution U(ξ ) with speed c that connects u1 and
u2. Linearizing about the wave solution along identical lines to the scalar case by
setting u(x, t) =U(ξ )+ p(ξ )eλ t leads to the eigenvalue problem

Lp ≡ Dpξ ξ + cpξ + ∂F(U)p = λ p, (2.47)

where ∂F(U) denotes the matrix with components ∂Fi/∂Uj. It is convenient to
rewrite this as a system of 2N first-order equations

(
pξ
qξ

)
=

(
0 In

D−1(λ − ∂F(U)) −cD−1

)(
p
q

)
. (2.48)

Any eigensolution of this equation must satisfy the asymptotic conditions

lim
ξ→±∞

(p(ξ ),q(ξ )) = (0,0).

Setting z = (p,q)T ∈ R
n, n = 2N, the associated ODE takes the general form

T (λ )z(ξ )≡ dz
dξ
−A(ξ ;λ )z = 0, (2.49)
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with A(ξ ;λ ) = A(ξ )+ λ B(ξ ). Thus we have a family of linear operators T (λ ) :
D → B parameterized by λ . We take B = L2(R,Rn) and D to be the space of
admissible functions such that z ∈ B,T (λ )z ∈ B. The basic form of the linear
Eq. (2.49) holds for a wide range of PDEs supporting solitary traveling waves [551].
The discrete spectrum of the operator L thus corresponds to the values of λ for
which T (λ ) is not invertible.

An important concept for analyzing (2.49) is that of exponential dichotomies.
First, consider the linear constant-coefficient equation

dz
dξ

= A(λ )z, (2.50)

for which A(λ ) is independent of ξ . Suppose that the matrix A(λ ) is hyperbolic,
that is, all its eigenvalues have nonzero real part. We can then decompose Rn (or its
complexification) as

R
n = Es(λ )⊕Eu(λ ),

where Es,u(λ ) are the generalized stable and unstable eigenspaces of the matrix
A(λ ). Thus Es is spanned by n+(λ ) eigenfunctions that decay exponentially as ξ →
∞ and Eu is spanned by n−(λ ) eigenfunctions that decay exponentially as ξ →
−∞ with n+(λ )+ n−(λ ) = n. The notion of exponential dichotomies can now be
extended to (2.49) by noting that

lim
ξ→±∞

A(ξ ;λ )→ A±(λ ) (2.51)

where A± correspond to the matrix appearing in (2.48) in the limits U(ξ )→ u1

and U(ξ )→ u2, respectively. Moreover, the spectral properties of T (λ ) can be
expressed in terms of these exponential dichotomies. We summarize the main results
below:

• Equation (2.49) is said to have an exponential dichotomy on R
+ if and only if the

matrix A+(λ ) is hyperbolic. Let V+(λ ) denote the linear subspace spanned by
solutions of (2.49) that decay as ξ → ∞. The codimension of V+(λ ) is defined
to be the Morse index i+(λ ) of the exponential dichotomy on R

+, and i+(λ ) =
dimE+

u (λ ).
• Equation (2.49) is said to have an exponential dichotomy on R

− if and only if
the matrix A−(λ ) is hyperbolic. Let V−(λ ) denote the linear subspace spanned
by solutions of (2.49) that decay as ξ →−∞. The dimension of V−(λ ) is defined
to be the Morse index i−(λ ) of the exponential dichotomy on R

−, and i−(λ ) =
dimE−u (λ ).

• λ is in the discrete spectrum if and only if A±(λ ) are both hyperbolic with the
same Morse index i+(λ ) = i−(λ ) such that V+(λ )∩V−(λ ) �= {0}.

• λ is in the essential spectrum if either at least one of the two asymptotic matrices
A±(λ ) is not hyperbolic or else if both are hyperbolic but their Morse indices
differ.
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In most applications the essential spectrum Σess lies in the left-half complex plane
and thus does not contribute to instabilities of a wave solution. Therefore, suppose
that λ /∈ Σess. It then follows that i+(λ ) = i−(λ ) = k, say. (For the multicomponent
bistable equation k = N = n/2.) In order to construct the Evans function, introduce
a basis for the subspaces V±(λ ) according to

V−(λ ) = span{Q−1 ,Q−2 , . . . ,Q−k }, V+(λ ) = span{Q+
1 ,Q

+
2 , . . . ,Q

+
n−k}

where each Q±j (ξ ) is an n-dimensional basis vector. Now form the n× n matrix
M (ξ ), in which the first k columns are given by the vectors Q−j (ξ ), j = 1, . . . ,k,
and the next n− k columns are given by Q+

j , j = 1, . . . ,n− k. The Evans function is
then defined according to

E (λ ) = det M (ξ0), (2.52)

for an arbitrary point ξ0 which can be taken to be zero. The Evans function has a
number of important properties. First, λ is an eigenvalue if and only if E (λ ) = 0.
Second, if λ is a zero of E (λ ), then the order of this zero is equal to the algebraic
multiplicity of λ viewed as an eigenvalue. Third, the Evans function is analytic. The
first property is simple to establish. For E (λ ) = 0 if and only if det M (ξ0) = 0, and
the latter holds if and only if there exist constant coefficients c+i ,c

−
j such that

k

∑
j=1

c−j Q−j (ξ0)+
n−k

∑
i=1

c+i Q+
i (ξ0) = 0,

that is,
k

∑
j=1

c−j Q−j (ξ0) =−
n−k

∑
i=1

c+i Q+
i (ξ0).

