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Mixed Boundary Value Problems

This chapter is devoted to the study of mixed boundary value problems in
electromagnetic scattering theory. Mixed boundary value problems typically
model scattering by objects that are coated with a thin layer of material
on part of the boundary. We shall consider here two main problems: (1) the
scattering by a perfect conductor that is partially coated with a thin dielectric
layer and (2) scattering by an orthotropic dielectric that is partially coated
with a thin layer of highly conducting material. The first problem leads to
an exterior mixed boundary value problem for the Helmholtz equation where
on the coated part of the boundary the total field satisfies an impedance
boundary condition and on the remaining part of the boundary the total
field vanishes, while the second problem leads to a transmission problem with
mixed transmission-conducting boundary conditions. In this chapter we shall
present a mathematical analysis of these two mixed boundary value problems.

In the study of inverse problems for partially coated obstacles, it is
important to mentioned that, in general, it is not known a priori whether
or not the scattering object is coated and, if so, what the extent of the coat-
ing is. Hence the linear sampling method becomes the method of choice for
solving inverse problems for mixed boundary value problems since it does not
make use of the physical properties of the scattering object. In addition to the
reconstruction of the shape of the scatterer, a main question in this chapter
will be to determine whether the obstacle is coated and if so what the electrical
properties of the coating are. In particular, we will show that the solution of
the far-field equation that was used to determine the shape of the scatterer by
means of the linear sampling method can also be used in conjunction with a
variational method to determine the maximum value of the surface impedance
of the coated portion in the case of partially coated perfect conductors and of
the surface conductivity in the case of partially coated dielectrics.

Finally, we will extend the linear sampling method to the scattering prob-
lem by very thin objects, referred to as cracks, which are modeled by open
arcs in R

2.
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204 8 Mixed Boundary Value Problems

8.1 Scattering by a Partially Coated Perfect Conductor

We consider the scattering of an electromagnetic time-harmonic plane wave
by a perfectly conducting infinite cylinder in R

3 that is partially coated with
a thin dielectric material. In particular, the total electromagnetic field on the
uncoated part of the boundary satisfies the perfect conducting boundary con-
dition, that is, the tangential component of the electric field is zero, whereas
the boundary condition on the coated part is described by an impedance
boundary condition [79].

More precisely, let D denote the cross section of the infinitely long cylinder
and assume that D ⊂ R

2 is an open bounded region with C2 boundary ∂D
such that R

2 \ D̄ is connected. The boundary ∂D has the dissection ∂D =
∂DD∪∂DI , where ∂DD and ∂DI are disjoint, relatively open subsets (possibly
disconnected) of ∂D. Let ν denote the unit outward normal to ∂D, and assume
that the surface impedance λ ∈ C(∂DI) satisfies λ(x) ≥ λ0 > 0 for x ∈ ∂DI .
Then the total field u = us + ui, given as the sum of the unknown scattered
field us and the known incident field ui, satisfies

Δu+ k2u = 0 in R
2 \ D̄, (8.1)

u = 0 on ∂DD, (8.2)

∂u

∂ν
+ iλu = 0 on ∂DI , (8.3)

where k > 0 is the wave number and us satisfies the Sommerfeld radiation
condition

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0 (8.4)

uniformly in x̂ = x/|x| with r = |x|. Note that here again the incident field ui

is usually an entire solution of the Helmholtz equation. In particular, in the
case of incident plane waves, we have ui(x) = eikx·d, where d := (cos φ, sin φ)
is the incident direction and x = (x1, x2) ∈ R

2.
Due to the boundary condition, the preceding exterior mixed boundary

value problem may not have a solution in C2(R2 \ D̄) ∩ C1(R \D), even for
incident plane waves and analytic boundary. In particular, the solution fails to
be differentiable at the boundary points of ∂DD ∩∂DI . Therefore, looking for
a weak solution in the case of mixed boundary value problems is very natural.

To define a weak solution to the mixed boundary value problem in the
energy space H1(D), we need to understand the respective trace spaces on
parts of the boundary. To this end, we now present a brief discussion of Sobolev
spaces on open arcs. The classic reference for such spaces is [124]. For a sys-
tematic treatment of these spaces, we refer the reader to [127].
Let ∂D0 ⊆ ∂D be an open subset of the boundary. We define

H
1
2 (∂D0) := {u|∂D0 : u ∈ H

1
2 (∂D), }
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i.e., the space of restrictions to ∂D0 of functions in H
1
2 (∂D), and define

H̃
1
2 (∂D0) := {u ∈ H

1
2 (∂D) : suppu ⊆ ∂D0, }

where suppu is the essential support of u, i.e., the largest relatively closed
subset of ∂D such that u = 0 almost everywhere on ∂D \ suppu. We can

identify H̃
1
2 (∂D0) with a trace space of H1

0 (D, ∂D \ ∂D0), where

H1
0 (D, ∂D \ ∂D0) =

{
u ∈ H1(D) : u|∂D\∂D0

= 0 in the trace sense
}
.

A very important property of H̃
1
2 (∂D0) is that the extension by zero of u ∈

H̃
1
2 (∂D0) to the whole ∂D is in H

1
2 (∂D) and the zero extension operator is

bounded from H̃
1
2 (∂D0) to H

1
2 (∂D). It can also be shown (cf. Theorem A4

in [127]) that there exists a bounded extension operator τ : H
1
2 (∂D0) →

H
1
2 (∂D). In other words, for any u ∈ H

1
2 (∂D0) there exists an extension

τu ∈ H
1
2 (∂D) such that

‖τu‖
H

1
2 (∂D)

≤ C‖u‖
H

1
2 (∂D0)

, (8.5)

with C independent of u, where

‖u‖
H

1
2 (∂D0)

:= min
{
‖U‖

H
1
2 (∂D)

for U ∈ H
1
2 (∂D), U |∂D0 = u

}
.

Example 8.1. Consider the step function

u(t) =

{
1 t ∈ [0, π],
0 t ∈ (π, 2π].

Using the definition of Sobolev spaces in terms of the Fourier coefficients
(Sect. 1.4) it is easy to show that the step function is not in H

1
2 [0, 2π]. In par-

ticular, the Fourier coefficients of u are a2k = 0 and a2k+1 = 1/(i(2k + 1)π),
whence

∞∑
−∞

(
1 +m2

) 1
2 |am|2 =

∞∑
−∞

(
1 + (2k + 1)2

) 1
2

1

π2(2k + 1)2
= +∞.

Now consider the unit circle ∂Ω = {x ∈ R
2 : x = (sin t, cos t), t ∈ [0, 2π]},

and denote by ∂Ω0 = {x ∈ R
2 : x = (sin t, cos t), t ∈ [0, π]} the upper

half-circle. Let v : ∂Ω0 → R be the constant function v = 1. By definition,
v ∈ H

1
2 (∂Ω0) since it is the restriction to ∂Ω0 of the constant function 1

defined on the whole circle ∂Ω that is in H
1
2 (∂Ω). But v /∈ H̃

1
2 (∂Ω0) since

its extension by zero to the whole circle is not in H
1
2 (∂Ω) [note that the

extension ṽ(sin t, cos t) is a step function and from the preceding discussion

is not in H
1
2 [0, 2π]].
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The foregoing example shows that if u ∈ H̃
1
2 (∂D0), then it has a certain

behavior at the boundary of ∂D0 in ∂D. A better insight into this behavior
is given in [124]. In particular, the space H̃

1
2 (∂D0) coincides with the space

H
1
2
00(∂D0) := {u ∈ H

1
2 (∂D0) : r

− 1
2 u ∈ L2(∂D0)},

where r is the polar radius.
Both H

1
2 (∂D0) and H̃

1
2 (∂D0) are Hilbert spaces when equipped with the

restriction of the inner product of H
1
2 (∂D). Hence, we can define the corre-

sponding dual spaces

H− 1
2 (∂D0) :=

(
H̃

1
2 (∂D0)

)′
= the dual space of H̃

1
2 (∂D0)

and

H̃− 1
2 (∂D0) :=

(
H

1
2 (∂D0)

)′
= the dual space of H

1
2 (∂D0)

with respect to the duality pairing explained in what follows.
A bounded linear functional F ∈ H− 1

2 (∂D0) can in fact be seen as the

restriction to ∂D0 of some F̃ ∈ H− 1
2 (∂D) in the following sense: if ũ ∈

H
1
2 (∂D) denotes the extension by zero of u ∈ H̃

1
2 (∂D0), then the restriction

F := F̃ |∂D0 is defined by
F (u) = F̃ (ũ).

With the preceding understanding, to unify the notations, we identify

H− 1
2 (∂D0) := {v|∂D0 : v ∈ H− 1

2 (∂D)}

and
〈v, u〉

H− 1
2 (∂D0),H̃

1
2 (∂D0)

= 〈v, ũ〉
H− 1

2 (∂D),H
1
2 (∂D)

,

where 〈·, ·〉 denotes the duality pairing between the denoted spaces and ũ ∈
H

1
2 (∂D) is the extension by zero of u ∈ H̃

1
2 (∂D0).

For a bounded linear functional F ∈ H− 1
2 (∂D), we define suppF to be

the largest relatively closed subset of ∂D such that the restriction of F to
∂D \ suppF is zero. Similarly, for H̃

1
2 (∂D0) we can now write

H̃− 1
2 (∂D0) := {v ∈ H− 1

2 (∂D) : supp v ⊆ ∂D0}.

Therefore, the extension by zero ṽ ∈ H− 1
2 (∂D) of v ∈ H̃− 1

2 (∂D0) is well
defined and

〈ṽ, u〉
H− 1

2 (∂D),H
1
2 (∂D)

= 〈v, u〉
H̃− 1

2 (∂D0),H
1
2 (∂D0)

,

where u ∈ H
1
2 (∂D).
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We can now formulate the following mixed boundary value problems:

Exterior mixed boundary value problem: Let f ∈ H
1
2 (∂DD) and h ∈

H− 1
2 (∂DI). Find a function u ∈ H1

loc(R
2 \ D̄) such that

Δu+ k2u = 0 in R
2 \ D̄, (8.6)

u = f on ∂DD, (8.7)

∂u

∂ν
+ iλu = h on ∂DI , (8.8)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0. (8.9)

Note that the scattering problem for a partially coated perfect conduc-
tor (8.1)–(8.4) is a special case of (8.6)–(8.9). In particular, the scattered
field us satisfies (8.6)–(8.9) with f := −ui|∂DD and h := −∂ui/∂ν− iλui|∂DI .

For later use we also consider the corresponding interior mixed boundary
value problem.

Interior mixed boundary value problem: Let f ∈ H
1
2 (∂DD) and h ∈

H− 1
2 (∂DI). Find a function u ∈ H1(D) such that

Δu+ k2u = 0 in D, (8.10)

u = f on ∂DD, (8.11)

∂u

∂ν
+ iλu = h on ∂DI . (8.12)

Theorem 8.2. Assume that ∂DI �= ∅ and λ �= 0. Then the interior mixed
boundary value problem (8.10)–(8.12) has at most one solution in H1(D).

Proof. Let u be a solution to (8.10)–(8.12), with f ≡ 0 and h ≡ 0. Then an
application of Green’s first identity in D yields

− k2
∫
D

|u|2 dx +

∫
D

|∇u|2 dx =

∫
∂D

∂u

∂ν
ū ds, (8.13)

and making use of homogeneous boundary condition we obtain

− k2
∫
D

|u|2 dx +

∫
D

|∇u|2 dx = −i
∫
∂DI

λ|u|2 ds . (8.14)

Since λ is a real-valued function and λ(x) ≥ λ0 > 0, taking the imaginary

part of (8.14) we conclude that u|∂DI ≡ 0 as a function in H
1
2 (∂DI), and

consequently ∂u/∂ν|∂DI ≡ 0 as a function in H− 1
2 (∂DI).

Now let Ωρ be a disk of radius ρ with center on ∂DI such that Ω̄ρ∩∂DD =
∅, and define v = u in D∩Ωρ, v = 0 in (R2 \ D̄)∩Ωρ. Then applying Green’s
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first identity in each of these domains to v and a test function ϕ ∈ C∞
0 (Ωρ)

we see that v is a weak solution to the Helmholtz equation in Ωρ. Thus v is a
real-analytic solution in Ωρ. We can now conclude that u ≡ 0 in Ωρ, and thus
u ≡ 0 in D. ��
Theorem 8.3. The exterior mixed boundary value problem (8.6)–(8.9) has at
most one solution in H1

loc(R
2 \ D̄).

Proof. The proof of the theorem is essentially the same as the proof of
Theorem 3.3. ��
Theorem 8.4. Assume that ∂DI �= ∅ and λ �= 0. Then the interior mixed
boundary value problem (8.10)–(8.12) has a solution that satisfies the estimate

‖u‖H1(D) ≤ C
(
‖f‖

H
1
2 (∂DD)

+ ‖h‖
H− 1

2 (∂DI )

)
, (8.15)

with C a positive constant independent of f and h.

Proof. To prove the theorem, we use the variational approach developed in
Sect. 5.3. (For a solution procedure based on integral equations of the first

kind we refer the reader to [23]). Let f̃ ∈ H
1
2 (∂D) be the extension of the

Dirichlet data f ∈ H
1
2 (∂DD) that satisfies ‖f̃‖

H
1
2 (∂D)

≤ C‖f‖
H

1
2 (∂DD)

given

by (8.5), and let u0 ∈ H1(D) be such that u0 = f̃ on ∂D and ‖u0‖H1(D) ≤
C‖f̃‖

H
1
2 (∂D)

. In particular, we may choose u0 to be a solution of Δu0 = 0

(Example 5.15). Defining the Sobolev space H1
0 (D, ∂DD) by

H1
0 (D, ∂DD) :=

{
u ∈ H1(D) : u = 0 on ∂DD

}

equipped with the norm induced by H1(D), we observe that w = u − u0 ∈
H1

0 (D, ∂DD), where u ∈ H1(D) is a solution to (8.10)–(8.12). Furthermore,
w satisfies

Δw + k2w = −k2u0 in D (8.16)

and
∂w

∂ν
+ iλw = h̃ on ∂DI , (8.17)

where h̃ ∈ H− 1
2 (∂DI) is given by

h̃ := −∂u0
∂ν

− iλu0 + h.

Multiplying (8.16) by a test function ϕ ∈ H1
0 (D, ∂DD) and using Green’s first

identity together with the boundary condition (8.17) we can write (8.10)–(8.12)
in the following equivalent variational form: find u ∈ H1(D) such that
w = u− u0 ∈ H1

0 (D, ∂DD) and

a(w,ϕ) = L(ϕ) for all ϕ ∈ H1
0 (D, ∂DD), (8.18)



8.1 Scattering by a Partially Coated Perfect Conductor 209

where the sesquilinear form a (·, ·) : H1
0 (D, ∂DD) × H1

0 (D, ∂DD) → C is
defined by

a(w,ϕ) :=

∫
D

(∇w · ∇ϕ̄− k2wϕ̄
)
dx+ i

∫
∂DI

λw ϕ̄ ds,

and the conjugate linear functional L : H1
0 (D, ∂DD) → C is defined by

L(ϕ) = k2
∫
D

u0ϕ̄ dx+

∫
∂DI

h̃ · ϕ̄ dx,

where the integral over ∂DI is interpreted as the duality pairing between
h̃ ∈ H− 1

2 (∂DI) and ϕ̄ ∈ H̃
1
2 (∂DI) [note that ϕ̄ ∈ H̃

1
2 (∂DI) since H̃

1
2 (∂DI)

is the trace space of H1
0 (D, ∂DD)].

Next we write a(·, ·) as the sum of two terms a(·, ·) = a1(·, ·) + a2(·, ·),
where

a1(w,ϕ) :=

∫
D

(∇w · ∇ϕ̄+ w ϕ̄) dx+ i

∫
∂DI

λw ϕ̄ ds

and

a2(w,ϕ) := −(k2 + 1)

∫
D

w ϕ̄ dx.

From the Cauchy–Schwarz inequality and the trace Theorem 1.38, since λ is
a bounded function on ∂DI , we have that

|a1(w,ϕ)| ≤ C1‖w‖H1(D)‖ϕ‖H1(D) + C2‖w‖L2(∂DI )‖ϕ‖L2(∂DI )

≤ C̃
(
‖w‖H1(D)‖ϕ‖H1(D) + ‖w‖

H
1
2 (∂D)

‖ϕ‖
H

1
2 (∂D)

)
≤ C‖w‖H1(D)‖ϕ‖H1(D)

and
|a2(w,ϕ)| ≤ C̃‖w‖L2(D)‖ϕ‖L2(D) ≤ C‖w‖H1(D)‖ϕ‖H1(D).

Hence a1(·, ·) and a2(·, ·) are bounded sesquilinear forms.
Furthermore, noting that ϕ = 0 on ∂DD, we have that∫

∂DI

∂u0
∂ν

ϕ̄ ds =

∫
∂D

∂u0
∂ν

ϕ̄ ds =

∫
D

∇u0 · ∇ϕ̄ dx.

