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Scattering by Orthotropic Media

Until now the reader has been introduced only to the scattering of time
-harmonic electromagnetic waves by an imperfect conductor. We will now
consider the scattering of electromagnetic waves by a penetrable orthotropic
inhomogeneity embedded in a homogeneous background. As in the previous
chapter, we will confine ourselves to the scalar case that corresponds to the
scattering of electromagnetic waves by an orthotropic infinite cylinder. The di-
rect scattering problem is now modeled by a transmission problem for the
Helmholtz equation outside the scatterer and an equation with nonconstant
coefficients inside the scatterer. This chapter is devoted to the analysis of the
solution to the direct problem.

After a brief discussion of the derivation of the equations that govern
the scattering of electromagnetic waves by an orthotropic infinite cylinder, we
proceed to the solution to the corresponding transmission problem. The inte-
gral equation method used by Piana [136] and Potthast [137] to solve the for-
ward problem in this case is only valid under restrictive assumptions. Hence,
following [81], we propose here a variational method and find a solution to the
problem in a larger space than the space of twice continuously differentiable
functions. To build the analytical frame work for this variational method, we
first extend the discussion of Sobolev spaces and weak solutions initiated in
Sects. 1.5 and 3.3. This is followed by a proof of the celebrated Lax–Milgram
lemma and an investigation of the Dirichlet-to-Neumann map. Included are
several simple examples of the use of variational methods for solving bound-
ary value problems. We conclude our chapter with a solvability result for the
direct problem.

5.1 Maxwell Equations for an Orthotropic Medium

We begin by considering electromagnetic waves propagating in an inhomoge-
neous anisotropic medium in R

3 with electric permittivity ε = ε(x), magnetic
permeability μ = μ(x), and electric conductivity σ = σ(x). As the reader
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86 5 Scattering by Orthotropic Media

knows from Chap. 3, the electromagnetic wave is described by the electric
field E and the magnetic field H satisfying the Maxwell equations

curlE + μ
∂H
∂t

= 0, curlH− ε
∂E
∂t

= σE .

For time-harmonic electromagnetic waves of the form

E(x, t) = Ẽ(x)e−iωt, H(x, t) = H̃(x)e−iωt

with frequency ω > 0, we deduce that the complex-valued space-dependent
parts Ẽ and H̃ satisfy

curl Ẽ − iωμ(x)H̃ = 0,

curl H̃ + (iωε(x)− σ(x))Ẽ = 0.

Now let us suppose that the inhomogeneity occupies an infinitely long con-
ducting cylinder. Let D be the cross section of this cylinder having a C2

boundary ∂D, with ν being the unit outward normal to ∂D. We assume that
the axis of the cylinder coincides with the z-axis. We further assume that the
conductor is imbedded in a nonconducting homogeneous background, i.e., the
electric permittivity ε0 > 0, and the magnetic permeability μ0 > 0 of the back-
ground medium is a positive constants, while the conductivity σ0 = 0. Next
we define

Ẽint,ext =
1√
ε0
Eint,ext, H̃int,ext =

1√
μ0
Hint,ext, k2 = ε0μ0ω

2,

A(x) =
1

ε0

(
ε(x) + i

σ(x)

ω

)
, N (x) =

1

μ0
μ(x),

where Ẽext, H̃ext and Ẽint, H̃int denote the electric and magnetic fields
in the exterior medium and inside the conductor, respectively. For an or-
thotropic medium we have that the matrices A and N are independent of the
z-coordinate and are of the form

A =

⎛
⎝a11 a12 0
a21 a22 0
0 0 a

⎞
⎠ , N =

⎛
⎝n11 n12 0
n21 n22 0
0 0 n

⎞
⎠ .

In particular, the field Eint, Hint inside the conductor satisfies

curlEint − ikNHint = 0, curlHint + ikAEint = 0, (5.1)

and the field Eext, Hext outside the conductor satisfies

curlEext − ikHext = 0, curlHext + ikEext = 0. (5.2)

Across the boundary of the conductor we have the continuity of the tangential
component of both the electric and magnetic fields. Assuming that A is
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invertible, and using ikEint = A−1curlHint and ikEext = curlHext, the
Maxwell equations become

curlA−1curlHint − k2NHint = 0 (5.3)

for the magnetic field inside the conductor and

curl curlHext − k2Hext = 0 (5.4)

for the magnetic field outside the conductor. If the scattering is due to a given
time-harmonic incident field Ei, Hi, then we have that

Eext = Es + Ei, Hext = Hs +Hi,

where Es, Hs denotes the scattered field. In general the incident field Ei, Hi

is an entire solution to (5.2). In particular, in the case of incident plane waves,
Ei, Hi is given by (3.4). The scattered field Es, Hs satisfies the Silver–Müller
radiation condition

lim
r→∞(Hs × x− rEs) = 0

uniformly in x̂ = x/|x| and r = |x|.
Now let us assume that the incident wave propagates perpendicular to the

axis of the cylinder and is polarized perpendicular to the axis of the cylinder
such that

Hi(x) = (0, 0, ui), Hs(x) = (0, 0, us), Hint(x) = (0, 0, v).

By elementary vector analysis, it can be seen that (5.3) is equivalent to

∇ · A∇v + k2nv = 0 in D, (5.5)

where

A :=
1

a11a22 − a12a21

(
a11 a21
a12 a22

)
.

Analogously, (5.4) is equivalent to the Helmholtz equation

Δus + k2us = 0 in R
2 \D. (5.6)

The transmission conditions ν×(Hs+Hi) = ν×Hint and ν×curl (Hs+Hi) =
ν ×A−1curlHint on the boundary of the conductor become

v − us = ui and ν ·A∇v − ν · ∇us = ν · ∇ui on ∂D. (5.7)

Finally, the R
2 analog of the Silver–Müller radiation condition is the Som-

merfeld radiation condition

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0,

which holds uniformly in x̂ = x/|x|.
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Summarizing the foregoing discussion we have that the scattering of
incident time-harmonic electromagnetic waves by an orthotropic cylindrical
conductor is modeled by the following transmission problem in R

2. LetD ⊂ R
2

be a nonempty, open, and bounded set having C2 boundary ∂D such that
the exterior domain R

2 \ D̄ is connected. The unit normal vector to ∂D,
which is directed into the exterior of D, is denoted by ν. On D̄ we have a
matrix-valued function A : D̄ → C

2×2, A = (ajk)j,k=1,2, with continuously
differentiable functions ajk ∈ C1(D̄). By Re(A) we mean the matrix-valued
function having as entries the real parts Re(ajk), and we define Im(A) sim-
ilarly. We suppose that Re(A(x)) and Im(A(x)), x ∈ D̄, are symmetric ma-
trices that satisfy ξ̄ · Im(A) ξ ≤ 0 and ξ̄ · Re(A) ξ ≥ γ|ξ|2 for all ξ ∈ C

3 and
x ∈ D, where γ is a positive constant. Note that due to the symmetry of A,
Im