Hence, λ is a zero of E (λ ) if and only if V+(λ ) and V−(λ ) have a nonzero inter-
section, which means that λ is an eigenvalue, since the corresponding eigensolution
decays at both ξ = ∞ and ξ = −∞. Finally, note that one of the powerful features
of the Evans function construction is that it can be applied to a wide variety of wave
phenomena beyond fronts, including pulses, periodic wave trains, and multi-bump
pulses [551]. In a sense, a single pulse is a special case of a front, since the expo-
nential dichotomies on R

+ and R− are the same, that is,

lim
ξ→±∞

A(ξ ;λ )→ A0(λ ),

with A0(λ ) evaluated at the same resting state.
Finally, a word of caution: linear stability does not necessarily imply nonlinear

stability. When considering perturbations about a traveling wave solution of a non-
linear PDE, p(x, t) = u(x, t)−U(ξ ), one can decompose the PDE as

∂ p
∂ t

= Lp+N (p), (2.53)
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where N (p) = O(|p|2). Determining linear stability of the traveling wave in terms
of the spectrum σ(L) assumes that the perturbation p remains small with respect
to the given norm. A challenging mathematical problem is determining whether or
not this is true. In the simpler case of ODEs one can use the stable manifold the-

nodes of Ranvier

Vn Vn+1

In In+1

Fig. 2.10 Schematic diagram of a myelinated axon. Currents in myelinated region are confined to
the axial direction. Potentials at the nodes are governed by active currents

orem to show that linear (in)stability implies nonlinear (in)stability in the case of
hyperbolic fixed points. In the case of non-hyperbolic fixed points one has to use
the center manifold theorem and bifurcation theory. A number of techniques have
been used to study nonlinear stability of traveling waves, including center manifold
reductions, Lyapunov functionals, and energy methods [551]. For example, the non-
linear stability of traveling wave solutions of the reaction–diffusion system (2.46)
can be proven using a center manifold reduction. Nonlinear stability theory is also
important if one wishes to determine what happens when a traveling wave becomes
unstable, since perturbations grow and the linear approximation breaks down.

2.5 Myelinated Axons and Discrete Diffusion

Many vertebrate axons are coated with a lipid material called myelin, which is made
up of the membranes of glial cells (see Sect. 4.5) that wrap around the axon many
times to form a thick insulating layer. This wrapping increases the effective mem-
brane resistance and decreases the membrane capacitance by a factor of around
100. At regularly spaced intervals the axon is exposed to the extracellular medium
at the so-called nodes of Ranvier, where there is a high density of sodium channels;
see Fig. 2.10. The length L of myelin sheath between successive nodes is typically
1–2 mm, and the width l of a single node of Ranvier is around 1μm. Propagation
of an action potential along a myelinated axon is considerably faster than along a
nonmyelinated axon. In terms of the cable equation, this can be understood as con-
sequence of the fact that the transmembrane currents in the myelinated sections are
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negligible so that the myelinated sheath acts like a simple resistor. In effect, the
action potential does not propagate continuously along the axon but rather jumps
from node to node as a saltatory (leaping) wave.

Wave propagation along a myelinated axon can be modeled by spatially dis-
cretizing the diffusion term in the spatially extended Hodgkin–Huxley model (1.8).
Suppose that the membrane voltage does not vary within each node of Ranvier, that
is, the nodes are isopotential and denote the voltage of the nth node by Vn. Treat-
ing each myelin sheath as a pure Ohmic resistor with resistance rL, where r is the
intracellular resistance per unit length, the axial current between nodes n and n+1 is

In+1 =− 1
rL

(Vn+1−Vn). (2.54)

Conservation of current at the nth node of Ranvier then implies that the total trans-
membrane current into the node is

2πal

(
Cm

∂Vn

∂ t
+ Iion

)
= In− In+1 =

1
rL

(Vn+1− 2Vn+Vn−1), (2.55)

where a is the radius of the cable. It follows that

∂Vn

∂ t
=−Îion +D(Vn+1− 2Vn+Vn−1), (2.56)

with coupling coefficient

D =
Rm

(2πar)lLτm
=

λ 2
m

lLτm
.

We have used R = πa2r, τm = RmCm and λm = (Rma/2R)1/2; see Sect. 1.4.1.

2.5.1 The Discrete Bistable Equation

In order to investigate the effects of myelination on propagation speed, let us con-
sider the simpler case of the spatially discrete bistable equation

∂Vn

∂ t
= f (Vn)+D(Vn+1− 2Vn +Vn−1), (2.57)

where f (V ) = V (V − a)(1−V). Proving the existence of traveling wave solutions
of (2.57) is nontrivial [699]. However, assuming that such a solution does exist, one
can use perturbation methods to estimate the wave speed [317, 321]. A traveling
wave solution is defined according to the iterative relationship Vn+1(t) =Vn(t + τd)
where τd represents the time delay for the wave to jump between successive nodes.
The corresponding invariant wave profile Φ(t) satisfies a delay differential equation
that is obtained by substituting Vn(t) = Φ(t) into (2.57):

dΦ
dt

= D(Φ(t− τd)− 2Φ(t)+Φ(t + τd))+ f (Φ(t)). (2.58)
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Suppose that we fix the time units by setting τm = 1. If the function Φ(t) is
sufficiently smooth and τd is sufficiently small, then we can expand Φ(t ± τd) as
a Taylor series in τd . Keeping only terms up to τ2

d yields the leading-order equation

Dτ2
d Φtt −Φt + f (Φ) = 0. (2.59)

This is identical in form to the bistable Eq. (2.17) for a traveling front of (dimen-
sionless) wave speed c, provided that we set ξ = −ct and Dτ2

d = c−2. It follows
that Φ(−ξ/c) is the traveling front solution of the continuous bistable equation and
c = (1− 2a)/

√
2. The wave speed of the saltatory wave (in physical time units) is

then

ĉ =
L+ l

τd
= (L+ l)c

√
D
τm

=
L+ l√

lL

(
cλm

τm

)
. (2.60)

Comparison with (2.20) shows that myelination increases wave speed by a factor
(L+ l)/

√
lL≈ 10 assuming that L≈ 100l.

