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Inverse Scattering Problems

for Orthotropic Media

In this chapter we extend the results of Chap. 4 to the case of the inverse
scattering problem for an inhomogeneous orthotropic medium. The inverse
problem we shall consider in this chapter is to determine the support of the ort-
hotropic inhomogeneity given the far-field pattern of the scattered field for
many incident directions.

The investigation of the inverse problem is based on the analysis of a non-
standard boundary value problem called the interior transmission problem.
This problem plays the same role for the inhomogeneous medium problem
as the interior impedance problem plays in the solution of the inverse prob-
lem for an imperfect conductor, studied in Chap. 4. Having discussed the
well-posedness of the interior transmission problem and the existence and
countability of transmission eigenvalues, we proceed with a uniqueness result
for the inverse problem. We will present here a proof due to Hähner [81] that
is based on the use of a regularity result for the solution to the interior trans-
mission problem. We then derive the linear sampling method for finding an
approximation to the support of the inhomogeneity. Although the analysis of
the justification of the linear sampling method refers to the scattering prob-
lem for an orthotropic medium, the implementation of the method does not
rely on any a priori knowledge of the physical properties of the scattering
object. In particular, we show that the far-field equation we used in Chap. 4
to determine the shape of an imperfect conductor can also be used in the
present case where the corresponding far-field pattern is used for the ker-
nel of this equation. Finally, since transmission eigenvalues carry qualitative
information about the material properties of the inhomogeneous scattering
object (cf. Sect. 6.2), we conclude this chapter by showing how transmission
eigenvalues can be determined from the (noisy) far-field data.
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112 6 Inverse Scattering Problems for Orthotropic Media

6.1 Formulation of Inverse Problem

Let D be the support and A and n the constitutive parameters of a bounded,
orthotropic, inhomogeneous medium in R

2, where D, A, and n satisfy the ass-
umptions given in Sect. 5.1. The scattering of a time-harmonic incident plane
wave ui := eikx·d by the inhomogeneity D is described by the transmission
problem (5.13)–(5.17) with f := eikx·d and h := ∂eikx·d/∂ν, which we recall
here for the reader’s convenience:

∇ ·A∇v + k2n v = 0 in D, (6.1)

Δus + k2 us = 0 in R
2 \ D̄, (6.2)

v − us = eikx·d on ∂D, (6.3)

∂v

∂νA
− ∂us

∂ν
=
∂eikx·d

∂ν
on ∂D, (6.4)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, (6.5)

where k > 0 is the (fixed) wave number, d := (cos φ, sin φ) is the incident
direction, x = (x1, x2) ∈ R

2, and r = |x|. In particular, the interior field
v(·) := v(·, φ) and scattered field us(·) := us(·, φ) depend on the incident
angle φ. The radiating scattered field us again has the asymptotic behavior

us(x) =
eikr√
r
u∞(θ, φ) +O(r−3/2), r → ∞,

where the function u∞(·, φ) defined on [0, 2π] is the far-field pattern cor-
responding to the scattering problem (6.1)–(6.5) and the unit vector x̂ :=
(cos θ, sin θ) is the observation direction. In the same way as in Theorem 4.2
it can be shown that the far-field pattern u∞(θ, φ) corresponding to (6.1)–(6.5)
satisfies the reciprocity relation u∞(θ, φ) = u∞(φ+ π, θ + π) and is given by

u∞(θ, φ) =
eiπ/4√
8πk

∫
∂B

(
us(y)

∂e−ikx̂·y

∂ν
− e−ikx̂·y ∂u

s(y)

∂ν

)
ds(y), (6.6)

where ∂B is the boundary of a bounded domain containing D (it can also be
∂D).

The following result can be obtained as a consequence of Rellich’s lemma
(Theorem 4.1).

Theorem 6.1. Suppose that the far-field pattern u∞ corresponding to (6.1)–
(6.5) satisfies u∞ = 0 for a fixed angle φ and all θ in [0, 2π]. Then us = 0 in
R

2 \ D̄.

Note that by the analyticity of the far-field pattern Theorem 6.1 holds if
u∞ = 0 only for a subinterval of [0, 2π].
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The inverse scattering problem we are concerned with is to determine D
from a knowledge of the far-field pattern u∞(θ, φ) for all incident angles φ ∈
[0, 2π] and all observation angles θ ∈ [0, 2π]. We remark that for an ort-
hotropic medium standard examples [77, 136] show that A and n are not in
fact uniquely determined from the far-field pattern u∞(θ, φ) for all φ ∈ [0, 2π]
and θ ∈ [0, 2π], but rather what is possible to determine is the support of the
inhomogeneity D.

We now consider the far-field operator F : L2[0, 2π] → L2[0, 2π] corre-
sponding to (6.1)–(6.5) defined by

(Fg)(θ) :=

2π∫
0

u∞(θ, φ)g(φ)dφ. (6.7)

As the reader has already seen (Chap. 4), the far-field operator will play a
central role in the solution of the inverse problem. The first problem to resolve
is that of injectivity and the denseness of the range of the far-field operator.
We recall that a Herglotz function with kernel g ∈ L2[0, 2π] is given by

vg(x) :=

2π∫
0

eikx·dg(φ) dφ, (6.8)

where d = (cosφ, sinφ). Note that by superposition, Fg is the far-field pattern
of the solution to (6.1)–(6.5), with eikx·d replaced by vg. For future reference
we note that

ṽg(x) :=

2π∫
0

e−ikx·dg(φ) dφ (6.9)

is also a Herglotz wave function with kernel g(φ− π).

Theorem 6.2. The far-field operator F corresponding to the scattering prob-
lem (6.1)–(6.5) is injective with dense range if and only if there does not exist
a Herglotz wave function vg such that the pair v, vg is a solution to

∇ · A∇v + k2n v = 0 and Δvg + k2 vg = 0 in D, (6.10)

v = vg and
∂v

∂νA
=
∂vg
∂ν

on ∂D. (6.11)

Proof. In exactly the same way as in Theorem 4.3, one can show that the far-
field operator F is injective if and only if its adjoint operator F ∗ is injective.
Since N(F ∗)⊥ = F (L2[0, 2π]), to prove the theorem we must only show that F
is injective. But Fg = 0 with g �= 0 is equivalent to the existence of a nonzero
Herglotz wave function vg with kernel g for which the far-field pattern u∞
corresponding to (6.1)–(6.5) with eikx·d replaced by vg vanishes. By Rellich’s
lemma we have that us = 0 in R

2 \ D̄, and hence the transmission conditions
imply that
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v = vg and
∂v

∂νA
=
∂vg
∂ν

on ∂D.

Since vg is a solution of the Helmholtz equation, we have that v and vg sat-
isfy (6.10) as well. This proves the theorem. �	

Motivated by Theorem 6.2, we now define the interior transmission problem
associated with the transmission problem (5.13)–(5.17).

Interior transmission problem. Given f ∈ H
1
2 (∂D) and h ∈ H− 1

2 (∂D),
find two functions v ∈ H1(D) and w ∈ H1(D) satisfying

∇ · A∇v + k2n v = 0 in D, (6.12)

Δw + k2 w = 0 in D, (6.13)

v − w = f on ∂D, (6.14)

∂v

∂νA
− ∂w

∂ν
= h on ∂D. (6.15)

The boundary value problem (6.12)–(6.13) with f = 0 and h = 0 is called
the homogeneous interior transmission problem or the transmission eigenvalue
problem.

Definition 6.3. Values of k for which the homogeneous interior transmission
problem has a nontrivial solution are called transmission eigenvalues.

In particular, Theorem 6.2 states that if k is not a transmission eigenvalue,
then the range of the far-field operator is dense.

6.2 Interior Transmission Problem

As seen earlier, the interior transmission problem appears naturally in scat-
tering problems for an inhomogeneous medium. Of particular concern to us
in this section are the countability and the existence of real transmission
eigenvalues, and the approach to studying the interior transmission problem
depends on whether or not n ≡ 1. In our analysis of the interior transmission
problem we exclude the case of A = I and refer the reader to Chap. 8 in [54],
which deals with (6.12)–(6.15) when A = I.

We begin by establishing the uniqueness of a solution to the interior trans-
mission problem for complex-valued refractive indexes.

Theorem 6.4. If either Im(n) > 0 or Im
(
ξ̄ ·Aξ

)
< 0 at a point x0 ∈ D,

then the interior transmission problem (6.12)–(6.15) has at most one solution.

Proof. Let v and w be a solution of the homogeneous interior transmission
problem (i.e., f = h = 0). Applying the divergence theorem to v and A∇v
(Corollary 5.8), using the boundary condition and applying Green’s first iden-
tity to w and w (Remark 6.29) we obtain



6.2 Interior Transmission Problem 115

∫
D

∇v ·A∇v dy −
∫
D

k2n|v|2 dy =

∫
∂D

v · ∂v

∂νA
dy =

∫
D

|∇w|2 dy −
∫
D

k2|w|2 dy.

Hence

Im

⎛
⎝∫

D

∇v ·A∇v dy

⎞
⎠ = 0 and Im

⎛
⎝∫

D

n|v|2 dy

⎞
⎠ = 0. (6.16)

If Im(n) > 0 at a point x0 ∈ D, and hence by continuity in a small disk Ωε(x0),
then the second equality of (6.16) and the unique continuation principle (The-
orem 17.2.6 in [89]) imply that v ≡ 0 in D. In the case where Im

(
ξ̄ ·Aξ

)
< 0

at a point x0 ∈ D for all ξ ∈ C
2, and hence by continuity in a small ball

Ωε(x0), from the first equality of (6.16) we obtain that ∇v ≡ 0 in Ωε(x0)
and from (6.12) v ≡ 0 in Ωε(x0), whence again from the unique continuation
principle v ≡ 0 in D. From the boundary conditions (6.13) and (6.14), and
the integral representation formula, w also vanishes in D. �	

We now proceed to the solvability of the interior transmission problem follow-
ing the approach in [20] and [34]. In the following analysis we assume without
loss of generality that D is simply connected. We first study an intermediate
problem called the modified interior transmission problem, which turns out to
be a compact perturbation of our original transmission problem.

The modified interior transmission problem is as follows: given f ∈
H

1
2 (∂D), h ∈ H− 1

2 (∂D), a real-valued function m ∈ C(D̄), and two func-
tions ρ1 ∈ L2(D) and ρ2 ∈ L2(D), find v ∈ H1(D) and w ∈ H1(D) satisfying

∇ ·A∇v −mv = ρ1 in D, (6.17)

Δw − w = ρ2 in D, (6.18)

v − w = f on ∂D, (6.19)

∂v

∂νA
− ∂w

∂ν
= h on ∂D. (6.20)

We now reformulate (6.17)–(6.20) as an equivalent variational problem of the
form (5.18). To this end, we define the Hilbert space

W (D) :=
{
w ∈

(
L2(D)

)2
: ∇ ·w ∈ L2(D) and ∇×w = 0

}

equipped with the inner product

(w1, w2)W = (w1, w2)L2(D) + (∇ ·w1, ∇ ·w2)L2(D)

and the norm
‖w‖2W = ‖w‖2L2(D) + ‖∇ ·w‖2L2(D).

We denote by 〈·, ·〉 the duality pairing between H
1
2 (∂D) and H− 1

2 (∂D). The
duality pairing
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〈ϕ, ψ · ν〉 =
∫
D

ϕ ∇ · ψ dx+

∫
D

∇ϕ ·ψ dx (6.21)

for (ϕ,ψ) ∈ H1(D)×W (D) will be of particular interest in the sequel.
We next introduce the sesquilinear form A defined on {H1(D)×W (D)}2 by

A(U, V ) =

∫
D

A∇v · ∇ϕ̄ dx+

∫
D

mv ϕ̄ dx+

∫
D

∇ ·w∇ · ψ̄ dx+

∫
D

w · ψ̄ dx

−
〈
v, ψ̄ · ν

〉
− 〈ϕ̄, w · ν〉 , (6.22)

where U := (v,w) and V := (ϕ,ψ) are in H1(D) ×W (D). We denote by
L : H1(D)×W (D) → C the bounded conjugate linear functional given by

L(V ) =

∫
D

(ρ1 ϕ̄+ ρ2 ∇ · ψ̄) dx+ 〈ϕ̄, h〉 −
〈
f, ψ̄ · ν

〉
. (6.23)

Then the variational formulation of the problem (6.17)–(6.20) is to find U =
(v,w) ∈ H1(D)×W (D) such that

A(U, V ) = L(V ) for all V ∈ H1(D)×W (D). (6.24)

The following theorem proves the equivalence between problems (6.17)–(6.20)
and (6.24).

Theorem 6.5. The problem (6.17)–(6.20) has a unique solution (v, w) ∈
H1(D) × H1(D) if and only if the problem (6.24) has a unique solution
U = (v,w) ∈ H1(D) × W (D). Moreover if (v, w) is the unique solution
to (6.17)–(6.20), then U = (v,∇w) is the unique solution to (6.24). Con-
versely, if U = (v,w) is the unique solution to (6.24), then the unique solution
(v, w) to (6.17)–(6.20) is such that w = ∇w.
Proof. We first prove the equivalence between the existence of a solution (v, w)
to (6.17)–(6.20) and the existence of a solution U = (v,w) to (6.24).

1. Assume that (v, w) is a solution to (6.17)–(6.20), and set w = ∇w.
From (6.18) we see that, since ∇w = w + ρ2 ∈ L2(D), then w ∈ W (D).
Taking the L2 scalar product of (6.18) with ∇·ψ for some ψ ∈W (D) and
using (6.21) we see that∫

D

∇ ·w∇ · ψ̄ dx+

∫
D

w · ψ̄ dx−
〈
w, ψ̄ · ν

〉
=

∫
D

ρ2 ∇ · ψ̄ dx.

Hence, by (6.19),∫
D

∇ ·w∇ · ψ̄ dx +

∫
D

w · ψ̄ dx−
〈
v, ψ̄ · ν

〉

= −
〈
f, ψ̄ · ν

〉
+

∫
D

ρ2 ∇ · ψ̄ dx. (6.25)
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We now take the L2 scalar product of (6.17) with ϕ in H1(D) and integrate
by parts. Using the boundary condition (6.20) we see that

∫
D

A∇v · ∇ϕ̄ dx+
∫
D

mv ϕ̄ dx− 〈ϕ̄, w · ν〉 = 〈ϕ̄, h〉+
∫
D

ρ1 ϕ̄ dx. (6.26)

Finally, adding (6.25) and (6.26) we have that U = (v,∇w) is a solution
to (6.24).

2. Now assume that U = (v,w) ∈ H1(D) ×W (D) is a solution to (6.24).
Since ∇ ×w = 0 and D is simply connected, we deduce the existence of
a function w ∈ H1(D) such that w = ∇w, where w is determined up to
an additive constant. As we shall see later, this constant can be adjusted
so that (v, w) is a solution to (6.17)–(6.20). Obviously, if U satisfies (6.24),
then (v,w) satisfies (6.25) and (6.26) for all (ϕ,ψ) ∈ H1(D)×W (D). One
can easily see from (6.26) that the pair (v, w) satisfies

∇ · A∇v −mv = ρ1 in D, (6.27)

∂v

∂νA
− ∂w

∂ν
= h on ∂D. (6.28)

On the other hand, substituting for w in (6.25) and using the duality
identity (6.21) in the second integral we have that

∫
D

(Δw − w)∇ · ψ̄ dx +
〈
w − v, ψ̄ · ν

〉
(6.29)

= −
〈
f, ψ̄ · ν

〉
+

∫
D

ρ2 ∇ · ψ̄ dx

for all ψ in W (D).

Now consider a function φ ∈ L2
0(D) =

{
φ ∈ L2(D) :

∫
D

φ dx = 0

}
, and let

χ ∈ H1(D) be a solution to

{
Δχ = φ̄ in D,
∂χ

∂ν
= 0 on ∂D.

(6.30)

The existence of a solution of the preceding Neumann boundary value prob-
lem can be established by the variational methods developed in Chap. 5
(Example 5.15). We leave it to the reader as an exercise [127]. Taking
ψ = ∇χ in (6.29) [note that from (6.30) ∇ · ψ̄ = φ in D and ψ̄ · ν = 0 on
∂D] we have that

∫
D

(Δw − w − ρ2)φ dx = 0 for all φ ∈ L2
0(D),
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which implies the existence of a constant c1 such that

Δw − w − ρ2 = c1 in D. (6.31)

We now take φ ∈ L2
0(∂D) and let σ ∈ H1(D) be a solution to

{
Δσ = 0 in D,
∂σ

∂ν
= φ̄ on ∂D.