Therefore, from the previous estimates and the trace Theorems 1.38 and 5.7
we have that

|L(ϕ)| ≤ C1‖u0‖H1(D)‖ϕ‖H1(D) + C2‖u0‖
H

1
2 (∂D)

‖ϕ‖
H

1
2 (∂D)

+C3‖h‖
H− 1

2 (∂DI )
‖ϕ‖

H̃
1
2 (∂DI)

≤ C̃
(
‖f̃‖

H
1
2 (∂D)

+ ‖h‖
H− 1

2 (∂DI )

)
‖ϕ‖H1(D)

≤ C
(
‖f‖

H
1
2 (∂DD)

+ ‖h‖
H− 1

2 (∂DI )

)
‖ϕ‖H1(D)
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for all ϕ ∈ H1
0 (D, ∂D0), which shows that L is a bounded conjugate linear

functional and

‖L‖ ≤ C
(
‖f‖

H
1
2 (∂DD)

+ ‖h‖
H− 1

2 (∂DI )

)
, (8.19)

with the constant C > 0 independent of f and h.
Next, since λ is real, we can write

|a1(w,w)| ≥ ‖w‖2H1(D),

whence a1(·, ·) is strictly coercive.
Therefore, from the Lax–Milgram lemma there exists a bijective bounded lin-
ear operator A : H1

0 (D, ∂DD) → H1
0 (D, ∂DD) with bounded inverse such that

(Aw,ϕ) = a1(w, ϕ) for all w and ϕ in H1
0 (D, ∂DD). Finally, due to the com-

pact embedding of H1(D) into L2(D), there exists a compact bounded linear
operator B : H1

0 (D, ∂DD) → H1
0 (D, ∂DD) such that (Bw,ϕ) = a2(w, ϕ) for

all w and ϕ in H1
0 (D, ∂DD) (Example 5.17). Therefore, from Theorems 5.16

and 8.2 we obtain the existence of a unique solution to (8.18) and, conse-
quently, to the interior mixed boundary value problem (8.10)–(8.12). The
a priori estimate (8.15) follows from (8.19). ��

Now let us consider an open disk ΩR of radius R centered at the origin
and containing D̄.

Theorem 8.5. The exterior mixed boundary value problem (8.6)–(8.9) has a
solution that satisfies the estimate

‖u‖H1(ΩR\D̄) ≤ C
(
‖f‖

H
1
2 (∂DD)

+ ‖h‖
H− 1

2 (∂DI )

)
, (8.20)

with C a positive constant independent of f and h but depending on R.

Proof. First, exactly in the same way as in Example 5.23, we can show that
the exterior mixed boundary value problem (8.6)–(8.9) is equivalent to the
following problem:

Δu+ k2u = 0 in ΩR \ D̄, (8.21)

u = f on ∂DD, (8.22)

∂u

∂ν
+ iλu = h on ∂DI , (8.23)

∂u

∂ν
= Tu on ∂ΩR, (8.24)

where T is the Dirichlet-to-Neumann map. If f̃ ∈ H
1
2 (∂D) is the extension

of f ∈ H
1
2 (∂DD) that satisfies (8.5) with ∂D0 replaced by ∂DD, then we

construct u0 ∈ H1(ΩR \ D̄) such that u0 = f̃ on ∂D, u = 0 on ∂ΩR, and
Δu0 = 0 in ΩR\D̄ (Example 5.15). Then, for every solution u to (8.21)–(8.24),
w = u− u0 is in the Sobolev space H1

0 (ΩR \ D̄, ∂DD) defined by
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H1
0 (ΩR \ D̄, ∂DD) :=

{
u ∈ H1(ΩR \ D̄) : u = 0 on ∂DD

}
and satisfies the variational equation∫

ΩR\D̄

(∇w · ∇ϕ̄− k2wϕ̄
)
ds− i

∫
∂DI

λw ϕ̄ ds−
∫

∂ΩR

Tw ϕ̄ ds

= k2
∫

ΩR\D̄

u0ϕ̄ dx−
∫

∂DI

(
∂u0
∂ν

− iλu0 + h

)
ϕ̄ ds

+

∫
∂ΩR

(
Tu0 − ∂u0

∂ν

)
ϕ̄ ds for all ϕ ∈ H1

0 (ΩR \ D̄, ∂DD).

Making use of Theorem 5.22, the assertion of the theorem can now be proven
in the same way as in Theorem 8.4. ��
Remark 8.6. In the case where either ∂DI = ∅ (this case corresponds to the
Dirichlet boundary value problem) or λ = 0, the corresponding interior prob-
lem may not be uniquely solvable. If nonuniqueness occurs, then k2 is said to
be an eigenvalue of the corresponding boundary value problem. In these cases,
Theorem 8.4 holds true under the assumption that k2 is not an eigenvalue of
the corresponding boundary value problem.

Remark 8.7. Due to the change in the boundary conditions, the solution to the
mixed boundary value problems (8.6)–(8.9) and (8.10)–(8.12) has a singular
behavior near the boundary points in ∂DD ∪ ∂DN . In particular, even for
C∞ boundary ∂D and analytic incident waves ui, the solution in general is
not in H2

loc(R
2 \ D̄). More precisely, the most singular term of the solution

behaves like O(r
1
2 ), where (r, φ) denotes the local polar coordinates centered

at the boundary points in ∂DD ∪ ∂DN [65]. This is important to take into
consideration when finite element methods are used.

8.2 Inverse Scattering Problem for Partially Coated
Perfect Conductor

We now consider time-harmonic incident fields given by ui(x) = eikx·d with
incident direction d := (cos φ, sin φ) and x = (x1, x2) ∈ R

2. The corre-
sponding scattered field us = us(·, φ), which satisfies (8.1)–(8.4), depends
also on the incident angle φ and has the asymptotic behavior (4.5). The far-
field pattern u∞(θ, φ), θ ∈ [0, 2π] of the scattered field defines the far-field
operator F : L2[0, 2π] → L2[0, 2π] corresponding to the scattering prob-
lem (8.1)–(8.4) by

(Fg)(θ) :=

2π∫
0

u∞(θ, φ)g(φ)dφ g ∈ L2[0, 2π]. (8.25)



212 8 Mixed Boundary Value Problems

The inverse scattering problem for a partially coated perfect conductor is given
the far-field pattern u∞(θ, φ) for θ ∈ [0, 2π] and φ ∈ [0, 2π] determines both
D and λ = λ(x) for x ∈ ∂DI .

In the same way as in the proof of Theorem 4.3, using Theorem 8.2 we
can show the following result.

Theorem 8.8. Assume that ∂DI �= ∅ and λ �= 0. Then the far-field operator
corresponding to the scattering problem (8.1)–(8.4) is injective with a dense
range.

Remark 8.9. If ∂DI = ∅ or λ = 0, then all the following results about the far-
field operator and the determination of D remain valid assuming the unique-
ness for the corresponding interior boundary value problem. Note that the case
of ∂DI = ∅ corresponds to the scattering problem for a perfect conductor.

Concerning the unique determination of D, the following theorem can be
proved in the same way as Theorem 4.5. The only change needed in the proof is
that we can always choose the point x∗ such that either Ωε(x

∗)∩∂D1 ⊂ ∂D1D

or Ωε(x
∗)∩∂D1 ⊂ ∂D1I for some small disk Ωε(x

∗) centered at x∗ of radius ε
and satisfying Ωε(x

∗)∩D̄2 = ∅, whence one uses either the Dirichlet condition
or impedance condition at x∗ to arrive at a contraction.

Theorem 8.10. Assume that D1 and D2 are two partially coated scattering
obstacles with corresponding surface impedances λ1 and λ2 such that for a
fixed wave number the far-field patterns for both scatterers coincide for all
incident angles φ. Then D1 = D2.

Theorem 8.11. Assume that D1 and D2 are two partially coated scattering
obstacles with corresponding surface impedances λ1 and λ2 such that for a
fixed wave number the far-field patterns coincide for all incident angles φ.
Then D1 = D2 and λ1 = λ2.

Proof. By Theorem 8.10, we first have thatD1 = D2 = D. Then, following the
proof of Theorem 4.7 we can prove that the total fields u1 and u2 correspond-
ing to λ1 and λ2 coincide in R

2 \ D̄, whence u1 = u2 and ∂u1/∂ν = ∂u2/∂ν
on ∂D. From the boundary condition we have

uj = 0 on ∂DDj ,
∂uj
∂ν

+ iλjuj = 0 on ∂DIj

for j = 1, 2. First we observe that ∂DD1 ∩ ∂DD2 = ∅, because otherwise
u1 = ∂u1/∂ν = 0 on an open arc Γ ⊂ ∂D and a contradiction can be obtained
as in the proof of Theorem 4.7. Hence ∂DI1 = ∂DI2 = ∂DI . Next,

(λ1 − λ2)u1 = 0 on ∂DI ,

and again one can conclude that λ1 = λ2, as in Theorem 4.7. ��
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Having proved the uniqueness results, we now turn our attention to finding
an approximation to D and λ. Our reconstruction algorithm is based on solv-
ing the far-field equation

Fg = Φ∞(·, z) z ∈ R
2,

where Φ∞(x̂, z) is the far-field pattern of the fundamental solution (Sect. 4.3).
The far-field equation can be written as

−(BHg) = Φ∞(·, z) z ∈ R
2,

where B : H
1
2 (∂DD)×H− 1

2 (∂DI) → L2[0, 2π] maps the boundary data (f, h)
to the far-field pattern u∞ of the radiating solution u to the corresponding
exterior mixed boundary value problem (8.6)–(8.9), and H : L2[0, 2π] →
H

1
2 (∂DD)×H− 1

2 (∂DI) is defined by

(Hg)(x) =

{
vg(x), x ∈ ∂DD,

∂vg(x)

∂ν
+ iλ(x)vg(x), x ∈ ∂DI ,

with vg being the Herglotz wave function with kernel g.

Lemma 8.12. Any pair (f, h) ∈ H
1
2 (∂DD)×H− 1

2 (∂DI) can be approximated

in H
1
2 (∂DD)×H− 1

2 (∂DI) by Hg.

Proof. Let u be the unique solution to (8.10)–(8.12) with boundary data (f, h).
Then the result of this lemma is a consequence of Lemma 6.45 applied to this
u and the trace Theorems 1.38 and 5.7. ��
Lemma 8.13. The bounded linear operator B : H

1
2 (∂DD) × H− 1

2 (∂DI) →
L2[0, 2π] is compact and injective and has a dense range.

Proof. The proof proceeds as the proof of Theorem 4.8 making use of
Theorems 8.5 and 8.8. ��

Using Lemmas 8.12 and 8.13 we can now prove in a similar way as in
Theorem 4.11 the following result.

Theorem 8.14. Assume that ∂DI �= ∅ and λ �= 0. Let u∞ be the far-field
pattern corresponding to the scattering problem (8.1)–(8.4) with associated
far-field operator F . Then the following statements hold:

1. For z ∈ D and a given ε > 0 there exists a function gεz ∈ L2[0, 2π] such
that

‖Fgεz − Φ∞(·, z)‖L2[0,2π] < ε

and the Herglotz wave function vgε
z
with kernel gεz converges in H1(D) as

ε→ 0.
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2. For z �∈ D and a given ε > 0 every function gεz ∈ L2[0, 2π] that satisfies

‖Fgεz − Φ∞(·, z)‖L2[0,2π] < ε

is such that
lim
ε→0

‖vgε
z
‖
H1(D)

= ∞.

An approximation to D can now be obtained as the set of points z, where
‖gz‖L2[0, 2π] becomes large, with gz the approximate solution to the far-field
equation given by Theorem 8.14. Note that the factorization method to char-
acterizeD from the range of (F ∗F )1/4 cannot be established for the scattering
problem with mixed boundary conditions. Hence a rigorous justification of the
linear sampling method similar to Theorem 7.39 for this case is still an open
problem.

Having determined D, in a similar way as in Sect. 4.4, we can now use gz
given by Theorem 8.14 to determine an approximation to the maximum value
of λ. In particular, let uz be the unique solution to

Δuz + k2uz = 0 in D, (8.26)

uz = −Φ(·, z) on ∂DD, (8.27)

∂uz
∂ν

+ iλuz = −∂Φ(·, z)
∂ν

− iλΦ(·, z) on ∂DI , (8.28)

where z ∈ D and λ ∈ C(∂DI), λ(x) ≥ λ0 > 0. From the proof of the first part
of Theorem 8.14 the following result is valid.

Lemma 8.15. Assume ∂DI �= ∅ and λ �= 0. Let ε > 0, z ∈ D, and let uz
be the unique solution of (8.26)–(8.28). Then there exists a Herglotz wave
function vgz with kernel gz ∈ L2[0, 2π] such that

‖uz − vgz‖H1(D) ≤ ε. (8.29)

Moreover, there exists a positive constant C > 0 independent of ε such that

‖Fgz − Φ∞(·, z)‖L2[0, 2π] ≤ Cε. (8.30)

Now define wz by
wz := uz + Φ(·, z). (8.31)

In particular,

wz |∂DD
= 0 and

(
∂wz

∂ν
+ iλwz

)
|∂DI

= 0, (8.32)

interpreted in the sense of the trace theorem. Repeating the proof of Theo-
rem 4.12 with minor changes accounting for the boundary conditions (8.32)
we have the following result.
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Lemma 8.16. For every z1, z2 ∈ D we have that

2

∫
∂DI

wz1λw̄z2 ds = −4πk |γ|2 J0(k |z1 − z2|)

− i
(
uz2(z1)− uz1(z2)

)
,

where γ = eiπ/4/
√
8πk and J0 is a Bessel function of order zero.

Assuming D is connected, consider a disk Ωr ⊂ D of radius r contained in D
(Remark 4.13), and define

W :=

{
f ∈ L2(∂DI) :

f = wz|∂DI with wz = uz + Φ(·, z),
z ∈ Ωr and uz the solution of (8.26)–(8.28)

}
.

Lemma 8.17. W is complete in L2(∂DI).

Proof. Let ϕ be a function in L2(∂DI) such that for every z ∈ Ωr∫
∂DI

wzϕds = 0.

Using Theorem 8.4, let v ∈ H1(D) be the unique solution of the interior mixed
boundary value problem

Δv + k2v = 0 in D,

v = 0 on ∂DD,

∂v

∂ν
+ iλv = ϕ on ∂DI .

Then for every z ∈ Ωr, using the boundary conditions and the integral repre-
sentation formula, we have that

0 =

∫
∂DI

wzϕds =

∫
∂DI

wz

(
∂v

∂ν
+ iλv

)
ds =

∫
∂D

wz

(
∂v

∂ν
+ iλv

)
ds

=

∫
∂D

(
uz
∂v

∂ν
+ iλuzv + Φ(·, z)∂v

∂ν
+ iλΦ(·, z)v

)
ds

=

∫
∂D

[
uz
∂v

∂ν
+ v

(
−∂uz
∂ν

− ∂Φ(·, z)
∂ν

− iλΦ(·, z)
)]

ds

+

∫
∂D

(
Φ(·, z)∂v

∂ν
+ iλvΦ(·, z)

)
ds = v(z).

The unique continuation principle for solutions to the Helmholtz equation now
implies that v(z) = 0 for all z ∈ D, whence from the trace theorem ϕ = 0.

��
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Setting z = z1 = z2 in Lemma 8.16 we arrive at the following integral
equation for the determination of λ:

2

∫
∂DI

λ|uzi + Φ(·, zi)|2 ds = −1

4
− Im(uz(z))

or, noting that uz + Φ(·, z) = 0 on ∂DD,

2

∫
∂D

λ|uzi + Φ(·, zi)|2 ds = −1

4
− Im(uz(z)), (8.33)

where uz is defined by (8.26)–(8.28). By Lemma 8.17, we see that the left-hand
side of this equation is an injective compact integral operator with positive ker-
nel defined on L2(∂D). Using the Tikhonov regularization technique (cf. [68])
it is possible to determine λ by finding the regularized solution of (8.33) in
L2(∂D) (i.e., it is not necessary to know a priori the coated portion ∂DI).
Note that this integral equation has both noisy kernel and noisy right-hand
side (recall from Lemma 8.15 that uz can be approximated by vgz ). For num-
erical examples using this approach we refer the reader to [27].

In the particular case where the surface impedance is a positive constant
λ > 0, we obtain a simpler formula for λ, namely,

λ =
−2kπ|γ|2 − Im (uz(z))

‖uz + Φ(·, z)‖2L2(∂D)

. (8.34)

Note that expression (8.34) can be used as a target signature to detect whether
or not an obstacle is coated. In particular, an object is coated if and only if
the denominator is nonzero.

