
Chapter 1
Single Neuron Modeling

In this introductory chapter we describe conductance-based models of single
neurons, which take into account action potential generation, the effects of ex-
ternal stimuli, synaptic and dendritic processing, and ion channel fluctuations.
In the appendix we provide an informal introduction to stochastic calculus. In
Chap. 2 we turn to the classical theory of waves in one-dimensional neural media,
as exemplified by action potential propagation along axons. This will introduce
some of the techniques used throughout the book, including phase-plane analy-
sis, slow–fast systems, stability theory and Evans functions, averaging theory, and
stochastic wave propagation. We then consider two examples of intracellular waves
propagating along spiny dendrites (Chap. 3): the spike–diffuse–spike model of
calcium-mediated spikes and a reaction–diffusion model of CaMKII translocation
waves. A number of additional methods will be presented, including the analysis of
waves in spiking models, homogenization theory, and the theory of pulled fronts.
Finally, in Chap. 4 we consider both intracellular and intercellular calcium waves,
emphasizing aspects that are specific to neurons. In particular, we highlight the
important role of calcium signaling in astrocytes.

1.1 Conductance-Based Model of a Neuron

Cortical neurons typically consist of a cell body (or soma) where the nucleus con-
taining DNA is located, a branching output structure known as the axon and a
branching input structure known as the dendritic tree; see Fig. 1.1. Neurons mainly
communicate with each other by sending electrical impulses or spikes (action poten-
tials) along their axons. (Some neurons are also coupled diffusively via gap junctions
[126].) These axons make contacts on the dendrites of other neurons via microscopic
junctions known as synapses. The arrival of an electrical spike at a synaptic junc-
tion leads to the flow of electrical current along the dendritic tree of the stimulated
neuron. If the total synaptic current from all of the activated synapses forces the
electrical potential within the cell body to cross some threshold, then the neuron
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4 1 Single Neuron Modeling

fires a spike. The standard biophysical model for describing the dynamics of a
single neuron with somatic membrane potential v is based upon conservation of
electric charge:

C
dv
dt

=−Icon + u+ Iext, (1.1)

where C is the cell capacitance, Icon is the membrane current, u denotes the sum
of synaptic currents entering the cell body, and Iext describes any externally injected
currents. Ions can diffuse in and out of the cell through ion specific channels embed-
ded in the cell membrane. Ion pumps within the cell membrane maintain concentra-
tion gradients, such that there is a higher concentration of Na+ and Ca2+ outside the
cell and a higher concentration of K+ inside the cell. The membrane current through
a specific channel varies approximately linearly with changes in the potential v rela-
tive to some equilibrium or reversal potential, which is the potential at which there is
a balance between the opposing effects of diffusion and electrical forces. Summing
over all channel types, the total membrane current (flow of positive ions) leaving the
cell through the cell membrane is

Icon =∑
s

gs(v−Vs), (1.2)

where gs is the conductance due to channels of type s and Vs is the corresponding
reversal potential. In the case of a channel selective to a single ion, Vs satisfies the
Nernst equation

Vs =
kBT

q
ln

(
[outside]s
[inside]s

)
, (1.3)

where q is the charge of the ion, kB is the Boltzmann constant, T is temperature (in
degrees Kelvin), and [outside]s, [inside]s denote the extracellular and intracellular
concentrations of the given ion. Typical values for the common ion species are VK ≈
−75mV, VNa ≈ 50mV, VCa ≈ 150 mV, and VCl ≈ −60 mV (which is close to the
resting potential of the cell).

The generation and propagation of an action potential arises from nonlinearities
associated with active membrane conductances. Recordings of the current flowing
through single channels indicate that channels fluctuate rapidly between open and
closed states in a stochastic fashion. Nevertheless, most models of a neuron use
deterministic descriptions of conductance changes, under the assumption that there
are a large number of approximately independent channels of each type. It then
follows from the law of large numbers that the fraction of channels open at any
given time is approximately equal to the probability that any one channel is in an
open state. The conductance gs for ion channels of type s is thus taken to be the
product gs = ḡsPs where ḡs is equal to the density of channels in the membrane
multiplied by the conductance of a single channel and Ps is the fraction of open
channels. The voltage dependence of the probabilities Ps in the case of a delayed-
rectifier K+ current and a fast Na+ current was originally obtained by Hodgkin and
Huxley [279] as part of their Nobel Prize winning work on the generation of action
potentials in the squid giant axon. The delayed-rectifier K+ current is responsible for
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Fig. 1.1 Basic structure of a neuron. (Inset shows a synaptic connection from an upstream or
presynaptic neuron and a downstream or postsynaptic neuron.) See text for details

terminating an action potential by repolarizing a neuron. One finds that opening of
the K+ channel requires structural changes in 4 identical and independent subunits
so that PK = n4 where n is the probability that any one gate subunit has opened. In
the case of the fast Na+ current, which is responsible for the rapid depolarization
of a cell leading to action potential generation, the probability of an open channel
takes the form PNa = m3h where m3 is the probability that an activating gate is open
and h is the probability that an inactivating gate is open. Depolarization causes m to
increase and h to decrease, whereas hyperpolarization has the opposite effect.

The dynamics of the gating variables m,n,h are usually formulated in terms of
a simple kinetic scheme that describes voltage-dependent transitions of each gating
subunit between open and closed states. More specifically, for each X ∈ {m,n,h}

dX
dt

= αX (v)(1−X)−βX(v)X , (1.4)

where αX (v) is the rate of the transition closed→ open and βX(v) is the rate of the
reverse transition open→ closed. Equation (1.4) can be rewritten in the alternative
form

τX (v)
dX
dt

= X∞(v)−X , with X ∈ {m,n,h}, (1.5)

where

τX (v) =
1

αX (v)+βX(v)
, X∞(v) = αX(v)τX (v).

It follows that the conductance variables m, n, and h approach the asymptotic values
m∞(v), n∞(v), and h∞(v) exponentially with time constants τm(v), τn(v), and τh(v),
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respectively. From basic thermodynamic arguments, the opening and closing rates
are expected to be exponential functions of the voltage. Hodgkin and Huxley [279]
fitted exponential-like functions to the experimental data obtained from the squid
axon:

αm =
0.1(v+ 40)

1− exp[−0.1(v+ 40)]
αh = 0.07exp[−0.05(v+ 65)],

αn =
0.01(v+ 55)

1− exp[−0.1(v+ 55)]
βm = 4.0exp[−0.556(v+ 65)],

βh =
1

1+ exp[−0.1(v+ 35)]
βn = 0.125exp[−0.125(v+ 65)].

All potentials are measured in mV, all times in ms, and all currents in μA/cm2. The
corresponding asymptotic functions X∞(v) and time constants τX (v) are plotted in
Fig. 1.2.
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Fig. 1.2 Voltage-dependent steady-state levels of activation and inactivation (left panel) and
voltage-dependent time constants (right panel) for the Hodgkin–Huxley model

We can now write down the Hodgkin–Huxley model for the generation of an ac-
tion potential, which takes the membrane current to be the sum of a leakage current,
a delayed-rectifier K+ current, and a fast Na+ current,

C
dv
dt

= f (v,m,n,h)+ Iext, (1.6)

with
f (v,m,n,h) =−ḡNam3h(v−VNa)− ḡKn4(v−VK)− ḡL(v−VL). (1.7)

The maximal conductances and reversal potentials used in the original model are
ḡL = 0.003ms/mm2, ḡK = 0.36mS/mm2, ḡNa = 1.2mS/mm2, VL =−54.387mV,
VK =−77mV, and VNa = 50mV. Note that the leakage current groups together var-
ious voltage-independent processes such as the currents carried by ion pumps that
maintain the concentration gradients. The variables m,n,h evolve according to (1.4).
The temporal evolution of the variables v, f ,m,n,h during a single action potential is
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shown in Fig. 1.3. Injection of a depolarizing current induces a rapid increase in the
m variable describing activation of the Na+ current. Since the slower h variable is
initially around 0.6, there is a large influx of Na+ ions, producing a sharp downward
spike in the membrane current and a rapid depolarization through positive feedback.
However, the rise in the membrane potential causes the Na+ conductance to inac-
tivate by driving h towards zero. In addition, the depolarization activates the K+

conductance, resulting in a subsequent hyperpolarization.
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Fig. 1.3 The dynamics of v, f ,n,m,h in the Hodgkin–Huxley model during the firing of an action
potential induced by a current injection at t = 5 ms

Once a neuron has generated an action potential, it propagates as a traveling pulse
along the axon of the neuron. In order to model a propagating action potential, it is
necessary to combine the Hodgkin–Huxley conductance-based model given by (1.4)
and (1.6) with a one-dimensional cable equation describing passive voltage changes
along an axon or dendrite. The result is a partial differential equation of the form

C
∂v
∂ t

= K
∂ 2v
∂x2 + f (v,m,n,h), (1.8)

where K is related to the membrane space constant of the cable; see Sect. 1.4, and
X = m,n,h evolve according to (1.4). Equation (1.8) is an example of a nonlin-
ear reaction–diffusion equation used to model wave propagation in an excitable
medium; one characteristic of an excitable medium is that it cannot support the
passing of another wave until a certain amount of time has passed (known as the re-
fractory period). A rigorous proof of the existence of traveling wave solutions of the
spatially extended Hodgkin–Huxley equations has been developed [104, 267]. How-
ever, following standard treatments of waves in excitable media [242, 322, 444],
we will develop the theory by considering the simpler FitzHugh–Nagumo model
[192, 446]; see Chap. 2.

There is an ongoing debate about how best to characterize the output of a neuron,
from either a dynamical systems or an information processing perspective. It is gen-
erally agreed that the detailed shape of an action potential is usually unimportant,
so, at the fine temporal scale of a few milliseconds, the output of a neuron can be
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represented in terms of the times at which the neuron fires an action potential (or
spike). Given the conductance-based model (1.1), one typically identifies a firing
threshold κ such that if v(t) crosses the threshold from below at time t = T , then
the neuron fires an action potential. If T m denotes the mth firing time of the neuron
since t = 0, say, then we have the threshold condition

T m = inf{t, t > T m−1|v(t) = κ , v̇(t)> 0}. (1.9)

As an alternative to a spike timing representation of neuronal output, one can con-
sider a rate-based representation that is obtained by filtering the spike train with
some causal integral kernel Γ (t), Γ (t) = 0 for t < 0:

z(t) = ∑
m

Γ (t−T m) =
∫ ∞

−∞
Γ (t− τ)a(τ)dτ, (1.10)

where
a(t) =∑

m
δ (t−T m). (1.11)

For example, if Γ (t) = T−1 for 0 ≤ t < T and is zero otherwise, then z(t) sim-
ply counts the number of spikes within the time interval [t − T, t]. In the special
case of a regular spike train with T m+1− T m = Δ0 for all m, z(t) = 1/Δ0 in the
limit T → ∞.

Suppose, for the moment, that we ignore synaptic currents and consider what
happens as the external input Iext to a neuron is increased. Experimentally it is
found that most cortical neurons switch from a resting state characterized by a low
rate of (noise-driven) spontaneous firing to an active state characterized by either
tonic (regular, repetitive) firing or bursting [131]. There has been considerable the-
oretical work on the transitions from resting to active states in conductance-based
models based on bifurcation theory; see [173, 301] for excellent reviews. We will
focus on tonic firing neurons, since these comprise the majority of cells in cortical
networks. In the case of constant input Iext = I, the firing rate z̄ (mean number of
spikes per second) of the neuron is typically found to be a nonlinear function of
the input:

z̄ = F(I) (1.12)

with the form of F depending on the nature of the bifurcation from the stable rest-
ing state to repetitive firing. A common bifurcation scenario in conductance-based
models of cortical neurons is a saddle–node on an invariant circle [173, 301], which
is classified as type I excitability. Close to the bifurcation point (see Fig. 1.4), we
have

F(I) = F0
√

I− Ic, (1.13)

where Ic is the critical current for onset of regular spiking. (Another common form
of excitability is type II, in which the loss of stability of the resting state and the
transition to repetitive firing occur via a Hopf bifurcation. There are also more exotic
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forms of excitability as detailed elsewhere [201, 423].) If one includes stochastic
effects arising from synaptic and membrane noise, for example, then the effective
mean firing rate becomes a smooth sigmoid-like function of injected current,

F(I) =
F0

1+ e−η(I−κ) , (1.14)

where η is the gain and κ is the firing threshold. In the high-gain limit η → ∞, this
reduces to a Heaviside firing rate function

F(I) = F0H(I−κ) =
{

F0 if I > κ
0 if I < κ . (1.15)

Yet another commonly used firing rate function is the piecewise linear function

F(I) =

⎧⎨
⎩

0, I < κ ,
η(u−κ), κ < I < κ +η−1,

1, I > κ +η−1.
(1.16)

This preserves the hard threshold of the saddle–node on a limit cycle bifurcation but
ensures that the firing rate saturates at high input currents.
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Fig. 1.4 Various forms of the nonlinear firing rate function F(I). Sigmoid function (black curve)
and Heaviside function (dashed curve) have a threshold κ = 0.3, whereas the square root function
(gray curve) has a critical current Ic = 0.05

The issue of how to represent a single neuron becomes even more salient
when considering synaptically coupled spiking networks (Chap. 5) and neural fields
(Chap. 6). In order to make analytical progress, it is necessary either to consider a
very simple model of a spiking neuron such as integrate-and-fire [323] (Sect. 5.3)
or to carry out some form of reduction of a conductance-based model. In the case
of weakly coupled neural oscillators, one can reduce the dynamics to a network of
coupled phase oscillators; see Chap. 5. The basic ideas underlying so-called phase
reduction methods can be understood by considering the simpler case of a single,
periodically forced neural oscillator.
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1.2 Periodically Forced Neural Oscillator

A conductance-based model of a neuron with constant input current can be formu-
lated as an M-dimensional (M ≥ 2) system of ODEs

dx
dt

= f(x), x = (x1, . . .xM). (1.17)

Here x1, say, represents the membrane potential of the neuron (treated as a point
processor) and xm, m > 1, represent various ionic channel gating variables. Suppose
that the neuron has a stable periodic solution x(t) = x(t +Δ0) where ω0 = 2π/Δ0

is the natural frequency of the oscillator. In phase space the solution is an isolated
attractive trajectory called a limit cycle. The dynamics on the limit cycle can be
described by a uniformly rotating phase such that

dθ
dt

= ω0, (1.18)

and x(t) = g(θ (t)) with g a 2π-periodic function. Note that the phase is neutrally
stable with respect to perturbations along the limit cycle—this reflects invariance of
an autonomous dynamical system with respect to time shifts. Now suppose that a
small external periodic input is applied to the oscillator such that

dx
dt

= f(x)+ εp(x, t), (1.19)

where p(x, t) = p(x, t +Δ) and ω = 2π/Δ is the forcing frequency. If the amplitude
ε is sufficiently small and the cycle is stable, then deviations transverse to the limit
cycle are small so that the main effect of the perturbation is to induce shifts in the
phase. Therefore, we need to extend the definition of phase to a neighborhood of the
limit cycle. This leads to the notion of an isochrone [221, 350, 679].

1.2.1 Isochrones and Phase-Resetting Curves

Suppose that we observe the unperturbed system stroboscopically at time intervals
of length Δ0. This leads to a Poincare mapping

x(t)→ x(t +Δ0)≡P(x(t)).