(
ξ̄ · Aξ ) = ξ̄ · Im(A) ξ and Re

(
ξ̄ ·Aξ ) = ξ̄ · Re(A) ξ. We further assume

that n ∈ C(D̄), with Im(n) ≥ 0.
For functions u ∈ C1(R2 \ D) and v ∈ C1(D̄) we define the normal and

conormal derivative by

∂u

∂ν
(x) = lim

h→+0
ν(x) · ∇u(x+ hν(x)), x ∈ ∂D

and

∂v

∂νA
(x) = lim

h→+0
ν(x) · A(x)∇v(x − hν(x)), x ∈ ∂D,

respectively. Then the scattering of a time-harmonic incident field ui by an
orthotropic inhomogeneity in R

2 can be mathematically formulated as the
problem of finding v, u such that

∇ ·A∇v + k2n v = 0 in D, (5.8)

Δus + k2 us = 0 in R
2 \ D̄, (5.9)

v − us = ui on ∂D, (5.10)

∂v

∂νA
− ∂us

∂ν
=
∂ui

∂ν
on ∂D, (5.11)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0. (5.12)

The aim of this chapter is to establish the existence of a unique solution to the
scattering problem (5.8)–(5.12). In most applications the material properties
of the inhomogeneity do not change continuously to those of the background
medium, and hence the integral equation methods used in [136] and [137] are
not applicable. Therefore, we will introduce a variational method to solve our
problem. Since variational methods are well suited to Hilbert spaces, in the
next section we reformulate our scattering problem in appropriate Sobolev
spaces. To this end, we need to extend the discussion on Sobolev spaces given
in Sect. 1.5.
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5.2 Mathematical Formulation of Direct
Scattering Problem

In the context of variational methods, one naturally seeks a solution to a
linear second-order elliptic boundary value problem in the space of functions
that are square integrable and have square integrable first partial derivatives.
Let D be an open, nonempty, bounded, simply connected subset of R2 with
smooth boundary ∂D. In Sect. 1.5 we introduced the Sobolev spaces H1(D),

H
1
2 (∂D), and H− 1

2 (∂D). The reader has already encountered the connec-

tion between H
1
2 (∂D) and H1(D), that is, H

1
2 (∂D) is the trace space of

H1(D). More specifically, for functions defined in D̄ the values on the bound-
ary are defined and the restriction of the function to the boundary ∂D is
called the trace. The operator mapping a function onto its trace is called the
trace operator. Theorem 1.38 states that the trace operator can be extended
as a continuous mapping γ0 : H1(D) → H

1
2 (∂D), and this extension has a

continuous right inverse (see also Theorem 3.37 in [127]). The latter means

that for any f ∈ H
1
2 (∂D) there exists a u ∈ H1(D) such that γ0u = f and

‖u‖H1(D) ≤ C‖f‖
H

1
2 (∂D)

, where C is a positive constant independent of f .

(Map D in a one-to-one manner onto the unit disk, and use separation of
variables to determine u as a solution to the Dirichlet problem for Laplace’s
equation. Then map back to D.)
For any integer r ≥ 0 we let

Cr(D) := {u : ∂αu exists and is continuous onD for |α| ≤ r},
Cr(D̄) := {u|D̄ : u ∈ Cr(R2)}

and put

C∞(D) =
⋂
r≥0

Cr(D) C∞(D̄) =
⋂
r≥0

Cr(D̄).

In Sect. 1.5, H1(D) is naturally defined as the completion of C1(D̄) with
respect to the norm

‖u‖2H1(D) := ‖u‖2L2(D) + ‖∇u‖2L2(D).

Note that H1(D) is a Hilbert space with the inner product

(u, v)H1(D) := (u, v)L2(D) + (∇u,∇v)L2(D).

It can be shown that C∞(D̄) is dense in H1(D). The proof of this result can
be found in [127].

Since H1(D) is a subspace of L2(D), we can consider the embedding map
I : H1(D) → L2(D) defined by I(u) = u ∈ L2(D) for u ∈ H1(D). Obviously,
I is a bounded linear operator. The following two lemmas are particular cases
of the well-known Rellich compactness theorem.
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Lemma 5.1. The embedding I : H1(D) → L2(D) is compact.

In the sequel, we also need to consider the Sobolev space H2(D), which is
the space of functions u ∈ H1(D) such that ux and uy are also in H1(D).
Similarly, H2(D) can be defined as the completion of C2(D̄) [or C∞(D̄)] with
respect to the norm

‖u‖2H2(D) = ‖u‖2L2(D) + ‖∇u‖2L2(D) + ‖uxx‖2L2(D) + ‖uxy‖2L2(D) + ‖uyy‖2L2(D).

Lemma 5.2. The embedding I : H2(D) → H1(D) is a compact operator.

The proof of the Rellich compactness theorem can be found, for instance,
in [72] or [127]. For the special case of Hp[0, 2π] this result is proved in
Theorem 1.32.

We now define

C∞
0 (D) := {u : u ∈ C∞

K (D) for some compact subset K of D},
where

C∞
K (D) := {u ∈ C∞(D) : suppu ⊆ K}

and the support of u, denoted by supp u, is the closure in D of the set
{x ∈ D : u(x) �= 0}. The completion of C∞

0 (D) in H1(D) is denoted by
H1

0 (D) and can be characterized by

H1
0 (D) := {u ∈ H1(D) : u|∂D = 0},

where u|∂D is understood in the sense of the trace operator γ0u. This space
equipped with the inner product of H1(D) is also a Hilbert space. The follow-
ing inequality, known as Poincaré’s inequality, holds for functions in H1

0 (D).

Theorem 5.3 (Poincaré’s Inequality). There exists a positive constant M
such that for every u ∈ H1

0 (D) we have∫
D

|u|2 dx ≤M

∫
D

‖∇u‖2 dx,
where M is independent of u but depends on D.

Proof. We first assume that u ∈ C1
0 (D). SinceD is bounded, it can be enclosed

in a square Γ := {|xi| ≤ a, i = 1, 2}, and u will continue to be identically zero
outside D. Then for any x = (x1, x2) ∈ Γ we have, using the Cauchy–Schwarz
inequality, that

|u(x)|2 =

∣∣∣∣
∫ x1

−a

ux1(ξ1, x2) dξ1

∣∣∣∣
2

≤ (x1 + a)

∫ x1

−a

|ux1 |2 dξ1

≤ 2a

∫ x1

−a

|ux1 |2 dξ1,



5.2 Mathematical Formulation of Direct Scattering Problem 91

and hence ∫ a

−a

|u(x)|2 dx1 ≤ 4a2
∫ a

−a

|ux1 |2 dξ1.

Now integrate with respect to x2 from −a to a to obtain

∫
Γ

|u(x)|2 dx ≤ 4a2
∫
Γ

|ux1 |2 dx

≤ 4a2
∫
Γ

|∇u|2 dx.

The theorem now follows from the fact that C1
0 (D) is dense in H1

0 (D). �
Remark 5.4. It can be shown that the optimal constant M in the preceding
Poincaré’s inequality is equal to 1/λ0(D), where λ0(D) is the first Dirichlet
eigenvalue for −Δ in D (cf. [95]).

Remark 5.5. Our presentation of Sobolev spaces is by no means complete.
A systematic treatment of Sobolev spaces requires the use of the Fourier
transform and distribution theory, and we refer the reader to Chap. 3 in [127]
for this material.

For later use we recall the following classical result from real analysis.