(6.32)

Taking ψ = ∇σ in (6.25) [note that (6.32) implies that ∇· ψ̄ = 0 in D and
ψ̄ · ν = φ on ∂D] we have that

∫
∂D

(w − v + f)φ ds = 0 for all φ ∈ L2
0(∂D),

which implies the existence of a constant c2 such that

w − v + f = c2 on ∂D. (6.33)

Substituting (6.31) and (6.33) into (6.29) and using (6.21) we see that

(c1 − c2)

∫
D

∇ · ψ̄ dx = 0 ∀ ψ ∈W (D),

which implies c1 = c2 = c [take, for instance, ψ = ∇�, where � ∈ H1
0 (D)

and Δ� = 1 in D]. Equations (6.27), (6.31), and (6.33) show that (v, w−c)
is a solution to (6.17)–(6.20).

We next consider the uniqueness equivalence between (6.17)–(6.20)
and (6.24).

3. Assume that (6.17)–(6.20) has at most one solution. Let U1 = (v1,w1) and
U2 = (v2,w2) be two solutions to (6.24). From step 2 earlier we deduce
the existence of w1 and w2 in H1(D) such that w1 = ∇w1 and w2 = ∇w2

and (v1, w1) and (v2, w2) are solutions to (6.17)–(6.20), whence (v1, w1) =
(v2, w2) and (v1,w1) = (v2,w2).

4. Finally, assume that (6.24) has at most one solution, and consider two
solutions (v1, w1) and (v2, w2) to (6.17)–(6.20). We can deduce from step 1
earlier that (v1,∇w1) and (v2,∇w2) are two solutions to (6.24). Hence
v1 = v2 and w = w1 − w2 is a function in H1(D) that satisfies

{
Δw − w = 0 in D,

w =
∂w

∂ν
= 0 on ∂D,

which implies w = 0.
�	
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We now investigate the modified interior transmission problem in the
variational formulation (6.24).

Theorem 6.6. Assume that there exists a constant γ > 1 such that, for
x ∈ D,

Re
(
ξ̄ · A(x) ξ

)
≥ γ|ξ|2 for all ξ ∈ C

2 and m(x) ≥ γ. (6.34)

Then problem (6.24) has a unique solution U = (v,w) ∈ H1(D) ×W (D).
This solution satisfies the a priori estimate

‖v‖H1(D) + ‖w‖W ≤ 2C
γ + 1

γ − 1

(
‖ρ1‖L2(D) + ‖ρ2‖L2(D)

+ ‖f‖
H

1
2 (∂D)

+ ‖h‖
H− 1

2 (∂D)

)
,

(6.35)

where the constant C > 0 is independent of ρ1, ρ2, f , h, and γ.

Proof. The trace theorems (Sect. 5.2) and Schwarz’s inequality ensure the
continuity of the conjugate linear functional L on H1(D) ×W (D) and the
existence of a constant c independent of ρ1, ρ2, f , and h such that

‖L‖ ≤ C
(
‖ρ1‖L2 + ‖ρ2‖L2 + ‖f‖

H
1
2
+ ‖h‖

H− 1
2

)
. (6.36)

On the other hand, if U = (v,w) ∈ H1(D) × W (D), then, by assump-
tion (6.34),

|A(U,U)| ≥ γ ‖v‖2H1 + ‖w‖2W − 2Re (〈v̄, w〉) . (6.37)

According to the duality identity (6.21), one has by Schwarz’s inequality that

| 〈v̄, w〉 | ≤ ‖v‖H1 ‖w‖W ,

and therefore

|A(U,U)| ≥ γ ‖v‖2H1 + ‖w‖2W − 2 ‖v‖H1 ‖w‖W .

Using the identity γx2 + y2 − 2xy = γ+1
2

(
x− 2

γ+1 y
)2

+ γ−1
2 x2 + γ−1

γ+1y
2 we

conclude that

|A(U,U)| ≥ γ − 1

γ + 1

(
‖w‖2W + ‖v‖2H1

)
,

whence A is coercive. The continuity of A follows easily from Schwarz’s in-
equality, the trace theorem, and Theorem 5.7. Theorem 6.6 is now a direct
consequence of the Lax–Milgram lemma applied to (6.24). �	
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Theorem 6.7. Assume that there exists a constant γ > 1 such that, for
x ∈ D,

Re
(
ξ̄ · A(x) ξ

)
≥ γ|ξ|2 for all ξ ∈ C

2 and m(x) ≥ γ. (6.38)

Then the modified interior transmission problem (6.17)–(6.20) has a unique
solution (v, w) that satisfies

‖v‖H1(D) + ‖w‖H1(D) ≤ C
γ + 1

γ − 1

(
‖ρ1‖L2(D) + ‖ρ2‖L2(D)

+ ‖f‖
H

1
2 (∂D)

+ ‖h‖
H− 1

2 (∂D)

)
,

(6.39)

where the constant C > 0 is independent of ρ1, ρ2, f , h, and γ.

Proof. The existence and uniqueness of a solution follow from Theorems 6.5
and 6.6. The a priori estimate (6.39) can be obtained directly from (6.17)–
(6.20), but it can also be deduced from (6.35) as follows. Theorem 6.5 tells us
that (v,∇w) is the unique solution to (6.24). Hence, according to (6.35),

‖v‖H1 + ‖∇w‖L2 ≤ C1
γ + 1

γ − 1

(
‖ρ1‖L2 + ‖ρ2‖L2 + ‖f‖

H
1
2
+ ‖h‖

H− 1
2

)
.

From Poincaré’s inequality in Sect. 5.2 we can write

‖w‖H1(D) ≤ C2

(
‖∇w‖L2(D) + ‖w‖L2(∂D)

)
.

Now, using the boundary condition (6.19) and the trace theorem we obtain
that

‖w‖H1(D) ≤ C2

(
‖∇w‖L2(D) + ‖v‖H1(D) + ‖f‖L2(∂D)

)

for some positive constant C2. The constants C1 and C2 can then be adjusted
so that (6.39) holds. �	

Now we are ready to show the existence of a solution to the interior transmis-
sion problem (6.12)–(6.15).

Theorem 6.8. Assume that either Im(n) > 0 or Im
(
ξ̄ ·Aξ

)
< 0 at a point

x0 ∈ D and that there exists a constant γ > 1 such that, for x ∈ D,

Re
(
ξ̄ · A(x) ξ

)
≥ γ|ξ|2 for all ξ ∈ C

2. (6.40)

Then (6.12)–(6.15) has a unique solution (v, w) ∈ H1(D) × H1(D). This
solution satisfies the a priori estimate

‖v‖H1(D) + ‖w‖H1(D) ≤ C
(
‖f‖

H
1
2 (∂D)

+ ‖h‖
H− 1

2 (∂D)

)
(6.41)

where the constant C > 0 is independent of f and h.
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Proof. Set

X (D) =
{
(v, w) ∈ H1(D)×H1(D) : ∇ · A∇v ∈ L2(D) and Δw ∈ L2(D)

}

and consider the operator G from X (D) into L2(D) × L2(D) × H
1
2 (∂D) ×

H− 1
2 (∂D) defined by

G(v, w) =
(
∇ · A∇v −mv,Δw − w, (v − w)|∂D

,

(
∂v

∂ν
− ∂w

∂ν

)
|∂D

)
(6.42)

wherem ∈ C(D̄) andm > 1. Obviously G is continuous and from Theorem 6.7
we know that the inverse of G exists and is continuous. Now consider the
operator T from X (D) into L2(D)×L2(D)×H 1

2 (∂D)×H− 1
2 (∂D) defined by

T (v, w) =
(
(k2 n+m)v, (k2 + 1)w, 0, 0

)

From the compact embedding of H1(D) into L2(D) (Sect. 5.2), the operator
T is compact. Theorem 6.4 implies that G+T is injective, and therefore, from
Theorem 5.16 we can deduce the existence and the continuity of (G + T )−1,
which means in particular the existence of a unique solution to the interior
transmission problem (6.12)–(6.15) that satisfies the a priori estimate (6.43).

�	

The foregoing analysis of the interior transmission problem requires that
the matrix A satisfy

Re
(
ξ̄ ·A(x) ξ

)
≥ γ|ξ|2 for all ξ ∈ C

2, x ∈ D and some constant γ > 1,

that is, ‖Re(A)‖ > 1. The case of Re(A) positive definite such that ‖Re(A)‖ <
1 is considered in [34]. By modifying the variational approach of Theorems 6.5
and 6.6 one can prove the following result.

Theorem 6.9. Assume that either Im(n) > 0 or Im
(
ξ̄ ·Aξ

)
< 0 at a point

x0 ∈ D and that there exists a constant γ > 1 such that, for x ∈ D,

Re
(
ξ̄ · (A(x))−1

ξ
)
≥ γ|ξ|2 for all ξ ∈ C

2 and γ−1 ≤ m < 1.

Then (6.12)–(6.15) has a unique solution (v, w) ∈ H1(D) × H1(D). This
solution satisfies the a priori estimate

‖v‖H1(D) + ‖w‖H1(D) ≤ C
(
‖f‖

H
1
2 (∂D)

+ ‖h‖
H− 1

2 (∂D)

)
, (6.43)

where the constant C > 0 is independent of f and h.

We remark that a solvability result under less restrictive assumptions on A is
obtained later in this chapter (Remark 6.29).
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In general we cannot conclude the solvability of the interior transmission
problem if A and n do not satisfy the assumptions of the previous theorem.
In particular, if Im(A) = 0 and Im(n) = 0 in D, then k may be a transmission
eigenvalue (Definition 6.3). Do transmission eigenvalues exist and, if so, do
they form a discrete set? The approach in [20] and [34] presented earlier is not
suitable to handle these questions, and therefore we devote the next section
of the book to address these issues. In particular, we will prove that under
appropriate assumptions transmission eigenvalues exist and form a discrete set
with infinity as the only accumulation point. As mentioned at the beginning
of this section, the analysis of the transmission eigenvalue problem for cases
where n = 1 and n �= 1 are fundamentally different, and hence we consider
each of these cases separately. For the study of the transmission eigenvalue
problem if A = I we refer the reader to [32] and to Chap. 10 in [54].

6.3 Transmission Eigenvalue Problem

We recall that the transmission eigenvalue problem is formulated as a problem
of finding two nonzero functions v ∈ H1(D) and w ∈ H1(D) satisfying

∇ ·A∇v + k2n v = 0 in D, (6.44)

Δw + k2 w = 0 in D, (6.45)

v = w on ∂D, (6.46)

∂v

∂νA
=
∂w

∂ν
on ∂D. (6.47)

Since transmission eigenvalues do not exist for complex-valuedA and n, hence-
forth we assume that both A and n are real-valued and define

amin := inf
x∈D

inf
ξ∈R2,|ξ|=1

(ξ ·A(x)ξ) > 0,

amax := sup
x∈D

sup
ξ∈R2,|ξ|=1

(ξ · A(x)ξ) <∞,

nmin := inf
x∈D

n(x) > 0 and nmax := sup
x∈D

n(x) <∞.

(6.48)

Example 6.10. In what follows, we will need to consider a particular case of
the interior transmission problem where D is a ball BR of radius R centered at
the origin, A := a0I, and n := n0, where a0 and n0 are positive constants not
both equal to one. In this case the interior transmission eigenvalue problem
reads as
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Δv + k2
n0

a0
v = 0 in BR , (6.49)

Δw + k2 w = 0 in BR , (6.50)

v = w on ∂BR , (6.51)

a0
∂v

∂r
=
∂w

∂r
on ∂BR , (6.52)

where r = |x|. To solve (6.49)–(6.52) in R
2, we make the ansatz

w(r, x̂) = a� J�(k r) e
i�θ , v(r, x̂) = b� J�

(
k

√
n0

a0
r

)
ei�θ,

where J� are Bessel functions of order � introduced in Chap. 3. Then using
separation of variables one sees that the transmission eigenvalues satisfy

W (k) = det

⎛
⎝ J�(kR) J�

(
k
√

n0

a0
R

)

k J ′
�(kR) k

√
n0a0 J

′
�

(
k
√

n0

a0
R

)
⎞
⎠ = 0. (6.53)

6.3.1 The Case n = 1

The case where n = 1 corresponds to the electromagnetic scattering problem
for an orthotropic medium when the magnetic permeability in the medium is
constant and the same as the magnetic permeability in the background. The
transmission eigenvalue problem reads: find two nonzero functions v ∈ H1(D)
and w ∈ H1(D) satisfying

∇ ·A∇v + k2 v = 0 in D, (6.54)

Δw + k2 w = 0 in D, (6.55)

v = w on ∂D, (6.56)

∂v

∂νA
=
∂w

∂ν
on ∂D. (6.57)

Our approach follows the one introduced in [20] and developed further in [31],
which generalizes the first proof of the existence of transmission eigenvalues
given in [134].

The proof of the existence of transmission eigenvalues is based on the
following abstract analysis. Let X be a separable Hilbert space with scalar
product (·, ·) and associated norm ‖ · ‖, and let A be a bounded, positive
definite, and self-adjoint operator on X . Under these assumptions A±1/2 are
well defined (cf. [115]). In particular, A±1/2 are also bounded, positive defi-
nite, and self-adjoint operators, A−1/2

A
1/2 = I and A

1/2
A

1/2 = A. We shall
consider the spectral decomposition of the operator A with respect to self-
adjoint nonnegative compact operators. The next two theorems indicate the
main properties of such a decomposition.
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Definition 6.11. A bounded linear operator A on a Hilbert space X is said
to be nonnegative if (Au, u) ≥ 0 for every u ∈ X . A is said to be strictly
coercive if (Au, u) ≥ β‖u‖2 for some positive constant β.

Theorem 6.12. Let A be a bounded, self-adjoint, and strictly coercive opera-
tor on a Hilbert space, and let B be a nonnegative, self-adjoint, and compact
linear operator with null space N(B). Then there exists an increasing sequence
of positive real numbers (λj)j≥1 and a sequence (uj)j≥1 of elements of X sat-
isfying

Auj = λjBuj

and
(Buj , u�) = δj�

such that each u ∈ [A(N(B))]⊥ can be expanded in a series

u =

∞∑
j=1

γjuj.

If N(B)⊥ has infinite dimension, then λj → +∞ as j → ∞.

Proof. This theorem is a direct consequence of the Hilbert–Schmidt theorem
applied to the nonnegative self-adjoint compact operator B̃ = A

−1/2
BA

−1/2.
Let (μj , vj)j≥1 be the sequence of positive eigenvalues and corresponding

eigenfunctions associated with B̃ such that {vj}j≥1 forms an orthonormal

basis for N(B̃)⊥. Note that zero is the only possible accumulation point
for the sequence μj . Straightforward calculations show that λj = 1/μj

and uj =
√
λk A

−1/2vj satisfy Auj = λjBuj. Obviously, if w ∈ AN(B),
then w = Az for some z ∈ N(B), and hence (uj , w) = λj(A

−1
Buj , w) =

λj(A
−1

Buj,Az) = λj(Buj , z) = 0, which means that uj ∈ [AN(B)]⊥. Further-
more, any u ∈ [AN(B)]⊥ can be written as u =

∑
j γjuj =

∑
j γj

√
λjA

−1/2vj

since A
1/2u ∈

[
N(A−1/2

BA
−1/2)

]⊥
. This ends the proof of the theorem. �	

Theorem 6.13. Let A, B, and (λj)j≥1 be as in Theorem 6.12, and define the
Rayleigh quotient as

R(u) =
(Au, u)

(Bu, u)

for u /∈ N(B), where (· , ·) is the inner product on X. Then the following
min-max principle holds:

λj = min
W∈UA

j

(
max

u∈W\{0}
R(u)

)
= max

W∈UA

j−1

(
min

u∈(A(W+N(B)))⊥\{0}
R(u)

)
,

where UA

j denotes the set of all j-dimensional subspaces of [AN(B)]⊥.
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Proof. The proof follows the classical proof of the Courant min-max principle
and is given here for the reader’s convenience. It is based on the fact that
if u ∈ [AN(B)]⊥, then from Theorem 6.12 we can write u =

∑
j γjuj for

some coefficients γj, where the uj are defined in Theorem 6.12 (note that
the uj are orthogonal with respect to the inner product induced by the self-
adjoint invertible operator A). Then using the facts that (Buj , u�) = δj� and
Auj = λjBuj it is easy to see that

R(u) =
1∑

j |γj |2
∑
j

λj |γj |2.