This mapping has all points on the limit cycle as fixed points. Choose a point x∗ on
the cycle and consider all points in the vicinity of x∗ that are attracted to it under
the action of P . They form an (M − 1)-dimensional hypersurface I , called an
isochrone, crossing the limit cycle at x∗ (see Fig. 1.5). A unique isochrone can be
drawn through each point on the limit cycle so we can parameterize the isochrones
by the phase, I = I (θ ). Finally, we extend the definition of phase by taking all
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points x∈I (θ ) to have the same phase, Θ(x) = θ , which then rotates at the natural
frequency ω0 (in the unperturbed case). Hence, for an unperturbed oscillator in the
vicinity of the limit cycle, we have

ω0 =
dΘ(x)

dt
= ∑

k

∂Θ
∂xk

dxk

dt
= ∑

k

∂Θ
∂xk

fk(x).

Now consider the perturbed system but with the unperturbed definition of the phase:

dΘ(x)
dt

= ∑
k

∂Θ
∂xk

( fk(x)+ ε pk(x, t)) = ω0 + ε ∑
k

∂Θ
∂xk

pk(x, t).

Fig. 1.5 Isochrones in the neighborhood of a stable limit cycle

To a first approximation we can neglect deviations of x from the limit cycle which
we denote by x∗:

dΘ(x)
dt

= ω0 + ε ∑
k

∂Θ(x∗)
∂xk

pk(x
∗, t).

Finally, since points on the limit cycle are in 1:1 correspondence with the phase θ ,
we obtain the closed phase equation

dθ
dt

= ω0 + εQ(θ , t), (1.20)

where

Q(θ , t) = ∑
k

∂Θ(x∗(θ ))
∂xk

pk(x
∗(θ ), t) (1.21)

is a 2π-periodic function of θ and a Δ -periodic function of t.
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Consider, as an example, the complex amplitude equation that arises for a limit
cycle oscillator close to a Hopf bifurcation [248]:

dA
dt

= (1+ iη)A− (1+ iα)|A|2A, A ∈C. (1.22)

In polar coordinates A = Reiφ ,

dR
dt

= R(1−R2),
dφ
dt

= η−αR2.

The solution for arbitrary initial data R(0) = R0, θ (0) = θ0 is

R(t) =

[
1+

1−R2
0

R2
0

e−2t
]−1/2

,

(1.23)

φ(t) = φ0 +ω0t− α
2

log(R2
0 +(1−R2

0)e
−2t),

where ω0 =η−α is the natural frequency of the stable limit cycle at R= 1. Strobing
the solution at times t = nΔ0, we see that

lim
n→∞

φ(nΔ0) = φ0−α lnR0.

Hence, we can define a phase on the whole plane

Θ(R,φ) = φ −α lnR. (1.24)

It follows that the isochrones are logarithmic spirals with φ −α lnR = constant.
Now rewrite (1.22) in Cartesian coordinates

dx
dt

= x−ηy− (x2+ y2)(x−αy)+ ε cosωt,

dy
dt

= y+ηy− (x2+ y2)(y+αx),

Z(θ)

θ
t phase-advanced

phase-retarded

Tn Tn+1

Tn Tn+1

Fig. 1.6 Phase shift Z(θ ) induced by a small perturbation of the membrane potential applied at
time t = 0 when the phase of the limit cycle is θ . Black (gray) dots represent points on the un-
perturbed (perturbed) trajectory. The phase shift induces a corresponding shift in successive firing
times
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where we have added a periodic modulation in the x-direction. Rewrite the phase
(1.24) as

Θ = tan−1 y
x
− α

2
log(x2 + y2),

so that
∂Θ
∂x

=− y
x2 + y2 −α

x
x2 + y2 .

On the limit cycle x0(θ ) = (cosθ ,sinθ ), we have

∂Θ(x0)

∂x
=−sinθ −α cosθ .

It follows that the corresponding phase equation is

dθ
dt

= ω0− ε(α cosθ + sinθ )cosωt.

The phase reduction method is particularly useful because the function Q(θ , t)
can be related to an easily measurable property of a neural oscillator, namely, its
phase-resetting curve (PRC), which we denote by the 2π-periodic function Z(θ ).
The PRC is found experimentally (or numerically) by perturbing the oscillator with
a brief depolarizing voltage stimulus of size εΔV at different times in its cycle and
measuring the resulting phase shift from the unperturbed system [221, 679]; see
Fig. 1.6. Taking the coordinate x1 as the membrane potential, it follows from (1.20)
that

dθ
dt

= ω0 + εΔx1
∂Θ(x∗(θ ))

∂x1
δ (t− t0). (1.25)

Integrating this equation over a small interval around t0, we see that the impulse
induces a phase shift Δθ = (εΔx1)Z(θ0) where Z(θ ) = ∂Θ(x∗(θ ))/∂x1 and θ0 =
θ (t0). Thus comparing the phase at large times for the unperturbed and perturbed
cases generates the PRC. Given the PRC Z(θ ), the response of the neuron to a
more general time-dependent voltage perturbation εP(t) is determined by the phase
equation

dθ
dt

= ω0 + εZ(θ )P(t). (1.26)

We can also express the PRC in terms of the firing times of a neuron (assum-
ing fast reconvergence to the limit cycle). Suppose that there exists a well-defined
threshold κ signaling the onset of fast somatic membrane depolarization and the
subsequent firing of an action potential spike. Let T n denote the nth firing time of
the neuron as defined by (1.9). Since the membrane voltage v(t) = x1(θ (t)), the
threshold corresponds to a particular phase of the limit cycle, which we choose to
be θ = 0. In the absence of perturbations, we have θ (t) = 2πt/Δ0, so that the firing
times are T n = nΔ0 where Δ0 is the natural period of oscillation. On the other hand,
a small perturbation applied at the point θ on the limit cycle at time t,T n < t < T n+1,
induces a phase shift that changes the next time of firing according to (see Fig. 1.6)
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Fig. 1.7 (a) Morris–Lecar model showing two different response types. In both cases vk = −0.7,
uL =−0.5, uCa = 1, gK = 2, gL = 0.5, v1 = −0.01, v2 = 0.15. For a type I response, gCa = 1.33,
v3 = 0.1, v4 = 0.145, φ = 1/3, and I = 0.0695. For a type II response, gCa = 1.1, v3 = 0, v4 = 0.3,
φ = 0.2, and I = 0.25. Responses have been scaled to the same ranges. (b) Hodgkin–Huxley model
with external drive I = 10 showing type II phase-resetting curve

T n+1−Tn

Δ0
= 1− (εΔV )Z(θ )

2π
. (1.27)

For certain types of neuron a depolarizing stimulus always advances the onset of
the next spike, that is, the PRC is always positive, whereas for others the stimulus
may also delay the next spike. Oscillators with a strictly positive PRC are called
type I whereas those for which the PRC has a negative regime are called type II.
A numerical example illustrating both types of PRC is shown in Fig. 1.7a for the
Morris–Lecar model of a neuron, which was originally introduced to describe how
under constant current injection barnacle muscle fibers respond with a host of oscil-
latory voltage waveforms [440]. It takes the form

dv
dt

= I− gL(v− vL)− gKw(v− vK)− gCam∞(v)(v− vCa),

dw
dt

= λ (v)(w∞(v)−w), (1.28)

with

m∞(v) = 0.5(1+ tanh[(v− v1)/v2]),

w∞(v) = 0.5(1+ tanh[(v− v3)/v4]),

λ (v) = φ cosh[(v− v3)/(2v4)].

Here, gL is the leakage conductance, gK,gCa are potassium and calcium conduc-
tances, vL,vK,vCa are corresponding reversal potentials, m∞(v), w∞(v) are voltage-
dependent gating functions, and λ (v) is a voltage-dependent rate. The type II PRC
for the Hodgkin–Huxley model is shown in Fig. 1.7b.

1.2.2 Phase-Locking and Synchronization

Now suppose that Q(θ , t) in (1.20) is expanded as a double Fourier series
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Q(θ , t) = ∑
l,k

al,keikθ+ilωt .

Substitute for θ using the zero-order approximation θ = ω0t +θ0:

Q(θ , t) = ∑
l,k

al,keikθ0+i(kω0+lω)t .

It follows that Q contains fast oscillating terms (compared to the time scale Δ0/ε)
together with slowly varying terms that satisfy the resonance condition

kω0 + lω ≈ 0. (1.29)

Only the latter will lead to large variations in the phase, so we can average the
forcing term Q keeping only the resonant terms. The simplest case is ω ≈ ω0 for
which the resonant terms satisfy l =−k and

Q(θ , t)→∑
k

a−k,keik(θ−ωt) = q(θ −ωt). (1.30)

The phase equation then becomes

dθ
dt

= ω0 + εq(θ −ωt).

The phase difference between the oscillator and external drive, ψ = θ −ωt, then
satisfies the equation

dψ
dt

=−Δω + εq(ψ), (1.31)

where Δω = ω−ω0 is the degree of frequency detuning. Similarly, if ω ≈ mω0/n,
then

Q(θ , t)→∑
k

a−n j,m je
i j(mθ−nωt) = q̂(mθ − nωt), (1.32)

and
dψ
dt

= mω0− nω + εmq̂(ψ), (1.33)

where ψ = mθ − nωt.
The above is an example of an application of the averaging theorem [248].

Assuming that Δω = ω−ω0 = O(ε) and defining ψ = θ −ωt, we have

dψ
dt

=−Δω + εQ(ψ +ωt, t) = O(ε). (1.34)

Define

q(ψ) = lim
T→∞

1
T

∫ T

0
Q(ψ +ωt, t)dt, (1.35)

and consider the averaged equation
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dψ
dt

=−Δω + εq(ψ). (1.36)

It is easy to establish that q only contains the resonant terms of Q as above. The
averaging theorem ensures that there exists a change of variables that maps solutions
of the full equation to those of the averaged equation to leading order in ε . The
question then remains as to what extent solutions of the averaged equations are a
good approximation to the solutions of the full equation. In general, one can only
establish that a solution of the full equation is ε-close to a corresponding solution
of the averaged system for times of O(ε−1). No such problem occurs however for
hyperbolic fixed points corresponding to phase-locked states.

Suppose that the 2π-periodic function q(ψ) has a unique maximum qmax and a
unique minimum qmin in the interval [0,2π). We can then distinguish between two
regimes [502]:

Synchronization regime: If the degree of detuning for a given drive amplitude is
sufficiently small,

εqmin < Δω < εqmax,

a b c

Fig. 1.8 Saddle–node bifurcation signaling a transition from a synchronized to a drifting state
as the size of frequency detuning |Δω| increases (a) Synchronization regime. (b) Saddle–node
bifurcation. (c) Drift regime

then there exists at least one pair of stable/unstable fixed points (ψs,ψu). (This
follows from the fact that q(ψ) is 2π-periodic and continuous so it has to cross
any horizontal line an even number of times.) The system evolves to the synchro-
nized state

θ (t) = ωt +ψs,

in which the oscillator is phase-locked to the external drive and is frequency
entrained. Note that the stability of a phase-locked state is determined by the
sign of q′(ψ) with q′(ψs)< 0 and q′(ψu)> 0 (see Fig. 1.8a).
Drift regime: As |Δω | increases, it approaches one of the critical values εqmin,max

where the two fixed points coalesce in a saddle–node bifurcation and phase-
locking disappears; see Fig. 1.8b, c. Hence, if the degree of tuning is large, then
dψ/dt never changes sign and the oscillation frequency differs from the drive
frequency ω . The phase ψ(t) rotates through 2π with period
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Tψ =

∣∣∣∣
∫ 2π

0

dψ
εq(ψ)−Δω

∣∣∣∣ . (1.37)

The mean frequency of rotation is thus Ω = ω +Ωψ where Ωψ = 2π/Tψ is
known as the beat frequency. One is often interested in how the behavior varies
in the (Δω ,ε)-plane (see Fig. 1.9). First the boundary between the two regimes
consists of the two straight lines Δω = εqmax,min. Second, close to the boundary
Ωψ has a characteristic form. Suppose, for example, that Δω −Δωmax is small
for fixed ε with Δωmax = εqmax. The integral in (1.37) is then dominated by a
small region around ψmax. Expanding q(ψ) as a Taylor series,

Ωψ =
2π
Tψ
≈ 2π

∣∣∣∣
∫ ∞

−∞

dψ
εq′′(ψmax)ψ2− (Δω−Δωmax)

∣∣∣∣
−1

(1.38)

=
√

ε|q′′(ψmax)|(Δω−Δωmax).

0

a b

Fig. 1.9 (a) Synchronization regime (shaded) in (Δω,ε)-plane. (b) Variation of beat frequency
with Δω for fixed ε

1.3 Synaptic Processing

In the conductance-based model given by (1.6), we decomposed the total input cur-
rent to the soma into an external part Iext(t) and a synaptic part u(t). In this section,
we consider the current generated at a single synapse and the sequence of events un-
derlying conductance changes in the postsynaptic membrane due to the arrival of an
action potential at the presynaptic terminal. We then show how these conductance
changes can be modeled in terms of a kinetic scheme describing the opening and
closing of ion channels in the postsynaptic membrane.
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1.3.1 Excitatory and Inhibitory Synapses

The basic stages of synaptic processing induced by the arrival of an action potential
at an axon terminal are shown in Fig. 1.10. (See [99] for a more detailed description.)
An action potential arriving at the terminal of a presynaptic axon causes voltage-
gated Ca2+ channels within an active zone to open. The influx of Ca2+ produces
a high concentration of Ca2+ near the active zone [45, 195], which in turn causes
vesicles containing neurotransmitter to fuse with the presynaptic cell membrane and
release their contents into the synaptic cleft (a process known as exocytosis). The
released neurotransmitter molecules then diffuse across the synaptic cleft and bind
to specific receptors on the postsynaptic membrane. These receptors cause ion chan-
nels to open, thereby changing the membrane conductance and membrane potential
of the postsynaptic cell. A single synaptic event due to the arrival of an action po-
tential at time T induces a synaptic current of the form

Isyn(t) = gsyn(t−T )(Vsyn− v(t)), (1.39)

where v is the voltage of the postsynaptic neuron, Vsyn is the synaptic reversal po-
tential, and gsyn(t) is the change in synaptic conductance with gsyn(t) = 0 for t < 0.
The sign of Vsyn relative to the resting potential Vrest (typically Vrest ≈ −65 mV) de-
termines whether the synapse is excitatory (Vsyn >Vrest) or inhibitory (Vsyn <Vrest).
For simplicity, it is often assumed that a neuron spends most of its time close to rest
such that Vsyn−v≈Vsyn−Vrest, with the factor Vsyn−Vrest absorbed into gsyn. One is
then effectively taking the arrival of a spike as generating a synaptic current rather
than a change in conductance.

axon
terminal

synaptic
cleft

dendritic
spine

synaptic
vesicle

postsynaptic
density

reuptake
pump

receptors

voltage-gated
Ca++ channel

neurotransmitter 

Fig. 1.10 Basic stages of synaptic processing shown for an excitatory synapse. See text for details

The predominant fast, excitatory neurotransmitter of the vertebrate central ner-
vous system is the amino acid glutamate, whereas in the peripheral nervous sys-
tem, it is acetylcholine. Glutamate-sensitive receptors in the postsynaptic mem-
brane can be subdivided into two major types, namely, NMDA and AMPA [99].
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At an AMPA receptor the postsynaptic channels open very rapidly. The resulting
increase in conductance peaks within a few hundred microseconds, with an expo-
nential decay of around 1 ms. The time course of the synaptic conductance change
can be modeled in terms of an nth state Markov process [154] (see Sect. 1.3.3).
Usually a simplified representation of gsyn(t) is used that is given by the difference
of exponentials

gsyn(t) = ḡ

(
1
τ2
− 1

τ1

)
(e−t/τ1− e−t/τ2)H(t), (1.40)

with H(t) the Heaviside function. In many cases, the rise time is much shorter than
the fall time (τ1� τ2) so that we have an exponential synapse with gsyn(t) = ḡe−t/τd .
In the limit τ2→ τ1 = α−1, (1.40) reduces to the well-known α function

gsyn(t) = ḡα2te−αtH(t). (1.41)

These expressions for the conductance are also used for GABA inhibitory synapses
(see below). In contrast to an AMPA receptor, the NMDA receptor operates about
ten times slower and the amplitude of the conductance change depends on the post-
synaptic membrane potential. If the postsynaptic potential is at rest and glutamate is
bound to the NMDA receptor, then the channel opens, but it is physically obstructed
by Mg2+ ions. As the membrane is depolarized, the Mg2+ ions move out and the
channel becomes permeable to Na+ and Ca2+ ions. The NMDA conductance can
be derived from a model in which the binding rate constant of Mg2+ varies as an
exponential function of the local voltage v [304]:

gsyn(t) = g
e−t/τ1 − e−t/τ2

1+η [Mg2+]e−γv(t)
, t > 0, (1.42)

where [X ] denotes concentration of X and η is a rate constant. The rapid influx of
calcium ions due to the opening of NMDA channels is thought to be the critical trig-
ger for the onset of long-term potentiation or LTP, a major component of synaptic
plasticity (see also Sect. 4.1).