Higher-order corrections to the wave speed can be determined using regular per-
turbation theory [317, 321]. Thus, in terms of the small parameter ε = D−1, we
introduce the series expansions (with τm = 1)

Φ(t) = Φ0(t)+ εΦ1(t)+ . . . , τd
2 =

ε
c2 + ε2τ1 + . . . (2.61)

Substituting into the discrete bistable Eq. (2.58) and collecting terms of equal
powers in ε yields a hierarchy of equations for Φn, with Φ0 satisfying (2.59) for
Dτ2

d = c−2, and

LΦ1 ≡ 1
c2 Φ ′′1 −Φ ′1 + f ′(Φ0)Φ1 =−

Φ(4)
0

12c4 − τ1Φ ′′0 . (2.62)

Here L denotes a linear differential operator acting on the space L2(R) of square-
integrable function on R. The operator L is not invertible, since LΦ ′0 = 0, which
follows from differentiating (2.58) with respect to t. (A similar operator arose in our
discussion of wave stability in Sect. 2.4.) It follows from the Fredholm alternative
(see appendix section 2.7) that a solution for Φ1 exists if and only if the right-hand
side of (2.62) is orthogonal to the null-space of the adjoint operator L†. The latter is

L
†V =

1
c2 V ′′+V ′+ f ′(Φ0)V , (2.63)

which has a one-dimensional null-space spanned by V (t) = e−c2tΦ ′0(t). We thus
have a solvability condition for the leading-order correction τ1 to the delay:

∫ ∞

−∞
e−c2tΦ ′0(t)

[
Φ(4)

0

12c4 + τ1Φ ′′0

]
dt = 0.
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Once τ1 has been determined, the propagation speed is (in physical time units)

ĉ = c(L+ l)

√
D
τm

(
1− τ1c2

2Dτm
+O([c2/Dτm]

2)

)
. (2.64)

2.5.2 Propagation Failure

The above perturbation analysis establishes that for sufficiently large coupling D,
there are traveling front solutions that approach the speed of the appropriately scaled
continuous model. Another important property of the discrete bistable equation
is that if D is sufficiently small, then wave propagation failure occurs, reflecting
the fact that there are nontrivial standing front solutions even when

∫ 1
0 f (v)dv > 0

[165, 183, 317, 318]. Here we describe one method for estimating the critical value
of coupling Dc below which propagation fail, which has been developed by Keener
[318] using averaging theory. The first step is to rewrite the discrete bistable equa-
tion in the form

(1+ g′(x))[vt − f (v)] = Dvxx, (2.65)

where g(x) is the periodic sawtooth function

g(x) =
L
2
− x, 0 < x < L, g(x+ nL) = g(x), (2.66)

and
1+ g′(x) = L∑

n
δ (x− nL). (2.67)

Equation (2.65) implies that vxx = 0 between nodes, that is, v(x, t) = Anx+Bn for
nL < x < (n+ 1)L. Matching v(x, t) with Vn(t) and Vn+1(t) at both ends shows that
An = L−1[Vn+1−Vn] and hence vx((n+1)L, t)= L−1(Vn+1−Vn). If we now integrate
(2.65) over the interval [nL,(n+1)L), then we recover the discrete bistable equation

∂tVn− f (Vn) =
D
L
[vx((n+ 1)L, t)− vx(nL, t)] = D[Vn+1− 2Vn+Vn−1]. (2.68)

In order to proceed, we will smooth out the function g(x) by taking

1+ g′(x) =
L√

2πσ2 ∑
n

exp

(
− (x− nL)2

2σ2

)
, (2.69)

so that 1+ g′(x) > 0 for all x. At the end of the calculation we will take the limit
σ → 0 to recover the sawtooth function. We then have the scalar bistable equation
with an inhomogeneous diffusion coefficient,

vt = f (v)+
D

1+ g′(x)
vxx.
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Following Keener [318], it is convenient to carry out the coordinate transformation
y = y(x)≡ x+ g(x)−L/2 so that

vt = f (v)+ ∂y
(
[1+ g′(x)]∂yv

)
.

If g(x) is a sawtooth-like function, then y is a steplike function with y = nL for
nL< x< (n+1)L in the limit σ→ 0. Hence 1+g′(y(x)) =∑n δ (y(x)−nL) blows up
for all nL< x < (n+1)L, whereas 1+g′(y(x)) = 0 when x = nL. That is, 1+g′(x) =
1/(1+ g′(y(x))), so that (after rewriting y as x),

vt = f (v)+ ∂x

(
D

1+ g′(x)
vx

)
.

Fixing the spatial units by setting L = 1 (having already non-dimensionalized time),
and using the fact that waves exist for sufficiently large D, we introduce the small
dimensionless parameter ε = 1/

√
D. Rescaling space according to x→ x/

√
D, we

finally obtain the modified bistable equation

vt = f (v)+ ∂x

(
1

1+ g′(x/ε)
vx

)
. (2.70)

Thus the problem of wave propagation failure for the discrete bistable equation has
been reduced to the problem of calculating the mean wave speed c̄(ε) of a wavelike
solution of an inhomogeneous continuous bistable equation and determining how
c̄(ε) vanishes as ε increases (the coupling D decreases).

Equation (2.70) is now in a suitable form to apply the averaging method of
Keener [318]; see below. The basic result is that the wavelike solution takes the
form

v(x, t) =V (x−φ(t))+O(ε), (2.71)

where V (x) is the wave solution in the homogeneous case (g = 0). The phase φ(t)
evolves according to

dφ
dt

= c−Φ(φ/ε) (2.72)

with c the speed of the unmodulated wave,

Φ(φ/ε) =
1
Λ

∫ ∞

−∞
g′([ξ +φ ]/ε)V ′′(ξ )V ′(ξ )ecξ dξ , (2.73)

and
Λ =

∫ ∞

−∞
ecξV ′(ξ )2dξ . (2.74)

Equation (2.72) implies that the solution is not translationally invariant; rather, it
moves with a time-dependent velocity φ ′. If c−Φ(φ/ε) is strictly positive, then
φ ′(t) is a positive, periodic function of t with period
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T =