Therefore, if Wj ∈ UA

j denotes the space generated by {u1, . . . , uj}, then we
have that

λj = max
u∈Wj\{0}

R(u) = min
u∈[A(Wj−1+N(B))]⊥\{0}

R(u).

Next, let W be any element of UA

j . Since W has dimension j and W ⊂
[AN(B)]⊥, then W ∩ [AWj−1 + AN(B)]⊥ �= {0}. Therefore,

max
u∈W\{0}

R(u) ≥ min
u∈W∩[A(Wj−1+N(B))]⊥\{0}

R(u)

≥ min
u∈[A(Wj−1+N(B))]⊥\{0}

R(u) = λj ,

which proves the first equality of the theorem. Similarly, if W has dimension
j − 1 and W ⊂ [AN(B)]⊥, then Wj ∩ (AW )⊥ �= {0}. Therefore,

min
u∈[A(W+N(B))]⊥\{0}

R(u) ≤ max
u∈Wj∩(AW )⊥\{0}

R(u) ≤ max
u∈Wj\{0}

R(u) = λj ,

which proves the second equality of the theorem. �	

The following corollary shows that it is possible to remove the dependence
on A in the choice of the subspaces in the min-max principle for the eigenval-
ues λj .

Corollary 6.14. Let A, B, (λj)j≥1, and R be as in Theorem 6.13. Then

λj = min
W⊂Uj

(
max

u∈W\{0}
R(u)

)
, (6.58)

where Uj denotes the set of all j-dimensional subspaces W of X such that
W ∩N(B) = {0}.
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Proof. From Theorem 6.13 and the fact that UA

j ⊂ Uj it suffices to prove that

λj ≤ min
W⊂Uj

(
max

u∈W\{0}
R(u)

)
.

Let W ∈ Uj , and let v1, v2, . . . , vk be a basis for W . Each vector vj can be
decomposed into a sum v0j + ṽj , where ṽj ∈ [AN(B)]⊥ and v0j ∈ N(B) (which
is the orthogonal decomposition with respect to the scalar product induced
by A). Since W ∩ N(B) = {0}, the space W̃ generated by ṽ1, ṽ2, . . . , ṽj has

dimension j. Moreover, W̃ ⊂ [AN(B)]⊥. Now let ũ ∈ W̃ . Obviously, ũ = u−u0
for some u ∈ W and u0 ∈ N(B). Since Bu0 = 0 and (Au0, ũ) = 0, we have
that

R(u) =
(Aũ, ũ) + (Au0, u0)

(Bũ, ũ)
= R(ũ) +

(Au0, u0)

(Bũ, ũ)
.

Consequently, since A is positive definite and B is nonnegative, we obtain

R(ũ) ≤ R(u) ≤ max
u∈W\{0}

R(u).

Finally, taking the maximum with respect to ũ ∈ W̃ ⊂ [AN(B)]⊥ in the
preceding inequality, we obtain from Theorem 6.13 that

λj ≤ max
u∈W\{0}

R(u),

which completes the proof after taking the minimum over all W ⊂ Uj . �	

The following theorem provides the theoretical basis of our analysis of the
existence of transmission eigenvalues. This theorem is a simple consequence
of Theorem 6.13 and Corollary 6.14.

Theorem 6.15. Let τ �−→ Aτ be a continuous mapping from ]0,∞[ to the set
of bounded, self-adjoint, and strictly coercive operators on the Hilbert space X,
and let B be a self-adjoint and nonnegative, compact, bounded, linear operator
on X. We assume that there exist two positive constants τ0 > 0 and τ1 > 0
such that

1. Aτ0 − τ0B is positive on X,
2. Aτ1 − τ1B is nonpositive on a �-dimensional subspace Wj of X.

Then each of the equations λj(τ) = τ for j = 1, . . . , � has at least one solution
in [τ0, τ1], where λj(τ) is the jth eigenvalue (counting multiplicity) of Aτ with
respect to B, i.e., N(Aτ − λj(τ)B) �= {0}.

Proof. First we can deduce from (6.58) that for all j ≥ 1, λj(τ) is a con-
tinuous function of τ . Assumption 1 shows that λj(τ0) > τ0 for all j ≥ 1.
Assumption 2 implies in particular that Wj ∩ N(B) = {0}. Hence, another
application of (6.58) implies that λj(τ1) ≤ τ1 for 1 ≤ j ≤ �. The desired result
is now obtained by applying the intermediate value theorem. �	
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The main idea in studying the eigenvalue problem (6.54)–(6.57) is to
observe that by making an appropriate substitution one can rewrite it as an
equivalent eigenvalue problem for a fourth-order differential equation. To this
end, let w ∈ H1(D) and v ∈ H1(D) satisfy (6.54)–(6.57), and make the
substitution

v = A∇v ∈ L2(D)2, and w = ∇w ∈ L2(D)2.

Since from (6.48) A−1 exists and is bounded, we have that

∇v = A−1v.

Taking the gradient of (6.54) and (6.55), we obtain that v and w satisfy

∇(∇ · v) + k2A−1v = 0 (6.59)

and

∇(∇ ·w) + k2w = 0, (6.60)

respectively, in D. Obviously, (6.57) implies that

ν · v = ν ·w on ∂D. (6.61)

Furthermore, from (6.54) and (6.55) we have that

−k2v = ∇ · v and − k2w = ∇ ·w,

and the transmission condition (6.56) yields

∇ · v = ∇ ·w on ∂D. (6.62)

We now formulate the interior transmission eigenvalue problem in terms of w
and v. In addition to the usual energy spaces

H1(D) : =
{
u ∈ L2(D) : ∇u ∈ L2(D)2

}
,

H1
0 (D) : =

{
u ∈ H1(D) : u = 0 on ∂D

}
,

we introduce the Sobolev spaces

H(div, D) : =
{
u ∈ L2(D)2 : ∇ · u ∈ L2(D)

}
,

H0(div, D) : = {u ∈ H(div, D) : ν · u = 0 on ∂D}

and

H(D) : =
{
u ∈ H(div, D) : ∇ · u ∈ H1(D)

}
,

H0(D) : =
{
u ∈ H0(div, D) : ∇ · u ∈ H1

0 (D)
}
,
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equipped with the scalar product

(u,v)H(D) := (u,v)L2(D) + (∇ · u,∇ · v)H1(D) .

Letting N := A−1, in terms of new vector-valued functions w and v, the
transmission eigenvalue problem can be written as

∇(∇ · v) + k2Nv = 0 in D, (6.63)

∇(∇ ·w) + k2w = 0 in D, (6.64)

ν ·w = ν · v on ∂D, (6.65)

∇ ·w = ∇ · v on ∂D. (6.66)

Definition 6.16. Values of k ∈ C for which the homogeneous interior trans-
mission problem (6.63)–(6.66) has nonzero solutions w ∈ (L2(D))2, v ∈
(L2(D))2 such that w−v ∈ H0(D) are called transmission eigenvalues. If k is
a transmission eigenvalue, then we call u := v −w the corresponding eigen-
function where v and w are a nonzero solution of (6.63)–(6.66).

It is possible to write (6.63)–(6.66) as an equivalent eigenvalue problem for
w − v ∈ H0(D) satisfying the fourth-order equation

(
∇∇ ·+k2N

)
(N − I)−1

(
∇∇ · u+ k2u

)
= 0 in D. (6.67)

Equation (6.67) can be written in the variational form

∫
D

(N − I)−1
(
∇∇ · u+ k2u

)
·
(
∇∇ · v + k2Nv

)
dx = 0 (6.68)

for all v ∈ H0(D). The variational equation (6.68) can in turn be written as
an operator equation

Aku− k2Bu = 0 for u ∈ H0(D), (6.69)

where the bounded linear operators Ak : H0(D) → H0(D) and B : H0(D) →
H0(D) are defined by means of the Riesz representation theorem

(Aku,v)H0(D) = Aku(u,v) and (Bu,v)H0(D) = B(u,v), (6.70)

with the sesquilinear forms Aτ and B given by

Ak(u,v) :=
(
(N − I)−1

(
∇∇ · u+ k2u

)
,
(
∇∇ · v + k2v

))
D
+ k4 (u,v)D

and
B(u,v) := (∇ · u,∇ · v)D ,

respectively, where (·, ·)D denotes the L2(D) inner product.
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Lemma 6.17. B : H0(D) → H0(D) is a compact operator.

Proof. Let un be a bounded sequence in H0(D). Then there exists a subse-
quence, denoted again by un, that converges weakly to u in H0(D). Since
∇ · un is also bounded in H1(D), from the Rellich compactness theorem we
have that ∇ · un converges strongly to ∇ · u0 in L2(D). But

‖B(un − u)‖H0(D) ≤ ‖∇ · (un − u)‖L2(D),

which proves that Bun converges strongly to Bu. �	

In our discussion we must distinguish between the two cases amin > 1
and amax < 1. To fix our ideas, we consider in detail only the case where
amax < 1 (similar results can be obtained for amin > 1; cf. [21, 31, 33]). If
λ1(x) ≤ λ2(x) are the eigenvalues of the matrix A(x), then the condition
amax < 1 means that inf

x∈D
λ1(x) ≤ sup

x∈D
λ2(x) = amax < 1. In particular, we

have supD ‖A−1‖2 > 1/amax > 1, where ‖ · ‖2 is the Euclidean norm of the
matrix, and this implies that ξ · (N(x)− I)−1ξ ≥ α|ξ|2 for all ξ ∈ R

2, x ∈ D,
and some constant α > 0. More specifically,

ξ · (A−1 − I)−1 ξ ≥ 1

‖A−1‖2 − 1
|ξ|2 ≥ 1

supD ‖A−1‖2 − 1
|ξ|2, ξ ∈ R

2, x ∈ D;

thus,

α :=
1

supD ‖A−1‖2 − 1
. (6.71)

Theorem 6.18. Assume that amax < 1. The set of real transmission eigen-
values is discrete. If k is a real transmission eigenvalue, then

k2 ≥ λ0(D)

supD ‖A−1‖2
, (6.72)

where λ0(D) is the first eigenvalue of −Δ on D.

Proof. To prove the first part of the theorem, we consider the formula-
tion (6.69). Since our assumption amax < 1 implies ξ · (N(x)− I)−1ξ ≥ α|ξ|2
for all ξ ∈ R

2, and x ∈ D with α given by (6.71), we have that

Ak(u,u) ≥ α‖∇∇ · u+ k2u‖2L2(D) + k4‖u‖2L2(D).

Setting X = ‖∇∇ · u‖L2(D) and Y = k2‖u‖L2(D) we have that

‖∇∇ · u+ k2u‖2L2(D) ≥ X2 − 2XY + Y 2,

and therefore
Ak(u,u) ≥ αX2 − 2αXY + (α+ 1)Y 2. (6.73)
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From the identity

αX2 − 2αXY + (α+ 1)Y 2 = ε
(
Y − α

ε
X

)2

+

(
α− α2

ε

)
X2 + (1 + α− ε)Y 2

(6.74)

for α < ε < α+ 1, setting ε = α+ 1/2 we now obtain that

Bk(u,u) ≥
α

1 + 2α
(X2 + Y 2). (6.75)

From (6.21) we have

‖∇∇ · u+ k2u‖2L2(D) = ‖∇∇ · u‖2L2(D) − 2k2‖∇ · u‖2L2(D) + k4‖u‖2L2(D),

which implies that
2k2‖∇ · u‖2L2(D) ≤ X2 + Y 2.

Finally, combining the preceding estimates yields the existence of a constant
ck > 0 (independent of u and α) such that

Ak(u,u) ≥ ck
α

1 + 2α
‖u‖2H(D). (6.76)

Hence the sesquilinear form Ak(· , ·) is coercive in H0(D)×H0(D), and con-
sequently the operator Ak : H0(D) → H0(D) is a bijection for fixed k. Recall
that from Lemma 6.17 the operator B : H0(D) → H0(D) is compact. Hence,
to prove that the set of real transmission eigenvalues is discrete, we apply the
analytic Fredholm theorem (Theorem 1.24) to

Ak − k2B or I− k2A−1
k B. (6.77)

To this end, we observe that the sesquilinear form Ak(·, ·) is analytic in k,
which means that the mapping k → Ak is analytic (cf. Theorem 8.22 in
[54]). By the Lax–Milgram theorem we can conclude that A

−1
k also exists in

a neighborhood of the positive real axis and the mapping k → A
−1
k is ana-

lytic. Consequently, the mapping k → k2A−1
k B is analytic in a neighborhood

of the real axis and for each k the operator k2A−1
k B is compact. Therefore,

the analytic Fredholm theorem (Theorem 1.24) implies that the set of trans-
mission eigenvalues is discrete provided that there exists a k > 0 that is not a

transmission eigenvalue, i.e.,
[
I− k2A−1

k B
]−1

exists. In what follows, we will
show that if k > 0 is sufficiently small, then k is not a transmission eigenvalue
by showing that the operator Ak − B : H0(D) → H0(D) is an isomorphism
for k > 0 small enough. To this end, for ∇ · u ∈ H1

0 (D), using the Poincaré
inequality (Sect. 5.2), we have that

‖∇ · u‖2L2(D) ≤
1

λ0(D)
‖∇∇ · u‖2L2(D), (6.78)
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where λ0(D) is the first Dirichlet eigenvalue of −Δ on D. Hence, from (6.74)
and (6.78) for α < ε < α+ 1 we have that

Ak(u,u)− k2B(u,u) ≥
(
α− α2

ε

)
‖∇∇ · u‖2L2(D) + (1 + α− ε)k2‖u‖2L2(D)

− k2
1

λ0(D)
‖∇∇ · u‖2L2(D).

Therefore, if k2 <
(
α− α2/ε

)
λ0(D) for every α < ε < α+ 1, then Ak − k2B

is invertible. In particular, taking ε arbitrarily close to α + 1 we have that if
k2 < α

1+αλ0(D), then k is not a transmission eigenvalue. This completes the
proof of discreteness of real transmission eigenvalues.

In the foregoing discussion, we showed that if k > 0 is a transmission
eigenvalue, then it must satisfy k2 > α

1+αλ0(D), and thus, from (6.71) we

obtain that k2 ≥ λ0(D)
supD ‖A−1‖2

, which proves the theorem. �	

In a similar way it is possible to prove a similar result if amin > 1 (see [33]
for details). In particular, the following theorem holds.

Theorem 6.19. Assume that amin > 1. The set of real transmission eigen-
values is discrete. If k is a real transmission eigenvalue, then

k2 ≥ λ0(D), (6.79)

where λ0(D) is the first eigenvalue of −Δ on D.

Now we turn our attention to prove the existence of positive transmission
eigenvalues. We again only consider in detail the case where amax < 1.

Theorem 6.20. Assume that amax < 1. Then there exists an infinite number
of positive transmission eigenvalues with +∞ as the only accumulation point.

Proof. As explained earlier, k > 0 is a transmission eigenvalue if and only if
the kernel of the operator Ak − k2B or I − k2A−1

k B is not empty, where the
bounded, self-adjoint, strictly positive definite operator A−1

k and the bounded,
self-adjoint, nonnegative, compact operator B are defined by (6.70). Note that

N(B) = {u ∈ H0(D) such that u := curlϕ, ϕ ∈ H(curl, D)} .