The most common inhibitory neurotransmitter in the central nervous system of
both vertebrates and invertebrates appears to be GABA. There are two major forms
of postsynaptic receptors termed A and B. The GABAA receptors open channels
selective to chloride ions, whose reversal potential Vsyn = −70mV is close to that
of the resting potential. The postsynaptic conductance change is quite fast, rising
within 1 ms and decaying within 10–20 ms. GABAB receptors are at least 10 times
slower and open ion channels selective for K+ ions. Thus they tend to be consider-
ably more hyperpolarizing with Vsyn ≈ −100mV. The two receptor classes tend to
be segregated with GABAA occurring at or close to the soma and GABAB further
out on the dendrites. Another way to distinguish between GABAA and GABAB re-
ceptors is that the former are ionotropic (as are NMDA and AMPA) while the latter
are metabotropic [99]. Neurotransmitter binding to an ionotropic receptor directly
opens an ion channel through a series of conformational changes of the receptor. On
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the other hand, neurotransmitter binding to a metabotropic receptor indirectly opens
an ion channel elsewhere in the membrane through a sequence of biochemical steps
mediated by G proteins.

1.3.2 Synaptic Depression

A single synaptic event due to the arrival of an action potential at time T induces a
synaptic current of the form (1.39). As a crude approximation we might try summing
individual responses to model the synaptic current arising from a train of action
potentials arriving at times T m, integer m:

Isyn(t) = ∑
m

gsyn(t−T m)(Vsyn− v(t)). (1.43)

Note that this sum only includes spikes for which T m < t since gsyn(t) = 0 for t < 0
(causality condition). For many synapses such a simple ansatz does not hold, since
some form of short-term synaptic depression causes the amplitude of the response to
depend on the previous history of presynaptic firing [4, 405]. One way to incorporate
this history-dependent effect is to take [1]

Isyn(t) =

[
∑
m

q(T m)gsyn(t−T m)

]
(Vsyn− v(t)), (1.44)

where the factor q(T m) reduces the response evoked by an action potential by an
amount that depends upon the details of the previous spike train data. One inter-
pretation of the factor q is that it represents a short-term (reversible) reduction in
the release probability for synaptic transmission due to a depletion in the number
of vesicles that can readily fuse with the cell membrane [700]. In certain cases, it is
also possible for a synapse to undergo a temporary facilitation in response to acti-
vation, which may be due to the presence of residual calcium in the axonal terminal
[700].

A common phenomenological model of synaptic depression is to assume that
between spikes q(t) relaxes at a rate τq to its steady-state value of one, but that
directly after the arrival of a spike it changes discontinuously, that is, q→ γq with
γ < 1. The depression time constant τq can vary between around 100 ms and a few
seconds [4]. The model for synaptic depression may be written succinctly as

dq
dt

=
(1− q)

τq
− (1− γ)∑

n
q(T n)δ (t−Tn), q(0) = 1, (1.45)

which has the solution of the form

q(T m) = 1− (1− γ) ∑
n<m

γ [m−n−1]β e−(T
m−T n)/τq .
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Assuming a regular sequence of incoming spikes T n−T n−1 = Δ for all n we find
that the asymptotic amplitude q∞(Δ)≡ limm→∞ q(T m) is given by

q∞(Δ) =
1− e−Δ/τq

1− γe−Δ/τq
. (1.46)

One possible computational role for synaptic depression is as a mechanism for cor-
tical gain control [4]. The basic idea can be understood from the dependence of
the asymptotic amplitude q∞(Δ) on the stimulus frequency f = Δ−1. Assuming
that τq � Δ , we can Taylor expand q∞ in (1.46) to find that q∞( f ) ≈ Γ / f , where
Γ = τq/(1− γ). The main point to note is that the postsynaptic response per unit
time is approximately independent of f (assuming that each spike elicits the same
response in the steady state). This means that the synapse is very sensitive to changes
in the stimulus frequency. The instantaneous response to a rapid increase Δ f in the
stimulus rate is given by Γ Δ f/ f . In other words, the synapse responds to relative
rather than absolute changes in the rate of input stimulation.

1.3.3 Kinetic Model of a Synapse

Let gsyn(t) ∼ s(t) where s(t) is the fraction of synaptic receptor channels that are
in an open conducting state. The probability of being in an open state depends on
the presence and concentration T of neurotransmitter released by the presynaptic
neuron. Assuming a first-order kinetic scheme, in which a closed receptor in the
presence of a concentration of neurotransmitter T equilibrates with the open recep-
tor state, we have

C
r1(v,T )
�

r2(v)
O,

where C and O represent the closed and open states of the channel and r1(v,T ) and
r2(v) are the associated rate constants. However, in many cases synaptic channels
are found to have time-dependent properties that are more accurately modeled with
a second-order kinetic scheme. In fact the presence of one or more receptor sites
on a channel allows the possibility of transitions to desensitized states. Such states
are equivalent to the inactivated states of voltage-dependent ion channels. The addi-
tion of such a desensitized state to the first-order process generates a second-order
scheme:

ds
dt

= r1(v,T )(1− s− z)− [r2(v)+ r3(v)]s+ r4(v)z,

dz
dt

= r6(v,T )(1− s− z)− [r4(v)+ r5(v)]z+ r3(v)s, (1.47)

where z is the fraction of channels in the desensitized state. All neurotransmitter-
dependent rate constants have the form ri(v,T ) = ri(v)T . It is common for detailed
Markov models of voltage-gated channels to assume that the voltage dependence
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of all rates takes a simple exponential form. However, it has been shown that the
number of states needed by a model to more accurately reproduce the behavior of a
channel may be reduced by adopting sigmoidal functions for the voltage-dependent
transition rates (see Destexhe et al. [154] for a discussion), so that we write

ri(v) =
ai

1+ exp[−(v− ci)/bi]
. (1.48)

The ai set the maximum transition rate, bi the steepness of the voltage depen-
dence, and ci the voltage at which the half-maximal rate is reached. Furthermore,
the concentration of neurotransmitter can often be successfully approximated by a
sigmoidal function of the presynaptic potential vpre:

T (vpre) =
Tmax

1+ exp[−(vpre− vΔ)/Δ ]
. (1.49)

Here, Tmax is the maximal concentration of transmitter in the synaptic cleft, vpre

is the presynaptic voltage, Δ gives the steepness, and vΔ sets the value at which
the function is half activated. It is common to take Δ = 5 mV and vΔ = 2 mV. One
of the main advantages of using an expression such as (1.49) is that it provides
a smooth transformation between presynaptic voltage and transmitter concentra-
tion from which postsynaptic currents can easily be calculated from (1.39), (1.47),
(1.48), and (1.49).

Now consider the following second-order gating scheme

C
r1(T )
�
r2

C1

↖
r4

↙
r3

O

where C and C1 are the closed forms of the receptor, O is the open (conducting)
form, and the ri are voltage-independent transition rates. Under certain assumptions
it may be shown that this particular second-order scheme describes the so-called
alpha function response commonly used in synaptic modeling. The following ap-
proximations are required: (i) The transmitter concentration T occurs as a pulse
δ (t − t0) for a release event occurring at time t = t0, that is, r1(T ) = r1δ (t− t0);
(ii) The fraction of channels in C is considered constant and ∼ 1. The kinetic equa-
tion (1.47) then reduce to

dc(t)
dt

= Qc(t)+ I(t),

(assuming c(0) = 0), where

Q =

(
− 1

τ1
0

r3 − 1
τ2

)
, I(t) =

(
r1δ (t− t0)

0

)
, c =

(
z
s

)
,
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and τ1 = 1/(r2 + r3), τ2 = 1/r4. Here z and s represent the fraction of receptors in
the forms C1 and O, respectively. This Markov chain system has a solution of the
form

c(t) =
∫ t

0
G(t− s)I(s)ds, G(t) = etQ.

The eigenvectors of Q are (1,r3/(τ−1
2 −τ−1

1 )) and (0,1) with associated eigenvalues
−1/τ1 and −1/τ2, respectively. Hence, one finds that

s(t) = r1r3

(
1
τ2
− 1

τ1

)−1

(e−(t−t0)/τ1 − e−(t−t0)/τ2), t > t0.

In the limit τ2→ τ1→ τs this reduces to an alpha function

s(t) = r1r3(t− t0)e
−(t−t0)/τs , t > t0.

This kinetic derivation of the alpha function only holds for s� 1 in order to remain
consistent with condition (ii).

The time course of some ion-channel open and closed states seems to follow a
power law rather than multiexponential law at large times [429]. In order to under-
stand such power-law behavior, consider an ion channel with N closed states such
that the transition to an open state can only take place from state 1 at one end of a
chain

0
α←1

γ1�
β1

2 . . .
γN−1�
βN−1

N.

The corresponding kinetic equations are

dc1

dt
= β1c2− (γ1 +α)c1,

dcn

dt
= γn−1cn−1 +βncn+1− (γn +βn−1)cn, 1 < n < N,

dcN

dt
= γN−1cN−1−βN−1cN .

In the following we take γn = βn = 1 for all n and α = 1, so that the system of equa-
tions describes a discrete diffusion process along a chain with a reflecting boundary
at n = N and an absorbing boundary at n = 0. In the large N limit, it can be shown
that given the initial condition pn(0) = δn,1, the exact solution is

cn(t) = e−2t [In−1(t)− In+1(t)], (1.50)

where In(t) is the modified Bessel function of integer order:

In(t) =
∫ π

−π
einke2t cos(k) dk

2π
.
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By carrying out an asymptotic expansion for large t, it can be shown that

cn(t)≈ n

2π1/2t3/2
.

Define F(t) to be the total probability of finding the system in a closed state:

F(t) =
N

∑
n=1

cn(t).

It follows that dF/dt =−αc1 and, hence, F(t)≈ (πt)−1/2 for large N, t and α = 1.
More recently, it has been suggested that synapses with multiple states, which ex-
hibit dynamics over a wide range of time scales and show power-law-like behavior,
could have some interesting computational properties [208, 219]. For example, it
has been suggested that such synapses could provide a way of combining high lev-
els of memory storage with long retention times [208].

1.4 Dendritic Processing

Typically, a single neuron in cerebral cortex has up to 10,000 synapses, which are
spatially distributed along the dendritic tree (and perhaps on the cell body and prox-
imal part of the axon). In order to find the total synaptic current u(t) entering the cell
body, it is necessary to determine how the various local currents flow along the den-
dritic tree and combine at the soma. We will show that if the dendrites are modeled
as passive electrical cables, then the dendritic tree acts as a linear spatiotemporal
filter of synaptic currents.

1.4.1 The Cable Equation

Neurons display a wide range of dendritic morphologies, ranging from compact ar-
borizations to elaborate branching patterns. At the simplest level, the dendritic tree
can be treated as a passive electrical medium that filters incoming synaptic stimuli
in a diffusive manner. The current flow and potential changes along a branch of the
tree may be described with a second-order, linear partial differential equation com-
monly known as the cable equation. (The application of cable theory to the study of
passive, spatially extended dendrites was pioneered by Wilfrid Rall in the 1960s and
1970s. For more recent accounts of this work see [515] and the annotated collection
of papers edited by Segev, Rinzel, and Shepherd [299].) The cable equation is based
on a number of approximations: (1) magnetic fields due to the movement of electric
charge can be neglected, (2) changes in ionic concentrations are sufficiently small
so that Ohm’s law holds, (3) radial and angular components of voltage can be ig-
nored so that the cable can be treated as one-dimensional medium, and (4) dendritic
membrane properties are voltage-independent, that is, there are no active elements.
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A nerve cable consists of a long thin, electrically conducting core surrounded by a
thin membrane whose resistance to transmembrane current flow is much greater than
that of either the internal core or the surrounding medium. Injected current can travel
long distances along the dendritic core before a significant fraction leaks out across
the highly resistive cell membrane. Linear cable theory expresses conservation of
electric current in infinitesimal cylindrical elements of nerve fiber modeled using
the equivalent circuit shown in Fig. 1.11. Define v(x, t) as the membrane potential
at position x along a cable at time t (measured relative to the resting potential of
the membrane). Let Cm be the capacitance per unit area of the cell membrane, R
the resistivity of the intracellular fluid (in units of resistance × length), Rm the cell
membrane resistance (in units of resistance× area), and a the cable radius. Note that
Cm,Rm,R are independent of cable radius—the corresponding quantities expressed
per unit length of cable are

r =
R

πa2 ,
1
rm

=
2πa
Rm

, cm = 2Cmπa. (1.51)

v(x,t)
cm

rm

I ext(x,t)
Il(x,t)

Im(x,t)

r

x x+Δxx−Δx

Fig. 1.11 Equivalent circuit for successive cylindrical segments of passive dendritic membrane

Current conservation implies that (see Fig. 1.11)

Iext(x, t)− Im(x, t) =
Il(x, t)− Il(x−Δx, t)

Δx
≈ ∂ Il(x, t)

∂x
, (1.52)

where Iext(x, t) is an external injected current density. From Ohm’s law we also have

Il(x, t)r =
v(x, t)− v(x+Δx, t)

Δx
≈−∂v(x, t)

∂x
, (1.53)

and
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Im(x, t) = cm
∂v(x, t)

∂ t
+

v(x, t)
rm

. (1.54)

Combining these three equations yields the uniform cable equation

τm
∂v(x, t)

∂ t
=−v(x, t)+λ 2

m
∂ 2v(x, t)

∂x2 + rmIext(x, t), t ≥ 0, (1.55)

where τm = RmCm is the membrane time constant and λm = (Rma/2R)1/2 is the
membrane space constant. (It follows that the coupling constant appearing in the
Hodgkin–Huxley equation (1.8) is K = λ 2

m/Rm.)

Infinite Cable. In the case of an infinite uniform cable, x ∈ R, we can solve (1.55)
by Fourier transforming with respect to x. That is, define the Fourier transform of v
(and other quantities) as

ṽ(k, t) =
∫ ∞

−∞
e−ikxv(x, t)dx,

with inverse transform

v(x, t) =
∫ ∞

−∞
eikxṽ(k, t)

dk
2π

.