∫ ε

0

dφ
c−Φ(φ/ε)

. (2.75)

The mean speed of the wave is c̄ = ε/T . On the other hand, if c−Φ(φ/ε) vanishes
for some φ , then propagation failure is expected to occur:

Averaging method for discrete bistable equation. Standard applications of the averaging the-
orem in dynamical systems theory [248] only apply to structurally stable solutions, whereas
traveling wave solutions are not structurally stable. Therefore, it is necessary to consider a
modified averaging procedure as outlined by Keener [318, 319]. The first step is to rewrite
(2.70) as the second-order system

vx = (1+g′(x/ε))u, ux = vt − f (v). (2.76)

Introducing the exact change of variables v = w+ εug(x/ε) yields the new system

wx = u− εuxg(x/ε), ux = wt + εutg(x/ε)− f (w+ εug(x/ε)). (2.77)

It can be seen that if we ignore terms of order ε , then the system of equations is independent
of x/ε . This lowest-order averaged system reduces to the standard bistable equation, which
we know supports a traveling front solution V (x− ct). Including the inhomogeneous fac-
tors g(x/ε) means that the system is no longer translationally invariant. However, we can
look for solutions that are in some sense close to a traveling front by going to a traveling
coordinate system by setting ξ = x−φ (t), with

wξ = u− εuξ g([ξ +φ ]/ε) (2.78a)

uξ =−φ ′wξ − εφ ′uξ g([ξ +φ ]/ε)− f (w+ εug([ξ +φ ]/ε). (2.78b)

We now seek a perturbative solution of the form

w = w0(ξ )+ εw1(ξ )+ . . . , v(ξ ) = v0(ξ )+ εv1(ξ )+ . . . , φ ′(t) = c+ εφ ′1(t)+ . . .

Substituting into (2.78) and collecting terms of equal powers in ε yields a hierarchy of
equations, the first two of which are

∂ξ w0 = u0, ∂ξ u0 =−cu0− f (w0), (2.79)

which recovers the homogeneous bistable equation for w0, and

∂ξ w1−u1 =−(∂ξ u0)g([ξ +φ ]/ε), (2.80a)

∂ξ u1 + f ′(w0)w1 + cu1 =−φ ′1u0− f ′(w0)u0g([ξ +φ ]/ε). (2.80b)

Let us take the solution of the lowest-order equation to be the traveling front solution V (ξ )
constructed in Sect. 2.2: w0 =V,u0 =V ′. The next-order system of Eq. (2.80) can be rewrit-
ten in the vector form

L

(
w1
u1

)
=

(
hw

−φ ′1V ′+hu

)
, L=

(
∂ξ −1

f ′(V ) ∂ξ + c

)
, (2.81)

with hw and hu determined by inhomogeneous terms on the right-hand side of (2.80a) and
(2.80b), respectively. Following our analysis of the linear operator (2.62), we know that
the matrix operator appearing in (2.81) has a null-space spanned by (V ′,V ′′). Similarly, the
adjoint operator

L
† =

(−∂ξ f ′(w0)
−1 −∂ξ + c

)
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has the null vector ecξ (−V ′′,V ′). Hence, applying the Fredholm alternative, we see that
φ ′(t) must satisfy

φ ′1(t)
∫ ∞

−∞
ecξV ′(ξ )2dξ =

∫ ∞

−∞
ecξ [−V ′′(ξ )hw(ξ )+V ′(ξ )hu(ξ )dξ

=
∫ ∞

−∞
ecξ [V ′′(ξ )2− f ′(V )V ′(ξ )2]g([ξ +φ ]/ε)dξ

=

∫ ∞

−∞
g([ξ +φ ]/ε)

d
dξ

[
V ′′(ξ )V ′(ξ )ecξ

]
dξ ,

= − 1
ε

∫ ∞

−∞
g′([ξ +φ ]/ε)V ′′(ξ )V ′(ξ )ecξ dξ ,

after using V ′′′ + cV ′′ + f ′(V )V ′ = 0 and performing integration by parts. We thus obtain
the phase Eq. (2.72) with φ (t) = c+ εφ1(t).

It turns out that solving the phase equation in the case of a cubic nonlinearity
is rather involved [318]. Therefore, for the sake of illustration, we will consider
the simpler case of the piecewise linear function (2.21). There then exists a unique
traveling front solution of the homogeneous bistable equation given by (2.23) with
corresponding wave speed (2.24). Substituting (2.23) into (2.74) gives

Λ = (aλ−)2
∫ ∞

0
ecξ e2λ−ξ dξ +([a− 1]λ+)

2
∫ 0

−∞
ecξ e2λ+ξ dξ

= (aλ−)2
[

1
c+ 2λ+

− 1
c+ 2λ−

]

= 2
√

a− a2(a− a2),

where we have used the results aλ− = (a− 1)λ+,

c+ 2λ± =±
√

c2 + 4 =
±1√
a− a2

, λ− =−1
2

[
c+

√
c2 + 4

]
=

a− 1√
a− a2

.

Similarly, substituting (2.23) into (2.73) gives, to leading order in ε ,

Φ(φ/ε) =
1
Λ

a2λ 3
−
∫ ∞

0
g′([ξ +φ ]/ε)ecξ e2λ−ξ dξ

+
1
Λ
[a− 1]2λ 3

+

∫ 0

−∞
g′([ξ +φ ]/ε)ecξ e2λ+ξ dξ

≈ 1
Λ

[
a2λ 3

−
∫ ∞

0
g′([ξ +φ ]/ε)dξ +[a− 1]2λ 3

+

∫ 0

−∞
g′([ξ +φ ]/ε)dξ

]

=
ε
Λ
(aλ−)2 [λ+−λ−]g(φ/ε)+O(ε2)

=
ε

2[a− a2]
g(φ/ε)+O(ε2).