We first observe that the multiplicity of each transmission eigenvalue is finite
since it coincides with the multiplicity of the eigenvalue 1 of the compact
operator k2A−1

k B, which is finite. To analyze the kernel of this operator, we
consider the auxiliary eigenvalue problems

Aku− λ(k)Bu = 0 u ∈ H0(D). (6.80)

Thus, a transmission eigenvalue k > 0 satisfies λ(k) − k2 = 0, where λ(k) is
an eigenvalue corresponding to (6.80). To prove the existence of an infinite



132 6 Inverse Scattering Problems for Orthotropic Media

set of transmission eigenvalues, we now use Theorem 6.15 for A−1
k and B with

X = H0(D). Theorem 6.18 states that as long as 0 < k20 <
λ0(D)

supD ‖A−1‖2
, the

operator Ak0−k20B is positive inH0(D), whence assumption 1 of Theorem 6.15
is satisfied for τ0 := k20 . Next, let k1,amax be the first transmission eigenvalue
for the disk B of radius R = 1 and constant index of refraction n := a−1

max

[i.e., (6.63)–(6.66) for D := B and N(x) := nI or (6.49)–(6.52) with R = 1,
n0 = 1, and a0 = amax]. This transmission eigenvalue is the first zero of

W (k) = det

⎛
⎝ J0(k) J0

(
k
√

1
amax

)

k J ′
0(k) k

√
amax J

′
0

(
k
√

1
amax

)
⎞
⎠ (6.81)

[if the first zero of the preceding determinant is not the first transmission
eigenvalue, then the latter will be a zero of (6.53) for � ≥ 1]. By a scaling
argument, it is obvious that kε := k1,amax/ε is the first transmission eigenvalue
corresponding to a disk of radius ε > 0 with index of refraction a−1

max. Now
take ε > 0 small enough such that D contains m := m(ε) ≥ 1 disjoint disks

B1
ε , B

2
ε . . . B

m
ε of radius ε, i.e., Bj

ε ⊂ D, j = 1 . . .m, and Bj
ε ∩Bi

ε = ∅ for j �= i.
Then kε = k1,amax/ε is the first transmission eigenvalue for each of these disks

with index of refraction a−1
max, and let uj := uBj

ε ,amin ∈ H0(B
j
ε ), j = 1 . . .m,

be the corresponding eigenfunctions. We have that uj ∈ H0(B
j
ε ) and∫

Bj
ε

1

n− 1
(∇∇ · uj + k2εu

j) · (∇∇ · uj + k2εnu
j) dx = 0. (6.82)

By definition, the vectors ũj are not in the kernel of B. The extension by zero
ũj of uj to the whole D is obviously in H0(D) due to the boundary conditions
on ∂Bj. Furthermore, the functions {ũ1, ũ2, . . . ũm} are linearly independent
and orthogonal in H0(D) since they have disjoint supports, and from (6.82)
we have that

0 =

∫

Bj
ε

1

n− 1
(∇∇ · uj + k2εu

j) · (∇∇ · uj + k2εnu
j) dx (6.83)

=

∫
D

1

n− 1
|∇∇ · ũj + k2ε ũ

j |2 dx+ k4ε

∫
D

|ũj |2 dx− k2ε

∫
D

|∇ · ũ|2 dx

for j = 1 . . .m. Denote byWm the m-dimensional subspace of H0(D) spanned
by {ũ1, ũ2, . . . ũm}. Since each ũj , j = 1, . . . ,m, satisfies (6.83) and they have
disjoint supports, we have that for kε and for every ũ ∈Wm
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(
Akε ũ− k2εBũ, ũ

)
H0(D)

(6.84)

=

∫
D

(N − I)−1|∇∇ · ũ+ k2ε ũ|2 dx+ k4ε

∫
D

|ũ|2 dx− k2ε

∫
D

|∇ · ũ|2 dx

≤
∫
D

1

n− 1
|∇∇ · ũ+ k2ε ũ|2 dx+ k4ε

∫
D

|ũ|2 dx− k2ε

∫
D

|∇ · ũ|2 dx = 0.

This means that assumption 2 of Theorem 6.15 is also satisfied, and therefore
we can conclude that there are m(ε) transmission eigenvalues (counting mul-

tiplicity) inside [ λ0(D)
supD ‖A−1‖2

,
k1, amax

ε ]. Note that m(ε) and kε both go to +∞
as ε → 0. Since the multiplicity of each eigenvalue is finite, we have shown,
by letting ε → 0, that there exists an infinite countable set of transmission
eigenvalues that accumulate at +∞. �	

In a similar way it is possible to prove an analogous result if amin > 1 (see
[33] for details). In particular, the following theorem holds.

Theorem 6.21. Assume that amin > 1. Then there exists an infinite number
of positive transmission eigenvalues with +∞ as the only accumulation point.

The foregoing proof of the existence of transmission eigenvalues provides a
framework in which to obtain lower and upper bounds for the first transmis-
sion eigenvalue. To this end, denote by k0,A > 0 the first positive transmission
eigenvalue corresponding to A and D (we omit the dependence on D in our
notation since D is assumed to be known). Assume again that amax < 1.

Theorem 6.22. Assume that the index of refraction A(x) satisfies amax < 1,
where amax and amin are given by (6.48). Then

0 < k0,amin ≤ k0,A(x) ≤ k0,amax . (6.85)

Proof. From the proof of Theorem 6.20 we have that k20,A is the smallest
zero of

λ(k,A)− k2 = 0, (6.86)

where

λ(k,A) = inf
u ∈ H0(D)
‖∇ · u‖D = 1

∫
D

(A−1 − I)−1|∇∇ · u+ k2u|2 dx + k4
∫
D

|u|2 dx (6.87)

and u not in the kernel of B. [Note that any zero of λ(k,A)− k2 = 0 leads to
a transmission eigenvalue.] Obviously, the mapping k → λ(k,A) is continuous
on (0, +∞). We first note that (6.87) yields

λ(k, amin) ≤ λ(k,A(x)) ≤ λ(k, amax) (6.88)
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for all k > 0. In particular, for k := k0,amin we have that

0 = λ(k0,amin , amin)− k20,amin
≤ λ(k0,amin , A(x)) − k20,amin

,

and for k := k0,amax we have that

λ(k0,amin , A(x)) − k20,amin
≤ λ(k0,amax , amax)− k20,amax

= 0.

By continuity of k → λ(τ, A)− k2, we have that there is a zero k̃ of λ(k,A)−
k2 = 0 such that k0,amin ≤ k̃ ≤ k0,amax . In particular, the smallest zero

k0,A(x) of λ(k,A) − k2 = 0 is such that k0,A(x) ≤ k̃ ≤ k0,amax . To end the
proof, we need to show that k0,amin ≤ k0,A(x), i.e., all the positive zeros of
λ(k,A)−k2 = 0 are greater than or equal to k0,amin . Assume by contradiction
that k0,A(x) < k0,amin . Then, from (6.88), on the one hand, we have

λ(k0,A(x), amin)− k20,A(x) ≤ λ(k0,A(x), A(x)) − k20,A(x) = 0.

On the other hand, from the proof of Theorem 6.18 we have that for a suf-
ficiently small k′ > 0, λ(k′, amin) − k′2 > 0. Hence there exists a zero of
λ(k, amin) − k2 = 0 between k′ and k0,A(x) smaller than k0,amin , which con-
tradicts the fact that k0,amin is the smallest zero. Thus we have proven that
k0,amin ≤ k0,A(x) ≤ k0,amax , and this completes the proof. �	

In a similar way [31, 33], one can prove the following theorem.

Theorem 6.23. Assume that the index of refraction A(x) satisfies amin > 1,
where amax and amin are given by (6.48). Then

0 < k0,amax ≤ k0,A(x) ≤ k0,amin . (6.89)

Theorems 6.22 and 6.23 show in particular that for constant index of refraction
A = aI the first transmission eigenvalue k0,a is monotonically increasing if
0 < a < 1 and is monotonically decreasing if a > 1. If fact we can show that
this monotonicity is strict, which leads to the following uniqueness result for
a constant index of refraction in terms of the first transmission eigenvalue.

Theorem 6.24. The constant index of refraction A := aI is uniquely deter-
mined from a knowledge of the corresponding smallest transmission eigenvalue
k0,a > 0, provided that it is known a priori that either a > 1 or 0 < a < 1.

Proof. We show the proof for the case 0 < a < 1 (a similar proof works for
the case a > 1). Consider two homogeneous media with constant indexes of
refraction a1 and a2 such that a2 < a1 < 1, and let u1 := w1−v1, wherew1,v1

is the nonzero solution of (6.63)–(6.66), with A(x) := a1I corresponding to
the first transmission eigenvalue k0,a1 . Now, setting k0 := k0,a1 and after
normalizing u1 such that ∇ · u1 = 1, we have

1

1/a1 − 1
‖∇∇ · u1 + k20u1‖2L2(D) + k40‖u1‖2L2(D) = k20 = λ(k1, a1).
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Furthermore, we have

1

1/a2 − 1
‖∇∇ · u+ k2u‖2L2(D) + k4‖u1‖2L2(D)

≤ 1

1/a1 − 1
‖∇∇ · u+ k2u‖2L2(D) + k4‖u1‖2L2(D)

for all u ∈ H0(D) such that ‖∇ · u‖D = 1, u not in the kernel of B, and all
k > 0. In particular, for u = u1 and k = k0

1

1/a2 − 1
‖∇∇ · u1 + k20u1‖2L2(D) + k40‖u1‖2L2(D)

<
1

1/a2 − 1
‖∇∇ · u1 + k20u1‖2L2(D) + k40‖u1‖2L2(D) = λ(k0, a1).

But

λ(k0, a2) ≤
1

1/a2 − 1
‖∇∇ · u1 + k20u1‖2L2(D) + k40‖u1‖2L2(D) < λ(k0, a1),

and hence for this k0 we have a strict inequality, i.e.,

λ(k0, a2) < λ(k0, a1). (6.90)

Hence, (6.90) implies the first zero k0,a2 of λ(k, a2) − k2 = 0 is such that
k0,a2 < k0,a1 for the first transmission eigenvalues k0,a1 and k0,a2 correspond-
ing to a1 and a2, respectively. Hence we have shown that if 0 < a1 < 1 and
0 < a2 < 1 are such that a1 �= a2, then k0,a1 �= k0,a2 , which proves the desired
strict monotonicity. The uniqueness result now follows immediately from The-
orem 6.22. �	

From the proof of Theorems 6.22 and 6.23, one can see that the following
more general monotonicity property of the first transmission eigenvalue with
respect to the support of inhomogeneity and the refractive index holds true.

Corollary 6.25. Let D1 ⊂ D ⊂ D2 and A1 < A < A2, where A1, A,A2 all
satisfy the assumptions of either Theorem 6.22 or Theorem 6.23. If k0,A,D

denotes the first transmission eigenvalue corresponding to D and A, then

0 < k0,A2,D2 ≤ k0,A2,D ≤ k0,A,D ≤ k0,A1,D ≤ k0,A1,D1

if the assumptions of Theorem 6.22 are satisfied and

0 < k0,A1,D2 ≤ k0,A1,D ≤ k0,A,D ≤ k0,A2,D ≤ k0,A2,D1

if the assumptions of Theorem 6.22 are satisfied. Here A1 < A means that the
matrix A − A1 is positive definite uniformly in D, with a similar definition
for A < A2.



136 6 Inverse Scattering Problems for Orthotropic Media

Remark 6.26. The existence and discreteness of transmission eigenvalues for
the problem (6.54)–(6.57) are also considered in [105] using a different app-
roach. In particular, in [105] (see also [54] for the case where A = I and
n �= 1) the transmission eigenvalue problem (6.54)–(6.57) is shown to be an
eigenvalue problem for a quadratic pencil operator I − k2C + k4D, where C

and D are self-adjoint compact operators and D is nonnegative. The latter
becomes a linear eigenvalue problem for the non-self-adjoint, matrix-valued
operator (

C D
1
2

−D
1
2 0

)
.

We note that interesting analytical results for this type of non-self-adjoint
eigenvalue problems were obtained in [36] and [145]. For more results on a
transmission eigenvalue problem as an eigenvalue problem for a quadratic
pencil operator see [84, 85, 86].

6.3.2 The Case n �= 1

We now turn our attention to the general case where both A �= 1 and n �= 1.
We recall that the transmission eigenvalue problem is the problem of finding
two nonzero functions v ∈ H1(D) and w ∈ H1(D) satisfying

∇ ·A∇v + k2n v = 0 in D, (6.91)

Δw + k2 w = 0 in D, (6.92)

v = w on ∂D, (6.93)

∂v

∂νA
=
∂w

∂ν
on ∂D. (6.94)

We already discussed at the beginning of Chap. 6.2 the Fredholm property of
the foregoing problem under the assumption that A− I > 0 or I − A > 0 in
D. In fact, we can show that the interior transmission problem satisfies the
Fredholm property if the preceding assumptions on the contrast are satisfied
only in a neighborhood of the boundary, but in this case we need to impose
the same assumptions on the contrast n− 1. In addition, the approach we are
about to discuss also proves that the set of transmission eigenvalues is discrete.
Note that for this general case the existence of transmission eigenvalues can be
proven under much more restrictive assumptions using a different approach.

6.3.3 Discreteness of Transmission Eigenvalues

Let N be a δ-neighborhood of the boundary ∂D in D i.e.,

N := {x ∈ D : dist(x, ∂D) < δ} ,
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and introduce the following notations:

a∗ := inf
x∈N

inf
ξ∈R2,|ξ|=1

(ξ · A(x)ξ) > 0,

a∗ := sup
x∈N

sup
ξ∈R2,|ξ|=1

(ξ ·A(x)ξ) <∞,

n∗ := inf
x∈N

n(x) > 0 and n∗ := sup
x∈N

n(x) <∞.

(6.95)

Note that in (6.95) the infimum and supremum are only taken over a neigh-
borhood of the boundary ∂D as opposed to over the entire domain D as
in (6.48).

We consider the Sobolev space

H(D) :=
{
(v, w) ∈ H1(D)×H1(D) : v − w ∈ H1

0 (D)
}
.

Our first observation is that (v, w) ∈ H1(D)×H1(D) is a solution to (6.91)–
(6.94) if and only if

ak((v, w), (v
′, w′)) = 0 for all (v′, w′) ∈ H(D), (6.96)

where the sesquilinear form ak(·, ·) : H(D) → C is defined by

ak((v, w), (v
′, w′)) : =

∫
D

A∇v · ∇v′ dx−
∫
D

∇w · ∇w′ dx

− k2
∫
D

nv v′ dx+ k2
∫
D

ww′ dx.

Let Ak : H(D) → H(D) be the bounded linear operator defined by means of
the Riesz representation theorem

(Ak(v, w), (v
′, w′))H(D) = ak((v, w), (v

′, w′)). (6.97)

Obviously, Ak depends analytically on k ∈ C, and furthermore, for any two
k and k′ the operator Ak − Ak′ is compact, which is a simple consequence
of the compact embedding of H(D) into L2(D)× L2(D). Therefore, to prove
the discreteness of transmission eigenvalues, it suffices to prove that Ak′ is
invertible for some k′ ∈ C since then we can write Ak = Ak′ + (Ak − Ak′)
and appeal to the analytic Fredholm theorem (Theorem 1.24). The difficulty
in obtaining this result is that the sesquilinear form ak((v, w), (v

′, w′)) is not
coercive for any k ∈ C due to the opposite signs in the terms containing the
gradients. To show the invertibility of the Ak, we follow the arguments in [9]
and [39], which rely on proving that ak(·, ·) is T -coercive (as it is called in
[10]) for some k. More specifically, the idea behind T -coercivity is to consider
an equivalent formulation of (6.96), where ak is replaced by aTk defined by
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aTk ((v, w), (v
′, w′)) := ak((v, w),T(v′, w′)) (6.98)

for all ((v, w), (v′, w′)) ∈ H(D)×H(D), with the operator T : H(D) → H(D)
being an isomorphism. Obviously, (v, w) ∈ H(D) satisfies

ak((v, w), (v
′, w′)) = 0 for all (v′, w′) ∈ H(D)

if and only if it satisfies

aTk ((v, w), (v
′, w′)) = 0 for all (v′, w′) ∈ H(D).

If we can choose T and k such that aTk is coercive, then using the Lax–
Milgram theorem and the fact that T is an isomorphism we can deduce that
Ak : H(D) → H(D) defined by (6.97) is invertible.

Lemma 6.27. Assume that either 0 < a∗ < 1 and 0 < n∗ < 1, or a∗ > 1 and
n∗ > 1. Then there exists k = iκ, with κ ∈ R, such that Aiκ : H(D) → H(D)
is invertible.

Proof. Let us first consider the case where 0 < a∗ < 1 and 0 < n∗ < 1
and introduce χ ∈ C∞(D), a cutoff function equal to 1 in a neighborhood
of ∂D supported in N such that 0 ≤ χ ≤ 1. We define the isomorphism
T : H(D) → H(D) by

T : (v, w) �→ (v − 2χw,−w).