Then

τm
∂ ṽ(k, t)

∂ t
=−ṽ(k, t)−λ 2

mk2ṽ(k, t)+ rmĨext(k, t), x ∈R, t ≥ 0. (1.56)

This first-order ODE can now be solved straightforwardly as

ṽ(k, t) =
rm

τm

∫ t

−∞
G̃0(k, t− t ′)Ĩext (k, t ′)dt ′, (1.57)

where G̃0(k, t) = e−(1+λ 2
mk2)t/τm . Taking the inverse Fourier transform and using the

convolution theorem shows that

v(x, t) = rm

∫ t

−∞

[∫ ∞

−∞
G0(x− x′, t− t ′)Iext(x′, t ′)dx′

]
dt ′, (1.58)

where we have absorbed τm into rm and

G0(x, t) =
∫ ∞

−∞

dk
2π

eikxe−(1+λ 2
mk2)t/τm

=
1

2λm
√

πt/τm
e−t/τme−τmx2/4λ 2

mt . (1.59)

The function G0(x, t) is the fundamental solution or Green’s function for the ca-
ble equation with unbounded domain. It is positive and symmetric and satisfies the
homogeneous cable equation
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(
τm

∂
∂ t

+ 1−λ 2
m

∂ 2

∂x2

)
G0(x, t) = 0, (1.60)

with initial condition
G0(x,0) = δ (x). (1.61)

Moreover, for any 0 < s < t, it satisfies the Markovian property

G0(x− y, t) =
∫ ∞

−∞
G0(x− z,s)G0(z− y, t− s)dz. (1.62)

The Green’s function is plotted as a function of time in Fig. 1.12a for a range of
separations x.

Semi-infinite Cable. Using Fourier cosine or sine transforms with respect to x it is
straightforward to determine the Green’s function for a semi-infinite cable x∈ [0,∞)
with either an open-end boundary condition

v(0, t) = 0 (1.63)

or a closed-end boundary condition (zero current flow)

∂v(x, t)
∂x

∣∣∣∣
x=0

= 0 (1.64)

One finds that

v(x, t) = rm

∫ t

−∞

[∫ ∞

0
G±(x,x′, t− t ′)Iext(x′, t ′)dx′

]
dt ′ (1.65)

where
G±(x,y, t) = G0(x− y, t)±G0(x+ y, t) (1.66)

for the open (−) and closed (+) cases. For a discussion of finite-length cables see
[342].

Single Branching Node. Let us now consider a single branching node and label
each semi-infinite segment by the index i = 1, . . . ,N. (Typically N = 3.) We shall
assume that the cables only differ in their radius ai. In order to simplify the analysis
we will measure the distance along the ith cable from the branch point at x = 0
in units of λm,i =

√
Rmai/2R such that the cable equation on each branch can be

written as

τm
∂vi(X , t)

∂ t
=−vi(x, t)+

∂ 2vi(x, t)
∂x2 + Ii(x, t). (1.67)

The boundary conditions are continuity of the potential at the node

vi(0, t) = v j(0, t), (1.68)

and conservation of current



28 1 Single Neuron Modeling

0 5 10 15 20

0.05

0.1

0.15

0.2

time t

x = 3

x = 4
x = 6

x = 2
G0(x,t)

0

vi

vk

vj

x

y

Gik(x,y,t)

G0(x+y,t)

x 0 y

x = 1a b

Fig. 1.12 (a) Green’s function of an infinite cable as a function of time t (in units of τm) for various
values of distance x (in units of λ ). (b) Branching dendritic tree of an idealized single neuron and
an equivalent cylinder representation

N

∑
j=1

a3/2
j

∂v j(x, t)

∂x

∣∣∣∣
x=0

= 0. (1.69)

The factor a3/2
i arises from the fact that we have rescaled length and that the lon-

gitudinal resistance varies as the cross-sectional area of the cable. The solution of
these equations is

vi(x, t) =
N

∑
j=1

∫ t

−∞

[∫ ∞

0
Gi j(x,x

′, t− t ′)I j(x
′, t ′)dx′

]
dt ′, (1.70)

where
Gi j(x,y, t) = δi, jG0(x− y, t)+ (2p j− δi, j)Go(x+ y, t), (1.71)

and

pk =
a3/2

k

∑m a3/2
m

. (1.72)

It is interesting to note that if pk = 1/2 for a certain segment, then the response to
current injected into that segment can be represented by a single equivalent cylinder;
see Fig. 1.12b. That is, if i �= j, then Gi j(x,y, t) = G0(x + y), where x + y is the
distance of the direct path between x and y on the tree. Hence, the node in some
sense acts no differently than an ordinary point on a single cable. This is the basis
of Rall’s equivalent cylinder concept [515].

Dendritic Tree. An arbitrary dendritic tree Γ may be considered as a set of branch-
ing nodes linked by finite pieces of uniform cable. Given an external current den-
sity Iext(x, t) the voltage response has the formal solution (absorbing rm into the
definition of G)
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v(x, t) =
∫ t

−∞

[∫
Γ

G(x,y, t− s)Iext(y,s)dy

]
ds. (1.73)

The associated Green’s function G(x,y, t− s) satisfies the homogeneous cable equa-
tion on each segment together with boundary conditions at the branching and ter-
minal nodes of the tree. Rules for constructing such a Green’s function have been
developed by Butz and Cowan [95] using a graphical calculus and by Abbott et al.
[3] using path-summing methods. The latter approach can be understood in terms
of a compartmental model obtained by spatially discretizing the cable equation. The
construction of the discretized Green’s function involves summing over paths of
a random walk on the tree with the corresponding Green’s function for the cable
equation recovered in the continuum limit [77].

1.4.2 Dendritic Filtering of Synaptic Inputs

So far we have considered the linear response of a dendritic cable to external cur-
rent injection as determined by the Green’s function or transfer function. Suppose
that we replace the external current by a synaptic current of the form discussed in
Sect. 1.3. That is, Iext(x, t)→ I(x, t), where I(x, t) is the synaptic current density at
location x at time t:

I(x, t) = ρ(x)∑
m

gsyn(t−T m(x))[Vsyn− v(x, t)]≡ g(x, t)[Vsyn− v(x, t)], (1.74)

where g(x, t) = ρ(x)∑m gsyn(t−T m(x)). Here ρ(x) is the density of synapses (as-
suming that they have identical properties) and {T m(x)} is the sequence of spikes
arriving into the synapses located at x. In the case of a discrete set of identical
synapses at dendritic locations {x j, j = 1, . . . ,M}, we have ρ(x) = ∑ j δ (x− x j) and
T m(x j) = T m

j . The formal solution for the membrane potential is now [see (1.73)]

v(x, t) =
∫ t

−∞

[∫
Γ

G(x,x′, t− t ′)g(x′, t ′)[Vsyn− v(x′, t ′)]]dx′
]

dt ′ (1.75)

which is a Volterra integral equation of the second kind. In order to solve this integral
equation, we introduce the convolution operator ∗,

[G∗ f ](x, t) :=
∫ t

−∞

[∫
Γ

G(x,x′, t− t ′) f (x′, t ′)dx′
]

dt ′ (1.76)

for any function f (x, t). We can then iterate (1.75) to obtain a series solution for v:

v = VsynG∗ g−G∗ (gv)

= VsynG∗ g−VsynG∗ (g[VsynG∗ g−G∗ (gv)])

= VsynG∗ g−V2
synG∗ [gG∗ g]+G∗ [gG∗ (gv)]
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= VsynG∗ g−V2
synG∗ (gG∗ g)+V3

synG∗ (gG∗ [gG∗ g])− . . .

= Vsyn(G−VsynG∗ gG+V2
synG∗ gG∗ gG− . . .)∗ g

= VsynĜ∗ g, (1.77)

where

Ĝ := G−VsynG∗ gG+V2
synG∗ gG∗ gG− . . . (1.78)

is a Neumann series expansion for the effective Green’s function Ĝ, which is con-
vergent for a passive cable [344]. More explicitly, we can write the solution as

v(x, t) =Vsyn

∫ t

−∞

[∫
Γ

Ĝ(x, t;x′, t ′)g(x′, t ′)dx′
]

dt ′, (1.79)

soma

V(t) g(x,t)

synapse

dendritic cable

u(t)

Fig. 1.13 Schematic diagram of a neuron consisting of a soma resistively coupled to one end of a
dendritic cable. A synaptic conductance change g(x, t) at position x on the cable induces a synaptic
current into the soma at x = 0

with Ĝ satisfying the Volterra integral equation

Ĝ(x, t;x′, t ′) = G(x,x′, t− t ′) (1.80)

−Vsyn

∫ t

t′

[∫ ∞

0
G(x,x′′, t− t ′′)g(x′′, t ′′)Ĝ(x′′, t ′′;x′, t ′)dx′′

]
dt ′′.

One can check that iteration of this equation recovers the series expansion for Ĝ. The
major point to note is that the resulting series involves interactions between synaptic
conductances at different points on the dendritic cable. For simplicity, however, we
shall assume that Vsyn � v(x, t) so that Ĝ→ G and synaptic interactions become
negligible.

Given a distribution of synaptic inputs innervating the dendritic tree, what is
the net synaptic current u(t) entering the soma? In order to address this problem,
consider a semi-infinite uniform dendritic cable, 0 ≤ x < ∞, with the soma located
at the end x = 0. The soma is modeled as a conductance-based point process that is
passively coupled to the dendritic cable as illustrated in Fig. 1.13:

C
dv
dt

=−Icon +σ [v(0, t)− v(t)], (1.81)
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and

τm
∂v(x, t)

∂ t
=−v(x, t)+λ 2

m
∂ 2v(x, t)

∂x2 + rmVsyng(x, t). (1.82)

Here u(t) = σ [v(0, t)− v(t)] is the net current density flowing into the soma from
the dendritic cable at x = 0. (We are neglecting direct synaptic inputs into the soma.)
Current conservation implies the boundary condition

− 1
r

∂v
∂x

(0, t) = σ [v(0, t)− v(t)]. (1.83)

Since we can eliminate the term −σv(t) in (1.81) by shifting the linear term in v, it
follows that the total synaptic current into the soma is u(t) = σv(0, t).

Iext,i

v(t)

vi(t)

ai(t)

a(t)
Φi * ai

Fig. 1.14 Schematic diagram of a feedforward network showing a set of afferent neurons labeled
by i synaptically driving another neuron

The inhomogeneous boundary problem for v(0, t) can be solved formally using
the Green’s function G+ for the semi-infinite cable with a closed boundary:

v(0, t) = rmVsyn

∫ t

−∞

[∫ ∞

0
G+(0,x′, t− t ′)g(x′, t ′)dx′

]
dt ′

−σr
∫ t

−∞
G+(0,0, t− t ′)[v(0, t ′)− v(t ′)]dt ′ (1.84)

This shows that the effective synaptic current u(t) flowing into the soma will itself
be affected by the cell firing an action potential, due to the dependence of v(0, t)
on the somatic potential v(t). However, suppose that the second term on the r.h.s. is
negligible compared to the first term arising from synaptic inputs. This approxima-
tion corresponds to imposing the homogeneous boundary condition ∂v/∂x(0, t)= 0.
It then follows that the total synaptic input into the soma is

u(t) = σrmVsyn

∫ t

−∞

[∫ ∞

0
G+(0,x′, t− t ′)g(x′, t ′)dx′

]
dt ′ (1.85)

A similar analysis can also be carried out for more general dendritic topologies with
the soma coupled to one of the terminals of the tree. We conclude that under the
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given approximations, the passive dendritic tree acts like a spatiotemporal linear
filter on incoming spike trains, whose properties are determined by the underlying
Green’s function on the tree.

Recall from (1.74) that g(x, t) = ρ(x)∑m gsyn(t−T m(x)). Suppose that there ex-
ists a discrete set of synapses along the dendrite so that ρ(x) = ∑ j δ (x− x j) and
T m(x j) = T m

j . Substituting into (1.85) then gives

u(t) = ∑
j
∑
m

Φ j(t−T m
j ) = ∑

j

∫ t

−∞
Φ j(t− t ′)a j(t

′)dt ′, (1.86)

where

Φ j(t) = σrmVsyn

∫ t

0
G+(0,x j, t− τ)gsyn(τ)dτ, (1.87)

and
a j(t) = ∑

m
δ (t−T m

j ). (1.88)

Note that a j(t) represents the spike train arriving into the jth synapse in terms of
a sum of Dirac delta functions. Hence, under our various approximations, we can
view the total synaptic input u(t) as the sum of linearly filtered spike trains, with the
kernel of each filter determined by synaptic and dendritic processing. Now suppose
that each incoming spike train is associated with a distinct afferent neuron, so that
there is a one-to-one correspondence between synaptic and afferent neuron labels;
see Fig. 1.14. Then T m

j = T̂ m
j +Δτ j, where T̂ m

j is the mth firing time of the jth af-
ferent neuron and Δτ j is an axonal propagation time delay. Unless stated otherwise,
we will ignore axonal propagation delays and set T m

j = T̂ m
j . Let us also assume that

each afferent neuron is described by a conductance-based model of the form

Ci
dvi

dt
=−Icon,i + Iext,i (1.89)

where vi is the somatic membrane potential of the ith afferent neuron, each of which
is driven by an external input Iext,i. If we associate with each neuron a firing thresh-
old κ , then the spike times T m

i are determined according to

T m
i = inf{t, t > T m−1

i |vi(t) = κ , v̇i(t)> 0}. (1.90)

Finally, given u(t), the spike train a(t) of the output neuron is determined by (1.1)
and (1.9). In summary, the feedforward network involves a mapping {Iext,i(t)} →
{T m

i }→ {T m}.