Applying this to the sawtooth function (2.66), the phase Eq. (2.72) reduces to
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Fig. 2.11 Illustrative sketch of mean wave speed as a function of ε for the discrete bistable
Eq. (2.65) with L = 2π

dφ
dt

= c− ε
2[a− a2]

[
1
2
− φ

ε

]
,

and

T = 2ln

(
c+ ε/χ
c− ε/χ

)
, χ = 4[a− a2].

We deduce that the mean wave speed is

c̄ =
ε
2

1

ln
(

c+ε/χ
c−ε/χ

) . (2.82)

This predicts propagation failure when ε ≥ χc. In particular, propagation failure is
more likely to occur as ε increases, which is equivalent to reducing the coupling
strength D. Finally, note that the cubic nonlinearity yields different behavior, both
qualitatively and quantitatively. The main reason for this is that the above averaging
procedure results in an expression for the mean wave speed that involves exponen-
tially small terms of the form e−π/ε [318]. This has two major implications. First,
it is necessary to include higher-order terms in the perturbation analysis in order to
obtain sufficient accuracy. Second, the rapid increase in e−π/ε as ε increases can
result in a sharp transition to propagation failure at relatively small values of ε , as
illustrated in Fig. 2.11.
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2.6 Stochastic Traveling Waves

In Sect. 1.5 we showed how the stochastic opening and closing of a finite num-
ber of ion channels can generate a multiplicative noise term in a space-clamped,
conductance-based model of a neuron. The membrane voltage then evolves accord-
ing to a stochastic differential equation (SDE) such as (1.128). This suggests that
ion channel fluctuations could also affect the propagation of action potentials in a
spatially extended model. Such an observation motivates the more general issue of
how to analyze traveling wave solutions of stochastic partial differential equations
(SPDEs). In this section we review a formal perturbation method for analyzing trav-
eling front solutions in the case of weak noise [14, 494, 546, 557], which we apply
to a stochastic version of the bistable equation. (The rigorous treatment of SPDEs is
much more complicated than SDEs because one has to keep track of the regularity
of solutions with respect to both time and space. Nevertheless, there have been some
recent mathematical studies of a stochastic version of spatially extended excitable
membranes based on the Hodgkin–Huxley equations [17, 88].)

Consider a scalar SPDE of the form

∂
∂ t

V (x, t) =
∂ 2

∂x2 V (x, t)+ f (V (x, t))+
√

εg(V (x, t))η(x, t), (2.83)

Here η(x, t) is a Gaussian random function with zero mean and correlation

〈η(x, t)η(x′, t ′)〉= 2C([x− x′]/λ )δ (t− t ′) (2.84)

The parameter λ is the spatial correlation length of the noise such that C(x/λ )→
δ (x) in the limit λ → 0, and ε determines the strength of the noise, which is assumed
to be weak. Note that we can formally set η(x, t)dt = dW (x, t), where W (x, t) is a
space-dependent Wiener process with zero mean and 〈dW (x, t)dW (x′, t)〉= 2C([x−
x′]/λ ). We have also included a multiplicative noise factor g(V), and based on our
analysis of channel fluctuations, we treat the multiplicative noise in the sense of
Stratonovich (see Sect. 1.7). The starting point of the perturbation method is the
observation that multiplicative noise in the Stratonovich sense leads to a systematic
shift in the speed of the front (assuming a front of speed c exists when ε = 0) [14].
This is a consequence of the fact that 〈g(V )η〉 �= 0 even though 〈η〉= 0. The former
average can be calculated using Novikov’s theorem [465, 486]:

ε1/2〈g(U)η〉= εC(0)〈g′(U)g(U)〉dt, (2.85)

Note that in the limit λ → 0, C(0)→ 1/Δx where Δx is a lattice cutoff, which can
be identified with the step size of the spatial discretization scheme used in numerical
simulations.

Novikov’s theorem. Suppose that X(s) is a Gaussian random function with zero mean and
correlation

〈X(s)X(s′)〉 =C(s, s′),

then for any functional L [h],
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〈X(s)L [X ]〉=
∫ ∞

−∞
C(s, s′)

〈
δL [X ]

δ X(s′)

〉
ds′.

Applying this theorem to 〈g(U)η〉, we have

〈g(V )η〉= 2
∫ ∞

−∞
C([x− x′]/λ )

〈
g′(V (x, t))

δV (x, t)
δ η(x′, t)

〉
dx′.

The stochastic voltage is a functional of the noise term η(x, t), as can be seen by formally
integrating Eq. (2.83) with respect to time:

V (x, t) =
∫ ∞

−∞

[
∂ 2

∂ x2 V (x, t ′′)+ f (V(x, t ′′))+
√

εg(V (x, t ′′))η(x, t ′′)
]

H(t− t ′′)dt ′′.

It follows that
δV (x, t)

δ η(x′, t ′)
=
√

εg(V (x, t ′))H(t− t ′)δ (x− x′),

which yields (2.85) after using H(0) = 1/2.

An alternative derivation of (2.85) is based on Fourier transforming (2.83) [546]. It is conve-
nient to restrict x to a bounded domain, −L/2≤ x≤ L/2, and to impose periodic boundary
conditions. We can then introduce the discrete Fourier series

V (x, t) =
1
L ∑

n
eiknxVn(t), W (x, t) =

1
L ∑

n
eiknxWn(t) (2.86)

with kn = 2πn/L and Wn(t), an independent Wiener process, such that

〈dWn(t)〉 = 0, 〈dWn(t)dWm(t)〉= 2Lδm+n,0dt. (2.87)

Fourier transforming (2.83) gives in differential form

dUn(t) = [−k2
nVn(t)+Fn(t)]dt +

ε1/2

L ∑
m

gn−m(t)dWm(t), (2.88)

where Fn,gn are the Fourier coefficients of the time-dependent functions F ◦U(t) and
g ◦U(t), respectively. The associated Stratonovich Fokker–Planck equation takes the form
[209] (see also Sect. 1.7)