(Note that T is an isomorphism since T2 = I.) We then have that for all
(v, w) ∈ H(D)

∣∣aTiκ((v, w), (v, w))∣∣ = |(A∇v,∇v)D + (∇w,∇w)D − 2(A∇v,∇(χw))D

+ κ2 ((nv, v)D + (w,w)D − 2(nv, χw)D)
∣∣ , (6.99)

where (·, ·)O for a generic bounded region O ⊂ R
2 denotes the L2(O) inner

product. Using Young’s inequality

|ab| ≤ εa2 +
1

ε
b2, ε > 0,

we can write

2 |(A∇v,∇(χw))D | ≤ 2 |(χA∇v,∇w)N |+ 2 |(A∇v,∇(χ)w)N |
≤ η(A∇v,∇v)N + η−1(A∇w,∇w)N (6.100)

+ α(A∇v,∇v)N + α−1(A∇(χ)w,∇(χ)w)N

and
2 |(nv, χw)D| ≤ β(nv, v)N + β−1(nw,w)N (6.101)



6.3 Transmission Eigenvalue Problem 139

for arbitrary constants α > 0, β > 0, and η > 0. Substituting (6.100)
and (6.101) into (6.99), we now obtain

∣∣aTiκ((v, w), (v, w))∣∣ ≥ (A∇v,∇v)D\N + (∇w,∇w)D\N

+κ2
(
(nv, v)D\N + (w,w)D\N

)

+((1− η − α)A∇v,∇v)N + ((I − η−1A)∇w,∇w)N
+κ2((1− β)nv, v)N + ((κ2(1− β−1n)− sup

N
|∇χ|2 a∗α−1)w,w)N .

Taking η, α, and β such that a∗ < η < 1, n∗ < β < 1, and 0 < α < 1 − η,
we obtain the coercivity of aTiκ for κ large enough, which proves the lemma.
The case where a∗ > 1 and n∗ > 1 can be handled in a similar way using
T(v, w) := (v,−w + 2χv). �	
Lemma 6.27, combined with the fact that Ak −Aiκ is compact, and an appli-
cation of the analytic Fredholm theorem (Theorem 1.24) implies the following
theorem.

Theorem 6.28. Assume that either 0 < a∗ < 1 and 0 < n∗ < 1, or a∗ > 1
and n∗ > 1. Then the set of transmission eigenvalues is discrete in C.

Remark 6.29. As a consequence of the proof of Lemma 6.27 we can conclude
that the operator Ak is Fredholm with index zero (cf. [127]). This implies
that under the assumptions that either 0 < a∗ < 1 and 0 < n∗ < 1, or a∗ > 1
and n∗ > 1, the interior transmission problem (6.91)–(6.94) with boundary

data f ∈ H
1
2 (∂D) and h ∈ H− 1

2 (∂D) has a unique solution (v, w) ∈ H1(D)×
H1(D), provided k ∈ C is not a transmission eigenvalue. Furthermore, the
solution depends continuously on the data f, h.

We conclude this section by showing that if we require that the contrast keep
the same sign in D, i.e., 0 < amax < 1 or amin > 1, the T -coercivity approach
allows us to prove the discreteness of transmission eigenvalues under more
relaxed assumptions on n − 1. To this end, taking v′ = w′ = 1 in (6.96)
we first notice that the transmission eigenfunctions (v, w) [i.e., the solution
to (6.91)–(6.91) corresponding to an eigenvalue k] satisfy k2

∫
D(nv−w)dx = 0.

This suggests introducing the subspace of H(D)

Y(D) :=

{
(v, w) ∈ H(D) |

∫
D

(nv − w)dx = 0

}
.

Now, suppose
∫
D(n− 1)dx �= 0. Arguing by contradiction, one can prove the

existence of a constant CP > 0 (which depends on D and on n) such that

‖v‖2D + ‖w‖2D ≤ CP (‖∇v‖2D + ‖∇w‖2D), ∀(v, w) ∈ Y(D). (6.102)

Furthermore, we observe that k �= 0 is a transmission eigenvalue if and only
if there exists a nontrivial element (v, w) ∈ Y(D) such that

ak((v, w), (v
′, w′)) = 0 for all (v′, w′) ∈ Y(D).
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Using the variational formulation in this new subspace and (6.102) we can now
prove the following theorem, which completes the analysis of the solvability
of the interior transmission problem discussed at the beginning of Sect. 6.2.

Theorem 6.30. Assume that either 0 < amax < 1 or amin > 1, and
∫
D
(n −

1)dx �= 0. Then the set of transmission eigenvalues is discrete in C.

Proof. For the sake of simplicity we only consider in detail the case where
0 < amax < 1. Letting λ(w) := 2

∫
D
(n − 1)w/

∫
D
(n − 1) we consider the

mapping T : Y(D) → Y(D) defined by

T : (v, w) �→ (v − 2w + λ(w),−w + λ(w)).

Note that λ(λ(w)) = 2λ(w), which implies that T2 = I, and hence T is an
isomorphism in Y(D). Then for all (v, w) ∈ Y(D) we have that

∣∣aTk ((v, w), (v, w))∣∣
= |(A∇v,∇v)D + (∇w,∇w)D − 2(A∇v,∇w)D
− k2 ((nv, v)D + (w,w)D − 2(nv, w)D)

∣∣
≥ (A∇v,∇v)D + (∇w,∇w)D − 2 |(A∇v,∇w)D |
− |k|2 ((nv, v)D + (w,w)D + 2 |(nv, w)D|)
≥ (1−√

amax)((A∇v,∇v)D + (∇w,∇w)D)

− |k|2 (1 +√
nmax)((nv, v)D + (w,w)D).

Consequently, for k ∈ C such that

|k|2 < (amin(1−
√
amax))/(CP max(nmax, 1) (1 +

√
nmax))

aTk is coercive on Y(D). The claim of the theorem follows from the analytic
Fredholm theorem. �	

The case amin > 1 can be handled in a similar way using the isomorphism
T : Y(D) → Y(D) defined by

T : (v, w) �→ (v − λ(v),−w + 2v − λ(v)).

We refer the reader to [9] for estimates on transmission eigenvalues follow-
ing from the foregoing analysis. For the discreteness of complex transmission
eigenvalues in the case where A = I see [154].

6.3.4 Existence of Transmission Eigenvalues for n �= 1

We finally come to the discussion of the existence of positive transmission
eigenvalues in the general case of anisotropic media with n �= 1. Unfortunately,
the existence of transmission eigenvalues for this case can only be shown
under restrictive assumptions on A − I and n − 1. The approach presented
here follows the lines of [35], where, motivated by the case of n = 1, the
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transmission eigenvalue problem is formulated in terms of the difference u :=
v − w. However, due to the lack of symmetry, the problem for u is no longer
a quadratic eigenvalue problem but takes the form of a more complicated
nonlinear eigenvalue problem, as will become clear in what follows.

To simplify the expressions, we set τ := k2 in (6.91)–(6.94) and observe
that, if (w, v) satisfies (6.91)–(6.94), then subtracting the equation for v from
the equation for w we obtain

∇ · A∇u+ τnu = ∇ · (A− I)∇w + τ(n − 1)w in D ,
ν ·A∇u = ν · (A− I)∇w on ∂D,

(6.103)

where u := v − w. In addition, we also have u = 0 on ∂D and

Δw + τw = 0 in D. (6.104)

It is easy to verify that (v, w) in H1(D)×H1(D) satisfies (6.91)–(6.94) if and
only if (u,w) in H1

0 (D)×H1(D) satisfies (6.103)–(6.104). The main idea of the
proof of the existence of transmission eigenvalues consists in expressing w in
terms of u, using (6.103), and substituting the resulting expression into (6.104)
in order to formulate the eigenvalue problem only in terms of u. In the case
where A = I, this substitution is simple and leads to an explicit expression for
the equation satisfied by u (see [54], Sect. 10.5, and [105]). In the current case
the substitution requires the inversion of the operator∇·

[
(A−I)∇·

]
+τ(n−1)

with a Neumann boundary condition. It is then obvious that the case where
(A− I) and (n− 1) have the same sign is more problematic since in that case
the operator may not be invertible for special values of τ . This is why we only
consider in detail the simpler case where (A − I) and (n − 1) have opposite
signs almost everywhere in D.

Note that for given u ∈ H1
0 (D), the problem (6.103) for w ∈ H1(D) is

equivalent to the variational formulation

∫
D

[
(A− I)∇w ·∇ψ− τ (n−1)wψ

]
dx =

∫
D

[
A∇u ·∇ψ− τn uψ

]
dx (6.105)

for all ψ ∈ H1(D). The following result concerning the invertibility of the
operator associated with (6.105) can be proven in a standard way using the
Lax–Milgram lemma. We skip the proof here and refer the reader to [35].

Lemma 6.31. Assume that either amin > 1 and 0 < nmax < 1, or 0 <
amax < 1 and nmin > 1. Then there exists δ > 0 such that for every u ∈
H1

0 (D) and τ ∈ C with Re(τ) > −δ there exists a unique solution w := wu ∈
H1(D) of (6.105). The operator Aτ : H1

0 (D) → H1(D), defined by u �→ wu,
is bounded and depends analytically on τ ∈ {z ∈ C : Re(z) > −δ}.
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We now set wu := Aτu and denote by Lτu ∈ H1
0 (D) the unique Riesz

representation of the bounded conjugate-linear functional

ψ �→
∫
D

[
∇wu · ∇ψ − τ wu ψ

]
dx for ψ ∈ H1

0 (D) ,

i.e.,

(Lτu, ψ)H1(D) =

∫
D

[
∇wu · ∇ψ − τ wu ψ

]
dx for ψ ∈ H1

0 (D) . (6.106)

Obviously, Lτ also depends analytically on τ ∈ {z ∈ C : Re(z) > −δ}. Now
we are able to connect a transmission eigenfunction, i.e., a nontrivial solution
(v, w) of (6.91)–(6.94), to the kernel of the operator Lτ .

Theorem 6.32. The following statements are true:

1. Let (w, v) ∈ H1(D)×H1(D) be a transmission eigenfunction correspond-
ing to some eigenvalue τ > 0. Then u = w−v ∈ H1

0 (D) satisfies Lτu = 0.
2. Let u ∈ H1

0 (D) satisfy Lτu = 0 for some τ > 0. Furthermore, let w :=
wu = Aτu ∈ H1(D) be as in Lemma 6.31, i.e., the solution of (6.105).
Then τ is a transmission eigenvalue with (v, w) ∈ H1(D) × H1(D) the
corresponding transmission eigenfunction where v = w − u.

Proof. Formula (6.106) implies that (Lτu, ψ)H1(D) for all ψ ∈ H1
0 (D), which

means that Lλu = 0.
The proof of the second part of the theorem is a simple consequence of the

observation that (6.104) is equivalent to

∫
D

[
∇w · ∇ψ − τ w ψ

]
dx = 0 for all ψ ∈ H1

0 (D). (6.107)

Hence Lλu = 0 implies that wu solves the Helmholtz equation in D. Since
v := w − u, we have that the Cauchy data of w and v coincide. The equation
for v follows from (6.105). �	

The operator Lτ plays a similar role as the operator Ak − k2B in (6.77) for
the case of n = 1.

Theorem 6.33. The bounded linear operator Lτ : H1
0 (D) → H1

0 (D) satisfies
the following statements holds:

1. Lτ is self-adjoint for all τ > 0.
2. (σL0u, u)H1(D) ≥ c ‖u‖2H1(D) for all u ∈ H1

0 (D) and c > 0 independent
of u, where σ = 1 if amin > 1 and 0 < nmax < 1, and σ = −1 if
0 < amax < 1 and nmin > 1.

3. Lτ − L0 is compact.



6.3 Transmission Eigenvalue Problem 143

Proof. 1. Let u1, u2 ∈ H1
0 (D) and w1 := wu1 and w2 := wu2 be the

corresponding solution of (6.105). Then we have that

(Lτu1, u2)H1(D) =

∫
D

[
∇w1 · ∇u2 − τ w1u2

]
dx

=

∫
D

[
A∇w1 · ∇u2 − τnw1 u2

]
dx

−
∫
D

[
(A− I)∇w1 · ∇u2 − τ (n− 1)w1 u2

]
dx .

Using (6.105) twice, first for u = u2 and the corresponding w = w2 and
ψ = w1 and then for u = u1 and the corresponding w = w1 and ψ = w2,
yields

(Lτu1, u2)H1(D) =

∫
D

[
(A− I)∇w1 · ∇w2 − τ (n− 1)w1 w2

]
dx

−
∫
D

[
A∇u1 · ∇u2 − τn u1 u2

]
dx, (6.108)

which shows that Lτ is self-adjoint.
2. To show that σL0 : H1

0 (D) → H1
0 (D) is a strictly coercive operator, we

recall the definition (6.106) of L0 and use the fact that w = wu = u + v to
obtain

(L0u, u)H1(D) =

∫
D

∇w · ∇u dx =

∫
D

|∇u|2 dx+

∫
D

∇v · ∇u dx . (6.109)

From (6.105) for τ = 0 and ψ = v we now have that∫
D

∇v · ∇u dx =

∫
D

(A− I)∇v · ∇v dx . (6.110)

If amin > 0, then we have
∫
D
(A− I)∇w · ∇w dx ≥ (amin − 1)‖∇w‖2L2(D) ≥ 0,

and hence

(L0u, u)H1(D) ≥
∫
D

|∇u|2 dx .

Since from Poincaré’s inequality ‖∇u‖L2(D) is an equivalent norm in H1
0 (D),

this proves the strict coercivity of L0. Now if 0 < amax < 1, then from (6.108)
with u1 = u2 = u and τ = 0 we have
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− (L0u, u)H1(D) = −
∫
D

(A− I)∇v · ∇v dx +

∫
D

A∇u · ∇u dx

≥ amin

∫
D

|∇u|2 dx,

which proves the strict coercivity of −L0 since amin > 0.
3. This follows from the compact embedding of H1

0 (D) into L2(D). �	
We are now in a position to establish the existence of infinitely many posi-
tive transmission eigenvalues, i.e., the existence of a sequence of τj > 0, and
corresponding uj ∈ H1

0 (D), such that uj �= 0 and Lτjuj = 0. Obviously,
these τ > 0 are such that the kernel of I − Tτ is not trivial, which cor-
responds to 1 being an eigenvalue of the compact self-adjoint operator Tτ ,
where Tλ : H1

0 (D) → H1
0 (D) is defined by

Tλ := −(σL0)
− 1

2 (σ(Lτ − L0)) (σL0)
− 1

2 .

Thus, we can conclude that real transmission eigenvalues have finite multi-
plicity and are such that τ := k2 are solutions to μj(τ) = 1, where {μj(τ)}+∞

1

is the increasing sequence of the eigenvalues of Tτ . To prove the existence of
positive transmission eigenvalues, we again apply Theorem 6.15 to the contin-
uous operator-valued mapping τ �→ Lτ , which in our case takes the following
form.

Theorem 6.34. Let σ = 1 if amin > 1 and 0 < nmax < 1, and σ = −1 if
0 < amax < 1 and nmin > 1, and make the following assumptions:

1. There is a τ0 ≥ 0 such that σLτ0 is positive on H1
0 (D).

2. There is a τ1 > τ0 such that σLτ1 is nonpositive on some m-dimensional
subspace Wm of H1

0 (D).

Then there are m values of τ in [τ0, τ1] counting their multiplicity for which
Lτ fails to be injective.

Using Theorem 6.34 we can now prove the main result of this section.

Theorem 6.35. Assume that either amin > 1 and 0 < nmax < 1, or 0 <
amax < 1 and nmin > 1. Then there exists an infinite sequence of positive
transmission eigenvalues kj > 0 (τj := k2j ) with +∞ as the only accumulation
point.

Proof. We sketch the proof only for the case of amin > 1 and 0 < nmax < 1
(i.e., σ = 1 in Theorem 6.34). First, we recall that assumption 1 of Theo-
rem 6.34 is satisfied with τ0 = 0 from Theorem 6.33 (2.). Next, from the
definition of Lτ and the fact that w = v + u, we have

(Lτu, u)H1(D) (6.111)

=

∫
D

[
∇w · ∇u − τ w u

]
dx =

∫
D

[
∇v · ∇u− τ v u+ |∇u|2 − τ |u|2

]
dx.
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We also have that v satisfies

∫
D

[
(A− I)∇v · ∇ψ − τ(n− 1) v ψ

]
dx =

∫
D

[
∇u · ∇ψ − τ u ψ

]
dx (6.112)

for all ψ ∈ H1(D). Now taking ψ = v in (6.112) and substituting the result
into (6.111) yields

(Lτu, u)H1(D) (6.113)

=

∫
D

[
(A− I)∇v · ∇v − τ (n− 1) |v|2 + |∇u|2 − τ |u|2

]
dx .