1.4.3 Active Dendrites

It has been known for more than twenty years that the dendrites of cortical neu-
rons do not simply act as passive electrical cables but also exhibit a variety of



1.4 Dendritic Processing 33

active physiological processes [608]. For example, thick apical dendrites of pyra-
midal neurons express voltage-gated Na+, K+, and Ca2+ channels, which support
the back propagation of action potentials (APs) from the soma into the dendritic
tree [397, 606]; back-propagating APs are thought to play an important role in
spike-timing-dependent synaptic plasticity (STDP) [585]. In addition, sufficient lo-
cal stimulation of active apical dendrites can initiate regenerative membrane depo-
larizations known as dendritic spikes [333, 555]. Some dendritic spikes are restricted
to the local initiation zone rather than invading the cell body and are thus well placed
to mediate the long-term potentiation of synaptic inputs in the absence of output
spiking of the neuron [226]. On the other hand, Ca2+ action potentials initiated in
apical dendrites can propagate towards the soma, which provides a mechanism for
actively amplifying the effects of distal synapses on AP generation in the cell body
[361]. Following advances in imaging techniques and methods of dendritic stimula-
tion, Schiller et al. [556] established in vitro that active processes can also occur in
thin basal and apical dendritic branches of pyramidal neurons, where the majority
of synapses occur; see Fig. 1.15a. In particular, they found stimulus-evoked den-
dritic spikes whose major ionic component involved ligand-gated and voltage-gated
N-methyl-D-aspartate receptor (NMDAR) channels; see also [362, 400, 520] and
the review [12]. When glutamate binds to an NMDAR, it modifies the voltage sen-
sitivity of the corresponding ion-channel current, which develops a negative slope
conductance due to removal of a magnesium block [414, 466]. This means that in
the presence of high levels of glutamate, the current–voltage (I–V) characteristics of
an NMDAR channel are very similar to the voltage-gated Na channel. Hence, during

thick apical
branch

thin apical
tufts

thin basal
branches

a

axon

thin oblique
tufts

b

NMDA spike

plateau potentialNa+ spikelet

subthreshold EPSP
20 mV

50 ms

Fig. 1.15 (a) Schematic illustration of a pyramidal neuron showing the thick apical dendrite and
various thin dendrites. The latter support the initiation of dendritic NMDA spikes. (b) Typical
waveform of a dendritic NMDA spike. Weak glutamatergic inputs generate EPSP-like (subthresh-
old) depolarizations. A stronger input can trigger a dendritic plateau potential, consisting of a rapid
onset that is often associated with a Na spikelet, a long-lasting plateau phase that can have a du-
ration of several hundred ms, and a sudden collapse at the end of the plateau phase. The plateau
potential consists of several dendritic conductances, the most predominant being due to NDMAR
channels. Pharmacologically blocking Na and Ca2+ channels reveals the pure dendritic NMDA
spike [556]
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strong stimulation of a thin dendrite due to the local uncaging of glutamate or high
frequency stimulation of a cluster of synapses, the NMDARs can fire a regenerative
dendritic spike, just as Na channels support the initiation of an action potential fol-
lowing membrane depolarization. However, the duration of the dendritic spike is of
the order 100 ms rather than 1 ms; see Fig. 1.15b. Finally, active processes can also
be found in dendritic spines, which can support the propagation of saltatory waves;
see Sect. 3.1

For relatively small deviations of the membrane potential from some constant
value, a linearization of the channel kinetics can be performed. The resulting sys-
tem has a membrane impedance that displays resonant-like behavior due to the
additional presence of effective inductances [61, 141, 341, 342]. We sketch how
inductance-like behavior can arise from active neural membrane by considering a
generic ion current of the form I(v,x1, . . . ,xM), where v is membrane voltage and xk

are gating variables that satisfy

τk(v)
dxk

dt
= xk,∞(v)− xk, k = 1, . . . ,M. (1.91)

It is convenient to set τk(v) = (αk(v)+βk(v))−1 and xk,∞(v) = αk(v)τk(v). Lineariz-
ing around a fixed point z = z∗ with vectors defined by z = (v,x1, . . . ,xM)T and
z∗ = (v∗,x1,∞(v∗), . . . ,xM,∞(v∗)), we have

δ I =
δv
R

+
M

∑
k=1

∂ I
∂xk

∣∣∣∣∣
z=z∗

δxk, (1.92)

where R is an effective resistance such that R−1 = ∂ I/∂V |z=z∗ . From (1.91) it fol-
lows that (

d
dt

+αk +βk

)
δxk =

(
dαk

dV
− xk,∞

d[αk +βk]

dV

)
δVk. (1.93)

Combining (1.92) and (1.93) we arrive at the following equation for the first-order
variation of the current:

δ I =
δV
R

+
M

∑
k=1

δ Ik, (1.94)

where (
rk +Lk

d
dt

)
δ Ik = δV, (1.95)

and

r−1
k = τk

∂ I
∂xk

(
dαk

dV
− xk,∞

d[αk +βk]

dV

)∣∣∣∣
z=z∗

(1.96)

Lk = τkrk (1.97)
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Hence, for a small perturbation around the steady state, the current I responds as
though the resistance R is in parallel with M impedance lines, each of which is
a resistance rk that is itself in series with an inductance Lk (see Fig. 1.16). Such
inductive terms account for the oscillatory overshoot commonly seen in response to
depolarising current steps or even after the firing of an action potential. This form
of equivalent linear membrane circuit is typically called quasi-active in order to
distinguish it from a truly active (i.e. nonlinear) membrane [341].

C
R

rn

L n L h

rh rm

Cm

Fig. 1.16 Electrical LRC circuit representing the linearized response of the Hodgkin–Huxley
equations

Quasilinear membrane can be incorporated into the cable equation (1.55) by in-
troducing the space-dependent voltage v(x, t) and currents Ik(x, t), x ∈ R, such that

∂V
∂ t

=− V
τm

+Dm
∂ 2V
∂x2 −

1
Cm

[
∑
k

Ik− Iext

]
(1.98a)

Lk
dIk

dt
=−rkIk +V. (1.98b)

Here Dm = λ 2
m/τm. Laplace transforming (1.98) with v(x,0) = 0, Ik(x,0) = 0 yields

the ODE

− dṼ 2

dx2 + γ2(ω)Ṽ = Ĩ, (1.99)

with Ṽ = Ṽ (x,ω), Ĩ = Ĩ(x,ω) = Ĩext(x,ω)/Cm, and

γ2(ω) =
1

Dm

[
1

τm
+ω +

1
Cm

∑
k

1
rk +ωLk

]
. (1.100)

It follows that in Laplace space,

Ṽ (x,ω) =

∫ ∞

0
G̃(x− y,ω)Ĩ(y,ω)dy, G̃(x,ω) =

e−γ(ω)|x|

2Dmγ(ω)
, (1.101)
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where G̃ is the Laplace transform of the Green’s function on an infinite quasi-active
cable. Having obtained G, it is then possible to extend Green’s function methods
outlined for passive branching cables to the quasi-active case [141].

1.5 Stochastic Ion Channels

In the standard conductance-based model of a neuron (1.6), it is assumed that the
number of voltage-gated ion channels is sufficiently large so that one can represent
the opening and closing of the channels in terms of deterministic kinetic equations.
These keep track of the fraction of open and closed channels as a function of time.
However, the opening and closing of a single channel is a stochastic process. This
then raises the important issue of how such stochasticity manifests itself when there
are relatively few ion channels. (A similar issue applies to synapses with a small
number of receptor-mediated ion channels.) In this section, we develop the theory
of stochastic ion channels in some detail, since it provides an excellent platform
for introducing various methods and ideas in stochastic processes that will be used
throughout the book. For reviews on noise in ion channels see [227, 588, 670].

1.5.1 Ensemble of Two-State Ion Channels

First, consider a single ion channel that can exist either in a closed state (C) or an
open state (O). Transitions between the two states are governed by a continuous-
time jump Markov process

C(closed)
α(v)
�

β (v)
O(open). (1.102)

with voltage-dependent transition rates α(v),β (v). For the moment, we assume that
v is fixed. In order to understand what such a process means, let Z(t) be a discrete
random variable taking values Z ∈ {C,O} and set Pz(t) = Prob [Z(t) = z]. From
conservation of probability,

PC(t)+PO(t) = 1.

The transition rates then determine the probability of jumping from one state to the
other in a small interval Δ t:

αΔ t = Prob [Z(t +Δ t) = O|Z(t) =C], β Δ t = Prob [Z(t +Δ t) =C|Z(t) = O].

It follows that there are two possible ways for the ion channel to enter or leave the
closed state:

PC(t +Δ t) = PC(t)−αPC(t)Δ t +β PO(t)Δ t.
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Writing down a similar equation for the open state, dividing by Δ t, and taking the
limit Δ t → 0 leads to the pair of equations

dPC

dt
=−αPC +β PO (1.103a)

dPO

dt
= αPC−β PO. (1.103b)

Now suppose that there are N identical, independent two-state ion channels. In the
limit N → ∞ we can reinterpret PC and PO as the mean fraction of closed and
open ion channels within the population, and fluctuations can be neglected. Af-
ter setting PO = X and PC = 1− X , we recover the kinetic equation (1.4). (An
identical argument can be applied to the kinetic model of a synapse considered
in Sect. 1.3.)

In order to take into account fluctuations in the case of finite N, it is necessary
to keep track of the probability P(n, t) that there are n open channels at time t,
0 ≤ n ≤ N. (If there are n open channels, then it immediately follows that there
are N− n closed channels, so we do not need to keep track of the latter as well.)
Consider a time interval [t, t+Δ t] with Δ t sufficiently small so that only one channel
has a significant probability of making a C→O or O→C transition. There are four
possible events that can influence P(n, t) during this interval, two of which involve
transitions into the state of n open ion channels, and two of which involve transitions
out of the state. Collecting these terms and taking the limit Δ t → 0 leads to the
master equation

d
dt

P(n, t) = α(N− n+ 1)P(n− 1, t)+β (n+1)P(n+1, t)− [α(N− n)+β n]P(n, t).

(1.104)

The first term on the right-hand side represents the probability flux that one of
N− (n− 1) closed channels undergoes the transition C→ O, whereas the second
term represents the probability flux that one of n+ 1 open channels undergoes the
transition O→ C. The last two terms represent transitions n→ n± 1. Define the
mean number of open channels at time t by

n(t) =
N

∑
n=0

nP(n, t).

By differentiating both sides of this equation with respect to t and using the master
equation (1.104), it can be shown that in the limit of large N (where the upper limit
in the sum can be taken to be ∞) we recover the kinetic equation (1.4) with X = n/N.

The steady-state solution Ps(n) of the master equation (1.104) satisfies J(n) =
J(n+ 1) with

J(n) = ω−(n)Ps(n)−ω+(n− 1)Ps(n− 1),
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and
ω+(n) = (N− n)α, ω−(n) = nβ .

Using the fact that n is a nonnegative integer, that is, Ps(n) = 0 for n < 0, it follows
that J(n) = 0 for all n. Hence, by iteration,

Ps(n) = Ps(0)
n

∏
m=1

ω+(m− 1)
ω−(m)

= Ps(0)

[
α
β

]n N!
n!(N− n)!

. (1.105)

Taking logs of both sides of this equation and using Stirling’s formula log(n!) ≈
n logn− n it can be shown that for large n,N, Ps(n)≈ ps(x) where x = n/N,

ps(x) = N e−NΦ(x) (1.106)

with normalization factor N and Φ(x) is the effective potential

Φ(x) =−x log(α/β )+ x log(x)+ (1− x) log(1− x). (1.107)

Let x∗ be the unique critical point of the effective potential Φ(x), that is, Φ ′(x∗) = 0.
Note that x∗ coincides with the fixed point of the corresponding deterministic kinetic
equations,

x∗ =
α

α +β
. (1.108)

Since N is large, we can make the Gaussian approximation

ps(x)≈ p(0)exp
[−NΦ(x∗)−NΦ ′′(x∗)(x− x∗)2/2

]
. (1.109)

Under this approximation, the mean and variance of the fraction of open channels
are given by

n̄
N

= x∗ =
α

α +β
,
〈(n− n̄)2〉

N2 =
x∗(1− x∗)

N
. (1.110)

It is clear that fluctuations become negligible in the large-N limit.

1.5.2 Diffusion Approximation

A useful diffusion approximation of the master equation (1.104) for large but finite
N can be obtained by carrying out a Kramers–Moyal or system-size expansion to
second order in N−1 [210, 309], which was originally applied to ion-channel models
by Fox and Lu [200]. This yields a Fokker–Planck (FP) equation describing the evo-
lution of the probability density of a corresponding continuous stochastic process
that is the solution to a stochastic differential equation (SDE), which in the physics
literature is often called a Langevin equation; we will take these terms to be inter-
changeable. Further details concerning SDEs can be found in appendix section 1.7
and in various references [210, 476]. Moreover, a rigorous analysis of the diffusion
approximation and its relationship to the system-size expansion has been carried out
by Kurtz [352].
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First, introduce the rescaled variable x = n/N and transition rates NΩ±(x) =
ω±(Nx). Equation (1.104) can then be rewritten in the form

d p(x, t)
dt

= N[Ω+(x− 1/N)p(x− 1/N, t)+Ω−(x+ 1/N)p(x+ 1/N, t)

−(Ω+(x)+Ω−(x))p(x, t)].

Treating x,0 ≤ x ≤ 1, as a continuous variable and Taylor expanding terms on the
right-hand side to second order in N−1 leads to the FP equation

∂ p(x, t)
∂ t

= − ∂
∂x

[A(x)p(x, t)]+
1

2N
∂ 2

∂x2 [B(x)p(x, t)] (1.111)

with

A(x) = Ω+(x)−Ω−(x)≡ α− (α +β )x, (1.112a)

B(x) = Ω+(x)+Ω−(x)≡ α +(β −α)x. (1.112b)

The FP equation takes the form of a conservation equation

∂ p
∂ t

=−∂J
∂x

, (1.113)

where J(x, t) is the probability flux,

J(x, t) =− 1
2N

∂
∂x

[B(x)p(x, t)]+A(x)p(x, t). (1.114)

The FP equation is supplemented by the no-flux or reflecting boundary conditions
at the ends x = 0,1 and a normalization condition,

J(0, t) = J(1, t) = 0,
∫ 1

0
p(x, t)dx = 1. (1.115)

The FP equation has a unique steady-state solution obtained by setting J(x, t) = 0
for all 0≤ x≤ 1. The resulting first-order ODE can be solved to give a steady-state
probability density of the form (1.107), with corresponding potential

ΦFP(x) =−2
∫ x A(x′)

B(x′)
dx′ =−2

∫ x Ω+(x′)−Ω−(x′)
Ω+(x′)+Ω−(x′)

dx′. (1.116)

The mean and variance of the fraction of open channels close to the fixed point x∗
can again be determined by carrying out a Gaussian approximation, and the results
agree with those obtained from the steady-state solution of the master equation.
An alternative way of calculating the mean and variance is to note that the solution
to the FP equation (1.111) determines the probability density function for a corre-
sponding stochastic process X(t), which evolves according to the SDE or Langevin
equation [210]
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dX = A(X)dt +
1√
N

b(X)dW (t). (1.117)

with b(x)2 = B(x). Here W (t) denotes a Wiener process with dW (t) distributed
according to a Gaussian process with mean and covariance

〈dW (t)〉= 0, 〈dW (t)dW (s)〉= δ (t− s)dtds. (1.118)

Note that the noise term in (1.117) is multiplicative, since it depends on the cur-
rent state X(t). It is well known that there is an ambiguity in how one integrates
multiplicative noise terms, which relates to the issue of Ito versus Stratonovich
versions of stochastic calculus [210]; see appendix section1.7. However, for this
particular example, based on the reduction of a master equation, the explicit form of
the corresponding FP equation (1.111) ensures that the noise should be interpreted
in the sense of Ito.

Thus, one can view the SDE as describing a stochastic path in phase space that
involves a deterministic trajectory converging to the unique stable fixed point x∗
that is perturbed by Gaussian-like fluctuations of order 1/

√
N. Substituting X−x∗=

Y/
√

N into the SDE equation (1.117) and formally Taylor expanding to lowest order
in 1/

√
N yields the so-called linear noise approximation

dY =−kY dt + b(x∗)dW (t), (1.119)

with

k ≡−A′(x∗) = α +β , b(x∗) =
√

B(x∗) =

√
2αβ

α +β
.

This takes the form of an Ornstein–Uhlenbeck equation [210], which can be
solved as

Y (t) = e−ktY0 + b(x∗)
∫ t

0
e−k(t−t′)dW (t ′), (1.120)

given the initial condition Y (0) = Y0. It follows that the mean and covariance
of Y (t) are

〈Y (t)〉= e−ktY0, (1.121)

and

cov(Y (t),Y (s))≡ 〈[Y (t)−〈Y(t)〉][Y (s)−〈Y (s)〉〉] (1.122)

=

〈
b(x∗)2

[∫ t

0
e−k(t−t′)dW (t ′)

][∫ t

0
e−k(s−t′′)dW (t ′′)

]〉

= b(x∗)2e−k(t+s)
∫ s

0
e2kt′dt ′ =

b(x∗)2

2k
e−k(t−s)

[
1− e−2ks

]
.

Here
b(x∗)2

2k
=

αβ
(α +β )2 = x∗(1− x∗),
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and, without loss of generality, we have assumed that t ≥ s. Thus, in the stationary
limit t → ∞,

〈Y (t)〉 → 0, cov(Y (t),Y (s))→ b(x∗)2

2k
e−k|t−s|.