∂ P
∂ t

=−∑
l

∂
∂ ul

[(−k2
l Vn(t)+Fl(t))P]+

ε
L ∑

l,m,q

∂
∂Vl

gl−q
∂

∂Vm
gm+qP. (2.89)

Multiplying both sides of this equation by Vn and integrating with respect to Vm , integer m,
leads to the following evolution equation for the mean:

d〈Vn〉
dt

=−k2
n〈Vn〉+ 〈Fn〉+ ε

L ∑
m,q

〈
∂ gn−q

∂Vm
gm+q

〉
. (2.90)

Finally, taking the inverse transform of (2.90) gives

d〈U(x, t)〉
dt

=
∂ 2

∂ x2 〈V (x, t)〉+ 〈F(V (x, t))〉+ ε
Δx

〈
g(U(x, t))g′(U(x, t))

〉
, (2.91)

where we have used the result ∂ gn/∂Um = [g′(U)]n−m. Note that it is necessary to introduce
a cutoff in the frequencies, which is equivalent to introducing a fundamental lattice spacing
of Δx. Alternatively, the multiplicative noise can be taken to have a small but finite corre-
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lation length in space so that C(0) = 1/Δx. Comparison of (2.90) with the mean of (2.83)
yields the desired result.

Following [14], it is convenient to rewrite (2.83) so that the fluctuating term has
zero mean:

∂
∂ t

V (x, t) =
∂ 2

∂x2 V (x, t)+ h(V(x, t))+
√

εR(V,x, t), (2.92)

where
h(V ) = f (V )+ εC(0)g′(V )g(V ) (2.93)

and
R(V,x, t) = g(V )η(x, t)− ε1/2C(0)g′(U)g(U). (2.94)

The stochastic process R has zero mean (so does not contribute to the effective wave
speed) and correlation:

〈R(V,x, t)R(V,x′, t ′)〉= 〈g(V (x, t))η(x, t)g(V (x′, t ′)η(x′, t ′)〉+O(ε1/2). (2.95)

The next step in the analysis is to assume that the fluctuating term in (2.92) gen-
erates two distinct phenomena that occur on different time scales: a diffusive-like
displacement of the front from its uniformly translating position at long time scales
and fluctuations in the front profile around its instantaneous position at short time
scales [14, 494, 546, 557]. In particular, following [14], we express the solution V
of (2.92) as a combination of a fixed wave profile V0 that is displaced by an amount
Δ(t) from its uniformly translating position ξ = x− c̄t and a time-dependent fluctu-
ation Φ in the front shape about the instantaneous position of the front:

V (x, t) =V0(ξ −Δ(t))+ ε1/2Φ(ξ −Δ(t), t). (2.96)

The wave profile V0 and associated wave speed c̄ are obtained by solving the modi-
fied deterministic equation

c̄
dV0

dξ
+

d2V 2
0

dξ 2 + h(V0(ξ )) = 0. (2.97)

Both c̄ and V0 depend nontrivially on the noise strength ε due to the ε dependence of
the function h; see (2.93). As an example, suppose that f (V ) =V (V−a)(1−V) and
g(V ) =V (1−V ) [14]. The form of multiplicative noise is chosen so that it preserves
the stationary states V = 0,1. Hence, the noise is most important in regions close to
the front but vanishes asymptotically at ξ ±∞. The effective nonlinearity h is also a
cubic with

h(V ) =V (1−V)(a′ − k′V ), a′ = a− εC(0), k′ = 1− 2εC(0).

Thus, from the analysis of the bistable equation in Sect. 2.2, we find that
c̄ = (k′ − 2a′)/

√
2k′.
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It turns out that if V0 is chosen to satisfy (2.97) then to leading order, the stochas-
tic variable Δ(t) undergoes unbiased Brownian motion (a Wiener process):

〈Δ(t)〉= 0, 〈Δ(t)2〉= 2D(ε)t (2.98)

with a diffusion coefficient D(ε) = O(ε) (see below). Thus Δ(t) represents the ef-
fects of slow fluctuations, whereas Φ represents the effects of fast fluctuations. Note
that since Δ(t) =O(ε1/2), (2.96) implies that V (x, t) =V0(x− c̄t)+O(ε1/2). Hence,
averaging with respect to the noise shows that 〈V (x, t)〉 = V0(x− c̄t) +O(ε1/2).
Thus, in the case of weak noise, averaging over many realizations of the stochastic
wave front generates a mean front whose speed is approximately equal to c̄.

Calculation of diffusion coefficient. Substitute the decomposition (2.96) into (2.92) and ex-
pand to first order in O(ε1/2) (exploiting the fact that the usual rules of calculus apply in
the case of Stratonovich noise, see Sect. 1.7):

−[c̄+ Δ̇(t)]V ′0(ξt)+ ε1/2 [∂tΦ(ξt , t)− [c̄+ Δ̇(t)]∂ξ Φ(ξt , t)
]

= h(V0(ξt)+ ε1/2h′(V0(ξt))Φ(ξt , t)

+∂ 2
ξ

[
V0(ξt)+ ε1/2Φ(ξt , t)

]
+ ε1/2R(V0(ξt),x, t)+O(ε),

where ξt ≡ ξ −Δ(t). Imposing (2.97) and dividing through by ε1/2 then gives

∂ Φ(ξ , t)
∂ t

+Lξ Φ(ξ , t) = ε−1/2V ′0(ξ )Δ̇ (t)+R(V0(ξ ),ξ , t)+O(ε1/2),

(2.99)

where Lξ is the non-self-adjoint linear operator

Lξ A(ξ ) = A′′(ξ )+ c̄A′(ξ )+h′(V0(ξ ))A(ξ ) (2.100)

for any function A(ξ ) ∈ L2(R). We have also made the approximation ξt ≈ ξ , since
Δ(t) = O(ε1/2). The linear differential operator Lξ has a zero eigenvalue with associated
eigenfunction V ′0(ξ ), which can be seen by differentiating (2.97) with respect to ξ , and re-
flects the fact that the underlying system is equivariant with respect to uniform translations.
We then have the solvability condition for the existence of a bounded solution of (2.99),
namely, that the inhomogeneous part on the right-hand side is orthogonal to all elements
of the null-space of the adjoint operator L†