8.3 Numerical Examples

We now present some numerical examples of the preceding reconstruction
algorithm when the surface impedance λ is a constant. As explained previ-
ously, an approximation for λ in this case is given by

−2kπ|γ|2 − Im (vgz (z))

‖vgz(·) + Φ(·, z)‖2L2(∂D)

, z = (z1, z2) ∈ D, (8.35)

where vgz is the Herglotz wave function, with kernel gz the solution of the
far-field equation

2π∫
0

u∞(φ, θ)gz(φ)dφ =
eiπ/4√
8πk

e−ik(z1 cos θ+z2 sin θ). (8.36)

We fix the wave number k = 3 and select a domain D, boundaries ∂DD,
and ∂DI (in some examples, ∂DD = ∅), and a constant λ. Then, using the
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incident field eikx·d, where |d| = 1, we use the finite-element method to solve
the scattering problem (8.1)–(8.4) and compute the far-field pattern. This is
obtained as a trigonometric series

u∞ =

N∑
n=−N

u∞,n exp(inθ).

Of course, these coefficients are already in error by the discretization error
from using the finite-element method. However, we also add random noise to
the Fourier coefficients by setting

u∞,a,n = u∞,n(1 + εχn),

where ε is a parameter and χn is given by a random number generator that
provides uniformly distributed random numbers in the interval [−1, 1]. Thus
the input to the inverse solver for computing g is the approximate far-field
pattern

u∞,a =

N∑
n=−N

u∞,a,n exp(inθ).

The far-field equation is then solved using Tikhonov regularization and the
Morozov discrepancy principle, as described in Chap. 2. In particular, using
the preceding expression for u∞,a, the far-field equation (8.36) is rewritten as
an ill-conditioned matrix equation for the Fourier coefficients of g, which we
write in the form

Agz = fz. (8.37)

As was already noted, this equation needs to be regularized. We start by
computing the singular value decomposition of A,

A = UΛV ∗,

where U and V are unitary and Λ is real diagonal with Λi,i = σi, 1 ≤ i ≤ n.
The solution of (8.37) is then equivalent to solving

ΛV ∗gz = U∗fz. (8.38)

Let
ρz = (ρz,1, ρz,2, · · · ρz,n)� = U∗fz.

Then the Tikhonov regularization of (8.38) leads to solving

min
gz∈Rn

‖ΛV ∗gz − fz‖2�2 + α‖g‖2�2 ,

where α > 0 is the Tikhonov regularization parameter chosen by using the
Morozov discrepancy principle. Defining uz = V ∗gz, we see that the solution
to the problem is

uz,i =
σi

σ2
i + α

ρz,i, 1 ≤ i ≤ n,
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and hence

gz = V uz and ‖gz‖�2 = ‖uz‖�2 =

(
n∑

i=1

σ2
i

(σ2
i + α)2

|ρz,i|2
) 1

2

.

For the presented examples, we compute the far-field pattern for 100 inci-
dent directions and observation directions equally distributed on the unit circle
and add random noise of 1% or 10% to the Fourier coefficients of the far-field
pattern. We choose the sampling points z on a uniform grid of 101×101 points
in the square region [−5, 5]2 and compute the corresponding gz. To visualize
the obstacle, we plot the level curves of the inverse of the discrete �2 norm of
gz (note that by the linear sampling method the boundary of the obstacle is
characterized as the set of points where the L2 norm of g starts to become
large; see the comments at the end of Sect. 4.3). Then we compute (8.35)
at the sampling points in the disk centered at the origin with radius 0.5 (in
our examples this circle is always inside D). Although (8.35) is theoretically
a constant, because of the ill-posed nature of the far-field equation, we evalu-
ated (8.35) at all the grid points z in the disk and exhibit the maximum, the
average, and the median of the computed values of (8.35). In particular, the
average, median, and maximum each provide a reasonable approximation to
the true impedance.

For our examples we select two scatterers, shown in Fig. 8.1 (the kite and
the peanut).

−5 −4 −3 −2 −1 0 1 2 3 4 5 −5 −4 −3 −2 −1 0 1 2 3 4 5
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Fig. 8.1. Boundary of scatterers used in this study: kite/peanut. When a mixed
condition is used for the peanut, the thicker portion of the boundary is ∂DD

2

Kite. We consider the impedance boundary value problem for the kite
described by the equation (left curve in Fig. 8.1)

x(t) = (1.5 sin(t), cos(t) + 0.65 cos(2t)− 0.65) , 0 ≤ t ≤ 2π,
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with impedance λ = 2, λ = 5, and λ = 9. In Fig. 8.2 we show two examples
of the reconstructed kite (the reconstructions for the other tested cases look
similar). In the numerical results for the reconstructed λ shown in Tables 8.1
and 8.2 we use the exact boundary ∂D when we compute the L2(∂D) norm
that appears in the denominator of (8.35).
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Fig. 8.2. Reconstruction of kite with impedance boundary condition with 1% noise:
left : with λ = 5, right : with λ = 92

Table 8.1. Reconstruction of surface impedance λ for kite with 1% noise2

Maximum Average Median

λ = 2 2.050 1.975 1.982

λ = 5 4.976 4.679 4.787

λ = 9 8.883 8.342 8.403

Table 8.2. Reconstruction of surface impedance λ for kite with 10% noise2

Maximum Average Median

λ = 2 2.043 1.960 1.957

λ = 5 4.858 4.513 4.524

λ = 9 9.0328 8.013 7.992

Peanut. Next we consider a peanut described by the equation (right curve
in Fig. 8.1)

x(t) =

(√
cos2(t) + 4 sin2(t) cos(t),

√
cos2(t) + 4 sin2(t) sin(t), 0 ≤ t ≤ 2π

)



220 8 Mixed Boundary Value Problems

rotated by π/9. Here we choose the surface impedance λ = 2 and λ = 5
and consider the case of a totally coated peanut (i.e., impedance boundary
value problem) as well as of a partially coated peanut (i.e., mixed Dirichlet-
impedance boundary value problem, with ∂DI being the lower half of the
peanut, as shown in Fig. 8.1). Two examples of the reconstructed peanut are
presented in Fig. 8.3. A natural guess for the boundary of the scatterer is
the ellipse shown by a dashed line in Fig. 8.4, and we examine the sensitivity
of our formula on the approximation of the boundary using this ellipse to
compute ‖vgz + Φ(·, z)‖L2(∂D) in (8.35). The recovered values of λ for our
experiments are shown in Tables 8.3 and 8.4.
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Fig. 8.3. Left : reconstruction of peanut with impedance boundary condition with
λ = 5; right : reconstruction of peanut with mixed condition with λ = 5 on impedance
part. Both examples are for k = 3 with 1% noise2

Table 8.3. Reconstruction of λ for peanut with 1% noise2

Maximum Average Median

λ = 2 impedance 2.192 1.992 1.979

λ = 2 imped., approx. bound. 2.395 1.823 1.886

λ = 2 mixed conditions 2.595 2.207 2.257

λ = 5 impedance 5.689 4.950 5.181

λ = 5 imped., approx. bound. 5.534 4.412 4.501

λ = 5 mixed conditions 5.689 4.950 5.180

2Reprinted from F. Cakoni and D. Colton, The determination of the surface
impedance of a partially coated obstacle from far-field data, SIAM J. Appl. Math. 64
(2004), 709–723. Copyright c©2004 Society for Industrial and Applied Mathematics.
Reprinted with permission. All rights reserved.
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Fig. 8.4. Dashed line: approximated boundary used for computing
‖vgz +Φ(·; z)‖L2(∂D) in (8.35) in case of peanut with impedance boundary condition2

Table 8.4. Reconstruction of λ for peanut with 10% noise2

Maximum Average Median

λ = 2 impedance 2.297 1.985 1.978

λ = 2 imped., approx. bound. 2.301 1.828 1.853

λ = 2 mixed conditions 2.681 2.335 2.374

λ = 5 impedance 5.335 4.691 4.731

λ = 5 imped., approx. bound. 5.806 4.231 4.313

λ = 5 mixed conditions 5.893 4.649 4.951

8.4 Scattering by Partially Coated Dielectric

We now consider the scattering of time-harmonic electromagnetic waves by an
infinitely long, cylindrical, orthotropic dielectric partially coated with a very
thin layer of a highly conductive material. Let the bounded domain D ⊂ R

2

be the cross section of the cylinder, assume that the exterior domain R
2 \ D̄

is connected, and let ν be the unit outward normal to the smooth boundary
∂D. The boundary ∂D = ∂D1 ∩ ∂D2 is split into two parts, ∂D1 and ∂D2,
each an open set relative to ∂D and possibly disconnected. The open arc
∂D1 corresponds to the uncoated part, and ∂D2 corresponds to the coated
part. We assume that the incident electromagnetic field and the constitutive
parameters are as described in Sect. 5.1. In particular, the fields inside D
and outside D satisfy (5.5) and (5.6), respectively, and on ∂D1, the uncoated
portion of the boundary, we have the transmission condition (5.7). However, on
the coated portion of the cylinder, we have the conductive boundary condition
given by

ν×Eext−ν×Eint = 0 and ν×Hext−ν×Hint = η(ν×Eext)×ν, (8.39)
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where the surface conductivity η = η(x) describes the physical properties of
the thin, highly conductive coating [3, 4]. Assuming that η does not depend
on the z-coordinate (we recall that the cylinder axis is assumed to be parallel
to the z-direction), on ∂D2 the transmission conditions (8.39) now become

v− (us + ui) = −iη ∂
∂ν

(us + ui) and
∂v

∂νA
− ∂

∂ν
(us + ui) = 0 on ∂D2,

where ∂v/∂νA := ν ·A(x)∇v.

The direct scattering problem for a partially coated dielectric can now be
formulated as follows: assume that A, n, and D satisfy the assumptions of
Sect. 5.1 and η ∈ C(∂D2) satisfies η(x) ≥ η0 > 0 for all x ∈ ∂D2. Given the
incident field ui satisfying

Δui + k2ui = 0 in R
2,

we look for us ∈ H1
loc(R

2 \ D̄) and v ∈ H1(D) such that

∇ ·A∇v + k2n v = 0 in D, (8.40)

Δus + k2 us = 0 in R
2 \ D̄, (8.41)

v − us = ui on ∂D1, (8.42)

v − us = −iη ∂(u
s + ui)

∂ν
+ ui on ∂D2, (8.43)

∂v

∂νA
− ∂us

∂ν
=
∂ui

∂ν
on ∂D, (8.44)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0. (8.45)

We start with a brief discussion of the well-posedness of the foregoing scat-
tering problem.

Theorem 8.18. The problem (8.40)–(8.45) has at most one solution.

Proof. Let v ∈ H1(D) and us ∈ H1
loc(De) be the solution of (8.40)–(8.45)

corresponding to the incident wave ui = 0. Applying Green’s first identity in
D and (R2 \ D̄) ∩ ΩR, where (and in what follows) ΩR is a disk of radius R
centered at the origin and containing D̄, and using the transmission conditions
we have that∫

D

(∇v · A∇v − k2n|v|2) dy +
∫

ΩR\D̄

(|∇us|2 − k2|us|2) dy

=

∫
∂D

v · ∂v
∂νA

ds−
∫
∂D

us · ∂u
s

∂ν
ds+

∫
∂ΩR

us · ∂u
s

∂ν
ds

= i

∫
∂D2

1

η
|v − us|2 ds+

∫
∂ΩR

us · ∂u
s

∂ν
ds.
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Taking the imaginary part of both sides and using the fact that Im(A) ≤ 0,
Im(n) ≥ 0, and η ≥ η0 > 0 we obtain

Im

∫
∂ΩR

us · ∂u
s

∂ν
ds ≥ 0.

Finally, an application of Theorem 3.6 and the unique continuation principle
yield, as the proof in Lemma 5.25, us = v = 0. ��

We now rewrite the scattering problem in a variational form. Multiplying
the equations in (8.40)–(8.45) by a test function ϕ and using Green’s first
identity, together with the transmission conditions, we obtain that the total
field w defined in ΩR by w|D := v and w|ΩR\D̄ = us + ui satisfies

∫
D

(∇ϕ ·A∇w − k2nϕw
)
dy +

∫
ΩR\D̄

(∇ϕ · ∇w − k2ϕw
)
dy (8.46)

−
∫

∂D2

i

η
[ϕ] · [w] ds−

∫
∂ΩR

ϕTw ds = −
∫

∂ΩR

ϕTui ds+

∫
∂ΩR

ϕ
∂ui

∂ν
ds,

where T : H
1
2 (∂ΩR) → H

1
2 (∂ΩR) is the Dirichlet-to-Neumann operator and

[w] = w+|∂D −w−|∂D denotes the jump of w across ∂D, with w+ and w− the
traces (in the sense of the trace operator) of w ∈ H1(ΩR \D̄) and w ∈ H1(D),

respectively. Note that [w] ∈ H̃
1
2 (∂D2) since from the transmission conditions

[w]|∂D1 = 0.
Hence, the natural variational space for w and ϕ is H1(ΩR \ ∂D2). Note

that if u ∈ H1(ΩR \ ∂D2), then u ∈ H1(D), u ∈ H1(ΩR \ D̄), [u]|∂D1 = 0,
and

‖u‖2
H1(ΩR\∂D2)

= ‖u‖2H1(D) + ‖u‖2H1(ΩR\D̄).

Now, letting

a1(w,ϕ) : =

∫
D

(∇ϕ · A∇w + ϕw) dy +

∫
ΩR\D̄

(∇ϕ · ∇w + ϕw) dy

−
∫

∂D2

i

η
[ϕ] · [w] ds−

∫
∂ΩR

ϕT0w ds (8.47)

and

a2(w,ϕ) := −
∫
ΩR

(nk2 + 1)ϕw dy −
∫

∂ΩR

ϕ (T0 − T )w ds,

where T0 is the negative definite part of the Dirichlet-to-Neumann mapping
defined in Theorem 5.22, the variational formulation of the mixed transmission
problem reads: find w ∈ H1(ΩR \ ∂D2) such that
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a1(w,ϕ) + a2(w,ϕ) = L(ϕ) ∀ϕ ∈ H1(ΩR \ ∂D2), (8.48)

where L(ϕ) denotes the bounded conjugate linear functional defined by the
right-hand side of (8.46). We leave it as an exercise to the reader to prove that
if w ∈ H1(ΩR \ ∂D2) solves (8.48), then v := w|D and us = w|ΩR\D̄ − ui sat-

isfy (8.40), (8.41) in ΩR\D̄, the boundary conditions (8.42), (8.43), and (8.44),
and Tus = ∂us/∂ν on ∂ΩR. Exactly in the same way as in Example 5.23 one
can show that us can be uniquely extended to a solution in R

2 \ D̄.
Now using the trace theorem, the Cauchy–Schwarz inequality, the chain

of continuous embeddings

H̃
1
2 (∂D2) ⊂ H

1
2 (∂D2) ⊂ L2(∂D2) ⊂ H̃− 1

2 (∂D2) ⊂ H− 1
2 (∂D2),

and the assumptions on A, n, and η, one can now show in a similar way as
in Sect. 5.4 that the sesquilinear form a1(·, ·) is bounded and strictly coer-
cive and the sesquilinear form a2(·, ·) is bounded and gives rise to a compact
linear operator due to the compact embedding of H1(ΩR \ ∂D2) in L

2(ΩR).
Hence, using the Lax–Milgram lemma and Theorem 5.16, the foregoing anal-
ysis, combined with Theorem 8.18, implies the following result.

Theorem 8.19. The problem (8.40)–(8.45) has exactly one solution v ∈
H1(D) and us ∈ H1

loc(R
2 \ D̄) that satisfies

‖v‖H1(D) + ‖us‖H1(ΩR\D) ≤ C‖ui‖H1(ΩR),

where the positive constant C > 0 is independent of ui but depends on R.

The scattered field us again has the asymptotic behavior

us(x) =
eikr√
r
u∞(θ) +O(r−3/2), r → ∞,

where the corresponding far-field pattern u∞(·) depends on the observation di-
rection x̂ := (cos θ, sin θ). In the case of incident plane waves ui(x) = eikx·d,
the interior field v and the scattered field us also depend on the incident
direction d := (cos φ, sin φ), as does the corresponding far field pattern
u∞(·) := u∞(·, φ). The far-field pattern in turn defines the corresponding
far-field operator F : L2[0, 2π] → L2[0, 2π] by (6.7).

As will be seen, the mixed interior transmission problem associated with
the mixed transmission problem (8.40)–(8.45) plays an important role in
studying the far-field operator. Hence, we now proceed to a discussion of
this problem. Consider the Sobolev space

H
1(D, ∂D2) :=

{
u ∈ H1(D) such that

∂u

∂ν
∈ L2(∂D2)

}

equipped with the graph norm
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‖u‖2
H1(D,∂D2)

:= ‖u‖2H1(D) +

∥∥∥∥∂u∂ν
∥∥∥∥
2

L2(∂D2)

.