Now let τ̂ be such that τ̂ := k21 , where k1 is the first transmission eigenvalue
corresponding to (6.49)–(6.52) for the disk BR with a0 := amin and n0 :=
nmax. We denote by v̂, ŵ the corresponding nonzero solutions and set û :=
v̂− ŵ ∈ H1

0 (BR). We denote the corresponding operator by L̂τ . Of course, by

construction, we have that (6.113) still holds, i.e., since L̂τ̂ û = 0,

0 =
(
L̂τ̂ û, û

)
H1(BR)

, (6.114)

=

∫
BR

[
(amin − 1)|∇v̂|2 − τ̂ (nmax − 1)|v̂|2 + |∇û|2 − τ̂ |û|2

]
dx .

Next we denote by ũ ∈ H1
0 (D) the extension of û ∈ H1

0 (BR) by zero to the
whole of D and let w̃ := wũ be the corresponding solution to (6.105) and
ṽ := w̃ − ũ. In particular, ṽ ∈ H1(D) satisfies

∫
D

[
(A− I)∇ṽ · ∇ψ − τ̂ p ṽ ψ

]
dx =

∫
D

[
∇ũ · ∇ψ − τ̂ ũ ψ

]
dx

=

∫
BR

[
∇û · ∇ψ − τ̂ û ψ

]
dx =

∫
BR

[
(amin − 1)∇v̂ · ∇ψ − τ̂ (nmax − 1) v̂ ψ

]
dx

for all ψ ∈ H1(D). Therefore, for ψ = ṽ we have

∫
D

(A− I)∇ṽ · ∇ṽ − τ̂ (n− 1) |ṽ|2 dx

=

∫
BR

(amin − 1)∇v̂ · ∇ṽ + τ̂ |nmax − 1| v̂ ṽ dx.
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Using the Cauchy–Schwarz inequality we obtain∫
D

(A− I)∇ṽ · ∇ṽ − τ̂ (n− 1) |ṽ|2 dx

≤

⎡
⎣∫
BR

(amin − 1) |∇v̂|2 + τ̂ |nmax − 1| |v̂|2 dx

⎤
⎦

1
2

·

⎡
⎣∫
BR

(amin − 1) |∇ṽ|2 + τ̂ |nmax − 1| |ṽ|2 dx

⎤
⎦

1
2

≤

⎡
⎣∫
BR

(amin − 1) |∇v̂|2 − τ̂ (nmax − 1) |v̂|2 dx

⎤
⎦

1
2

·

⎡
⎣∫
D

(A− I)∇ṽ · ∇ṽ − τ̂ (n− 1) |ṽ|2 dx

⎤
⎦

1
2

since |n− 1| = 1− n ≥ 1− nmax = |nmax − 1|. Hence we have∫
D

[
(A− I)∇ṽ · ∇ṽ − τ̂ (n− 1) |ṽ|2

]
dx

≤
∫
BR

[
(amin − 1) |∇v̂|2 − τ̂ (nmax − 1) |v̂|2

]
dx .

Substituting this into (6.113) for τ = τ̂ and u = ũ yields

(
Lτ̂ ũ, ũ

)
H1(D)

=

∫
D

[
(A− I)∇ṽ · ∇ṽ − τ̂ (n− 1) |ṽ|2 + |∇ũ|2 − τ̂ |ũ|2

]
dx

≤
∫
BR

[
(amin − 1)|∇v̂|2 − τ̂ (nmax − 1) |v̂|2 + |∇û|2 − τ̂ |û|2

]
dx = 0

by (6.114). Hence from Theorem 6.34 we have that there is a transmission
eigenvalue k > 0 such that in k2 ∈ (0, τ̂ ]. Finally, repeating this argument
for disks of arbitrarily small radius we can show the existence of infinitely
many transmission eigenvalues exactly in the same way as in the proof of
Theorem 6.18. In a similar way we can prove the same result for the case
where 0 < amax < 1 and nmin > 1. �	

From the preceding analysis it is possible to obtain bounds for the first trans-
mission eigenvalue stated in the following theorem (here we omit the proof
and refer the reader to [35]).
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Theorem 6.36. Let BR ⊂ D be the largest disk contained in D and λ0(D)
the first Dirichlet eigenvalue of −Δ in D. Furthermore, let k0(A, n,D) be the
first transmission eigenvalue corresponding to (6.91)–(6.94).

1. If amin > 1 and 0 < nmax < 1 then

λ0(D) ≤ k20(A, n,D) ≤ k20(amin, nmax, BR).

2. If 0 < amax < 1 and nmin > 1, then

amin

nmax
λ0(D) ≤ k20(A, n,D) ≤ k20(amax, nmin, BR).

For other estimates of the same type we refer the reader to [9].
We end our discussion in this section with a few comments on the case

where (A−I) and (n−1) have the same sign. As indicated earlier, if we follow
a similar procedure, then we are faced with the problem that (6.105) is not
solvable for all τ . For this reason it is only possible to prove the existence of
a finite number of transmission eigenvalues under the restrictive assumption
that nmax − 1 is small enough (for more details we refer the reader to [35]).

In a series of interesting papers [118,119] and [120] Lakshtanov and Vain-
berg introduced an alternative approach to showing the discreteness and
existence of transmission eigenvalues as well as initiating a studying of the
counting function for transmission eigenvalues.

6.4 Uniqueness

The proof of uniqueness for the inverse medium scattering problem is more
complicated than for the case of scattering by an imperfect conductor con-
sidered in Chap. 4. The idea of the uniqueness proof for the inverse medium
scattering problem originates from [93,94], in which it is shown that the shape
of a penetrable, inhomogeneous, isotropic medium is uniquely determined by
its far-field pattern for all incident plane waves. The case of an orthotropic
medium is due to Hähner [81] (see also [57]), the proof of which is based
on the existence of a solution to the modified interior transmission problem.
We begin with a simple lemma.

Lemma 6.37. Assume that either ξ̄ ·Re(A) ξ ≥ γ|ξ|2 or ξ̄ ·Re(A−1) ξ ≥ γ|ξ|2
for some γ > 1. Let {vn, wn} ∈ H1(D) × H1(D), n ∈ N, be a sequence of
solutions to the interior transmission problem (6.12)–(6.15) with boundary

data fn ∈ H
1
2 (∂D), hn ∈ H− 1

2 (∂D). If the sequences {fn} and {hn} converge

in H
1
2 (∂D) and H− 1

2 (∂D) respectively, and if the sequences {vn} and {wn}
are bounded in H1(D), then there exists a subsequence {wnk

} that converges
in H1(D).
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Proof. Assume first that ξ̄ ·Re(A) ξ ≥ γ|ξ|2, γ > 1, and let {vn, wn} be as in
the statement of the lemma. Due to the compact embedding of H1(D) into
L2(D), we can select L2-convergent subsequences {vnk

} and {wnk
}. Hence,

{vnk
} and {wnk

} satisfy

∇ · A∇vnk
− γvnk

= −(γ + k2n)vnk
in D,

Δwnk
− wnk

= −(1 + k2)wnk
in D,

vnk
− wnk

= fnk
on ∂D,

∂vnk

∂νA
− ∂wnk

∂ν
= hnk

on ∂D.

Then the result of the lemma follows from the a priori estimate of Theorem 6.7.
In the case where ξ̄ · Re(A−1) ξ ≥ γ|ξ|2, γ > 1, we use Theorem 6.9 and 1/γ
instead of γ in the preceding equation for vnk

to obtain the same result. �	

Note that in the proof of Lemma 6.37 we use the a priori estimate for the
modified interior transmission problem instead of the a priori estimate for
the interior transmission problem. This allows us to obtain the result without
assuming that k is not a transmission eigenvalue.

We can prove a result similar to that in Lemma 6.37 under different as-
sumptions about the physical properties of the medium. In particular, assum-
ing that Im(A) = 0 and Im(n) = 0 we recall definition (6.95) of a∗, a∗, n∗,
and n∗.

Lemma 6.38. Assume that either 0 < a∗ < 1 and 0 < n∗ < 1, or a∗ >
1 and n∗ > 1. Let {vn, wn} ∈ H1(D) × H1(D), n ∈ N, be a sequence of
solutions to the interior transmission problem (6.12)–(6.15) with boundary

data fn ∈ H
1
2 (∂D), hn ∈ H− 1

2 (∂D). If the sequences {fn} and {hn} converge

in H
1
2 (∂D) and H− 1

2 (∂D), respectively, and if the sequences {vn} and {wn}
are bounded in H1(D), then there exists a subsequence {wnk

} that converges
in H1(D).

Proof. Similarly to the proof of Lemma 6.37, let {vn, wn} be as in the state-
ment of the lemma. Due to the compact embedding of H1(D) into L2(D), we
can select L2-convergent subsequences {vnk

} and {wnk
}. Hence, {vnk

} and
{wnk

} satisfy

∇ · A∇vnk
− κ2nvnk

= (κ2 − k2)nvnk
in D,

Δwnk
− κ2 wnk

= (κ2 − k2)wnk
in D,

vnk
− wnk

= fnk
on ∂D,

∂vnk

∂νA
− ∂wnk

∂ν
= hnk

on ∂D,

where κ > 0 is chosen as in Lemma 6.27 (i.e., for k := iκ the interior trans-
mission problem is invertible). Then the result of the lemma follows from
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the boundedness of the inverse of the operator equivalent to the interior
transmission problem for k := iκ (Remark 6.29). �	

We are now ready to prove the uniqueness theorem.

Theorem 6.39. Let the domains D1 and D2, the matrix-valued functions A1

and A2, and the functions n1 and n2 satisfy the assumptions in Sect. 5.2
and the assumptions of either Lemma 6.37 or Lemma 6.38. If the far-field
patterns u1∞(θ, φ) and u2∞(θ, φ) corresponding to D1, A1, n1 and D2, A2, n2,
respectively, coincide for all θ ∈ [0, 2π] and φ ∈ [0, 2π], then D1 = D2.

Proof. Denote by G the unbounded connected component of R2 \ (D̄1 ∪ D̄2),
and defineDe

1 := R
2\D̄1,D

e
2 := R

2\D̄2. By Rellich’s lemma, we conclude that
the scattered fields u1 and u2, which are the radiating part of the solution
to (5.13)–(5.17) with D1, A1, n1 and D2, A2, n2, respectively, and boundary
data with f := eikx·d and h := ∂eikx·d/∂ν, d = (cos φ, sin φ), coincide in G.
Let Φ(x, z) denote the fundamental solution to the Helmholtz equation given
by (3.33).

We now show that the scattered solutions u1(·, z) and u2(·, z) also coincide
for the incident waves Φ(·, z) with z ∈ G, i.e., for f := Φ(·, z) and h :=
∂Φ(·, z)/∂ν. To this end, choose a large disk ΩR such that D̄1 ∪ D̄2 ⊂ ΩR

and k2 is not a Dirichlet eigenvalue for ΩR. Then, for z /∈ Ω̄R, by Lemma 4.4,
there exists a sequence {uin} in span{eikx·d : |d| = 1} such that

‖uin − Φ(·, z)‖
H

1
2 (∂ΩR)

→ 0, as n→ ∞.

The well-posedness of the Dirichlet problem for the Helmholtz equation in
ΩR (Example 5.15) implies that uin approximates Φ(·, z) in H1(ΩR). Then
the continuous dependence on the data of the scattered field (5.41), together
with the fact that the scattered fields corresponding to uin coincide as linear
combinations of scattered fields due to plane waves, implies that u1(·, z) and
u2(·, z) also coincide for a fixed z /∈ Ω̄R. Since Φ(·, z) and its derivatives
are real-analytic in z, we can again conclude from the well-posedness of the
transmission problem (5.13)–(5.17) that u1(·, z) and u2(·, z) are real-analytic
in z and therefore must coincide for all z ∈ G.

Let us now assume that D̄1 is not included in D̄2. Since D
e
2 is connected,

we can find a point z ∈ ∂D1 and ε > 0 with the following properties, where
Ωδ(z) denotes the ball of radius δ centered at z:

1. Ω8ε(z) ∩ D̄2 = ∅;
2. The intersection D̄1 ∩ Ω8ε(z) is contained in the connected component of
D̄1 to which z belongs;

3. There are points from this connected component of D̄1 to which z belongs
that are not contained in D̄1 ∩ Ω̄8ε(z);

4. The points zn := z +
ε

n
ν(z) lie in G for all n ∈ N, where ν(z) is the unit

normal to ∂D1 at z.
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Due to the singular behavior of Φ(·, zn) at the point zn, it is easy to show
that ‖Φ(·, zn)‖H1(D1) → ∞ as n→ ∞. We now define

wn(x) :=
1

‖Φ(·, zn)‖H1(D1)
Φ(x, zn), x ∈ D̄1 ∪ D̄2

and let vn1 , u
n
1 and vn2 , u

n
2 be the solutions of the scattering problem (5.13)–

(5.17) with boundary data f := wn and h := ∂wn/∂ν corresponding to D1

and D2, respectively. Note that for each n, wn is a solution of the Helmholtz
equation in D1 and D2. Our aim is to prove that if D̄1 �⊂ D̄2, then the equality
u1(·, z) = u2(·, z) for z ∈ G allows the selection of a subsequence {wnk} from
{wn} that converges to zero with respect toH1(D1). This certainly contradicts
the definition of {wn} as a sequence of functions with H1(D1) norm equal to
one. Note that u1(·, z) = u2(·, z) obviously implies that un1 = un2 in G.

We begin by noting that, since the functions Φ(·, zn) together with their
derivatives are uniformly bounded in every compact subset of R2 \Ω2ε(z) and
‖Φ(·, zn)‖H1(D1) → ∞ as n → ∞, then ‖wn‖H1(D2) → 0 as n → ∞. Hence,
if ΩR is a large ball containing D̄1 ∪ D̄2, then ‖un2‖H1(ΩR∩G) → 0 as n → ∞
from the a priori estimate (5.41). Since un1 = un2 in G, then ‖un1‖H1(ΩR∩G) → 0
as n → ∞ as well. Now, with the help of a cutoff function χ ∈ C∞

0 (Ω8ε(z))
satisfying χ(x) = 1 in Ω7ε(z) (Theorem 5.6), we see that ‖un1‖H1(ΩR∩G) → 0
implies that

(χun1 ) → 0,
∂(χun1 )

∂ν
→ 0 as n→ ∞ (6.115)

with respect to theH
1
2 (∂D1) norm andH− 1

2 (∂D1) norm, respectively. Indeed,
for the first convergence we simply apply the trace theorem, while for the
convergence of ∂(χun1 )/∂ν we first deduce the convergence of Δ(χun1 ) in
L2(ΩR ∩ De

1), which follows from Δ(χun1 ) = χΔun1 + 2∇χ · ∇un1 + un1Δχ,
and then apply Theorem 5.7. Note here that we need conditions 2 and 4 on z
to ensure Ω8ε(z) ∩De

1 = Ω8ε(z) ∩G.
We next note that in the exterior of Ω2ε(z) the H2(ΩR \ Ω2ε(z)) norms

of wn remain uniformly bounded. Then the assertion about the bound-
ary regularity of the solution to (5.13)–(5.17) stated in the second part of
Theorem 5.28 implies that un1 is uniformly bounded with respect to the
H2((ΩR ∩ De

1) \ Ω4ε(z)) norm. Therefore, using the compact embedding of
H2(ΩR ∩ De

1) into H1(ΩR ∩ De
1), we can select a H1(ΩR ∩ De

1) convergent
subsequence {(1 − χ)unk

1 } from {(1 − χ)un1}. Hence, {(1 − χ)unk
1 } is a con-

vergent sequence in H
1
2 (∂D1), and, similarly to the foregoing reasoning, we

also have that {∂((1 − χ)unk
1 )/∂ν} converges in H− 1

2 (∂D1). This, together
with (6.115), implies that the sequences

{unk
1 } and

{
∂unk

1

∂ν

}

converge in H
1
2 (∂D1) and H

− 1
2 (∂D1), respectively.
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Finally, since the functions vnk
1 and wnk are solutions to the interior

transmissionproblem (6.12)–(6.15) for the domain D1 with boundary data
f = unk

1 and h = ∂unk
1 /∂ν, and since the H1(D1) norms of vnk

1 and wnk

remain uniformly bounded, then, according to Lemma 6.37, we can select a
subsequence of {wnk}, denoted again by {wnk}, that converges in H1(D1) to a
function w ∈ H1(D1). As a limit of weak solutions to the Helmholtz equation,
w ∈ H1(D1) is a weak solution to the Helmholtz equation. We also have that
w|D1\Ω2ε(z) = 0 because the functions wnk converge uniformly to zero in the
exterior of Ω2ε(z). Hence, w must be zero in all of D1 [here we make use of
condition 3, namely, the fact that the connected component of D1 containing
z has points that do not lie in the exterior of Ω̄2ε(z)]. This contradicts the
fact that ‖wnk‖H1(D1) = 1. Hence the assumption D̄1 �⊂ D̄2 is false.