Lemma 5.6. Let G be a closed subset of R2. For each ε > 0 there exists a
χε ∈ C∞(R2) satisfying

χε(x) = 1 if x ∈ G,

0 ≤ χε(x) ≤ 1 if 0 < dist(x,G) < ε,

χε(x) = 0 if dist(x,G) > ε,

where dist(x,G) denotes the distance of x from G.

The function χε(x) defined in the preceding lemma is called a cutoff function
for G. It is used to smooth out the characteristic function of a set.

Keeping in mind the solution to the scattering problem in Sect. 5.1, we
now extend the definition of the conormal derivative ∂u/∂νA to functions
u ∈ H1(D,ΔA), where

H1(D,ΔA) := {u ∈ H1(D) : ∇ · A∇u ∈ L2(D)},

equipped with the graph norm

‖u‖2H1(D,ΔA) := ‖u‖2H1(D) + ‖∇ · A∇u‖2L2(D).

In particular, we have the following trace theorem.
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Theorem 5.7. The mapping γ1 : u→ ∂u/∂νA := ν ·A∇u defined in C∞(D̄)
can be extended by continuity to a linear and continuous mapping, still denoted
by γ1, from H1(D,ΔA) to H

− 1
2 (∂D).

Proof. Let φ ∈ C∞(D̄) and u ∈ C∞(D̄). The divergence theorem then
becomes ∫

∂D

φ ν · A∇u ds =
∫
D

∇φ · A∇u dx+

∫
D

φ∇ ·A∇u dx.

Because C∞(D̄) is dense in H1(D), this equality is still valid for φ ∈ H1(D)
and u ∈ C∞(D̄). Therefore,
∣∣∣∣∣∣
∫
∂D

φ ν ·A∇u ds
∣∣∣∣∣∣ ≤ C‖u‖H1(D,ΔA)‖φ‖H1(D) ∀φ ∈ H1(D), ∀u ∈ C∞(D̄),

where C is a positive constant independent of φ and u but dependent on A
and D. Now let f be an element of H

1
2 (∂D). There exists a φ ∈ H1(D) such

that γ0φ = f , where γ0 is the trace operator on ∂D. Then the preceding
inequality implies that∣∣∣∣∣∣
∫
∂D

f ν ·A∇u ds
∣∣∣∣∣∣≤C‖u‖H1(D,ΔA)‖f‖H 1

2 (∂D)
∀f ∈ H

1
2 (∂D), ∀u ∈ C∞(D̄).

Therefore, the mapping

f →
∫
∂D

f ν ·A∇u ds f ∈ H
1
2 (∂D)

defines a continuous linear functional and

‖ν · A∇u‖
H− 1

2 (∂D)
≤ C‖u‖H1(D,ΔA).

Thus, the linear mapping γ1 : u → ν · A∇u defined on C∞(D̄) is continuous
with respect to the norm of H1(D,ΔA). Since C

∞(D̄) is dense in H1(D,ΔA),
γ1 can be extended by continuity to a bounded linear mapping (still called

γ1) from H1(D,ΔA) to H
− 1

2 (∂D). �
As a consequence of the preceding theorem we can now extend the divergence
theorem to a wider space of functions.

Corollary 5.8. Let u ∈ H1(D) such that ∇ · A∇u ∈ L2(D) and v ∈ H1(D).
Then ∫

D

∇v · A∇u dx+

∫
D

v∇ · A∇u dx =

∫
∂D

v ν ·A∇u ds.
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Remark 5.9. With the help of a cutoff function for a neighborhood of ∂D
we can, in a way similar to that in Theorem 5.7, define ∂u/∂νA for u ∈
H1

loc(R
2 \ D̄) such that ∇·A∇v ∈ L2

loc(R
2 \ D̄) (see Sect. 3.3 for the definition

of H1
loc-spaces).

Remark 5.10. Setting A = I in Theorem 5.7 and Corollary 5.8 we have that
∂u/∂ν is well defined in H− 1

2 (∂D) for functions u ∈ H1(D,Δ) := {u ∈
H1(D) : Δu ∈ L2(D)}. Furthermore, the following Green’s identity holds:

∫
D

∇v · ∇u dx+

∫
D

v Δu dx =

∫
∂D

v
∂u

∂ν
ds u ∈ H1(D,Δ), v ∈ H1(D).

In particular, Theorem 3.1 and Eq. (3.41) are valid for H1-solutions to the
Helmholtz equation.

We are now ready to formulate the direct scattering problem for an
orthotropic medium in R

2 in suitable Sobolev spaces. Assume that A, n, and
D satisfy the assumptions of Sect. 5.1. Given f ∈ H

1
2 (∂D) and h ∈ H− 1

2 (∂D),
find u ∈ H1

loc(R
2 \D) and v ∈ H1(D) such that

∇ ·A∇v + k2n v = 0 in D, (5.13)

Δu+ k2 u = 0 in R
2 \ D̄, (5.14)

v − u = f on ∂D, (5.15)

∂v

∂νA
− ∂u

∂ν
= h on ∂D, (5.16)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0. (5.17)

The scattering problem (5.8)–(5.12) is a special case of (5.13)–(5.17). In par-
ticular, the scattered field us and the interior field v satisfy (5.13)–(5.17) with

u = us, f = ui|∂D, and h :=
∂ui

∂ν

∣∣∣∣
∂D

, where the incident wave ui is such that

Δui + k2ui = 0 in R
2.

Note that the boundary conditions (5.15) and (5.16) are assumed in the sense
of the trace operator, as discussed previously, and u and v satisfy (5.13)
and (5.14), respectively, in the weak sense. The reader already encountered in
Sect. 3.3 the concept of a weak solution in the context of the impedance bound-
ary value problem for the Helmholtz equation. In the next section we provide
a more systematic discussion of weak solutions and variational methods for
finding weak solutions of boundary value problems.



94 5 Scattering by Orthotropic Media

5.3 Variational Methods

We will start this section with an important result from functional analysis,
namely, the Lax–Milgram lemma. Let X be a Hilbert space with norm ‖ · ‖
and inner product (·, ·).
Definition 5.11. A mapping a(·, ·) : X×X → C is called a sesquilinear form
if

a(λ1u1 + λ2u2, v) = λ1a(u1, v) + λ2a(u2, v)

for all λ1, λ2 ∈ C, u1, u2, v ∈ X,

a(u, μ1v1 + μ2v2) = μ̄1a(u, v1) + μ̄2a(u, v2)

for all μ1, μ2 ∈ C, u, v1, v2 ∈ X,

with the bar denoting the complex conjugation.

Definition 5.12. A mapping F : X → C is called a conjugate linear func-
tional if

F (μ1v1 + μ2v2) = μ̄1F (v1) + μ̄2F (v2) for all μ1, μ2 ∈ C, v1, v2 ∈ X.

As will be seen later, we will be interested in solving the following problem:
given a conjugate linear functional F : X → C and a sesquilinear form a(·, ·)
on X ×X, find u ∈ X such that

a(u, v) = F (v) for all v ∈ X. (5.18)

The solution to this problem is provided by the following lemma.

Theorem 5.13 (Lax–Milgram Lemma). Assume that a : X×X → C is a
sesquilinear form (not necessarily symmetric) for which there exist constants
α, β > 0 such that

|a(u, v)| ≤ α‖u‖ ‖v‖ for all u ∈ X, v ∈ X (5.19)

and
|a(u, u)| ≥ β‖u‖2 for all u ∈ X. (5.20)

Then for every bounded conjugate linear functional F : X → C there exists a
unique element u ∈ X such that

a(u, v) = F (v) for all v ∈ X. (5.21)

Furthermore, ‖u‖ ≤ C‖F‖, where C > 0 is a constant independent of F .