Then the mixed interior transmission problem corresponding to the mixed
transmission problem (8.40)–(8.45) reads: given f ∈ H

1
2 (∂D), h ∈ H− 1

2 (∂D),
and r ∈ L2(∂D2), find v ∈ H1(D) and w ∈ H

1(D, ∂D2) such that

∇ · A∇v + k2n v = 0 in D, (8.49)

Δw + k2 w = 0 in D, (8.50)

v − w = f |∂D1 on ∂D1, (8.51)

v − w = −iη ∂w
∂ν

+ f |∂D2 + r on ∂D2, (8.52)

∂v

∂νA
− ∂w

∂ν
= h on ∂D. (8.53)

Theorem 8.20. If either Im(n) > 0 or Im
(
ξ̄ · Aξ ) < 0 at a point x0 ∈ D,

then the mixed interior transmission problem (8.49)–(8.53) has at most one
solution.

Proof. Let v and w be a solution of the homogeneous mixed interior trans-
mission problem (i.e., f = h = r = 0). Applying the divergence theorem to v
and A∇v (Corollary 5.8), using the boundary condition, and applying Green’s
first identity to w and w (Remark 6.29) we obtain

∫
D

∇v ·A∇v dy−
∫
D

k2n|v|2 dy =

∫
D

|∇w|2 dy−
∫
D

k2|w|2 dy+
∫

∂D2

iη

∣∣∣∣∂w∂ν
∣∣∣∣
2

ds.

Hence

Im

(∫
D

∇v ·A∇v dy
)

= 0, Im

(∫
D

n|v|2 dy
)

= 0, and

∫
∂D2

η

∣∣∣∣∂w∂ν
∣∣∣∣
2

ds = 0.

The last equation implies that ∂w/∂ν = 0 on ∂D2, whence w and v satisfy
the homogeneous interior transmission problem (6.12)–(6.15). The result of
the theorem now follows from Theorem 6.4. ��
The values of k for which the homogeneous mixed interior transmission prob-
lem (8.49)–(8.53) has a nontrivial solution are called transmission eigenvalues.
From the proof of Theorem 8.20 we have the following result.

Corollary 8.21. The transmission eigenvalues corresponding to (8.49)–(8.53)
form a subset of the transmission eigenvalues corresponding to (6.12)–(6.15)
defined in Definition 6.3.
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The preceding corollary justifies the use of the same name for the set of
eigenvalues corresponding to both the interior transmission problem and the
mixed interior transmission problem. We note that due to the presence of a
non-real-valued term in the transmission conditions, the approaches developed
in Chap. 6 to prove the existence of transmission eigenvalues cannot be used
in the current case. The existence of transmission eigenvalues corresponding
to (8.49)–(8.53) is to date an open problem.

From the proof of Theorem 8.20 we also see that if the scatterer is fully
coated, i.e., ∂D2 = ∂D, then the solution (v, w) of the homogeneous mixed
interior transmission problem satisfies

∇ · A∇v + k2n v = 0 in D,
∂v

∂νA
= 0 on ∂D,

and

Δw + k2w = 0 in D,
∂w

∂ν
= 0 on ∂D.

From this it follows that if ∂D2 = ∂D, then the uniqueness of the mixed
interior transmission problem is guaranteed if at least one of the foregoing
homogeneous Neumann problems has only a trivial solution.

The following important result can be shown in the same way as in
Theorem 6.2.

Theorem 8.22. The far-field operator F corresponding to the scattering prob-
lem (8.40)–(8.45) is injective with dense range if and only if there does not
exist a Herglotz wave function vg such that the pair v, vg is a solution to the
homogeneous mixed interior transmission problem (8.49)–(8.53) with w = vg.

We shall now discuss the solvability of the mixed interior transmission
problem (8.49)–(8.53).We will adapt the variational approach used in Sect. 6.2
to solve (6.12)–(6.15). To avoid repetition, we will only sketch the proof, emp-
hasizing the changes due to the boundary terms involving η.

Theorem 8.23. Assume that k is not a transmission eigenvalue and that
there exists a constant γ > 1 such that

either ξ̄ · Re(A) ξ ≥ γ|ξ|2 or ξ̄ · Re(A−1) ξ ≥ γ|ξ|2 ∀ ξ ∈ C
2.

Then the mixed interior transmission problem (8.49)–(8.53) has a unique
solution (v, w) that satisfies

‖v‖2H1(D) + ‖w‖2
H1(D,∂D2)

≤ C
(
‖f‖

H
1
2 (∂D)

+ ‖h‖
H− 1

2 (∂D)
+ ‖r‖L2(∂D2)

)
.

Proof. We first assume that ξ̄ · Re(A) ξ ≥ γ|ξ|2 for some γ > 1. In the same
way as in the proof of Theorem 6.8, we can show that (8.49)–(8.53) is a
compact perturbation of the modified mixed interior transmission problem
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∇ ·A∇v −mv = ρ1 in D, (8.54)

Δw − w = ρ2 in D, (8.55)

v − w = f |∂D1 on ∂D1, (8.56)

v − w = −iη ∂w
∂ν

+ f |∂D2 + r on ∂D2, (8.57)

∂v

∂νA
− ∂w

∂ν
= h on ∂D, (8.58)

where m ∈ C(D) such that m(x) ≥ γ. It is now sufficient to study
(8.54)–(8.58) since the result of the theorem will then follow by an appli-
cation of Theorem 5.16 and the fact that k is not a transmission eigenvalue.
We first reformulate (8.54)–(8.58) as an equivalent variational problem. To this
end, let

W (D) : =
{
w ∈ (L2(D)

)2
: ∇ ·w ∈ L2(D), ∇×w=0, and ν ·w ∈ L2(∂D2)

}

equipped with the natural inner product

(w1, w2)W = (w1, w2)L2(D) + (∇ ·w1, ∇ ·w2)L2(D) + (ν ·w1, ν ·w2)L2(∂D2)

and norm

‖w‖2W = ‖w‖2L2(D) + ‖∇ ·w‖2L2(D) + ‖ν ·w‖2L2(∂D2)
. (8.59)

We denote by 〈·, ·〉 the duality pairing between H
1
2 (∂D) and H− 1

2 (∂D) and
recall

〈ϕ, ψ · ν〉 =
∫
D

ϕ ∇ · ψ dx+

∫
D

∇ϕ ·ψ dx (8.60)

for (ϕ,ψ) ∈ H1(D)×W (D). Then the variational form of (8.54)–(8.58) is as
follows: find U = (v,w) ∈ H1(D)×W (D) such that

A(U, V ) = L(V ) for all V := (ϕ,ψ) ∈ H1(D)×W (D), (8.61)

where the sesquilinear form A defined on (H1(D)×W (D))2 is given by

A(U, V ) =

∫
D

A∇v · ∇ϕ̄ dx+

∫
D

mv ϕ̄ dx+

∫
D

∇ ·w∇ · ψ̄ dx+

∫
D

w · ψ̄ dx

− i

∫
∂D2

η (w · ν) (ψ̄ · ν)ds− 〈v, ψ̄ · ν〉− 〈ϕ̄, w · ν〉

and the conjugate linear functional L is given by

L(V ) =

∫
D

(ρ1 ϕ̄+ ρ2 ∇ · ψ̄) dx− i

∫
∂D2

η r (ψ̄ · ν) ds+ 〈ϕ̄, h〉 − 〈f, ψ̄ · ν〉 .
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By proceeding exactly as in the proof of Theorem 6.5 we can establish the
equivalence between (8.54)–(8.58) and (8.61). In particular, if (v, w) is the
unique solution (8.54)–(8.58), then U = (v,∇w) is a unique solution to (8.61).
Conversely, if U is the unique solution to (8.61), then the unique solution (v, w)
to (8.54)–(8.58) is such that U = (v,∇w).

Notice that the definitions of A and L differ from Definitions (6.22)
and (6.23) of A and L corresponding to (6.12)–(6.15) only by an additional
L2(∂D2) inner product term, which appears in the W norm given by (8.59).
Using the trace theorem and Schwarz’s inequality one can show that A and L
are bounded in the respective norms. On the other hand, by taking the real
and imaginary parts of A(U,U), we have from the assumptions on Re(A),
Im(A), and η that

|A(U,U)| ≥ γ‖v‖2H1(D) + ‖w‖2L2(D) + ‖∇ ·w‖2L2(D)

− 2Re(〈v̄, ν ·w〉) + η0‖ν ·w‖2L2(∂D2)
.

From the duality pairing (8.60) and Schwarz’s inequality we have that

2Re(〈v̄, ν ·w〉) ≤ | 〈v̄, w〉 | ≤ ‖v‖H1(D)

(
‖w‖2L2(D) + ‖∇ ·w‖2L2(D)

) 1
2

.

Hence, since γ > 1, we conclude that

|A(U,U)| ≥ γ − 1

γ + 1

(
‖v‖2H1(D) + ‖w‖2L2(D) + ‖∇ ·w‖2L2(D)

)
+η0‖ν ·w‖2L2(∂D2)

,

which means that A is coercive, i.e.,

|A(U,U)| ≥ C
(
‖v‖2H1(D) + ‖w‖2W (D)

)
,

where C = min((γ−1)/(γ+1), η0). Therefore, from the Lax–Milgram lemma
we have that the variational problem (8.61) is uniquely solvable, and, hence,
so is the modified interior transmission problem (8.54)–(8.58). Finally, the
uniqueness of a solution to the mixed interior transmission problem and an
application of Theorem 5.16 imply that (8.49)–(8.53) has a unique solution
(v, w) that satisfies

‖v‖H1(D) + ‖w‖H1(D,∂D2) ≤ C
(
‖f‖

H
1
2 (∂D)

+ ‖h‖
H− 1

2 (∂D)
+ ‖r‖L2(∂D2)

)
,

where C > 0 is independent of f, h, r. The case of ξ̄ ·Re(A−1) ξ can be treated
in a similar way. ��

Another main ingredient that we need to solve the inverse scattering prob-
lem for partially coated penetrable obstacles is an approximation property of
Herglotz wave functions. In particular, we need to show that if (v, w) is the
solution of the mixed interior transmission problem, then w can be approx-
imated by a Herglotz wave function with respect to the H

1(D, ∂D2) norm
[which is a stronger norm than the H1(D) used in Lemma 6.45].
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Theorem 8.24. Assume that k is not a transmission eigenvalue, and let
(w, v) be the solution of the mixed interior transmission problem (8.49)–(8.53).
Then for every ε > 0 there exists a Herglotz wave function vgε with kernel
gε ∈ L2[0, 2π] such that

‖w − vgε‖H1(D,∂D2) ≤ ε. (8.62)

Proof. We proceed in two steps:

1. We first show that the operator H : L2[0, 2π] → H
1
2 (∂D1) × L2(∂D2)

defined by

(Hg)(x) :=

{
vg(x), x ∈ ∂D1,

∂vg(x)

∂ν
+ ivg(x), x ∈ ∂D2,

has a dense range, where vg is a Herglotz wave function written in the
form

vg(x) =

2π∫
0

e−ik(x1 cos θ+x2 sin θ)g(θ)ds(θ), x = (x1, x2).

To this end, according to Lemma 6.42, it suffices to show that the cor-
responding transpose operator H� : H̃− 1

2 (∂D1) × L2(∂D2) → L2[0, 2π]
defined by

〈Hg, φ〉
H

1
2 (∂D1),H̃

− 1
2 (∂D1)

+ 〈Hg, ψ〉L2(∂D2),L2(∂D2)

=
〈
g, H�(φ, ψ)

〉
L2[0, 2π],L2[0, 2π]

,

for g ∈ L2[0, 2π], φ ∈ H̃− 1
2 (∂D1), ψ ∈ L2(∂D2), is injective, where 〈·, ·〉

denotes the duality pairing between the denoted spaces. By interchanging
the order of integration one can show that

H�(φ, ψ)(x̂) =
∫
∂D

e−iky·x̂φ̃(y) ds(y) +
∫
∂D

∂e−iky·x̂

∂ν
ψ̃(y) ds(y)

+ i

∫
∂D

e−iky·x̂ψ̃(y) ds(y),

where φ̃ ∈ H− 1
2 (∂D) and ψ̃ ∈ L2(∂D) are the extension by zero to the

whole boundary ∂D of φ and ψ, respectively. Note that from the definition
of H̃− 1

2 (∂D1) in Sect. 8.1 such an extension exists.
Assume now that H�(φ, ψ) = 0. Since H�(φ, ψ) is, up to a constant
factor, the far-field pattern of the potential
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P (x) =

∫
∂D

Φ(x, y)φ̃(y) ds(y) +

∫
∂D

∂Φ(x, y)

∂ν
ψ̃(y) ds(y)

+ i

∫
∂D

Φ(x, y)ψ̃(y) ds(y),

which satisfies the Helmholtz equation in R
2 \ D̄, from Rellich’s lemma we

have that P (x) = 0 in R
2 \ D̄. As x → ∂D the following jump relations

hold:

P+ − P−|∂D1 = 0, P+ − P−|∂D2 = ψ

∂P+

∂ν
− ∂P−

∂ν

∣∣∣∣
∂D1

= −φ, ∂P+

∂ν
− ∂P−

∂ν

∣∣∣∣
∂D2

= −iψ,

where by the superscript + and − we distinguish the limit obtained by
approaching the boundary ∂D from R

2 \ D̄ and D, respectively (see [54],
p. 45, for the jump relations of potentials with L2 densities, and [127] for

the jump relations of the single layer potential with H− 1
2 density). Using

the fact that P+ = ∂P+/∂ν = 0 we see that P satisfies the Helmholtz
equation and

P−|∂D1 = 0
∂P−

∂ν
+ iP−

∣∣∣∣
∂D2

= 0,

where the equalities are understood in the L2 limit sense. Using Green’s
first identity and a parallel surface argument one can conclude, as in The-
orem 8.2, that P = 0 in D, whence from the preceding jump relations
φ = ψ = 0.

2. Next, we take w ∈ H
1(D, ∂D2), which satisfies the Helmholtz equation

in D. By considering w as the solution of (8.10)–(8.12) with f := w|∂D1 ∈
H

1
2 (∂D1), h := ∂w/∂ν + iw|∂D2

∈ L2(∂D2) ⊂ H− 1
2 (∂D2), λ = 1, ∂DD =

∂D1, and ∂DI = ∂D2, the a priori estimate (8.15) yields

‖w‖H1(D) +

∥∥∥∥∂w∂ν
∥∥∥∥
L2(∂D2)

≤ C‖w‖
H

1
2 (∂D1)

+ C

∥∥∥∥∂w∂ν + iw

∥∥∥∥
L2(∂D2)

.

Since vg also satisfies the Helmholtz equation in D, we can write

‖w − vg‖H1(D,∂D2) ≤ C‖w − vg‖
H

1
2 (∂D1)

(8.63)

+ C

∥∥∥∥∂(w − vg)

∂ν
+ i(w − vg)

∥∥∥∥
L2(∂D2)

.

From the first part of the proof, given ε, we can now find gε ∈ L2[0, 2π]
that makes the right-hand side of the inequality (8.63) less than ε. The
theorem is now proved.

��
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8.5 Inverse Scattering Problem for Partially
Coated Dielectric

The main goal of this section is the solution of the inverse scattering problem
for partially coated dielectrics, which is formulated as follows: determine both
D and η from a knowledge of the far-field pattern u∞(θ, φ) for θ, φ ∈ [0, 2π].
As shown in Sect. 4.5, it suffices to know the far-field pattern corresponding to
θ ∈ [θ0, θ1] ⊂ [0, 2π] and φ ∈ [φ0, φ1] ⊂ [0, 2π]. We begin with a uniqueness
theorem.

Theorem 8.25. Let the domains D1 and D2 with the boundaries ∂D1 and
∂D2, respectively, the matrix-valued functions A1 and A2, the functions n1 and
n2, and the functions η1 and η2 determined on the portions ∂D1

2 ⊆ ∂D1 and
∂D2

2 ⊆ ∂D2, respectively (either ∂D1
2 or ∂D2

2, or both, can be empty sets), sat-
isfy the assumptions of (8.40)–(8.45). Assume that either ξ̄ ·Re(A1) ξ ≥ γ|ξ|2
or ξ̄ · Re(A−1

1 ) ξ ≥ γ|ξ|2, and either ξ̄ · Re(A2) ξ ≥ γ|ξ|2 or ξ̄ · Re(A−1
2 ) ξ ≥

γ|ξ|2 for some γ > 1. If the far-field patterns u1∞(θ, φ) corresponding to
D1, A1, n1, η1 and u2∞(θ, φ) corresponding to D2, A2, n2, η2 coincide for all
θ, φ ∈ [0, 2π], then D1 = D2.