Since we can derive an analogous contradiction for the assumption D̄2 �⊂
D̄1, we have proved that D1 = D2. �	

Remark 6.40. We remark that the proof of the uniqueness of the support of an
anisotropic media presented in Theorem 6.39 is valid as long as the material
properties A and n guaranty that the corresponding interior transmission
problem is a compact perturbation of a well-posed problem.

6.5 Linear Sampling Method

Having shown that the support of an inhomogeneity can be uniquely deter-
mined from the far-field pattern, we now want to find an approximation to
the support. To this end, we will use the linear sampling method previously
introduced in Chap. 4 for the inverse scattering problem for an imperfect con-
ductor. In particular, we shall show that, provided k is not a transmission
eigenvalue, the boundary ∂D of the inhomogeneity D can be characterized by
the solution of the far-field equation (4.33), where the kernel of the far-field
operator is the far-field pattern corresponding to (6.1)–(6.5).

Given (f, h) ∈ H
1
2 (∂D)×H− 1

2 (∂D), let (v, u) ∈ H1(D)×H1
loc(R

2 \ D̄) be
the unique solution to the corresponding transmission problem (5.13)–(5.17).
We recall that the radiating part u has the asymptotic behavior

u(x) =
eikr√
r
u∞(x̂) +O(r−3/2), r → ∞, x̂ = x/|x|,

where u∞ is the far-field pattern corresponding to (v, u).

Definition 6.41. The bounded linear operator B : H
1
2 (∂D) ×H− 1

2 (∂D) →
L2[0, 2π] maps (f, h) ∈ H

1
2 (∂D)×H− 1

2 (∂D) onto the far-field pattern u∞ ∈
L2[0, 2π], where (v, u) is the solution of (5.13)–(5.17) with the boundary data
(f, h).

Note that the fact that B is bounded follows directly from the well-posedness
of (5.13)–(5.17).
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As in the case of the scattering problem for an imperfect conductor, the
operator B will play an important role in the solution of the inverse problem.
To determine the range of the operator B, it is more convenient to consider
its transpose instead of its adjoint. This is because operating with the duality
relation between H

1
2 (∂D), H− 1

2 (∂D) is much simpler than using the corre-
sponding inner products. In what follows we will define the transpose operator
and derive some useful properties of this operator.

Let X and Y be two Hilbert spaces, and let X∗ and Y ∗ be their dual
spaces. For any linear mapping A : X → Y , the transpose A� : Y ∗ → X∗ is
the linear mapping defined by

〈
A�v, u

〉
X,X∗ = 〈v,Au〉Y,Y ∗ , for all u ∈ X and v ∈ Y ∗,

where 〈·, ·〉 denotes the duality pairing between the denoted spaces.
It can be shown (see Lemma 2.9 in [127]) that the transpose A� is bounded

if and only if A is bounded. To describe the relation between the range and
the kernel of A and A�, we use the following terminology. For any subset
W ⊆ X , the annihilator W a is the closed subspace of X∗ defined by

W a = {g ∈ X∗ : 〈g, u〉 = 0 for all u ∈W}.

Similarly, for V ⊆ X∗ the annihilator aV is the closed subspace ofX defined by

aV = {u ∈ X : 〈g, u〉 = 0 for all g ∈ V }.

Lemma 6.42. The null space and range of A and A� satisfy

N(A�) = A(X)a and N(A) = aA�(Y ∗).

Proof. Applying the various definitions we obtain

A(X)a = {g ∈ Y ∗ : 〈g, v〉 = 0 for all v ∈ rangeA}
= {g ∈ Y ∗ : 〈g,Au〉 = 0 for all u ∈ X}
= {g ∈ Y ∗ :

〈
A�g, u

〉
= 0 for all u ∈ X}

= {g ∈ Y ∗ : A�g = 0} = N(A�).

A similar argument shows that N(A) = aA�(Y ∗). �	

It is an easy exercise using the Hahn–Banach theorem [115] to show that a sub-
set W ⊆ X is dense if and only if W a = {0}. In particular, from Lemma 6.42
we have the following corollary.

Corollary 6.43. The operator A has a dense range if and only if the transpose
A� is injective.

With the help of the preceding lemma and corollary we can now prove the
following result for the operator B.
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Theorem 6.44. The range of B : H
1
2 (∂D)×H− 1

2 (∂D) → L2[0, 2π] is dense
in L2[0, 2π].

Proof. We consider the dual operator B� : L2[0, 2π] −→ H− 1
2 (∂D) ×

H
1
2 (∂D), which maps a function g into (f̃ , h̃) such that

〈B(f, h), g〉L2×L2 =
〈
f, f̃

〉
H

1
2 ×H− 1

2
+

〈
h, h̃

〉
H− 1

2 ×H
1
2
,

where 〈·, ·〉 denotes the duality pairing between the denoted spaces. Now let
(ṽ, ũ) be the unique solution of (5.13)–(5.17) with (f, h) := (ṽg|∂D, ∂ṽg/∂ν|∂D),
where ṽg is the Herglotz wave function defined by (6.9). Then from (6.6) we
have

〈B(f, h), g〉 =
2π∫
0

u∞(θ)g(θ) dθ =

∫
∂D

(
u(y)

∂ṽg(y)

∂ν
− ṽg(y)

∂u(y)

∂ν

)
ds(y).

Since u and ũ are solutions of the Helmholtz equation in R
2 \ D̄ satisfying

the Sommerfeld radiation condition, an application of Green’s second identity
implies that ∫

∂D

[
u(y)

∂ũ(y)

∂ν
− ũ(y)

∂u(y)

∂ν

]
ds(y) = 0.

Using the transmission conditions on the boundary for ũ and ṽ we obtain

〈B(f, h), g〉L2×L2 =

=

∫
∂D

[
u(y)

(
∂ṽg(y)

∂ν
+
∂ũ(y)

∂ν

)
− (ṽg(y) + ũ(y))

∂u(y)

∂ν

]
ds(y)

=

∫
∂D

(
u(y)

∂ṽ(y)

∂νA
− ṽ(y)

∂u(y)

∂ν

)
ds(y)

=

∫
∂D

[
(v(y)− f(y))

∂ṽ(y)

∂νA
− ṽ(y)

(
∂v(y)

∂νA
− h(y)

)]
ds(y).

Finally, applying Green’s (generalized) second identity to v and ṽ we have
that

〈B(f, h), g〉L2×L2 =

∫
∂D

[
f(y)

(
−∂ṽ(y)
∂νA

)
+ ṽ(y)h(y)

]
ds(y).

Hence the dual operator B� can be characterized as

B�g =

(
− ∂ṽ

∂νA

∣∣∣∣
∂D

, ṽ|∂D
)
.
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In what follows we want to show that the operator B� is injective. To this
end, let B�g ≡ 0, g ∈ L2[0, 2π]. This implies that ṽ = 0 and ∂ṽ/∂νA = 0 on
the boundary ∂D. Therefore, ũ satisfies the Helmholtz equation in R

2 \ D̄,
the Sommerfeld radiation condition, and, from the transmission conditions,

ũ = −ṽg and
∂ũ

∂ν
= −∂ṽg

∂ν
on ∂D.

Thus, setting ũ ≡ −ṽg in D we have that ũ can be extended to an entire
solution to the Helmholtz equation satisfying the radiation condition. This
is only possible if ũ vanishes, which implies that ṽg vanishes also and, thus,
g ≡ 0, whence B� is injective. Finally, from Corollary 6.43 we have that the
range of B is dense in L2[0, 2π]. �	
From Lemma 6.42 we also have that

N(B) = B�(L2[0, 2π])a :=

⎧⎨
⎩(f0, h0) :

∫
∂D

(
−f0

∂ṽ

∂νA
+ h0ṽ

)
ds = 0

⎫⎬
⎭ ,

where ṽ is as in the proof of Theorem 6.44. Hence, using the divergence
theorem, we see that the pairs (v|∂D, ∂v/∂νA|∂D), where v ∈ H1(D) is a
solution of ∇ · A∇v + k2n v = 0 in D, are in the kernel of B. So B is not
injective. We will restrict the operator B in such a way that the restriction is
injective and still has a dense range.

To this end, let us denote by H the closure in H1(D) of all Herglotz wave
functions with kernel g ∈ L2[0, 2π]. Note that the space H coincides with
the space of H1 weak solutions to the Helmholtz equation. In other words,
H =W (D), where W (D) is the closure in H1(D) of W (D) defined by

W (D) := {u ∈ C2(D) ∩C1(D) : Δu+ k2 u = 0}.

Indeed, if u ∈ W (D), then by seeing u as a weak solution of the interior
impedance boundary value problem for the Helmholtz equation in D with
λ = 1 we have from Theorem 8.4 in Chap. 8 (set ∂DD = ∅) that there exists
a positive constant C such that

‖u‖H1(D) ≤ C

∥∥∥∥∂u∂ν + iu

∥∥∥∥
H− 1

2 (∂D)

.

Then the proof of Theorem 4.10 implies that for any ε > 0 there exists a
Herglotz wave function vg such that ‖u− vg‖H1(D) < ε, whence H = W (D).
For later use we state this result in the following lemma.

Lemma 6.45. Any solution to the Helmhotz equation in a bounded domain
D ⊂ R

2 can be approximated in the H1(D) norm by a Herglotz wave function.

Next, we define

H(∂D) :=

{(
u|∂D,

∂u

∂ν

∣∣∣∣
∂D

)
: u ∈ H

}
.
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Lemma 6.46. H(∂D) is a closed subset of H
1
2 (∂D)×H− 1

2 (∂D).

Proof. Consider (f, h) ∈ H(∂D). There exists a sequence {un, ∂un/∂ν} con-

verging to (f, h) in H
1
2 (∂D)×H− 1

2 (∂D), where un ∈ H . Since the sequence

{un, ∂un/∂ν} is bounded in H
1
2 (∂D) × H− 1

2 (∂D), by considering un to be
the solution of an impedance boundary value problem in D we can deduce
that {un} is bounded in H1(D). From this it follows that a subsequence (still
denoted by {un}) converges weakly in H1(D) to a function u that is clearly
in H . From the continuity of the trace operators (Theorems 1.38 and 5.7)

we deduce that {un, ∂un/∂ν} converges weakly in H
1
2 (∂D) × H− 1

2 (∂D) to
(u, ∂u/∂ν) and by the uniqueness of the limit (f, h) = (u, ∂u/∂ν). Hence
(f, h) ∈ H(∂D), which completes the proof. �	

From the preceding lemma, H(∂D) equipped with the induced norm from

H
1
2 (∂D)×H− 1

2 (∂D) is a Banach space.
Now, let B0 denote the restriction of B to H(∂D).

Theorem 6.47. Assume that k is not a transmission eigenvalue. Then the
bounded linear operator B0 : H(∂D) −→ L2[0, 2π] is injective and has a
dense range.

Proof. Let B0(f, h) = 0 for (f, h) ∈ H(∂D), and let (v, u) be the solution
to (5.13)–(5.17) corresponding to these boundary data. Then the radiating
solution to the Helmholtz equation in the exterior of D has a zero far-field
pattern, whence u = 0 for x ∈ R

2 \ D̄. This implies that v satisfies

∇ · A∇v + k2n v = 0 in D, v = f and
∂v

∂ν
= h on ∂D.

From the definition of H(∂D), f and h are the traces on ∂D of a H1(D)
solution w to the Helmholtz equation and its normal derivative, respec-
tively. Therefore, (v, w) solves the homogeneous interior transmission prob-
lem (6.12)–(6.15), and since k is not a transmission eigenvalue, we have that
w ≡ 0 and v ≡ 0 in D, whence f = h = 0.

It remains to show that the set B0(H(∂D)) is dense in L2[0, 2π]. To this
end, it is sufficient to show that the range of B is contained in the range
of B0 since from Theorem 6.44 the range of B is dense in L2[0, 2π]. Let
u∞ be in the range of B, that is, u∞ is the far-field pattern of the radi-
ating part u of a solution (v, u) to (5.13)–(5.17). Let (v, w) be the unique
solution to (6.12)–(6.15) with the boundary data (u|∂D, ∂u/∂ν|∂D). Hence
(v, u) is the solution to (5.13)–(5.17) with boundary data (w|∂D, ∂w/∂ν|∂D) ∈
H(∂D) and has a far-field pattern coinciding with u∞. This means that
B0 (w|∂D, ∂w/∂ν|∂D) = u∞. �	
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Theorem 6.48. The operator B0 : H(∂D) −→ L2[0, 2π] is compact.

Proof. Given w ∈ H , consider the solution (v, u) of (5.13)–(5.17) with
boundary data f := w|∂D and h := ∂w/∂ν|∂D. Let ∂ΩR be the boundary of a
disk ΩR centered at the origin containing D̄. The continuous dependence esti-
mate (5.41) implies that the operator G : H(∂D) → H

1
2 (∂ΩR)×H− 1

2 (∂ΩR),
which maps (

w|∂D,
∂w

∂ν

∣∣∣∣
∂D

)
→

(
u|∂ΩR ,

∂u

∂ν

∣∣∣∣
∂ΩR

)
,

is bounded. Next we denote by K : H
1
2 (∂ΩR)×H− 1

2 (∂ΩR) → L2[0, 2π] the
operator that takes (u|∂ΩR , ∂u/∂ν|∂ΩR) to u∞ given by

u∞(x̂) =
eiπ/4√
8πk

∫
∂B

(
u(y)

∂e−ikx̂·y

∂ν
− e−ikx̂·y ∂u(y)

∂ν

)
ds(y)

where x̂ = x/|x|. An argument similar to that in the proof of Theorem 4.8
shows that K is compact. Therefore, B0 = KG is compact since it is a com-
position of a bounded operator with a compact operator. �	

For a Herglotz wave function vg given by (6.8) with kernel g ∈ L2[0, 2π] we
define H : L2[0, 2π] → H(∂D) by

Hg :=

(
vg|∂D ,

∂vg
∂ν

∣∣∣∣
∂D

)
.

Corollary 6.49. Assume that u∞ ∈ L2[0, 2π] is in the range of B0. Then for
every ε > 0 there exists a gε ∈ L2[0, 2π] such that Hgε satisfies

‖B0(Hgε)− u∞‖L2[0, 2π] ≤ ε.

Proof. The proof is a straightforward application of the definition of the space
H(∂D), the continuity of the trace operator, and the operator B0, together
with Lemma 6.45. �	

Turning to our main goal of finding an approximation to the scattering
obstacle D we consider the far-field equation corresponding to the scattering
by an orthotropic medium given by

2π∫
0

u∞(θ, φ)g(φ)dφ = γe−ikx̂·z, z ∈ R
2, (6.116)

where u∞(θ, φ) is the far-field pattern of the radiating part of the solu-
tion to the forward problem (6.1)–(6.5) corresponding to the incident plane
wave with incident direction d = (cos φ, sin φ) and observation direction
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x̂ = (cos θ, sin θ). As in Chap. 4 the far-field equation can be written in
the form

(Fg)(x̂) = Φ∞(x̂, z), z ∈ R
2,

where Fg is the far-field operator corresponding to the transmission prob-
lem (6.1)–(6.5), and Φ∞(x̂, z) is the far-field pattern of the fundamental so-
lution Φ(x, z) to the Helmholtz equation in R

2. We observe that the far-field
operator Fg can be factored as

Fg = B0(Hg).