Since Y (t)/
√

N = X(t)− x∗, we recover the results of (1.110).
Note that (1.116) differs from the effective potential (1.107) obtained directly

from the master equation for large N, given that the latter can be rewritten in the
form

Φ(x) =
∫ x

ln
Ω−(x′)
Ω+(x′)

dx′. (1.123)

Although, this discrepancy is not much of an issue when the underlying kinetic
equations have a unique fixed point, it can lead to exponentially large errors when
there are multiple stable fixed points. The Langevin or diffusion approximation still
accounts for the effects of fluctuations well within the basin of attraction of a lo-
cally stable fixed point. However, there is now a small probability that there is a
noise-induced transition to the basin of attraction of another fixed point. Since the
probability of such a transition is usually of order e−τN with τ =O(1), except close
to the boundary of the basin of attraction, such a contribution cannot be analyzed
accurately using standard Fokker–Planck methods [309]. These exponentially small
transitions play a crucial role in allowing the network to approach the unique station-
ary state (if it exists) in the asymptotic limit t → ∞. In other words, for multistable
systems, the limits t→ ∞ and N→ ∞ do not commute [24, 256, 641]. One example
where multistability is important is when considering the effects of stochastic ion
channels on membrane voltage fluctuations (see below).

1.5.3 Membrane Voltage Fluctuations

Let us now return to a conductance-based model of a neuron, in which the stochastic
opening of ion channels generates a stochastic ionic current that drives the mem-
brane voltage. We are particularly interested in how fluctuations affect the initiation
of an action potential due to the opening of a finite number of Na+ channels. There-
fore, we imagine freezing the slow K+ channels, so that they effectively act as a
leak current and simplify the sodium channels by treating each as a single activating
subunit. The stochastic membrane voltage then evolves according to the piecewise
deterministic equation

dV
dt

= F(V,n)≡ 1
N

f (V )n(t)− g(V), (1.124)

where f (v) = gNa(VNa−v) represents the gated sodium currents, g(v) =−geff[Veff−
v]− I represents the sum of effective leakage currents and external inputs I, and
n(t) is the number of open sodium channels. Note that (1.124) only holds be-
tween jumps in the number of open ion channels, with the latter described by the
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master equation (1.104). The stochastic process defined by (1.104) and (1.124) is
an example of a so-called stochastic hybrid system with piecewise deterministic dy-
namics. There has been a lot of recent interest in such systems, particularly within
the context of conductance-based models [88, 321, 484, 654]. The associated prob-
ability density p(v,n, t), which is defined according to

p(v,n, t)dv = Prob[n(t) = n,v≤V (t)≤ v+ dv],

given an initial condition V (0) = V0,n(0) = n0, satisfies the differential Chapman–
Kolmogorov (CK) equation

∂ p
∂ t

= − ∂
∂v

[( n
N

f (v)− g(v)
)

p
]
+ω+(v,n− 1)p(v,n− 1, t) (1.125)

+ω−(v,n+ 1)p(v,n+ 1, t)− [ω+(v,n)+ω−(v,n)]p(v,n, t),

with
ω+(v,n) = α(v)(N− n), ω−(v,n) = β (v)n. (1.126)

Note that the right-hand side of (1.124) is negative for large V and positive for small
V , which implies that the voltage V is confined to some bounded domain [V1,V2].

In order to investigate action potential initiation, we will assume that N is suffi-
ciently large so that we can approximate the jump Markov process for the ion chan-
nels by a continuous Markov process using a diffusion approximation, and (ii) we
assume that the transitions between different discrete states is much faster than the
voltage dynamics so we can assume that, for fixed v, the number of open ion chan-
nels is close to the quasi-equilibrium x∗(v) =α(v)/(α(v)+β (v)). This limiting case
was originally considered by Chow and White [116]. Under these approximations,
the voltage dynamics is described by an SDE of the form [see (1.119)]

dV =
[

f (V )(x∗+Y (t)/
√

N)− g(V)
]

dt, dY =−kY dt + b(x∗)dW (t). (1.127)

Thus the stochastic voltage is coupled to a fast Ornstein–Uhlenbeck or colored noise
process Y (t). If we make the further assumption that the latter is in quasi-equilibrium
for a given V (fast ion channels), Y (t)dt ≈ k−1b(x∗)dW (t), then we obtain a scalar
SDE for the voltage:

dV = [ f (V )x∗(V )− g(V)]dt +
1√
N

σ(V ) f (V )dW (t), (1.128)

where

σ(V ) =
b(x∗(V ))

k(V )
=

1
α(V )+β (V)

√
2α(V )β (V )

α(V )+β (V)
. (1.129)

Taking α,β = O(1/ε) for some dimensionless parameter 0 < ε � 1, we see that
σ(V ) = O(ε1/2). In deriving (1.128), we have effectively taken a zero correlation
limit of a colored noise process. It can be shown that the multiplicative noise term
should be interpreted in the sense of Stratonovich, and the associated FP equation is
given by [210, 321]
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∂ p(v, t)
∂ t

= − ∂
∂v

[A (v)p(v, t)]+
1
N

∂
∂v

[
B(v)

∂
∂v

p(v, t)

]
, (1.130)

with

A (v) = f (v)x∗(v)− g(v), B(v) = [σ(v) f (v)]2/2.

We have ignored an O(ε) contribution to the drift term of the form B′(v)/N. The
FP equation is supplemented by reflecting boundary conditions at v =V1,V2:

J(V1, t) = J(V2, t) = 0, (1.131)

with

J(v, t) = A (v)p(v, t)−B(v)
N

∂
∂v

p(v, t). (1.132)

1.5.4 First Passage Time Problem

A key property that one would like to calculate is the mean time to fire an action
potential (MFPT) as a function of the stimulus current I. In the absence of noise, the
system evolves according to the deterministic equation

dv
dt

= A (v) =
α(v)

α(v)+β (v)
f (v)− g(v)≡−dΦ0(v)

dv
, (1.133)

where Φ0(v) is a deterministic potential. In Fig. 1.17, we plot Φ0(v) as a function of
v for various values of the external input current and the particular transition rates

α(v) = β exp

(
2(v− v1)

v2

)
, β = constant.

The minima and maxima of the potential correspond to stable and unstable fixed
points of the deterministic dynamics, respectively. It can be seen that below a thresh-
old current I∗, I < I∗, there exist two stable fixed points v± (minima) separated by
an unstable fixed point at v0 (maximum), that is, the system exhibits bistability. The
left-hand fixed point represents the resting state, whereas the right-hand fixed point
corresponds to an excited state. Thus, in the bistable regime the deterministic sys-
tem requires an external perturbation in order to generate an action potential starting
from the resting state. On the other hand, for the stochastic system it is possible that
fluctuations in the opening and closing of Na+ ion channels induce a transition from
the resting state to the excited state by crossing over the potential hill at v0. This is
directly analogous to a diffusing particle escaping from the left to the right well in
a double well potential, which is a classical example of a first passage time (FPT)
problem in physics [210, 257]. (Of course, once such an event occurs, one has to take
into account the K+ dynamics in order to incorporate the effects of repolarization
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that return the system to the resting state. If one includes the slow opening and clos-
ing of these channels, then the underlying deterministic system becomes excitable
rather than bistable; see Sect. 2.1. For the moment, we will assume that this does not
significantly affect the noise-induced initiation of an action potential. It turns out
that such an assumption breaks down if fluctuations in the opening and closing of
K+ channels become significant [456].)

We now outline the basic calculation of the mean time to escape from the resting
state using the diffusion approximation. Since the voltage will rapidly approach the
excited state v+ once it has passed the maximum at v0, the major contribution to the
escape time will be due to the fluctuation-driven transition from v− to v0. We can
model this process by replacing the reflecting boundary condition at v =V2 with an
absorbing boundary condition at v = v0 <V2:

p(v0, t) = 0.

Φ0(v)

v [mV]

v-
v0

v+

-100 -80 -60 -40 -20 0 20 40 60 80 100

I = I*

I < I*

Fig. 1.17 Plot of deterministic potential Φ0(v) as a function of voltage v for different values of
the external stimulus current I. Parameter values are N = 10, vNa = 120 mV, veff = −62.3 mV,
gNa = 4.4 mS/cm2, geff = 2.2 mS/cm2, β = 0.8 s−1, and α(v) = β exp[(v+1.2)/9]

We also shift the voltage v so that the left-hand boundary is at V1 = 0. Let T (v)
denote the stochastic time for the particle to exit the right-hand boundary at v0,
given that it starts at location v ∈ [0,v0] at time t = 0. As a first step, we introduce
the survival probability P(v, t) that the particle has not yet exited at time t:

P(v, t) =
∫ v0

0
p(x, t|v,0)dx. (1.134)

It follows that Prob[T (v) ≤ t] = 1−P(v, t) and we can define the FPT density ac-
cording to

f (v, t) =−∂P(v, t)
∂ t

. (1.135)
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It can be shown from (1.130) and the Markovian nature of the stochastic process
that the FPT density satisfies a backward FP equation of the form [210]

∂P(v, t)
∂ t

= A (v)
∂P(v, t)

∂v
+

∂
∂v

(
B(v)

∂
∂v

P(v, t)

)
, (1.136)

where we have absorbed the factor of 1/N into B.
A quantity of particular interest is the mean first passage time (MFPT) τ(v) de-

fined according to

τ(v) = 〈T (v)〉 ≡
∫ ∞

0
f (v, t)tdt (1.137)

=−
∫ ∞

0
t
∂P(v, t)

∂ t
dt =

∫ ∞

0
P(v, t)dt,

after integration by parts. Hence, integrating both sides of (1.136) shows that the
MFPT satisfies the ODE

[A (v)+B′(v)]
dτ(v)

dv
+

(
B(v)

d2

dv2 τ(v)
)
=−1. (1.138)

Equation (1.138) is supplemented by reflecting and absorbing boundary conditions
for the backward FP equation:

τ ′(0) = 0, τ(v0) = 0. (1.139)

It is straightforward to solve (1.138) by direct integration [210]. First, introducing
an integration factor and integrating once gives

eΨ (v)τ ′(v) =−
∫ v

0

eΨ (v′)

B(v′)
dv′,

where

Ψ(v) =
∫ v

0

A (v′)+B′(v′)
B(v′)

dv′. (1.140)

and we have used the boundary condition τ ′(0) = 0. Integrating once more with
respect to v and using τ(v0) = 0 then gives

τ(v) =
∫ v0

v
e−Ψ (v′)dv′

∫ v′

0

eΨ (v′′)

B(v′′)
dv′′. (1.141)

There is now a standard procedure for approximating this double integral based on
Kramers reaction rate theory [210, 257]. We simply quote the result here: τ(v−) =
1/λ where

λ ≈ B(v0)

π

√∣∣∣∣A
′(v−)

B(v−)

∣∣∣∣ A ′(v0)

B(v0)
exp

[∫ v0

v−

A (v)
B(v)

dv.

]
. (1.142)
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Fig. 1.18 Schematic diagram comparing MFPT calculated using the diffusion approximation with
the MFPT of the full system. The scales of the axes are based on numerical results carried out in
[321] for N = 10. Other parameter values as in Fig. 1.17

Keener and Newby [321] calculated the MFPT using the diffusion approximation
and compared it with Monte Carlo simulations of the full stochastic model whose
probability density evolves according to the CK equation (1.126). A summary of
their findings is shown schematically in Fig. 1.18. The main observation is that al-
though the Gaussian-like diffusion approximation does well in the superthreshold
regime (I > I∗), it deviates significantly from the full model results in the subthresh-
old regime (I < I∗), where it overestimates the mean time to spike. This is related
to the fact that the effective potential of the steady-state density under the diffusion
approximation generates exponentially large errors in the MFPT, as discussed at the
end of Sect. 1.5.2. Finally, note that the model of stochastic ion channels and mem-
brane voltage fluctuations presented above is based on a number of simplifications.
First, only the initiation of an action potential was considered, which involved the
opening of sodium channels, while the termination of the action potential due to
Na+ inactivation and K+ activation was ignored. Indeed, in stochastic versions of
the Hodgkin–Huxley equations spontaneous activity can be observed due to fluctu-
ations in K+ ion channels [116, 456]. That is, if some K+ channels spontaneously
close, then a regenerative Na+ current can induce an action potential. The second
simplification was to treat each ion channel as a single unit rather than as a cluster
of subunits. In other words, the Markov chain of events associated with opening and
closing of an ion channel involves transitions between more than two internal states.

1.6 Stochastic Hybrid System with Fast Kinetics

As shown by Keener and Newby [321], it is possible to obtain a much more accurate
analytical expression for the MFPT in the subthreshold regime by analyzing the CK
equation (1.126) in the limit of fast sodium channels. This analysis applies equally
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well to small and large N. First, it is convenient to rewrite the CK equation in a more
compact and general form:

∂ p
∂ t

=−∂ [F(v,n)p(v,n, t)]
∂v

+
1
ε

N

∑
m=0

A(n,m;v)p(v,m, t) (1.143)

with F given by (1.124) and A a tridiagonal matrix (for fixed v): A(n,n− 1;v) =
ω+(v,n− 1), A(n,n;v) = −ω+(v,n)−ω−(n), A(n,n+ 1;v) = ω−(n+ 1). We are
now making explicit the condition that the open and closing of Na+ channels occurs
on a much faster time scale than the voltage dynamics by scaling the transition rates
according to the small parameter ε � 1. In the limit ε → 0, (1.124) reduces to the
deterministic or mean field (1.133) with A (v) = ∑n F(v,n)ρ(v,n), where ρ(v,n) is
the unique steady-state density satisfying ∑m A(n,m;v)ρ(v,m) = 0 (see (1.105)):

ρ(v,n) =
N!

(N− n)!n!
a(v)nb(v)N−n, a(v) =

α(v)
α(v)+β

, b(v) =
β

α(v)+β
. (1.144)

The mean number of open channels is 〈n〉 = ∑N
n=1 nρ(v,n) = Na(v). In the regime

0 < ε � 1, for which there are typically a large number of transitions between
different channel states n while the voltage v hardly changes at all. This suggests
that the system rapidly converges to the (quasi-)steady-state ρ(v,n), which will then
be perturbed as v slowly evolves. The resulting perturbations can be analyzed using
a quasi-steady-state (QSS) diffusion or adiabatic approximation [210, 454, 487], in
which the CK equation (1.143) is approximated by a Fokker–Planck (FP) equation;
see also Sect. 6.4

The QSS approximation was first developed from a probabilistic perspective by
Papanicolaou [487]; see also [210]. It has subsequently been applied to a wide range
of problems in biology, including cell movement [274, 481], wavelike behavior in
models of slow axonal transport [206, 207, 518], and molecular motor-based models
of random intermittent search [453, 454]. The basic idea of the QSS reduction is to
decompose the probability density as

p(v,n, t) =C(v, t)ρ(v,n)+ εw(v,n, t), (1.145)

where ∑n p(v,n, t) =C(v, t) and ∑n w(v,n, t) = 0. Carrying out an asymptotic expan-
sion in ε , it can be shown that C evolves according to the FP equation [81, 453, 454]

∂C
∂ t

=− ∂
∂v

(A C)+ ε
∂
∂v

(
D

∂C
∂v

)
, (1.146)

with the drift term given by (1.133), and diffusion coefficient

D(v) =
N

∑
n=0

Z(v,n)F(v,n), (1.147)

where Z(v,n) is the unique solution to
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∑
m

A(n,m;v)Z(v,m) = [A (v)−F(v,n)]ρ(v,n) (1.148)

with ∑m Z(v,m) = 0. As in the case of the diffusion approximation for large N, the
FP equation (1.146) captures the Gaussian-like fluctuations within the basin of at-
traction of a fixed point of the mean field (1.133), but breaks down when considering
rare event transitions between metastable states since it yields exponentially large er-
rors in the escape rates. Therefore, one has to deal with the full CK equation (1.143).