Proof. The proof follows the lines of the uniqueness proof for the inverse scat-
tering problem for an orthotropic medium given in Theorem 6.39. The main
two ingredients are the well-posedness of the forward problem established in
Theorem 8.19 and the well-posedness of the modified mixed interior transmis-
sion problem established in Theorem 8.23. Only minor changes are needed in
the proof to account for the space H1(D, ∂D2)×H1(D), where the solution of
the mixed interior transmission problem exists and replaces H1(D)×H1(D)
in the proof of Theorem 6.39. To avoid repetition, we do not present here the
technical details. The proof of this theorem for the case of Maxwell’s equations
in R

3 can be found in [13]. ��
The next question to ask concerns the unique determination of the surface
conductivity η. From the preceding theorem we can now assume that D is
known. Furthermore, we require that for an arbitrary choice of ∂D2, A, and
η there exists at least one incident plane wave such that the corresponding
total field u satisfies ∂u/∂ν|∂D0

�= 0, where ∂D0 ⊂ ∂D is an arbitrary portion
of ∂D. In the context of our application, this is a reasonable assumption since
otherwise the portion of the boundary where ∂u/∂ν = 0 for all incident plane
waves would behave like a perfect conductor, contrary to the assumption that
the metallic coating is thin enough for the incident field to penetrate into D.
We say that k2 is a Neumann eigenvalue if the homogeneous problem

∇·A∇V + k2nV = 0 in D,
∂V

∂νA
= 0 on ∂D (8.64)

has a nontrivial solution. In particular, it is easy to show (the reader can try
it as an exercise) that if Im(A) < 0 or Im(n) > 0 at a point x0 ∈ D, then there
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are no Neumann eigenvalues. The reader can also show as in Example 5.17
that if Im(A) = 0 and Im(n) = 0, then the Neumann eigenvalues exist and
form a discrete set.

We can now prove the following uniqueness result for η.

Theorem 8.26. Assume that k2 is not a Neumann eigenvalue. Then under
the foregoing assumptions and for fixed D and A the surface conductivity η is
uniquely determined from the far-field pattern u∞(θ, φ) for θ, φ ∈ [0, 2π].

Proof. Let D and A be fixed, and suppose there exists η1 ∈ C(∂D
1

2) and η2 ∈
C(∂D

2

2) such that the corresponding scattered fields us,1 and us,2, respectively,
have the same far-field patterns u1∞(θ, φ) = u2∞(θ, φ) for all θ, φ ∈ [0, 2π].
Then from Rellich’s lemma us,1 = us,2 in R

2\D̄. Hence, from the transmission
condition the difference V = v1 − v2 satisfies

∇·A∇V + k2nV = 0 in D, (8.65)

∂V

∂νA
= 0 on ∂D, (8.66)

V = −i(η̃1 − η̃2)
∂u1

∂ν
on ∂D, (8.67)

where η̃1 and η̃2 are the extension by zero of η1 and η2, respectively, to the
whole of ∂D and u1 = us,1+ui. Since k2 is not a Neumann eigenvalue, (8.65)
and (8.66) imply that V = 0 in D, and hence (8.67) becomes

(η̃1 − η̃2)
∂u1

∂ν
= 0 on ∂D

for all incident waves. Since for a given ∂D0 ⊂ ∂D there exists at least one
incident plane wave such that ∂u1/∂ν|∂D0 �= 0, the continuity of η1 and η2 in

∂D
1

2 and ∂D
2

2, respectively, implies that η̃1 = η̃2. ��
As the reader saw in Chaps. 4 and 6 and Sect. 8.1, our method for solving

the inverse problem is based on finding an approximate solution to the far-field
equation

Fg = Φ∞(·, z), z ∈ R
2,

where F is the far-field operator corresponding to the scattering prob-
lem (8.54)–(8.58). If we consider the operator B : H1(D, ∂D2) → L2[0, 2π],
which takes the incident field ui satisfying

Δui + k2ui = 0 in D

to the far-field pattern u∞ of the solution to (8.40)–(8.45) corresponding to
this incident field, then the far-field equation can be written as

(Bvg)(x̂) = Φ∞(x̂, z), z ∈ R
2,
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where vg is the Herglotz wave function with kernel g. Note that the formulation
of the scattering problem and Theorem 8.19 remains valid if the incident field
ui is defined as a solution to the Helmhotz equation only in D (or in a neigh-
borhood of ∂D) since the traces of ui only appear in the boundary conditions.
From the well-posedness of (8.40)–(8.45) we see that B is a bounded linear
operator. Furthermore, in the same way as in Theorem 6.48, one can show
that B is, in addition, a compact operator. Assuming that k2 is not a trans-
mission eigenvalue, one can now easily see that the range of B is dense in
L2[0, 2π] since it contains the range of F , which from Theorem 8.22 is dense
in L2[0, 2π]. We next observe that

Φ∞(·, z) ∈ Range(B) ⇐⇒ z ∈ D, (8.68)

provided that k is not a transmission eigenvalue. Indeed, if z ∈ D, then the
solution ui of (Bui)(x̂) = Φ∞(x̂, z) is ui = wz , where wz ∈ H

1(D, ∂D2) and
vz ∈ H1(D) is the unique solution of the mixed interior transmission problem

∇·A∇vz + k2n vz = 0 in D, (8.69)

Δwz + k2 wz = 0, in D, (8.70)

vz − (wz + Φ(·, z)) = 0 on ∂D1, (8.71)

vz − (wz + Φ(·, z)) = −iη ∂

∂ν
(wz + Φ(·, z)) on ∂D2, (8.72)

∂vz
∂νA

− ∂

∂ν
(wz + Φ(·, z)) = 0 on ∂D. (8.73)

On the other hand, for z ∈ R
2 \ D̄ the fact that Φ(·, z) has a singularity at z,

together with Rellich’s lemma, implies that Φ∞(·, z) is not in the range of B.
Notice that since in general the solution wz of (8.69)–(5.5) is not a Herglotz
wave function, the far-field equation in general does not have a solution for
any z ∈ R

2. However, for z ∈ D, from Theorem 8.24 we can approximate
wz by a Herglotz function vg, and its kernel g is an approximate solution of
the far-field equation. Finally, noting that if us, v solves (8.40)–(8.45) with
ui ∈ H

1(D, ∂D2), then ui, v solves the mixed interior transmission prob-
lem (8.69)–(8.73) with Φ(·, z) replaced by us and Bui = u∞, where u∞ is
the far-field pattern of us, one can easily deduce that B is injective, provided
that k is not a transmission eigenvalue. The foregoing discussion now implies,
in the same way as in Theorem 6.50, the following result.

Theorem 8.27. Assume that k is not a transmission eigenvalue and D, A,
n, and η satisfy the assumptions in the formulation of the scattering prob-
lem (8.40)–(8.45). Then, if F is the far-field operator corresponding to (8.40)–
(8.45), we have that

1. For z ∈ D and a given ε > 0 there exists a function gεz ∈ L2[0, 2π] such
that

‖Fgεz − Φ∞(·, z)‖L2[0,2π] < ε,



234 8 Mixed Boundary Value Problems

and the Herglotz wave function vgε
z
with kernel gεz converges in H

1(D, ∂D2)
to wz as ε→ 0, where (vz , wz) is the unique solution of (8.69)–(8.73).

2. For z �∈ D and a given ε > 0 every function gεz ∈ L2[0, 2π] that satisfies

‖Fgεz − Φ∞(·, z)‖L2[0,2π] < ε

is such that
lim
ε→0

‖vgε
z
‖
H1(D,∂D2)

= ∞.

The approximate solution g of the far-field equation given by Theorem 8.27
(assuming that it can be determined using regularization methods) can be
used as in the previous inverse problems considered in Chaps. 4 and 6 and
Sect. 8.1 to reconstruct an approximation to D. In particular, the boundary
∂D of D can be visualized as the set of points z where the L2 norm of gz
becomes large.

Provided that an approximation to D is obtained as was done previously,
our next goal is to use the same g to estimate the maximum of the surface
conductivity η. To this end, we define Wz by

Wz := wz + Φ(·, z), (8.74)

where (vz , wz) satisfy (8.69)–(8.73). In particular, since wz ∈ H
1(D, ∂D2),

Δwz ∈ L2(D) and z ∈ D, we have that Wz |∂D ∈ H
1
2 (∂D), ∂Wz/∂ν|∂D ∈

H− 1
2 (∂D) and ∂Wz/∂ν|∂D2 ∈ L2(∂D2).

Lemma 8.28. For every two points z1 and z2 in D we have that

−2

∫
D

∇vz1 · Im(A)∇vz2 dx + 2k2
∫
D

Im(n)vz1vz2 dx+2

∫
∂D2

η(x)
∂Wz1

∂ν

∂W z2

∂ν
ds

= −4kπ|γ|2J0(k|z1−z2|)+i (wz1(z2)−wz2(z1)) ,

where wz1 , Wz1 and wz2 , Wz2 are defined by (8.69)–(8.73) and (8.74), respec-
tively, and J0 is a Bessel function of order zero.

Proof. Let z1 and z2 be two points in D and vz1 , wz1 , Wz1 and vz2 , wz2 , Wz2

the corresponding functions defined by (8.69)–(8.73). Applying the divergence
theorem (Corollary 5.8) to vz1 , vz2 and using (8.69)–(8.73), together with the
fact that A is symmetric, we have that

∫
∂D

(
vz1

∂vz2
∂νA

− vz2
∂vz1
∂νA

)
ds =

∫
D

(∇vz1 ·A∇vz2 −∇vz2 ·A∇vz1
)
dx

+

∫
D

(
vz1∇·A∇vz2 − vz2∇·A∇vz1

)
dx = −2i

∫
D

∇vz1 · Im(A)∇vz2 dx

+2ik2
∫
D

Im(n)vz1vz2 dx. (8.75)
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On the other hand, from the boundary conditions we have

∫
∂D

(
vz1

∂vz2
∂νA

− vz2
∂vz1
∂νA

)
ds

=

∫
∂D

(
Wz1

∂W z2

∂ν
−W z2

∂Wz1

∂ν

)
ds− 2i

∫
∂D2

η(x)
∂Wz1

∂ν

∂W z2

∂ν
ds.

Hence

−2i

∫
D

∇vz1 · Im(A)∇vz2 dx+ 2ik2
∫
D

Im(n)vz1vz2 dx

+2i

∫
∂D2

η(x)
∂Wz1

∂ν

∂W z2

∂ν
ds =

∫
∂D

(
Wz1

∂W z2

∂ν
−W z2

∂Wz1

∂ν

)
ds

=

∫
∂D

(
Φ(·, z1)∂Φ(·, z2)

∂ν
− Φ(·, z2)∂Φ(·, z1)

∂ν

)
ds

+

∫
∂D

(
wz1

∂Φ(·, z2)
∂ν

− Φ(·, z2)∂wz1

∂ν

)
ds

+

∫
∂D

(
Φ(·, z1)∂wz2

∂ν
− wz2

∂Φ(·, z1)
∂ν

)
ds.

Green’s second identity applied to the radiating solution Φ(·, z) of the Helmholtz
equation in De implies that

∫
∂D

(
Φ(·, z1)∂Φ(·, z2)

∂ν
− Φ(·, z2)∂Φ(·, z1)

∂ν

)
ds = −2ik

2π∫
0

Φ∞(·, z1)Φ∞(·, z2)ds

= −2ik

2π∫
0

|γ|2e−ikx̂·z1eikx̂·z2 ds = −4ikπ|γ|2J0(k|z1 − z2|),

and from the representation formula for wz1 and wz2 we now obtain

−2i

∫
D

∇vz1 · Im(A)∇vz2 dx+ 2ik2
∫
D

Im(n)vz1vz2 dx

+2i

∫
∂D2

η(x)
∂Wz1

∂ν

∂W z2

∂ν
ds = −4ikπ|γ|2J0(k|z1 − z2|) + wz2(z1)− wz1(z2).

Dividing both sides of the foregoing relation by i we have the result. ��
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Assuming D is connected, consider a ball Ωr ⊂ D of radius r contained
in D (Remark 4.13), and define a subset of L2(∂D2) by

V :=

⎧⎨
⎩f ∈ L2(∂D2) :

f =
∂Wz

∂ν

∣∣∣∣
∂D2

withWz = wz + Φ(·, z),
z ∈ Ωr and wz , vz the solution of (8.69)–(8.73)

⎫⎬
⎭ .

Lemma 8.29. Assume that k is not a transmission eigenvalue. Then V is
complete in L2(∂D2).

Proof. Let ϕ be a function in L2(∂D2) such that for every z ∈ Ωr∫
∂D2

∂Wz

∂ν
ϕds = 0.

Since k2 is not a transmission eigenvalue, we can construct v ∈ H1(D) and w ∈
H

1(D, ∂D2) as the unique solution of the following mixed interior transmission
problem:

(i) ∇·A∇v + k2n v = 0 in D,

(ii) Δw + k2 w = 0 in D,

(iii) v − w = 0 on ∂D1,

(iv) v − w = −iη ∂w
∂ν

+ ϕ on ∂D2,

(v)
∂v

∂νA
− ∂w

∂ν
= 0 on ∂D.

Then we have

0 =

∫
∂D2

∂Wz

∂ν
ϕds =

∫
∂D

∂Wz

∂ν
(v − w) ds + i

∫
∂D2

η
∂Wz

∂ν

∂w

∂ν
ds

=

∫
∂D

∂Wz

∂ν
v ds−

∫
∂D

∂Wz

∂ν
w ds+ i

∫
∂D2

η
∂Wz

∂ν

∂w

∂ν
ds. (8.76)

From the equations for vz and v, the divergence theorem, and the transmission
boundary conditions we have∫

∂D

∂Wz

∂ν
v ds =

∫
∂D

∂vz
∂νA

v ds =

∫
∂D

∂v

∂νA
vz ds

=

∫
∂D

∂w

∂ν
Wz ds− i

∫
∂D2

η
∂Wz

∂ν

∂w

∂ν
ds. (8.77)

Finally, substituting (8.77) into (8.76) and using the integral representation
formula we obtain
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0 =

∫
∂D

(
∂w

∂ν
Wz − ∂Wz

∂ν
w

)
ds =

∫
∂D

(
∂w

∂ν
wz − ∂wz

∂ν
w

)
ds

=

∫
∂D

(
∂w

∂ν
Φ(·, z)− ∂Φ(·, z)

∂ν
w

)
ds = w(z) ∀z ∈ Ωr. (8.78)

The unique continuation principle for the Helmholtz equation now implies
that w = 0 in D. Then (cf. the proof of Theorem 8.2) v = 0, and therefore
ϕ = 0, which proves the lemma. ��

We now assume that Im(A) = 0, Im(n) = 0, and that k is not a trans-
mission eigenvalue. Then setting z = z1 = z2 in Lemma 8.28 we arrive at the
following integral equation for η:

∫
∂D2

η(x)

∣∣∣∣ ∂∂ν (wz(x) + Φ(x, z))

∣∣∣∣
2

ds = −1

4
− Im (wz(z)) , z ∈ D. (8.79)

If we denote by η̃ ∈ L2(∂D) the extension by zero to the whole boundary of
the surface conductivity η, then we can assume that the region of integration
in the integral in (8.79) is ∂D instead of ∂D2. By Lemma 8.29, we see that the
left-hand side of (8.79) is an injective compact integral operator with positive
kernel defined in L2(∂D) (replacing η by η̃). Using Tikhonov regularization
techniques (cf. [68]) it is possible to determine η̃ (and hence η without knowing
a priori the portion ∂D2) by finding a regularized solution of the integral
equation in L2(∂D) with noisy kernel and noisy right-hand side (recall from
Theorem 8.27 that wz and its derivatives can be approximated by vgz and its
derivative, respectively). For numerical examples using this approach we refer
the reader to [27].

In the particular case where the coating is homogeneous, i.e., the surface
conductivity is a positive constant η > 0, we have that

η =
−2kπ|γ|2 − Im (wz(z))∥∥∥∥ ∂∂ν (wz(·) + Φ(·, z))

∥∥∥∥
2

L2(∂D2)

. (8.80)

A drawback of (8.80) is that the extent of the coating ∂D2 is in general not
known. Hence, if ∂D2 is replaced by ∂D, these expressions in practice only
provide a lower bound for the maximum of η, unless it is known a priori thatD
is completely coated.

8.6 Numerical Examples

We now present some numerical tests of the preceding inversion scheme using
synthetic data. For our examples, in (8.40)–(8.45) we choose A = (1/4)I,
n = 1, and η equal to a constant. The far-field data are computed using
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a finite-element method on a domain that is terminated by a rectangular
perfectly matched layer (PML), and the far-field equation is solved by the
same procedure as described at the end of Sect. 8.1 to compute g [27].

We present some results for an ellipse given by the parametric equations
x = 0.5 cos(s) and y = 0.2 sin(s), s ∈ [0, 2π]. For the ellipse we consider either
a fully coated or partially coated object, shown in Fig 8.5.
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1

Fig. 8.5. Diagram showing coated portion of partially coated ellipse as thick line.
Dotted square: inner boundary of PML; solid square: boundary of finite-element
computational domain3

We begin by assuming an exact knowledge of the boundary in order to
assess the accuracy of (8.80). Having computed g using regularization methods
to solve the far-field equation, we approximate (8.80) using the trapezoidal
rule with 100 integration points and use z0 = (0, 0). In Fig. 8.6 we show
the results of the reconstruction of a range of conductivities η for a fully
coated ellipse and partially coated ellipse. Recall that for the partially coated
ellipse, (8.80) with ∂D2 replaced by ∂D provides only a lower bound for η.
For each exact η we compute the far-field data, add noise, and compute an
approximation to wz , as discussed previously and in Sect. 8.1.