Proof. For each fixed element u ∈ X the mapping v → a(u, v) is a bounded
conjugate linear functional on X , and hence the Riesz representation theorem
asserts the existence of a unique element w ∈ X satisfying

a(u, v) = (w, v) for all v ∈ X.

Thus we can define an operator A : X → X mapping u to w such that

a(u, v) = (Au, v) for all u, v ∈ X.
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1. We first claim that A : X → X is a bounded linear operator. Indeed, if
λ1, λ2 ∈ C and u1, u2 ∈ X , then we see, using the properties of the inner
product in a Hilbert space, that for each v ∈ X we have

(A(λ1u1 + λ2u2), v) = a((λ1u1 + λ2u2), v)

= λ1a(u1, v) + λ2a(u2, v)

= λ1(Au1, v) + λ2(Au2, v)

= (λ1Au1 + λ2Au2, v) .

Since this holds for arbitrary u1, u2, v ∈ X , and λ1, λ2 ∈ C, we have
established linearity. Furthermore,

‖Au‖2 = (Au,Au) = a(u,Au) ≤ α‖u‖ ‖Au‖.
Consequently, ‖Au‖ ≤ α‖u‖ for all u ∈ X , and so A is bounded.

2. Next we show that A is one-to-one and the range of A is equal to X . To
prove this, we compute

β‖u‖2 ≤ |a(u, u)| = |(Au, u)| ≤ ‖Au‖ ‖u‖.
Hence, β‖u‖ ≤ ‖Au‖. This inequality implies that A is one-to-one and
the range of A is closed in X . Now let w ∈ A(X)⊥, and observe that
β‖w‖2 ≤ a(w,w) = (Aw,w) = 0, which implies that w = 0. Since A(X)
is closed, we can now conclude that A(X) = X .

3. Next, once more from the Riesz representation theorem, there exists a
unique w̃ ∈ X such that

F (v) = (w̃, v) for all v ∈ X

and ‖w̃‖ = ‖F‖. We then use part 2 of this proof to find a u ∈ X satisfying
Au = w̃. Then

a(u, v) = (Au, v) = (w̃, v) = F (v) for all v ∈ X,

which proves the solvability of (5.21). Furthermore, we have that

‖u‖ ≤ 1

β
‖Au‖ =

1

β
‖w̃‖ =

1

β
‖F‖.

4. Finally, we show that there is at most one element u ∈ X satisfying (5.21).
If there exist u ∈ X and ũ ∈ X such that

a(u, v) = F (v) and a(ũ, v) = F (v) for all v ∈ X,

then
a(u − ũ, v) = 0 for all v ∈ X.

Hence, setting v = u− ũ we obtain

β‖u− ũ‖2 ≤ a(u− ũ, u− ũ) = 0,
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whence u = ũ.
�

Remark 5.14. If a sesquilinear form a(·, ·) satisfies (5.19), then it is said that
a(·, ·) is continuous. A sesquilinear form a(·, ·) satisfying (5.20) is called strictly
coercive.

Example 5.15. As an example of an application of the Lax–Milgram lemma
we consider the existence of a unique weak solution to the Dirichlet problem
for the Poisson equation: given f ∈ H

1
2 (∂D) and ρ ∈ L2(D), find u ∈ H1(D)

such that {
Δu = −ρ in D,
u = f on ∂D.

(5.22)

To motivate the definition of a H1(D) weak solution to the preceding Dirich-
let problem, let us consider first u ∈ C2(D) ∩ C1(D̄) satisfying Δu = −ρ.
Multiplying Δu = −ρ by v̄ ∈ C∞

0 (D) and using Green’s first identity we
obtain ∫

D

∇u · ∇v̄ dx =

∫
D

ρv̄ dx, (5.23)

which makes sense for u ∈ H1(D) and v ∈ H1
0 (D) as well. Note that the

boundary terms disappear when we apply Green’s identity due to the fact
that v = 0 on ∂D. Now we will use (5.23) to define a weak solution. To this
end, we set X = H0(D) and define

a(w, v) = (∇w, ∇v)L2(D) , w, v ∈ X.

In particular, it is clear that

|a(w, v)| ≤ ‖∇w‖L2(D)‖∇v‖L2(D) ≤ ‖w‖H1(D)‖v‖H1(D).

Furthermore, from Poincaré’s inequality there exists a constant C > 0
depending only on D such that

a(w,w) = ‖∇w‖2L2(D) ≥ C‖w‖2H1(D),

whence a(·, ·) satisfies the assumptions of the Lax–Milgram lemma.
Now let u0 ∈ H1(D) be such that u0 = f on ∂D and ‖u0‖H1(D) ≤

C‖f‖
H

1
2 (∂D)

. If u = f on ∂D, then u − u0 ∈ H1
0 (D). Next we examine

the following problem.
Find u ∈ H1(D) such that

⎧⎨
⎩

u− u0 ∈ H1
0 (D),

a(u− u0, v) = −a(u0, v) + (ρ, v)L2(D) for all v ∈ H1
0 (D).

(5.24)
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A solution to (5.24) is called a weak solution of the Dirichlet problem (5.22),
and (5.24) is called the variational form of (5.22).

Since a(·, ·) is continuous, the mapping F : v → −a(u0, v) + (ρ, v)L2(D) is
a bounded conjugate linear functional on H1

0 (D). Therefore, from the Lax–
Milgram lemma, (5.24) has a unique solution u ∈ H1(D) that satisfies

‖u‖H1(D) ≤ C(‖u0‖H1(D) + ‖ρ‖L2(D)) ≤ C̃(‖f‖
H

1
2 (∂D)

+ ‖ρ‖L2(D)),

where the constant C̃ > 0 is independent of f and ρ.
Obviously, any C2(D)∩C1(D̄) solution to the Dirichlet problem is a weak

solution. Conversely, if the weak solution u is smooth enough (which depends
on the smoothness of ∂D, f , and ρ – see [127]), then the weak solution sat-
isfies (5.22) pointwise. Indeed, taking a function v ∈ C∞

0 (D) in (5.24) we see
that ∫

D

(Δu+ ρ) v dx = 0 for all v ∈ C∞
0 (D),

and hence Δu = −ρ almost everywhere in D. Furthermore, u − u0 ∈ H1
0 (D)

if and only if u = u0 on ∂D, whence u = f on ∂D.

We now return to the abstract variational problem (5.18) and consider it in
the following form: find u ∈ X such that

a(u, v) + b(u, v) = F (v) for all v ∈ X, (5.25)

where X is a Hilbert space, a, b : X ×X → C are two continuous sesquilinear
forms, and F is a bounded conjugate linear functional on X . In addition:

1. Assume that the continuous sesquilinear form a(·, ·) is strictly coercive,
i.e., a1(u, u) ≥ α‖u‖2 for some positive constant α. From the Lax–Milgram
lemma we then have that there exists a bijective bounded linear operator
A : X → X with bounded inverse satisfying

a(u, v) = (Au, v) for all v ∈ X.