1.6.1 First Passage Time Problem and the Projection Method

In order to revisit the FPT problem considered in Sect. 1.5.4, we supplement (1.143)
with the following absorbing boundary conditions at v0:

p(v0,n, t) = 0, for all n ∈ Σ = {0, . . . ,k− 1}. (1.149)

Here, Σ denotes the set of integers for which F(v0,n) < 0. The initial condition is
taken to be

p(v,n,0) = δ (v− v−)δn,n0 . (1.150)

Let T denote the (stochastic) FPT for which the system first reaches v0, given that it
started at v−. The distribution of FPTs is related to the survival probability that the
system has not yet reached v0:

S(t)≡
∫ v0

0

N

∑
n=0

p(v,n, t)dv. (1.151)

That is, Prob{t > T}= S(t) and the FPT density is

f (t) =−dS
dt

=−
∫ v0

0

N

∑
n=0

∂ p
∂ t

(v,n, t)dv. (1.152)

Substituting for ∂ p/∂ t using the CK equation (1.143) shows that

f (t) =
∫ v0

0

[
N

∑
n=0

∂ [F(v,n)p(v,n, t)]
∂v

]
dv =

N

∑
n=0

p(v0,n, t)F(v0,n). (1.153)

We have used ∑n A(n,m;v) = 0 and limv→−∞ F(v,n)p(v,n, t) = 0. The FPT density
can thus be interpreted as the probability flux J(v, t) at the absorbing boundary, since
we have the conservation law

N

∑
n=0

∂ p(v,n, t)
∂ t

=−∂J(v, t)
∂v

, J(v, t) =
N

∑
n=0

F(v,n)p(v,n, t). (1.154)
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We wish to solve the FPT problem in the weak noise limit ε� 1. One of the charac-
teristic features of the weak noise limit is that the flux through the absorbing bound-
ary and the inverse of the MFPT 〈T 〉 are exponentially small, that is, 〈T 〉 ∼ e−C/ε

for some constant C. This means that standard singular perturbation theory cannot
be used to solve the resulting boundary value problem, in which one matches in-
ner and outer solutions of a boundary layer around the point v = v0. Instead, one
proceeds by finding a quasistationary solution using a Wentzel–Kramers–Brillouin
(WKB) approximation. Recently, this approach has been extended by Keener and
Newby [321] to a CK equation of the form (1.143), using a so-called projection
method [660].

In order to apply the projection method, it is necessary to assume certain prop-
erties of the non-self-adjoint linear operator −L̂ on the right-hand side of (1.143)
with respect to the Hilbert space of functions h : [0,v0]×{0, . . . ,N}→R with inner
product defined according to

〈h,g〉=
∫ v0

0

N

∑
n=0

h(v,n)g(v,n)dv. (1.155)

1. L̂ has a complete set of eigenfunctions φr with

L̂φr(v,n)≡ d
dv

(F(v,n)φr(v,n))− 1
ε

N

∑
m=0

A(n,m;v)φr(v,m) = λrφr(v,n), (1.156)

together with the boundary conditions

φr(v0,n) = 0, forn = 0, . . . ,k− 1. (1.157)

2. The real part of each eigenvalue λr is positive definite and the smallest eigenvalue
λ0 is real and simple. Thus we can introduce the ordering 0 < λ0 < Re[λ1] ≤
Re[λ2]≤ . . ..

3. λ0 is exponentially small, λ0 ∼ e−C/ε , whereas Re[λr] = O(1) for r ≥ 1. In par-
ticular, limε→0 λ0 = 0 and limε→0 φ0(v,n) = ρ(v,n).

Under the above assumptions, we can introduce the eigenfunction expansion

p(v,n, t) =
N

∑
r=0

Cre−λrtφr(v,n), . (1.158)

with λ0 � Re[λr] for all r ≥ 1. Thus, at large times we have the quasistationary
approximation

p(v,n, t)∼C0e−λ0tφ0(v,n). (1.159)

Substituting such an approximation into (1.153) implies that

f (t)∼ e−λ0t
N

∑
n=0

φ0(v0,n)F(v0,n), λ1t� 1. (1.160)
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Equation (1.156) implies that

N

∑
n=0

∫ v0

0
L̂φ0(v,n)dv≡

N

∑
n=0

F(v0,n)φ0(v0,n)

= λ0

N

∑
n=0

∫ v0

0
φ0(v,n)dv.

In other words,

λ0 =
∑N

n=0 F(v0,n)φ0(v0,n)
〈1,φ0〉 . (1.161)

Combining (1.161) and the quasistationary approximation (1.160) shows that the
(normalized) FPT density reduces to

f (t)∼ λ0e−λ0t (1.162)

and, hence, 〈T 〉= ∫ ∞
0 t f (t)dt ∼ 1/λ0.

It remains to obtain an approximation φε of the principal eigenfunction φ0, which
can be achieved using the WKB method as described in Sect. 1.6.2. This yields a
quasistationary density that approximates φ0 up to exponentially small terms at the
boundary, that is,

L̂φε = 0, φε(u∗,n) = O(e−C/ε). (1.163)

In order to express λ0 in terms of the quasistationary density φε , we consider the
eigenfunctions of the adjoint operator, which satisfy the equation

L̂†ξr(v,n) ≡ −F(v,n)
dξr(v,n)

dv
− 1

ε ∑
m

A(m,n;v)ξr(v,m) = λrξr(v,n),

(1.164)

and the boundary conditions

ξr(v0,n) = 0, n≥ k. (1.165)

The two sets of eigenfunctions {φr} and {ξr} form a biorthogonal set with respect
to the underlying inner product,

〈φr,ξs〉= δr,s. (1.166)

Now consider the identity

〈φε , L̂
†ξ0〉= λ0〈φε ,ξ0〉. (1.167)

Integrating by parts the left-hand side of (1.164) picks up a boundary term so that

λ0 =−∑N
n=0 φε(v0,n)ξ0(v0,n)F(v0,n)

〈φε ,ξ0〉 . (1.168)
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The calculation of the principal eigenvalue λ0 thus reduces to the problem of deter-
mining the quasistationary density φε and the adjoint eigenfunction ξ0.

1.6.2 The WKB Method and the Quasistationary Density

We now show how the WKB method [160, 256, 398, 445, 559] can be used to
compute the quasistationary density φε . We seek a solution of the form

φε (v,n)∼ R(v,n)exp

(
−Φ(v)

ε

)
, (1.169)

where Φ(v) is a scalar potential. Substituting into L̂φε = 0 gives

N

∑
m=0

(
A(n,m;v)+Φ ′(v)δn,mF(v,m)

)
R(v,m) = ε

dF(v,n)R(v,n)
dx

, (1.170)

where Φ ′ = dΦ/dx. Introducing the asymptotic expansions R ∼ R(0) + εR(1) and
Φ ∼Φ0 + εΦ1, the leading-order equation is

N

∑
m=0

A(n,m;v)R(0)(v,m) =−Φ ′0(v)F(v,n)R(0)(v,n). (1.171)

(Note that since F(v,n) is nonzero almost everywhere for v < v0, we can identify
−Φ ′0 and R(0) as an eigenpair of the matrix operator Â(n,m;v) = A(n,m;v)/F(v,n)
for fixed v.) Positivity of the probability density φε requires positivity of the corre-
sponding solution R(0). One positive solution is R(0) = ρ , for which Φ ′0 = 0. How-
ever, such a solution is not admissible since Φ0 = constant. It can be proven using
linear algebra that if F(v,n) for fixed v < v0 changes sign as n increases from zero,
then there exists one other positive solution, which also has the appropriate func-
tional form to describe the potential well. That is, Φ ′0(x) has the correct sign and
vanishes at the fixed points. Hence, it can be identified as the appropriate WKB
solution.

Proceeding to the next order in the asymptotic expansion of (1.170), we have

N

∑
m=0

(
A(n,m;v)+Φ ′0(v)δn,mF(v,m)

)
R(1)(v,m)

=
dF(v,n)R(0)(v,n)

dx
−Φ ′1(v)F(v,n)R(0)(v,n). (1.172)

For fixed v and WKB potential Φ0, the matrix operator Ā(n,m;v) = A(n,m;v) +
Φ ′0(v)δn,mF(v,m) on the left-hand side of this equation has a one-dimensional null
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space spanned by the positive WKB solution R(0). The Fredholm alternative theorem1

then implies that the right-hand side of (1.172) is orthogonal to the left null vector
S of Ā. That is, we have the solvability condition

N

∑
n=0

S(v,n)

[
dF(v,n)R(0)(v,n)

dv
−Φ ′1(v)F(v,n)R(0)(v,n)

]
= 0, (1.173)

with S satisfying

N

∑
n=0

S(v,n)
(
A(n,m;v)+Φ ′0(v)δn,mF(v,m)

)
= 0. (1.174)

Given R(0),S and Φ0, the solvability condition yields the following equation for Φ1:

Φ ′1(x) =
∑N

n=0 S(v,n)[F(v,n)R(0)(v,n)]′

∑N
n=0 S(v,n)F(v,n)R(0)(v,n)

. (1.175)

Combining the various results, and defining

k(v) = exp

(
−
∫ v

v−
Φ ′1(y)dy

)
, (1.176)

gives to leading order in ε ,

φε (v,n)∼N k(v)exp

(
−Φ0(v)

ε

)
R(0)(v,n), (1.177)

where we choose ∑n R(0)(v,n) = 1 for all v and N is the normalization factor,

N =

[∫ v0

0
k(v)exp

(
−Φ0(v)

ε

)]−1

. (1.178)

The latter can be approximated using Laplace’s method to give

N ∼ 1
k(v−)

√
|Φ ′′0 (v−)|

2πε
exp

(
Φ0(v−)

ε

)
. (1.179)

1 Consider an M-dimensional linear inhomogeneous system Ax = b with x,b ∈R
M . Suppose that

the M×M matrix A has a nontrivial null space and let v be a null vector of the adjoint matrix A†,
that is, A†v = 0. The Fredholm alternative theorem states that the inhomogeneous equation has a
(nonunique) solution if and only if v ·b = 0 for all null vectors v.
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1.6.3 Calculation of the Principal Eigenvalue

In order to evaluate the principal eigenvalue λ0 satisfying (1.168), it is necessary to
determine the adjoint eigenfunction ξ0. Following [321, 455], this can be achieved
using singular perturbation methods. Since λ0 is exponentially small in ε , (1.164)
yields the leading-order equation

εF(v,n)
dξ0(v,n)

dx
+

N

∑
m=0

A(m,n;v)ξ0(v,m) = 0, (1.180)

supplemented by the absorbing boundary condition

ξ0(v0,n) = 0, n≥ k. (1.181)

A first attempt at obtaining an approximate solution that also satisfies the boundary
conditions is to construct a boundary layer in a neighborhood of the unstable fixed
point v0 by performing the change of variables v = v0− εz and setting Q(z,n) =
ξ0(v0− εz). Equation (1.180) then becomes

F(v0,n)
dQ(z,n)

dz
+

N

∑
m=0

A(m,n;v0)Q(z,m) = 0. (1.182)

This inner solution has to be matched with the outer solution ξ0 = 1, which means
that

lim
z→∞

Q(z,n) = 1 (1.183)

for all n. Consider the eigenvalue equation

N

∑
n=0

(A(n,m;v)− μr(v)δn,mF(v,m))Sr(v,n) = 0, (1.184)

with r = 0, . . . ,N. We take S0(v,n) = 1 so that μ0 = 0 and set S1(v,n) =
S(v,n),μ1(v) = −Φ ′0(v), where S satisfies (1.174). We then introduce the eigen-
function expansion

Q(z,n) = c0 +
N

∑
r=1

crSr(v0,n)e
−μr(v0)z. (1.185)

In order that the solution remains bounded as z → ∞ we require that cr = 0
if Re[μr(v0)] < 0. The boundary conditions (1.181) generate a system of linear
equations for the coefficients cr with codimension k. One of the unknowns is de-
termined by matching the outer solution, which suggests that there are k− 1 eigen-
values with negative real part. The eigenvalues are ordered so that Re[μr(v0)] < 0
for r > N + 1− k.

There is, however, one problem with the above eigenfunction expansion, namely,
that μ1(v0) ≡ −Φ ′0(v0) = 0 so that the zero eigenvalue is degenerated at v = v0.
Hence, the solution needs to include a secular term involving the generalized eigen-



54 1 Single Neuron Modeling

vector Ŝ,
N

∑
n=0

A(n,m;v0)Ŝ(v0,n) =−F(v0,m). (1.186)

The Fredholm alternative theorem ensures that Ŝ exists and is unique, since
the stationary density ρ(v0,m) is the right null vector of A(n,m;v0) and
∑n ρ(v0,n)F(v0,n)≡A (v0) = 0; see (1.133). The solution for Q(z) is now

Q(z,n) = c0 + c1(Ŝ(v0,n)− z)+
N+1−k

∑
r=2

crSr(v0,n)e
−μr(v0)z. (1.187)

The presence of the secular term means that the solution is unbounded in the limit
z→ ∞, which means that the inner solution cannot be matched with the outer so-
lution. One way to remedy this situation is to introduce an alternative scaling in
the boundary layer of the form v = v0 + ε1/2z, as detailed in [455]. One can then
eliminate the secular term −c1z and show that

c1 ∼
√

2|Φ ′′0 (v0)|
π

+O(ε1/2), cr = O(ε1/2) forr ≥ 2 (1.188)

It turns out that we only require the first coefficient c1 in order to evaluate the
principal eigenvalue λ0 using (1.168). This follows from (1.171) and (1.184) and
the observation that the left and right eigenvectors of the matrix Â(n,m;v) =
A(n,m;v)/F(v,n) are biorthogonal. In particular, since the quasistationary approxi-
mation φε is proportional to R(0) (see (1.177)), it follows that φε is orthogonal to all
eigenvectors Sr, r �= 1. Simplifying the denominator of (1.168) by using the outer
solution ξ0 ∼ 1, we obtain

λ0 ∼ −∑n ξ0(v0,n)F(v0,n)φε(v0,n)
〈φε ,1〉

∼ c1
k(v0)B(v0)

k(v−)

√
|Φ ′′(v−)|

2π
exp

(
−Φ0(v0)−Φ0(v−)

ε

)
, (1.189)

with

B(v0) =−
∞

∑
n=0

Ŝ(v0,n)F(v0,n)ρ(v0,n). (1.190)

Substituting for c1

λ0 ∼ 1
π

k(v0)B(v0)

k(v−)

√
Φ ′′0 (v−)|Φ ′′0 (v0)|exp

(
−Φ0(v0)−Φ0(v−)

ε

)
. (1.191)

Finally, comparison of (1.186) and (1.190) with (1.148) and (1.147) establishes that
B(v0)≡D(v0).
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The above analysis holds for any CK equation of the form (1.143). There
are essentially three basic steps needed in order to evaluate the escape rate for-
mula (1.191), which we now apply to the specific model of membrane voltage
fluctuations.

1. Find the unique nontrivial positive eigenfunction ψn(v) = R(0)(v,n) and associ-
ated eigenvalue μ(v) =−Φ ′0(v). In the case of the stochastic ion-channel model,
(1.171) takes the explicit form

(N− n+ 1)αψn−1− [nβ +(N− n)α]ψn +(n+ 1)β ψn+1

= μ
( n

N
f (v)− g(v)

)
ψn (1.192)

Motivated by the form of the stationary density ρ(v,n), we try the solution

ψn(v) =
Λ(v)n

(N− n)!n!
, (1.193)

which yields the following equation relating Λ and μ :

nα
Λ

+Λβ (N− n)− nβ− (N− n)α = μ
( n

N
f (v)− g(v)

)
.