3Reprinted from F. Cakoni, D. Colton, and P. Monk, The determination of
the surface conductivity of a partially coated dielectric, SIAM J. Appl. Math. 65
(2005), 767–789. Copyright c©2005 Society for Industrial and Applied Mathematics.
Reprinted with permission. All rights reserved.
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Fig. 8.6. Computation of η using exact boundary for fully coated and partially
coated ellipses. Clearly, in all cases the approximation of η deteriorates for large
conductivities3

We now wish to investigate the solution of the full inverse problem.
We start by using the linear sampling method to approximate the boundary
of the scatterer, which is based on the behavior of g given by Theorem 8.27.
In particular, we compute 1/‖g‖ for z on a uniform grid in the sampling
domain. In the upcoming numerical results we have chosen 61 incident direc-
tions equally distributed on the unit circle and we sample on a 101× 101 grid
on the square [−1, 1]× [−1, 1].

Having computed g using Tikhonov regularization and the Morozov dis-
crepancy principle to solve the far-field equation, for each sample point we
have a discrete level set function 1/‖g‖. Choosing a contour value C then
provides a reconstruction of the support of the given scatterer. We extract
the edge of the reconstruction and then fit this using a trigonometric polyno-
mial of degree M assuming that the reconstruction is starlike with respect to
the origin (for more advanced applications it would be necessary to employ a
more elaborate smoothing procedure). Thus, for an angle θ the radius of the
reconstruction is given by

r(θ) = Re

(
M∑

n=−M

rn exp(inθ)

)
,

where r is measured from the origin (since in all the examples here the origin
is within the scatterer). The coefficients rn are found using a least-squares
fit to the boundary identified in the previous step of the algorithm. Once
we have a parameterization of the reconstructed boundary, we can compute
the normal to the boundary and evaluate (8.80) for some choice of z0 [in the
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examples always z0 = (0, 0)] using the trapezoidal rule with 100 points. This
provides our reconstruction of η. The results of the experiments for a fully
coated ellipse are shown in Figs. 8.7 and 8.8. For more details on the choice
of the contour value C that provides a good reconstruction of the boundary
of the scatterer we refer the reader to [27].

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 8.7. Reconstruction of fully coated ellipse for η = 1

In the case of a partially coated ellipse (Fig. 8.5), the inversion algorithm
is unchanged (both the boundary of the scatterer and η are reconstructed).
The result of the reconstruction of D when η = 1 is shown in Fig. 8.9, and
the results for a range of η are shown in Fig. 8.10. We recall again that for a
partially coated obstacle (8.80) only provides a lower bound for η (i.e., ∂D2

is replaced by ∂D).

8.7 Scattering by Cracks

In the last sections of this chapter we will discuss the scattering of a time-
harmonic electromagnetic plane wave by an infinite cylinder having an open
arc in R

2 as cross section. We assume that the cylinder is a perfect conductor
that is (possibly) coated on one side with a material with (constant) surface
impedance λ. This leads to a (possibly) mixed boundary value problem for the
Helmholtz equation defined in the exterior of an open arc in R

2. Our aim is to
establish the existence and uniqueness of a solution to this scattering problem
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Fig. 8.8. Determination of range of η for (reconstructed) fully coated ellipse. For
each exact η we apply the reconstruction algorithm using a range of cutoffs and plot
the corresponding reconstruction. An exact reconstruction would lie on the dotted
line3
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Fig. 8.9. Reconstruction of partially coated ellipse for η = 1

and to then use this knowledge to study the inverse scattering problem of
determining the shape of the open arc (or “crack”) from a knowledge of the
far-field pattern of the scattered field [15].
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Fig. 8.10. Determination of range of η for (reconstructed) partially coated ellipse3

The inverse scattering problem for cracks was initiated by Kress [110]
(see also [112,114,128]). In particular, Kress considered the inverse scattering
problem for a perfectly conducting crack and used Newton’s method to rec-
onstruct the shape of the crack from a knowledge of the far-field pattern
corresponding to a single incident wave. Kirsch and Ritter [108] used the
factorization method (Chap. 7) to reconstruct the shape of the open arc from a
knowledge of the far-field pattern assuming a Dirichlet or Neumann boundary
condition.

Let Γ ⊂ R
2 be a smooth, open, nonintersecting arc. More precisely, we

consider Γ ⊂ ∂D to be a portion of a smooth curve ∂D that encloses a
region D in R

2. We choose the unit normal ν on Γ to coincide with the
outward normal to ∂D. The scattering of a time-harmonic incident wave ui

by a thin, infinitely long, cylindrical perfect conductor leads to the problem
of determining u satisfying

Δu+ k2u = 0 in R
2 \ Γ̄ , (8.81)

u± = 0 on Γ , (8.82)

where u±(x) = lim
h→0+

u(x± hν) for x ∈ Γ . The total field u is decomposed as

u = us + ui, where ui is an entire solution of the Helmholtz equation, and
us is the scattered field that is required to satisfy the Sommerfeld radiation
condition

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0 (8.83)

uniformly in x̂ = x/|x| with r = |x|. In particular, the incident field can again
be a plane wave given by ui(x) = eikx·d, |d| = 1.
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In the case where one side of the thin cylindrical obstacle Γ is coated by
a material with constant surface impedance λ > 0, we obtain the following
mixed crack problem for the total field u = us + ui:

Δu+ k2u = 0 in R
2 \ Γ̄ , (8.84)

u− = 0 on Γ, (8.85)

∂u+

∂ν
+ iλu+ = 0 on Γ, (8.86)

where again ∂u±(x)/∂ν = lim
h→0+

ν · ∇u(x± hν) for x ∈ Γ and us satisfies the

Sommerfeld radiation condition (8.83).

Recalling the Sobolev spaces H1
loc(R

2 \ Γ̄ ), H 1
2 (Γ ), and H− 1

2 (Γ ) from
Sects. 8.1 and 8.4, we observe that the preceding scattering problems are
particular cases of the following more general boundary value problems in the
exterior of Γ :
Dirichlet crack problem: Given f ∈ H

1
2 (Γ ), find u ∈ H1

loc(R
2 \ Γ̄ ) such that

Δu+ k2u = 0 in R
2 \ Γ̄ , (8.87)

u± = f on Γ, (8.88)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0. (8.89)

Mixed crack problem: Given f ∈ H
1
2 (Γ ) and h ∈ H− 1

2 (Γ ), find u ∈ H1
loc(R

2 \
Γ̄ ) such that

Δu+ k2u = 0 in R
2 \ Γ̄ , (8.90)

u− = f on Γ, (8.91)

∂u+

∂ν
+ iλu+ = h on Γ, (8.92)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0. (8.93)

Note that the boundary conditions in both problems are assumed in the sense
of the trace theorems. In particular, u+|Γ is the restriction to Γ of the trace

u ∈ H
1
2 (∂D) of u ∈ H1

loc(R
2 \ D̄), whereas u−|Γ is the restriction to Γ of the

trace u ∈ H
1
2 (∂D) of u ∈ H1(D). Since ∇u ∈ L2

loc(R
2), the same comment

is valid for ∂u±/∂ν, where ∂u/∂ν ∈ H− 1
2 (∂D) is interpreted in the sense of

Theorem 5.7.
It is easy to see that the scattered field us in the scattering problem for

a perfect conductor and for a partially coated perfect conductor satisfies the
Dirichlet crack problem with f = −ui|Γ and the mixed crack problem with
f = −ui|Γ and h = −∂ui/∂ν − iλui|Γ , respectively.
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We now define [u] := u+ − u−|Γ and

[
∂u

∂ν

]
:=

∂u+

∂ν
− ∂u−

∂ν

∣∣∣∣
Γ

, the jump

of u and
∂u

∂ν
, respectively, across the crack Γ .

Lemma 8.30. If u is a solution to the Dirichlet crack problem (8.87)–(8.89)

or the mixed crack problem (8.90)–(8.93), then [u] ∈ H̃
1
2 (Γ ) and

[
∂u

∂ν

]
∈

H̃− 1
2 (Γ ).

Proof. Let u ∈ H1
loc(R

2 \ Γ̄ ) be a solution to (8.87)–(8.89) or (8.90)–(8.93).

Then from the trace theorem and Theorem 5.7, [u] ∈ H
1
2 (∂D) and [∂u/∂ν] ∈

H− 1
2 (∂D). But the solution u of the Helmholtz equation is such that u ∈ C∞

away from Γ , whence [u] = [∂u/∂ν] = 0 on ∂D \ Γ̄ . Hence by definition

(Sect. 8.1), [u] ∈ H̃
1
2 (Γ ) and [∂u/∂ν] ∈ H̃− 1

2 (Γ ). ��
We first establish uniqueness for the problems (8.87)–(8.89) and

(8.90)–(8.93).

Theorem 8.31. The Dirichlet crack problem (8.87)–(8.89) and the mixed
crack problem (8.90)–(8.93) have at most one solution.

Proof. Denote by ΩR a sufficiently large ball with radius R containing D. Let
u be a solution to the homogeneous Dirichlet or mixed crack problem, i.e., u
satisfies (8.87)–(8.89) with f = 0 or (8.90)–(8.93) with f = h = 0. Obviously,
u ∈ H1(ΩR \D) ∪H1(D) satisfies the Helmholtz equation in ΩR \D, and D
and from the preceding lemma u satisfies the following transmission conditions
on the complementary part ∂D \ Γ̄ of ∂D:

u+ = u− and
∂u+

∂ν
=
∂u−

∂ν
on ∂D \ Γ̄ . (8.94)

By an application of Green’s first identity for u and u in D and ΩR \D and
using the transmission conditions (8.94) we see that∫

∂ΩR

u
∂u

∂ν
ds =

∫

ΩR\D

|∇u|2dx+

∫
D

|∇u|2dx− k2
∫

ΩR\D

|u|2dx− k2
∫
D

|u|2dx

+

∫
Γ

u+
∂u+

∂ν
ds−

∫
Γ

u−
∂u−

∂ν
ds. (8.95)

For problem (8.87)–(8.89) the boundary condition (8.88) implies

∫
Γ

u+
∂u+

∂ν
ds =

∫
Γ

u−
∂u−

∂ν
ds = 0,

while for problem (8.90)–(8.89), since λ > 0, the boundary conditions (8.92)
and (8.91) imply
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∫
Γ

u+
∂u+

∂ν
ds−

∫
Γ

u−
∂u−

∂ν
ds = iλ

∫
Γ

|u+|2ds.

Hence for both problems we can conclude that

Im

∫
∂ΩR

u
∂u

∂ν
ds ≥ 0,

whence from Theorem 3.6 and the unique continuation principle we obtain
that u = 0 in R

2 \ Γ̄ . ��
To prove the existence of a solution to the foregoing crack problems, we

will use an integral equation approach. In Chap. 3 the reader was introduced
to the use of integral equations of the second kind to solve boundary value
problems. Here we will employ a first-kind integral equation approach that is
based on applying the Lax–Milgram lemma to boundary integral operators
[127]. In this sense the method of first-kind integral equations is similar to
variational methods.

We start with the representation formula (Remark 6.29)

u(x) =

∫
∂D

(
∂u(y)

∂νy
Φ(x, y)− u(y)

∂

∂νy
Φ(x, y)

)
dsy, x ∈ D, (8.96)

u(x) =

∫
∂D

(
u(y)

∂

∂νy
Φ(x, y)− ∂u(y)

∂νy
Φ(x, y)dsy

)
dsy, x ∈ R

2 \ D̄,

where Φ(·, ·) is again the fundamental solution to the Helmholtz equation
defined by

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|), (8.97)

with H
(1)
0 being a Hankel function of the first kind of order zero. Making use

of the known jump relations of the single and double layer potentials across
the boundary ∂D (Sect. 7.1.1) and by eliminating the integrals over ∂D \ Γ̄ ,
from (8.94) we obtain

1

2

(
u− + u+

)
= −SΓ

[
∂u

∂ν

]
+KΓ [u] on Γ, (8.98)

1

2

(
∂u−

∂ν
+
∂u+

∂ν

)
= −K ′

Γ

[
∂u

∂ν

]
+ TΓ [u] on Γ, (8.99)

where S,K,K ′, T are the boundary integral operators

S : H− 1
2 (∂D) −→ H

1
2 (∂D), K : H

1
2 (∂D) −→ H

1
2 (∂D),

K ′ : H− 1
2 (∂D) −→ H− 1

2 (∂D), T : H
1
2 (∂D) −→ H− 1

2 (∂D),
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defined by (7.3), (7.4), (7.5), and (7.6), respectively, and SΓ ,KΓ ,K
′
Γ , TΓ are

the corresponding operators restricted to Γ defined by

(SΓψ)(x) :=

∫
Γ

ψ(y)Φ(x, y)dsy , ψ ∈ H̃− 1
2 (Γ ), x ∈ Γ,

(KΓψ)(x) :=

∫
Γ

ψ(y)
∂

∂νy
Φ(x, y)dsy , ψ ∈ H̃

1
2 (Γ ), x ∈ Γ,

(K ′
Γψ(x)) :=

∫
Γ

ψ(y)
∂

∂νx
Φ(x, y)dsy , ψ ∈ H̃− 1

2 (Γ ), x ∈ Γ,

(TΓψ)(x) :=
∂

∂νx

∫
Γ

ψ(y)
∂

∂νy
Φ(x, y)dsy , ψ ∈ H̃− 1

2 (Γ ), x ∈ Γ.

Recalling that functions in H̃
1
2 (Γ ) and H̃− 1

2 (Γ ) can be extended by zero to

functions inH
1
2 (∂D) andH− 1

2 (∂D), respectively, the foregoing restricted ope-
rators are well defined. Moreover, they have the following mapping properties:

SΓ : H̃− 1
2 (Γ ) −→ H

1
2 (Γ ), KΓ : H̃

1
2 (Γ ) −→ H

1
2 (Γ ),

K ′
Γ : H̃− 1

2 (Γ ) −→ H− 1
2 (Γ ), TΓ : H̃

1
2 (Γ ) −→ H− 1

2 (Γ ).

In the case of the Dirichlet crack problem, since [u] = 0 and u+ = u− = f , the
relation (8.98) gives the following first-kind integral equation for the unknown
jump of the normal derivative of the solution across Γ :

SΓ

[
∂u

∂ν

]
= −f. (8.100)

In the case of the mixed crack problem, the unknowns are both [u] ∈ H̃
1
2 (Γ )

and

[
∂u

∂ν

]
∈ H̃− 1

2 (Γ ). Using the boundary conditions (8.91) and (8.92),

together with the relations (8.98) and (8.99), we obtain the following inte-

gral equation of the first kind for the unknowns [u] and

[
∂u

∂ν

]
:⎛

⎝ SΓ −KΓ + I

K ′
Γ − I −TΓ − iλI

⎞
⎠
⎛
⎜⎜⎝

[
∂u

∂ν

]

[u]

⎞
⎟⎟⎠ =

(−f
iλf − h

)
. (8.101)

We let AΓ denote the matrix operator in (8.101) and note that AΓ is a con-

tinuous mapping from H̃− 1
2 (Γ )× H̃

1
2 (Γ ) to H

1
2 (Γ )×H− 1

2 (Γ ).

Lemma 8.32. The operator SΓ : H− 1
2 (Γ ) → H

1
2 (Γ ) is invertible with

bounded inverse.

Proof. From Theorem 7.3 we have that the bounded linear operator Si :
H− 1

2 (∂D) → H
1
2 (∂D), defined by (7.3) with k replaced by i in the funda-

mental solution, satisfies
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(Siψ, ψ) ≥ C‖ψ‖2
H− 1

2 (∂D)
for ψ ∈ H− 1

2 (∂D),

where (·, ·) denotes the conjugated duality pairing between H
1
2 (∂D) and

H− 1
2 (∂D) defined by Definition 7.1. Furthermore, the operator Sc = S−Si is

compact from H− 1
2 (∂D) to H

1
2 (∂D). Since for any ψ ∈ H̃− 1

2 (Γ ) its extension

by zero ψ̃ is in H− 1
2 (∂D), we have that for ψ ∈ H̃− 1

2 (Γ )

(SiΓψ, ψ) =
(
Siψ̃, ψ̃

)
≥ C‖ψ̃‖2

H− 1
2 (∂D)

= C‖ψ‖2
H̃− 1

2 (Γ )
,

and ScΓ is compact from H̃− 1
2 (Γ ) to H

1
2 (Γ ), where SiΓ , ScΓ : H̃− 1

2 (Γ ) →
H

1
2 (Γ ) are the corresponding restrictions of Si and Sc.
Applying the Lax–Milgram lemma to the bounded and coercive sesquilin-

ear form
a(ψ, φ) := (SiΓψ, φ) , φ, ψ ∈ H̃− 1

2 (Γ )

we conclude that S−1
iΓ : H

1
2 (Γ ) → H− 1

2 (Γ ) exists and is bounded. Since Sc

is compact, an application of Theorem 5.16 to SΓ = SiΓ + ScΓ : H̃− 1
2 (Γ ) →

H
1
2 (Γ ) gives that the injectivity of SΓ implies that SΓ is invertible with

bounded inverse. Hence it remains to show that SΓ is injective. To this end,
let α ∈ H̃− 1

2 (Γ ) be such that SΓα = 0. Define the potential

u(x) = −
∫
Γ

α(y)Φ(x, y) dsy = −
∫
∂D

α̃(y)Φ(x, y) dsy x ∈ R
2 \ Γ̄ ,

where α̃ ∈ H− 1
2 (∂D) is the extension by zero of α. This potential satisfies

the Helmholtz equation in R
2 \ Γ̄ , the Sommerfeld radiation condition, and,

moreover, u ∈ H1
loc(R

2 \ Γ̄ ). Note that from the jump relations for single layer
potentials we have that α̃ = [∂u/∂ν] on ∂D. Furthermore, the continuity of
S across ∂D and the fact that SΓα = Sα̃ = 0 imply that u±|Γ = −Sα̃ = 0.
Hence u satisfies the homogeneous Dirichlet crack problem and from Theo-
rem 8.31 u = 0 in R

2 \ Γ̄ , whence α̃ = [∂u/∂ν] = 0. This proves that SΓ is
injective. ��
Lemma 8.33. The operator AΓ : H̃− 1

2 (Γ )× H̃
1
2 (Γ ) → H

1
2 (Γ )×H− 1

2 (Γ ) is
invertible with bounded inverse.