2. Let us denote by B the bounded linear operator from X to X defined by

b(u, v) = (Bu, v) for all v ∈ X.

The existence and the continuity of B are guaranteed by the Riesz repre-
sentation theorem (see also the first part of the proof of the Lax–Milgram
lemma). We further assume that the operator B is compact.

3. Finally, let w ∈ X be such that

F (v) = (w, v) for all v ∈ X,

which is uniquely provided by the Riesz representation theorem.
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Under assumptions 1–3, (5.25) equivalently reads as follows:

Find u ∈ X such that Au+Bu = w. (5.26)

Theorem 5.16. Let X and Y be two Hilbert spaces, and let A : X → Y be
a bijective bounded linear operator with bounded inverse A−1 : Y → X, and
B : X → Y a compact linear operator. Then A + B is injective if and only
if it is surjective. If A+B is injective (and hence bijective), then the inverse
(A+B)−1 : Y → X is bounded.

Proof. Since A−1 exists, we have that A+B = A(I−(−A−1)B). Furthermore,
since A is a bijection, (I − (−A−1)B) is injective and surjective if and only if
A+B is injective and surjective. Next we observe that (−A−1)B is a compact
operator since it is the product of a compact operator and a bounded operator.
The result of the theorem now follows from Theorem 1.21 and the fact that
(A+B)−1 = (I − (−A−1)B)−1A−1. �
Example 5.17. Consider now the Dirichlet problem for the Helmholtz equation
in a bounded domain D: Given f ∈ H

1
2 (∂D), find u ∈ H1(D) such that

{
Δu + k2u = 0 in D,

u = f on ∂D,
(5.27)

where k is real. Following Example 5.15, we can write this problem in the
following variational form: find u ∈ H1(D) such that

{
u− u0 ∈ H1

0 (D),
a(u− u0, v) = −a(u0, v) for all v ∈ H1

0 (D),
(5.28)

where u0 is a function in H1(D) such that u0 = f on ∂D and ‖u0‖H1(D) ≤
C‖f‖

H
1
2 (∂D)

, and the sesquilinear form a(·, ·) is defined by

a(w, v) :=

∫
D

(∇w · ∇v̄ − k2wv̄
)
dx, w, v ∈ H1

0 (D).

Obviously, a(·, ·) is continuous but not strictly coercive. Defining

a1(w, v) :=

∫
D

∇w · ∇v̄ dx, w, v ∈ H1
0 (D)

and

a2(w, v) := −k2
∫
D

wv̄ dx, w, v ∈ H1
0 (D)
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we have that
a(w, v) = a1(w, v) + a2(w, v),

where now a1(·, ·) is strictly coercive in H1
0 (D)×H1

0 (D) (Example 5.15). Let
A : H1

0 (D) → H1
0 (D) and B : H1

0 (D) → H1
0 (D) be bounded linear operators

defined by (Au, v) = a1(u, v) and

(Bu, v) =

∫
D

uv̄ dx for all v ∈ H1
0 (D),

respectively. In particular, A is bounded and has a bounded inverse. We claim
that B : H1

0 (D) → H1
0 (D) is compact. To see this, we first note that

‖Bu‖2H1(D) = (Bu,Bu) =

∫
D

uBudx ≤ ‖u‖L2(D)‖Bu‖L2(D)

≤ ‖u‖L2(D)‖Bu‖H1(D),

and hence ‖Bu‖H1(D) ≤ ‖u‖L2(D). Now let {uj} ⊂ H1
0 (D) be such that

‖uj‖H1
0 (D) ≤ C for some positive constant C independent of j. Then, since

by Rellich’s theorem H1(D), and hence H1
0 (D), is compactly embedded in

L2(D), we have that there exists a subsequence, still denoted by {uj}, such
that {uj} is strongly convergent in L2(D), i.e., {uj} is a Cauchy sequence
in L2(D). Since ‖Bu‖H1(D) is bounded by ‖u‖L2(D), we have that {Buj} is
a Cauchy sequence in H1

0 (D), and hence {Buj} is strongly convergent. This
now implies that B is compact, as claimed.

We can now apply Theorem 5.16 to (5.28). In particular, the injectivity of
A − k2B implies the existence of a unique solution to (5.28). The injectivity
of A − k2B is equivalent to the fact that the only function u ∈ H1

0 (D) that
satisfies

a(u, v) = 0 for all v ∈ H1
0 (D)

is u ≡ 0. This is the uniqueness question for a weak solution to the Dirichlet
boundary value problem for the Helmholtz equation. The values of k2 for
which there exists a nonzero function u ∈ H1

0 (D) satisfying

Δu+ k2u = 0 in D

(in the weak sense) are called the Dirichlet eigenvalues of −Δ and the cor-
responding nonzero solutions are called the eigensolutions for −Δ. Note that
the zero boundary condition is incorporated in the space H1

0 (D).
Summarizing the preceding analysis, we have shown that if k2 is not a

Dirichlet eigenvalue for −Δ, then (5.27) has a unique solution in H1(D).

Theorem 5.18. There exists an orthonormal basis uj for H1
0 (D) consisting

of eigensolutions for −Δ. The corresponding eigenvalues k2 are all positive
and accumulate only at +∞.
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Proof. In Example 5.17 we showed that u ∈ H1
0 (D) satisfies

Δu+ k2u = 0 in D

if and only if u is a solution to the operator equation Au − k2Bu = 0, where
A : H1

0 (D) → H1
0 (D) and B : H1

0 (D) → H1
0 (D) are the bijective operator

and compact operator, respectively, constructed in Example 5.17. Since A is
a positive definite operator, the equation Au − k2Bu = 0 can be written as
(see [115] for the existence of the operator A

1
2 )

(
1

k2
I −A− 1

2BA− 1
2

)
u = 0 u ∈ H1

0 (D).

It is easily verified that A (and hence A− 1
2 ) is self-adjoint. Since B is

self-adjoint, we can conclude that A− 1
2BA− 1

2 is self-adjoint. Now noting
that A− 1

2BA− 1
2 : H1

0 (D) → H1
0 (D) is compact since it is a product of

a compact operator and bounded operators, the result follows from the
Hilbert–Schmidt theorem. �
Remark 5.19. The results of Examples 5.15 and 5.17 are valid as well if D is
not simply connected, i.e., R2 \ D̄ is not connected.

The boundary value problems arising in scattering theory are formulated
in unbounded domains. To solve such problems using variational techniques
developed in this section, we need to write them as equivalent problems in a
bounded domain. In particular, introducing a large open disk ΩR centered at
the origin that contains D̄, where D is the support of the scatterer, we first
solve the problem in ΩR \ D̄ (or in ΩR in the case of transmission problems)
using variational methods. Having solved this problem, we then want to ex-
tend the solution outside ΩR to a solution to the original problem. The main
question here is what boundary condition should we impose on the artificial
boundary ∂ΩR to enable such an extension. To find the appropriate bound-
ary conditions on ∂ΩR, we introduce the Dirichlet-to-Neumann map. We first
formalize the definition of a radiating solution to the Helmholtz equation.