We now fix μ in terms of Λ so that the terms linear in n vanish:

μ =
N
f

[
α
(

1
Λ

+ 1

)
−β (Λ + 1)

]
.

Eliminating μ then shows that

Λ(v) =
g(v)

f (v)− g(v)
.

We deduce that

μ(v) = N
α(v) f (v)− (α(v)+β )g(v)

g(v)( f (v)− g(v))
, (1.194)

and the normalized eigenvector is

ψn(v) =
N!

(N− n)!n!
( f (v)− g(v))N−ng(v)n

f (v)N . (1.195)

Note that μ(v) vanishes at the fixed points v−,v0 of the mean field (1.133) with
μ(v) > 0 for 0 < v < v− and μ(v) > 0 for v− < v < v0. Moreover, ψn(v) =
ρ(v,n) at the fixed points v0,v±. In conclusion R(0)(v,n)=ψn(v) and the effective
potential Φ0 is given by

Φ0(v) =−
∫ v

v−
μ(y)dy. (1.196)
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The effective potential is defined up to an arbitrary constant, which has been fixed
by setting Φ0(v−) = 0.

2. Determine the null eigenfunction ηn(v) = S(v,n) of (1.174), which becomes

(N−m)αηm+1− [(N−m)α +mβ ]ηm +mβ ηm−1

= μ
(m

N
f (v)− g(v)

)
ηm. (1.197)

Trying a solution of the form ηm(v) = Γ (v)m yields

(N−m)αΓ − ((N−m)α +mβ )+mβΓ−1 = μ
(m

N
f (v)− g(v)

)
. (1.198)

Γ is then determined by canceling terms independent of m, which gives

ηn(v) =

(
b(v)g(v)

a(v)( f (v)− g(v)))

)n

. (1.199)

The prefactor k(v) may now be determined using (1.175) and (1.176).
3. Calculate the generalized eigenvector ζn = Ŝ(v0,n) of (1.186), which reduces to

(N− n)α(v0)ζn+1 + nβ ζn−1− ((N− n)α(v0)+ nβ )ζn = g(v0)− n
N

f (v0).

(1.200)
It is straightforward to show that this has the solution

ζn =
f (v0)

N(α(v0)+β )
n. (1.201)

It follows that the factor B(v0) defined by (1.190) is

B(v0) = − f (v0)

N(α(v0)+β )

N

∑
n=0

ρ(v0,n)

[
−g(v0)n+

f (v0)

N
n2
]

= − f (v0)

N(α(v0)+β )

[
−g(v0)〈n〉+ f (v0)

N
〈n2〉

]

=
f (v0)

2α(v0)β
N(α(v0)+β )3 , (1.202)

where have used the fixed point condition g(v0) = f (v0)a(v0).

Keener and Newby [321] showed that the WKB and asymptotic methods outlined
above yield a MFPT that was in excellent agreement with numerical simulations in
both the superthreshold and subthreshold regimes.
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1.7 Appendix: Stochastic Calculus

In this appendix we give an informal introduction to stochastic calculus, following
along the lines of Jacobs [302]. A more detailed treatment can be found in Gar-
diner [210], and a rigorous mathematical account can be found in [476]. The basic
approach is to treat a continuous-time stochastic process as the limit of a discrete
time process. That is, an SDE prescribes how a stochastic variable X(t) changes
in each infinitesimal time step dt. Determining changes over finite times then re-
quires evaluating an associated stochastic integral. In order to make sense of this,
we discretize time into small, but finite, intervals of duration Δ t and consider a cor-
responding stochastic difference equation for Xn = X(nΔ t).

1.7.1 Ito Calculus

Suppose that we divide the time interval [0,T ] into N increments of size Δ t = T/N
and set tn = nΔ t. Consider the stochastic difference equation

ΔX(tn)≡ X(tn+1)−X(tn) = ΔWn,

where each ΔWn, n = 0, . . . ,N− 1, is an independent, identically distributed (i.i.d)
Gaussian variable with zero mean and variance σ2 = Δ t:

P(ΔW ) =
1√

2πΔ t
e−(ΔW)2/2Δ t . (1.203)

Iterating the difference equation starting from X(0) = 0 yields

Xn ≡ X(nΔ t) =
n−1

∑
j=0

ΔWj.

Using the fact that the sum of Gaussian random variables is also a Gaussian, it
follows that the probability density for Xn is a Gaussian. Thus, we only need to
determine its mean and variance. Since the ΔWj are all independent, we have

〈Xn〉=
n−1

∑
j=0
〈ΔWj〉= 0, Var(Xn) =

n−1

∑
j=0

Var(ΔWj) = NΔ t,

and

P(Xn) =
1√

2πnΔ t
e−X2

n /(2nΔ t).

We can now construct a corresponding continuous-time process by taking the limit
N→ ∞ such that Δ t → 0 with NΔT = T fixed. In particular,

X(T ) = lim
N→∞

N−1

∑
j=0

ΔWj ≡
∫ T

0
dW (t)≡W (T ),
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where W (T ) is identified as a Wiener process. (A rigorous treatment would be more
precise with regard to what is meant by the convergence of random variables.) It is
still a Gaussian, whose mean and variance are obtained by taking the limit N→ ∞
of the results for Xn. We deduce that W (t) has the Gaussian probability density

P(w(t)) =
1√
2πt

e−w(t)2/2t .

Now consider the modified stochastic difference equation

Xn+1−Xn = f (tn)ΔWn,

where f (t) is a deterministic function of time. Once again Xn is a Gaussian random
variable, with

〈Xn〉=
n−1

∑
j=0

〈 f (t j)ΔWj〉= 0, Var(Xn) =
n−1

∑
j=0

Var( f (t j)ΔWj) =
n−1

∑
j=0

f (t j)
2Δ t.

Taking the continuum limit along identical lines to the previous case yields the
continuous-time Gaussian variable

X(T ) = lim
N→∞

N−1

∑
j=0

f (t j)ΔWj ≡
∫ T

0
f (t)dW (t), (1.204)

with zero mean and variance

Var(X(T )) =
∫ T

0
f (s)2ds. (1.205)

Substituting for X(T ) into this equation gives
〈∫ T

0
f (t)dW (t)

∫ T

0
f (s)dW (s)

〉
=

∫ T

0
f (s)2ds,

which can be captured by the rule

〈dW (t)dW (s)〉= δ (t− s)dt ds. (1.206)

However, care must be taken with this rule when δ (t− s) appears inside an integral
having t or s as one of its limits. For example, consider the double stochastic integral

∫ T

0

[∫ t

0
f (s)dW (s)

]
g(t)dW(t)≡ lim

N→∞

N−1

∑
n=0

[
n−1

∑
m=0

f (tm)dWm

]
g(tn)dWn.

We see that there are no terms in the double sum on the right-hand side that have a
product of Wiener increments in the same time interval. Thus, taking the expectation
of both sides,
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〈∫ T

0

[∫ t

0
f (s)dW (s)

]
g(t)dW(t)

〉
= 0.

Hence, we require

∫ t

0
f (s)δ (t− s)ds = 0,

∫ t

0
f (s)δ (s)ds = f (0). (1.207)

Following the previous examples, let us turn to a discretized version of the general
SDE for X(t),

dX = a(X , t)dt + b(X , t)dW(t), (1.208)

which takes the form

Xn+1−Xn = a(Xn, tn)Δ t + b(Xn, tn)ΔWn. (1.209)

Iterating this equation starting from a fixed X(0) = x0 yields

XN = x0 +
N−1

∑
n=0

a(Xn, tn)Δ t +
N−1

∑
n=0

b(Xn, tn)ΔWn.

The continuum limit then gives the stochastic integral equation

X(T ) = x0 +

∫ T

0
a(X(t), t)dt +

∫ T

0
b(X(t), t)dW (t), (1.210)

with the final term defined as the Ito stochastic integral

∫ T

0
b(X(t), t)dW (t) = lim

N→∞

N−1

∑
n=0

b(Xn, tn)ΔWn. (1.211)

The integral equation is not very useful for generating an explicit solution for X(t).
However, from the definition of the Ito stochastic integral, it immediately follows
that 〈∫ T

0
b(X(t), t)dW(t)

〉
= 0, (1.212)

since Xn is a function of previous Wiener increments ΔWn−1, . . . ,ΔW0 so it is un-
correlated with ΔWn. The stochastic difference equation (1.209) is the starting point
for developing numerical schemes for solving an SDE. However, if one is interested
in carrying out explicit calculations, it is usually more useful to go to the associ-
ated Fokker–Planck equation for the probability density. In order to derive the FP
equation from the corresponding SDE, we first need to consider the object (dW )2.

In terms of Wiener increments,

∫ T

0
(dW (t))2 = lim

N→∞

N−1

∑
n=0

(ΔWn)
2.
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Taking the expectation of both sides and using the fact that each ΔWn is an i.i.d.,
gives 〈∫ T

0
(dW (t))2

〉
=

∫ T

0
〈(dW (t))2〉=

∫ T

0
dt = T. (1.213)

What about the variance? Using the Gaussian probability density (1.203), it is sim-
ple to show that

Var[(ΔW )2] = 2(Δ t)2 = 2T 2/N2.

Hence,

Var

[∫ T

0
(dW (t))2

]
= lim

N→∞
Var

[
N−1

∑
n=0

(ΔWn)
2

]
= lim

N→∞

N−1

∑
n=0

Var
[
(ΔWn)

2]

= lim
N→∞

2T 2

N
= 0.

We thus obtain the surprising result that the integral of (dW )2 is deterministic and
thus equal to its mean:

∫ T

0
(dW (t))2 = T =

∫ T

0
dt. (1.214)

In other words, we can set (dW )2 = dt, a result known as Ito’s rule. Using similar
arguments, it can also be shown that dW m = 0 for m > 2.

1.7.2 Ito’s Formula and the Fokker–Planck Equation

The result dW (t)2 = dt has important implications for how one carries out a change
of variables in stochastic calculus. This is most directly established by considering
the SDE for an arbitrary function f (X(t)) with X(t) evolving according to (1.208):

d f (X(t)) = f (X(t)+ dX(t))− f (X(t))

= f ′(X(t))dX(t)+
1
2

f ′′(X(t))dX(t)2 + . . .

= f ′(X(t))[a(X , t)dt + b(X , t)dW(t)]+
1
2

f ′′(X(t))b(X , t)2dW (t)2,

where all terms of higher order than dt have been dropped. Now using dW (t)2 = dt,
we obtain the following SDE for f , which is known as Ito’s formula:

d f (X(t)) =

[
a(X(t), t) f ′(X(t))+

1
2

b(X , t)2 f ′′(X(t))

]
dt + b(X , t) f ′(X(t))dW (t).

(1.215)
Hence, changing variables in Ito calculus is not given by ordinary calculus unless f
is a constant or a linear function.
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We can now use Ito’s formula to derive the FP equation for an Ito SDE. First,

〈d f (X(t))〉
dt

=

〈
a(X(t), t) f ′(X(t))+

1
2

b(X(t), t)2 f ′′(X(t))

〉

=
∫ [

a(x, t) f ′(x)+
1
2

b(x, t)2 f ′′(x)
]

p(x, t)dx,

=

∫
f (x)

[
− ∂

∂x
(a(x, t)p(x, t))+

1
2

∂ 2

∂x2 (b(x, t)
2 p(x, t))

]
dx. (1.216)

after integration by parts, where p(x, t) is the probability density of the stochastic
process X(t) under the initial condition X(t0) = x0. However, we also have

〈d f (X(t))〉
dt

=

〈
d f (X(t))

dt

〉

=
d
dt
〈 f (X(t), t)〉

=

∫
f (x)

∂
∂ t

p(x, t)dx. (1.217)

Comparing (1.216) and (1.217) and using the fact that f (x) is arbitrary, we obtain
the Ito version of the FP equation

∂
∂ t

p(x, t) =− ∂
∂x

(a(x, t)p(x, t))+
1
2

∂ 2

∂x2 (b(x, t)
2 p(x, t)). (1.218)

1.7.3 Multiplicative Noise and Stratonovich Integrals

It turns out that there is more than one way to define a stochastic difference equation
driven by an incremental Wiener process and thus more than one way to obtain an
SDE in the continuum limit. This issue only arises in the case of multiplicative noise,
that is, when the term multiplying dW (t) depends on the state variable X(t). Recall
that in the Ito integral (1.211), it is the value of b(x, t) at the start of the nth time
step that multiplies ΔWn, so that there are no contributions of the form (ΔWn)

2. An
alternative definition of a stochastic integral is the Stratonovich integral

∮ T

0
b(X(t), t)dW (t) = lim

N→∞

N−1

∑
n=0

b

(
Xn+1 +Xn

2
, tn

)
ΔWn, (1.219)

where we have used
∮

to distinguish it from the Ito integral. Now b depends on the
value Xn+1 at the end of the nth time step, which means there will be an extra term
involving (ΔWn)

2. In order to compare the Ito and Stratonovich integrals, suppose
that Xn evolves according to the stochastic difference equation (1.209). Thus, in the
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continuum limit X(t) is the solution to an Ito SDE. Suppose that we Taylor expand
the nth term in the sum defining the Stratonovich integral about the point Xn and set
bn = b(Xn, tn):

b

(
Xn+1 +Xn

2
, tn

)
= bn +

ΔXn

2
∂bn

∂x
+

1
2

(
ΔXn

2

)2 ∂ 2bn

∂x2 + . . .

Substituting for ΔXn using (1.209) and dropping terms that are higher order than Δ t
shows that

b

(
Xn+1 +Xn

2
, tn

)
= bn +

(
an

2
∂bn

∂x
+

b2
n

8
∂ 2bn

∂x2

)
Δ t +

(
bn

2
∂bn

∂x

)
ΔWn.

Applying this result to the sum appearing in the definition of the Stratonovich inte-
gral, (1.219), and again dropping higher-order terms in Δ t, yields the result

N−1

∑
n=0

b

(
Xn+1 +Xn

2
, tn

)
ΔWn =

N−1

∑
n=0

bnΔWn +
N−1

∑
n=0

bn

2
∂bn

∂x
(ΔWn)

2.

Finally, taking the continuum limit with dW (t)2 = dt, we have

∮ T

0
b(X(t), t)dW (t) =

∫ T

0
b(X(t), t)dW (t)+

1
2

∫ T

0

∂b(X(t), t)
∂x

b(X(t), t)dt.

(1.220)

Now suppose that Y (t) is a stochastic process evolving according to the Stratonovich
SDE

dY = a(Y, t)+ b(Y, t)dW(t). (1.221)

This means that the integral equation satisfied by Y (t) is based on the Stratonovich
integral, that is,

Y (t) = y0 +

∫ t

0
a(Y (s),s)ds+

∮ t

0
b(Y (t), t)dW (t). (1.222)

Using (1.220), we can rewrite the solution in terms of an Ito integral according to

Y (t) = y0 +
∫ t

0

[
a(Y (s),s)+

1
2

∂b(Y (s),s)
∂y

g(Y (s),s)

]
ds+

∫ t

0
b(Y (s),s)dW (s).

(1.223)
The latter is the solution to an equivalent Ito SDE of the form

dY =

[
a(Y (t), t)+

b(Y (t), t)
2

∂b(Y (t), t)
∂y

]
dt + b(Y(t), t)dW (t). (1.224)

Finally, given that we know the FP equation corresponding to an Ito SDE, we can
immediately write down the FP equation corresponding to the Stratonovich SDE
equation (1.221):

∂
∂ t

p(y, t) =− ∂
∂y

(a(y, t)p(y, t))+
1
2

∂
∂y

(
b(y, t)

∂
∂y

[b(y, t)p(y, t)]

)
. (1.225)
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