Hence the far-field equation takes the form

(B0(Hg)) (x̂) = Φ∞(x̂, z), z ∈ R
2. (6.117)

As the reader has already encountered in the case of scattering by an imper-
fect conductor, the linear sampling method is based on the characterization of
the domain D by the behavior of a solution to the far-field equation (6.117).
By definition, B0(Hg) is the far-field pattern of the solution (v, u) to the
transmission problem (5.13)–(5.17) with boundary data (f, h) := Hg. There-
fore, for z ∈ D, from Rellich’s lemma the far-field equation implies that this
u coincides with Φ(·, z) in R

2 \ D̄. In other words, for z ∈ D, g ∈ L2[0, 2π]
is a solution to the far-field equation if and only if v and w := vg solve the
interior transmission problem

∇ ·A∇v + k2n v = 0 in D, (6.118)

Δw + k2 w = 0 in D, (6.119)

v − w = Φ(·, z) on ∂D, (6.120)

∂v

∂νA
− ∂w

∂ν
=
∂Φ(·, z)
∂ν

on ∂D, (6.121)

where vg is the Herglotz wave function with kernel g. In general, this is not
true. However, in what follows, we will show that one can construct an ap-
proximate solution to the far-field equation that behaves in a certain manner.

We first assume that z ∈ D and that k is not a transmission eigenvalue.
Then the interior transmission problem (6.118)–(6.121) has a unique solution
(v, w). In this case (v, Φ(·, z)) solves the transmission problem (5.13)–(5.17)
with transmission conditions f := w|∂D, h := ∂w/∂ν|∂D. Since the preceding
solution has the far-field pattern Φ∞(·, z), we can conclude that Φ∞(·, z) is in
the range of B0. From Corollary 6.49 we can find a gεz such that

‖B0(Hg
ε
z)− Φ∞(·, z)‖L2[0, 2π] < ε (6.122)

for an arbitrarily small ε. From the construction of B0 and Corollary 6.49 we
see that the corresponding Herglotz wave function vgε

z
approximates w in the

H1(D) norm as ε → 0. Furthermore, for a fixed ε > 0, the H1(D) norm vgε
z
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blows up if z approaches the boundary from the interior of D, as does the
L2[0, 2π] norm of gεz. To see this, we choose a sequence of points {zj}, zj ∈ D,
such that

zj = z∗ − R

j
ν(z∗), j = 1, 2, . . . ,

with sufficiently small R, where z∗ ∈ ∂D and ν(z∗) is the unit outward normal
at z∗. We denote by (vj , wj) the solution to (6.118)–(6.121) corresponding
to z = zj . As j → ∞ the points zj approach the boundary point z∗ and,
therefore, ‖Φ(·, zj)‖

H
1
2 (∂D)

→ ∞. From the trace theorem and by using the

boundary conditions we can write

‖vj‖H1(D)+‖wj‖H1(D)≥‖vj−wj‖
H

1
2 (∂D)

= ‖Φ(·, zj)‖
H

1
2 (∂D)

. (6.123)

In particular, we show that the relation (6.123) implies that

lim
j→∞

‖wj‖H1(D) = ∞.

To this end, we assume, in contrast, that

‖wj‖H1(D) ≤ C̄, j = 1, 2, . . . ,

for some positive constant C̄. From the trace theorem we have

‖wj‖
H

1
2 (∂D)

≤ C̄ and ‖∂wj

∂ν
‖
H

1
2 (∂D)

≤ C̄, j = 1, 2, . . . .

Recall that for every j the pair (vj , Φ(·, zj)) is the solution of (5.13)–(5.17)
with (f, g) :=

(
wj |∂D , ∂wj/∂ν|∂D

)
. The a priori estimate (5.41) implies that

‖vj‖H1(D) + ‖Φ(·, zj)‖H1(ΩR\D̄)

≤ C

(
‖wj‖

H
1
2 (∂D)

+ ‖∂wj

∂ν
‖
H− 1

2 (∂D)

)
≤ 2CC̄,

which contradicts the fact that ‖Φ(·, zj)‖H1(ΩR\D̄) does not remain bounded
as zj → z∗ ∈ ∂D. So we have that

lim
j→∞

‖wj‖H1(D) = ∞.

Since for every j = 1, 2, . . . the corresponding Herglotz wave functions vgε
zj

satisfying (6.122) approximate the solution wj in the H1(D) norm, we con-
clude that

lim
j→∞

‖vgε
zj
‖H1(D) = ∞,

and hence
lim
j→∞

‖gεzj‖L2[0, 2π] = ∞.
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Next we consider z ∈ R
2 \ D̄, and again we assume that k is not a

transmission eigenvalue. We would like to show that if gεz is such that

‖Fgεz − Φ∞(·, z)‖L2[0, 2π] < ε

for a given arbitrary ε > 0, then the H1(D) norm of the corresponding Her-
glotz wave functions vgε

z
is not bounded as ε → 0. Assume, to the con-

trary, that there exists a null sequence {εn} such that ‖vn‖H1(D) remain
bounded as n → ∞, where vn := vgεn

z
. From the trace theorem ‖Hgn‖H(∂D)

also remain bounded. Then without loss of generality we may assume weak

convergence Hgn ⇀ h, where h :=

(
w|∂D,

∂w

∂ν

∣∣∣∣
∂D

)
for some w ∈ H,

i.e., that w is a H1(D) weak solution to the Helmholtz equation. Since
B0 : H(∂D) → L2[0, 2π] is bounded, we also have that B0Hgn ⇀ B0h
in L2[0, 2π]. But by construction, B0Hgn → Φ∞(·, z), which means that
B0h = Φ∞(·, z). This contradicts the fact that Φ∞(·, z) does not belong to
the range of the operator B0 because this would mean that Φ(·, z) solves the
Helmholtz equation in the exterior of D.

We summarize the foregoing analysis in the following theorem. To this end,
we state the following assumptions on the symmetric matrix-valued function
A = (aj,k)j,k=1,2, aj,k ∈ C1(D̄) and n ∈ C(D̄):

• Assumption 1: ξ̄ · Im(A) ξ = 0, Im (n) = 0, and

either 0 < a∗ < 1 and 0 < n∗ < 1, or a∗ > 1 and n∗ > 1,

where a∗, a∗, n∗, and n∗ are defined by (6.95).
• Assumption 2: ξ̄ · Im(A) ξ ≤ 0, Im(n) ≥ 0, and

either ξ̄ · Re(A) ξ ≥ γ|ξ|2 or ξ̄ · Re(A−1) ξ ≥ γ|ξ|2

for all ξ ∈ C
2 and x ∈ D with a constant γ > 1.

Theorem 6.50. Assume that D is a bounded domain having a C2 boundary
∂D such that R2 \D̄ is connected, and A and n satisfy either Assumption 1 or
Assumption 2. Furthermore, assume that k is not a transmission eigenvalue.
Then if F is the far-field operator (6.7) corresponding to the transmission
problem (6.1)–(6.5), we have that

1. For z ∈ D and a given ε > 0 there exists a function gεz ∈ L2[0, 2π] such that

‖Fgεz − Φ∞(·, z)‖L2[0,2π] < ε

and the Herglotz wave function vgε
z
with kernel gεz converges in H1(D) to

w as ε→ 0, where (v, w) is the unique solution of (6.118)–(6.121);
2. For z �∈ D and a given ε > 0 every function gεz ∈ L2[0, 2π] that satisfies

‖Fgεz − Φ∞(·, z)‖L2[0,2π] < ε

is such that
lim
ε→0

∥∥vgε
z

∥∥
H1(D)

= ∞.
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The importance of Theorem 6.50 in solving the inverse scattering problem
of determining the support D of an orthotropic inhomogeneity from the far-
field pattern is clear from our discussion in Chap. 4. In particular, using
regularization methods to solve the far-field equation Fg = Φ∞(·, z) for z on
an appropriate grid containing D, an approximation to gz can be obtained,
and hence ∂D can be determined by those points where ‖gz‖L2[0, 2π] becomes
unbounded. More discussion on the numerical implementation is presented in
Chap. 8.

6.6 Determination of Transmission Eigenvalues
from Far-Field Data

In the previous section we showed how the linear sampling method could
be used to determine the support of the inhomogeneous scattering object
provided k is not a transmission eigenvalue. At the same time we showed
that the transmission eigenvalues carried qualitative information about the
material properties of the scatterer (cf. Theorems 6.22, 6.23, 6.25, and 6.36).
To exploit the possibility of using this qualitative information, we are no
longer interested in avoiding transmission eigenvalues as in the case of the
linear sampling method but rather now want to be able to determine them
from the (noisy) far-field data. This last section of our chapter is devoted to
this problem.

At this point we assume that D (or a reconstruction of D using the linear
sampling method) is known and fix an arbitrary point z ∈ D. In Theorem 6.50
it was shown that if k is not a transmission eigenvalue, then for a given ε > 0
there exists a function gεz ∈ L2[0, 2π] such that

‖Fgεz − Φ∞(·, z)‖L2[0,2π] < ε (6.124)

and the Herglotz wave function vgε
z
with kernel gεz converges in H1(D) to w

as ε → 0, where (v, w) is the unique solution of (6.118)–(6.121). We will now
show that if k is a transmission eigenvalue, then the H1(D) norm of vgε

z
blows

up as ε→ 0. More specifically, we can prove the following theorem.

Theorem 6.51. Assume that either 0 < a∗ < 1 and 0 < n∗ < 1, or a∗ > 1
and n∗ > 1, where a∗, a∗, n∗, and n∗ are defined by (6.95). Let k be a
transmission eigenvalue and gεz satisfy (6.124). Then for every z ∈ D, except
for a nowhere dense set, ‖vgε

z
‖H1(D) cannot be bounded as ε→ 0.

Proof. Assume to the contrary that for a set of points z ∈ D that has an
accumulation point, there exists a sequence εn → 0 such that ‖vn‖H1(D)

remains bounded as n → ∞, where vn := vgεn
z
, with gεnz satisfying (6.124).

Without loss of generality we may assume that vn converges weakly to w ∈
H1(D). In a similar way as in the proof of Theorem 6.50 it is seen that
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w := wz, where vz and wz solve the interior transmission problem (6.118)–
(6.121). But (6.118)–(6.121) is equivalent to the variational form (see the
discreteness of transmission eigenvalues for the case n �= 1 in Sect. 6.3)

ak((v, w), (v
′, w′)) = �(v′, w′) for all (v′, w′) ∈ H(D), (6.125)

where

�(v′, w′) =
∫
∂D

v′
∂Φ(·, z)
∂ν

ds−
∫
D

(∇φz · ∇w′ − k2φzw′) dx,

H(D) :=
{
(v, w) ∈ H1(D)×H1(D) : v − w ∈ H1

0 (D)
}
,

and φz ∈ H1(D) is a lifting function such that φz = Φ(·, z) on ∂D. As dis-
cussed in Remark 6.29, (6.125) satisfies the Fredholm alternative. Hence,
noting that the operator determined by ak(·, ·) via the Riesz representation
theorem is self-adjoint, we have that w := wz and vz solve (6.118)–(6.121) if
and only if �(vk, wk) = 0, where (vk, wk) is a transmission eigenfunction cor-
responding to the transmission eigenvalue k. Using integration by parts and
the facts that Δwk + k2wk = 0 in D and vk = wk on ∂D we obtain that the
solvability condition takes the form∫

∂D

(
wk

∂Φ(·, z)
∂ν

− ∂wk

∂ν
Φ(·, z)

)
ds = 0.

Now Green’s representation formula and the analyticity of the solution to the
Helmholtz equation imply that wk = 0 in D and, consequently, vk = 0 in D.
This contradicts the fact that (vk, wk) is a transmission eigenfunction, which
proves the theorem. �	

Similarly, we can prove the following theorem, which we leave as an exercise
for the reader.

Theorem 6.52. Assume that n = 1 and either amax < 1 or amin > 1, where
amax and amin are defined by (6.48). Let k be a transmission eigenvalue and
gεz satisfy (6.124). Then for every z ∈ D except for a nowhere dense set,
‖vgε

z
‖H1(D) cannot be bounded as ε→ 0.

Theorem 6.50, together with Theorems 6.51 and 6.52, suggests that for z ∈ D,
vgε

z
exhibits different behavior if k is not a transmission eigenvalue and if k is a

transmission eigenvalue. Hence the far-field equation can be used to determine
the transmission eigenvalues in addition to determining the support of the
inhomogeneity if the far-field data are available for a range of frequencies.

In practice, only the noisy far-field operator Fδ given by

Fδg =

∫ 2π

0

uδ∞(x̂, d)g(d) ds(d)

is available, where uδ∞ is the noisy far-field data with noise level δ > 0. Then
we look for the Tikhonov regularized solution gα,δz of the far-field equation
defined as the unique minimizer of the Tikhonov functional
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‖Fδg − Φ∞(·, z)‖2L2[0,2π] + α‖g‖2L2[0,2π],

where the positive number α > 0 is known as the Tikhonov regularization
parameter (cf. Sect. 2.1). This regularization parameter depends on the noise

level and can be chosen such that α(δ) → 0 as δ → 0. If gδz := g
α(δ),δ
z , then it

can be shown (see [22]) that

lim
δ→0

‖Fgδz − Φ∞(·, z)‖L2[0,2π] = 0.

Hence Theorems 6.51 and 6.52 hold true for the regularized solution gδz , where
ε is now replaced by δ.

The first part of Theorem 6.50 also holds true for the regularized solution
gδz of the far-field equation, but its justification involves the more elaborate
argument developed for the Dirichlet obstacle scattering problem by Arens
in [5]. This argument can be carried through for the case of inhomogeneous
media with real-valued physical parameters, which is the case where trans-
mission eigenvalues exist. It is essential to this generalization to show that
Φ(·, z) is in the range of (F ∗F )1/4 if and only if z ∈ D, which constitutes
the so-called factorization method. More generally, the factorization method
provides an analytical framework to justify the linear sampling method (i.e.,
Theorem 6.50) for the regularized solution of the far-field equation that is
obtained in practice. The factorization method holds for a restrictive class of
scattering problems and is the subject of the following chapter.

In conclusion, to determine the transmission eigenvalues from the far-field
data, we choose a point z ∈ D and the Tikhonov regularized solution gδz to the
far-field equation. The transmission eigenvalues will appear as sharp peaks in
the plot of ‖vgδ

z
‖H1(D) or ‖gδz‖L2[0,2π] against the wave number k for a range

of interrogating frequencies.
As an example of the use of transmission eigenvalues to determine infor-

mation about the material properties of the scattering object from far-field
data, we consider the scattering problem (5.8)–(5.12) with n = 1 and D the
unit square [−1/2, 1/2]× [−1/2, 1/2]. We consider four different possibilities
for A = A(x):

Aiso =

(
1/4 0
0 1/4

)
, A1 =

(
1/2 0
0 1/8

)
,

A2 =

(
1/6 0
0 1/8

)
, A2r =

(
0.1372 0.0189
0.0189 0.1545

)
,

noting that A2r is obtained by rotating matrix A2 by 1 radian. For each A the
direct scattering problem is then solved using finite-element methods, and the
far-field equation with noisy far-field data is then solved for 25 random source
points z in the unit square (for details see [28]). It is assumed that D is known
(for example, through the use of the linear sampling method). In Fig. 6.1 we
show a plot of the average norm of the Herglotz kernel ‖gδz‖L2[0,2π] against
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Fig. 6.1. Results for square using anisotropy A2r. We show a plot of the average
values of ‖gδz‖L2(D) against k. We also mark the computed eigenvalues from the
finite-element code (shown as + along the bottom of the graph). Good agreement
is seen with the lowest computed eigenvalue and the first peak of the norms of gδz]

1

Table 6.1. Our theory implies that the scalar a reconstructed from the first nonzero
real transmission eigenvalue should lie between the eigenvalues of matrix A. In the
case of an isotropic A, the predicted a should reconstruct the diagonal of A. The
table supports both these claims1

Domain Matrix Eigenvalues Predicted k1,D,A(x) Predicted a

Square Aiso 1/4,1/4 5.3 0.248
A1 1/2,1/8 4.1 0.172
A2 1/6,1/8 3.55 0.135
A2r 1/6,1/8 3.7 0.145

the wave number k corresponding to matrix A2r. Given the first transmission
eigenvalue k1,D,A(x) from Fig. 6.1, we can now compute a positive number a
such that k1,D,aI = k1,D,A(x). According to Theorem 6.22, a should lie between
the smallest and largest eigenvalues of A. Table 6.1 below shows the results
of this calculation for each of the preceding cases for A.

Additional numerical examples of the determination of transmission
eigenvalues from far-field data and their use to obtain information on the
refractive index of the inhomogeneity can be found in [21] and [28].

1Reprinted from F. Cakoni, D. Colton, P. Monk, and J. Sun, The inverse elec-
tromagnetic scattering problem for anisotropic media, Inverse Problems 26 (2010),
074004.
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