Definition 5.20. A solution u to the Helmholtz equation whose domain of
definition contains the exterior of some disk is called radiating if it satisfies
the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0,

where r = |x| and the limit is assumed to hold uniformly in all directions x/|x|.
Definition 5.21. The Dirichlet-to-Neumann map T is defined by

T : w → ∂w

∂ν
on ∂ΩR,
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where w is a radiating solution to the Helmholtz equation Δw + k2w = 0,
∂ΩR is the boundary of some disk of radius R, and ν is the outward unit
normal to ∂ΩR.

Taking advantage of the fact that ΩR is a disk, by separating variables as
in Sect. 3.2 we can find a solution to the exterior Dirichlet problem outside
ΩR in the form of a series expansion involving Hankel functions. Making
use of this expansion we can establish the following important properties of
the Dirichlet-to-Neumann map.

Theorem 5.22. The Dirichlet-to-Neumann map T is a bounded linear op-
erator from H

1
2 (∂ΩR) to H− 1

2 (∂ΩR). Furthermore, there exists a bounded

operator T0 : H
1
2 (∂ΩR) → H− 1

2 (∂ΩR) satisfying

−
∫

∂ΩR

T0ww ds ≥ C‖w‖2
H

1
2 (∂ΩR)

(5.29)

for some constant C > 0 such that T − T0 : H
1
2 (∂ΩR) → H− 1

2 (∂ΩR) is
compact.

Proof. Let w be a radiating solution to the Helmholtz equation outside ΩR,
and let (r, θ) denote polar coordinates in R

2. Then from Sect. 3.2 we have
that

w(r, θ) =

∞∑
−∞

αnH
(1)
n (kr)einθ , r ≥ R and 0 ≤ θ ≤ 2π,

where H
(1)
n (kr) are the Hankel functions of the first kind of order n. Hence T

maps the Dirichlet data of w|∂ΩR given by

w|∂ΩR =

∞∑
−∞

ane
inθ

with coefficients an := αnH
(1)
n (kR) onto the corresponding Neumann data

given by

Tw =

∞∑
−∞

anγne
inθ,

where

γn :=
kH

(1)′
n (kR)

H
(1)
n (kR)

, n = 0,±1, . . . .

The Hankel functions and their derivatives do not have real zeros since oth-
erwise the Wronskian (3.22) would vanish. From this we observe that T is
bijective. In view of the asymptotic formulas for the Hankel functions devel-
oped in Sect. 3.2 we see that



102 5 Scattering by Orthotropic Media

c1|n| ≤ |γn| ≤ c2|n|, n = ±1,±2, . . .

and some constants 0 < c1 < c2. From this the boundness of T : H
1
2 (∂ΩR) →

H− 1
2 (∂ΩR) is obvious since from Theorem 1.33 for p ∈ R the norm on

Hp(∂ΩR) can be described in terms of the Fourier coefficients

‖w‖2Hp(∂ΩR) =

∞∑
−∞

(1 + n2)p|an|2.

For the limiting operator T0 : H
1
2 (∂ΩR) → H− 1

2 (∂ΩR) given by

T0w = −
∞∑
−∞

|n|
R
ane

inθ

we clearly have

−
∫
ΩR

T0ww ds =
∞∑
−∞

2π|n||an|2,

with the integral to be understood as the duality pairing between H
1
2 (∂ΩR)

and H− 1
2 (∂ΩR). Hence

−
∫

∂ΩR

T0ww ds ≥ C‖w‖2
H

1
2 (∂ΩR)

for some constant C > 0. Finally, from the series expansions for the Bessel
and Neumann functions (Sect. 3.2) for fixed k we derive

γn = −|n|
R

{
1 +O

(
1

|n|
)}

, n→ ±∞.

This implies that T − T0 is compact from H
1
2 (∂ΩR) into H

− 1
2 (∂ΩR) since it

is bounded from H
1
2 (∂ΩR) into H

1
2 (∂ΩR) and the embedding from H

1
2 (∂ΩR)

into H− 1
2 (∂ΩR) is compact by Rellich’s Theorem 1.32. This proves the theo-

rem. �
Example 5.23. We consider the problem of finding a weak solution to the
exterior Dirichlet problem for the Helmholtz equation: given f ∈ H

1
2 (∂D),

find u ∈ H1
loc(R

2 \ D̄) such that

⎧⎪⎪⎨
⎪⎪⎩

Δu + k2u = 0 in R
2 \ D̄,

u = f on ∂D,

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0.

(5.30)

Instead of (5.30) we solve an equivalent problem in the bounded domain ΩR \
D̄, that is, we find u ∈ H1(ΩR \ D̄) such that
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⎧⎪⎨
⎪⎩

Δu+ k2u = 0 in ΩR \ D̄,
u = f on ∂D,

∂u

∂ν
= Tu on ∂ΩR,

(5.31)

where f ∈ H
1
2 (∂D) is the given boundary data, T is the Dirichlet-to-Neumann

map, and ΩR is a large disk containing D̄.

Lemma 5.24. Problems (5.30) and (5.31) are equivalent.

Proof. First let u ∈ H1
loc(R

2 \ D̄) be a solution to (5.30). Then the restriction
of u to ΩR \ D̄ is in H1(ΩR \ D̄) and is a solution to (5.31). Conversely, let
u ∈ H1(ΩR \ D̄) be a solution to (5.31). To define u in all of R2 \ D̄, we
construct the radiating solution ũ of the Helmholtz equation outside ΩR such
that ũ = u on ∂ΩR. This solution can be constructed in the form of a series
expansion in terms of Hankel functions in the same way as in the proof of

Theorem 5.22. Hence we have that Tu =
∂ũ

∂ν
. Using Green’s second identity

for the radiating solution ũ and the fundamental solution Φ(x, y) (which is
also a radiating solution) we obtain that

∫
∂ΩR

[
(Tu)(y)Φ(x, y)− u(y)

∂Φ(x, y)

∂ν

]
dsy = 0, x ∈ ΩR.

Consequently, the representation formula (3.41) (Remark 6.29) and the fact

that
∂u

∂ν
= Tu imply

u(x) =

∫
∂D

[
u(y)

∂Φ(x, y)

∂ν
− ∂u

∂ν
Φ(x, y)

]
dsy

−
∫

∂ΩR

[
u(y)

∂Φ(x, y)

∂ν
− ∂u

∂ν
Φ(x, y)

]
dsy

=

∫
∂D

[
u(y)

∂Φ(x, y)

∂ν
− ∂u

∂ν
Φ(x, y)

]
dsy.

Therefore, u coincides with the radiating solution to the Helmholtz equation
in the exterior of D̄. Hence a solution of (5.30) can be derived from a solution
to (5.31). �
Next we formulate (5.31) as a variational problem. To this end, we define the
Hilbert space

X := {u ∈ H1(ΩR \ D̄) : u = 0 on ∂D}
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and the sesquilinear from a(·, ·) by

a(u, v) =

∫
ΩR\D̄

(∇u · ∇v − k2uv
)
dx−

∫
∂ΩR

Tu v ds,

which is obtained by multiplying the Helmholtz equation in (5.31) by a test
function v ∈ X , integrating by parts, and using the boundary condition
∂u/∂ν = Tu on ∂ΩR and the zero boundary condition on ∂D. Now let
u0 ∈ H1(ΩR \ D̄) be such that u0 = f on ∂D. Then the variational for-
mulation of (5.31) reads: find u ∈ H1(ΩR \ D̄) such that

⎧⎨
⎩

u− u0 ∈ X,

a(u− u0, v) = −a(u0, v) for all v ∈ X.
(5.32)

To analyze (5.32) we define

a1(w, v) =

∫
ΩR\D̄

(∇w · ∇v + wv) dx−
∫

∂ΩR

T0w v ds

and

a2(w, v) = −(k2 + 1)

∫
ΩR\D̄

wv dx−
∫

∂ΩR

(T − T0)w v ds,

where T0 is the operator defined in Theorem 5.22, and write the equation
in (5.32) as

a1(u− u0, v) + a2(u− u0, v) = F (v), for all v ∈ X,

with F (v) := a(u0, v). Since T is a bounded operator from H
1
2 (∂ΩR) to

H− 1
2 (∂ΩR), F is a bounded conjugate linear functional on X and both a1(·, ·)

and a2(·, ·) are continuous on X ×X . In addition, using (5.29), we see that

a1(w, w) ≥ C‖w‖2H1(ΩR\D̄).