Proof. The proof follows that of Lemma 8.32. Let ζ̃ = (φ̃, ψ̃) ∈ H− 1
2 (∂D) ×

H
1
2 (∂D) be the extension by zero to ∂D of ζ = (φ, ψ) ∈ H̃− 1

2 (Γ ) × H̃
1
2 (Γ ).

From Theorems 7.3 and 7.5 we have that S = Si+Sc and T = Ti+Tc, where

Sc : H
− 1

2 (∂D) −→ H
1
2 (∂D), Tc : H

1
2 (∂D) −→ H− 1

2 (∂D)

are compact and(
Siφ̃, φ̃

)
≥ C‖φ̃‖2

H− 1
2 (∂D)

for φ̃ ∈ H− 1
2 (∂D), (8.102)

(
−Tiψ̃, ψ̃

)
≥ C‖ψ̃‖2

H
1
2 (∂D)

for ψ̃ ∈ H
1
2 (∂D), (8.103)
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where (·, ·) denotes the conjugated duality pairing between H
1
2 (∂D) and

H− 1
2 (∂D) defined by Definition 7.1. Let K0 and K ′

0 be the operators corre-
sponding to the Laplace operator, i.e., defined asK andK ′ with kernel Φ(x, y)
replaced by Φ0(x, y) = − 1

2π ln |x− y|. Then Kc = K −K0 and K ′
c = K ′ −K ′

0

are compact since they have continuous kernels [111]. It is easy to show that
K0 and K ′

0 are adjoint since their kernels are real, i.e.,

(
K0ψ̃, φ̃

)
=
(
ψ̃,K ′

0φ̃
)

for φ̃ ∈ H− 1
2 (∂D) and ψ̃ ∈ H

1
2 (∂D). (8.104)

Collecting together all the compact terms we can write A = (A0 +Ac), where

A0ζ =

⎛
⎝ Siφ̃+ (−K0 + I)ψ̃

(K ′
0 − I)φ̃− (Ti + 2iλI)ψ̃

⎞
⎠ and Acζ =

⎛
⎝Scφ̃−Kcψ̃

K ′
cφ̃− Tcψ̃

⎞
⎠ .

In this decomposition Ac : H− 1
2 (∂D) ×H

1
2 (∂D) → H− 1

2 (∂D) ×H
1
2 (∂D) is

compact. Furthermore, we have that

(
A0ζ̃ , ζ̃

)
=
(
Siφ̃, φ̃

)
+
(
−K0ψ̃, φ̃

)
+
(
ψ̃, φ̃
)
+
(
K ′

0φ̃, ψ̃
)

−
(
φ̃, ψ̃
)
−
(
Tiψ̃, ψ̃

)
− iλ

(
ψ̃, ψ̃

)
. (8.105)

Taking the real part of (8.105), from (8.102) and (8.103) we obtain

Re
[(
Siφ̃, φ̃

)
−
(
Tiψ̃, ψ̃

)]
≥ C

(
‖φ̃‖2

H− 1
2 (∂D)

+ ‖ψ̃‖2
H

1
2 (∂D)

)
, (8.106)

and (8.104) implies that

Re
[(

−K0ψ̃, φ̃
)
+
(
K ′

0φ̃, ψ̃
)]

= Re
[
−
(
ψ̃,K ′

0φ̃
)
+
(
K ′

0φ̃, ψ̃
)]

= Re

[
−
(
K ′

0φ̃, ψ̃
)
+
(
K ′

0φ̃, ψ̃)
)]

= 0. (8.107)

Finally,

Re
[(
ψ̃, φ̃
)
−
(
φ̃, ψ̃
)
− iλ

(
ψ̃, ψ̃

)]
= 0. (8.108)

Combining (8.106)–(8.108) we now have that

∣∣∣(A0ζ̃ , ζ̃
)∣∣∣ ≥ Re

(
A0ζ̃, ζ̃

)
≥ C‖ζ̃‖2 for ζ̃ ∈ H− 1

2 (∂D)× H̃
1
2 (∂D). (8.109)

Recalling that ζ̃ is the extension by zero of ζ = (φ, ψ) ∈ H̃− 1
2 (Γ ) × H̃

1
2 (Γ ),

we can rewrite (8.109) as

|(A0Γ ζ, ζ)| ≥ C‖ζ‖2 for ζ ∈ H̃− 1
2 (Γ )× H̃

1
2 (Γ ),
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where A0,Γ is the restriction to Γ of A0 defined for ζ ∈ H̃− 1
2 (Γ ) × H̃

1
2 (Γ ).

The corresponding restriction AcΓ : H̃− 1
2 (Γ )× H̃

1
2 (Γ ) → H

1
2 (Γ )×H− 1

2 (Γ )
of Ac clearly remains compact. Hence, the Lax–Milgram lemma, together with
Theorem 5.16, implies, in the same way as in Lemma 8.32, that AΓ is invertible
with bounded inverse if and only if AΓ injective.

We now show that AΓ is injective. To this end, let ζ = (α, β) ∈ H̃− 1
2 (Γ )×

H̃
1
2 (Γ ) be such that AΓ ζ = 0, and let ζ̃ = (α̃, β̃) ∈ H− 1

2 (∂D)× H̃
1
2 (∂D) be

its extension by zero. Define the potential

u(x) = −
∫
Γ

α(y)Φ(x, y)dsy +

∫
Γ

β(y)
∂

∂νy
Φ(x, y)dsy x ∈ R

2 \ Γ̄ . (8.110)

This potential is well defined in R
2 \ Γ̄ since the densities α and β can be

extended by zero to functions in H− 1
2 (∂D) and H

1
2 (∂D), respectively. More-

over, u ∈ H1
loc(R

2 \ Γ̄ ) satisfies the Helmholtz equation in R
2 \ Γ̄ and the

Sommerfeld radiation condition. One can easily show that α = [∂u/∂ν] and
β = [u]. In particular, the jump relations of the single and double layer pot-
entials and the first equation of AΓ ζ = 0 imply

u−|Γ = −S
[
∂u

∂ν

]
+K[u]− [u] = 0. (8.111)

We also have that

∂u+

∂ν

∣∣∣∣
Γ

= −K ′
[
∂u

∂ν

]
+ T [u] +

[
∂u

∂ν

]
,

and from the fact that u+ = [u] on Γ (8.111) and the second equation of
AΓ ζ = 0 we have that

∂u+

∂ν
+ iλu+

∣∣∣∣
Γ

= −K ′
[
∂u

∂ν

]
+

[
∂u

∂ν

]
+ T [u] + iλ[u] = 0. (8.112)

Hence u defined by (8.110) is a solution of the mixed crack problem with zero
boundary data, and from the uniqueness Theorem 8.31 u = 0 in R

2 \ Γ̄ , and
hence ζ = ([∂u/∂ν] , [u]) = 0.

��
Theorem 8.34. The Dirichlet crack problem (8.87)–(8.89) has a unique so-
lution. This solution satisfies the a priori estimate

‖u‖H1(ΩR\Γ̄ ) ≤ C‖f‖
H

1
2 (Γ )

, (8.113)

where ΩR is a disk of radius R containing Γ̄ , and the positive constant C
depends on R but not on f .
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Proof. Uniqueness is proved in Theorem 8.31. The solution of (8.87)–(8.89) is
given by

u(x) = −
∫
Γ

[
∂u(y)

∂ν

]
Φ(x, y)dsy , x ∈ R

2 \ Γ̄ ,

where [∂u/∂ν] is the unique solution of (8.100) given by Lemma 8.32. Esti-

mate (8.113) is a consequence of the continuity of S−1
Γ fromH

1
2 (Γ ) to H̃− 1

2 (Γ )

and the continuity of the single layer potential from H̃− 1
2 (Γ ) to H1

loc(R
2 \ Γ̄ ).

��
Theorem 8.35. The mixed crack problem (8.90)–(8.93) has a unique solu-
tion. This solution satisfies the estimate

‖u‖H1(ΩR\Γ̄ ) ≤ C(‖f‖
H

1
2 (Γ )

+ ‖h‖
H− 1

2 (Γ )
), (8.114)

where ΩR is a disk of radius R containing Γ̄ , and the positive constant C
depends on R but not on f and h.

Proof. Uniqueness is proved in Theorem 8.31. The solution of (8.90)–(8.93) is
given by

u(x) = −
∫
Γ

[
∂u(y)

∂νy

]
Φ(x, y)dsy +

∫
Γ

[u(y)]
∂

∂νy
Φ(x, y)dsy x ∈ R

2 \ Γ̄ ,

where

([
∂u

∂ν

]
, [u]

)
is the unique solution of (8.101) given by Lemma 8.33.

Estimate (8.114) is a consequence of the continuity of A−1
Γ from H

1
2 (Γ ) ×

H− 1
2 (Γ ) to H̃− 1

2 (Γ )×H̃ 1
2 (Γ ), the continuity of the single layer potential from

H̃− 1
2 (Γ ) to H1

loc(R
2\ Γ̄ ), and the continuity of the double layer potential from

H̃
1
2 (Γ ) to H1

loc(R
2 \ Γ̄ ). ��

Remark 8.36. More generally, one can consider the Dirichlet crack problem
with boundary data having a jump across Γ , that is, u± = f± on Γ , where
both f+ and f− are in H

1
2 (Γ ). In this case, the right-hand side of the integral

equation (8.100) will be replaced by −(f+ + f−)/2.

We end our discussion on direct scattering problems for cracks with a remark
on the regularity of solutions. It is in fact known that the solution of the crack
problem with Dirichlet boundary conditions has a singularity near a crack tip
no matter how smooth the boundary data are. In particular, the solution does
not belong to H

3
2 (R2 \ Γ̄ ) due to the fact that the solution has a singularity of

the form r
1
2φ(θ), where (r, θ) are the polar coordinates centered at the crack

tip. In the case of the crack problem with mixed boundary conditions, one
would expect a stronger singular behavior of the solution near the tips. Indeed,
for this case the solution of the mixed crack problem with smooth boundary
data belongs to H

5
4−ε(R2 \ Γ̄ ) for all ε > 0 but not to H

5
4 (R2 \ Γ̄ ) due to

the presence of a term of the form r
1
4+iηφ(θ) in the asymptotic expansion

of the solution in a neighborhood of the crack tip where η is a real number.
A complete investigation of crack singularities can be found in [64].
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8.8 Inverse Scattering Problem for Cracks

We now turn our attention to the inverse scattering problem for cracks. To this
end, we recall that the approximation properties of Herglotz wave functions
are a fundamental ingredient of the linear sampling method for solving the
inverse problem. Hence, we first show that traces on Γ of the solution to crack
problems can be approximated by the corresponding traces of Herglotz wave
functions. More precisely, let vg be a Herglotz wave function written in the
form

vg(x) =

2π∫
0

g(φ)e−ik(x1 cosφ+x2 sinφ) dφ, x = (x1, x2) ∈ R
2,

and consider the operator H : L2[0, 2π] → H
1
2 (Γ )×H− 1

2 (Γ ) defined by

(Hg)(x) :=

⎧⎪⎪⎨
⎪⎪⎩

v−g on Γ,

∂v+g
∂ν

+ iλv+g on Γ.

(8.115)

Theorem 8.37. The range of H : L2[0, 2π] → H
1
2 (Γ )×H− 1

2 (Γ ) is dense.

Proof. From Corollary 6.43, we only need to show that the transpose operator
H� : H̃− 1

2 (Γ )×H̃ 1
2 (Γ ) → L2[0, 2π] is injective. To characterize the transpose

operator, recall that H� is defined by

〈Hg, (α, β)〉 = 〈g,H�(α, β)
〉

(8.116)

for g ∈ L2[0, 2π] and (α, β) ∈ H̃− 1
2 (Γ )× H̃

1
2 (Γ ). Note that the left-hand side

of (8.116) is the duality pairing between H
1
2 (Γ ) × H− 1

2 (Γ ) and H̃− 1
2 (Γ ) ×

H̃
1
2 (Γ ), while the right-hand side is the L2[0, 2π] inner product without con-

jugation. One can easily see from (8.116) by changing the order of integration
that

H�(α, β)(φ) : =
∫
Γ

α(x)e−ikx·ddsx + iλ

∫
Γ

β(x)e−ikx·ddsx

+

∫
Γ

β(x)
∂

∂νx
e−ikx·ddsx, φ ∈ [0, 2π],

where d = (cos φ, sin φ). Hence γH�(α, β) coincides with the far-field pattern
of the potential

γ−1V (z) : =

∫
Γ

α(x)Φ(z, x)dsx + iλ

∫
Γ

β(x)Φ(z, x)dsx

+

∫
Γ

β(x)
∂

∂νx
Φ(z, x)dsx, z ∈ R

2 \ Γ̄ ,
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where γ =
eiπ/4√
8πk

. Note that V is well defined in R
2 \ Γ̄ since the densities

α and β can be extended by zero to functions in H− 1
2 (∂D) and H

1
2 (∂D),

respectively. Moreover, V ∈ H1
loc(R

2 \ Γ̄ ) satisfies the Helmholtz equation in
R

2 \ Γ̄ and the Sommerfeld radiation condition. Now assume that H�(α, β) =
0. This means that the far-field pattern of V is zero, and from Rellich’s lemma
and the unique continuation principle we conclude that V = 0 in R

2\Γ̄ . Using
the jump relations across ∂D for the single and double layer potentials with
α and β defined to be zero on ∂D \ Γ̄ we now obtain

β = [V ]Γ ,

α+ iλβ = −
[
∂V

∂ν

]
Γ

,

and hence α = β = 0. Thus H� is injective and the theorem is proven. ��
As a special case of the preceding theorem we obtain the following theorem.

Theorem 8.38. Every function in H
1
2 (Γ ) can be approximated by the trace

of a Herglotz wave function vg|Γ on Γ with respect to the H
1
2 (Γ ) norm.

Assuming the incident field ui(x) = eikx·d is a plane wave with inci-
dent direction d = (cosφ, sinφ), the inverse problem we now consider is
to determine the shape of the crack Γ from a knowledge of the far-field
pattern u∞(·, φ), φ ∈ [0, 2π], of the scattered field us(·, φ). The scattered
field is either the solution of the Dirichlet crack problem (8.87)–(8.89) with
f = −eikx·d|Γ or of the mixed crack problem (8.90)–(8.93) with f = −eikx·d|Γ
and h = −

(
∂

∂ν
+ iλ

)
eikx·d|Γ . In either case, the far-field pattern is defined

by the asymptotic expansion of the scattered field

us(x, φ) =
eikr√
r
u∞(θ, φ) +O(r−3/2), r = |x| → ∞.

Theorem 8.39. Assume Γ1 and Γ2 are two perfectly conducting or partially
coated cracks with surface impedance λ1 and λ2 such that the far-field patterns
u1∞(θ, φ) and u2∞(θ, φ) coincide for all incidence angles φ ∈ [0, 2π] and for all
observation angles θ ∈ [0, 2π]. Then Γ1 = Γ2.