ξ . The latter is defined with respect to the inner
product

∫ ∞

−∞
B(ξ )Lξ A(ξ )dξ =

∫ ∞

−∞

[
L

†
ξ B(ξ )

]
A(ξ )dξ (2.101)

where A(ξ ) and B(ξ ) are arbitrary integrable functions. Hence,

L
†
ξ B(ξ ) = B′′(ξ ′)− c̄B′(ξ )+h′(V0(ξ ))B(ξ ). (2.102)

The linear operator L
† also has a zero eigenvalue, with corresponding eigenfunction

V (ξ ) = ec̄ξV ′0(ξ ). Thus taking the inner product of both sides of (2.99) with respect to
V (ξ ) leads to the solvability condition

∫ ∞

−∞
V (ξ )

[
V ′0(ξ )Δ̇(t)+ ε1/2R(V0 ,ξ , t)

]
dξ = 0, (2.103)

which implies that Δ(t) satisfies the stochastic differential equation (SDE)
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dΔ(t) =−ε1/2

∫ ∞

−∞
V (ξ )dR(V0 ,ξ , t)dξ

∫ ∞

−∞
V (ξ )V ′0(ξ )dξ

. (2.104)

Using the lowest-order approximation dR(V0 ,ξ , t) = g(V0(ξ ))dW (ξ , t), we deduce that
(forΔ(0) = 0) Δ(t) is a Wiener process with diffusion coefficient

D(ε) = ε

∫ ∞

−∞

∫ ∞

−∞
V (ξ )V (ξ ′)g(V0(ξ ))g(V0(ξ ′))C([ξ −ξ ′]/λ )dξ dξ ′

[∫ ∞

−∞
V (ξ )V ′0(ξ )dξ

]2 . (2.105)

Although the above analysis is based on a formal perturbation calculation, rather
than rigorous analysis, it does appear to capture well the effects of weak external
noise on front propagation in a variety of reaction–diffusion models [486, 546]. In
Sect. 7.4, we will show how the method can be extended to study stochastic traveling
waves in nonlocal neural field equations, which represent large-scale continuum
models of spatially structured neural networks. Note, however, that one class of front
solution where the method breaks down is a so-called pulled front, which propagates
into an unstable rather than a metastable state and whose dynamics is dominated by
the linear spreading of small perturbations within the leading edge of the front [544].
One well-known reaction–diffusion model that supports pulled fronts is the Fisher–
KPP equation [191, 345]. As we will describe later, pulled fronts also arise in a
PDE model of CaMKII translocation waves along spiny dendrites [72, 161] (Sect.
3.2), in certain neural field models (Sect. 7.4), and in a model of protein aggregation
(Sect. 9.6).

2.7 Appendix: Linear Differential Operators

Throughout this book, we will encounter linear operators acting on some function
space. As already demonstrated in this chapter, linear differential operators arise
when analyzing the stability of a traveling wave solution of some PDE, or when
carrying out a formal perturbation expansion. In this appendix, we summarize some
of the basic results regarding linear differential operators acting on a function space,
viewed from the perspective of a linear map acting on an infinite-dimensional vector
space. For simplicity, we will restrict ourselves to real-valued functions f : R→ R,
although it is straightforward to generalize the results to complex-valued functions.

2.7.1 Function Spaces

Consider the set of all real functions f (x) on the interval [a,b]. This is a vector
space over the set of real numbers: given two functions f1(x), f2(x) and two real
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numbers a1,a2, we can form the sum f (x) = a1 f1(x)+a2 f2(x) such that f (x) is also
a function on [a,b]. Either on physical grounds or for mathematical convenience,
we usually restrict ourselves to a subspace of functions that are differentiable to
some given order. For example, the space of functions on [a,b] with n continuous
derivatives is denoted by Cn[a,b], and the space of analytic functions (those whose
Taylor expansion converges to the given function) is denoted by Cω [a,b].

In order to describe the convergence of a sequence of functions fn,n = 1,2, . . . to
a limit function f , we need to introduce the concept of a norm, which is a general-
ization of the usual measure of the length of a finite-dimensional vector. The norm
‖ f‖ of a function f is a real number with the following properties:

(i) Positivity: ‖ f‖ ≥ 0, and ‖ f‖= 0 if and only if f = 0
(ii) The triangle inequality: ‖ f + g‖ ≤ ‖ f‖+ ‖g‖

(iii) Linearity: ‖λ f‖= |λ |‖ f‖ for λ ∈ R

Common examples of norms are the “sup” norm

‖ f‖∞ = sup
x∈[a,b]

| f (x)|,

and the Lp norm

‖ f‖p =

(∫ b

a
| f (x)|pdx

)1/p

.

Given the Lp norm, we can introduce another important function space Lp[a,b],
which is the space of real-valued functions on [a,b] for which ‖ f‖p < ∞. However,
there is one subtlety here, namely, that it is possible for ‖ f‖ = 0 without f being
identically zero. For example, f may vanish at all but a finite set of points (set of
measure zero). This violates the positivity property of a norm. Therefore, one should
really treat elements of Lp[a,b] as equivalence classes of functions, where functions
differing on a set of measure zero are identified.

Given a normed function space, convergence of a sequence fn → f can be ex-
pressed as

lim
n→∞
‖ fn− f‖= 0.