Note that including a L2-inner product term in a1(·, ·) is important since
the Poincaré inequality no longer holds in X . Furthermore, due to the
compact embedding of H1(ΩR \ D̄) into L2(ΩR \ D̄) and the fact that

T − T0 : H
1
2 (∂ΩR) → H− 1

2 (∂ΩR) is compact, a2(·, ·) gives rise to a com-
pact operator B : X → X (Example 5.17). Hence from Theorem 5.16 we
conclude that the uniqueness of a solution to (5.31) implies the existence of
a solution to (5.31) and, consequently, from Lemma 5.24 the existence of a
weak solution to (5.30). To prove the uniqueness of a solution to (5.31) we
first observe that according to Lemma 5.24 a solution to the homogeneous
problem (5.31) (f = 0) can be extended to a solution to the homogeneous
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problem (5.30). Now let u be a solution to the homogeneous problem (5.30).
Then Green’s first identity and the boundary condition imply

∫
∂ΩR

∂u

∂ν
u ds =

∫
∂D

∂u

∂ν
u ds+

∫
ΩR\D̄

(|∇u|2 − k2|u|2) dx (5.33)

=

∫
ΩR\D̄

(|∇u|2 − k2|u|2) dx, (5.34)

whence

Im

⎛
⎝ ∫
∂ΩR

∂u

∂ν
u ds

⎞
⎠ = 0.

From Theorem 3.6 we conclude that u = 0 in R
2\D̄, which proves the unique-

ness and, therefore, the existence of a unique weak solution to the exterior
Dirichlet problem for the Helmholtz equation. Note that in the preceding proof
of uniqueness we have used the fact that off the boundary an H1

loc(R
2 \ D̄)

solution to the Helmholtz equation is real-analytic. This can be seen from
the Green representation formula as in Theorem 3.2, which is also valid for
radiating solutions to the Helmholtz equation in H1

loc(R
2 \ D̄) (Remark 6.29).

In this section we have developed variational techniques for finding weak so-
lutions to boundary value problems for partial differential equations. As the
reader has already seen, in scattering problems the boundary conditions are
typically the traces of real-analytic solutions, for example, plane waves. Hence,
provided that the boundary of the scattering object is smooth, one would ex-
pect that the scattered field would not, in fact, be smooth. It can be shown
that if the boundary, the boundary conditions, and the coefficients of the
equations are smooth enough, then a weak solution is in fact C2 inside the
domain and C1 up to the boundary. This general statement falls in the class
of so-called regularity results for the solutions of boundary value problems for
elliptic partial differential equations. Precise formulation of such results can be
found in any classic book of partial differential equations (cf. [72] and [127]).

5.4 Solution of Direct Scattering Problem

We now turn our attention to the main goal of this chapter, the solution to
the scattering problem (5.13)–(5.17). Following Hähner [81], we shall use the
variational techniques developed in Sect. 5.3 to find a solution to this problem.
To arrive at a variational formulation of (5.13)–(5.17), we introduce a large
open disk ΩR centered at the origin containing D̄ and consider the following
problem: given f ∈ H

1
2 (∂D) and h ∈ H− 1

2 (∂D), find u ∈ H1(ΩR \ D̄) and
v ∈ H1(D) such that
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∇ · A∇v + k2n v = 0 in D, (5.35)

Δu+ k2 u = 0 in ΩR \ D̄, (5.36)

v − u = f on ∂D, (5.37)

∂v

∂νA
− ∂u

∂ν
= h on ∂D, (5.38)

∂u

∂ν
= Tu on ∂ΩR, (5.39)

where T is the Dirichlet-to-Neumann operator defined in Definition 5.21.
We note that exactly in the same way as in the proof of Lemma 5.24 one

can show that a solution u, v to (5.35)–(5.39) can be extended to a solution
to the scattering problem (5.13)–(5.17) and, conversely, a solution u, v to the
scattering problem (5.13)–(5.17) is such that v and u restricted to ΩR \ D̄
solve (5.35)–(5.39).

Next let uf ∈ H1(ΩR \D̄) be the unique solution to the following Dirichlet
boundary value problem:

Δuf + k2uf = 0 in ΩR \ D̄, uf = f on ∂D, uf = 0 on ∂ΩR.

The existence of a unique solution to this problem is shown in Example 5.17
(see also Remark 5.19). Note that we can always choose ΩR such that k2 is not
a Dirichlet eigenvalue for −Δ in ΩR\D̄. An equivalent variational formulation
of (5.35)–(5.39) is as follows: find w ∈ H1(ΩR) such that

∫
D

(∇φ · A∇w − k2nφw
)
dx+

∫
ΩR\D̄

(∇φ · ∇w − k2φw
)
dx (5.40)

−
∫

∂ΩR

φTw ds =

∫
∂D

φh ds−
∫

∂ΩR

φTuf ds+

∫
ΩR\D̄

(∇φ · ∇uf − k2φuf
)
dx

for all φ ∈ H1(ΩR). With the help of Green’s first identity (Corollary 5.8
and Remark 6.29) it is easy to see that v := w|D and u := w|ΩR\D̄ − uf
satisfy (5.35)–(5.39). Conversely, multiplying the equations in (5.35)–(5.39)
by a test function and using the transmission conditions one can show that
w = v in D and w = u + uf in ΩR \ D̄ is such that w ∈ H1(ΩR) and
satisfies (6.68), where v, u solve (5.35)–(5.39).

Next we define the following continuous sesquilinear forms on H1(ΩR) ×
H1(ΩR):

a1(ψ, φ) : =

∫
D

(∇φ ·A∇ψ + φψ
)
dx +

∫
ΩR\D̄

(∇φ · ∇ψ + φψ
)
dx

−
∫

∂ΩR

φT0ψ ds φ, ψ ∈ H1(ΩR)
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and

a2(ψ, φ) : = −
∫
D

(nk2 + 1)φψ dx−
∫

ΩR\D̄

(k2 + 1)φψ dx

−
∫

∂ΩR

φ (T − T0)ψ ds φ, ψ ∈ H1(ΩR),

where the operator T0 is the operator defined in Theorem 5.22. Furthermore,
we define the bounded conjugate linear functional F on H1(ΩR) by

F (φ) :=

∫
∂D

φh ds−
∫

∂ΩR

φTuf ds+

∫
ΩR\D̄

(∇φ · ∇uf − k2φuf
)
dx.