Proof. Let G := R
2 \ (Γ̄1 ∪ Γ̄2) and x0 ∈ G. Using Lemma 4.4 and the

well-posedeness of the forward crack problems one can show, as in Theorem 4.5,
that the scattered fields ws

1 and ws
2 corresponding to the incident field

ui = −Φ(·, x0) [i.e., ws
j , j = 1, 2 satisfy (8.87)–(8.89) with f = −Φ(·, x0)|Γj ,

or (8.90)–(8.93) with f = −Φ(·, x0)|Γj and h = − ( ∂
∂ν + iλ

)
Φ(·, x0)|Γj ] coin-

cide in G.
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Now assume that Γ1 �= Γ2. Then, without loss of generality there exists
x∗ ∈ Γ1 such that x∗ /∈ Γ2. We can choose a sequence {xn} from G such
that xn → x∗ as n → ∞ and xn /∈ Γ̄2. Hence we have that ws

n,1 = ws
n,2

in G, where ws
n,1 and ws

n,2 are as above, with x0 replaced by xn. Consider
ws

n = ws
n,2 as the scattered wave corresponding to Γ2. From the boundary

data (ws
n)

− = −Φ(·, xn) on Γ2 and from (8.113) or (8.114) we have that
‖ws

n‖H1(ΩR\Γ̄2) is uniformly bounded with respect to n, whence from the
trace theorem ‖ws

n‖H 1
2 (Ωr(x∗)∩Γ1)

is uniformly bounded with respect to n,

where Ωr(x
∗) is a small neighborhood centered at x∗ not intersecting Γ2. On

the other hand, considering ws
n = ws

n,1 as the scattered wave correspond-
ing to Γ1, from the boundary conditions (ws

n)
− = −Φ(·, xn) on Γ1 we have

‖ws
n‖H 1

2 (Ωr(x∗))∩Γ1)
→ ∞ as n → ∞ since ‖Φ(·, xn)‖

H
1
2 (Ωr(x∗)∩Γ1)

→ ∞ as

n→ ∞. This is a contradiction. Therefore, Γ1 = Γ2. ��
To solve the inverse problem, we will use the linear sampling method,

which is based on a study of the far-field equation

Fg = ΦL
∞, (8.117)

where F : L2[0, 2π] → L2[0, 2π] is the far-field operator defined by

(Fg)(θ) :=

2π∫
0

u∞(θ, φ)g(φ)dφ

and ΦL
∞ is a function to be defined shortly. In particular, due to the fact

that the scattering object has an empty interior, we need to modify the linear
sampling method previously developed for obstacles with nonempty interior.
Assume for the moment that the crack is partially coated, and define the
operator B : H

1
2 (Γ )×H− 1

2 (Γ ) → L2[0, 2π], which maps the boundary data
(f, h) to the far-field pattern of the solution to the corresponding scattering
problem (8.90)–(8.93). By superposition, we have the relation

Fg = −BHg,

where Hg is defined by (8.115) with the Herglotz wave function vg now
written as

vg(x) =

2π∫
0

g(φ)eikx·d dφ.

We now define the compact operator F : H̃− 1
2 (Γ )× H̃

1
2 (Γ ) −→ L2[0, 2π] by

F(α, β)(θ) = γ

∫
Γ

α(y)e−ikx̂·y dsy + γ

∫
Γ

β(y)
∂

∂νy
e−ikx̂·y dsy, (8.118)
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where x̂ = (cos θ, sin θ) and γ = eiπ/4/
√
8πk, and observe that for a given pair

(α, β) ∈ H̃− 1
2 (Γ )× H̃

1
2 (Γ ), the function F(α, β)(x̂) is the far-field pattern of

the radiating solution P (α, β)(x) of the Helmholtz equation in R
2 \ Γ̄ , where

the potential P is defined by

P (α, β)(x) :=

∫
Γ

α(y)Φ(x, y)dsy +

∫
Γ

β(y)
∂

∂νy
Φ(x, y)dsy . (8.119)

Proceeding as in the proof of Theorem 8.37, using the jump relations across
∂D for the single and double layer potentials with densities extended by zero
to ∂D we obtain that α := − [∂P/∂ν]Γ and β := [P ]Γ . Moreover, P satisfies

⎛
⎜⎜⎝

P−(α, β)|Γ
(
∂

∂ν
+ iλ

)
P+(α, β)|Γ

⎞
⎟⎟⎠ =M

⎛
⎝α

β

⎞
⎠ , (8.120)

where the operator M : H̃− 1
2 (Γ )× H̃

1
2 (Γ ) → H

1
2 (Γ )×H− 1

2 (Γ ) is given by

⎛
⎝ SΓ KΓ − I

K ′
Γ − I + iλSΓ TΓ + iλ(I +KΓ )

⎞
⎠ . (8.121)

The operator M is related to the operator AΓ given in (8.101) by the

relation M =

(
I 0

iλkI I

)
AΓ

(
I 0
0 −I

)
, whence M−1 : H

1
2 (Γ )×H− 1

2 (Γ ) →
H̃− 1

2 (Γ )× H̃
1
2 (Γ ) exists and is bounded. In particular, we have that

F(α, β) = BM(α, β). (8.122)

In the case of the Dirichlet crack problem (8.87)–(8.89), by proceeding exactly

as we did previously, we have FD(α) = BSΓ (α), where α ∈ H̃− 1
2 (Γ ), B :

H
1
2 (Γ ) → L2[0, 2π], FD : H̃− 1

2 (Γ ) → L2[0, 2π] is defined by

FD(α)(θ) := γ

∫
Γ

α(y)e−ikx̂·y dsy (8.123)

and SΓ is given by (8.100).

Lemma 8.40. The operator F : H̃− 1
2 (Γ ) × H̃

1
2 (Γ ) −→ L2[0, 2π] defined

by (8.118) is injective and has a dense range.

Proof. Injectivity follows from the fact that F(α, β) is the far-field pattern of

P (α, β) for (α, β) ∈ H̃− 1
2 (Γ ) × H̃

1
2 (Γ ) given by (8.119). Hence F(α, β) = 0

implies P (α, β) = 0, and so α := − [∂P/∂ν]Γ = 0 and β := [P ]Γ = 0. We

now note that the transpose operator F� : L2[0, 2π] → H
1
2 (Γ )×H− 1

2 (Γ ) is
given by
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γ−1F�g(y) :=

⎧⎪⎪⎨
⎪⎪⎩

v−g (y)

∂v+g (y)

∂νy

y ∈ Γ, (8.124)

where vg(y) =
2π∫
0

g(φ)e−ikx̂·ydφ, x̂ = (cosφ, sin φ). From Corollary 6.43, it is

enough to show that F� is injective. But F�g = 0 implies that there exists

a Herglotz wave function vg such that vg|Γ = 0 and
∂vg
∂ν

∣∣∣∣
Γ

= 0 (note that

the limit of vg and its normal derivative from both sides of the crack is the
same). From the representation formula (8.96) and the analyticity of vg, we
now have that vg = 0 in R

2, and therefore g = 0. This proves the lemma. ��
We obtain a similar result for the operator FD corresponding to the Dirich-

let crack problem. But in this case FD has a dense range only under certain
restrictions. More precisely, the following result holds.

Lemma 8.41. The operator FD : H̃− 1
2 (Γ ) → L2[0, 2π] defined by (8.123) is

injective. The range of FD is dense in L2[0, 2π] if and only if there does not
exist a Herglotz wave function that vanishes on Γ .

Proof. Injectivity can be proved in the same way as in Lemma 8.40 if one
replaces the potential V by the single layer potential.

The dual operator F�
D : L2[0, 2π] → H

1
2 (Γ ) in this case coincides with

vg|Γ . Hence F�
D is injective if and only if there does not exist a Herglotz wave

function that vanishes on Γ . ��
In polar coordinates x = (r, θ) the functions

un(x) = Jn(kr) cos nθ, vn(x) = Jn(kr) sin nθ, n = 0, 1, · · · ,
where Jn denotes a Bessel function of order n, provide examples of Herglotz
wave functions. Therefore, by Lemma 8.41, for any straight-line segment the
range FD (and consequently the range of the far-field operator) is not dense.
The same is true for circular arcs with radius R such that kR is a zero of one
of the Bessel functions Jn.

From the foregoing analysis we can factorize the far-field operator corre-
sponding to the mixed crack problem as

(Fg) = −FM−1Hg, g ∈ L2[0, 2π], (8.125)

and the far-field operator corresponding to the Dirichlet crack problem as

(Fg) = −FDS
−1
Γ (vg|Γ ), g ∈ L2[0, 2π]. (8.126)

The following lemma will help us to choose an appropriate right-hand side of
the far-field equation (8.117).
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Lemma 8.42. For any smooth, nonintersecting arc L and two functions αL ∈
H̃− 1

2 (L), βL ∈ H̃
1
2 (L) we define ΦL

∞ ∈ L2[0, 2π] by

ΦL
∞(θ) := γ

∫
L

αL(y)e
−ikx̂·ydsy + γ

∫
L

βL(y)
∂

∂νy
e−ikx̂·ydsy (8.127)

x̂ = (cos θ, sin θ). Then, ΦL
∞ ∈ R(F) if and only if L ⊂ Γ , where F is given

by (8.118)

Proof. First assume that L ⊂ Γ . Then, since H̃± 1
2 (L) ⊂ H̃± 1

2 (Γ ), it follows
directly from the definition of F that ΦL

∞ ∈ R(F).
Now let L �⊂Γ , and assume, on the contrary, that ΦL∞ ∈ R(F), i.e., there

exist α ∈ H̃− 1
2 (Γ ) and β ∈ H̃

1
2 (Γ ) such that

ΦL
∞(θ) = γ

∫
Γ

α(y)e−ikx̂·ydsy + γ

∫
Γ

β(y)
∂

∂νy
e−ikx̂·ydsy.

Then, by Rellich’s lemma and the unique continuation principle, we have that
the potentials

ΦL(x) =

∫
L

αL(y)Φ(x, y)dsy +

∫
L

βL(y)
∂

∂νy
Φ(x, y)dsy x ∈ R

2 \ L̄,

P (x) =

∫
Γ

α(y)Φ(x, y)dsy +

∫
Γ

β(y)
∂

∂νy
Φ(x, y)dsy x ∈ R

2 \ Γ̄

coincide in R
2\(Γ̄ ∪L̄). Now let x0 ∈ L, x0 /∈ Γ , and let Ωε(x0) be a small ball

with center at x0 such that Ωε(x0) ∩ Γ = ∅. Hence P is analytic in Ωε(x0),
while ΦL has a singularity at x0, which is a contradiction. Hence ΦL

∞ /∈ R(F).
��

Remark 8.43. The statement and proof of Lemma 8.42 remain valid for the
operator FD given by (8.123) if we set βL = 0 in (8.127).

Now let us denote by L the set of open, nonintersecting, smooth arcs and look
for a solution g ∈ L2[0, 2π] of the far-field equation

− Fg = FM−1Hg = ΦL
∞ for L ∈ L, (8.128)

where ΦL∞ is given by (8.127) and F is the far-field operator correspond-
ing to the mixed crack problem. If L ⊂ Γ , then the corresponding (αL, βL)

is in H̃− 1
2 (Γ ) × H̃

1
2 (Γ ). Since M(αL, βL) ∈ H

1
2 (Γ ) × H− 1

2 (Γ ), then from
Theorem 8.37 for every ε > 0 there exists a gεL ∈ L2[0, 2π] such that

‖M(αL, βL)−HgεL‖H 1
2 (Γ )×H− 1

2 (Γ )
< ε,
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whence from the continuity of M−1

‖(αL, βL)−M−1HgεL‖H̃− 1
2 (Γ )×H̃

1
2 (Γ )

< Cε, (8.129)

with a positive constant C. Finally (8.125), the continuity of F and the fact
that F(αL, βL) = ΦL∞ imply that

‖FgεL + ΦL
∞‖L2[0, 2π] < C̃ε. (8.130)

For some constant C̃ > 0 independent of ε.
Next, we assume that L �⊂Γ . Let gn := gεnL be such that

‖Fgn + ΦL
∞‖L2[0, 2π] < εn (8.131)

for some null sequence εn, and assume that Hgn is bounded in H
1
2 (Γ ) ×

H− 1
2 (Γ ). Thus, without loss of generality we may assume that Hgn ⇀ (φ, ψ)

converge weakly to some (φ, ψ) ∈ H
1
2 (Γ ) × H− 1

2 (Γ ). The boundedness of

M−1 implies that M−1Hgn converges weakly to some (α, β) ∈ H̃− 1
2 (Γ ) ×

H̃
1
2 (Γ ), and the boundedness of F implies that FM−1Hgn converges weakly

to (F(α, β) in L2[0, 2π]. But from (8.131) we have that FM−1Hgn converges
strongly to ΦL∞ := (F(αL, βL), and hence ΦL∞ = F(α, β), which contradicts
Lemma 8.42.

We summarize these results in the following theorem, noting that for L ∈ L
we have that ρ→ 0 as δ → 0.

Theorem 8.44. Assume that Γ is a nonintersecting, smooth, open arc. For
a given nonintersecting smooth arc L, consider ΦL

∞ given in Lemma 8.41 for

some (αL, βL) ∈ H̃− 1
2 (Γ )×H̃ 1

2 (Γ ). If F is the far-field operator corresponding
to the scattering problem (8.84)–(8.86) and (8.83), then the following is true:

1. For L ⊂ Γ and a given ε > 0 there exists a function gεL ∈ L2[0, 2π]
satisfying

‖FgεL + ΦL
∞‖L2[0, 2π] < ε

such that ‖vgεL ‖H1(ΩR) is bounded, vgε
L
is the Herglotz wave function with

kernel gL, and ΩR is a large enough disk of radius R. Furthermore, the
corresponding Hgε

L
given by (8.115) converges to M(αL, βL) in H

1
2 (Γ )×

H− 1
2 (Γ ), where M is given by (8.121).

2. For L �⊂Γ and a given ε > 0 every function gεL ∈ L2[0, 2π] that satisfies

‖FgL + ΦL
∞‖L2[0, 2π] < ε

is such that limε→0 ‖vgL‖H1(ΩR) = ∞.

Remark 8.45. The statement and proof of Theorem 8.44 remain valid in the
case where F is the far-field operator corresponding to the Dirichlet crack if
we set βL = 0 in the definition of ΦL∞ and assume that there does not exist a
Herglotz wave function that vanishes on Γ .
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In particular, if L ⊂ Γ , then we can find a bounded solution to the far-field
equation (8.128) with discrepancy ε, whereas if L �⊂Γ , then there exist solu-
tions to the far-field equation with discrepancy ε+ δ with an arbitrarily large
norm in the limit as δ → 0. For numerical purposes we need to replace ΦL

∞ in
the far-field equation (8.128) by an expression independent of L. To this end,
assuming that there does not exist a Herglotz wave function that vanishes on
L, we can conclude from Lemma 8.41 that the class of potentials of the form∫

L

α(y)e−ikx̂·y dsy, α ∈ H̃− 1
2 (L) (8.132)

is dense in L2[0, 2π], and hence for numerical purposes we can replace ΦL∞
in (8.128) by an expression of the form (8.132). Finally, we note that as L
degenerates to a point z, with αL an appropriate delta sequence, we have
that the integral in (8.132) approaches −γe−ikx̂·z. Hence, it is reasonable to
replace ΦL

∞ by −Φ∞, where Φ∞(x̂, z) := γe−ikx̂·z when numerically solving
the far-field equation (8.128).

8.9 Numerical Examples

As we explained in the last paragraph of the previous section, to determine the
shape of a crack, we compute a regularized solution to the far-field equation

2π∫
0

u∞(θ, φ)g(φ) dφ = γe−ikx̂·z x̂ = (cosφ, sinφ), z ∈ R
2,

where u∞ is the far-field data of the scattering problem. This is the same
far-field equation we used in all the inverse problems presented in this chap-
ter, which emphasizes one of the advantages of the linear sampling method,
namely, it does not make use of any a priori information on the geometry of
the scattering object.

To solve the far-field equation, we apply the same procedure as in Sect. 8.3.
In all our examples, we use synthetic data corrupted with random noise.
We show reconstruction examples for four different cracks, all of which are
subject to the Dirichlet boundary condition.

1. The curve given by the parametric equation (Fig. 8.11, top left)

Γ :=

{
�(s) =

(
2 sin

s

2
, sin s

)
:
π

4
≤ s ≤ 7π

4

}
.

2. The line given by the parametric equation (Fig. 8.11, top right)

Γ := {�(s) = (−2 + s, 2s) : −1 ≤ s ≤ 1} .
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Fig. 8.11. The true object (top), reconstruction with 0.5% noise (middle), and
with 5% noise (bottom). The wave number is k = 34

4Reprinted from F. Cakoni and D. Colton, The linear sampling method for
cracks, Inverse Problems 19 (2003), 279–295.
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Fig. 8.12. The true object (top), reconstruction with 0.5% noise (middle), and
with 5% noise (bottom). The wave number is k = 34

3. The curve given by the parametric equation (Fig. 8.12, top left)

Γ :=

{
�(s) =

(
s, 0.5 cos

πs

2
+ 0.2 sin

πs

2
− 0.1 cos

3πs

2

)
: −1 ≤ s ≤ 1

}
.
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4. Two disconnected curves described as in curves 1 and 2 above (Fig. 8.12,
top right).

In all our examples, k = 3, and the far-field data are given for 32 incident
directions and 32 observation directions equally distributed on the unit circle.
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