In the case of the “sup” norm, fn is said to converge uniformly to f , whereas for
the L1 norm, it is said to converge in the mean. An important property of a function
space is that of being complete. First, consider the following definition of a Cauchy
sequence: A sequence fn in a normed vector space is Cauchy if for any ε > 0, we
can find an integer N such that n,m > N implies that ‖ fm− fn‖< ε . In other words,
elements of the sequence become arbitrarily close together as n→ ∞. A normed
vector space is then complete with respect to its norm if every Cauchy sequence
converges to some element in the space. A complete normed vector space is called a
Banach space B. In many applications, the norm of the function space is taken to be
the so-called natural norm obtained from an underlying inner product. For example,
if we define an inner product for L2[a,b] according to
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〈 f ,g〉 =
∫ b

a
f (x)g(x)dx,

then the L2[a,b] norm can be written as

‖ f‖2 =
√
〈 f , f 〉.

A Banach space with an inner product is called a Hilbert space H .

2.7.2 Fredholm Alternative Theorem

In the case of one-dimensional traveling wave solutions, it is more natural to con-
sider functions on the real line R rather than a finite interval. Suppose that L is a
linear differential operator acting on a subspace of L2(R), which we denote by the
domain D(L). Linearity of the operator means that for f1, f2 ∈D(L) and a1,a2 ∈R,

L(a1 f1 + a2 f2) = a1L f1 + a2L f2.

Given the standard inner product on L2(R), we define the adjoint linear operator L†

according to

〈 f ,Lg〉 = 〈L† f ,g〉, f ,g ∈D(L).

The operator is said to be self-adjoint if L† = L. Note that, in practice, one deter-
mines L

† using integration by parts. For functions defined on finite intervals, this
generates boundary terms that only vanish if appropriate boundary conditions are
imposed. In general, this can result in different domains for L and L

†. Therefore,
the condition for self-adjointness becomes L=L

† and D(L) =D(L†). Given a dif-
ferential operator L on L2(R), we can now state the Fredholm alternative theorem:
The inhomogeneous equation

L f = h

has a solution if and only if

〈h,v〉= 0 for all v satisfying L
†v = 0.

2.7.3 Spectrum of a Linear Differential Operator

Let B be a Banach space and L : D(L)→ B be a linear operator with domain
D(L)⊆B. For any complex number λ , introduce the new operator

Lλ = L−λ I,
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where I is the identity operator on B. If Lλ has an inverse, then Rλ (L) = L
−1
λ is

called the resolvent of L. Given these definitions, λ is said to be a regular point for
L if the following hold:

(i) Rλ exists.
(ii) Rλ is bounded.

(iii) Rλ is defined on a dense subset of B.

The spectrum σ(L) is then the set of points that are not regular, which generally
consists of three disjoint parts:

(a) The point spectrum of eigenvalues is the set of values of λ for which Rλ does
not exist.

(b) The continuous spectrum is the set of values of λ for which Rλ exists but is
unbounded.

(c) The residual spectrum is the set of values of λ for which Rλ exists, is bounded,
but is not defined on a dense subset of B.

The continuous spectrum and residual spectrum are contained in the essential spec-
trum, which is any point in σ(L) that is not an isolated eigenvalue of finite multi-
plicity.

We will illustrate how to calculate the essential spectrum of a simple linear oper-
ator acting on B = L2(R) [242]:

Lu = uxx + pux− qu (2.106)

for constant positive coefficients p,q and D(L) = {u : u ∈ L2(R),Lu ∈ L2(R)}.
Firstly, suppose that Lλ is not invertible for some λ . This means that there exists
φ ∈B such that Lλ φ = 0. The latter equation is a linear second-order ODE with
constant coefficients and thus has solutions of the form eν±x with ν±, the roots of the
characteristic polynomial ν2 + pν − (q+ λ ) = 0. Such a solution cannot decay at
both x =±∞ and so does not belong to B. It follows that L has no eigenvalues and
the resolvent Rλ exists. We can then represent Rλ in terms of the Green’s function
G defined according to L

†
λ G(x− x′) = δ (x− x′), where L

† is the adjoint of L with
respect to the standard inner product on L2(R):

L
†
λ u = uxx− pux− (q+λ )u.

For any h∈D(Rλ )⊆B we can express the solution u= Rλ h to the inhomogeneous
equation Lλ u = h as

u(x) =
∫ ∞

−∞
h(y)G(y− x)dy.

For constant coefficients, the Green’s function can be solved explicitly according to

G(y) =

{
α eμ+y y≤ 0
α eμ−y y≥ 0,
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where μ± are the roots of the characteristic polynomial

P(μ) = μ2− pμ− (λ + q),

and α is chosen such that −1 = α(μ+− μ−).
If P(μ) has one root μ+ with positive real part and one root μ− with negative

real part, then clearly G ∈ L1(R) so that Rλ is bounded with dense domain equal
to B. This situation holds, for example, when λ is real and λ > −p. The roots of
P(μ) vary continuously with λ in the complex plane. Hence, the boundedness of
Rλ will break down when one of the roots crosses the imaginary axis at ik, say,
with λ =−q− k2− ika. This is a parabola in the complex λ plane (λr,λi) given by
λr =−q−λ 2

i /p2. If λr is to the right of this parabola,

λr >−q− λ 2
i

p2 ,

then P(μ) has a root on either side of the imaginary axis and Rλ is bounded. We
conclude that the essential spectrum lies to the left of the parabola,

σ(L)⊆ {λ : Re(λ )≤−q− Im(λ )2/p2}. (2.107)

It can be shown that the essential spectrum includes the parabola itself. It immedi-
ately follows that the essential spectrum lies in the left-half complex plane if q > 0.

In Sect. 2.4, we considered the linear stability of a traveling front, which required
finding the spectrum of a second-order linear operator with nonconstant coefficients;
see (2.42). It turns out that one can generalize the above analysis to an operator with
x-dependent coefficients p(x),q(x). Suppose that p(x),q(x)→ p±,q± as x→±∞.
Introduce the parabolas

S± = {λ : λ =−q±− k2− ikp±}. (2.108)

Let A denote the union of the regions to the left of the curves S± that includes the
curves themselves. Then the essential spectrum of L lies in A and includes S±.
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