Then (6.68) can be written as the problem of finding w ∈ H1(ΩR) such that

a1(w, φ) + a2(w, φ) = F (φ) for all φ ∈ H1(ΩR).

From the assumption ξ̄ ·Re(A) ξ ≥ γ|ξ|2 for all ξ ∈ C
3 and x ∈ D and (5.29) we

can conclude that the sesquilinear form a1(·, ·) is strictly coercive. Hence, as a
consequence of the Lax–Milgram lemma, the operatorA : H1(ΩR) → H1(ΩR)
defined by a1(w, φ) = (Aw, φ)H1(ΩR) is invertible with bounded inverse. Fur-
thermore, due to the compact embedding of H1(ΩR) into L2(ΩR) and the

fact that T − T0 : H
1
2 (∂ΩR) → H− 1

2 (∂ΩR) is compact (Theorem 5.22),
we can show exactly in the same way as in Example 5.17 that the opera-
tor B : H1(ΩR) → H1(ΩR) defined by a2(w, φ) = (Bw, φ)H1(ΩR) is compact.
Finally, by Theorem 5.16, the uniqueness of a solution to (5.35)–(5.39) implies
that a solution exists.

Lemma 5.25. The problems (5.35)–(5.39) and (5.13)–(5.17) have at most
one solution.

Proof. According to our previous remarks, a solution to the homogeneous
problem (5.35)–(5.39) (f = h = 0) can be extended to a solution v ∈ H1(D)
and u ∈ H1

loc(R
2 \ D̄) to the homogeneous problem (5.13)–(5.17). Therefore,

it suffices to prove uniqueness for (5.13)–(5.17). Green’s first identity and the
transmission conditions imply that∫

∂ΩR

u
∂u

∂ν
ds =

∫
∂D

u
∂u

∂ν
ds+

∫

ΩR\D

(|∇u|2 − k2|u|2)2 dx

=

∫
D

(∇v ·A∇v − k2n|v|2)2 dx+

∫

ΩR\D

(|∇u|2 − k2|u|2)2 dx.

Now since ξ̄ · Im(A) ξ ≤ 0 for all ξ ∈ C
2 and Im(n) > 0 for x ∈ D, we

conclude that
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Im

⎛
⎝ ∫
∂ΩR

u
∂u

∂ν
ds

⎞
⎠ ≤ 0,

which from Theorem 3.6 implies that u = 0 in R
2 \ D̄. From the transmission

conditions we can now conclude that v = 0 and ∂v/∂νA = 0 on ∂D.
To conclude that v = 0 in D, we employ a unique continuation princi-

ple. To this end, we extend Re(A) to a real, symmetric, positive definite,
and continuously differentiable matrix-valued function in ΩR and Im(A) to
a real, symmetric, continuously differentiable, matrix-valued function that is
compactly supported in ΩR. We also choose a continuously differentiable ex-
tension of n into ΩR and define v = 0 in ΩR \ D̄. Since v = 0 and ∂v/∂νA = 0
on ∂D, then v ∈ H1(ΩR) and satisfies ∇ · A∇v + k2nv = 0 in ΩR. Then, by
the regularity result in the interior of ΩR (Theorem 5.27), v is smooth enough
to apply the unique continuation principle (Theorem 17.2.6 in [89]). In partic-
ular, since v = 0 in ΩR \ D̄, then v = 0 in ΩR. This proves the uniqueness. �
Summarizing the preceding analysis, we have proved the following theorem
on the existence, uniqueness, and continuous dependence on the data of a
solution to the direct scattering problem for an orthotropic medium in R

2.

Theorem 5.26. Assume that D, A, and n satisfy the assumptions in Sect. 5.1,
and let f ∈ H

1
2 (∂D) and h ∈ H− 1

2 (∂D) be given. Then the transmission prob-
lem (5.13)–(5.17) has a unique solution v ∈ H1(D) and u ∈ H1

loc(R
2 \ D̄),

which satisfy

‖v‖H1(D) + ‖u‖H1(ΩR\D̄) ≤ C
(
‖f‖

H
1
2 (∂D)

+ ‖h‖
H− 1

2 (∂D)

)
, (5.41)

with C > 0 a positive constant independent of f and h.

Note that the a priori estimate (5.41) is obtained using the fact that by a
duality argument ‖F‖ is bounded by ‖h‖

H− 1
2 (∂D)

and ‖uf‖H1(ΩR\D̄), which

in turn is bounded by ‖f‖
H

1
2 (∂D)

(Example 5.17).

We end this section by stating two regularity results from the general the-
ory of partial differential equations formulated for our transmission problem.
The proofs of these results are rather technical and beyond the scope of this
book.

Let D1 and D2 be bounded, open subsets of R2 such that D̄1 ⊂ D2, and
assume that A is a matrix-valued function with continuously differentiable
entries ajk ∈ C1(D̄2) and n ∈ C1(D̄2). Furthermore, suppose that A is sym-
metric and satisfies ξ̄ · Re(A) ξ ≥ γ|ξ|2 for all ξ ∈ C

3 and x ∈ D2 for some
constant γ > 0.

Theorem 5.27. If u ∈ H1(D2) and q ∈ L2(D2) satisfy

∇ · A∇u+ k2nu = q,
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then u ∈ H2(D1) and

‖u‖H2(D1) ≤ C
(‖u‖H1(D2) + ‖q‖L2(D2)

)
,

where C > 0 depends only on γ, D1 and D2.

For a proof of this theorem in a more general formulation see Theorem 4.16
in [127] or Theorem 15.1 in [70]. Note also that a more general interior reg-
ularity theorem shows that if the entries of A and n are smoother than C1

and q is smoother than L2, then one can improve the regularity of u, and this
eventually leads to a C2 solution in the interior of D2.

For later use, in the next theorem we state a local boundary regularity
result for the solution to the transmission problem (5.13)–(5.17). By Ωε(z) we
denote an open ball centered at z ∈ R

2 of radius ε.

Theorem 5.28. Assume z ∈ ∂D, and let ui ∈ H1(D) such that Δui ∈ L2(D).
Define f := ui and h := ∂ui/∂ν on ∂D.

1. If for some ε > 0 the incident wave ui is also defined in Ω2ε(z) and
the restriction of ui to Ω2ε(z) is in H2(Ω2ε(z)), then the solution u
to (5.13)–(5.17) satisfies u ∈ H2((R2 \ D) ∩ Ωε(z)) and there is a posi-
tive constant C such that

‖u‖H2((R2\D)∩Ωε(z))
≤ C

(‖ui‖H2(Ω2ε(z)) + ‖ui‖H1(D)

)
.

2. If for some ε > 0 the incident wave ui is also defined in ΩR \Ωε(z) and the
restriction of ui to ΩR \ Ωε(z) is in H2(ΩR \ Ωε(z)), then the solution u
to (5.13)–(5.17) satisfies u ∈ H2(R2 \ (D ∪Ω2ε(z))) and there is a positive
constant C such that

‖u‖H2(R2\(D∪Ω2ε(z)))
≤ C

(‖ui‖H2(ΩR\Ωε(z)) + ‖ui‖H1(D)

)
.

This result is proved in Theorem 2 in [81]. The proof employs the interior
regularity result stated in Theorem 5.27 and techniques from Theorem 8.8
in [72].
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